
UC Berkeley
UC Berkeley Previously Published Works

Title
Image processing tools for petabyte-scale light sheet microscopy data

Permalink
https://escholarship.org/uc/item/89g7x15j

Authors
Ruan, Xiongtao
Mueller, Matthew
Liu, Gaoxiang
et al.

Publication Date
2024-10-17

DOI
10.1038/s41592-024-02475-4

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89g7x15j
https://escholarship.org/uc/item/89g7x15j#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Nature Methods

nature methods

https://doi.org/10.1038/s41592-024-02475-4Article

Image processing tools for petabyte-scale
light sheet microscopy data

Xiongtao Ruan   1 , Matthew Mueller   1,2, Gaoxiang Liu1, Frederik Görlitz1,8,
Tian-Ming Fu   3,9, Daniel E. Milkie   3, Joshua L. Lillvis3, Alexander Kuhn4,
Johnny Gan Chong   1, Jason Li Hong   1, Chu Yi Aaron Herr1, Wilmene Hercule1,
Marc Nienhaus4, Alison N. Killilea   1, Eric Betzig   1,2,3,5,10 &
Srigokul Upadhyayula   1,6,7,10

Light sheet microscopy is a powerful technique for high-speed three-
dimensional imaging of subcellular dynamics and large biological
specimens. However, it often generates datasets ranging from hundreds
of gigabytes to petabytes in size for a single experiment. Conventional
computational tools process such images far slower than the time to acquire
them and often fail outright due to memory limitations. To address these
challenges, we present PetaKit5D, a scalable software solution for efficient
petabyte-scale light sheet image processing. This software incorporates a
suite of commonly used processing tools that are optimized for memory
and performance. Notable advancements include rapid image readers and
writers, fast and memory-efficient g eo me tric t ra ns fo rm at ions, high-
performance Richardson–Lucy deconvolution and scalable Zarr-based
stitching. These features outperform state-of-the-art methods by over one
order o f m a g n i t u de, enabling the processing of petabyte-scale image data at
the full teravoxel rates of modern imaging cameras. The software opens new
avenues for biological discoveries through large-scale imaging experiments.

Light sheet microscopy enables fast three-dimensional (3D) imaging
of cells, tissues and organs1. Within this realm, variants like multi-view
selective plane illumination microscopy2–4, lattice light sheet micros-
copy (LLSM)5, axially swept light sheet microscopy6,7 and single
objective light sheet microscopy8–10, offer higher resolution and fast
imaging speed. Combined with expansion microscopy11, these tech-
niques have been used to image millimeter-scale or larger cleared
and expanded specimens12,13, while achieving nanoscale resolution. In
such cases, the data produced from a single experiment can explode
to the petabyte range. These high data generation rates introduce
substantial challenges for data storage and processing that complicate

visualization, assessment and analysis. First, even individual volumes
from a four-dimensional (4D) time series can be so large as to render
their preprocessing unwieldy or impossible for conventional processing
codes. Second, acquisition in a non-Cartesian coordinate space adds
substantial computational overhead. Third, light sheet data are often
acquired at multi-terabyte-per-hour rates, which are too fast for con-
ventional tools to process in real time. This impedes the rapid feedback
needed to adjust imaging conditions or locations on the fly or to extract
biological insights from the resulting datasets in a timely manner.

Numerous computational tools encompassing various functionali-
ties have been developed to facilitate light sheet image preprocessing,

Received: 15 February 2024

Accepted: 16 September 2024

Published online: xx xx xxxx

 Check for updates

1Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, US. 2Howard Hughes Medical Institute, Berkeley, CA,
US. 3Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, US. 4NVIDIA, Berlin, Germany. 5Department of Physics, Helen Wills
Neuroscience Institute, University of California, Berkeley, Berkeley, CA, US. 6Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley
National Laboratory, Berkeley, CA, US. 7Chan Zuckerberg Biohub, San Francisco, CA, US. 8Present address: Department of Microsystems Engineering,
University of Freiburg, Freiburg, Germany. 9Present address: Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, US.
10These authors contributed equally: Eric Betzig, Srigokul Upadhyayula.  e-mail: xruan@berkeley.edu; betzige@janelia.hhmi.org; sup@berkeley.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02475-4
http://orcid.org/0000-0001-5322-3249
http://orcid.org/0000-0003-0774-1031
http://orcid.org/0000-0001-6265-0859
http://orcid.org/0000-0002-3917-6965
http://orcid.org/0000-0001-8925-6368
http://orcid.org/0009-0009-3419-808X
http://orcid.org/0000-0002-8308-8196
http://orcid.org/0000-0002-4192-1274
http://orcid.org/0000-0001-6727-5883
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02475-4&domain=pdf
mailto:xruan@berkeley.edu
mailto:betzige@janelia.hhmi.org
mailto:sup@berkeley.edu

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

are not designed for large-scale compressed data, being restricted
to single-threaded operations (for example, libtiff). For instance, an
86-GiB 16-bit Tiff file (512 × 1,800 × 50,000) with libtiff (LZW compres-
sion) takes approximately 8.5 and 16 min to read and write, respectively
(Extended Data Fig. 1a,b). These speeds pose a considerable bottleneck
for efficient image processing, especially when the entire image needs
to be loaded for the processing. Memory mapping is an alternative
technique to process large images (for example, tifffile26 in Python), but
it is mostly limited to working with uncompressed data in their native
byte order. This limitation can drastically increase storage require-
ments for large datasets, and the processing may still be constrained
by slow read and write speeds.

To rectify this, we developed an optimized Tiff reader and writer
in C++. This implementation leverages the OpenMP framework27 to
facilitate concurrent multi-threaded reading and writing (where only
the compression process is parallelized in writing). Our Cpp-Tiff reader
and writer are over 22 times and 7 times faster than conventional ones,
respectively, for compressed data (Fig. 2a,b and Extended Data Fig. 1a,b
for a 24-core node). Moreover, they substantially outperform the
fast Python reader and writer library for Tiff files (tifffile26 in Python;
Fig. 2a,b and Extended Data Fig. 1a,b). Their speeds also increase line-
arly as more CPU cores are devoted to read/write operations (Extended
Data Fig. 1e,f).

Although the Tiff format is commonly used for raw micros-
copy images, it is not the most efficient for parallel reading and
writing, especially for very large image datasets. One major limitation
is its single-container structure for file writes, which restricts it to
single-threaded operations. To overcome this, we instead chose Zarr22,
a next-generation file format optimized for multi-dimensional data.
Zarr efficiently stores data in nonoverlapping chunks of uniform size
(border regions may be padded to match the full chunk size) and saves
them as individual files. The format is similar to N5 (ref. 28), OME-Zarr29
and TensorStore30.

Zarr allows individual jobs to access only the specific region of
interest at a given time. Distinct regions can be saved to disk inde-
pendently and in parallel. Using optimized C/C++ code that leverages
OpenMP, our Zarr reader/writer is 10–23 times faster for reading and
5–8 times faster for writing (Fig. 2c,d and Extended Data Fig. 1c,d)
than the conventional implementation (using MATLAB’s ‘blocked-
Image’ function to interface with the Python version of Zarr). Their
performances also scale as more CPU cores are devoted to read/write
operations (Extended Data Fig. 1g,h). Our implementation is also 5–10
and 5–8 times faster for read/write compared with the native Python
implementation of Zarr (Fig. 2c,d and Extended Data Fig. 1c,d). Moreo-
ver, compared to TensorStore, Cpp-Zarr is 2.2 times and 1.5 times faster
for reading and writing, respectively, for their preferred data orders
(row-major in TensorStore and column-major in Cpp-Zarr; Supple-
mentary Table 1). We opted to use the zstd compression algorithm31 at
compression level 1 to achieve better compression ratios at comparable
read/write times to the lz4 algorithm32 at level 5 (default in native and
OME-Zarr; Extended Data Fig. 1i–k). We also created a Parallel Fiji Visu-
alizer plugin that quickly opens compressed Tiff and Zarr files using
our fast readers, enabling efficient data visualization and inspection
in Fiji33 (Supplementary Note 3).

Fast combined deskew and rotation
In many light sheet microscopes, the excitation and detection objec-
tives are oriented at an angle with respect to the substrate holding
the specimen. It is convenient in such cases to image the specimen
by sweeping it in the plane of this substrate, but the resulting raw
image stack is then sheared and rotated with respect to the conven-
tional specimen Cartesian coordinates (Fig. 3a). Traditionally, the
data are transformed back to these coordinates by deskewing and
rotating in two sequential steps (Fig. 3b). However, zero padding dur-
ing deskew drastically increases data size, slowing computation and

including deskew and rotation14,15, deconvolution16,17, stitching18,19
and visualization20,21. While these tools have shown to be valuable for
light sheet images on the gigabyte scale, their utility wanes for data
sizes surpassing the terabyte threshold, due to a lack of scalability
and efficiency required to process images in real time. Furthermore,
many of these tools are standalone applications, providing only partial
processing steps in a specialized context and varying input formats and
requirements. This situation often requires extensive manual effort
to integrate them into multi-step workflows, limiting their utility,
especially for large-scale data.

To address these challenges, particularly for long-term imag-
ing of subcellular dynamics or vast multicellular image volumes, we
developed PetaKit5D, a software solution designed to enable real-time
processing of petabyte-scale imaging data. The software contains
commonly used preprocessing and post-processing tools that are
optimized for memory and performance, including deskew, rotation,
deconvolution and stitching, all integrated into a high-performance
computing framework capable of executing user-defined functions
in a scalable and distributed manner.

To further increase throughput, we developed new algo-
rithms for image input/output using the Zarr data format for image
storage22 and processing in conjunction with custom parallelized
image readers and writers. These capabilities have been optimized
for partitioned parallel processing of petabyte-scale datasets. The
software incorporates an online mode during image acquisition to
automatically process data and provide near-instantaneous feedback
that is critical during long-term time series or high-throughput large
sample imaging.

We developed PetaKit5D in MATLAB and offer Python wrappers
for the deployed version. To ensure accessibility for users with little
or no programming experience, the software includes a user-friendly
graphical user interface (GUI).

Results
Overall design: distributed image processing framework
High frame rate modern cameras enable light sheet microscopes to cap-
ture images at nearly four terabytes per hour per camera. This presents
formidable challenges for sustained image acquisition, real-time (de)
compression, storage and processing, especially when using a single
conventional workstation. In response, we developed a distributed
computing architecture comprising a cluster of computing nodes and
networked data storage servers that enables uninterrupted stream-
ing and real-time processing of vast quantities of data continuously
acquired over extended periods. Our standard workflow is illustrated
in Fig. 1a.

Our approach uses a generic distributed computing framework in
MATLAB to parallelize user-defined functions (Fig. 1b). The complete
dataset or set of tasks is divided into distinct, self-contained subtasks,
each appropriately sized for processing by an individual worker unit
with one or more central processing unit (CPU) cores or GPUs (Fig. 1c,d).
A conductor job orchestrates all operations, distributes tasks across the
computing cluster and monitors their progress to completion (Fig. 1b).
Failed jobs are automatically resubmitted with additional resources.
Our MATLAB-based framework offers greater flexibility for various task
types, enhanced robustness against failures and seamless integration
across multiple processing steps, compared with Spark23 and Dask24.
We use it to manage all processing methods in PetaKit5D (Fig. 1e).

Fast image readers and writers
Efficient image reading and writing are essential for real-time image
processing. The widely used Tiff format stores two-dimensional
(2D) and 3D microscopy data, offers the ability to compress (such as
Lempel–Ziv–Welch (LZW) compression), and can include specialized
metadata (such as Open Microscopy Environment TIFF25). Unfortu-
nately, conventional image readers and writers for the Tiff format

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Fast I/O

CPU/GPU
computing clusterθ

Detection

Scan

Ex
ci

ta
tio

n
(li

gh
t s

he
et

)

 Glass slide

x
z
s

Compressed
data

Deskew/rotation

Stitching

Deconvolution

a

b d

e

c

Conductor
job

Tasks Worker 1

Result 1Task 1

Submit
jobs

Worker 2

Result 2Task 2

Worker 3

Result 3Task 3

Worker n

Result nTask n

Monitor
worker

status and
resubmit if

it fails

Optimized
Ti� and Zarr
readers and

writers

Spatial and temporal

Tasks Results

Split

Process
and merge

Tasks

Input

Output

PetaKit5D

Fast image I/O

Highly parallelizable

>10× faster

Ti�/Zarr readers/writers

Deskew/rotation

Combined processing

>10× faster

10× less memory

OMW deconvolution

Only two iterations
Accurate and robust
Generic for light sheets
and other modalities

ZarrStitcher

Integrated tile processing

Fully automatic registration

Seamless blending

>10× faster stitching

Large-scale processing

Distributed computing

Petabyte-scale processing

MIP masks for speedup
Real-time feedback

Microscope Workstation
Acquisition

Feedback

Identify imaging errors
Determine stop points

Useful tools
Commonly used:

Resample

Cropping

MIP generation
...

Graphical user interface

Step-by-step selection

User friendly

No coding

Fig. 1 | Overall design of the image processing framework. a, Image acquisition
and processing workflows. b, Illustration of the generic distributed computing
framework. c, Illustration of distributed processing of many independent files

across multiple workers. d, Illustration of distributed processing of the split-
process-merge mechanism for the distributed processing of a large image file.
e, Overall functionalities and features in PetaKit5D.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

risking out-of-memory faults, particularly for large images with many
frames (Fig. 3c).

To address this issue, we combined deskew and rotation into a
single step, which is possible given that both operations are rigid geo-
metric transformations. While prior studies have explored combining
processing techniques using vertical interpolation in the deskew/
rotated space and customized transformations9,10,34–36, they are limited
either in speed or the amount of data they can handle. Unlike previous
approaches, our method first interpolates the data in the raw skewed
space (depending on the scan step size), followed by standard affine
transformation. When the ratio of the scan step size in the xy plane to
the xy voxel size (defined as ‘skew factor’) is smaller than 2.0, this is
readily feasible (Fig. 3d). However, when the skew factor is larger than
2.0, artifacts may manifest due to the interpolation of voxels that are
spatially distant within the actual sample space during the combined
operations, as depicted in Extended Data Fig. 2a,b. Thus, in this case,
we first interpolate the raw skewed data between adjacent planes
within the proper coordinate system to add additional planes to reduce
potential artifacts in the following combined operations (Fig. 3d).

Our combined deskew and rotation method yielded nearly iden-
tical results to the same operations performed sequentially (Fig. 3e
and Extended Data Fig. 2c–e). The combined operation is an order of
magnitude faster and becomes increasingly more efficient in speed and
memory compared to sequential operation as the number of frames
increases. This enables us to process ten times larger data with the
same computational resources (Fig. 3f,g and Extended Data Fig. 2f,g).
By additionally combining our fast Tiff reader/writer with combined
deskew/rotation, we achieve at least 20 times more gain in processing

speed compared to conventional Tiff and sequential processing, allow-
ing us to process much larger data (Fig. 3h and Extended Data Fig. 2h).
Our approach is faster than the CPU and GPU implementations in
pyclesperanto35) without succumbing to GPU memory limitations,
and also outperforms the implementation in qi2lab-OPM36 (Extended
Data Fig. 2i). Finally, resampling and cropping, if necessary, can also
be integrated with deskewing and rotation to optimize processing
efficiency and minimize storage requirements for intermediate data.

OTF masked RL deconvolution
Deconvolution plays a crucial role in reconstructing the most accurate
possible representation of the sample from light microscopy images,
especially for light sheet images with strong side lobes associated with
higher axial resolution37. Richardson–Lucy (RL) deconvolution is the
most widely used approach due to its accuracy and robustness38,39. We
have found that applying RL to the raw light sheet data before combined
deskew/rotation not only is faster (due to no zero padding) but also
yields better results with fewer edge artifacts (Extended Data Fig. 3a).
To do so, the reference point spread function (PSF) used for deconvo-
lution must be either measured in the skewed space as well (Extended
Data Fig. 3c), or calculated by skewing a PSF acquired in the sample
Cartesian coordinates (Extended Data Fig. 3b).

RL is an iterative method that typically requires 10–200
iterations (Biggs accelerated version40) to converge, depend-
ing on the type of light sheet or image modalities. Consequently,
RL deconvolution is the most computationally intensive step for
large datasets relative to deskew, rotation and stitching, even with
GPU acceleration. Despite being notably faster than the traditional

Libti�
Ti�file
Cpp-Ti�

Libti�
Ti�file
Cpp-Ti�

MATLAB interface of Zarr
Zarr
Cpp-Zarr

MATLAB interface of Zarr
Zarr
Cpp-Zarr

Ti� read e�iciency vs frames per stack

6.1 5.9 6.0 6.0 6.3 6.5 7.4

23 24 23 23
25

27
28

500 1,000 2,000 5,000 10,000 20,000 50,000

Frames/stack

0

10

20

30

40

Pe
rf

or
m

an
ce

 g
ai

n

a Ti� write e�iciency vs frames per stack

2.1 2.2 2.2 2.3 2.3 2.3 2.2

7.3 7.3 7.2 7.1 7.0
7.6 7.6

500 1,000 2,000 5,000 10,000 20,000 50,000

Frames/stack

0

2

4

6

8

10

12

14

Pe
rf

or
m

an
ce

 g
ai

n

b

Zarr read e�iciency vs frames per stack

2.0 2.0 2.0 2.0 2.0 2.1
3.4

10
12 13

14 14 15

23

500 1,000 2,000 5,000 10,000 20,000 50,000

Frames/stack

0

5

10

15

20

25

Pe
rf

or
m

an
ce

 g
ai

n

c Zarr write e�iciency vs frames per stack

1.1 1.1 1.1 1.1 1.1 1.1
1.5

5.0
5.5

5.8 6.1 6.0 6.0

8.3

500 1,000 2,000 5,000 10,000 20,000 50,000

Frames/stack

0

2

4

6

8

10

Pe
rf

or
m

an
ce

 g
ai

n

d

Fig. 2 | Performance improvement factors of our C++ Tiff and Zarr readers
and writers. a, Performance gains of our Cpp-Tiff reader versus the conventional
Tiff reader in MATLAB and tifffile reader in Python versus the number of frames
in 3D stacks. b, Performance gains of Cpp-Tiff writer versus the conventional Tiff
writer in MATLAB and the tifffile writer in Python versus the number of frames in
3D stacks. c, Performance gains of our Cpp-Zarr reader versus the conventional
Zarr reader (MATLAB interface of Zarr) and native Zarr in Python versus the

number of frames in 3D stacks. d, Performance gains of Cpp-Zarr writers versus
the conventional Zarr writer (MATLAB interface of Zarr) and native Zarr in Python
versus the number of frames in 3D stacks. The images have a uint16 frame size of
512 × 1,800 (xy) in all cases. The benchmarks were run independently ten times on
a 24-core CPU computing node (dual Intel Xeon Gold 6146 CPUs). Data are shown
as the mean ± s.d.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

RL method, the Wiener–Butterworth (WB) method proposed by
Guo et al.17 with unmatched backward projector was initially dem-
onstrated on Gaussian light sheets with ellipsoid support, and failed
to achieve full-resolution reconstruction of LLSM images (Fig. 4a,b
and Extended Data Fig. 3d–f) since it truncates the optical transfer
function (OTF) near the edges of its support (Fig. 4a,b and Extended
Data Fig. 3d–f), resulting in the loss of information. This limitation is
particularly pronounced for lattice light sheets capable of high axial
resolution, such as the hexagonal, hexrect and multi-Bessel types37,
whose OTF supports are nearly rectangular rather than ellipsoidal
in the xz and yz planes. Another concern is that the WB method sup-
presses high-frequency regions near the border of its back projector’s
ellipsoid, thereby underweighting or even eliminating high-resolution
information in the deconvolved images.

To address these issues, inspired by Zeng et al.41 and Guo et al.17,
we optimized the backward projector by using the convex hull of the

OTF support to define an apodization function. This function filters
noise close to the support and eliminates all information beyond it
(Fig. 4a,b Extended Data Fig. 3d–f and 4a,b), and is applied to the
Wiener filter (Extended Data Fig. 4c,d). Unlike the WB method, this
OTF masked Wiener (OMW) technique covers all relevant frequen-
cies in the Fourier space (Fig. 4c,d and Extended Data Fig. 3g,h) and
achieves full-resolution image reconstruction while maintaining
rapid convergence speed (Fig. 4e,f and Extended Data Fig. 3i–l). By
using the OTF support for apodization, the OMW method is generic
for any PSF. Our specific implementation offers a tenfold speed
improvement compared to the traditional RL method (Biggs ver-
sion) on both CPUs and GPUs (Fig. 4g,h and Extended Data Fig. 5).
A detailed comparison with other deconvolution methods is pro-
vided in Supplementary Note 4.

The performance of RL relies crucially on finding an optimum
number of iterations: too few yields fuzzy images and, in the case

ba

Dimension: 512 × 1,800 × no. of frames

0 1 2 3 4 5

Frames/stack ×104

0.1

1

10

100

1,000

10,000

D
at

a
vo

lu
m

e
(G

B)

Raw
DS
DSR

c d

5 µm

xy

xz

yz

DS

5 µm

xy

xz

yz

DSR

5 µm

xy

xz

yz

Raw

500 GB/node

Raw DSR

Small step size

Large step size

Raw
Skewed space
interpolation DSR

Raw

DS

DSR

e
Di�erence between sequential and combined DSR

–0.1 –0.05 0 0.05 0.1

Normalized di�erence

0

0.1

0.2

0.3

Fr
ac

tio
n

0

0.2

0.4

0.6

0.8

1

C
um

ulative fraction

f Deskew and rotate run time
 vs no. of frames

18 23
31

55

8.0 11
14

25

500 1,000 2,000 5,000

Frames/stack

0.5
1

10

100

Pe
rf

or
m

an
ce

 g
ai

n

Deskew and rotate memory
e�iciency vs no. of frames

1.8 2.9

5.3

12

1.2 2.0
3.5

8.1

500 1,000 2,000 5,000

Frames/stack

0

5

10

15

N
or

m
al

iz
ed

 m
em

or
y

e�
ic

ie
nc

y

g h Deskew and rotate overall run
 time vs no. of frames

21 27
39

21 26
38

500 1,000 2,000

Frames/stack

0.5
1

10

100

Pe
rf

or
m

an
ce

 g
ai

n

Sequential
Combined direct
Combined interpolated

Sequential
Combined direct
Combined interpolated

Sequential
Combined direct
Combined interpolated

Fig. 3 | Combined deskew and rotation. a, Traditional sequential deskew
and rotation processes. b, Orthogonal views of raw (skewed), deskewed (DS)
and deskewed/rotated (DSR) images for cultured cells. c, The semi-log plot of
the data sizes of a stack of raw 512 × 1,800-pixel images, deskewed, deskewed/
rotated data as a function of the number of frames per stack. The dashed line
indicates the memory limit (500 GB) of a computing node. d, Combined deskew
and rotation processes without (top) and with (bottom). The addition of skewed
space interpolation before deskew/rotation when the z-step size between
image planes is too large. e, Histogram of the normalized differences between
deskewed/rotated results of sequential versus combined methods for the same

image in b. f, Performance gain for combined direct and combined interpolated
over sequential deskew/rotation versus the number of frames per stack, from
500 to 5,000. Comparisons do not include read/write time, which is considered
in h. g, Memory efficiency gain for the same three scenarios. h, Performance gain
for the same three scenarios. This comparison does include the differences in
read/write time when the conventional Tiff software is used for the sequential
deskew/rotation, and our Cpp-Tiff is used for combined deskew/rotation. The
benchmarks were run independently ten times on a 24-core CPU computing node
(dual Intel Xeon Gold 6146 CPUs), and data are shown as the mean ± s.d. in f–h.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

a

0
2

0
2

0
2

0 5 10 15
0
2

Raw

Traditional
10 iters

BW
2 iters

0 5 10 15

OMW
2 iters

b

0
2

0
2

0
2

0 5 10 15
0
2

Raw

Traditional
5 iters

BW
1 iters

0 5 10 15

OMW
1 iters

c d

e f

Multi-Bessel Hex Sinc

z (µm)

x
(µ

m
)

xy xz

kxky kxkz

xy xz

kxky kxkz

z (µm)

x
(µ

m
)

Traditional WB OMW

b
|F

T(
b)

|
|F

T(
b)

 ×
 F

T(
f)

|

b
|F

T(
b)

|
|F

T(
b)

 ×
 F

T(
f)

|

xy xz

kxky kxkz

kxky kxkz

Traditional WB OMW

kxky kxkz

kxky kxkz

xy xz

Raw WB 2 iters OMW 2 itersTraditional 55 iters

kxky

kxkz

kxky

kxkz

xy

xz

Raw WB 2 iters OMW 2 itersTraditional 25 iters

xy

xz

Relative deconvolution time (CPU)

16 16 16 16 16

100 200 500 1,000 1,500

Frames/stack

0

5

10

15

20

25

30

Pe
rf

or
m

an
ce

 g
ai

n

g h Relative deconvolution time (GPU)

18 18 18 18

29

100 200 500 1,000 1,500

Frames/stack

0

10

20

30

Pe
rf

or
m

an
ce

 g
ai

n

Traditional 30 iters
OMW 2 iters

Traditional 30 iters
OMW 2 iters

Fig. 4 | Fast RL deconvolution. a, Left, theoretical xy and xz PSFs (top, intensity
γ = 0.5; scale bar, 1 μm) and OTFs (bottom, log-scale; scale bar, 2 μm−1) for
the multi-Bessel (MB) light sheet with excitation NA 0.43 and annulus NA
0.40–0.47. Blue represents theoretical support; orange and yellow indicate
theoretical maximum (orange) and experimental (yellow) envelopes for the
WB method; magenta indicates experimental envelope for the OMW method.
Right, illustration of deconvolution of a simulated stripe pattern. The raw and
deconvolved images with traditional, WB and OMW methods are displayed along
with their line cuts. The orange lines indicate the theoretical line locations, and
the blue curves give the actual intensities along the line cuts. b, Similar results for
a Sinc light sheet (NA 0.32, σNA = 5.0). c,d, illustration of backward projectors (top;

scale bar, 1 μm), their Fourier spectra (middle; intensity γ = 0.5), and the products
with forward projectors in Fourier spaces (bottom; intensity γ = 0.5; scale bar,
1 μm−1) for the MB light sheet (c) and Sinc light sheet (d). e,f, Orthogonal views of
cell images for raw, traditional RL, WB and OMW methods for the MB light sheet
(e) and Sinc light sheet (f), with iteration numbers as shown (scale bar, 2 μm). The
Fourier spectra are shown below each deconvolved image (intensity γ = 0.5; scale
bar, 1 μm−1). g,h, Relative deconvolution acceleration for traditional RL and OMW
methods on CPU (g) and GPU (h) (only the deconvolution performance is shown
in the comparison). Each test in g and h was run independently ten times; data are
the mean ± s.d.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

of LLSM, incomplete sidelobe collapse; too many amplifies noise
and potentially collapses and fragments continuous structures as
represented in the deconvolved image. To find an optimum, we use
Fourier shell correlation (FSC)42. While the traditional RL method
often needs tens of iterations to optimize resolution by the FSC metric

(Supplementary Fig. 1a), the OMW method typically only needs two
iterations when we use FSC to determine the optimal Wiener parameter
(Supplementary Fig. 1b,c) for the backward projector for light sheet
images. Widefield and confocal images, however, may need more
iterations (Extended Data Fig. 6).

a

Tile 1

Tile 2

Tile n

Tile 1

Tile 2

Tile n

Block 1

Block 2

Block N

f g

h

88 102 117 132 139.5 147 162 177

h

g1

g2

g3

g4

g3 g4

g1 g2

c d e

e

E7b

E7a

Ti� Zarr

Pairwise cross-
correlation and
overall registration
with optimization

Stitch task
preparation and
assignment for
the blocks

Stitched
data

Step 1: convert Ti� to Zarr Step 2: cross-correlation
registration Step 3: stitching

50 µm

t (min)

10 µm

10 µm

Local optimization Grid optimization Group optimization

Registration optimization schemes

200 µm200 µm

10 µm

10 µm

xy

xz

b

Fig. 5 | The Zarr-based distributed stitching framework. a, Schematic of the
stitching steps. b, Schematic of different registration methods: local, grid and
grouped. Green or blue double arrow lines indicate pairs of tiles/groups involved
in registration. c, Raw 2D oblique illumination 'phase' tiles of live HeLa cells
before processing. d, Final processed phase image after flat-field correction,
stitching and deconvolution. Boxes labeled E7a and E7b indicate regions
shown at higher magnification in Extended Data Fig. 7a,b. e, Zoomed-in region

of d showing retraction fibers. f, xy MIP view of long-term large field-of-view 3D
imaging of cultured LLC-PK1 cells. Blue denotes H2B-Cherry; orange denotes
Connexin-Emerald. Intensity γ = 0.5. Boxes labeled g1–g4 and h are the cropped
and zoomed regions shown in g and h. g, Cropped regions from f showing stages
in cell division. h, Time-lapse orthogonal views of one cell division into three
daughter cells from f. The green dashed lines indicate the orthogonal slice
positions in the xz plane.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

ZarrStitcher: Zarr-based scalable stitching
To image specimens such as organoids, tissues or whole organisms
larger than the field of view of the microscope, it is necessary to stitch
together multiple smaller image tiles. Overlapping regions between
adjacent tiles facilitate precise registration and stitching. With the
combination of high-resolution light sheet and expansion microscopy,
thousands of tiles comprising hundreds of terabytes of data may be
generated. This presents substantial challenges for existing stitching
software, particularly with respect to the large number of tiles, the

overall data size and the need for computational efficiency. To address
these issues, we developed ZarrStitcher, a petabyte-scale framework
for image stitching.

ZarrStitcher involves three primary steps (Fig. 5a): data format
conversion, cross-correlation registration and stitching (fusion). We
first convert tiles into the computationally efficient Zarr format, while
also applying user-defined preprocessing functions such as flat-field
correction and data cropping if necessary. Next, we use the normal-
ized cross-correlation algorithm43 to correct for sample movement

e

a

b c d

g

Large
tiles

MIP
slabs

Registration
+

distance
transform

Small
tiles Stitching

Registration
+

distance
transform

Stitching
Raw Partition with

border bu�er
Deconvolution
and merged

Step 2: large-scale deconvolution Step 3: large-scale deskew/rotationStep 1: large-scale stitching

f

h i

Raw Partition along
y axis

Deskew/rotate
chunks Merged

h

f

i

g

20 µm 5 µm

5 µm 5 µm 5 µm

Large-scale deskew/rotate
run time vs data size

1 10 100 1,000

Data size (TiB)

0.1

1

10

100

1,000

Ru
n

tim
e

(n
od

e
ho

ur
s)

Large-scale deconvolution
run time vs data size

1 10 100 1,000

Data size (TiB)

0.25

1

10

100

1,000

Ru
n

tim
e

(G
PU

 h
ou

rs
)

Large-scale stitch
run time vs data size

1 10 100 1,000

Data size (TiB)

0.25

1

10

100

1,000

Ru
n

tim
e

(n
od

e
ho

ur
s)

Fig. 6 | Large-scale processing. a, Schematic of processing steps for large-scale
stitching, deconvolution and deskew/rotation. For deconvolution, the data are
split into subvolumes in all three axes with an overlap border size of slightly over
half of the PSF size. For deskew and rotation, the data are split along the y axis
with a border of one slice. b, Total run times for large-scale stitching of a single
volume with size ranging from 1 TiB to 1 PiB. c, Total run times for large-scale
deconvolution of a single volume with size ranging from 1 TiB to 1 PiB.

d, Total run times for large-scale deskew and rotation of a single volume
with size ranging from 1 TiB to 1 PiB. Each benchmark in b–d was repeated three
times independently. The resulting standard deviations are smaller than the
data markers in the plots. e, MIP view of the entire fly VNC at 8× expansion.
Cyan indicates VGlutMI04979-LexA::QFAD, and purple indicates MN-GAL4. Intensity
γ = 0.5. f–i, MIP views of cropped regions from e. Intensity γ = 0.75 for all
four regions.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

and stage motion errors and thereby accurately register the relative
positions of adjacent tiles. We then apply a global optimization to infer
the optimal shifts (Fig. 5b) of all tiles collectively. This better manages
potential discrepancies between neighboring tiles than the typical
‘greedy’ local approach (Fig. 5b). For large volumes, data are often col-
lected in multiple batches, each consisting of multiple tiles, sometimes
with differing rectangular grids in each batch. In such cases, we imple-
ment two-step optimization, where global optimization is first applied
to each batch, followed by optimization across batches (Fig. 5b).

The final operation in ZarrStitcher involves stitching the registered
tiles together into a single unified volume. We developed a scalable
distributed architecture to this end, with individual tasks allocated to
different workers for different subregions. The software incorporates
multiple methods to address overlapping regions, including direct
merging, mean, median or feather blending. Feather blending, a type
of weighted averaging with weights determined by distances to the
border, has shown to be particularly effective44.

ZarrStitcher is substantially faster than BigStitcher-Spark (Spark
version of BigStitcher)19 (Supplementary Table 2): in the case of the
108-TiB dataset for the entire mouse brain imaged with 4× expan-
sion using ExA-SPIM (13), ZarrStitcher took 1.4 h using 20 computing
nodes (480 CPU cores) to assemble the complete volume, 14.3 times
faster than BigStitcher-Spark. This is an active research area, with
ongoing development efforts working to close the performance gap
(Supplementary Table 2). Stitching-spark12, another alternative, is not
usable at this scale, due to its use of Tiff files that are limited to 4 GB
in size. ZarrStitcher outperforms BigStitcher-Spark in fusing images
in cases with extensive overlap, minimizing ghost image artifacts
caused by imperfect structure matches in overlapping regions (Sup-
plementary Fig. 2).

By integrating fast readers and writers, combined deskew and
rotation, and ZarrStitcher, we assembled a pipeline with real-time feed-
back during microscopy acquisition that facilitates rapid analysis and
decision-making. In the online processing mode, this pipeline uses the
native coordinates for stitching without global registration. It allows
acquisition errors to be identified mid-stream, so that corrections
can be made (Supplementary Fig. 3a) and helps determine when the
specimen has been fully imaged so the acquisition can be concluded
(Supplementary Fig. 3b). It also enables quick identification of specific
cells or specific events in a large field of view worthy of more detailed
investigation (Fig. 5c–e), such as cell fusion (Extended Data Fig. 7a)
or cell division (Extended Data Fig. 7b and Supplementary Video 1).

We have also coupled our processing pipeline to NVIDIA’s
multi-GPU IndeX platform45 to enable real-time visualization of 4D
petabyte-scale data at full resolution (Supplementary Note 5 and
Supplementary Video 3). This allows us to simultaneously follow the
dynamics of hundreds to thousands of cells (Fig. 5f and Supplemen-
tary Videos 2 and 3), and identify infrequent or rare events such as
normal cell divisions or the division of a cell into three daughter cells
(Fig. 5g,h and Supplementary Videos 2 and 3). Furthermore, it ena-
bles us to explore their 3D high-resolution subcellular structures in
detail over an extended period (Supplementary Videos 2 and 3). The
entire processing and imaging pipeline is applicable to many micro-
scope modalities in addition to light sheet microscopy. These include
high-speed, large field-of-view oblique illumination ‘phase’ imaging
(Fig. 5c–e and Supplementary Video 1), large volume adaptive optical
two-photon microscopy (Extended Data Fig. 8 and Supplementary
Video 4), widefield imaging (Extended Data Fig. 6a,b) and confocal
imaging (Extended Data Fig. 6c,d).

Strategies for large-scale processing
For large datasets consisting of many tiles, it is most efficient to stitch
the tiles in skewed space before deconvolution (Fig. 6a), thereby elimi-
nating duplicated effort in overlapping regions as well as potential edge
artifacts. Deconvolving the stitched volume in skewed coordinates

immediately thereafter is most efficient (Extended Data Fig. 3a),
because the data are more compact than after deskewing. Thus, the
optimal processing sequence is stitching (if necessary), followed by
deconvolution, and finally combined deskew and rotation (Fig. 6a).

When handling datasets that exceed memory capacity, certain
processing steps become challenging. ZarrStitcher already enables
stitching data that exceed memory limitations as long as the interme-
diate steps can be fitted into memory. For stitching with even larger
tiles, we developed a maximum intensity projection (MIP) slab-based
stitching technique (Fig. 6a) where tiles are downsampled by different
factors for different axes (for example, 2× for the xy axes and 100× for
z) to generate MIP slabs that fit into memory. These slabs are used to
calculate registration information and estimate distance-based weights
for feather blending, ensuring accurate stitching of the complete
dataset (Supplementary Fig. 2b–f).

For deskew, rotation and deconvolution, we distributed subvol-
umes of large data among multiple workers for faster processing and
merged the results into the final output (Fig. 6a). Zarr seamlessly ena-
bles this process.

In many imaging scenarios, a substantial amount of data beyond
the boundary of the specimen is empty to ensure complete coverage.
Processing these empty regions is unnecessarily inefficient, particu-
larly for deconvolution (Supplementary Fig. 4a,b,f). We, therefore,
define the boundary based on MIPs across all three axes and skip
the empty regions for large-scale deskew/rotation (Supplementary
Fig. 4c–e) and deconvolution (Supplementary Fig. 4f–h).

With the above techniques, petabyte-scale processing becomes
feasible and efficient. Processing time scales linearly for stitching,
deconvolution and deskew/rotation for data sizes ranging from 1 TiB
to 1 PiB (Fig. 6b–d).

As an example, we processed a 38-TiB image volume of the
Drosophila adult ventral nerve cord (VNC) at 8× expansion (Fig. 6e–i
and Supplementary Video 5). All glutamatergic neurons, which include
all motor neurons, are shown in cyan, and a subset of VNC neurons that
include a small number of these motor neurons is shown in purple.
The ability to image, process and visualize major complete anatomi-
cal regions such as the VNC at nanoscale resolution in multiple colors
at such speeds opens the door to study the stereotypy and variability
of neural circuits at high resolution over long distances, across large
populations, different sexes and multiple species.

Discussion
PetaKit5D achieves real-time processing at the multi-terabyte-per-hour
acquisition rates of modern scientific cameras, for the extended times
and/or large volumes that produce petabyte-scale datasets. It can be
applied to many imaging modalities but includes deskew and rotation
operations specifically useful in light sheet microscopy.

One limitation of the current pipeline is that it only supports rigid
registration to compensate for sample translation, which performs
well in most scenarios. However, it may not be suitable for multi-view
registration or fusion, image tiles with rotation, shrinking, swelling
or warping, which would require nonrigid methods such as elastic
registration46. We anticipate addressing these limitations in future
versions by developing nonlinear registration and multi-view fusion
functionalities for petabyte-scale datasets. While zstd compression in
Zarr is helpful, storing raw and intermediate data for petabyte-scale or
larger datasets may still require hundreds of terabytes to petabytes of
storage. Real-time preprocessing of raw data followed by massive com-
pression during acquisition may be necessary to tackle this challenge.

Notably, our software is at least tenfold more efficient compu-
tationally than existing processing solutions, which can be used to
either increase experimental throughput or decrease the number (and
hence the cost) of computing nodes needed. In the former case, high
throughput could prove useful in obtaining high-quality training data
for deep learning image processing tasks47–49, such as deconvolution50,

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

denoising51 or registration52. In future releases, we aim to support a
broader range of capabilities to extract biologically meaningful insights
from petabyte-scale 4D and 5D datasets, including segmentation, clas-
sification, tracking and image restoration by leveraging machine learn-
ing models. The speed of PetaKit5D is also attractive for combining with
multi-GPU 4D visualization45 to monitor vast image-based biological
experiments in real time, including high-throughput, high-resolution
3D drug screening53, large tissue or whole organism spatial transcrip-
tomics54 or long-term imaging of subcellular dynamics in live multicel-
lular organisms55,56.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02475-4.

References
1. Stelzer, E. H. K. et al. Light sheet fluorescence microscopy. Nat.

Rev. Methods Primers 1, 73 (2021).
2. Holekamp, T. F., Turaga, D. & Holy, T. E. Fast three-dimensional

fluorescence imaging of activity in neural populations by
objective-coupled planar illumination microscopy. Neuron 57,
661–672 (2008).

3. Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J. & Hufnagel,
L. Multiview light-sheet microscope for rapid in toto imaging. Nat.
Methods 9, 730–733 (2012).

4. Wu, Y. et al. Spatially isotropic four-dimensional imaging with
dual-view plane illumination microscopy. Nat. Biotechnol. 31,
1032–1038 (2013).

5. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging
molecules to embryos at high spatiotemporal resolution. Science
346, 1257998 (2014).

6. Dean, K. M., Roudot, P., Welf, E. S., Danuser, G. & Fiolka, R.
Deconvolution-free subcellular imaging with axially swept light
sheet microscopy. Biophys. J. 108, 2807–2815 (2015).

7. Chakraborty, T. et al. Light-sheet microscopy of cleared tissues
with isotropic, subcellular resolution. Nat. Methods 16, 1109–1113
(2019).

8. Dunsby, C. Optically sectioned imaging by oblique plane
microscopy. Opt. Express 16, 20306–20316 (2008).

9. Sapoznik, E. et al. A versatile oblique plane microscope for
large-scale and high-resolution imaging of subcellular dynamics.
Elife 9, e57681 (2020).

10. Yang, B. et al. DaXi—high-resolution, large imaging volume and
multi-view single-objective light-sheet microscopy. Nat. Methods
19, 461–469 (2022).

11. Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy.
Science 347, 543–548 (2015).

12. Gao, R. et al. Cortical column and whole-brain imaging with
molecular contrast and nanoscale resolution. Science 363,
eaau8302 (2019).

13. Glaser, A. et al. Expansion-assisted selective plane illumination
microscopy for nanoscale imaging of centimeter-scale tissues.
eLife https://doi.org/10.7554/eLife.91979.1 (2023).

14. Aguet, F. et al. Membrane dynamics of dividing cells imaged
by lattice light-sheet microscopy. Mol. Biol. Cell 27, 3418–3435
(2016).

15. Lamb, J. R., Ward, E. N. & Kaminski, C. F. Open-source software
package for on-the-fly deskewing and live viewing of volumetric
lightsheet microscopy data. Biomed. Opt. Express 14, 834–845
(2023).

16. Schmid, B. & Huisken, J. Real-time multi-view deconvolution.
Bioinformatics 31, 3398–3400 (2015).

17. Guo, M. et al. Rapid image deconvolution and multiview fusion for
optical microscopy. Nat. Biotechnol. 38, 1337–1346 (2020).

18. Bria, A. & Iannello, G. TeraStitcher—a tool for fast automatic
3D-stitching of teravoxel-sized microscopy images. BMC
Bioinformatics 13, 316 (2012).

19. Hörl, D. et al. BigStitcher: reconstructing high-resolution image
datasets of cleared and expanded samples. Nat. Methods 16,
870–874 (2019).

20. Schmid, B., Schindelin, J., Cardona, A., Longair, M. & Heisenberg, M.
A high-level 3D visualization API for Java and ImageJ. BMC
Bioinformatics 11, 274 (2010).

21. Campagnola, L., Klein, A., Larson, E., Rossant, C. & Rougier, N.
P. VisPy: harnessing the GPU for fast, high-level visualization. in
Proceedings of the 14th Python in Science Conference (2015).

22. Miles, A. et al. zarr-developers/zarr-python: v2.16.1. Zenodo
https://doi.org/10.5281/zenodo.8263439 (2023).

23. Zaharia, M. et al. Apache spark: a unified engine for big data
processing. Commun. ACM 59, 56–65 (2016).

24. Dask Development Team. Dask: library for dynamic task
scheduling. https://www.dask.org/ (2016).

25. Leigh, R. et al. OME Files—an open source reference library for the
OME-XML metadata model and the OME-TIFF file format. Preprint
at bioRxiv https://doi.org/10.1101/088740 (2016).

26. Gohlke, C. cgohlke/tifffile: v2023.7.10. Zenodo https://doi.org/
10.5281/zenodo.8133352 (2023).

27. Dagum, L. & Menon, R. OpenMP: an industry standard API for
shared-memory programming. IEEE Comput. Sci. Eng. 5,
46–55 (1998).

28. Saalfeld, S. et al. saalfeldlab/n5: n5-2.5.1. Zenodo https://doi.org/
10.5281/zenodo.6578232 (2022).

29. Moore, J. et al. OME-Zarr: a cloud-optimized bioimaging file
format with international community support. Histochem. Cell
Biol. 160, 223–251 (2023).

30. TensorStore developers, TensorStore: library for reading and
writing large multi-dimensional arrays, version 0.1.51.
https://github.com/google/tensorstore/ (2023).

31. ZSTD developers, ZSTD: Zstandard—fast real-time compression
algorithm, version 1.5.6. https://github.com/facebook/zstd/.
Accessed 7 July 2024.

32. LZ4 developers, LZ4: extremely fast compression algorithm,
version 1.9.4. https://github.com/lz4/lz4. Accessed 7 July 2024.

33. Schindelin, J. et al. Fiji: an open-source platform for
biological-image analysis. Nat. Methods 9, 676–682 (2012).

34. Maioli, V. A. High-speed 3-D fluorescence imaging by oblique
plane microscopy: multi-well plate-reader development,
biological applications and image analysis, PhD thesis, Imperial
College London, 2017.

35. Haase, R. et al. clEsperanto/pyclesperanto_prototype: 0.24.1.
Zenodo https://doi.org/10.5281/zenodo.7827755 (2023).

36. Djutanta, F. et al. Decoding the hydrodynamic properties of
microscale helical propellers from Brownian fluctuations. Proc.
Natl Acad. Sci. USA 120, e2220033120 (2023).

37. Liu, G. et al. Characterization, comparison, and optimization of
lattice light sheets. Sci. Adv. 9, eade6623 (2023).

38. Richardson, W. H. Bayesian-based iterative method of image
restoration. J. Opt. Soc. Am. 62, 55–59 (1972).

39. Lucy, L. B. An iterative technique for the rectification of observed
distributions. Astron. J. 79, 745–754 (1974).

40. Biggs, D. S. C. & Andrews, M. Acceleration of iterative image
restoration algorithms. Appl. Opt. 36, 1766–1775 (1997).

41. Zeng, G. L. & Gullberg, G. T. Unmatched projector/backprojector
pairs in an iterative reconstruction algorithm. IEEE Trans. Med.
Imaging 19, 548–555 (2000).

42. Koho, S. et al. Fourier ring correlation simplifies image restoration
in fluorescence microscopy. Nat. Commun. 10, 3103 (2019).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02475-4
https://doi.org/10.7554/eLife.91979.1
https://doi.org/10.5281/zenodo.8263439
https://www.dask.org/
https://doi.org/10.1101/088740
https://doi.org/10.5281/zenodo.8133352
https://doi.org/10.5281/zenodo.8133352
https://doi.org/10.5281/zenodo.6578232
https://doi.org/10.5281/zenodo.6578232
https://github.com/google/tensorstore/
https://github.com/google/tensorstore/
https://github.com/facebook/zstd/
https://github.com/lz4/lz4
https://doi.org/10.5281/zenodo.7827755

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

43. Briechle, K. & Hanebeck, U. D. Template matching using fast
normalized cross correlation. in Proceedings of SPIE: Optical
Pattern Recognition XII, Vol. 4387, pp. 95–102 (2001).

44. Szeliski, R. Image alignment and stitching: a tutorial. in
Foundations and Trends in Computer Graphics and Vision 2,
1–104 (2007).

45. NVIDIA IndeX developers. NVIDIA IndeX: 3D scientific data visualization,
version 0.20.2. https://developer.nvidia.com/index/ (2023).

46. Li, J., Wang, Z., Lai, S., Zhai, Y. & Zhang, M. Parallax-tolerant image
stitching based on robust elastic warping. IEEE Trans. Multimedia
20, 1672–1687 (2017).

47. Liu, Z. et al. A survey on applications of deep learning in microscopy
image analysis. Comput. Biol. Med. 134, 104523 (2021).

48. Melanthota, S. K. et al. Deep learning-based image processing in
optical microscopy. Biophys. Rev. 14, 463–481 (2022).

49. Volpe, G. et al. Roadmap on deep learning for microscopy.
Preprint at https://arxiv.org/abs/2303.03793 (2023).

50. Li, Y. et al. Incorporating the image formation process into deep
learning improves network performance. Nat. Methods 19,
1427–1437 (2022).

51. Laine, R. F., Jacquemet, G. & Krull, A. Imaging in focus: an
introduction to denoising bioimages in the era of deep learning.
Int. J. Biochem. Cell Biol. 140, 106077 (2021).

52. Fu, Y. et al. Deep learning in medical image registration: a review.
Physics Med. Biol. 65, 20TR01 (2020).

53. Wang, Y. & Jeon, H. 3D cell cultures toward quantitative
high-throughput drug screening. Trends Pharmacol. Sci. 43,
569–581 (2022).

54. Ståhl, P. L. et al. Visualization and analysis of gene expression
in tissue sections by spatial transcriptomics. Science 353,
78–82 (2016).

55. Liu, T. -L. et al. Observing the cell in its native state: Imaging
subcellular dynamics in multicellular organisms. Science 360,
eaaq1392 (2018).

56. Wan, Y., McDole, K. & Keller, P. J. Light-sheet microscopy and its
potential for understanding developmental processes.
Annu. Rev. Cell Dev. Biol. 35, 655–681 (2019).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturemethods
https://developer.nvidia.com/index/
https://arxiv.org/abs/2303.03793
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Methods
Generic computing framework
Our generic computing framework supports both single machines and
large-scale Slurm-based computing clusters with CPU and/or GPU node
configurations. The conductor job orchestrates the processing after it
receives a collection of function strings (a MATLAB function call or a Bash
command executed by each worker), input file names, output file names
and relevant parameters for job settings, such as required memory,
the number of CPU cores and the system environment. The conductor
job initially checks for the presence of output files, skipping those that
already exist. In single-machine setups or when Slurm job submission is
disabled, the conductor job will sequentially execute tasks. Conversely,
in cluster environments with the Slurm job scheduler, the conductor job
formats and submits Slurm commands based on the function strings and
job parameters, delegating tasks to workers in the cluster. It continuously
monitors these jobs, ensuring the completion of the tasks. If a worker
job fails, the conductor job resubmits it with an increased memory and
CPU resources, often doubling the original specifications, until all tasks
are completed, or a preset maximum retry limit is reached. Additionally,
the framework allows users to define a custom configuration file. This
feature tailors Slurm-related parameters to specific needs, ensuring
adaptability to various user-defined function strings and compatibility
with different Slurm-based computing clusters.

Fast Tiff and Zarr readers and writers
Our Tiff reader/writer leverages the capabilities of the libtiff library in
C++ with the MATLAB MEX interface. When reading, a binary search is
used to determine the number of z-slices by identifying the last valid
slice, as there is no direct way to query the number of z-slices in libtiff.
The OpenMP framework is then used to distribute the reading tasks
across multiple threads, partitioning the z-slices into evenly sized
batches (except for the last one). For large 2D images, the Tiff strips
are partitioned to facilitate multi-threaded reading using the OpenMP
framework. For the Tiff writer, LZW compression from libtiff is adapted
to support compression on individual z-slices. This approach enables
parallel compression across z-slices, leveraging the OpenMP frame-
work for multi-threading. The final compressed data are written to disk
using a single thread because a Tiff file is a single container, making
parallel writing of compressed data infeasible.

As MATLAB lacks a native Zarr reader and writer, we developed
custom C++ code that complies with the Zarr specification (version 2)
with enhanced parallelization. This code is also integrated with MAT-
LAB through the MEX interface. In our implementation, the OpenMP
framework is used for both reading and writing to distribute the tasks
across multiple threads, treating each chunk as a separate task. We
use the compression algorithms from the Blosc library57, which intro-
duces an additional layer of multi-threading, thus optimizing the use
of system resources. Zstd compression with a level 1 setting is used
to achieve an optimal balance of compression ratio and read/write
time. The high compression ratio of zstd substantially reduces the
overall data size, reducing network load, particularly in extensive
high-throughput processing scenarios where the network is often
the primary bottleneck. By default, we read and write Zarr files in the
‘Fortran’ (column-major layout) order because MATLAB is based on
‘Fortran’ order, and converting between ‘C’ (row-major layout) and
‘Fortran’ orders adds additional overhead.

Combined deskew, rotation, resampling and cropping
We execute deskew, rotate and resampling (if needed) in a single step
by combining these geometric transformations. The fundamental
geometric transform involves:

It = FT(I)

where I is the original image, It represents the transformed image,
FT(⋅) denotes the image warp function corresponding to the geometric

transformation matrix T. The deskew operator applies a shear transfor-
mation defined by the shear transformation matrix Sds. In the rotation
process, there are four sub-steps: translating the origin to the image
center, resampling in the z axis to achieve isotropic voxels, rotating
along the y axis, and translating the origin back to the starting index. Let
the transformation matrices be denoted as T1, S, R and T2, respectively.
If resampling factors are provided (by default as 1), then there are three
additional sub-steps in resampling: translating the origin to the image
center, resampling based on the factors provided, and translating the
origin back to the start index. Let the transformation matrices in these
sub-steps be TR1, SR and TR2, respectively.

Traditionally, these three steps are executed independently, result-
ing in multiple geometric transformations. However, this incurs sub-
stantial overhead in run time and memory usage, particularly during
the deskew step. Instead, we combine deskew, rotation and resampling
into one single step, resulting in a unified affine transformation matrix:

A = Sds(T1SRT2)(TR1SRTR2)

This affine transformation matrix can be directly applied to the raw
image if the scan step size is sufficiently small. A quantity, denoted as
‘skew factor’, is defined to describe the relative step size as

fsk = dz cosθ/px

where θ ∈ (−π/2, π/2] is the skewed angle, dz denotes the scan step size,
and px is the pixel size in the xy plane. If fsk ≤ 2, the direct combined
processing operates smoothly without noticeable artifacts. For fsk > 2,
interpolation of the raw data within the skewed space is performed
before deskew and rotation, taking account of the proper relative posi-
tions of slices. Neighboring slices above and below are utilized to
interpolate a z-slice. Let ws and wt = 1 − ws represent the normalized
distances (ranging from 0 to 1) along the z axis between the neighboring
slices and the target z-slice. In the interpolation, we first create two
planes aligned with the correct voxel positions of the target z-slice by
displacing the neighboring slices with a specific distance in the x direc-
tion (wsdz cosθ and wtdz cosθ, respectively). Following this, the target
z-slice is obtained by linearly interpolating these two planes along the
z axis with weights 1 − ws and 1 − wt. Because the image warp function
permits the specification of the output view, we have also incorporated
a cropping feature by providing a bounding box that allows us to skip
empty regions or capture specific regions.

For combined deskew and rotation without resampling, the trans-
formation simplifies to a 2D operation in the xz plane. We optimized this
scenario using SIMD (single instruction, multiple data) programming
in C++. Our implementation directly supports uint16 input and output
for both skewed space interpolation and deskew/rotation functions,
while utilizing single-precision floating-point for intermediate steps.
This improves throughput and reduces memory usage.

In acquisition modes where the deskew operation is unnecessary
(for example, objective scan mode of LLSM), the above processing
can still be applied, provided Sds is replaced with the identity matrix.

Deconvolution
RL deconvolution has the form ofwhere I is the raw data, f is the
forward projector (that is, the PSF), b is the backward projector and bT
is the transpose of b, ⊛ denotes the convolution operator and x(k) is the
deconvolution result in k-th iteration. In traditional RL deconvolution,
b = f. In the OMW method we use, the backward projector is generated
with these steps:

1. The OTF H of the PSF f is computed, H = ℱ(f), where ℱ(⋅)
represents the Fourier transform.

2. The OTF mask for the OTF support is segmented by applying a
threshold to the amplitude |H|. The threshold value is deter-
mined by a specified percentile (90% by default) of the
accumulated sum of sorted values in |H| from high to low.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

3. The OTF mask undergoes a smoothing process, retaining
only the central object, followed by convex hull filling. For
deskewed space deconvolution, the three major components
are kept after object smoothing and concatenated into a uni-
fied object along the z axis, followed by convex hull filling.

4. The distance matrix D is computed with the image center as 0,
and the edge of the support as 1 with the ray distance from the
center to the border of the whole image.

5. The distance matrix D is used to calculate the weight matrix W
with the Hann window function for apodization, as expressed
by the following formula:

w(x) =
⎧⎪
⎨⎪
⎩

1 x ≤ l

cos2 (π(x−l)
2(u−l)

) l < x ≤ u

0 x > u

Where l and u are the lower and upper bounds for the relative dis-
tances. By default, l = 0.8 and u = 1 (edge of the support). For skewed
space deconvolution, the weight matrix is given as a single distance
matrix by adding the distance matrix from the corresponding three
components together.

6. Calculate Wiener filter F = H∗

|H|2+α
, where α is the Wiener

parameter, and H* denotes the conjugate transpose of H.
7. The backward projection in the Fourier space is expressed as

B = W ⊙ F, where ⊙ denotes the Hadamard product operator
(element-wise multiplication), and the backward projector in
the real space is b = ℱ−1(B), where ℱ−1(⋅) represents the inverse
Fourier transform.

The FSC method42 is used to determine the optimal number of
traditional RL iterations and the optimal Wiener parameter in the OMW
method. Here, the central portion of the volume, which is consistent
in size across all three axes and covers sufficient content (for exam-
ple, 202 × 202 × 202 for a volume with size 230 × 210 × 202), is used to
compute the relative resolution. By default, the FSC is calculated with
a radius of ten pixels and an angle interval of π/12. Cutoff frequencies
for relative resolution are determined using one-bit thresholding58 by
default, or can be user-defined. The relative resolution across iterations
(or different Wiener parameters) is plotted. In ref. 37, it was determined
that a slightly higher threshold produced better results (Supplemen-
tary Fig. 1a). In practice, the optimal number of RL iterations or the
Wiener parameter is defined by the value closest to 1.01 times the
minimum of the curve beyond the point where the curve reaches its
minimum value.

Stitching
The stitching process requires a CSV meta-file documenting file names
and corresponding coordinates. The pipeline consists of three steps:
Tiff to Zarr conversion (or preprocessing), cross-correlation regis-
tration, and parallel block stitching (fusion). The overall stitching
workflow is governed by a conductor job in the generic computing
framework. For Tiff to Zarr conversion and/or processing on indi-
vidual tiles, the conductor job distributes tasks to individual worker
jobs, assigning one worker for each tile. Each worker: (a) reads its data
using the Cpp-Tiff or Cpp-Zarr (if existing Zarr data need rechunking or
preprocessing) reader depending on the format; (b) performs optional
processing such as flipping, cropping, flat-field correction, edge ero-
sion or other user-defined operations; and (c) writes the processed
data using the Cpp-Zarr writer.

Following file conversion, stitching can be executed directly
using the input tile coordinates, or normalized cross-correlation reg-
istration43 can be used first to refine and optimize the coordinates
before stitching. In the registration, the conductor job utilizes coor-
dinate information and tile indices to establish tile grids and identify

neighboring tiles with overlaps. Cross-correlation registration is per-
formed for overlapping tiles that are direct neighbors, defined as
those whose tile indices differ by 1, and only in one axis. To optimize
computing time and memory usage, only the overlapping regions for
the tiles are loaded, including a buffer size determined by the maxi-
mum allowed shifts along the xyz axes within one tile. We can also
downsample the overlapping data to achieve faster cross-correlation
computing. The optimal shift between the two tiles is identified as the
one exhibiting the maximum correlation within the allowable shift lim-
its. We include a feature to exclude shifts for pairs with the maximum
correlation values below a user-defined threshold. After completing
the cross-correlation computation for all pairs of direct neighbor
tiles, we determine the shifts for all tiles using either a local or a global
method. The local approach is based on the concept of the minimum
spanning tree, where the pairs of overlapping tiles are pruned to form
a tree based on the correlation values from high to low, followed by
registration with the pairwise optimal shifts. In the global approach,
the optimal final shifts are calculated from the pairwise relative shifts
through a nonlinear constrained optimization process:

min
x

∑
i, j

wij ∥ xi − x j − dij∥
2
2

s.t. l < xi − x j < u

where xshift = {x1, …, xn} are the final shifts for the tiles, dij is the pairwise
relative shift between tile i and j and wij is the weight between tile i and
j based on the squares of maximum cross-correlation values. l and
u are the lower and upper bounds for the maximum allowable shift,
respectively. The goal is to position all tiles at optimal coordinates
by minimizing the weighted sum of the squared differences between
their distances and the pairwise relative shifts while adhering to the
specified maximum allowable shifts.

For images collected by subregions (batches) that have different
tile grids, we use the global method for tiles within each subregion. Sub-
sequently, the subregions are treated as super nodes, and a nonlinear
constrained optimization is applied to those nodes, by minimizing the
sum of squared differences of the centroid distances to the averaged
shift distances.

min
x

∑
i, j
∥ xri − xrj − dr,ij∥

2
2

s.t. lr < xri − xrj < ur

where xri and xrj are the centroid coordinates for subregions i and j, and
lr and ur are lower and upper bounds for the maximum allowable shifts
across subregions, respectively. The averaged shift distance, denoted
as dr,ij, is determined by a weighted average of the absolute shifts across
subregions, which is expressed as:

dr,ij =
∑m∈Si ,n∈S j

wmndmn

∑m∈Si ,n∈S j
wmn

where wmn is the cross-correlation value at the optimal shift between
tiles m ∈ Si, and n ∈ Sj, and Sk denotes the set of tiles in subregion k.
Once the optimal shifts for the subregions are obtained, the last step
is to reconstruct the optimal shifts for the tiles within each subregion
by applying the optimal shifts of the centroid of the subregion to the
coordinates of the tiles in it. The final optimal shifts are then applied
to the tile coordinates to determine their final positions.

After registration, the conductor job determines the final stitched
image size and the specific locations to place the tiles. To facilitate
parallel stitching, the process is executed region by region in a nono-
verlapping manner. These regions are saved directly as one or more

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

distinct chunk files in Zarr format. For each region, information about
the tiles therein and their corresponding bounding boxes are stored.
The conductor job submits stitching tasks to worker jobs. If the region
comes from one tile, the data for the region are saved directly. If the
region spans multiple tiles, these must be merged into a single cohesive
region. For the overlap regions, several blending options are available:
‘none’, ‘mean’, ‘median’, ‘max’ and ‘feather’. For the ‘none’ option, half of
the overlap region is taken from each tile. For the ‘mean’, ‘median’ and
‘max’ options, the voxel values in the stitched region are calculated as
the mean, median and maximum values from the corresponding voxels
in the overlapping regions, respectively. Feather blending involves
calculating the weighted average across the tiles44. The weights are the
power of the distance transform of the tiles as follows:

wi,m = dα
i,m/ (d

α
i,m + dα

j,n) and w j,n = dα
j,n/ (d

α
i,m + dα

j,n)

Is,l = wi,mIi,m +w j,nI j,n

where di,m and dj,n are distance transforms for voxel m in tile i and voxel
n in tile j, α is the order (10 by default), Ii and Ij are the intensities for tiles
i and j, and Is is the intensity for the stitched image s. Here we assume
voxel m in tile i and voxel n in tile j are fused to voxel l in the stitched
image. For the distance transform, we utilize a weighted approach,
applying the distance transform to each z-slice and then applying
the Tukey window function across z-slices to address the anisotropic
properties of voxel sizes. When all tiles are the same size, we compute
the weight matrix for a single tile and apply it across all other tiles in
the stitching process to save computing time. The final stitched image
is obtained once all the subvolumes are processed.

Large-scale processing
For stitching involving large tiles where intermediate steps above
exceed memory capacities, including large, stitched subregions, chal-
lenges arise in the registration and calculation of the distance transfor-
mation for feather blending, due to the need to load large regions or
tiles into memory. In such cases, we use MIP slabs for the registration
and distance transform. These are computed across all three axes with
downsampling factors [Mx, My, Mz, mx, my, mz]. The MIP slab for each spe-
cific axis is computed using the major downsampling factor Mi for that
axis, and the minor downsampling factors mj and mk for the other two.
To enrich the signal for cross-correlation in sparse specimens, we use
maximum pooling, that is, taking the max value in the neighborhood
for the downsampling. Alternatively, we can also smooth the initial data
by linear interpolation before maximum pooling. For the registration,
normalized cross-correlation is calculated between direct neighbor
tiles using all three MIP slabs, generating three sets of optimal shifts.
The optimal shifts from the minor axes are then averaged to obtain the
final optimal shifts, with weights assigned based on the squares of the
cross-correlation values. For the distance transform, only the MIP slab
along the z axis (major axis) is used to compute the weights for feather
blending. In the stitching process, for overlapping regions, the down-
sampled weight regions are upsampled using linear interpolation to
match the size of the regions in the stitching. The upsampled weights
are then utilized for feather blending, following the same approach as
that used for stitching with smaller tiles.

For large-scale deskew and rotation, tasks are divided across the
y axis based on the size in the x and z axes, with a buffer of one or two
pixels on both sides in the y axis. These tasks are then allocated to
individual worker jobs for processing, with the results saved as inde-
pendent Zarr regions on disk. MIP masks can be used to define a tight
boundary for the object to optimize efficiency in data reading, pro-
cessing and writing. We also perform deskewing and rotation for the
MIP along the y axis to define the bounding box for the output in the
xz axes. The geometric transformation function directly relies on this

bounding box to determine the output view to minimize the empty
regions, thereby further optimizing processing time, memory and
storage requirements.

For large-scale deconvolution, tasks are distributed across all three
axes, ensuring that regions occupy entire chunk files. An additional
buffer size, set to at least half of the PSF size (plus some extra size, 10
by default), is included to eliminate edge artifacts. MIP masks are again
used to define a tight specimen boundary to speed computing. In a
given task, all three MIP masks for the region are loaded and checked
for empty ones. If a mask is empty, deconvolution is skipped, resulting
in an output of zeros for that region.

Image processing and simulations
All images were processed using PetaKit5D. Flat-field correction was
applied for the large field-of-view cell data (Fig. 5f–h), phase contrast
data (Fig. 5c–e) and VNC data (Fig. 6e–j) with either experimentally
collected flat-fields or ones estimated based on the data using BaSiC
software59.

The images used to benchmark different readers and writ-
ers, deskew/rotation and deconvolution algorithms were gener-
ated by cropping or replicating frames from a uint16 image of size
512 × 1,800 × 3,400. The stripped line patterns used to compare decon-
volution methods were simulated using the methodology outlined in
ref. 37. The confocal PSF for the given pinhole size used in the stripped
line pattern simulation was generated based on the theoretical wide-
field PSF. We benchmarked large-scale stitching from 1 TiB to 1 PiB
using one channel of the VNC dataset with 1,071 tiles, each sized at
320 × 1,800 × 17,001. The datasets were created by either including
specific numbers of tiles or replicating tiles across all three axes based
on the total data size from 1 TiB to 1 PiB, as specified in Supplementary
Table 4. We benchmarked large-scale deconvolution and deskew/rota-
tion using the stitched VNC dataset (15,612 × 28,478 × 21,299, uint16)
by either cropping or replicating the data in all three axes to generate
the input datasets, as indicated in Supplementary Table 4.

Computing infrastructures
Our computing cluster has 38 CPU/GPU computing nodes: 30 CPU
nodes (24 nodes with dual Intel Xeon Gold 6146 CPUs, 6 nodes with
dual Intel Xeon Gold 6342 CPUs) and 8 GPU nodes (3 nodes with dual
Intel Xeon Silver 4210R and 4 NVIDIA Titan V GPUs each, 4 nodes with
dual Intel Xeon Gold 6144 and 4 NVIDIA A100 GPUs each, and 1 NVIDIA
DGX A100 with dual AMD EPYC 7742 CPUs and 8 NVIDIA A100 GPUs).
The Intel Xeon Gold 6146 CPU and GPU nodes have 512 GB RAM on each
node, the Intel Xeon Gold 6342 CPU nodes have 1,024 GB RAM on each
node, and the NVIDIA DGX A100 has 2 TB RAM. The hyperthreading
on all Intel CPUs was disabled. Benchmarks were performed on hard-
ware aged approximately 3 to 4 years. We have four flash data servers,
including a 70 TB (SSD, Supermicro), two 300 TB (NVMe, Supermicro)
and a 1,000 TB parallel file system (VAST Data). We also accessed the
Perlmutter supercomputer from the National Energy Research Scien-
tific Computing Center (NERSC), with both CPU and GPU nodes. Each
CPU node is equipped with two AMD EPYC 7713 CPUs and 512 GB RAM;
each GPU node has a single AMD EPYC 7713 CPU, four NVIDIA A100
GPUs and 256 or 512 GB RAM.

Microscope hardware
Light sheet imaging was performed on a lattice light sheet micro-
scope comparable to a published system55. Two lasers, 488 nm and
560 nm (500 mW, MPB Communications 2RU-VFL-P-500-488-B1R,
and 2RU-VFL-P-1000-560-B1R), were used as the light sources. Water
immersion excitation (EO, Thorlabs TL20X-MPL) and detection objec-
tives (DO, Zeiss, ×20, 1.0 NA, 1.8 mm FWD, 421452-9800-000) were
used for imaging with a sCMOS camera (Hamamatsu ORCA Fusion).
The oblique illumination microscopy was also performed on the
modified lattice light sheet microscope using a 642-nm laser

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

illuminated through the EO, and imaged using an inverted DO (Zeiss,
×20, 1.0 NA, 1.8 mm FWD, 421452-9880-000). Widefield and confo-
cal imaging were performed on an Andor BC43 Benchtop Confocal
Microscope (Oxford Instruments) with a Nikon Plan Apo ×40, 1.25 NA
SIL Silicone objective (Nikon, MRD73400), a 488-nm laser (Oxford
Instruments, Andor Borealis) and a modified Andor Zyla sCMOS camera
(Oxford Instruments, 4.1 MP, 6.5-μm pixel size). Two-photon micros-
copy was performed on a custom-built microscope equipped with
an upright DO (Zeiss, ×20, 1.0 NA, 1.8-mm FWD, 421452-9880-000),
pulsed laser (Coherent, Chameleon LS), deformable mirror (ALPAO,
DM69) and MPPC modules (Hamamatsu, C13366-3050GA and C14455-
3050GA). The imaging conditions for the datasets can be found in
Supplementary Table 5.

Cell culture and imaging
Pig kidney epithelial cells (LLC-PK1, a gift from M. Davidson at Florida
State University) cells and HeLa cells were cultured in DMEM with Glu-
taMAX (Gibco, 10566016) supplemented with 10% FBS (Seradigm) in an
incubator with 5% CO2 at 37 °C and 100% humidity. LLC-PK1 cells stably
expressing the endoplasmic reticulum marker mEmerald-Calnexin
and the chromosome marker mCherry-H2B were grown on cover-
slips (Thorlabs, CG15XH) coated with 200-nm diameter fluorescent
beads (Invitrogen FluoSpheres Carboxylate-Modified Microspheres,
505/515 nm, F8811). When cells reached 30–80% confluency, they were
imaged at 37 °C in Leibovitz’s L-15 Medium without Phenol Red (Gibco
catalog, 21-083-027), with 5% FBS (ATCC SCRR-30- 2020) and an antibi-
otic cocktail consisting of 0.1% ampicillin (Thermo Fisher, 611770250),
0.1% kanamycin (Thermo Fisher, 11815024) and 0.1% penicillin–strep-
tomycin (Thermo Fisher, 15070063). HeLa cells were cultivated on
25-mm coverslips until approximately 50% confluency was achieved.
They were imaged in the same media as above.

Mouse brain sample preparation and imaging
All mouse experiments were conducted at Janelia Research Campus,
Howard Hughes Medical Institute (HHMI) in accordance with the US
National Institutes of Health Guide for the Care and Use of Laboratory
Animals. Procedures and protocols were approved by the Institutional
Animal Care and Use Committee of the Janelia Research Campus, HHMI.
Mice were housed in a specific pathogen-free condition on individually
ventilated racks with 100% outside filtered air in the holding room.
They were maintained on a 12–12-h light–dark cycle at 20–22 °C with
30–70% relative humidity.

Transgenic Thy1-YFP-H mice (The Jackson Laboratory) of 8 weeks
or older with cytosolic expression of yellow fluorescent protein (YFP)
at high levels in motor, sensory and subsets of central nervous system
neurons were anesthetized with isoflurane (1–2% by volume in oxygen)
and placed on a heated blanket. An incision was made on the scalp fol-
lowed by removing of the exposed skull. A cranial window made of a
single 170-μm-thick coverslip was embedded in the craniotomy. The
cranial window and a headbar were sealed in place with dental cement
for subsequent imaging. A direct wavefront sensing method60 was used
for adaptive optical correction before image acquisition. Aberrations
at each volumetric tile were independently measured and corrected
using a pupil conjugated deformable mirror, and imaged at 16 Hz using
Hamamatsu MPPC modules.

Fly VNC sample preparation and imaging
A genetically modified strain of fruit flies (Drosophila melanogaster)
was raised on a standard cornmeal-agar-based medium in a con-
trolled environment of 25 °C on a 12–12-h light–dark cycle. On
the day of eclosion, female flies were collected and group housed
for 4–6 days. The genotype was VGlutMI04979-LexA:QFAD/MN-GAL4
(attp40); 13XLexAop-Syn21-mScarle [JK65C], 20XUAS-Syn21-GFP
[attp2]/MN-GAL4 [attp2]61,62. Dissection and immunohistochemistry
of the fly VNC were performed following the protocol in ref. 63 with

minor modifications. The primary antibodies were chicken anti-GFP
(1:1,000 dilution; Abcam, ab13970) and rabbit anti-dsRed (1:1,000
dilution; Takara Bio, 632496). The secondary antibodies were goat
anti-chicken IgY Alexa Fluor 488 (1:500 dilution; Invitrogen, A11039)
and goat anti-rabbit IgG Alexa Fluor 568 (1:500 dilution; Invitrogen,
A11011). VNC samples were prepared for 8× expansion as described in
ref. 63. The imaging protocol for the expanded VNC sample was identi-
cal to that described in ref. 12.

Visualization and software
Lattice light sheet images were acquired with LabView (National
Instruments) software. Videos were made with Imaris (Oxford Instru-
ments), Fiji33, Amira (Fisher Scientific), NVIDIA IndeX (NVIDIA) and
MATLAB R2023a (MathWorks) software. Figures were made with MAT-
LAB R2023a (MathWorks). Python (3.8.8) with Zarr-Python (2.16.1),
tifffile (2023.7.10), TensorStore (0.1.45), pyclesperanto-prototype
(0.24.2), qi2lab-OPM (a734490) and clij2-fft (0.26) libraries were used
for benchmarking image readers and writers, deskew and rotation and
deconvolution. The traditional RL deconvolution method is an acceler-
ated version of the original RL algorithm40,64. It was implemented and
adapted from MATLAB’s ‘deconvlucy.m’ with enhancements such as
GPU computing and customized parameters. Backward projectors for
the WB deconvolution method were generated using the code from
https://github.com/eguomin/regDeconProject/. Spark versions of
BigStitcher (https://github.com/JaneliaSciComp/BigStitcher-Spark/)
and https://github.com/saalfeldlab/stitching-spark/ were used
for the stitching comparison. NVIDIA IndeX can be obtained from
https://developer.nvidia.com/index/ with a free license for noncom-
mercial research and education.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full datasets for this manuscript exceed the size limits of any data
repository, but they will be shared upon reasonable request. The
representative subsets of the full datasets can be downloaded from
https://doi.org/10.5061/dryad.kh18932g4 (time-lapse live cell imaging
data, two-photon live mouse brain imaging data, oblique illumination
’phase’ imaging of HeLa cells, widefield and confocal imaging data)65
and https://doi.org/10.5061/dryad.jq2bvq8jd (VNC data)66. The cell
data for deconvolution comparison for light sheet microscopy data are
from ref. 37, and can be accessed from https://doi.org/10.6078/D1VT6K,
https://doi.org/10.6078/D1MB09 and https://doi.org/10.6078/
D1GM7G. The stitching comparison dataset (ExA-SPIM) is from ref. 13
and can be accessed from s3://aind-open-data/exaSPIM 615296 2022-
09-28 11-47-06 using AWS CLI (https://github.com/aws/aws-cli/). AWS
CLI, users can use the following command: aws s3 cp –no-sign-request
s3://aind-open-data/exaSPIM_615296_2022-09-28_11-47-06/ /local/
path/to/destination –recursive, or following the instructions at
https://allenneuraldynamics.github.io/data.html.

Code availability
The source code of the software is available at https://github.com/
abcucberkeley/PetaKit5D/. The version associated with this manuscript
is available on Zenodo (https://doi.org/10.5281/zenodo.13686337)67.
We also provide a Python version for the wrapper of the deployed ver-
sion of PetaKit5D at https://github.com/abcucberkeley/PyPetaKit5D/.
The GUI for the software can be downloaded from https://github.com/
abcucberkeley/PetaKit5D-GUI/. The Parallel Fiji Visualizer plugin can
be accessed from GitHub (https://github.com/abcucberkeley/Parallel_
Fiji_Visualizer/) or Zenodo (https://doi.org/10.5281/zenodo.7613228)68.
The code for replicating the benchmark results is available on Zenodo
(https://doi.org/10.5281/zenodo.13690716)69. The NVIDIA IndeX

http://www.nature.com/naturemethods
https://github.com/eguomin/regDeconProject
https://github.com/JaneliaSciComp/BigStitcher-Spark
https://github.com/saalfeldlab/stitching-spark/
https://developer.nvidia.com/index/
https://developer.nvidia.com/index/
https://doi.org/10.5061/dryad.kh18932g4
https://doi.org/10.5061/dryad.kh18932g4
https://doi.org/10.5061/dryad.jq2bvq8jd
https://doi.org/10.6078/D1VT6K
https://doi.org/10.6078/D1MB09
https://doi.org/10.6078/D1GM7G
https://doi.org/10.6078/D1GM7G
https://github.com/aws/aws-cli
https://allenneuraldynamics.github.io/data.html
https://allenneuraldynamics.github.io/data.html
https://github.com/abcucberkeley/PetaKit5D
https://github.com/abcucberkeley/PetaKit5D
https://doi.org/10.5281/zenodo.13686337
https://github.com/abcucberkeley/PyPetaKit5D
https://github.com/abcucberkeley/PetaKit5D-GUI
https://github.com/abcucberkeley/PetaKit5D-GUI
https://github.com/abcucberkeley/Parallel_Fiji_Visualizer
https://github.com/abcucberkeley/Parallel_Fiji_Visualizer
https://doi.org/10.5281/zenodo.7613228
https://doi.org/10.5281/zenodo.13690716

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

software can be acquired by following the instructions in Supple-
mentary Note 5. Example code and data for data format conversion
and visualization are available on Zenodo (https://doi.org/10.5281/
zenodo.12539579)70.

References
57. Blosc Development Team. Blosc: a blocking, shuffling and

lossless compression library, version 1.21.5. https://github.com/
Blosc/c-blosc/. Accessed 26 December 2023.

58. van Heel, M. & Schatz, M. Fourier shell correlation threshold
criteria. J. Struct. Biol. 151, 250–262 (2005).

59. Peng, T. et al. A BaSiC tool for background and shading correction
of optical microscopy images. Nat. Commun. 8, 14836 (2017).

60. Wang, K. et al. Rapid adaptive optical recovery of optimal
resolution over large volumes. Nat. Methods 11, 625–628 (2014).

61. Diao, F. et al. Plug-and-play genetic access to Drosophila cell
types using exchangeable exon cassettes. Cell Rep. 10, 1410–1421
(2015).

62. Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational
enhancers to increase transgene expression in Drosophila. Proc.
Natl Acad. Sci. USA 109, 6626–6631 (2012).

63. Lillvis, J. L. et al. Rapid reconstruction of neural circuits using
tissue expansion and light sheet microscopy. Elife 11, e81248
(2022).

64. Hanisch, R. J., White, R. L. & Gilliland, R. L. Deconvolution of
Hubble Space Telescope images and spectra. in Deconvolution of
Images and Spectra, Vol. 2 (ed Jansson, P. A.) 310–360 (Academic
Press, 1997).

65. Ruan, X. et al. Data for: Image processing tools for petabyte-scale
light sheet microscopy data (part 1/2). Dryad https://doi.org/
10.5061/dryad.kh18932g4 (2024).

66. Ruan, X. et al. Data for: Image processing tools for petabyte-scale
light sheet microscopy data (part 2/2). Dryad https://doi.org/
10.5061/dryad.jq2bvq8jd (2024).

67. Ruan, X., Mueller, M., Betzig, E., & Upadhyayula, S.
abcucberkeley/PetaKit5D: v1.2.0. Zenodo https://doi.org/10.5281/
zenodo.13686337 (2024).

68. Mueller, M., Ruan, X., Betzig, E., & Upadhyayula, S. abcucberkeley/
Parallel_Fiji_Visualizer: v1.2.1. Zenodo https://doi.org/10.5281/
zenodo.11516647 (2024).

69. Ruan, X., Mueller, M., Betzig, E. & Upadhyayula, S. Benchmark
code for the paper "image processing tools for petabyte-scale
light sheet microscopy data". Zenodo https://doi.org/10.5281/
zenodo.13690716 (2024).

70. Ruan, X. et al. Example code and data for visualizing 3D
time-series microscopy data with Nvidia IndeX. Zenodo
https://doi.org/10.5281/zenodo.12539580 (2024).

Acknowledgements
We thank L. He for providing access to the confocal microscope. We
thank J. Lefman and the NVIDIA IndeX team for sharing the NVIDIA
IndeX software. We thank J. White for managing our computing
cluster. We gratefully acknowledge the support of this work by the
Laboratory Directed Research and Development (LDRD) Program
of Lawrence Berkeley National Laboratory under US Department
of Energy contract No. DE-AC02-05CH11231. This research used
resources of the National Energy Research Scientific Computing
Center, a US Department of Energy Office of Science User Facility
located at Lawrence Berkeley National Laboratory, operated
under contract no. DE-AC02-05CH11231 using NERSC awards
DDR-ERCAP0025501 and DDR-ERCAP0029442. X.R., G.L., F.G., J.L.H.

and S.U. are partially funded by the Philomathia Foundation (awarded
to E.B. and S.U.). X.R. and G.L. are partially funded by the Chan
Zuckerberg Initiative (awarded to S.U.). X.R. and S.U. are supported by
Lawrence Berkeley National Laboratory’s LDRD program 7647437 and
7721359 (awarded to S.U.). M.M., T.-M.F., D.M., J.L.L. and E.B. are funded
by HHMI (awarded to E.B.). F.G. is partially funded by the Feodor Lynen
Research Fellowship, Humboldt Foundation. J.G.C. is funded by the
California Institute for Regenerative Medicine (CIRM) Predoctoral
Training Program no. EDUC4-12790. E.B. is an HHMI Investigator. S.U.
is funded by the Chan Zuckerberg Initiative Imaging Scientist program
2019-198142 and 2021-244163. S.U. is a Chan Zuckerberg Biohub –
San Francisco Investigator.

Author contributions
E.B. and S.U. supervised the project. X.R. wrote the manuscript
with input from all co-authors. E.B. and S.U. edited the manuscript.
X.R. designed the algorithms and implemented the software. M.M.
implemented the fast image readers and writers, the Parallel Fiji
Visualizer plugin, the Imaris file converter and the Python wrappers
under X.R.’s guidance. M.M. designed and developed the GUIs, and
C.Y.A.H. contributed to the implementation. J.L.L. prepared the VNC
sample and G.L. performed the imaging experiments. W.H. and A.N.K.
prepared the cultured LLC-PK1 cells and F.G. performed the live cell
imaging experiment. T.-M.F. performed the imaging experiments for
the live mouse brain imaging and phase imaging of HeLa cells. D.M.
developed the microscope software for the imaging experiments. A.K.
and M.N. helped set up the workflows for the real-time visualization
video using NVIDIA IndeX. J.L.H. prepared the sample and J.G.C.
performed the widefield and confocal imaging experiments for the
LLC-PK1 cells. X.R. performed all image processing and analysis and
made the figures. X.R. and M.M. made all videos with S.U.’s input.

Competing interests
A.K. and M.N. are employees of NVIDIA. The use of the NVIDIA IndeX
software platform can be licensed free of charge for educational and
noncommercial research. The scientists and engineers at NVIDIA align
the development of the NVIDIA IndeX solution to the requirements in
various fields of scientific visualization including those that arise from
the needs of the Advanced Bioimaging Center at the University of
California, Berkeley. The other authors declare no competing
interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-024-02475-4.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-024-02475-4.

Correspondence and requests for materials should be addressed to
Xiongtao Ruan, Eric Betzig or Srigokul Upadhyayula.

Peer review information Nature Methods thanks Nicolas Renier
and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. Primary Handling Editor: Rita Strack, in
collaboration with the Nature Methods team. Peer reviewer reports are
available.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://doi.org/10.5281/zenodo.12539579
https://doi.org/10.5281/zenodo.12539579
https://github.com/Blosc/c-blosc/
https://github.com/Blosc/c-blosc/
https://doi.org/10.5061/dryad.kh18932g4
https://doi.org/10.5061/dryad.kh18932g4
https://doi.org/10.5061/dryad.jq2bvq8jd
https://doi.org/10.5061/dryad.jq2bvq8jd
https://doi.org/10.5281/zenodo.13686337
https://doi.org/10.5281/zenodo.13686337
https://doi.org/10.5281/zenodo.11516647
https://doi.org/10.5281/zenodo.11516647
https://doi.org/10.5281/zenodo.13690716
https://doi.org/10.5281/zenodo.13690716
https://doi.org/10.5281/zenodo.12539580
https://doi.org/10.5281/zenodo.12539580
https://doi.org/10.1038/s41592-024-02475-4
https://doi.org/10.1038/s41592-024-02475-4
https://doi.org/10.1038/s41592-024-02475-4
https://doi.org/10.1038/s41592-024-02475-4
http://www.nature.com/reprints

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 1 | See next page for caption.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 1 | Additional benchmarks for Tiff and Zarr readers
and writers. a–b, run times of Tiff readers and writers for libtiff (MATLAB),
tifffile (Python), and Cpp-Tiff versus the number of frames. c–d, run times
of Zarr readers and writers, comparing the MATLAB interface of Zarr, native
Zarr (Python), and Cpp-Zarr across different numbers of frames. In panels
a-d, all images are in unit16 format with a frame size of 512 × 1,800 (xy), and the
benchmark results are the absolute run times for Fig. 2. e–f, run times of Tiff
readers and writers for libtiff (MATLAB) and Cpp-Tiff versus the number of
CPU cores for a unit16 image stack of size 512 × 1,800 × 20,000. g–h, run times

of Zarr readers and writers for the MATLAB interface of Zarr, and Cpp-Zarr
versus the number of CPU cores for a unit16 image stack of size 512 × 1,800 ×
20,000. i–k, data size and read/write times versus compression level for lz4
and zstd compressors for a uint16 image stack of size 512 × 1,800 × 30,000. The
benchmarks were run ten times independently on a 24-core CPU computing node
(dual Intel Xeon Gold 6146 CPUs). All 24 cores were allocated for panels a–d and
i–k, and varying numbers of CPU cores were allocated for panels e–h. Data are
shown as mean ± s.d. in panels a–h and j–k.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 2 | Additional benchmarks for deskew and rotation.
a, sequential deskew/rotation for an image stack with a step size 0.6 μm between
planes. b–c, combined deskew/rotation and interpolation plus combined
deskew/rotation for the same image as in panel a. d, orthogonal views of
combined deskew/rotation for the image in Fig. 3b. e, Difference map between
sequential and combined deskew/rotation for the images in Fig. 3b and panel d.
f–h, benchmarks of sequential, combined, and interpolated combined deskew/
rotation versus the number of frames, for run time (f), memory usage (g), and
overall run time including reading and writing (h). The benchmark results show
the absolute run times and memory usages for Fig. 3f–h. In groups with larger
frame numbers, some benchmarks (especially for the sequential method) failed

due to out-of-memory issues and are not shown in the bar charts. i, benchmarks
of the combined deskew/rotation methods implemented in pyclesperanto using
both CPU (‘Cle’) and GPU (‘Cle (GPU)’), qi2lab-OPM (‘OPM’), and our combined
interpolated approach (‘Combined’). Results are normalized to the mean run
times of the qi2lab-OPM method. The method in pyclesperanto failed for images
with 1,500 or more frames. All benchmarks were performed with 32-bit float
output. We also included results from our method with uint16 output (‘Combined
(16bit)’). For panels f–i, all images have a uint16 frame size of 512 × 1,800 (xy). Each
benchmark was run independently ten times on a 24-core CPU computing node
(dual Intel Xeon Gold 6146 CPUs), except for ‘Cle (GPU)’ which was run on a GPU
node with 80 GB A100 GPUs. Data are shown as mean ± s.d. in panels f–i.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 3 | Comparison of deconvolution methods for different
light sheets. a, comparison of first deskew then deconvolution and rotation
(center) versus first deconvolution then deskew and rotation (right), alongside
the raw deskewed and rotated image (left). b–c, microscope PSF as seen
in deskewed space (top) and skewed space (bottom). d–f, comparison of
deconvolution of a simulated stripe pattern with different deconvolution

methods for confocal with 1 Airy unit (AU) (d), harmonic- balanced (HB) HexRect
light sheet (e), and Gaussian light sheet (f). g–h, illustration of backward
projectors for different deconvolution methods for HB HexRect (g), and
Gaussian light sheets (h). i–j, comparison of cell images deconvolved by different
deconvolution methods for HB HexRect (i) and Gaussian (j) light sheets.
k–l, Fourier spectra for the raw and deconvolved images in panels i and j.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 4 | Generation of the OMW backward projector. a–b, OTF support for WB (orange) and OMW (purple) methods for PSFs in deskewed (a) or
skewed (b) spaces. c, OMW backward projector generation process using the PSF in the deskewed space. d, OMW backward projector generation process using the PSF
in the skewed space.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 5 | Additional benchmarks comparing conventional to
OMW deconvolution. a and d, deconvolution processing times only on GPU (a)
and CPU (d). b and e, deconvolution plus read/write time on GPU (b) and CPU
(e). c and f, deconvolution plus combined deskew/rotation time on GPU (c) and

CPU (f). Each benchmark was run independently ten times on a 24-core CPU
computing node (dual Intel Xeon Gold 6146 CPUs) for CPU benchmarks (d–f),
and a GPU node with 80 GB A100 GPUs for GPU benchmarks (a–c). Data are
shown as mean ± s.d. in all panels.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 6 | Deconvolution methods comparison for widefield and
confocal microscopy images. a, comparison of deconvolved orthoslices (scale
bar: 5 μm) and b, Fourier spectra outputs for a widefield image (intensity γ = 0.5,
scale bar: 1 μm−1). c, comparison of deconvolved orthoslices (scale bar: 5 μm) and

d, Fourier spectra outputs for a confocal image (intensity γ = 0.5, scale bar:
1 μm−1). ‘RL NC’ stands for the non-circulant RL method. The number of iterations
is noted in the title for each method. For panels b and d, the blue lines indicate the
theoretical OTF support. For panel d, the OTF support for 1 AU is shown.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 7 | Time-lapse of cropped regions from the large field of view oblique illumination ‘phase’ imaging of HeLa cells in Fig. 5d and
Supplementary Video 1. a, the cropped regions for two cells merging over time. b, cropped regions for a dividing cell over time.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02475-4

Extended Data Fig. 8 | Application of the processing pipeline to two-photon live imaging of a mouse brain. a, xy MIP of an adaptive optical two-photon image of
dendrites and axons across a large stitched field of view in the cortex of a live mouse. b–c, comparison of raw and deconvolution images in smaller subregions.
d, Example of an axon extending across 210 μm field of view.

http://www.nature.com/naturemethods

	Image processing tools for petabyte-scale light sheet microscopy data
	Results
	Overall design: distributed image processing framework
	Fast image readers and writers
	Fast combined deskew and rotation
	OTF masked RL deconvolution
	ZarrStitcher: Zarr-based scalable stitching
	Strategies for large-scale processing

	Discussion
	Online content
	Fig. 1 Overall design of the image processing framework.
	Fig. 2 Performance improvement factors of our C++ Tiff and Zarr readers and writers.
	Fig. 3 Combined deskew and rotation.
	Fig. 4 Fast RL deconvolution.
	Fig. 5 The Zarr-based distributed stitching framework.
	Fig. 6 Large-scale processing.
	Extended Data Fig. 1 Additional benchmarks for Tiff and Zarr readers and writers.
	Extended Data Fig. 2 Additional benchmarks for deskew and rotation.
	Extended Data Fig. 3 Comparison of deconvolution methods for different light sheets.
	Extended Data Fig. 4 Generation of the OMW backward projector.
	Extended Data Fig. 5 Additional benchmarks comparing conventional to OMW deconvolution.
	Extended Data Fig. 6 Deconvolution methods comparison for widefield and confocal microscopy images.
	Extended Data Fig. 7 Time-lapse of cropped regions from the large field of view oblique illumination ‘phase’ imaging of HeLa cells in Fig.
	Extended Data Fig. 8 Application of the processing pipeline to two-photon live imaging of a mouse brain.

