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Can inducible resistance in plants cause herbivore aggregations?
Spatial patterns in an inducible plant/herbivore model

KURT E. ANDERSON,1,3 BRIAN D. INOUYE,2 AND NORA UNDERWOOD
2

1Department of Biology, University of California, Riverside, California 92521 USA
2Department of Biological Science, Florida State University, Tallahassee, Florida 32306 USA

Abstract. Many theories regarding the evolution of inducible resistance in plants have an
implicit spatial component, but most relevant population dynamic studies ignore spatial
dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore
population dynamics to explore how realistic features of resistance and herbivore responses
influence spatial patterning. Both transient and persistent spatial patterns developed in all
models examined, where patterns manifested as wave-like aggregations of herbivores and
variation in induction levels. Patterns arose when herbivores moved away from highly induced
plants, there was a lag between damage and deployment of induced resistance, and the
relationship between herbivore density and strength of the induction response had a sigmoid
shape. These mechanisms influenced pattern formation regardless of the assumed functional
relationship between resistance and herbivore recruitment and mortality. However, in models
where induction affected herbivore mortality, large-scale herbivore population cycles driven
by the mortality response often co-occurred with smaller scale spatial patterns driven by
herbivore movement. When the mortality effect dominated, however, spatial pattern
formation was completely replaced by spatially synchronized herbivore population cycles.
Our results present a new type of ecological pattern formation driven by induced trait
variation, consumer behavior, and time delays that has broad implications for the community
and evolutionary ecology of plant defenses.

Key words: aggregations; herbivore population dynamics; induced resistance; plant–herbivore
interactions; spatial pattern formation; time delays.

INTRODUCTION

Dynamic plant defenses against herbivory, termed

inducible resistance, have received widespread attention

since they were first described decades ago (Karban and

Baldwin 1997, Tollrian and Harvell 1999, Karban 2011,

Walters 2011). One major reason for deep interest in

inducible resistance to herbivory is that it may affect the

population dynamics of herbivores and thus alter

patterns in herbivore damage. Convincing evidence

exists that inducible resistance can affect herbivore

performance and demographic traits such as births,

growth, and survival (reviewed in Karban and Baldwin

1997). Both theoretical (Edelstein-Keshet and Rausher

1989, Lundberg et al. 1994, Underwood 1999, Abbott et

al. 2008, Reynolds et al. 2013) and empirical (Under-

wood and Rausher 2002, Reynolds et al. 2012, Elderd et

al. 2013) evidence suggests inducible resistance can

indeed shape population dynamics of insects and small

mammalian herbivores, and that induced plants accu-

mulate less damage (Karban and Baldwin 1997, Thaler

et al. 2001).

Most population dynamic studies involving inducible

resistance have focused on temporal fluctuations in

herbivore abundances, ignoring spatial variability in

these fluctuations. This is despite the fact that many

theories regarding the evolution of inducible resistance

have an implicit spatial component, as reviewed in

Karban and Baldwin (1997), Agrawal and Karban

(1999), and Zangerl (2003). A hypothesized benefit of

inducible resistance is that it, coupled with herbivore

movements, may create variance in damage among

plants or plant parts, reducing damage to short bouts

from which plants can easily recover. There is empirical

evidence that insect herbivores move away from low

quality plants and/or move up gradients in plant quality

(Bernays and Chapman 1994), show feeding preferences

for non-induced plants (Edwards et al. 1985, Cipollini et

al. 2003, Kallenbach et al. 2012) and alter movement

behavior within induced plants (Barker et al. 1995,

Perkins et al. 2013). Yet whether these herbivore

responses to induction alter larger scale spatial patterns

remain unresolved. Edwards and Wratten (1983) pro-

posed that insect herbivore movement away from areas

of local induction should lead to even (dispersed)

patterns of damage within a plant; this prediction can

conceivably be extrapolated to apply to herbivore
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movement and patterns of damage among plants.

However, studies of patterns of insect damage among

plants with inducible resistance have found damage

ranging from dispersed to aggregated (Bergelson et al.

1986, Silkstone 1987, Underwood et al. 2005, Roslin et

al. 2008, Viswanathan et al. 2008), defying simple

generalization.

The implications of inducible defenses for herbivore

spatial dynamics are likely to vary depending on the

context and mechanism of induction; in this light,

theory can provide guidance to when alternative

patterns may emerge. A common theme in previous

modeling studies is that the combination of nonlinear

induction responses and time lags can drive temporal

oscillations in the densities of insect herbivores and

small herbivorous mammals (Lundberg et al. 1994,

Underwood 1999, Abbott et al. 2008, Reynolds et al.

2012). Time lags in plant induction responses can arise

in a number ways, including delays in the deployment

of resistance, damage thresholds required for induc-

tion, and slow decay of induced traits, as seen in the

examples in Underwood (1999) and Karban (2011).

These in turn can delay the density dependent action of

induction on herbivores, generating temporal instabil-

ity. Lewis (1994) explored a model that included both

variable plant quality and mobile herbivores and

demonstrated that, when herbivores have strong

tendencies to aggregate in areas of both high plant

quality and high conspecific density, herbivores can

show persistent spatial variation in density. However,

Lewis (1994) did not include time lags and other

features of inducible resistance shown to be important

in nonspatial models. In contrast, Underwood et al.

(2005) and Roslin et al. (2008) examined spatially

explicit simulations that included time delays in

induction. Their models predicted the possibility of

herbivore aggregation in response to inducible resis-

tance, which in turn led to aggregated patterns of

damage among plants over time. Predicted patterns

were supported empirically in both cases. However, the

Underwood et al. (2005) and Roslin et al. (2008)

models assumed fixed herbivore densities and analyzed

limited subsets of key parameters. Hence, the limited

modeling of induced resistance in a spatial context

predicts an effect of induced resistance on spatial

herbivore dynamics (see also Morris and Dwyer 1997),

but with different mechanisms responsible for pattern

formation in different models.

We explore the interplay between inducible resis-

tance and herbivore spatial dynamics more generally

using a collection of spatially explicit population

dynamic models. These models extend and generalize

both the nonspatial population dynamic model of

Underwood (1999) and the spatially explicit behavioral

simulations of Underwood et al. (2005) and Roslin et

al. (2008). Our specific aim is to understand better how

realistic features of plant inducible resistance and

herbivore behavioral and demographic responses to

such resistance affect the spatiotemporal dynamics of

plant–herbivore systems. This model was constructed

with herbivorous insects in mind, but should also apply

to plants and small herbivorous mammals and other

systems with inducible producer organisms and con-

sumers that are numerous, small, and mobile (e.g.,

macroalgae and gastropod or isopod grazers; Long et

al. 2007, Poore et al. 2014). We examine a novel

mechanism where time delays in a plant’s inducible

resistance coupled with behavioral responses of herbi-

vores to resistance levels lead to local instability and,

hence, persistent spatial patterns. We also show how

this mechanism may co-occur with other mechanisms

known to generate oscillations in nonspatial models.

To demonstrate key concepts in a simple context, we

examine a hierarchy of models focused on basic

mechanisms rather than attempt to model the details

of a particular plant–herbivore system. However, it is

also our objective to present an analytic formalism that

can serve as the basis for a general, coherent theoretical

framework describing the interactions between small

consumers and producers with inducible resistance in a

spatially explicit context.

Models of inducible resistance and herbivore dynamics

We use a system of differential equations to track the

densities of herbivores and the level of inducible

resistance in a linear array of discrete patches. Patches

can represent a set of plant parts experiencing localized

resistance (Orians et al. 2000, Perkins et al. 2013, Sarfraz

et al. 2013), individual plants expressing systemic

resistance, or plant aggregations linked by interplant

communication (Karban et al. 2006), depending on the

spatial scale of interest. Movements are therefore

defined relative to what the patch represents; movements

in the first case would be within or between nearby

plants, while in the last case, they would be larger scale

movements between clumps of plants or patches of

forest. Resistance is treated, for ease of analysis, as

either a single trait or an aggregate of traits that can be

quantified by a single cumulative measure. Because the

effects of inducible resistance on insect (Kaplan and

Denno 2007) and small mammal (Reynolds et al. 2013)

populations appear largely independent of plant bio-

mass, we choose to model the dynamics of local

inducible resistance levels without including plant

growth or reproduction. In addition, focusing on

induction levels allows the model to reflect empirical

measurements of chemical resistance and herbivore

feeding preference that are easily obtained via bioassay

experiments, facilitating the confrontation between the

model and data. We revisit this simplification in the

Discussion.

The dynamics of induced resistance levels Ij(t) and of

herbivores Hj(t) in a given patch j at time t are

determined by the following equations:
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dIj

dt
¼

aHh
j;t�s

bh þ Hh
j;t�s

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
increase in induction

� dIj

|fflfflffl{zfflfflffl}
decay in

induction

dHj

dt
¼ qðHjÞ
|fflfflfflfflffl{zfflfflfflfflffl}
recruitment

of new

herbivores

� cðIjÞHj

|fflfflfflffl{zfflfflfflffl}
mortality

�ðd þ vIjÞHj

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
emigration

þ 1

2
ðd þ vIj�1ÞHj�1 þ

1

2
ðd þ vIjþ1ÞHjþ1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
immigration

: ð1Þ

To minimize the influence of system boundaries, we

assume that patches are far from any habitat edges. This

scenario is approximated when necessary using periodic

boundary conditions.

Changes in induction are dependent on herbivore

densities s, time steps in the past, denoted Ht�s, rather

than on current herbivore densities to reflect the time it

takes for most plants to synthesize and employ inducible

defenses (e.g., Orians et al. 2000, Gomez et al. 2010,

Karban 2011, Reynolds et al. 2012, Underwood 2012).

While induced responses to repeated bouts of herbivory

are not generally well characterized, there is evidence

that resistance levels saturate with increasing damage

(Underwood 2000, 2010, 2012, Stork et al. 2009,

Reynolds et al. 2012). We assume that induced

resistance increases in response to herbivore densities

according to a saturating function, such that there is a

maximum rate a by which induction can change after

damage. The specific form of the herbivore effect

function is determined by two parameters, h and b.

The parameter h adjusts the shape of the function. When

h¼ 1, the function decelerates monotonically, while h .

1 produces a sigmoidal shape, becoming a step function

as h ! ‘. The parameter b is the half-saturation

constant. Thus, increases in h and b create a stronger

threshold effect where low herbivore damage does not

induce a strong resistance response (Underwood 2000,

Massey et al. 2007). Induction levels decay at a constant

per unit rate d, reflecting the breakdown of inducible

defenses and plant repair as well as inhibition by

autotoxicity and nutrient limitation.

Herbivore spatiotemporal dynamics are determined

by a mixture of movement, recruitment, and mortality.

Herbivores possess two components of movement. The

first is the baseline rate of emigration to a neighboring

patch in the absence of induced resistance, which occurs

with a per capita rate d. This is essentially a random

movement term that represents the many factors besides

induced resistance that influence movements and would

typically be considered stochasticity in empirical mea-

surements. The second component describes the increase

in herbivore emigration rate as a function of induction

level. The parameter v is the increase in the per capita

emigration rate per unit increase in induction. We

assume that herbivores only respond to local conditions

and do not exhibit any taxis towards neighboring

patches possessing lower induction levels. Movements

are defined relative to the size a patch represents,

necessarily tying herbivore movement rates to these

scales. For example, within-plant movements will

typically occur more frequently than between-plant

movements.

We examine different versions of Eq. 1, which we refer

to as the open behavioral effect (hereafter OBE) model,

the open behavioral and mortality effect (OBME)

model, and the local behavioral and mortality effect

(LBME) model. The models include different assump-

tions about herbivore recruitment and mortality that

reflect different ecological conditions.

In the OBE model, we set q¼R and c¼m for Eq. 1.

For recruitment, we thus assume that herbivores arrive

at a constant rate R from outside the system and that the

per capita mortality rate m is initially independent of

both herbivore density and induction level. This might

be expected in a local plant population or agricultural

field where new herbivores recruit from eggs laid by

wide-ranging adults. The OBME model contains simi-

larly open recruitment but with mortality that increases

with increasing induction. This is achieved by setting c¼
bIj. The influence of mortality may reflect direct effects

of toxicity or reduced nutritional content or indirect

effects of increased predation risk (e.g., Thaler 2002,

Kaplan et al. 2007). Finally, we examine a closed

recruitment model, the LBME model, where herbivores

reproduce and die locally. Herbivore population growth

is logistic, q ¼ rHj (1 � Hj/K), and inducible defenses

reduce the net population growth rate at a constant per

unit rate such that c ¼ mI (Underwood and Rausher

2002).

These models possess a large number of parameters,

which can obscure important mechanisms under a large

amount of generated information. A standard work-

around is dimensional analysis, which involves identify-

ing a base unit for each parameter and then defining new

parameters as ratios of the original parameters to their

base units (Gurney and Nisbet 1998, Murray 2003). The

resulting model is dimensionless and has fewer param-

eters, facilitating analysis.

We set our base unit for time as the average time it

takes for induced resistance levels to decay, d�1,
achieved by setting t̂ ¼ dt. Our choice allows us to

maintain a consistent and comparable parameterization

even though herbivore recruitment and mortality terms

vary among models. Because we are interested in the

conditions that promote spatial patterning, we therefore

scale induction levels, herbivore densities, and associated

parameters by their expected average values at equilib-

rium, Ī* and H̄*. In other words, herbivore densities and

KURT E. ANDERSON ET AL.2760 Ecology, Vol. 96, No. 10



induction levels are re-scaled to be one in all patches

when spatial patterns are absent. The full details of our

re-parameterization, including definitions for all nondi-

mensional parameters, are presented in Appendix A.

The resulting nondimensional OBE model is

dÎj

dt̂
¼ ð1þ b̂

hÞ
Ĥ

h
j;t̂�ŝ

b̂
h þ Ĥ

h
j;t̂�ŝ

� Îj

dĤj

dt̂
¼ m̂ð1� ĤjÞ � ðd̂þ v̂ÎjÞĤj þ

1

2
ðd̂þ v̂Îj�1ÞĤj�1

þ 1

2
ðd̂þ v̂Îjþ1ÞĤjþ1 ð2Þ

while the nondimensional OBME model is

dÎj

dt̂
¼ ð1þ b̂

hÞ
Ĥ

h
j;t̂�ŝ

b̂
h þ Ĥ

h
j;t̂�ŝ

� Îj

dĤj

dt̂
¼ b̂ð1� ÎjĤjÞ � ðd̂þ v̂ÎjÞĤj þ

1

2
ðd̂þ v̂Îj�1ÞĤj�1

þ 1

2
ðd̂þ v̂Îjþ1ÞĤjþ1 ð3Þ

and the nondimensional LBME model is

dÎj

dt̂
¼ ð1þ b̂

hÞ
Ĥ

h
j;t̂�ŝ

b̂
h þ Ĥ

h
j;t̂�ŝ

� Îj

dĤj

dt̂
¼ r̂Ĥj � ðr̂� b̂ÞĤ2

j � b̂ÎjĤj � ðd̂þ v̂ÎjÞĤj

þ 1

2
ðd̂þ v̂Îj�1ÞĤj�1 þ

1

2
ðd̂þ v̂Îjþ1ÞĤjþ1: ð4Þ

Hereafter, we drop hats for convenience and present

variables and parameters as dimensionless quantities

unless otherwise noted.

Model analyses

At the heart of our analyses, we ask whether small

initial differences in induced resistance or herbivore

aggregations between patches grow or decay (see

Appendix B for details). Initial local differences could

be perhaps seeded by hatchlings from egg clusters or by

demographic or environmental stochasticity; these small

initial differences grow into persistent spatial patterns in

our models when the system is unstable, and attenuate

when the system is stable. Mathematically, our analyses

are accomplished by subjecting the average equilibrium

induction level Ī* or herbivore density H̄* to a small,

spatially variable perturbation and examining the

resulting dynamics. In particular, we derive the pertur-

bation growth rate, denoted n (see Appendix B), which

provides the approximate rate at which spatial pertur-

bations grow or decay. The perturbation growth rate is

positive when the system is unstable and the perturba-
tions grow into persistent spatial patterns, and is

negative when the system is stable and initial spatial
patterning decays.

Our analyses demonstrate that whether or not we see
perturbations grow into spatial patterns in our model is

often determined by the component spatial frequencies
of the perturbation. While the spatial distribution of
herbivores in any real ecological system will never be

simple, we can still make significant progress by
examining the perturbation growth rate across a range

of different spatial frequencies k. Note that each spatial
frequency k has a corresponding spatial wavelength 2p/
k, meaning that perturbations with high spatial frequen-
cies vary over small spatial scales, while low frequencies

vary over large scales. Frequencies that are unstable will
grow and contribute to spatial patterns in herbivore

densities or induced resistance levels, while those that
are stable will tend to dissipate. In other words, we

expect herbivore aggregations to form whose spatial
scale reflects unstable spatial frequencies present in the

initial perturbation.
Our analyses also demonstrate the key role that the

induction time delay s plays in herbivore aggregation
(Appendix B). For any given set of model parameters

that promote pattern formation, there will be a critical
time delay sc that is required for patterns to form. When

the induction time delay is longer than the critical delay,
the system will be destabilized, leading to oscillations in
induction levels and herbivore densities at each patch j

that occur with temporal frequency x. Because the
initial perturbations to the system vary with spatial

frequency k, temporal oscillations will not be synchro-
nized across patches, causing wave-like spatial patterns

to emerge. We further explore the relationship between
model parameters, the scale of spatial perturbations,

time delays, and spatial pattern formation in the results
that follow.

RESULTS

OBE model

Fig. 1 shows the relationship between stability, spatial

frequency of perturbation k, and induction time delay s
for the OBE model. When there is no time delay in

induction, the model is highly stable over all spatial
frequencies k. In other words, spatial patterns will never

form in the OBE model when there is no induction time
delay (this result is demonstrated analytically in

Appendix B). Variation in induction levels or herbivore
densities will therefore quickly dissipate in the model.

The model eventually loses stability over values of k
larger than a critical value as the time delay increases.

Larger values of the frequency k correspond to
variability that occurs over the smallest scales, meaning

that small-scale aggregations of herbivores (e.g., from a
clutch of eggs) are most likely to be maintained. Once

the model becomes unstable, larger values of the time
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delay increase the lower range of spatial frequencies that

can lead to instability, meaning that larger spatial scales

of variability in induction or herbivore densities can be

sustained. As the range of unstable frequencies increas-

es, the perturbation initially grows faster (i.e., the

magnitude of perturbation growth rate n increases).

However, it eventually decreases for very large time

delays, albeit always staying positive. This simply

reflects the increased time it takes for the eventual form

of spatial patterns to develop when the induction time

delay is very long.

Fig. 2 presents example spatiotemporal dynamics of

the OBE model with different values of time delay s. As

shown in Fig. 1, the OBE model is highly stable when s¼
0. Initial variation in herbivore densities causes transient

spatial variation in inducible defenses, but heterogeneity

in both herbivore densities and induction levels quickly

dissipates. Spatial patterns persist much longer as the

time delay is increased to 1.25. However, the model is

still stable, meaning that the patterns eventually

dissipate. Initial herbivore variation leads to variation

in induction, with herbivores in turn quickly moving

away from induction areas and aggregating in areas of

low induction. As new herbivore aggregations lead to

local increases in induction, herbivores quickly depart

and aggregate in neighboring low-density areas where

previously high induction levels have relaxed. The

process is repeated, leading to aggregations of herbi-

vores moving among patches over time. This spatiotem-

poral pattern is not sustained, eventually dampening

until the system returns to its uniform steady state. Once

the time delay is set to 2.5, it has surpassed the critical

value sC and the model is no longer stable (for the

parameter combination in Fig. 2, sC ’ 1.45). Spatio-

temporal patterns that dampened when s¼ 1.25 are now

sustained. Over time, herbivores become more highly

aggregated, moving from high to low induction areas in

wave-like formations.

While the range of unstable spatial frequencies

increases with increasing time delay (Fig. 1), the model

will always be stable in the face of very large-scale

perturbations. This is a consequence of inducible

resistance affecting herbivore movement rates but not

demographic rates. If the OBE model exhibited classic

consumer–resource cycles driven by feedbacks of induc-

tion on herbivore demographic rates, we would expect

the system to oscillate when induction or herbivore

densities are perturbed evenly across all patches. Instead,

the OBE model is always stable in the face of such global

perturbations and does not even exhibit transient

oscillations (Fig. 1; Appendix B). It is only at the smaller

scales, where herbivores react to variation in induction

through movement, where spatial patterns can develop.

Using analyses outlined in Appendix B, we arrive at

the conclusion that the OBE will be unstable, leading to

the formation of spatial patterns, when

K ¼ hbh

1þ bh
� 2m

vk2
� d

v
� 1 � 0: ð5Þ

We refer to K as the instability metric. The influence

of parameters in promoting or inhibiting instability can

be deduced from examining Eq. 5. Fig. 3 presents the

relationship between different parameters and instabil-

ity, as measured by the criterion Eq. 5, and the

corresponding time delay required for instability.

First, the movement sensitivity of herbivores to

induction levels v increases the potential of the model

to lose stability and therefore patterns to arise. As the

sensitivity increases, the system can lose stability given a

sufficient time delay, and the value of this time delay

required for instability decreases as v increases (Fig. 3a).

When herbivores become increasingly sensitive to induc-

tion levels in their patch, their resulting high-movement

rates mean that they take less time to leave these patches

and find others with lower induction. Indeed, some level

of herbivore movement sensitivity is always required for

spatial patterns to develop (Appendix B).

The random component of movement d has an

opposite, stabilizing effect. With higher d, a greater level

of movement sensitivity v is required to destabilize the

system. Random movement has a well-known stabilizing

effect because it works to smooth out variation in density,

especially over small spatial scales, by efficiently moving

herbivores in areas of high densities to areas of low

densities. Movement sensitivity needs to be greater when

random movement is higher to overcome this effect and

aggregate herbivores in areas of low induction.

FIG. 1. The effect of the spatial frequency of an initial
perturbation k and the induction time delay s on the stability of
the OBE (open behavioral effect) model, Eq. 2. Stability is
determined by the perturbation growth rate n. When the
perturbation growth rate is negative, the system is stable and
tends toward uniform spatial equilibria. Positive values indicate
instability and the formation of persistent spatial patterns in
induced resistance levels and herbivore densities. Other
parameter values are mortality rate, c ¼ 0.3; emigration
sensitivity, v¼ 2.0; baseline emigration, D¼ 0.1; half-saturation
constant, b ¼ 1.0; and shape constant, h ¼ 5.0.

KURT E. ANDERSON ET AL.2762 Ecology, Vol. 96, No. 10



Increases in both the half-saturation constant b and

the shape constant h decrease the stability of the system

(Fig. 3b). Recall that b is scaled relative to the

equilibrium average herbivore density H̄*. When b is

much less than 1.0, the induction response begins

saturating below the average herbivore density, damping

destabilizing swings in induction levels. When b is larger,

herbivores must aggregate above their average density to

bring about a large induction response, facilitating

spatial pattern formation. This effect is greatly enhanced

when h is large and, consequently, the sigmoidal

induction response has a steeper inflection. This

steepness creates a threshold effect, where large numbers

of herbivores build up in a patch before triggering large

levels of resistance. Having a sigmoidal shape, where h
. 1, is in fact necessary for instability to form. A

necessary (but not sufficient) mathematical condition for

instability (Appendix B) is

hbh

1þ bh
. 1: ð6Þ

When h ¼ 1, the induction response decelerates

monotonically, and the inequality is never satisfied in

this circumstance.

High background mortality m has a stabilizing effect

(Fig. 3c), as it removes individuals at a rate not linked to

the local induction level. Since the per capita rate m is

constant, a higher total number of herbivores will die in

high-density patches compared to lower density ones,

making it difficult for aggregations of herbivores to be

sustained. As mortality increases, the stability of the

system increases and the critical time delay increases.

Mortality can eventually become high enough that the

system cannot lose stability at any time delay.

OBME model

The behavior of the OBME model is quite similar to

that of the OBE model. As with the OBE model, a

positive time delay (s . 0) and a sigmoidal induction

response (h . 1) are required for stability. In fact,

parameters shared between the OBE and OBME models

have qualitatively, and mostly quantitatively, similar

effects on stability and resulting spatiotemporal dynam-

FIG. 2. Examples of spatiotemporal dynamics exhibited by the OBE model with different time delays (s) in the onset of
induction. Dynamics were obtained via numerical simulation of the full nonlinear model over 100 patches with periodic boundary
conditions. Each location represents a patch. In each example, herbivores have an initial density that varies across patches as a sine
wave with a spatial frequency k ¼ 0.314, which corresponds to a spatial wavelength of 20 patches. Inducible resistance is at its
uniform steady state. The scale of the time axis varies among scenarios for presentation purposes. Other parameter values are c¼
0.25, v¼ 30.0, D ¼ 12.0, b ¼ 1.0, and h ¼ 5.0.
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ics. Following similar steps as those outlined in

Appendix B for the OBE model, we find that the

OBME can become unstable above some time delay sC
when

K ¼ hbh

1þ bh
� dk2

2bþ vk2
� 1 � 0: ð7Þ

Because of this overlap, we focus our exploration of

the OBME on qualitative differences that arise from the

functional dependence of herbivore mortality on induc-

ible resistance.

A novel feature of the OBME model is that it can

become unstable in response to uniform (k ¼ 0)

perturbations (Appendix C: Fig. C1). Under large

ranges of parameter values, and when the time delay is

very small, the relationship between stability, time

delays, and the spatial frequency k of the perturbation

are quite similar in the OBE and OBME models. Like

the OBE model, the OBME model is stable for very

small time delays, and as the time delay increases, small

spatial-scale (large k) perturbations are the first to

exhibit instability (c.f. Figs. 1 and 4). The range of

unstable perturbation frequencies increases with increas-

ing time delay. Unlike the OBE model, however, this

expanding range eventually includes the full range of

spatial frequencies, including k ¼ 0. In fact, the

perturbation growth rate n often becomes increasingly

similar for all spatial frequencies with very large time

delays, meaning that both small-scale and large-scale

variation may contribute to long-term spatial patterns.

The broader ranges of spatial frequency that can

become unstable in the OBME model result from the

destabilizing effect of the herbivore mortality parameter

b (Fig. 5). Rather than having a constant per capita

value, mortality in the OBME model is tied to local

FIG. 3. Effects of parameter values on stability of the OBE model. The instability metric K from Eq. 5 is shown for different
parameter combinations in the upper panels. This metric determines whether the model can lose stability and form spatial patterns
when the time delay exceeds a critical value sC; positive values mean that such a critical time delay exists. The critical values of the
time delay that lead to instability are given in the lower panels for each parameter combination. In panel (a), the baseline herbivore
movement rate d and sensitivity of that rate on inducible resistance v are varied; other parameter values used are m¼ 0.3, b¼ 1.0, h
¼ 5.0, and k¼ 2.0. In panel (b), the induction half-saturation constant b and shape parameter h are varied; other parameter values
used are m ¼ 0.3, v ¼ 2.0, D ¼ 0.1, and k ¼ 2.0. There is no curve for sC when h ¼ 1.0 since the model is always stable with this
parameter combination regardless of the time delay. In panel (c), the induction half-saturation constant b and the herbivore
mortality rate m are varied; other parameter values used are v¼2.0, D¼0.1, h¼2.5, and k¼1.0. There is no curve for sC when m¼
2.0 since the model is always stable with this parameter combination regardless of the time delay.

FIG. 4. The effect of the spatial frequency of an initial
perturbation k and the induction time delay s on the stability of
the OBME (open behavioral and mortality effect) model, Eq. 3,
as determined by the perturbation growth rate n. Other
parameter values are b ¼ 0.3, v ¼ 2.0, D ¼ 0.1, b ¼ 1.0, and h
¼ 5.0.
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induction, meaning that it can respond to variation in

resistance levels. Mortality in the OBME model also

influences the time delay required for instability:

increases in b reduce sC, especially for small values of

k. When b is small, large spatial frequencies (small

spatial scales) are the first to become destabilized as the

time delay is increased. Yet when b is large, this pattern

is reversed, with small frequencies (large spatial scales)

being the first to become unstable. The dominant effect

of induction therefore shifts from movement responses

to demographic ones with an increasing mortality effect

b, leading to oscillations that are synchronized across all

patches.

LBME model

The stability consequences of herbivore demographic

and dispersal responses to induction that emerged in the

OBME model are also apparent in the LBME model.

The LBME can become unstable above some time delay

sC when

K ¼ h2b2h

ð1þ bhÞ2
�

�
2ðr � bÞ þ ðDþ vÞk2

�2

ð2bþ vk2Þ2
� 0: ð8Þ

Large-scale perturbations can lead to instability, with

global (k ¼ 0) oscillations that are synchronized across

patches being more likely with large time delays (Fig. 6).

In contrast to the open recruitment models, the

relationship between n and k tends to be unimodal

rather than monotonic over a broad range of parameters

and time delays. The hump-shaped relationship emerges

in the LBME model when local demographic effects and

movement effects reinforce each other at intermediate

scales of k, leading to stronger tendency towards pattern

formation.

In the LBME model, the mortality parameter b is

strongly destabilizing, as in OBME model. Large values

of b lead to instability over broad ranges of other

parameters and reduce the time delay required for

instability (Fig. 7a, b). The demographic effects of

induction can be quite strong relative to open recruit-

ment models because births as well as deaths are local.

Even though only mortality is influenced by induction,

local births appear to have more potential for causing

demographically driven oscillations. For large-scale and

especially global perturbations, increases in the growth

rate, r, are destabilizing when r is small and stabilizing

when r is large (Fig. 7a). A small amount of local

population growth can intensify demographically driven

oscillations because it promotes strong feedbacks

between induction and herbivore dynamics. However,

increases in r also increase the strength of herbivore self-

regulation Eq. 4, which is a stabilizing force. This effect

is especially strong when the perturbation scale is small;

here, increases in r are almost always stabilizing (Fig.

7b).

A major difference between the LBME model and the

previous open-recruitment models is that a sigmoidal

induction response (h . 1) is no longer required for

instability. Fig. 7c presents an example where h ¼ 1 (a

saturating response) is part of an unstable parameter

combination with large b and a large time delay. For

these parameter values, the strong feedbacks between

induction and herbivore demographic processes are

FIG. 5. Stability of the OBME model as influenced by the scaled mortality rate b. The instability metric is determined by Eq. 7.
Other parameter values are v ¼ 2.0, D ¼ 0.1, b ¼ 1.0, and h¼ 2.5.

FIG. 6. The effect of the spatial frequency of initial
perturbation k and the induction time delay s on the stability
of the LBME (local behavioral and mortality effect) model, Eq.
4, as determined by the perturbation growth rate n. Other
parameter values are b¼ 0.3, r¼ 0.1, v¼ 3.0, D¼ 0.1, b¼ 1.0,
and h ¼ 5.0.
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enough to lead to instability; no local buildup of

herbivores moving away from regions of high induction,
generated by thresholds, is required (Appendix C: Fig.
C2).

DISCUSSION

The question of how consumers distribute themselves
among resource patches, potentially leading to local

aggregations, is a longstanding focus in ecology. For
herbivores, changes in plant quality, including inducible

resistance, are cited as a potential aggregating mecha-
nism. Yet, there is little work to date exploring the range

of specific conditions where dynamic changes in plant
quality can drive herbivore aggregation. We examined
spatially explicit models of inducible resistance and

herbivore population dynamics to explore how realistic
features of resistance and different potential mechanisms

of herbivore response influence spatial patterning. Both
transient and persistent spatial patterns in resistance

levels and herbivore densities developed in all models
examined, where spatial patterns manifested as aggre-

gations of herbivores that moved about in space. Except
in very specific cases, spatial patterns arose when

herbivores moved away from induced plants, there was
a lag between herbivore damage and deployment of
induced resistance, and the induction response had a

sigmoid shape; all of these features have been observed
in real plants and insects, for example, soybeans and

Mexican bean beetles (Underwood 1999, 2000, Under-
wood et al. 2005), the stonecrop plant Sedum lanceola-

tum and Parnassius smintheus caterpillars (Roslin et al.
2008), and cotton bollworm caterpillars on Arabidopsis

thaliana (Perkins et al. 2013). Herbivore movements and
mortality occurring independent of induction tended to

reduce spatial patterning. The mechanisms responsible

for pattern formation listed above were evident regard-

less of the functional relationship between herbivore
recruitment and mortality and induction in the model.
However, in models where induction affected herbivore

mortality, large-scale herbivore population cycles driven
by the mortality response often co-occurred with smaller

scale spatial patterns driven by herbivore movement.
This increased the spatial scale over which herbivore

aggregation is possible under many parameter combi-
nations. When the effect of induction on mortality

became dominant, however, spatial pattern formation
was completely replaced by herbivore population cycles

that were synchronized across space. This large-scale
synchronization was most likely when herbivore recruit-
ment was a function of local densities, and mirrors

results seen in more complex models of insect popula-
tion dynamics on forest trees that include inducible

defenses (see references in Elderd et al. 2013). In these
latter models, dispersal is somewhat limited over the

large relevant scales (i.e., among forests), and induction
may strongly influence recruitment and mortality of the

focal forest Lepidoptera. Such features are less typical of
smaller scale induction studies.

Previously, we identified the potential for aggrega-
tions to form in plant–herbivore systems with inducible

resistance as a result of time delays (Underwood et al.
2005). Here, we presented a more rigorous examination
of the mechanisms at work and the range of conditions

under which spatial patterning can be expected,
choosing functional forms reflecting realistic descrip-

tions of plant defense responses. For example, Under-
wood (2010) found that two armyworm caterpillars

(Spodoptera exigua) or 5% of leaf area damage on
tomato plants was insufficient to generate a detectable

response in herbivore growth or behavior. The effects of

FIG. 7. Effects of parameter values on stability of the LBME model. The instability metric is determined by Eq. 8. In panel (a),
the per capita herbivore growth rate r and the per capita mortality rate b are varied assuming a global (k¼ 0) perturbation; other
parameter values used are v¼3.0, D¼0.1, b¼1.0, and h¼5.0. The same parameters are varied in panel (b) assuming a smaller scale
perturbation where k¼2.0. In panel (c), the induction half-saturation constant b and shape parameter h are varied; other parameter
values used are b¼ 2.0, r ¼ 3.0, v¼ 2.0, D ¼ 0.1, and k¼ 1.0.
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leaf area damage on caterpillar growth also saturated

after about 40%. Similar patterns of damage thresholds

and saturation are also seemingly present in woody

plants (Nykänen and Koricheva 2004) and plants in the

family Crassulaceae (Roslin et al. 2008). The steepness

of the transition between the threshold and saturation,

as well as the damage level where this transition occurs

relative to average damage levels, are key measurable

parameters that determine stability (Eqs. 2–4). The ratio

of the time delay in induction to induction’s average

decay time is also a critical measurable indicator of

instability, and these values likely vary quite widely

among systems. Consistent with our predictions, plants

with long induction time delays appear to have the

greatest negative effect on their herbivores (Nykänen

and Koricheva 2004), although decay rates appear less

well-characterized. In a small-scale field experiment,

Underwood et al. (2005) found greater aggregation of

beetles (Epilachna verivestis) among soybean genotypes

with inducible resistance than among genotypes that

were not inducible, generally in agreement with our

model (see also Roslin et al. 2008). But while some

measurements of different induction related parameters

exist in the literature, more systematic descriptions are

necessary for determining the potential for inducible

defenses to drive herbivore aggregations and data on

actual herbivore aggregation in the field is lacking even

for systems where some parameter values are known.

In addition to the mechanisms described previously,

the strength of stochasticity experienced in natural

systems may influence whether spatial patterns predicted

by our models emerge. For large populations like we

model here, demographic and some forms of environ-

mental stochasticity should lead to small-scale variation

in herbivore densities that potentially acts to seed the

development of spatial patterns. In addition, environ-

mental and demographic stochasticity can drive aggre-

gations and spatial patterning in models, even when they

are stable in a deterministic sense (Wilson 1998, Butler

and Goldenfeld 2009), or drive phase-locking and

travelling waves (Blasius et al. 1999). The herbivore

aggregations that we see in our models are likely

susceptible to the influences of stochasticity. For

example, strong transient spatial patterns can occur in

our models even when deterministically stable (Fig. 2);

these transient patterns could become persistent ones if

the system is frequently perturbed by environmental or

demographic stochasticity. In such a case, perturbations

would continually re-excite transient dynamics, making

patterns persist because they are never given enough

time to settle towards equilibrium. This effect can lead to

the formation of spatial patterns over a wider parameter

range than predicted by our analyses of deterministic

models. Nevertheless, the relationship between the

spatial frequency of perturbation and the perturbation

growth rate is similar in both unstable and weakly stable

parameter ranges (Figs. 1, 4, and 6). Therefore, we

predict that transient patterns would generate herbivore

aggregations over spatial scales similar to those predict-

ed in unstable parameter regions. This would not

necessarily be the case when subjected to spatially

correlated environmental stochasticity, which could

either intensify wave-like spatial patterning or destroy

it depending on the scale over which environmental

correlations decay. When the model is highly stable, our

previous work suggests that we might expect random or

statistically more uniform than random patterns in the

field, even in the face of stochastic variation (Under-

wood et al. 2005). This, of course, is most relevant to

cases where individual herbivores are numerous enough

that their dynamics are not completely overwhelmed by

demographic stochasticity, such as insects, invertebrate

grazers, and small-bodied mammals. In the case of

larger mammals, variation in plant quality could

reinforce aggregation tendencies largely influenced by

other mechanisms, such as antipredator defenses or

sociality.

We did not include changes in plant biomass, making

our study similar to most others that model inducible

resistance. It has long been argued that large changes in

plant biomass, and therefore food limitation, are

unlikely to generate cycles in herbivore populations as

biomass removal is usually insufficient in extent or

duration (Hairston et al. 1960, Price et al. 1980,

Boonstra et al. 1998). However, food limitation does

influence a range of insect and small mammal herbivore

demographic traits (e.g., Myers et al. 2011), and models

of food limitation can generate insect population cycles,

given realistic assumptions (Abbott and Dwyer 2007).

Food limitation may interact non-additively when

paired with inducible resistance, generating instability

when neither factor can do so in isolation (Abbott et al.

2008). We anticipate that food limitation that is weak is

most likely to enhance the spatial instability we have

described here: too much defoliation will negate the

effects of induction by removing all inducible biomass,

while no food limitation is essentially the case we have

modeled. Stronger food limitation may also drive

additional herbivore dispersal. This dispersal would

conceivably work in opposition to herbivore aggregation

because it would lead to conspecific repulsion without

the induction mechanisms that first allow herbivore

build-up. Weak food limitation that we have considered

here is likely realistic. Even though defoliation is more

easily realized at small scales, high levels of damage may

still not be pervasive because induction will cause

herbivores to avoid or move away quickly because of

changes in plant quality or take shorter meals (e.g.,

Barker et al. 1995; D. McNutt, unpublished data).

In addition to damage, plant biomass will change by

growth and reproduction. Induction potential may vary

depending on the age of plants or plant-parts (Karban

and Baldwin 1997). We assume that our plant popula-

tion varies in resistance levels only across space and is

otherwise homogenous in induction potential. Small,

morphologically simple annual plants most likely fit
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these assumptions of our models at the most literal level

(Reynolds et al. 2012, 2013). Plants with more defined

stage structure could exhibit increased within-plant

herbivore heterogeneity. However, this does not negate

the possibility of aggregations forming over larger

scales, especially if herbivores tend to move easily

among individual plants. In fact, stage-structured

variation could add to delays in induction following

herbivory, increasing instability (Liu et al. 2012). In a

spatial context, that means we could see increased

potential for spatial patterning resulting from stage-

structured induction given our other assumptions hold.

The tendency for spatial patterns to develop in our

model has consequences for both the evolution of

inducible defenses and the effects of these defenses on

ecological communities. Plants in our model experience

herbivores in waves when the system is unstable and

therefore deploy resistance periodically. Situations where

plants experience mobile herbivore aggregations and thus

highly variable damage are analogous to those shown by

previous work to favor the evolution of inducible

defenses. In particular, induction should be favored over

constitutive or no defense scenarios when defense costs

are high, damage is variable and/or unpredictable, or

variability itself is detrimental to herbivore performance

(Karban and Baldwin 1997, Agrawal and Karban 1999,

Zangerl 2003, Karban 2011). While it is difficult to

imagine how inducible defenses would evolve to favor

spatial patterns to develop per se, evolutionary tuning of

the threshold, speed, magnitude, and longevity of the

induction response (as well as various herbivore respons-

es) could reinforce mechanisms leading to herbivore

aggregation. Indirect influences of aggregated herbivores

on the evolutionary context for induced resistance may

also arise by altering interactions between plants and

other herbivores (Karban 2011). Defenses may target

some natural enemies, while making plants more

susceptible to others (e.g., Thaler et al. 2002). Strong

variation in insect densities and induction levels could

also alter the foraging efficiency of insect natural enemies,

which may respond to induced plant volatiles (Thaler

2002). In mammals, foraging behavior of predators and

herbivore antipredator defenses may feed back on plant

defenses, either altering or reinforcing defense expression

(Ford et al. 2014). Therefore, spatial variation in

induction and induction-driven aggregations of herbi-

vores may generate spatial variation in plant quality with

cascading community-wide consequences, for example

(Viswanathan et al. 2005, 2008). Given that instability is a

common outcome in models that include realistic features

of inducible resistance, extensions that consider the

broader evolutionary and community consequences of

the variation that results are a fitting and exciting next

step.

We have presented a novel mechanism of ecological

pattern formation based on consumer-induced trait

variation in a resource species and consumer behavioral

responses to that variation, mediated by a time delay.

The destabilizing tendency of time delays has long been

appreciated. While most studies in physical and biolog-

ical sciences have focused on delay effects in nonspatial

models, it is little surprise that time delays can

contribute to spatial pattern formation as well. Exam-

ples of spatial instabilities arising from time delays occur

in physical systems (Bertram and Mikhailov 2001), gene

regulation (Seirin Lee and Gaffney 2010), and ecological

models (Diaz Rodrigues et al. 2012, Tian 2012, Xinze et

al. 2013; but see Klepac et al. [2007] and Wall et al.

[2013] for examples where time delays are stabilizing in

spatial models). However, none of these involve the

nonlinear diffusion mechanism reflecting consumer

behavior that we describe here; such nonlinear move-

ment has been recently implicated in spatial pattern

formation in other ecological models (Anderson et al.

2012, Liu et al. 2013). Given the prevalence of biological

time delays and adaptive movement, we argue that there

is high potential for this combination of mechanisms to

generate spatial variation in other ecological contexts.
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