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The Quartic Piecewise-Linear
Criterion for the Multiaxial
Yield Behavior of Human
Trabecular Bone
Prior multiaxial strength studies on trabecular bone have either not addressed large var-
iations in bone volume fraction and microarchitecture, or have not addressed the full
range of multiaxial stress states. Addressing these limitations, we utilized micro-computed
tomography (lCT) based nonlinear finite element analysis to investigate the complete 3D
multiaxial failure behavior of ten specimens (5 mm cube) of human trabecular bone, taken
from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36),
mechanical anisotropy (range of E3/E1¼ 3.0–12.0), and microarchitecture. We found that
most of the observed variation in multiaxial strength behavior could be accounted for by
normalizing the multiaxial strength by specimen-specific values of uniaxial strength (ten-
sion, compression in the longitudinal and transverse directions). Scatter between specimens
was reduced further when the normalized multiaxial strength was described in strain space.
The resulting multiaxial failure envelope in this normalized-strain space had a rectangular
boxlike shape for normal–normal loading and either a rhomboidal boxlike shape or a trian-
gular shape for normal-shear loading, depending on the loading direction. The finite ele-
ment data were well described by a single quartic yield criterion in the 6D normalized-
strain space combined with a piecewise linear yield criterion in two planes for normal-
shear loading (mean error 6 SD: 4.6 6 0.8% for the finite element data versus the crite-
rion). This multiaxial yield criterion in normalized-strain space can be used to describe the
complete 3D multiaxial failure behavior of human trabecular bone across a wide range of
bone volume fraction, mechanical anisotropy, and microarchitecture.
[DOI: 10.1115/1.4029109]
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1 Introduction

Trabecular bone can be subjected to multiaxial loads during
daily and traumatic activities and during surgical procedures such
as bone grafts and joint arthroplasty [1–3]. The multiaxial strength
behavior of trabecular bone has been investigated using both
experiments [4–7] and finite element simulations [8–10]. Based
on these studies, various failure criteria such as Hoffman’s crite-
rion [4], the fabric anisotropy based Tsai–Wu failure criterion
[10,11], the piecewise Hill’s criterion [7,12,13], and the modified
super-ellipsoid (MSE) criterion [9] have been formulated and
tested, and some of these criteria have been used to predict the
strength of whole bones [14,15]. However, a number of studies
have now found that the multiaxial failure surface is not quadratic
[6,9,16], consistent with the behavior of cellular solids and foams
[17,18]. Partly, the anisotropic nature of trabecular bone leads to
independent failure modes in the longitudinal and transverse
directions [16]. In addition, other recent studies have shown that
between-specimen variations in biaxial normal strength primarily
reflect variations in the uniaxial strength regardless of bone vol-
ume fraction, anisotropy, and microarchitecture [16]. Building on
these various prior studies, the overall goal of this study was to
develop a complete 3D multiaxial yield strength criterion for
human trabecular bone that is applicable to specimens over a wide
range of bone volume fraction, anisotropy, and microarchitecture

and that accounts for both normal and shear multiaxial loading in
multiple planes.

2 Methods

We analyzed micro-computed tomography (lCT-20, Scanco
Medical AG, Bassersdorf, Switzerland) images—10 lm spatial
resolution—of ten human trabecular bone specimens (cadaver
age¼ 64 6 10 yr, 48–79; 3 female, 7 male), taken from three ana-
tomic sites: vertebral body (n¼ 3), femoral neck (n¼ 5), and
proximal tibia (n¼ 2). These specimens were originally machined
as 8 mm-diameter cylindrical cores along their principal trabecular
orientation and were taken from previous studies [19,20]. The
images of the cylindrical specimens were downsampled to 20 lm
using region-averaging technique and segmented to match the
experimentally measured bone volume fraction. A 5-mm cube
was virtually extracted from the central portion of each specimen
image, and a finite element model was created by converting each
bone voxel to a solid brick element with an element size of 20 lm
[21,22]. The Euler angles of misalignment were calculated by
conducting six uniaxial linear elastic finite element analyses [23]
and the angle of misalignment of each specimen from the ortho-
tropic axes was confirmed to be within 610 deg. This alignment
was considered adequate to ensure loading along the principal
material orientation based on a previous study on off-axis loading
of trabecular bone [24]. The apparent elastic moduli in the
longitudinal direction (E3) and the transverse directions (E2, E1,
E2>E1) were computed and three mechanical anisotropy ratios
(E3/E1, E3/E2, E2/E1) were defined for each specimen. The cohort
of ten specimens covered a wide range of bone volume fraction
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(mean 6 SD: BV/TV¼ 0.19 6 0.09, range¼ 0.09–0.36) and
mechanical anisotropy (E3/E1¼ 6.7 6 3.1, range¼ 3.0–12.0;
E3/E2¼ 3.7 6 2.1, range¼ 2.1–7.6; E2/E1¼ 1.9 6 0.7, range
¼ 1.2–3.1). The three elastic moduli were significantly different
from each other (paired t-test E1 6¼E2, p< 0.002; E1 6¼E3,
p< 0.0003; E2 6¼E3, p< 0.0004) and the percentage deviation
from transverse isotropy (100� (E2�E1)/E3) was 16 6 10%, thus
confirming that the specimens were fully orthotropic. A trans-
versely isotropic material property set for each specimen was
defined by assigning equal moduli in the two transverse direc-
tions. For this set, the transverse modulus (ET) was defined as the
mean of the two elastic moduli in transverse directions of
the orthotropic material set (i.e., ET¼ 0.5� (E2þE1)) and the
longitudinal modulus was the same (EL¼E3).

For all specimens, all elements in each finite element model
were assigned the same isotropic material properties for the solid
bone tissue. Each element was assumed to behave as a rate-
independent elastic–plastic material [25] with an effective tissue
elastic modulus of 18.0 GPa, a Poisson’s ratio of 0.3, tissue-level
yield strains of 0.33% in tension, and 0.81% in compression
[16,26] (i.e., tension–compression strength asymmetry) and “large
deformation” kinematic nonlinearity [26]. This material model
has been used in various previous studies [27–29] and was directly
validated against experiments for uniaxial strength behavior
(R2¼ 0.96, Y¼X type of agreement, n¼ 22 specimens of human
bone) [27].

To describe the complete multiaxial failure behavior for each
specimen, a series of nonlinear finite element simulations was per-
formed, spanning the 6D multiaxial yield surface. The yield sur-
face was obtained in the 3D normal strain and normal stress space
and in the nine biaxial normal-shear strain planes by analyzing
various multiaxial loading cases, for a total of 231 loading cases
(Table 1) per specimen. Each normal (only) loading case was
defined by a unique proportion of the maximum applied strains in
the longitudinal and the two transverse directions. For uniaxial/
biaxial normal loading, an unconstrained displacement boundary
condition was applied to generate a uniaxial/biaxial stress state,
whereas a constrained displacement boundary condition was
applied to generate a uniaxial/biaxial strain state. For triaxial nor-
mal loading, displacement was constrained in all directions result-
ing in a triaxial normal stress and triaxial normal strain state. For
normal-shear loading, only constrained displacement boundary
conditions were applied, to generate uniaxial shear and biaxial
normal-shear strain states (loading for biaxial normal-shear stress
states was not considered). All finite element analyses were per-
formed using a highly scalable parallel finite element framework,
Olympus as described in the previous studies [27–29].

For each loading case, the nonlinear apparent-level stress–strain
curves were obtained in each loading direction and 0.2%-offset
yield strains were calculated for each loading direction. From
these curves, the time point—in chronological loading history—at

first yield from the three loading directions was identified and
then used to define the multiaxial yield stress and yield strain, as
done in the previous studies [6,8,9,16]. The yield stress and yield
strain data from the multiaxial analyses were then normalized by
the three uniaxial yield stresses and six uniaxial yield strains,
respectively, to define normal and shear normalized-strains and
normalized-stresses as follows:

êij ¼

eij

eyt
ij

��� ��� ; eij > 0

eij

eyc
ij

��� ��� ; eij < 0

8>>>><
>>>>:

ĉij ¼
cij

cy
ij

r̂ij ¼

rij

ryt
ij

��� ��� ;rij > 0

rij

ryc
ij
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in which eij; cij;rij(i,j,k¼ 1,2,3) are the normal strains, engineer-
ing shear strains, and normal stresses, respectively; the hatted
quantities are the normalized values; and the quantities with
superscripts yt and yc are the uniaxial yield strains/stresses in
tension and compression, respectively. Statistical regression anal-
ysis was then used to express the yield quantities as functions of
bone volume fraction and the three mechanical anisotropy ratios
(Table 2). (We found that microarchitecture did not have signifi-
cant effect and therefore is not reported.) A percentage error of fit
between the finite element-derived uniaxial yield data and
regression-predicted values (or the average yield value if a regres-
sion was not available) was calculated for each yield quantity. To
assess the effect of assuming a transversely isotropic behavior on
the uniaxial strength behavior, the uniaxial yield strains (Table 2)
were also estimated using the transversely isotropic material prop-
erty set and the corresponding error of fit was calculated.

To evaluate what type of mathematical failure criterion
best described these finite element-derived multiaxial failure data,
the finite element-computed yield data in the strain space,
normalized-strain space, and normalized-stress space were sepa-
rately fit to various mathematical functions in order to identity
which function best fit the observed (by finite element analysis)
data. Each type of failure criterion was obtained in three forms:

(1) Specimen-specific: a separate criterion was obtained for
each specimen (n¼ 10) by minimizing the error between
the finite element computed yield data and the predicted
value from the criterion using a nonlinear optimization
routine in MATLAB to find individual specimen-specific
coefficients;

(2) Regression-based: using statistical regression analysis, the
coefficients from the individual specimen-specific criteria
were expressed as functions of bone volume fraction, three
mechanical anisotropy ratios, and microarchitecture. A sin-
gle criterion was then formulated in which each coefficient
in the criterion was expressed in terms of these functions

Table 1 Details of multiaxial analyses

Type of analysis/boundary condition Analysis details Number of analyses

Normal (only) strain and Normal (only) stress analyses
Uniaxial normal strain 3 directions: tension and compression 6
Biaxial normal strain (3 biaxial planes)� (4 quadrants per plane)� (3 analysis per quadrant) 36
Uniaxial normal stress 3 directions: tension and compression 6
Biaxial normal stress (3 biaxial planes)� (4 quadrants per plane)� (3 analysis per quadrant) 36
Triaxial normal stress/strain (8 octants)� (9 analysis per octant) 72

156
Normal-shear strain analysis
Uniaxial shear strain 3 directions 3
Biaxial normal-shear strain (9 planes)� (2 quadrants per plane)� (4 analysis per quadrant) 72

75

011009-2 / Vol. 137, JANUARY 2015 Transactions of the ASME



(an average value of a coefficient was used if the statistical
regression analysis showed no significant relation);

(3) Single-averaged: a single criterion was obtained for all
specimens, in which each coefficient in the criterion was
taken as average of the corresponding coefficients for the
n¼ 10 specimen-specific criteria.

An error of fit between the criterion and the finite element data
was calculated for each finite element simulation, as follows:

xpredicted � xFE

�� ��
xFEk k � 100

in which xpredicted is the predicted yield point from the fitted crite-
rion and xFE is the finite element-computed yield point. For each
criterion, this error norm was first averaged over all simulations
for each specimen, and then averaged again over all ten speci-
mens. Unless noted otherwise, the latter averaged error is reported
(the reported SD is that describing the variation of the specimen-
specific average values across the ten specimens). To gain insight
and to facilitate comparisons with the literature, the different types
of failure criteria were evaluated separately for normal (only)
multiaxial loading, normal-shear multiaxial loading, both in strain
space, for normal-shear multiaxial loading in normalized-strain
space, and for normal (only) multiaxial loading in normalized-
stress space.

Normal (Only) Multiaxial Loading in Strain Space. Three
different types of failure criteria were evaluated. The first was
the previously reported nine-coefficient MSE yield criterion [9],
formulated in the current study in normal strain space

g e11; e22; e33ð Þ ¼ e11 � c1

r1

����
����
2=n2

þ e22 � c2

r2

����
����
2=n2

" #n2=n1

þ e33 � c3

r3

����
����
2=n1

þ t e11 þ e22 þ e33ð Þ
r1 þ r2 þ r3

����
����
2=n1

�1 (1)

The criterion was evaluated in the three forms noted above, and
we also evaluated the previously published coefficients [9] to pro-
spectively test the published criterion. The second criterion was a

“quartic” yield criterion, which was mathematically similar to the
MSE criterion

g e11; e22; e33ð Þ ¼ e11 � c1

r1

� �4

þ e22 � c2

r2

� �4

þ e33 � c3

r3

� �4

þ t1e11 þ t2e22 þ t3e33

r1 þ r2 þ r3

� �4

�1 (2)

Here, c1, c2, c3, r1, r2, r3, t1, t2, and t3 are the fitted coefficients.
The third criterion, included for reference purposes, was the nine-
coefficient quadratic Tsai–Wu criterion [11,30]

g e11; e22; e33ð Þ ¼ Fieii þ Fjeiiejj � 1 ði; j ¼ 1; 2; 3Þ (3)

in which Fi and Fij are the fitted "Tsai–Wu" coefficients (Fij¼Fji

based on symmetry).

Normal-Shear Multiaxial Loading in Strain Space and
Normalized-Strain Space. Again, three different types of failure
criteria were evaluated in strain space and normalized-strain
space. The equations have similar forms in both strain space and
normalized-strain space; for illustration, we report them for the
normalized-strain space. First, based on the observation that the
quartic yield criterion (Eq. (2)) was a good fit to the normal strain
data, we extended that criterion to include both normal and shear
strains. This extended quartic criterion has 18-coefficients in 6D
normalized-strain space

g êð Þ ¼ ê11 � c1

r1

� �4

þ ê22 � c2

r2

� �4

þ ê33 � c3

r3

� �4

þ t1ê11 þ t2 ê22 þ t3ê33

r1 þ r2 þ r3

� �4

þ u1 ê11 þ v1ĉ23 þw1ðĉ13 þ ĉ12Þ
r1 þ r2 þ r3

� �4

þ u2ê22 þ v2ĉ13 þw2ðĉ12 þ ĉ23Þ
r1þ r2þ r3

� �4

þ u3ê33 þ v3ĉ12 þw3ðĉ13 þ ĉ23Þ
r1þ r2þ r3

� �4

�1 (4)

Table 2 Multivariate regression of uniaxial yield strains (in percentage) and uniaxial yield stresses (in MPa) with bone volume
fraction and anisotropy ratios of the form Y 5a0 1 a1(BV/TV) 1 a2(E3/E1) 1 a3(E3/E2) 1 a4(E2/E1) for the yield strains and the form
Y 5a0(BV/TV)a1(E3/E1)a2(E3/E2)a3(E2/E1)a4 for the yield stresses. The mean (SD in parentheses) values of the yield quantities are
listed in the last column. By convention, direction 3 is the longitudinal direction and directions 1 and 2 are in the transverse plane,
such that the elastic modulus are ordered as E3 > E2 > E1 (error 5 [(Ypredicted 2 YFE)/YFE] 3 100).

Y a0 a1 a2 a3 a4 R2 Error (%) Mean (SD)

eyt
11

0.781 �0.494 0 0 0 0.40 5.4 6 3.8 0.683 (0.070)

eyt
22

0.582 0 0 0.0152 0 0.46 4.2 6 2.4 0.639 (0.047)

eyt
33

0.582 0 0 0 0 — 1.3 6 1.1 0.582 (0.011)

eyc
11

0.909 0 0 0 0 — 5.9 6 4.5 0.909 (0.079)

eyc
22

0.952 0 0 0 �0.0476 0.43 2.7 6 2.7 0.860 (0.048)

eyc
33

0.816 0.278 0 0 0 0.69 1.3 6 0.7 0.871 (0.030)

cy
12

1.21 0 0 0 0 — 3.1 6 2.0 1.21 (0.046)

cy
23

1.10 0 0 0 0 — 4.2 6 2.4 1.10 (0.058)

cy
13

1.13 0 0 0 0 — 4.4 6 2.8 1.13 (0.061)

ryt
11

53.9 1.46 �0.658 0 0 0.98 9.2 6 4.7 2.03

ryt
22

70.9 1.57 0 �0.632 0 0.99 6.5 6 5.1 3.20

ryt
33

73.2 1.46 0 0 0 0.97 8.6 6 4.8 7.19

ryc
11

105 1.58 �0.752 0 0 0.99 9.3 6 4.1 2.94

ryc
22

131 1.64 0 �0.796 0 0.99 5.7 6 4.6 4.59

ryc
33

153 1.61 0 0 0 0.98 8.1 6 5.3 12.1

Journal of Biomechanical Engineering JANUARY 2015, Vol. 137 / 011009-3



in which c1, c2, c3, r1, r2, r3, t1, t2, t3, u1, u2, u3, v1, v2, v3, w1,
w2, and w3 are the fitted coefficients (note, we used engineer-
ing shear strain in the formulation, cij¼ 2eij). Second, the

normal-shear strain data in the ê33 � ĉ13 and ê33 � ĉ23 planes
were fit to two linear fits to define a linear-yield criterion of
the form

g1ðê33; ĉ13; ĉ23Þ ¼ ðĉ13 þ ĉ23Þ � mcê33 � sc in the compression quadrant and

g2ðê33; ĉ13; ĉ23Þ ¼ ðĉ13 þ ĉ23Þ � mtê33 � st in the tension quadrant
(5)

in which mc, mt, sc, and st are the fitted coefficients. This piece-
wise linear criterion was based on the previous work in which a
cellular-solid-inspired piecewise linear creation was proposed to
capture the experimentally observed axial-torsion yield behavior
of bovine tibial bone [6]. The piecewise linear-yield criterion was
obtained only in the specimen-specific and single-averaged forms
since the regression-based approach did not render any

statistically significant relations. And finally, for reference pur-
poses, the 21-coefficient quadratic Tsai–Wu criterion [30] was
evaluated in specimen-specific, regression-based, and single-
averaged forms

g eð Þ ¼ Fiêi þ Fijêiêj � 1 i; j ¼ 1; 2; 3; 4; 5; 6ð Þ (6)

Fig. 1 Yield strain (top row), normalized-yield-strain (middle row), and normalized-yield-stress (bottom row) in the
three normal biaxial planes, showing individual responses for all ten specimens. The same tissue-level material
properties were assumed for all specimens. For each biaxial plane, the virtually applied normal strain (top and
middle row) and normal stress (bottom row) in the third normal direction is zero. Scatter was much less when the
normalized-yield-strain was used to describe the multiaxial failure behavior.

011009-4 / Vol. 137, JANUARY 2015 Transactions of the ASME



in which e1¼ e11, e2¼ e22, e3¼ e33, e4¼ c12, e5¼ c23, e6¼ c13 (and
Fij¼Fji and F4¼F5¼F6¼ 0 based on symmetry).

To assess the effect of assuming a transversely isotropic behav-
ior on the multiaxial strength behavior in the normalized-strain
space, the regression-based form of the quartic criterion (Eq. (4))
and the piecewise linear criterion (Eq. (5)) were calculated using
the transversely isotropic material property set. The regression-
based form was also calculated assuming orthotropic behavior and
the mean error of fit of both regression-based criteria were com-
pared using paired t-test.

Normal (Only) Multiaxial Loading in Normalized-Stress
Space. For this evaluation, the finite element-computed
normalized-stress data for each specimen were fit to the following
quartic yield equation:

f r̂11; r̂22; r̂33ð Þ ¼ r̂11 � c1

r1

� �4

þ r̂22 � c2

r2

� �4

þ r̂33 � c3

r3

� �4

þ t1r̂11 þ t2r̂22 þ t3r̂33

r1 þ r2 þ r3

� �4

(7)

in which c1, c2, c3, r1, r2, r3, t1, t2, and t3 are the fitted coefficients.
For reference purposes, the quadratic Tsai–Wu yield criterion
with nine fitted “Tsai–Wu” coefficients was also evaluated:

f r̂11; r̂22; r̂33ð Þ ¼ Fir̂ii þ Fjr̂iir̂jj � 1 ði; j ¼ 1; 2; 3Þ (8)

3 Results

The shape of the finite element-derived yield surface depended
on both the type of multiaxial loading and the form of data used to
describe the yield surface. For normal–normal multiaxial loading,
the yield surface resembled a boxlike shape in both (un-normal-
ized) strain and normalized-strain space (Fig. 1). The scatter in
these failure data across specimens was substantially lower when
the failure data were expressed as normalized-strains (Fig. 1,

middle panel) versus (un-normalized) strains (Fig. 1, top panel)
whereas the scatter was substantially greater when the failure data
were expressed as normalized-stresses (Fig. 1, bottom panel), par-
ticularly in the transverse biaxial plane (r̂11 � r̂22 plane). For
normal-shear multiaxial loading, in normalized-strain space the
yield surface in the ê11 � ĉ23, ê22 � ĉ13, ê33 � ĉ12 planes had a
rectangular boxlike shape, in the ê11 � ĉ12, ê11 � ĉ13, ê22 � ĉ12,
and ê22 � ĉ23 planes a rhomboidal boxlike shape, and in the
ê33 � ĉ13 and ê33 � ĉ23 planes a triangular shape (Fig. 2).

The finite-element derived data for the yield surface in the
normal–normal strain space were well described by both the pre-
viously formulated MSE criterion (Eq. (1)) and the “quartic” yield
criterion (Eq. (2)). The mean error of the specimen-specific fit was
marginally lower for the quartic yield criterion than the MSE yield
criterion (Table 4, 3.9 6 0.6% versus 4.1 6 0.6%, p¼ 0.042 by
paired t-test). This was also true for the regression-based and
single-averaged forms of the fits. The mean values of the coeffi-
cients of the quartic yield criterion and the MSE yield criterion
calibrated in this study were close to the previously calibrated
values of the coefficients (Table 3). The error for the Tsai–Wu cri-
terion (Eq. (3)), however, was much larger than for the MSE and
quartic yield criteria (Table 4).

The finite-element derived data in the normal-shear
normalized-strain space (and in strain space) were best described
by a combination of the quartic yield criterion (Eq. (4)) and the
piecewise linear-yield criterion (Eq. (5)). For the normalized-
strain space, the quartic yield criterion (Eq. (4)) resulted in much
larger error in the ê33 � ĉ13, ê33 � ĉ23 planes compared to the other
normal-shear planes: ê11 � ĉ12, ê11 � ĉ13, ê11 � ĉ23, ê22 � ĉ12,
ê22 � ĉ13, ê22 � ĉ23, ê33 � ĉ12 planes (Figs. 3 and 4). However,
using a combination of the quartic yield criterion (Eq. (4)) and the
piecewise linear yield criterion (Eq. (5)), the mean errors of the
fits in the ê33 � ĉ13 and ê33 � ĉ23 planes were substantially
reduced (Figs. 3 and 4). The combined quartic and piecewise-
linear criterion (Eqs. (4) and (5)) with 22 coefficients (Tables 5
and 6)—herein referred to as the quartic piecewise-linear criterion
(QPL criterion)—had an error of 4.6 6 0.8% across ten specimens
in its single-averaged form. While some of the coefficients of the
quartic yield criterion in the normalized-strain space depended

Fig. 2 Normalized-yield-strain in the nine normal-shear biaxial planes, showing individual responses for all ten
specimens. For each biaxial plane, the virtually applied normal and shear strains in the other two normal and shear
directions, respectively, are zero.

Journal of Biomechanical Engineering JANUARY 2015, Vol. 137 / 011009-5



weakly on the bone volume fraction and/or the mechanical
anisotropy ratios (Table 5), there were no such relations for the
four coefficients of the piecewise linear-yield criterion (Table 6).
For strain space, the mean error of fit of the yield data was higher
than for the normalized-strain space (Table 4). As expected, the
21-parameter quadratic Tsai–Wu criterion (Eq. (6)) had much
larger errors than the QPL criterion in both strain space and
normalized-strain space (Table 4).

The assumption of transversely isotropic behavior of trabecular
bone specimens led to a small error in the uniaxial yield strain
estimates but had a negligible effect on the multiaxial behavior
after the normalization by uniaxial strengths. The mean error of
fit of regression-based uniaxial yield strain estimates (Table 2)
using transversely isotropic assumption was slightly higher
(4.0 6 4.1%) compared to the estimates using orthotropic assump-
tion (3.6 6 3.6%, p¼ 0.05 paired t-test). However, the mean error
of fit of the regression-based QPL criterion (in the normalized-
strain space) (Tables 5 and 6) using transversely isotropic assump-
tion was not statistically different from the regression-based QPL
criterion using orthotropic assumption (4.3 6 0.8% versus
4.4 6 0.7%, p¼ 0.16, paired t-test for ten specimens). These errors
of fit of the regression-based QPL criterion were only marginally
lower than the error of fit of the single-averaged form of the QPL
criterion (4.6 6 0.8%, Table 4).

Finally, in the normalized-stress space, although the mean error
of fit was lower for the specimen-specific form of the quartic yield
criterion (Eq. (7)) than for the Tsai–Wu yield criterion (Eq. (8)),

the errors did not differ appreciably between the regression-based
and single-averaged forms of the two criterion (Table 4).

4 Discussion

The results of this finite element study demonstrate that the full
3D multiaxial yield behavior of human trabecular bone across a
wide range of bone volume fraction, mechanical anisotropy, and
microarchitecture is well described by a combined quartic and
piecewise-linear criterion that is expressed in a normalized-strain
space. The resulting criterion, termed here the quartic piecewise-
linear (QPL) criterion is defined in the principal material orienta-
tion, has 22 coefficients, and requires input values of bone volume
fraction and mechanical anisotropy ratios. For its implementation
in structural analyses, the bone volume fraction, the principal ma-
terial orientation, and the anisotropy ratios should be known a pri-
ori which together provide the estimates of the uniaxial yield
strains (using expressions in Table 2) used to normalize the strain
space. These estimates may be also calculated by assuming trans-
versely isotropic behavior of trabecular bone as done in the previ-
ous studies [5,10]. The form of this yield criterion ensures a
convex smooth yield surface except at the slope discontinuity at

Table 4 Mean error (6SD, n 5 10 specimens) of the different
failure criteria in their respective specimen-specific,
regression-based, and single-averaged forms, evaluated for
normal (only) loading in strain space, normal-shear loading in
strain space, normal-shear loading in normalized-strain space
and for normal (only) loading in normalized-stress space.

Failure Criterion Specimen-specific Regression-based Single-averaged

Strain (normal only)
MSE 4.1 6 0.6 5.3 6 1.6 5.7 6 1.4
Quartic 3.9 6 0.6 5.1 6 1.5 5.3 6 1.5
Tsai–Wu 8.8 6 0.4 9.4 6 1.3 9.5 6 1.3

Strain (normal-shear)
QPL 3.9 6 0.6 5.4 6 1.2 5.6 6 1.1
Tsai–Wu 8.3 6 1.0 9.2 6 1.8 9.3 6 1.6

Normalized-strain (normal-shear)
QPL 3.5 6 0.7 4.4 6 0.7 4.6 6 0.8
Tsai–Wu 7.6 6 1.1 7.8 6 1.0 7.8 6 0.8

Normalized-stress (normal only)
Quartic 4.7 6 0.9 7.0 6 1.5 7.4 6 1.0
Tsai–Wu 6.5 6 0.8 7.5 6 1.4 7.6 6 1.1

Table 3 Mean (6SD) of the specimen-specific calibrated coefficients of the quartic yield criterion (Eq. (2)), the specimen-specific
calibrated coefficients of the MSE yield criterion (Eq. (1)) and the previously calibrated coefficients of the MSE yield criterion. The
values in parentheses are the standard deviations.

Quartic MSE (calibrated in this study) MSE (calibrated previously)

c1 �0.159 (0.029) c1 �0.130 (0.023) c1 �0.145
c2 �0.122 (0.014) c2 �0.120 (0.021) c2 �0.152
c3 �0.148 (0.019) c3 �0.155 (0.014) c3 �0.169
r1 0.869 (0.094) r1 0.814 (0.082) r1 0.728
r2 0.779 (0.031) r2 0.766 (0.040) r2 0.719
r3 0.740 (0.018) r3 0.746 (0.014) r3 0.753
t1 1.829 (0.555)
t2 1.263 (0.477) t 1.392 (0.069) t 1.396
t3 1.044 (0.285)

Exponent 4 n1 0.506 (0.033) n1 0.426
n2 0.332 (0.070) n2 0.347

Fig. 3 Mean absolute error (6SD, n 5 10 specimens) of the
specimen-specific mathematical fit versus the finite element
computed normalized-yield-strain data for (a) the normal (only)
3D space using the quartic yield criterion, (b) the seven normal-
shear planes (ê11 � ĉ12, ê11 � ĉ13, ê11 � ĉ23, ê22 � ĉ12, ê22 � ĉ13,
ê22 � ĉ23, ê33 � ĉ12) using the quartic yield criterion, (c) the two
normal-shear planes (ê33 � ĉ13, ê33 � ĉ23) using the quartic yield
criterion, and (d) the two normal-shear planes (ê33 � ĉ13,
ê33 � ĉ23) planes using a combination of the quartic and piece-
wise linear yield criteria.
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the intersection of the quartic and piecewise-linear surfaces—but
that discontinuity is not unlike those in other commonly used
criteria, such as the Tresca criterion [31]. Since the proposed
QPL criterion has much lower error compared to the quadratic
Tsai–Wu criterion, its use in continuum structural analyses of
whole bones may improve the fidelity of those structural
models.

The multi-equation form of the QPL criterion arises because of
the unique interactions between failure from combined normal
and shear loading. For multiaxial normal (only) loading in
normalized-strain space, there is little interaction of the longitudi-
nal normal strain and the transverse normal strains, which leads to
a rectangular boxlike flat shape of the yield surface. This behavior
is quite well captured in our prior MSE criterion [9], which was
formulated in terms of principal strains. For multiaxial normal-
shear loading in normalized-strain space, the interaction is also
minimal when the normal strain is out of the plane of shear (i.e.,
ê11 � ĉ23, ê22 � ĉ13, ê33 � ĉ12), leading to a rectangular flat boxlike
shape. However, the interaction is appreciable when the normal

loading is in the plane of the shear loading, leading to either a
rhomboidal boxlike shape when the normal loading is in the
transverse plane (i.e., ê11 � ĉ12, ê11 � ĉ13, ê22 � ĉ12, ê22 � ĉ23) or a
triangular shape when the normal loading is in the longitudinal
direction (i.e., ê33 � ĉ13, ê33 � ĉ23). The triangular shape of the
yield surface in these latter planes has been observed previously
in axial-torsion experiments on bovine trabecular bone [6]. The
two different shapes of the yield surface arise from the different
underlying dominant failure modes for these different normal-
shear loading modes: in the ê33 � ĉ13 and ê33 � ĉ23 planes, the
multiaxial yield is dominated by the failure in the shear direction
(Fig. 4) which leads to a triangular shape, whereas in the
ê11 � ĉ12, ê11 � ĉ13, ê22 � ĉ12, and ê22 � ĉ23 planes, the multiaxial
yield is dominated by the failure in the normal direction, which
leads to a rhomboidal shape.

The single-averaged form of the QPL criterion (Eqs. (4) and
(5); Tables 5 and 6) has certain advantages over other criteria and
is recommended to potentially improve the fidelity of whole-bone
structural models. The MSE criterion [9], formulated in the strain

Fig. 4 Yield envelopes in the three biaxial normal normalized-strain planes and the nine normal-shear normalized-
strain planes for one specimen from the vertebral body (BV/TV 5 0.11) using the quartic yield criterion (solid line,
Eq. (4)) and the piecewise linear-yield criterion (dashed line, Eq. (5)). For all plots, the solid circles fail in the mode
denoted by the horizontal axis and the hollow circles fail in the mode denoted by the vertical axis. For the quartic
criterion alone, the mean error of the fit was 4.2% for the combined ê33 � ê11, ê33 � ê22, and ê22 � ê11 planes, 3.1% for
the combined ê11 � ĉ12, ê11 � ĉ13, ê11 � ĉ23, ê22 � ĉ12, ê22 � ĉ13, ê22 � ĉ23, and ê33 � ĉ12 planes, and 7.5% for the combined
ê33 � ĉ13 and ê33 � ĉ23 planes. For the latter two planes, when the quartic criterion was combined with the piecewise
linear criterion (QPL criterion), the mean error reduced to 2.9%. In this case, the assumed failure envelope is the
inner surface of the two individual criteria.
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space, was developed based on analysis of bone having a high
volume fraction, whereas the QPL criterion, formulated in the
normalized-strain space, is applicable to any trabecular bone spec-
imen, the effects of bone volume fraction and anisotropy being
captured in the normalization process via the uniaxial strengths.
Both the MSE and QPL criteria are formulated in the principal
material orientation; however, the MSE criterion was defined in
terms of three principal strains. Therefore, the MSE criterion can-
not be directly evaluated for a normal-shear loading; for such
loading the strain tensor needs to be converted to principal strains.
In contrast, the QPL criterion is defined in terms of both normal
and shears strains and therefore, can be directly evaluated for any
strain state. Because of this, for normal-shear loading, the QPL
criterion is able to distinguish between the rectangular flat box-
like, rhomboidal boxlike, and triangular shapes of the multiaxial
strength behavior in the different loading planes, whereas the
MSE criterion cannot. As reported previously [9], the error of fit
of the MSE criterion for normal-shear loading was slightly higher
than for normal (only) loading (5.5 6 4.2% versus 3.7 6 3.1%),
whereas the QPL criterion gives almost similar errors for both
loading modes (3.9 6 0.6% versus 3.5 6 1.4%, Fig. 3). The QPL
criterion had a much lower error compared to the Tsai–Wu crite-
rion [30] because the quadratic form of the Tsai–Wu criterion fails
to capture the boxlike shape of the yield surface.

Our results are supported by a number of previous studies. The
multiaxial failure of foams has been characterized previously [32]
using a quartic equation that gives the failure envelope a boxlike
shape for biaxial loading. The theory assumes that the yield

behavior depends on both the deviatoric and hydrostatic parts of
the stress tensor, which leads to a quartic equation in terms of six
stress components. Similarly, a quartic yield surface has been pro-
posed for anisotropic plates [33] and other researchers have pro-
posed non-quadratic yield criteria for anisotropic metals [34,35]
and foams [18] that include higher order terms to capture the flat
regions of the yield surface. Gol’denblat and Kopnov [36] had
proposed a generalized tensor polynomial criterion, the quadratic
version of which, proposed by Tsai and Wu [30], has been widely
used for anisotropic materials. While quadratic-form yield criteria
[30,37–40] are widely used in computational studies, our results
clearly suggest that the use of higher order terms better captures
the more complete multiaxial yield behavior of trabecular bone.
The recently proposed generalized quadric yield criterion [40],
which encompasses the Tsai–Wu criterion [10,11,30] and the
Hill’s criterion [12,38], is also quadratic in form which produces
ellipsoidal and conical yield surfaces but does not produce a yield
surface having a boxlike shape. Bower and Koedam [41] have
explored the application of quadratic, cubic, and quartic versions
of the generalized tensor polynomial failure criterion and sug-
gested the use of the quartic version for convexity requirements.
Our proposed form of the quartic yield criterion, when expanded,
can be also written as a quartic tensor polynomial as follows:

Fiêi þ Fijêiêj þ Fijk êiêjêk þ Fijklêiêjêk êl � 1 ¼ 0

in which i, j, k, l¼ 1–6. Similarly, Cowin and He [42] have formu-
lated a yield criterion of trabecular bone that does not produce an
ellipsoidal yield surface. Finally, the multi-equation and piecewise
form of the yield criterion has been also proposed previously for
other anisotropic materials [43].

One notable limitation of the study is the lack of direct valida-
tion by experiments. In general, multiaxial experiments are very
difficult to apply to any specimens, are usually limited to tri-axial
compression, and are particularly difficult for trabecular bone
[5,7,44]. Thus, one must realistically rely primarily on the sort of
“computational experimentation” employed here for insight into
more complex multiaxial behavior. Nonetheless, our results are
consistent with the previous experimental work on the normal-
shear behavior of bovine trabecular bone, in which the triangular-
shaped yield behavior was observed [6], and the biaxial behavior

Table 5 Multivariate regression of 18 coefficients of the quartic yield criterion in the normalized-strain space (Eq. (4)) with bone
volume fraction and anisotropy ratios of the form Y 5a0 1 a1(BV/TV) 1 a2(E3/E1) 1 a3(E3/E2) 1 a4(E2/E1). The mean (SD in parenthe-
ses) values of the parameters are listed in the last column.

Y a0 a1 a2 a3 a4 R2 Mean (SD)

c1 �0.0171 0 0 0 0 — �0.0171 (0.0226)
c2 0.0176 0 �0.00658 0 0.0101 0.92 �0.00694 (0.0207)
c3 0.0218 0 �0.00131 0 0 0.62 0.0131 (0.00516)

r1 1.54 �1.65 0 0 0 0.63 1.22 (0.186)
r2 1.01 0 0.00486 0 0 0.48 1.04 (0.0219)
r3 1.06 0 0 0 0 — 1.06 (0.0382)

t1 3.89 �6.21 0 0 0 0.54 2.67 (0.753)
t2 1.11 0 0 0 0 — 1.11 (0.261)
t3 0.689 0 0 0 0 — 0.689 (0.238)

u1 0.910 0 0 0 0 — 0.91 (0.331)
u2 0.986 0 0 0.112 0 0.46 1.41 (0.345)
u3 2.13 0 0 0 0 — 2.13 (0.373)

v1 1.11 0 0 0.104 0.567 0.79 2.59 (0.388)
v2 0.513 0 0 0 0 — 0.513 (0.544)
v3 0.812 0 0 0 0 — 0.812 (0.452)

w1 3.60 �1.90 0 0 0 0.50 3.23 (0.241)
w2 2.96 0 0 0 �0.195 0.55 2.59 (0.173)
w3 3.04 �1.26 0 0 �0.305 0.78 2.20 (0.215)

Table 6 Mean (SD in parentheses) value of the four coefficients
of the piecewise linear-yield criterion in the normalized-strain
space (Eq. (5)). The coefficients did not depend on the bone
volume fraction, anisotropy ratios, or the microarchitecture.

Coefficient Mean

mc 0.985 (0.17)
sc 1.47 (0.093)
mt �0.85 (0.242)
st 1.11 (0.123)

011009-8 / Vol. 137, JANUARY 2015 Transactions of the ASME



of polymer foams, in which the boxlike yield behavior was
observed [17,18]. One clinically relevant load case for validation
is off-axis loading, such as might occur during a sideways fall to
the hip [45,46]. While our previous study on the biaxial strength
behavior [16] substantiated the experimentally observed uniaxial
off-axis strength behavior [46,47], the QPL criterion should cap-
ture the strength behavior under any multiaxial loading including
off-axis loading, provided the criterion is evaluated in the princi-
pal material orientation. Another limitation is that we also
observed large scatter and heterogeneity in the normalized-stress
data especially in the transverse biaxial plane, which resulted in
large errors of the criterion versus the finite element data for the
regression-based and single-averaged forms of the quartic and
Tsai–Wu criteria. The observed scatter is likely due to the uncon-
fined nature of the biaxial stress simulations as opposed to the
confined nature of the biaxial strain simulations. From a modeling
perspective, we assumed the bone tissue to behave as a perfectly
ductile material, whereas real bone tissue can crack and fracture if
overloaded. The micromechanics relating the degree of ductility
of bone tissue to overall strength of trabecular bone has been
investigated for uniaxial loading [48–51] and might be investi-
gated in the future as applied to multiaxial loading. Finally, the
small sample size of our study may limit the confidence that can
be associated with any numerical value of our parameter
estimates.
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