Title
Erratum: 1.5D quasilinear model and its application on beams interacting with Alfvén eigenmodes in DIII-D (Physics of Plasmas (2012) 19(092511))

Permalink
https://escholarship.org/uc/item/89d0t4b1

Journal
Physics of Plasmas, 21(4)

ISSN
1070-664X

Authors
Ghantous, K
Gorelenkov, NN
Berk, HL
et al.

Publication Date
2014

DOI
10.1063/1.4870636

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Erratum: “1.5D quasilinear model and its application on beams interacting with Alfven eigenmodes in DIII-D” [Phys. Plasmas 19, 092511 (2012)]

K. Ghantous,1 N. N. Gorelenkov,1 H. L. Berk,2 W. W. Heidbrink,3 and M. A. Van Zeeland4
1Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451, USA
2Institute for Fusion Studies, University of Texas, 2100 San Jacinto Blvd, Austin, Texas 78712-1047, USA
3Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, USA
4General Atomics, P.O. Box 85608, San Diego, California 92186-560, USA

(Received 24 March 2014; accepted 26 March 2014; published online 1 April 2014)

[http://dx.doi.org/10.1063/1.4870636]

We make the following corrections to typos we found in the original paper.1

In the abstract, the reference is to shot #112117 not #127112 [W. W. Heidbrink et al., Nucl. Fusion 48, 084001 (2008)].

Equation (13)
For consistency, we replace the variable q by e for the charge, since q is used as safety factor elsewhere. Equation (13) therefore reads as

\[\gamma_k = \frac{e}{c} dP_\phi dE \left(\frac{n_d \cdot \delta E}{\omega} \right)^2 \delta(\Omega) \left(\omega \frac{\partial}{\partial E} + n \frac{\partial}{\partial P_\phi} \right) \]

where \(D_k = W_k \left(\frac{n_d \cdot \delta E}{\omega} \right)^2 \delta(\Omega) \) is the diffusion coefficient at the resonances in phase space.

Equation (17)
Equation (17) should be written as

\[\frac{\partial \beta_{L_P}}{\partial r} \bigg|_{\text{crit}} = \gamma_d \frac{\gamma_L}{\gamma} \]

Equation (18)
\(\rho \) in Eq. (18) is \(\rho_s \)

\[\frac{\gamma_{rad}}{\omega} = -3 \left(\frac{\sqrt{\rho_s^2} m (m + 1)}{r \sqrt{2}} \right)^{0.67} \]

where \(s \) is the local shear at the location of the mode, \(m \) is the poloidal mode number, \(\rho_s = c_s / \Omega_c \), with \(c_s = \sqrt{\gamma Z k T_e / m_i} \) is the ion sound speed, and \(\Omega_c \) is the ion gyro-frequency.

Equation (20)
The exponential in Eq. (20) for the electron landau damping is \(-1/s\) not \(-1/s\). We also correct the expression for \(G(\tilde{\epsilon}) \) and further explain some variables

\[\frac{\gamma_{eL}}{\omega} = -\frac{\pi^{3/2}}{6} q^2 \frac{\beta_e}{\nu_e} \left(\frac{5}{2} \right) G(\tilde{\epsilon}) e^{-1/s} \]

and \(G(\tilde{\epsilon}) \approx 4.47 + 0.42 \tilde{\epsilon} + 0.02 \tilde{\epsilon}^2 \) not \(G(\tilde{\epsilon}) \approx 4.47 - 0.42 \tilde{\epsilon} + 0.02 \tilde{\epsilon}^2 \) as typed in the manuscript. \(s \) is the local shear \(s = (r/q) dq/dr \), where \(r \) is the radius and \(q \) is the safety factor. \(\tilde{\epsilon} = 2 \epsilon / (1 - \epsilon) \), where \(\epsilon = r / a \) with \(a \) minor radius of the plasma last close flux surface.

Equation (21)
There is a missing factor of \((\pi/2)^2 \). Equation (21) should be

\[\frac{\gamma_{eL_P}}{\omega} = \frac{1}{4} \left(\frac{\pi}{2} \right)^2 \left[I_1 \left(\frac{8 \pi m q_s}{5 r \epsilon} \right)^2 + I_2 q^2 \frac{8 \beta_e}{1 + \sigma} \right] \sqrt{\frac{\nu}{\omega}}
\times \left[\ln \left(\frac{16 \sqrt{\nu / \rho_e}}{\sigma} \right) \right]^{-3/2} \]

Equation (25)
The diamagnetic frequency in Eq. (25) is

\[\omega^* = \frac{n m q_s^2}{r_m \Omega_c} \frac{\partial \ln \beta}{\partial r} \]

where \(q_m \) and \(r_m \) are the safety factor and radius at the location of the toroidal Alfvenic eigenmodes mode. \(n \) is the toroidal mode number and \(\Omega_c \) is the fast ion cyclotron frequency.