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A Novel Method to Estimate Long- Term 
Chronological Changes From Fragmented 
Observations in Disease Progression 
Takaaki Ishida1,*, Keita Tokuda1,*, Akihiro Hisaka2,*, Masashi Honma1, Shinichi Kijima3,  
Hiroyuki Takatoku4, Takeshi Iwatsubo5, Takashi Moritoyo4,6, Hiroshi Suzuki1 and The Alzheimer’s Disease 
Neuroimaging Initiative‡

Clinical observations of patients with chronic diseases are often restricted in terms of duration. Therefore, obtaining 
a quantitative and comprehensive understanding of the chronology of chronic diseases is challenging, because of the 
inability to precisely estimate the patient’s disease stage at the time point of observation. We developed a novel 
method to reconstitute long- term disease progression from temporally fragmented data by extending the nonlinear 
mixed- effects model to incorporate the estimation of “disease time” of each subject. Application of this method to 
sporadic Alzheimer’s disease successfully depicted disease progression over 20 years. The covariate analysis 
revealed earlier onset of amyloid- β accumulation in male and female apolipoprotein E ε4 homozygotes, whereas 
disease progression was remarkably slower in female ε3 homozygotes compared with female ε4 carriers and males. 
Simulation of a clinical trial suggests patient recruitment using the information of precise disease time of each 
patient will decrease the sample size required for clinical trials.

In chronic diseases that progress over decades, a precise understand-
ing of the progression of the disease is crucial, both for decision 
making in clinical treatment and for developing new drugs. The 
molecular mechanisms contributing to disease exacerbation often 
switch in a manner depending on the stage of the disease1,2; thus, 

the clinical effectiveness of a given therapeutic agent often depends 
on the disease stage. Therefore, accurate estimation of the disease 
stage in each patient is desirable for selecting optimal treatment. 
Likewise, successful development of new drugs will require spec-
ification of the disease stage at which the compound is assumed 

*These authors contributed equally to this work.
‡See Appendix 1.

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 The clinical database of chronic disease, like Alzheimer’s 
disease, often lacks observation on the subject spanning the 
whole disease progression, making it difficult to obtain the com-
prehensive understanding of the chronology of chronic diseases.
WHAT QUESTION DID THIS STUDY ADDRESS?
 This study addressed whether we can build an algorithm 
that can estimate the long- term disease progression from a clini-
cal database.
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 The proposed algorithm gives a framework that is able to 
reconstruct the long- term disease progression from temporally 

restricted observations, including the distribution of intersub-
ject and intrasubject variability and the evaluation of the effects 
of covariates. Sex and ApoE genotype, known factors that affect 
the disease progression of Alzheimer’s disease, were quantita-
tively analyzed with our model, and the difference in the disease 
progression by these covariates was determined.
HOW THIS MIGHT CHANGE CLINICAL PHARMA
COLOGY OR TRANSLATIONAL SCIENCE?
 The proposed method enables simulation of clinical trials 
and individual diagnosis using Bayesian posterior estimation.

Study Highlights

Received 6 March 2018; accepted 14 June 2018; advance online publication 20 August 2018. doi:10.1002/cpt.1166



ARTICLE

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 105 NUMBER 2 | FEBRUARY 2019 437

to be most effective, based on its pharmacological target, and re-
cruitment of patients at the appropriate stage of progression into 
the relevant clinical trials. For those reasons, accurate estimation of 
the population distribution in disease progression is necessary. For 
example, the progression of Alzheimer’s disease (AD) is thought 
to span decades from the appearance of the first sign (i.e., the ac-
cumulation of amyloid- β (Aβ) in the brain) to the onset of severe 
clinical symptoms.3,4 The results of a clinical trial of anti- Aβ anti-
bodies, which are being developed as potential disease- modifying 
drugs for AD, suggested that intervention at an earlier stage of the 
disease would be preferable.5,6

Despite the demands for a quantitative description of long- term 
disease progression, it is practically difficult to perform a cohort 
study over several decades. Yet, it is feasible to obtain fragmentary 
time profiles from numerous patients at various stages of disease 
progression, because relatively short- term cohort studies have been 
performed for many chronic diseases, including AD.7–13 Because 
the intervals between observations within each subject are known, 
partial disease progression within individual subjects is observed. 
There have been some attempts to locate patients’ data along 
the disease stage, and estimate the entire time course simultane-
ously.14–21 However, there has not been a comprehensive frame-
work that has statistical basis and realizes flexible description of the 
time course with nonlinear evolution, intersubject variability, and 
effects of covariates, such as sex and genotype.

Therefore, we developed a novel method, termed “statistical 
restoration of fragmented time course (SReFT),” by extending the 
nonlinear mixed- effects model (NLMM) (Figure S1). NLMM 
is a statistical framework suitable for describing longitudinal ob-
servations with repeated measures. It is able to assess intersubject 
variability and intrasubject variability separately; assess the effects 
of covariates, such as sex of subjects; and enable personalized di-
agnosis.22 However, NLMM requires time points for the data. In 
case of describing disease progression, NLMM requires the precise 
elapsed time since the onset of the disease to the point of observa-
tion for each subject, which we term the “disease time” of the sub-
ject. Therefore, in the present study, we extended the conventional 
NLMM to incorporate the estimation of the disease time of each 
subject’s observation, based on maximum likelihood estimation. 
Thereby, it is possible to solve the problem of lacking time- point 
information for each patient’s fragmented data, and the entire 
time course of progression of chronic disease can be reconstituted. 
Moreover, because we provide the mathematical foundation for this 
method, the significance of the covariate effects can be evaluated on 
the basis of statistical criteria, as in NLMM. Covariate analysis re-
veals important information, such as the key factors aggravating the 
chronic disease, and leads to the design of a personalized treatment 
strategy by stratifying patients by those factors. Practically, SReFT 
can be regarded as an extension from the previous studies,14–21 
with additional features. Herein, we report the estimated long- term 
disease progression of AD by applying SReFT to the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) databases (Table 1).7

Furthermore, once the population distribution of the disease 
progression is obtained by analyzing the database, including mul-
tiple subjects with SReFT, quantitative predictions can be con-
ducted in clinical practices, such as individualized diagnosis by 

Bayesian a posteriori estimation for a new subject; clinical trials can 
also be simulated by Monte–Carlo method. As an example of the 
application potential of our algorithm, we propose incorporating 
the information regarding the disease time of the subject into the 
inclusion criteria in a clinical trial. We conducted Monte–Carlo 
simulation of a clinical trial of a drug modeling anti- Aβ treatment 
using the population distribution obtained from the analysis of 
ADNI. The results suggest that simulation- aided design is useful 
in clinical trials.

RESULTS
Concept of SReFT
The fitting of the “hyperparameters” (the parameters that define 
the distribution in the population, such as the means or variances 
of the parameters of the nonlinear function, or variances of the 
residual error) in SReFT is achieved by maximizing the marginal 
likelihood function, as in NLMM.23–25 In addition to hyperpa-
rameters, SReFT also estimates the disease time of the subject: the 
most likely time point of an observed fragment for each subject 
along the disease progression. During the iterative optimization, 
subjects are shifted back and forth along the temporal axis to max-
imize the likelihood function (Figure S1).

We used the following double- exponential function to de-
scribe the evolution of all the biomarkers along the AD disease 
progression: 

where f is value of biomarker, t is the elapsed time since the disease 
onset, {a, b, c} is the parameter set obeying a multivariate normal 
distribution, and ε is the residual error obeying normal distribu-
tion. Although this function has only three parameters, it offers 
good flexibility for describing monotonic changes in biomarkers, 
such as linear- like changes, exponential- like changes, and sigmoidal 
changes. In practice, this double- exponential function was log 
transformed to convert multiplicative error mentioned above into 
additive error, and treated as an NLMM. The theoretical and algo-
rithmic details are given in the Methods and Supplementary Text, 
Theoretical Note.

Demonstration of SReFT analysis with virtual data sets
We first assessed the ability of SReFT to restore lost temporal in-
formation using virtual data. The parameters of the virtual data, 
such as number of observations, number of subjects, number of 
biomarkers, changes in biomarker profiles, and sampling intervals, 
were determined by considering actual biomarker information 
from ADNI. We generated virtual data sets of 400 subjects from 
a specific hyperparameter set with three biomarkers, assuming 
disease progression over a period of 20–30 years. The data were 
generated with a model incorporating the effects of covariates, sex, 
and genotype (Eq. s23), using the distribution parameters shown 
in Table S1. The same model was used in the following analysis of 
the ADNI data. The observation length within a subject was cho-
sen randomly from the uniform distribution on [4, 5, 6] at 1- year 
intervals (Figure 1a). The information about the disease times 
was then deleted from the data (Figure 1a). In the current analysis, 

(1)f= a exp (b exp (ct)) exp (�)
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disease time 0 was defined as the point at which the mean progres-
sion of biomarker 3 passes through a constant value. Analysis of 
these virtual data sets using SReFT successfully reconstituted the 
disease times, with the estimated parameter values closely approx-
imating those of the original parameters (Figures 1b and S2a). 
The mean and SD of the difference between the estimated disease 
time and real disease time were 0.89 and 2.27 years, respectively. 
Figure 1b shows the result of estimated population- mean curves 
for 100 rounds of simulations for each combination of the covari-
ates. The estimated long- term changes in the biomarkers almost 
coincided with the original time profile. There is an improve-
ment in the estimation accuracy of the disease time from that 
of GRACE proposed by Donohue et al.14 (Figures 1c and S2b). 
These Monte–Carlo simulations suggested that SReFT can esti-
mate the hyperparameters with acceptable accuracy by using data 
with N = 400 subjects in this simulation case, which are similar to 

the real ADNI data, and also confirmed that SReFT can estimate 
the disease times from temporally fragmented information.

Application of SReFT to the ADNI data set
We applied SReFT to analyze ADNI data, including the following: 
cerebrospinal fluid (CSF) Aβ (1–42) and amyloid–positron emis-
sion tomography (PET) imaging reflect the Aβ accumulation in the 
brain; CSF tau reflects neurodegeneration levels; the volumes of the 
hippocampi and ventricles are measured by magnetic resonance im-
aging; the Clinical Dementia Rating Scale Sum of Boxes (CDR- SB) 
score measures both the level of cognitive impairment and disabil-
ity in activities of daily living; and the fluorodeoxyglucose–PET 
reflects brain glucose consumption (Figure S3a). CSF Aβ has been 
reported to represent bimodal distribution in the ADNI database, 
with a threshold value of 192 pg/ml.26 Therefore, a decrease in CSF 
Aβ levels below this value can be regarded as the onset of disease 

Table 1 Subjects and observations available in the ADNI applied to SReFT analysis by baseline diagnosis

Variable

Normal MCI AD Total

(N = 83) (N = 242) (N = 112) (N = 437)

Age, ya 76.2 ± 5.0 74.2 ± 6.9 74.2 ± 8.3 74.6 ± 7.0

Female, No. (%) 42 (50.6) 93 (38.4) 46 (41.1) 181 (41.4)

Weight at baseline, kga 74.7 ± 16.0 76.6 ± 14.8 72.4 ± 13.2 75.2 ± 14.7

AD treatment, a/b (%)b 3/59 (5.1) 86/146 (59) 19/20 (95) 108/225 (48)

ApoE

ε2/ε3 4 10 1 15

ε3/ε3 44 73 28 145

ε3/ε4 31 120 56 207

ε4/ε4 4 39 27 70

Observation period, ya 2.9 ± 2.2 2.4 ± 1.8 1.6 ± 0.8 2.3 ± 1.8

CDR- SB, n (N)c 83 (384) 242 (1129) 112 (395) 437 (1908)

FDG–PET, n (N)c 69 (172) 182 (513) 64 (176) 315 (861)

Hippocampus, n (N)c 81 (300) 241 (942) 112 (340) 434 (1582)

Ventricle, n (N)c 50 (198) 140 (619) 92 (303) 282 (1120)

CSF Aβ, n (N)c 83 (159) 242 (434) 112 (205) 437 (798)

Amyloid- PET, n (N)c 54 (68) 134 (173) 25 (33) 213 (274)

CSF tau, n (N)c 81 (156) 242 (435) 111 (204) 434 (795)

Aβ, amyloid- β; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CDR- SB, Clinical Dementia Rating Scale Sum of Boxes; CSF, 
cerebrospinal fluid; FDG, fluorodeoxyglucose; MCI, mild cognitive impairment; PET, positron emission tomography; SReFT, statistical restoration of fragmented 
time course.
aValues represent means ± SDs.
ba, number of subjects with AD treatment; b, number of subjects with information of treatment in the ADNI.
cNumber of subjects (n) and number of observations (N).

Figure 1 Successful estimation of disease progression by SReFT, using simulated data. A pseudomedical data set was generated with a 
nonlinear mixed- effects model with a fixed model parameter set, and SReFT analysis was applied to the generated data. (a) An imaginary data 
set was generated with three biomarkers and N = 400 subjects. The length of observation within a subject was chosen randomly from the 
uniform distribution on [4, 5, 6] at 1- year intervals. The left panel shows the generated data. The middle panel shows the pseudomedical data 
from which the time points of the observation of all the subjects were removed. The data contain only the time that passed since the initial 
observation for each subject. The right panel shows the reconstructed data aligned with estimated disease times. The data of 10 imaginary 
subjects are shown. (b) The result of 100 simulations stratified by sex and genotype is shown. The colored line in each panel shows the 
target pattern corresponding to the parameter from which the data were generated. Each gray line shows the result of the SReFT analysis 
for each generated data set. (c) The estimated disease times plotted against the real disease times in a single generated data set. Hetero, 
heterozygous; Homo, homozygous; SReFT, statistical restoration of fragmented time course.
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progression, designated as disease time 0 in this study. The esti-
mated AD progression was represented in Figure S3b.

Next, we examined the model that incorporates covariates. 
Several studies have suggested that multiple factors affect the 
progression of AD (e.g., the ε4 allele of the ApoE gene is one of 
the most famous risk factors for AD).27 It has also been suggested 
that the risk of carrying the ε4 allele is greater in females than in 
males.28–30 Thus, we incorporated the effects of sex, the ApoE geno-
type, and the interaction between these factors on AD progression 
as the covariates. Details of the covariate model are described in  
Supplementary Text (Eqs. s23 and s24). The estimated final 
covariates, biomarker evolutions, and parameters are shown 
in Figure 2 a,b and Tables 2 and 3. The summary statistics of 
the estimated disease times of subjects were as follows: mean, 
13.39 years; SD, 5.72 years; minimum, −1.19 years; maximum, 
27.21 years.

As for progression rate, there was no significant difference 
between male ε4 carriers and noncarriers; however, the disease 
progression rates of female ε4 heterozygotes and female ε4 homo-
zygotes were 17% and 10% faster than that of males, respectively, 
whereas the progression of female ε4 noncarriers was 21% slower 
than that of males (Table 2). Thus, the disease progressed approxi-
mately 40% faster in female ε4 carriers than noncarriers.

SReFT enabled the estimation of parameters for each subject 
using Bayesian estimation as well as overall individual changes in 
biomarker profiles. Using these parameters, the subjects’ age at a 
particular disease time point could be estimated. Figure 2c shows 
the calculated age corresponding to Aβ accumulation onset (t = 0) 
and mild AD development (CDR- SB = 4.5),31 stratified by sex 
and ApoE genotype. The average age at t = 0 was 5 years lower in 
ε4 homozygotes of both sexes. However, mild AD emerged at a 
much higher age in female ε3 homozygotes, probably because of 
slow disease progression. In addition, no significant difference in 
the age of conversion to mild AD was detected between female ε4 
heterozygotes and homozygotes, despite the difference in age at 
t = 0, probably because the progression of female ε4 heterozygotes 
was estimated as slightly faster than that of female ε4 homozygotes 
(117% and 110% of males, respectively). The validity of the com-
putations was confirmed by analyzing the residual plots (Figure 
S4).

These analyses of the ADNI data were conducted without incor-
porating the nondiagonal elements (correlation) of the variance–
covariance matrix in the model, to avoid excessive computational 
time. However, we confirmed that omitting the correlations in the 
model does not considerably affect the result (Table S2).

Bootstrap analyses
To evaluate the robustness of the estimation with the original 
ADNI data set, we performed a bootstrap analysis with 100 ran-
domly resampled data sets to confirm the reproducibility of the 
parameters estimated by the final covariate model. The mean bio-
marker changes estimated by the bootstrap analysis coincided well 
with the changes estimated from the original data set (Figure 3). 
The reproducibility of parameter values and disease times, as de-
termined by the bootstrap analyses, is described in Figure S5. 
The estimations of the disease times of all subjects and most of 
the parameters were within the range of the mean ± SD of boot-
strap analyses. The exceptions included covariates of the ApoE ε2 
heterozygotes, probably because of the small number of ε2 hetero-
zygotes in the ADNI data set. The other exceptions were some in-
significant parameters when original values were calculated from 
the normalized values. Variability of these results reflected little 
contribution to the actual biomarker evolution.

Simulation- aided design of clinical trials
Typically, a specific range for the value of a biomarker, such as cog-
nitive score, is adopted as the criterion for inclusion of subjects in 
clinical trials (Figure 4a). However, the inclusion of subjects re-
lying on a single biomarker may result in the inclusion of subjects 
with various disease times (Figure 4a). This may lead to poor de-
tection of the drug effect, because the effects of some drugs may 
critically depend on the disease stage. In contrast, SReFT enables 
estimation of new subjects’ disease times by Bayesian posterior 
estimation from observations across multiple biomarkers. Thus, 
the disease time of a subject can be used as a criterion for a clin-
ical trial (Figure 4b, see Supplementary Text for the detailed 
description of the procedure to enroll patients with our method). 
Using the population distribution of the disease progression ob-
tained via the analysis of ADNI, a Monte–Carlo simulation was 
conducted to compare the estimated numbers of subjects neces-
sary to detect the efficacy by comparison between two distinct 
inclusion criteria: inclusion by the value of a biomarker of cogni-
tive score (“criterion in value”) and inclusion based on the disease 
time of the subject (“criterion in time”). Because data showing 
the quantitative relationship between the drug effect and disease 
stage for any anti- AD drug were not currently available, we used 
a simple model for the drug effect in this study. The drug effect 
is modeled with a subject- specific constant Rϵ[0, 1], which deter-
mines the relative rate of the speed of disease progression after ad-
ministration, compared with the intact state. The dependency of 
R on disease time at inclusion of the subject is modeled as follows:

Figure 2 Restoration of fragmented biomarker changes by SReFT for long- term progression of AD considering covariates of the population. 
(a,b) Restored long- term biomarker changes during AD progression considering covariates of the population by SReFT for male (a) and female 
(b) subjects. The sex and ApoE genotype were accepted as the covariates statistically, as described in the main text. In addition to individual 
changes, the mean progressions of the group with ApoE genotypes of ε2/ε3, ε3/ε3, ε3/ε4, and ε4/ε4 are shown by bold lines in black, blue, 
green, and red, respectively. Fragmented biomarker changes were allocated by the “disease time” of the subject, in which time 0 was defined 
as when the CSF Aβ declined below the cutoff value of 192 pg/ml.26 (c) For each sex and ApoE genotype (ε3/ε3, ε3/ε4, and ε4/ε4), the 
estimated age at onset of Aβ accumulation (time 0 in disease time) is shown in the blue plot, whereas the estimated age of AD development 
(CDR- SB = 4.5)31 is shown in the red plot. Values represent means ± SDs (N = 79, 122, 43, 66, 85, and 27 per group). Statistical evaluation 
was performed using the Tukey–Kramer test (*P < 0.05, **P < 0.01, ***P < 0.001). Aβ, amyloid- β; AD, Alzheimer’s disease; CDR- SB, Clinical 
Dementia Rating Scale Sum of Boxes; CSF, cerebrospinal fluid; FDG, fluorodeoxyglucose; PET, positron emission tomography; SReFT, 
statistical restoration of fragmented time course.
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where Rj is the rate of disease progression of the jth subject after 
administration, t0j is the disease time at inclusion of the jth sub-
ject, and a is a parameter of function defining the steepness of the 
slope corresponding to the degree of dependency of the drug ef-
fect on disease time (Figure 4c). ξ is the interindividual difference 
of the drug effect obeying normal distribution, and σdrug is the 
SD of ξ. We used the value σdrug = 0.5. R increases monotonically 
from 0 to 1 with respect to disease time. Although the model of 
the drug effect remains purely theoretical and conceptual in this 
study, it can be refined empirically in a future study when data, 
such as those from preliminary completed clinical trials, are made 
available.

Figure 4d illustrates the number of subjects required to detect 
a drug effect using the disease–time criterion for various combi-
nations of the parameter a and the parameter T, which defines 
the time point of the window of criterion. We have confirmed 
that the value of σdrug affects the results of the simulation little. 
The simulation result using the distribution parameter for males 
is shown. When there is a low dependency of the drug effect on 
disease stage (a ~ 0), setting the time window to a late phase of 
the disease progression resulted in a small number of subjects, be-
cause average change of the value of CDR- SB is greater in the late 
phase. On the other hand, when there is a strong dependency of 
the drug effect on disease stage (a ~ 0.5), the number of subjects 
necessary is smaller for earlier phase of the disease stage because 
the drug effect is little in the later phase of the disease. Thus, 
the optimal time for setting the time window of the criterion 
showed nonlinear dependency on a and T, as indicated with a 
yellow solid line on the heat map (Figure 4d,f). The simulation 
suggested that the conventional inclusion criteria of subjects by 

restricting the value of a cognitive score led to the requirement 
of exponentially increasing numbers of subjects, because the 
dependency of the drug–effect on disease time increased. This 
would explain the past failure of clinical trials to detect efficacy 
of anti- AD drugs.6,32–35 On the other hand, although the drug 
effect strongly depends on disease times, the number of subjects 
required to detect a drug effect using the disease–time criterion is 
far less, if inclusion of subjects is in an earlier stage. The necessary 
number of subjects is confined to practical values, by changing the 
inclusion criterion for the subjects’ disease times (Figure 4eh).

DISCUSSION
Our proposed method, SReFT, extends the conventional 
NLMM25,36 to enable handling data that lack the common time 
zero point across subjects. SReFT estimates both the disease time 
and the disease progression (mean and variances) simultaneously. 
Using the estimated variances, SReFT automatically renders in-
formation about disease time from more reliable biomarkers with 
smaller variances (Supplementary Text, Theoretical Note, 4). 
We selected CDR- SB alone, a biomarker for cognitive impair-
ment, and avoided use of multiple biomarkers for cognitive scores, 
such as Mini- Mental State Examination and Alzheimer’s Disease 
Assessment Scale–cognitive subscale. This is because incorporating 
biomarkers with high correlations would result in a biased estima-
tion, when analyzed with a covariance matrix with only the diagonal 
elements. It may be possible to yield proper results of SReFT analysis 
with strong correlations among the biomarker profiles when ample 
computer resources are available, because we have shown properness 
of the theory when nondiagonal correlations are considered in the 
model (Supplementary Text, Theoretical Note, 5).

SReFT analysis indicated that the values of CSF Aβ and 
amyloid- PET changed more steeply at first, whereas the values of 
CDR- SB and fluorodeoxyglucose–PET were steady during the 
early stage but altered markedly during the later stage (Figure 
S3b). The volumes of the hippocampi and ventricles were changed 
more evenly as the disease progressed. As for CSF tau, the mean 

Rj=R(t0j, a)=1∕(1+exp(−a[t0j−10])+�)

(2)�∼N(0, �drug)

Table 2 List of covariates by genotypes of ApoE estimated by SReFT for long- term progression of AD

Variable

Male Female

ε3/ε3 ε3/ε4 ε4/ε4 ε3/ε3 ε3/ε4 ε4/ε4

Effects on baseline (dY)

CDR- SB NS NS NS −0.43 −0.17 −0.43

FDG–PET NS NS NS 0.55 0.35 0.16

Hippocampus NS NS NS NS NS NS

Ventricle NS NS −0.57 −1.05 −1.05 −1.62

CSF Aβ NS NS −1.04 0.58 0.03 −0.46

Amyloid–PET NS NS NS NS NS NS

CSF tau NS NS NS NS 0.37 0.59

Effects on progression (dT)

Time NS NS NS −0.21 0.17 0.10

The term dY is the effect on the baseline level of each biomarker value, and has the same dimension as the real value of each biomarker. The term dT is the effect 
showing the relative rate of the disease- progression speed affecting all of the biomarkers. See Supplementary Text for details.
Aβ, amyloid- β; AD, Alzheimer’s disease; CDR- SB, Clinical Dementia Rating Scale Sum of Boxes; CSF, cerebrospinal fluid; FDG, fluorodeoxyglucose; NS, not 
significant; PET, positron emission tomography; SReFT, statistical restoration of fragmented time course.
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value increased moderately as a function of time; however, the val-
ues varied widely across subjects, especially during the later stage. 
By using plots of the SD of the posterior distribution of the disease 
time, we found that the volume of the hippocampi was the most 
informative biomarker for the disease–time estimation of subjects 
across all disease stages (Figure S3c). These results are consistent 
with those of previous reports.3,14

Because SReFT is a maximum likelihood estimator, covariate–
model selections can be conducted on the basis of statistics, such as 
the likelihood ratio test. Moreover, our covariate model dissociates the 
effects on the progression rate and asymptotic level of each biomarker 
(Table 2). By using these features, we could quantitate the influence of 
the ApoE genotype and sex on AD progression (Figure 2). The over-
all larger effects of the ApoE allele on disease progression in females 
compared with in males are consistent with previous studies.30 For ex-
ample, Altmann et al. reported that the influence of carrying the ApoE 
ε4 allele on the risk of conversion to diagnosis of AD was observed in 
both males and females, although the influence was smaller in males.30 
We confirmed that the average age of onset of Aβ accumulation was 
approximately 5 years younger in ApoE ε4 homozygotes compared 
with in ApoE ε3/ε3 carriers or ApoE ε3/ε4 carriers for both sexes 
(Figure 2c). However, it is interesting that the genotype- dependent 
difference in the progression rate in males was not significant in our 
analysis (Table 2). In the current analysis, covariates other than sex 
and ApoE genotype were not incorporated into the model because of 
the high computational cost for covariate modeling.37 Other poten-
tial covariates could be additionally incorporated into the model if the 
problem of high computational cost is resolved. Overall, the present 
analysis provides more quantitative results regarding the effects of co-
variates than previous reports, and may help to understand the molec-
ular mechanisms of AD and novel therapeutic strategies.

The intersubject and the intrasubject variances estimated sepa-
rately by our method offer useful applications, such as individual-
ized diagnosis via Bayesian inference or simulation of clinical trials. 
By Bayesian interference using the population disease progression, 
SReFT enables us to estimate the current disease time of a new sub-
ject and give subject- specific prediction of the disease progression. 
Subject- specific estimation of passage time from a specific event can 
be conducted for any type of data, when the time course of multiple 
biomarkers in the population is available. For example, in compli-
ance evaluation, SReFT could be used to estimate the dosing time 
by observing drug concentration and other biomarkers that show 
time- dependent change after drug is taken. We demonstrated an 
example of the practical application in designing clinical trials. The 
typical inclusion criterion used in clinical trials is the setting of 
cutoff values for clinical observations. However, this conventional 
recruitment omits the potentially useful hidden information about 
the subject (viz., the disease time of the subject), which can now 
be estimated using SReFT. Our simulation results indicated that 
the number of subjects necessary to detect a drug effect could be 
reduced markedly when the disease time is incorporated into the 
inclusion criteria. Simulations conducted separately for different 
covariates revealed large differences across the groups in the opti-
mal disease time for subject recruitment and number of subjects 
necessary (Figure 4h). Particularly for female ε4 noncarriers, the 
optimal time for recruitment includes generally older values, and Ta
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the number of subjects necessary is larger than in other groups. 
Covariate- specific predictions may show better results in the op-
timization of trials. Other than disease time, SReFT also provides 
the expected effect of the covariates and the parameters reflecting 
subject- specific progression, which are also potentially useful as in-
clusion criteria. We proposed a possible application of our method 
and used a simple and abstract model to describe the drug effects. 
Quantitative knowledge gained from data, such as small prelimi-
nary clinical trials or past clinical trials, would increase the pre-
dictive power of the simulation. As we found in the simulation, 
criterion in value may result in including subjects at various disease 
stages. Thus, analyzing data of a clinical trial with SReFT may re-
veal novel knowledge as to the disease progression, drug effect, and 
differences between groups, although the restoration of the disease 

progression using data of a clinical trial would be restricted to a 
certain period of the whole disease progression, because the data 
usually do not cover the whole disease progression. A more reliable 
model can be obtained that describes the entire progression of the 
disease if a large database with a relatively wide range of disease pop-
ulations (like ADNI), rather than data from a clinical trial, is ana-
lyzed. Recently, several consortia have been created for sharing such 
databases,8–13 and SReFT might be used to analyze those databases.

METHODS
Data included in the analysis of AD
Subjects who participated in any of the studies of ADNI1,7 ADNIGO,7 
or ADNI27 were selected, with the exclusion criteria as follows: subjects 
with

Figure 3 Distribution of mean biomarker changes calculated by bootstrap analysis. To check the stability of the original SReFT analysis 
(Figure 2), the process was repeated 100 times for different data sets, each randomly resampled from the original data set (bootstrap 
method). Gray lines represent the results of each bootstrap analysis. The colored line in each panel shows disease progression estimated 
from the original data set. CDR- SB, Clinical Dementia Rating Scale Sum of Boxes; CSF, cerebrospinal fluid; FDG, fluorodeoxyglucose; PET, 
positron emission tomography; SReFT, statistical restoration of fragmented time course.
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Figure 4 (a) The conventional criterion, in which subjects with biomarker values falling within a specific interval are recruited (“criterion in 
value”). In AD, cognitive function tests have mainly been used to include subjects with dementia in the clinical trial of an anti–amyloid- β 
antibody.6 (b) The proposed criterion, in which subjects with disease times falling within a specific interval are recruited (“criterion in time”). 
(c) The subject- specific constant R, which determines the relative rate of the speed of disease progression compared with the placebo group. 
The dependency of R on disease time at inclusion of the subject is modeled as follows: Rj=1∕(1+exp(−a[t0j−10]) (lower panel), where t is the 
disease time at inclusion, and a is a parameter of the function defining the steepness of the slope (upper panel). (d) The estimated number of 
subjects necessary to detect the drug effect (N) after 2 years of clinical trial, calculated by a simulation of clinical trial using the distribution 
of male subjects. Shown is the dependency of N on parameter a and parameter T, where T defines the interval of criterion in time. Disease 
time of subject at the initial inclusion is restricted to [T T+4.67]. The yellow line indicates T with the smallest N for various parameter a. (e) 
The dependency of the smallest number of subjects required on parameter a of male subjects. The solid blue line shows how N for criterion in 
value depends on a using the CDR- SB value. The dashed red line shows the smallest N for criterion in time (the N value along the yellow line in 
d). (f) The dependency of N on parameter a and parameter T of female ε3 homozygotes is shown. (g) The dependency of the smallest number 
of subjects required on parameter a of female ε3 homozygotes. (h) The dependency of the optimal disease time to criterion on a. Parallel 
simulations of clinical trials were conducted for different groups of covariates using the hyperparameters obtained from the ADNI data, and 
the optimal disease times are plotted separately for each group. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; 
CDR- SB, Clinical Dementia Rating Scale Sum of Boxes. Simulation- aided design of clinical trial.
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(1)  no information about age, sex, or ApoE genotype;
(2)  no CSF Aβ data;
(3) average CSF Aβ levels >192 pg/ml26;
(4)  mild cognitive impairment (MCI) reversion to cognitively normal 

(CN) or dementia reversion to MCI or CN; and
(5) ε2/ε4 ApoE genotype.
As a result, data of 437 subjects in total (CN: 83 (stable CN, 68; CN- to- 
MCI converter, 12; CN- to- dementia converter, 3); MCI: 242 (stable MCI, 
143; MCI- to- dementia converter, 99); dementia: 112) were collected.

Source codes
Two sets of the source codes are provided (https://tokudakeita@bitbucket.
org/tokudakeita/sreft). One is MATLAB open source codes, including 
sample codes to demonstrate SReFT. Application for user’s specific area 
should be easy. The other file is the bundle file of “Numeric Analysis 
Program for Pharmacokinetics (Napp),”38 written in Objective- C, which 
specifies the model and is used in the analysis of ADNI. This code can 
be compiled with Xcode by Apple and used as an add- in to the coming 
version of Napp. Then, SReFT can be conducted on Napp. Please refer to 
Supplementary Text, Theoretical Note, for a description of the method.

Bootstrap analyses
We performed bootstrap analysis via Monte–Carlo resampling to confirm 
the reproducibility of the parameters estimated by the final covariate model. 
We drew 100 resamples with the same number of subjects (n = 437) per 
resample as the ADNI data set by random resampling from the original 
collection of subjects,39 followed by SReFT analysis with 100 resamples 
with the final covariate model. Reproducibility of all estimated parameters 
was evaluated by comparing the parameter values estimated by bootstrap 
data sets with those estimated by the original ADNI data set.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
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