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Abstract

Data-Driven Learning and Optimization of Dynamical Systems

by

Georgios Makrygiorgos

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Ali Mesbah, Co-chair

Professor Douglas Clark, Co-chair

Dynamical systems analysis and optimization is pivotal for safe, efficient, and resilient pro-
cesses that consistently deliver high-quality products. Conventionally, decision-making and
systems behavior analysis have relied heavily on physics-based models. However, these
physics-based models pose several challenges to systems analysis and decision-making. These
include prohibitively high computational costs associated with the numerical computations of
the governing equations, limitations of our understanding of the system’s underlying physical
mechanisms that lead to insufficient and erroneous predictions, as well as the inherent non-
linearity and stochasticity that real-world systems exhibit. This thesis seeks to address these
challenges by developing and applying data-driven methodologies for the dynamic analysis
and optimization of complex systems, with emphasis on chemical and biochemical systems.
The research presented in this dissertation can be distilled into three main contributions:

The first contribution revolves around the utilization of data-driven methods for approximat-
ing the dynamic behavior of dynamical systems and the applications that such data-driven
models enable. In particular, the thesis focuses on data-driven strategies for learning the
dynamics of systems under varying inputs, which can then be employed for uncertainty quan-
tification analysis, optimal experiment design, and real-time decision making. This topic,
though extensively investigated in the literature, remains challenging due to the limited,
sparse, and noisy nature of available data. Our approach is rooted in the concept of flow-
maps, which are operators that predict a system’s future state based on its current state.
We approximate this transition law using a polynomial chaos expansions-based Gaussian
Process (GP), a probablistic non-parametric model that allows us to predict the expected
behavior of the system while providing uncertainty bounds. Notably, our proposed approach
demonstrates exceptional predictive capabilities even in low-data regimes and offers substan-
tial computational savings compared to high-fidelity models for uncertainty quantification
of dynamical systems.

The second contribution of this thesis is geared towards applying the Bayesian Optimization
(BO) framework for the autotuning of general controllers. This challenge is critical in con-
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trol theory due to the lack of easily derivable closed-form mathematical expressions for the
system’s closed-loop performance metrics. Limited and noisy closed-loop data can further
compound this problem. BO is an ideal candidate method to address this problem, as it
leverages the data-efficiency of GPs to create a probabilistic surrogate model to capture the
relationship between decision variables and system performance. Through a careful balance
of exploration and exploitation, BO strives to identify the globally optimal solution using
informative queries from the closed-loop system. In particular, in this work we broaden the
BO framework to address two significant aspects related to the autotuning of biochemical
systems. Firstly, we tackle the challenge of BO under time-invariant uncertainty by propos-
ing a new method for adversarially robust BO. This method concurrently learns the mapping
from decision variables and uncertainties to performance. Secondly, we tackle the ubiquitous
problem of multiple conflicting objectives that arises in real-world scenarios. We propose a
multi-objective BO scheme in tandem with a data-driven model that encodes any existing
information about the system’s characteristics and is partially adaptable. The utility and
performance improvement induced by such extensions are demonstrated through a bioreactor
benchmark case study.

The third and final contribution of this thesis is a novel gradient-enhanced BO framework for
closed-loop policy search. This advancement is pivotal in optimization problems where both
zeroth- and first-order information are available (i.e., both the reward function and its gra-
dient can be observed) during the query process. Traditional BO approaches may overlook
the richness of the gradient information, potentially limiting their optimization efficiency. In
contrast, our proposed approach, including two alternative methods, accelerates BO conver-
gence by integrating both performance optimization and formal optimality conditions in the
proposal of new query points. An important application of this method is in reinforcement
learning, as policy-based methods under stochastic policies can provide objective function
and gradient observations.

In conclusion, this thesis makes significant strides in the domain of data-driven analysis and
optimization of dynamical systems, addressing crucial challenges that stem from the scarcity
and low quality of data, a common trend in bioprocesses and integrated biomanufacturing
systems. Future research can extend the application of these data-driven methods to emerg-
ing fields such as deep space bioprocessing. In such novel domains, data-driven models can
fundamentally underpin the optimization of end-to-end system design, planning, and con-
trol. Furthermore, despite its demonstrated success and the extensions introduced in this
work, BO presents significant opportunities for future research. These include managing
high-dimensional design spaces and mixed-integer variables, incorporating black-box safety
constraints, and leveraging advanced techniques when gradients are available.
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Chapter 1

Introduction

This chapter introduces the importance of data-driven methods for the dynamical analysis
and optimization of complex chemical and biochemical systems. First, we discuss the signifi-
cance of using dynamic models as a mathematical tool to describe the behavior of systems that
exhibit highly nonlinear behavior, can be stochastic in nature, and for which our understand-
ing of the underlying physics might be significantly limited. These characteristics necessitate
the use of data-driven learning methods to create models that can predict the dynamics of
the system of interest under varying conditions and often based on sparse and noisy data.
Subsequently, dynamic models are used within closed-loop decision-making settings where
data-driven optimization can greatly assist in discovering the optimal set of decision vari-
ables in a data-efficient manner.

1.1 Dynamical Chemical and Biochemical Systems
Analysis of dynamical systems is paramount in chemical and biochemical engineering in or-
der to describe the behavior of complex chemical and biochemical processes over time [268,
51, 12]. Developing tools to understand their dynamics is essential for designing efficient
and reliable industrial processes, developing new drugs and therapies, and improving our
understanding of biological systems. Predicting the system’s behavior under varying condi-
tions and identifying key variables that control the system, allow for optimization of process
performance, reduced costs, and ensured product quality and safety. The recent review by
Mowbray et al. [176] provides an overview of numerous machine learning applications in
the field of biochemical engineering, along with their potential integration into industrial
settings; here we focus on methods that apply to dynamical systems.

Through interaction with physical systems, we can learn patterns and connections be-
tween inputs or excitations of systems and their responses or behaviors. Traditionally, sci-
entific discovery relies on first-principles models that constitute the basis for describing the
dynamics of systems. These are combined with empirical laws, which formalize interactions
into equations, while data is used to quantify various properties and variables. Mathemat-
ical models based on conservation laws and constitutive equations are indispensable tools
for analyzing the behavior of biochemical systems that exhibit complicated spatio-temporal
dynamics. Dynamical systems are described by a system differential equations and are gen-
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erally defined by the interplay of transport phenomena, thermodynamic laws, and kinetics.
Nonetheless, computational approaches to solve such equations such as those based on finite
differences [141] or finite elements [325] can be prohibitively expensive for certain type of
analyses, as well as for real-time decision making. More specifically, the systematic and
efficient quantification of the effects of model uncertainties on quantities of interest can be
an arduous task using expensive-to-evaluate models. This is because uncertainty quantifi-
cation (UQ) typically relies on sample-based methods, hence, simulations under varying
parameters and/or initial/boundary conditions to obtain adequate samples for UQ can be
prohibitive. Therefore, the concept of surrogate modeling emerged to alleviate this issue,
e.g., as applied to expensive simulations of CO2 sequestration [321] or fluid mechanics [180],
where some quantity of interest (QoI) is approximated via a data-driven model, most no-
tably Polynomial Chaos Expansions (PCE) [151]. On the other hand, adequate knowledge
of the mechanisms that underlie the process of interest is not always available. Therefore,
data-driven methods have emerged as alternatives for constructing models that serve spe-
cific purposes related to analysis and decision-making. The range of applications is vast. In
Subsection 1.1, we provide concrete examples of the application of data-driven methods for
model learning and optimization in the context of space biomanufacturing. In Subsection
1.2, we provide an overview of data-driven methods while discussing a few problems related
to process control and optimal experimental design (OED).

Additionally, the limited understanding of the underlying mechanisms governing the be-
havior of chemical and biochemical systems, along with the type of performance metrics
associated with various design problems, emphasizes the significance of data-driven opti-
mization. For instance, designing metabolic pathways to maximize the production of valu-
able compounds is one such application [172]. Usually, discovering the optimal solution in
this context involves probing the system under different design variables, which can be very
costly and time-consuming if not done in a strategic manner (e.g., random search). Thus,
in Subsection 1.3, we explore the topic of global optimization in "black-box" settings and
provide an overview of the latest developments in the field.

Model Learning and Decision-Making for Space Biomanufacturing

A crucial application of data-driven modeling in biochemical systems is its potential to en-
able deep space exploration through biomanufacturing, supporting human-based missions.
Established in 2017, the Center for Biological Engineering in Space (CUBES) explores how
biotechnological advancements, which offer inherent mass, power, and volume advantages,
can be harnessed for this purpose, as opposed to abiotic approaches. CUBES investigates
the effective use of Martian in-situ resources (ISRU) for integrated biomanufacturing of es-
sential products for Martian exploration, including biologically-produced pharmaceuticals,
cell-based treatments/therapeutics, and materials for on-demand and modular additive man-
ufacturing applications to maintain a crewed mission over an extended period [20]. Although
numerous fundamental scientific breakthroughs have been achieved recently in the develop-
ment of biotic life-support technologies for deep space missions, less focus has been placed
on the role of rigorous system analysis and optimization for ensuring a safe and automated
operation of such a biomanufactory from end to end, incorporating "astronaut-in-the-loop"
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methodologies, where astronauts are involved as an essential part of the control and decision-
making process [269].

While NASA [3] considers life-support systems (i.e., relying on plants and microbes)
indispensable for such a task, operational aspects are often not systematically addressed.
Consequently, Space Biological Engineering (SBE) has emerged as a novel interdisciplinary
field, focusing on the development, implementation, and management of biologically-driven
technologies to sustain life during long-term space missions. SBE merges synthetic biology as
well as and bioprocess and systems engineering, taking into account the distinctive challenges
and constraints of the space environment [19]. To this end, the traditional process engineer-
ing Design, Build, Test, Learn (DBTL) cycle [52] can be adapted for deep space biochemical
engineering. Achieving the desired level of operational autonomy, necessitates the formal
adaptation the foundations of process systems engineering (PSE) to space biomanufactur-
ing. PSE is a broad multidisciplinary field, relying on mathematical modeling, optimization
and various engineering principles for the design and control of chemical and physical pro-
cesses [97], which has been greatly enhanced by data-driven models in recent years [138].
Here we briefly discuss the utility of data-driven modeling as part of the space biochemical
engineering field. The benefits of fusing synthetic biology and biochemical engineering with
systems engineering has already been realized; the review of Rollie et al. [237] discusses
the concept of modularization and standardization in biological systems, stemming from the
idea of unit operations in chemical engineering. The authors highlight the importance of
multi-scale mathematical modeling and conclude with the remark that in order to incorpo-
rate synthetic biology into end-to-end designs, the systems need to be predictable, able to
be tuned and provide robustness guarantees. Relating this to space biomanufacturing, this
statement resonates with the fact that the operational landscape associated with deep space
exploration can be highly uncertain. In [131], the authors discuss in particular the topic of
biochemical system modeling from a utility point of view, i.e., how models can be utilized for
model-based optimization and industrial integration [303], which is also paramount in the
DBTL cycle in the context of SBE. Parallel to the recognition of the importance of modeling
for SBE, recent advances in the filed of machine learning exemplify the use of such techniques
for metabolic engineering [137]. On the same note, in [145] the use of artificial intelligence
for the DBTL cycle analysis is discussed, focusing on its role towards aiding metabolic en-
gineering design. Chapter 6 of this thesis provides more details on specific applications of
data-driven models and several directions on how feedback and adaptive learning can be
employed in both the prototyping phase and real-time operation of biological deep space
exploration systems.

1.2 Data-Driven Model Learning and Uncertainty
Quantification

In recent years, data-driven learning techniques have emerged as a powerful approach for
modeling and understanding dynamic systems. These techniques leverage large or some-
times limited datasets to create approximate dynamic models, enabling efficient simulation,
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prediction, and control of complex systems. The idea of using data-driven models for dy-
namics learning dates back several decades. A classical textbook in this field includes [249],
which discusses the concept of system identification, i.e., the approximation of dynamics
from observed input-output data, providing both the theory and practical considerations
essential for such a task. Another fundamental textbook is [31], which extensively discusses
autoregressive moving average (ARIMA) models and provides the iterative framework for
parameter estimation and model validation.

Overview of Methods

Here we discuss several key methods that have been traditionally used for learning dynamical
systems. Dynamic models are commonly represented by ordinary differential equations,
describing the continuous time evolution of the states s(t) of a system based on some set of
equations f(s, t), where t denotes the time, starting from some initial condition s0. If f(s, t) is
known, the dynamic evolution can be computed either using analytical expressions (whenever
the equations are simple enough), or, usually, based on time integration algorithms (e.g.,
Runge-Kutta [38]). Alternatively, the so-called flow-map function Φδ(s(t), t) is an equivalent
representation that relies on f(s, t) and, if known, can be used to predict s(t+ δ) from s(t),
where δ is some time step. Therefore, for the purpose of our discussion and to facilitate the
understanding of the key concepts, we divide the methods for system learning into two broad
classes: (1) methods that attempt to reconstruct the governing dynamic equations f(s, t),
and (2) methods that aim to learn the flow-map function Φδ(s(t), t) directly, following the
categorization in [50]. Note that the categorization of methods is not unique, as various
perspectives and taxonomies can be applied to classify them.

In the first class, we can include methods for discovering analytical expressions for the
governing equations of dynamical systems via symbolic regression [25] coupled with genetic
programming and experimental data [247] to learn differential equations from a space of
potential functional forms. A more recent work with foundations on symbolic regression and
machine learning is that of [36] where the SINDy algorithm is introduced. SINDy is a data-
driven method for discovering sparse and interpretable models of dynamical systems from
observed data. The method relies on a library of candidate functions, solves an optimization
problem to identify the most relevant terms, and reconstructs the governing equations in a
form that is suitable for analysis and control, while is it is robust to measurement noise.
Extensions of this work include [43] where SINDy is combined with a coordinate transfor-
mation to simultaneously learn both the governing equations and the coordinate system in
which the dynamics are sparse. With the advent of deep learning, the task of learning the
differential equations has been tackled via a class of continuous depth deep neural networks
(DNN), known as neural ordinary differential equations (neural ODEs) [239, 222], applied
to the discovery of stochastic systems [186] as well as parameter estimation of ODEs [33].

In the second class, we encounter methods that aim to directly approximate the flow-map
Φδ(·) of a dynamical system. They focus on learning a mapping from the current state of
the system to its state at a future time, bypassing the need to explicitly reconstruct the
underlying governing equations. By leveraging the flow-map representation, these methods
can efficiently predict the evolution of the system’s states over time, even in cases where the
governing equations are not easily identifiable or the system exhibits complex behavior. A
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popular technique in this area relies on the, so-called Koopman operator [35, 189] which is
a linear operator that acts on the space of functions defined on the state space of a dynam-
ical system and can be used iteratively to obtain a trajectory of the system. In practice,
data-driven approximations are used to find the Koopman operator such as dynamic mode
decomposition [135, 306], which approximates the eigenvalues and eigenvectors of the Koop-
man operator. It is also worth noting that this form of dynamical systems approximation
is very similar to the concept of state-space modeling which is widely used in model-based
control applications [29, 229, 219, 134, 254].

Selection of Model Structures

In this thesis, we focus on the second class of model learning methods for dynamical systems,
i.e., we attempt to predict the future states given some past trajectory data. A common
model structure employed towards this task relies on parametric models, i.e., statistical mod-
els that assume a specific functional form for the underlying relationship between variables,
with a finite number of parameters to be estimated from the data [22, 101]. Deep learning
techniques have emerged as a powerful representation of highly complicated mappings, with
application to dynamic systems [82]. Most notably, physics-informed neural networks [223]
and dynamics reconstruction via neural networks under noisy data [240] have shown promise
for data-driven modeling of nonlinear dynamical systems. Recently, Qin et al. [220, 221]
proposed a deep learning-based approach for data-driven approximation of the integration
operator of differential equations from observations of state variables.

On the other hand, non-parametric models [302] offer a flexible alternative to para-
metric models for data-driven modeling of dynamic systems. Unlike parametric models,
non-parametric models do not impose a predefined model structure and, hence, do not rely
on a fixed number of parameters. This allows them to adapt more freely to the under-
lying data, often resulting in improved performance in capturing complex and unknown
relationships. Popular models in this category include kernel-based methods such as support
vector machines [277] and decision trees or random forests [53]. Gaussian Processes (GPs)
is another versatile class of non-parametric, kernel-based models, extensively employed in
machine learning and statistics for tasks such as regression and classification [228, 304], re-
lying on Bayes’ theorem. GPs are inherently connected to the normal distribution; while
the normal distribution is a probability distribution over a finite-dimensional random vec-
tor, GPs extend this concept by defining a distribution over infinite-dimensional function
spaces. In essence, a GP assigns a multivariate normal distribution to the function values
at a finite set of input points. The key feature that links GPs to the normal distribution is
the assumption that a finite collection of function values exhibits a joint normal distribu-
tion. This relationship allows GPs to leverage the properties of normal distributions, such as
closed-form expressions for marginal and conditional distributions, making them a powerful
tool for probabilistic modeling and inference in machine learning and statistics.

Here, we discuss the fundamental concepts behind GPs and more mathematical details
will be given in the subsequent chapters. A GP is completely characterized by two compo-
nents: a prior mean function and a kernel function (also known as the covariance function).
The prior mean function, denoted as m(x), represents the expected value of the GP at any
given input point x. It encodes our prior belief about the function we aim to model before
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Figure 1.1: Example of a GP model for an unknown function f(x). The true function is
given by the green dashed line. The available (noisy) function observations are represented
by the black circles. By using the observations, a GP model is fitted. The posterior predicted
mean at each x is given by the solid blue line, while the light-blue shaded area represents
the 95% confidence interval based on the posterior predicted variance, asumming that for
each x, the prediction follows a Gaussian distribution.

observing any data. In many cases, the prior mean function is set to zero, however, if we
have some knowledge about the function we can directly incorporate it. The most impor-
tant element in a GP model is the kernel function k(x, x′), a positive definite function that
quantifies the similarity (or covariance) between function values at two input points x and
x′. It plays a crucial role in defining the shape and smoothness of the underlying functional
behaviors that the GP can represent. The choice of the kernel function determines the ex-
pressiveness of the GP and has a significant impact on the model’s ability to capture the
underlying structure of the data. Common kernel functions include the squared exponential
(also known as radial basis function) and Matérn [116].

An example of how GPs work is illustrated in Figure 1.1, where the goal is to learn a
function f(x), based on a few noisy observations. In the left plot, we see several prior func-
tions drawn from a Gaussian Process with a zero mean function and a chosen kernel function.
The shown functions represent our initial belief about the possible shapes and behaviors of
the true function f(x) before incorporating any observations. The diversity of prior func-
tions indicates the flexibility and expressiveness of the GPs, which allows it to capture a
wide range of functional forms. The right plot shows the updated GP after incorporating
the noisy observations. The solid line represents the posterior mean function, which is our
best estimate of the true function f(x) given the available data. The shaded region around
the mean function corresponds to the 95% confidence interval, reflecting the uncertainty in
our predictions. As can be seen, the GP predictions are more accurate and exhibit smaller
variance in regions where observations are available. This is because the GP leverages the
information from the observed data points to adjust its beliefs about the underlying func-
tion. In regions with no observations (or away from them), the GP predictions revert to the
prior mean function (in this case, zero) and exhibit larger uncertainty, as indicated by the
wider confidence intervals. This demonstrates the ability of GPs to adaptively provide more
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accurate predictions and better uncertainty quantification in regions where data is available
while still offering reasonable predictions in unexplored regions.

UQ and Optimal Experimental Design of Dynamical Systems

UQ is a critical component in the analysis, control, and design of dynamical systems, as it fa-
cilitates the systematic assessment of the influence of uncertain parameters and disturbances
on system performance. Traditional deterministic models may fail to accurately predict the
behavior of the system in the presence of uncertainties, resulting in suboptimal optimization
strategies and experimental designs. Optimal experimental design (OED) based on physics
models is a significant field in which data-driven models are employed provide robustness to
the analysis. OED [30, 71] is a systematic approach to designing experiments with the objec-
tive of obtaining the most information from the least number of experiments by selecting the
experimental conditions that maximize the information gain. In the context of dynamical
systems, OED objectives typically involve model selection, such as in the case of biochemical
networks [294], and optimally estimating model parameters [164] Standard OED approach
rely on deterministic models which potentially lead to ineffective designs due to their inabil-
ity to account for the inherent uncertainties present in complex systems. To this end, robust
OED attempts to partially alleviate this issue by computing the excitation inputs based on
perturbation ranges of parameters around some nominal values, e.g., formulated as max-min
optimization problems [218, 130], or using a probabilistic treatment that accounts for the
statistical properties of uncertainties [170] based on PCEs. Nevertheless, robust OED is not
suitable when the prior distribution of parameters is very broad or deviates from normality.
These limitations can be addressed by the general and powerful framework of Bayesian OED
that explicitly incorporates uncertainty into the utility metrics associated with information
gain from experiments, under noisy, incomplete, or indirect data enabling more robust de-
signs [42, 236]. Computational challenges arising from Bayesian OED have been addressed
using surrogate modeling, such as PCEs [110, 199], and safety considerations during OED
have been explored using GP modeling [207].

1.3 Data-Driven Optimization

Overview of Methods

The task of numerical optimization is of paramount importance in a plethora of engineering
applications. Here, we primarily focus on the task of optimizing a "black-box" function
f(x), i.e., cannot be given in a closed mathematical form and the effect of the decision
variables on the system performance is only attainable via noisy and expensive queries.
Optimization methods are typically divided into derivative-based or derivative-free, based
on whether the gradient of the function is used by the algorithm to discover the optimal
solution. A common situation encountered in the optimization of real-world, industrial
systems is that where models are not available and direct interaction with the true system
is required. In this thesis we focus in the latter case, i.e., derivative-free methods. The
paper of Rios et al. [234] provides a comprehensive review of derivative-free optimization,
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including a historical overview of algorithmic developments, a categorization of state-of-the
art techniques as well as a set of comparative benchmarks. Perhaps the most simple to
understand and implement methods rely on pure search strategies over a finite number of
points in the domain, based on some "passive" experimental design, e.g., following a random
selection of points in the domain or relying on a grid. Hence, brute force or random search
methods, albeit extremely data intensive, have been of interest, especially when combined
with heuristics or empirical rules that help restrict the search space and direct the search
process [142, 318]. Early work on derivative-free optimization led to development of simplex-
based methods [57]; for instance, the Nelder-Mead method [182] works by maintaining a
simplex (a polytope with d+1 vertices in the d-dimensional space) and updating it through
operations such as reflection, expansion, contraction, and shrinkage. These operations are
designed to explore the search space and converge to a local minimum or maximum without
the need for gradient information. Nelder-Mead belongs to the family of local methods,
while in the same category we encounter surrogate-based methods as well, e.g., trust region
[216] and implicit filtering [90]. In this thesis, we mainly focus on the family of global search
methods. Similarly to local methods, surrogate models (which are also known as response
surfaces) are also used in that case to guide the search over the true function. Sobester
et al. [259] provides a comprehensive review of surrogate modeling techniques and their
applications to optimization. Various methods in this category utilize surrogate models
along with utility criteria to enable a guided search; efficient global optimization (EGO)
uses Kriging surrogate models for deterministic global optimization [115] while radial basis
functions have also been used in the context of stochastic global search [231]. Stochastic
global algorithms have been recognized to provide efficient solutions to the challenges posed
by black-box functions. Genetic algorithms employ a population of candidate solutions,
which evolve through operations such as selection, crossover, and mutation. By mimicking
the process of evolution, GAs are capable of exploring the search space more effectively
than random search or simplex-based methods [109]. Another population-based algorithm
is particle swarm optimization (PSO), inspired by the collective behavior of birds flocking
and fish schooling [121]. Each particle represents a potential solution and moves through the
search space by adjusting its position based on its own best position and the best position
of the swarm, balancing exploration and exploitation across the domain. Finally, another
notable algorithm in this category is simulated annealing [126], which is particularly useful
when the function contains multiple local optima.

Bayesian Optimization

In the realm of surrogate model-based and derivative-free stochastic global optimization tech-
niques, Bayesian Optimization (BO) has recently gained a great amount of attention due to
its success in discovering (nearly) optimal solutions in tasks where the performance function
associated with the system is "black-box" in nature [80, 251]. In essence, BO attempts to
convert the original optimization problem into a sequence of easier-to-solve sub-problems
that progressively aim to update our knowledge about the relationship between the decision
variables and the performance function, via observing the performance at selected points
in the domain based on some utility metric. This efficient search via intelligent selection
of query points provides the most valuable information about the objective function while
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minimizing the number of costly evaluations needed to identify the optimal solution. BO em-
ploys three fundamental elements to achieve this. The first element is a statistical model that
learns the relationship between the decision variables and the performance of the system. BO
employs probabilistic machine learning to develop a statistical representation of the unknown
objective function f(x), which offers not only a point estimate prediction at some x that has
not been observed yet, but also quantifies the uncertainty or confidence in the prediction.
The most popular choice of such a probabilistic model relies on GPs, however, alternatives
such as Bayesian neural networks [265] and random forests [112] have been explored. The
second element is the acquisition function. This strategically designed function is utilized
to determine the most advantageous point(s) to evaluate within the function’s domain. The
acquisition function is responsible for striking a balance between exploration, i.e., suggesting
points in the domain where the predicted performance is highly uncertain, and exploitation,
i.e., directing the search in a narrow region where it is more likely to obtain the optimal
solution. There are multiple acquisition functions and designing them is an active area of
research in literature. Popular acquisitions for BO are the probability of improvement and
expected improvement [80], multiarmed bandit acquistions such as lower/upper confidence
bound [258], entropy search [104] or knowledge gradient [310]. The third element in BO is
the optimal point selection. The third element is a criterion for selecting the optimal point.
In practice, we select as the optimal point x∗ the one for which the observed performance
is the highest among the already performed queries, however, a criterion that adjusts for
observation noise can be employed.

An Illustration

To illustrate the main idea of BO, assume that we are interested in the minimization of
f(x), where x ∈ X ⊂ Rd are our decision variables in the d-dimensional space, and the
function at some x is only observed via noisy measurements y(x) = f(x) +w, where w ∈ W
is some noise realization. The closed-form of f(x) is not known and the only way to learn
the objective is through noisy observations. Figure 1.2 illustrates two different iterations of
BO. The algorithm begins with just two noisy observations of the true function, which are
then utilized to fit a GP model. In this initial stage, the posterior mean resembles a simple
linear function (the simplest function that connects two points), and we can observe the
confidence or predictive uncertainty intervals throughout the domain. This is determined
by the acquisition function (given as the solid orange line), which expresses the utility of
querying any particular point in the domain. Here we rely on the lower confidence bound
(LCB) function, suited for a minimization problem

α(x) = µ(x)− βσ(x), (1.1)

where µ(·) is the posterior mean, σ(·) is the square root of the posterior variance and β is
a hyperparameter that reflects the exploration-exploitation tradeoff. In the minimization
setting, the points with the most utility are the ones that minimize the LCB. We can see
that suggested point to query at this stage is the lower bound of the domain; this is because,
due to the uncertainty, exploring the space provides significant utility, which is reflected in
the LCB function through the predictive variance term, weighted by the exploration hy-
perparameter, i.e., the βσ(x) dominates. As more points are queried, the posterior GP is
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Figure 1.2: An illustration of Bayesian Optimization for a simple one-dimensional function.
On the left, the Gaussian Process posterior mean (solid blue line) and variance (light blue
confidence intervals) are plotted along with the true function (green dotted line). The right
plot shows the acquisition function at the current iteration and the suggested point to be
queried (black vertical dotted line). Top row shows the initial BO step when only two
observations (denoted with black circles) are available. After a few points have been observed,
based on the suggested queries, the shape of the surrogate GP function changes as seen in
the bottom row and the acquisition function proposes points closer to the true optimum.

updated, and the acquisition function can locate a narrow region to be exploited, since σ(x)
becomes progressively smaller and the expected value of the function µ(x) dominates in the
AF. At each iteration, we have the option to claim as the solution the point x that leads
to the best observation so far. The algorithm terminates based on the available experimen-
tal/computational budget or when some convergence criterion is met.

Advances in BO

As the field of BO continues to grow, new advanced techniques are being developed to
tackle increasingly complex optimization problems, going beyond the traditional BO frame-
work; new ideas such as multifidelity modeling, multiple objectives and gradient-enhanced
optimization are introduced. By incorporating advanced techniques, BO can better handle
optimization problems with high-dimensional search spaces, expensive function evaluations,
and noisy or incomplete data. Here we briefly discuss several of these advancements.
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Multi-Fidelity BO

As stated before, BO is an attractive technique for data-efficient optimization, yet, the num-
ber of suggested points might still be prohibitively expensive to query in order to converge to
the globally optimal solution. Although standard BO builds a probabilistic surrogate model
for the objective based the expensive observations of the true system, the core notion of
multi-fidelity BO (MFBO) [118] is to construct more objective surrogates using observations
from lower-fidelity, but also less expensive sources [261], following the general framework of
multi-fidelity optimization (MFO) [77]. For instance, in the context of biochemical processes,
physical experiments, high-fidelity physics-based models and lumped-parameter models can
be thought of as levels of fidelity. The main efforts of algorithmic development in MFBO
revolve around discovering efficient ways to correlate the various fidelities (e.g., via multi-
output GPs [146]), which are mutually dependent; subsequently, the acquisition function
attempts to query the various fidelities at multiple locations in the decision variable space.
Typically, the lower-fidelity models are prioritized in order to explore the space and suggest
regions of possible optimality of the higher-fidelity models or experiments. This complex
exploration-exploitation trade-off aims to optimally allocate the querying budget across fi-
delities.

Multi-Objective BO

BO has been widely utilized in cases where a single objective drives the querying procedure,
however, in several applications we are interested in multiple objectives that are conflicting in
nature. This is the main notion of multi-objective optimization (MOO) [62, 99]. Data-driven
optimization methods, such as those based on genetic algorithms [244], have been exploited
before to solve MOO problems [129, 163]. BO offers a viable, data-efficient alternative to
MOO problems; hence multi-objective Bayesian Optimization (MOBO) has gained attention
recently. In MOO there is typically no single optimizer, thus, the goal is to discover a set
of Pareto optimal points that define the so-called Pareto front; each Pareto optimal solu-
tion ensures that simultaneous improvement in all objectives is not attainable. Similarly to
single-objective BO, MOBO typically constructs a probabilistic surrogate for each objective
individually. The standard approach to MOBO has been to build upon the standard acqui-
sition functions based on the notion of the hypervolume (HV), which, in words, is a measure
of space covered by the Pareto front and some reference point. To this end, an expected
hypervolume improvement (EHVI) acquisition has been proposed [69, 58] (as an extension
to EI), while using an MO variant of UCB has also been used [215]. An alternative approach
relies on information-theoretic criteria where the Pareto-front entropy is maximized [278].
Overall, the querying process seeks to suggest points that belong to the Pareto optimal set.
In Chapter 3 MOBO will be discussed in the context of model learning for model-based
control applications.

Gradient-Enhanced BO

The importance of incorporating gradient observations, ∇xf(x), into BO has been recently
recognized, e.g., [253]. In practice, gradient observations can be established via automatic
differentiation [15, 213], finite differences or thanks to theorems such as the policy gradient
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theorem [276] and its variants that approximate the gradients of reward/cost signals in the
context of reinforcement learning. Based on the fact that the gradient of a GP is also a
GP [227], a gradient-conditioned joint kernel matrix function can be defined such that the
resulting GP model yields multiple outputs, i.e., predicts the function and its gradients at
given test points while taking into account all the correlations between those functions and
corresponding available observations [309]. This is particularly useful in higher dimensional
spaces or when observations are available in limited locations in the domain, since for each
training point we have d+ 1 pieces of information, leading to a better approximation of the
function compared to uniquely using just function observations. Thus, gradient information
can enable a faster discovery of the optimum solution. In Chapter 5 this topic will be
discussed extensively in the context of policy-based reinforcement learning (RL).

Applications of BO

The problems that BO is suitable to address are ubiquitous in real-world applications. One
such domain where BO has made a significant impact is materials science, enabling the
rapid discovery of materials with desired characteristics. BO has been utilized in several
applications such as (i) automation of experiment design along with high-throughput ex-
periments in [93], showing major improvement against a grid-search approach, (ii) optimal
design of graphene thermoelectrics [315], (iii) optimal closed-loop growth of nanotubes [45],
(iv) effective screening and discovery of metal-organic frameworks [279], and (iv) towards
creating an agent for establishing "self-driving" laboratories for thin film applications [152].
Several benchmarks are analyzed in [144]. BO has also been utilized in the discovery of
pharmaceutical products [243, 143], as the experiments for drug design induce large costs
and very large time-frames, while BO can be utilized to actively guide the process even in
noisy settings as shown in [16]. Moreover, BO spans to other domains such as finance [94],
biomedical engineering [185] and aerospace design [136].

Another crucial application of interest for BO, which is also a major part of this thesis,
is the utilization of BO as a data-efficient approach for discovering optimal control [150].
The idea of tuning pre-existing policies on the real system to facilitate the policy learning
procedure has been utilized in the context of biochemical engineering [208], still, a large
number of interactions with the system might be needed for discovering an optimal policy,
which is impractical. To alleviate this problem, BO for policy search and RL has recently
received a lot of attention in the literature. For example, in [160] prior information is
incorporated into BO to warm-start the search process of discovering the optimal policy on
the real system. Other works that highlight the utility of BO for policy search include [81]
and [178]. Moreover, RL with multiple performance objectives has been studied ( e.g., [184,
119]), while MOBO has been employed in this case as a method for optimal policy discovery
such as in [291] where the closed-loop system performance and robustness are viewed as
conflicting objectives.
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1.4 Thesis Outline and Organization
The contribution of this PhD research work and dissertation is two-fold. The first contri-
bution (Aim 1) is the development of data-driven approaches for learning dynamic systems
with uncertain inputs and utilizing them for UQ analysis and OED. The second contribution
(Aim 2) is the development of methods for the closed-loop optimization of dynamic systems
in a data-efficient manner using BO. All the works that contributed to this PhD research
are listed in Table 1.1, while the works that are presented in this dissertation are in bold.

Table 1.1: Summary of contributions of this Ph.D. research.

Work Aim Contributions

[154] 1 Review of UQ methods for system analysis
of 2D crystallization

[157] 1 Data-driven discovery of dynamic systems
and UQ of biochemical systems

[235] 1 Tractable polynomial optimization for global
solution of Bayesian OED

[236] 1 Bayesian OED under arbitrary prior and
noise distributions

[158] 1 UQ of a Martian life support system
[27] 2 Fast model predictive control using neural

networks and GPs
[262] 2 Constrained BO for auto-tuning of model-

predictive controllers under noisy measure-
ments

[197] 2 Adversarially robust BO for controller tuning
under uncertainty

[159] 2 Multi-Objective BO for performance ori-
ented model learning for control

[44] 2 Multi-Objective BO for policy adaptation
[155] 2 Gradient-enhanced BO using acquisition en-

sembles and multi-objective optimization
[156] 2 Gradient-enhanced BO via enforcing opti-

mality constraints

The structure of the thesis is as follows. Chapter 2 presents an approach for learning the
dynamics of biological and biochemical systems via data-driven flow-maps. This approach
accounts for the effects of uncertain parameters or control inputs, and variable stepping times.
We employ a GP-based model enhanced by PCEs to achieve high accuracy in predicting
dynamic trajectories, enabling a variety of analyses, including UQ and Bayesian parameter
inference.

Chapter 3 shifts focus to the closed-loop optimization of a dynamic system. We intro-
duce a MOBO approach for learning a dynamic model used for control purposes. Addition-
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ally, we propose a novel composite neural network-based structure that leverages any prior
model available for the system to enhance its performance for closed-loop control.

Chapter 4 addresses the autotuning of general control structures when relying on high-
fidelity simulators with time-invariant uncertainties, such as parametric uncertainty. We
present an Adversarially Robust BO (ARBO) approach where a GP model concurrently
learns the mapping from decision variables and uncertainties to performance measures. We
employ an alternating optimistic/pessimistic sub-problem optimization scheme to solve the
robust closed-loop performance optimization problem.

Chapter 5 presents an approach for BO that directly incorporates observations of per-
formance function gradients into the sequential decision-making process. We demonstrate
two alternative methods that accelerate BO convergence by considering both zeroth-order
(i.e., performance observations) and first-order (i.e., formal optimality conditions) criteria
when proposing new query points. One potential application for this approach is RL, as
policy-based methods under stochastic policies can provide gradient observations thanks to
the policy gradient theorem and its variants.

Finally, Chapter 6 concludes the thesis and explores potential avenues for future work,
particularly regarding the application of data-driven methods in methods for biomanufac-
turing in deep space missions.
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Chapter 2

Data-Driven Flow-Map Models for
Dynamics Learning and Fast
Uncertainty Quantification

This chapter discusses the topic of data-driven estimation of the flow-map operator to learn
the system dynamics directly from observed data in cases where the governing equations are
not known. Additionally, expensive models can be approximated using flow-map compositions
for uncertainty quantification applications. Data-driven flow-map models learn integration
operators of governing differential equations in a black-box manner, making them useful for
deriving fast-to-evaluate surrogates for expensive models or reconstructing long-term system
dynamics via experimental observations. We present a data-efficient approach to data-driven
flow-map modeling using polynomial chaos-Kriging and demonstrate it for various systems,
including a co-culture bioreactor and microbial electrosynthesis reactor. Such models are im-
portant for designing and optimizing bioprocesses and integrated biomanufacturing systems.
This chapter is adapted from [157].

2.1 Introduction
Computational models have become indispensable tools for understanding the complex be-
havior of biological and biochemical systems towards design and optimization of bioprocesses
and integrated biomanufacturing systems [12]. Recently, there has been a growing interest
in data-driven methods for modeling the uncertain and nonlinear dynamics of biochemical
systems, as these models constitute the cornerstone of various model-based analyses and
decision-making tasks such as experiment design, hypothesis testing and parameter infer-
ence [79, 92, 113]. Data-driven modeling is especially useful when it is formidable to de-
rive first-principles descriptions for systems whose complex behavior can span over multiple
length- and time-scales. Data-driven models have shown promise for inferring the dynamics
of cellular systems and metabolic networks (e.g., [248, 56]). Hybrid models (aka gray-box
models) that combine physics-based models with data-driven descriptions of unknown or
hard-to-model phenomena have also proven useful for describing the complex behavior of
biochemical systems [61, 297, 250, 319]. In this work, we focus on data-driven discovery
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of dynamical systems, whereby the goal is to learn directly the governing equations from
system observations. A class of data-driven discovery methods for unknown systems relies
on basic assumptions about the structure of the underlying equations [25]. To this end, a
popular technique is based on sparse identification from dictionaries of possible governing
terms, such as the SINDy algorithm presented in the introduction, which has been shown to
be particularly useful when limited system observations are available. On the other hand,
non-parametric modeling approaches relax the necessity of using a library of candidate terms
[102]. Following the approach of directly learning the transition rules, or flow-maps, for the
system of interest, the usefulness of this approach for discovery of dynamics of biological
systems has been demonstrated on several benchmark problems in [272], mainly since it
removes the necessity of assumptions about the dynamic model structure.

We are also interested on how these methods can be used for model-based uncertainty
quantification (UQ) in biochemical and biological systems when relying on expensive-to-
evaluate computational models. Predictions of the behavior of biochemical systems are
generally subject to various sources of uncertainty due to unknown model structure, param-
eters, and/or initial and boundary conditions. This has spurred development of a plethora
of set-based [271] and probabilistic [179, 256] methods for forward and inverse UQ prob-
lems (e.g., [128, 241, 293, 170, 198]). However, the most commonly used UQ methods rely
on Monte Carlo sampling [39], which can be intractable for expensive computational mod-
els of biochemical systems, especially when models consist of a large number of differential
equations and/or have a large number of uncertain inputs.

As stated in Chapter 1, surrogate modeling is being increasingly used to facilitate com-
plex UQ analyses that would otherwise be computationally prohibitive. The key notion in
surrogate modeling is to construct a data-driven mapping between inputs to a system and
the quantities of interest in a non-intrusive manner, in which the “data generating process,”
e.g., a high-fidelity model, is treated as a black-box to generate as few training samples as
possible [273]. Such a data-driven representation can be used as a computationally efficient
surrogate for expensive computational models in order to predict the output quantities as
a function of inputs. A variety of surrogate modeling techniques such a generalized and
sparse polynomial chaos [312, 23], Kriging [54] and deep learning [288] have been success-
fully applied to various biological and biochemical systems (e.g., [198, 270, 233, 246, 206]).
Nonetheless, a critical challenge in the majority of these techniques arises from capturing the
time-evolution of the states in an efficient manner. The most common approach, known as
time-frozen surrogate modeling [209, 154], for predicting the time-evolution of states, relies
on constructing separate surrogate models for all time points at which the states must be
predicted. As such, the “time-frozen” approach can be an inflexible and inefficient way of
surrogate modeling for dynamical systems, especially in dynamic UQ and decision-making
problems that hinge on making predictions over an adaptive sequence of time instants.

In this chapter, we leverage the notion of flow-map (de)composition, as also investigated
in [220, 221], for data-efficient discovery of system dynamics from experimental observations
or high-fidelity simulation data. Conceptually, a flow-map is an analytical operator that
maps the current state and input of a system to a future state based on exact integration
of model equations over some specified time step. Numerical integration schemes for ordi-
nary differential equations in fact seek to numerically approximate flow-maps to compute
the time-evolution of state variables as a function of input variables. Here, we propose to
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approximate flow-maps in a data-driven manner via non-intrusive surrogate modeling, such
that the resulting data-driven flow-map is a surrogate for differential operators of the differ-
ential equations governing a dynamical system. Hence, data-driven flow-map models are able
to discover system dynamics irrespective of the unknown structure of model equations. In
addition, data-driven flow-map models can address the above-described challenge of “time-
frozen” approaches to surrogate modeling via circumventing the need for construction of
separate surrogate models at different time instants. This can be especially useful for fast
UQ and optimization-based analyses of dynamical systems that hinge on repeated runs of
expensive computational models over a sequence of time instants.

We demonstrate the usefulness of data-driven flow-maps for discovery of system dynamics
from data, as well as for fast UQ applications based on expensive computational models.
Here, sparse polynomial chaos Kriging (PCK) [204] is used for data-driven approximation of
flow-maps owing to its data efficiency, ability to approximate complex mappings and ability
to quantify the uncertainty of model predictions. The versatility of data-driven flow-maps
is first demonstrated via the discovery of the transient behavior of benchmark problems
and a co-culture bioreactor using noisy data. Subsequently, we show how data-driven flow-
maps can speedup forward and inverse UQ analyses of a dynamic microbial electrosynthesis
reactor, achieving up to a 100-fold gain in computational speed.

2.2 Methods
In this section, we present the idea of flow-map (de)composition for dynamical nonlinear
systems. We first introduce the notion of flow-map functions, which we seek to approximate
in a data-driven manner based on time-evolution of system states. This is followed by
a discussion on the data generation strategy and the PCK method used in this work to
approximate flow-map functions for the variables of interest.

Flow-map Compositions

Consider a dynamical, time-invariant, nonlinear system described by

ds

dt
= f(s,x), s(t = 0) = s0, (2.1)

where s ∈ Rns is the vector of state variables with initial conditions s0, x ∈ Rnx is the
vector of input variables, and f(s,x) : Rns ×Rnx → Rns is the vector of (possibly unknown)
system equations; R denotes the set of real numbers. Eq. (2.1) describes the time-evolution
of the states s of a nonlinear system as a function of the inputs x. Notice that in this work
the inputs x can represent either model parameters, or manipulated input variables to a
biochemical system, as will be discussed later.

A flow-map function is a mapping that predicts the transition of a dynamical system
from the current to future state [220]. We define a flow-map function Φδ as

s(t+ δ;x) = Φδ(st, x), (2.2)

s(t+ δ;x) = s(t;x) +

∫ t+δ

t

f(s(t′;x),x)dt′, (2.3)
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where δ is a time-lag (i.e., integration time step). Eq. (2.3) describes the one-step transition
between the states of a system, in some interval (t, t+ δ). The integral term that appears in
Eq. (2.3) can be considered as a flow-map residual since it represents the discrepancy between
the current and future states. Although Eq. (2.1) provides a continuous-time description of
a dynamical system, the notion of transitioning among states, as implied by Eq. (2.3),
hinges on discretizing the time domain over which the system evolves. Accordingly, the idea
of flow-map compositions can be applied to compose a sequence of one-step transitions to
define state trajectories over time [220]. Once a sequence of flow-maps {Φδ1 ,Φδ2 , . . . ,ΦδK}
is established, the flow-maps can be used to predict the states s at any discrete time instant
using the K-fold composition

Φ∆ = ΦδK ◦ · · · ◦ Φδ1 , (2.4)

where ◦ denotes the function composition operator and ∆ is the sum of the time-lags over
the K discrete time steps (i.e., ∆ =

∑K
j=1 δj). Eq. (2.4) indicates that, starting from some

initial states, the K-fold flow-map function Φ∆ governs the state transitions over the time-
lags δ1, . . . , δK wherein at each discrete time step the states are a function of the previous
states as given by Φδj . Note that, in general, the time lags δj in Eq. (2.4) need not be the
same.

In practice, the set of differential equations in Eq. (2.1) describing the system dynamics
may not be known, or, when known, their numerical solution may be expensive. In this
paper, we aim to learn an approximate surrogate for the flow-map function Φδ in Eq. (2.2)
from high-fidelity simulation or experimental data. Data-driven flow-map models can be
established from simulation data to provide an efficient surrogate for expensive computa-
tional models of the form in Eq. (2.1) that, for example, rely on numerical integration of
a large number of highly nonlinear and stiff differential equations, as is commonly the case
for complex biochemical systems. Notice that in this case, data-driven flow-map models
essentially approximate a numerical integrator of the differential equations in Eq. (2.1). Al-
ternatively, in the absence of any knowledge about the governing equations (i.e., functions
f in Eq. (2.1)), flow-map models can be directly learned from experimental observations in
order to discover the unknown system dynamics.

Data Generation

The data generation and model training strategy adopted in this work is summarized in
Figure 2.1.

Consider that we have access to one or more, NT in total, trajectories of state variables
sk over a discrete-time horizon k = 0, 1, · · · , T − 1, where k is the discrete-time index and T
is the length of the time horizon of the training trajectories. As a remark, note that k = 0
corresponds to t0, i.e., the initial time, k = 1 to t1 = t0 + δ1, k = 2 to t2 = t0 + δ1 + δ2
and so forth. The trajectory can be generated either from simulations or experiments. For
some time interval indexed by k and corresponding time tk where the states are known, we
observe a transition in states sk → sk+1. Hence, we have the current states (at time tk)
and obtain the future states (at time tk + δk), while the interval length represents the time
lag δk. Moreover, within each interval, other inputs xk, such as manipulated inputs to the
system, may be varying and thus should be accounted for in the data collection procedure. In
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Figure 2.1: (a) Algorithm for data generation and training of data-driven flow-map mod-
els. Validation trajectories are first generated. Then, one/multi-step ahead simulations or
experiments are performed to observe successor states given the initial states, inputs, and
time-lag. Subsequently, the data-driven flow-map model is trained. Finally, the prediction
accuracy of the trained model is assessed against the long-time validation trajectories. If
the prediction accuracy ϵ̂ is larger than some pre-specified threshold ϵ̂0, the model training
and validation process will be repeated. The training procedure for PCK is depicted in (b).
Several parameters must be selected during the model training, including the polynomial
order, hyperbolic truncation parameter, covariance function and the regression method used
for estimating the expansion coefficients.

summary, each time interval in a trajectory contains the information for a one-step transition
and, therefore, yields a single sample for the dataset.

Accordingly, at each time instant k, a single training sample is acquired, consisting of
the current states sk, the input values of interest xk, and the lag time δk, i.e., those are the
input variables in the dataset, while the corresponding label is the set of states that the
system arrives at, i.e., sk+1. Thus, our dataset (or experimental design) looks as follows:
the input data have the form X = {(s0,x0, δ0), (s1,x1, δ1), . . . , (sT−1,xT−1, δT−1)} while the
corresponding outputs are O = {s1, s2, . . . , sT}. Note that there is usually some degree of
freedom in choosing the lag time δ in simulations, whereas the choice of δ is often limited
by how fast measurements can be acquired in experiments. For trajectory generation, it is
crucial to vary the initial conditions s0 and inputs xk within some allowable range, as well as
the time lag δ whenever applicable. The training data must cover a wide range of state, input
and time lag values, as relevant to the application of the trained models. We note that an
effective strategy for generating simulation data is via one-step transitions, i.e., trajectories
of length equal to 1. That is, instead of generating an entire trajectory given some initial
conditions s0, we can randomly sample the state-space, along with the input parameters and
time lag, in order to compute the corresponding future states. The sampling step (step 1)
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is summarized in Figure 2.1(a). We remark that, although random sampling is used here
to generate the training data, probabilistic models such as PCK used in this work provide
confidence estimates on their predictions that can be used towards active learning-based
sampling (e.g., see [290]).

Data-driven Flow-maps using Polynomial Chaos Kriging

In this work, we use sparse PCK [204, 158] to discover a data-driven flow-map model
Φ̃(wk) for the dynamical system in Eq. (2.1), i.e., step 2 in Figure 2.1(a). Note that
since the time-lag is part of the inputs, we drop the δ subscript from the flow-map func-
tion symbol. The PCK training is summarized in Figure 2.1(b). Let us denote the vec-
tor of current states, input variables, and lag time by wk = [s⊤k x⊤

k δk]
⊤ ∈ RM , where

M = ns + nx + 1. Thus, we denote the data-driven approximation of the flow-map in
Eq. (2.2) by Φ̃(sk,xk, δk) : Rns × Rnx × R → Rns . The main benefits of using PCK for
constructing data-driven flow-map models include: (i) being more data efficient, especially as
compared to data intensive feedforward neural networks [272], when used for discovery of bi-
ological system dynamics from system observations; (ii) offering significant improvements in
the computational efficiency of data generation for surrogate modeling for dynamical systems
as compared to time-frozen polynomial chaos approaches [153, 154] ; and (iii) characterizing
the uncertainty of model predictions. To this end, PCK combines the global approxima-
tion capability of polynomial chaos expansions, extensively used for surrogate modeling of
(bio)chemical systems (e.g., [64, 199, 187]), with the local interpolation scheme of Kriging
(i.e., Gaussian processes (GP) [227]). The polynomial structure of PCK makes its train-
ing data efficient, whereas Kriging offers the ability to quantify the uncertainties of model
predictions.

In the context of PCK,wk is a realization multivariate random variableW with a (known)
joint probability distribution fW , i.e., W ∼ fW . The PCK approximation of the flow-map is
defined as

Y = Φ̃(w) =
∑

a∈A⊂NM

yaPa (W ) + σ2Z (w) , (2.5)

where Y ∈ Rns denotes the predicted variables (QoIs) at step k + 1, which are typically
a subset of the states s. The first term in Eq. (2.5) describes the trend (or mean) of the
a GP using a polynomial chaos expansion (PCE), while the second term Z (w) describes
the variance of the predicted variable. Pa (W ) represent the multivariate polynomial basis
functions that are orthogonal with respect to the probability distribution fW over the support
DW of the distribution, i.e., the range over which random numbers are defined and can be
drawn from. The orthogonality condition implies that

E{Pi (W )Pj (W )} =
∫
DW

Pi (w)Pj (w) fW (w) dw = δij, ∀i, j ∈ NM , (2.6)

with E being the expectation operator and δij the Kronecker delta;
Eq. (2.6) gives the tensor product of M univariate polynomials that are orthonormal with

respect to their corresponding marginal probability distribution. Optimal L2-convergence of
the expansion of orthogonal polynomials has been established based on the Wiener-Askey
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scheme for various probability distributions [313, 40], although arbitrary orthogonal basis
functions with sub-optimal convergence can also be constructed directly from moments of
the random variable W [196]. The truncated polynomial chaos expansion takes the form∑

a∈A

yaPa (W ), (2.7)

where ya are the coefficients of the basis functions. The order of the expansion is dictated by
the multi-index a ∈ A, with A ⊂ NM being the set of the multi-indices kept in the truncated
expansion. The truncation scheme aims to limit the infinite expansion of the trend to a series
of maximum order p. To address the challenges that arise due to increasing the order of the
polynomial basis for better approximation and/or the large dimension of w a q-norm scheme
[23] limits the possible multi-index values according to:

AM,p,q = {a ∈ AM,p : ||a ||q ≤ p}, ||a ||q =

(
M∑
i=1

aqi

) 1
q

. (2.8)

The latter notation represents a vector consisting ofM elements that are all natural numbers.
Therefore, the multi-index here is essentially an extended index that represents the order of
each monomial that participates in each polynomial term in the PCE. Note that originally
the multi-index represents any combination of polynomials of any arbitrary order if A = NM .
Nevertheless, to keep the expansion of the trend term in Eq. (2.5) finite and tractable, it
must be truncated up to a finite order p based on the q-norm. Therefore, the allowed values
of the multi-index are determined by the tuple (p, q). In addition, for the GP-related term,
Z (w) is a standard normal random distribution with variance σ2.

As described, the multivariate random variableW consists of the states s, input variables
x, and time lag δ. When x corresponds to uncertainties of a computational model (e.g.,
uncertainties in model parameters and/or initial conditions), their probability distribution is
typically available a priori from parameter inference. As such, their respective polynomial
basis functions can be chosen according to the Wiener-Askey scheme (e.g., Hermite basis
for Gaussian distributions, Legendre for uniform distributions). On the other hand, when x
corresponds to manipulated variables of a system, as is the case in the discovery of system
dynamics, the input variables can typically be modeled as uniform distributions within a
known range. The time lag δ can also be modeled as a uniform distribution within some range
of interest for the application at hand. However, the distribution of states sk is dependent
on the realized state trajectories when the training data are generated and, thus, cannot be
established a priori. Here, we assume states follow a multivariate Gaussian distribution with
a mean and covariance computed from the training samples.

The coefficients ya of the polynomial chaos expansion can be determined in a non-
intrusive manner via solving a least-squares problem [22]. Here, we induce further sparsity
by modifying the coefficient estimation problem to a L1-regularized regression problem [101].
The regularized coefficient estimation problem can be efficiently solved using the least-angle-
regression (LAR) algorithm [68], which estimates the coefficients of the most relevant terms
of the expansion, setting the rest of the coefficients to zero. Moreover, Z(w) in Eq. (2.5) is
defined in terms of a kernel function R(|w−w′|, θ), i.e., a function that provides some mea-
sure of similarity between different realizations of the random variable W . Here, we use the
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Matérn kernel function [227]. Overall, the parameters of the PCK that must be determined
using the training data include the coefficients ya of the trend, the variance term σ2, and the
hyperparameters θ of the kernel function. This is efficiently done via maximum-likelihood
estimation [204].

In this work, the following procedure is used for deriving the PCK flow-maps using the
data generation scheme of Section 2.2. We use the sequential PCK approach proposed in
[204], where a PCE is first trained based on the available data and is then embedded as the
trend of PCK. This procedure is shown in Figure 2.1(b). For training the PCE, we allow the
PCE’s maximum order to vary from 1 to 5; higher order polynomials are avoided to retain
a smaller expansion (i.e., less degrees of freedom) and mitigate overfitting. The truncation
factor q is varied from 0.7 to 0.85 since the resulting maximum order of the polynomials will
ensure that we do not have highly nonlinear interaction terms while allowing for elimination
of few of interaction terms. The optimal value of q is chosen based on cross-validation. The
hyperparameters of PCK are selected using a data-driven optimization algorithm, namely
the covariance matrix adaptation–evolution strategy [100]. Finally, it should be noted that
using PCK as the surrogate model places some limitation on the number of input variables
w that can be handled. Typically, GP-based models are utilized for lower dimensional
spaces due to the “curse-of-dimensionality” [287] 1. On the other hand, sparse PCEs can
effectively deal with high input dimensions, thanks not only to the truncation schemes that
are employed, but also the sparse regression schemes, e.g., LAR, that include only the most
informative terms in the expansion, thus minimizing the number of unknown coefficients. To
quantify the quality of the PCK predictions during the training phase we use the leave-one-
out cross-validation (LOOCV) error that is estimated from the training data (during LAR
in Figure 2.1). When one-step ahead test samples are available, validation errors can readily
be evaluated and are used for cross-validation.

So far, we have described the flow-map modeling procedure by utilizing one-step transi-
tion data, hence the PCK model is able to predict one step ahead states. Nevertheless, we are
interested in long-term integration of the dynamical system. To this end, Figure 2.2 shows
how a data-driven flow-map model can be used sequentially to predict the time-evolution of
the states of a dynamical system.

As stated, at each time instant k the PCK flow-map model essentially “integrates” the
states forward in time by δk until the final time is reached. Hence, we can also assess
the ability of the data-driven flow-map models in approximating the integration operator
and, hence, their predictive accuracy over a multi-step integration horizon. This is the d
Given i = 1, . . . , NV validation state trajectories, each of which of length Ti, we define the

1Not only the concept of Euclidian distance (which is the main feature of kernels) becomes less meaningful
in higher dimensions, but also higher-dimensional input spaces require more data to be efficiently discovered,
hence rendering the inference part of GP-based models harder. This challenge can be partially adressed via
sparse GPs [257, 282]
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Figure 2.2: Data-driven flow-map models for predicting the state variables of a dynamical
system over time. The flow-map model Φ̃ takes the current states sk, inputs xk, and lag
time δk at a discrete-time instant k as inputs to predict the states sk+1 at the subsequent
time instant k+1. By sequentially repeating this procedure, the time-evolution of the states
in relation to the inputs can be established.

normalized, time-averaged prediction error of the state variables (QoI) , ϵi, as

ϵi =

Ti∑
k=0

1

Ti

||Yk,i −Y true
k,i ||2

||Y true
k,i ||2

(2.9a)

ϵ̂ =
1

NV

Nv∑
i=1

ϵi, (2.9b)

where || · ||2 is the 2-norm of a vector; Y true
k,i and Yk,i are, respectively, the vector of state

variables (QoIs) in the validation dataset and those predicted by the data-driven flow-map
models at time instant k for each validation run i. In the remainder, we refer to ϵi as the
mean trajectory error (MTE), whereas ϵ̂ is the average MTE over all validation trajectories.

2.3 Data-Driven Discovery of Dynamical Systems
In this section, we apply the PCK-based flow-map modeling approach to learn the dynamics
of several benchmark systems using limited data. The first case study, based on the Morris-
Lecar system, compares the performance of the PCK model with neural network modeling
results of [272]. The second case study, based on the Lorenz system, focuses on reconstructing
the dynamics of a chaotic system in which variations in parameters significantly change the
solution landscape. Lastly, we show how the flow-map modeling approach can be used for
discovering the dynamics of a co-culture bioreactor under noisy observations and how the
variance term of PCK provides a measure of uncertainty of model predictions.

Morris-Lecar System

The first benchmark problem is the Morris-Lecar system [174], which describes neuronal
excitability. This system was used in [272] to examine neural network-based flow-map models
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for the discovery of nonlinear dynamics. In particular, a residual neural network was used
to represent the data-driven flow-map model, in which only the flow-map residual is learned
by skipping the input connection to the neural network and adding it to the output of the
latter. Here, we aim to recreate the results of the aforementioned work, demonstrating the
data efficiency of the proposed PCK approach to data-driven reconstruction of dynamics.
The dynamics of the Morris-Lecar system are described by

CM
dV

dt
= −gL(V − VL)− gCa(V − VCa)M∞

− gk(V − VK)N + Iapp (2.10a)
dN

dt
= λN(N∞ −N), (2.10b)

where V (mV) is the voltage difference between the sides of the membrane and N represents
the probability for the potassium channel being open.

M∞ = 0.5

(
1 + tanh

V − V1
V2

)
(2.11)

N∞ = 0.5

(
1 + tanh

V − V3
V4

)
(2.12)

λN = ϕcosh
V − V3
2V4

. (2.13)

The Type I model parameters M∞, N∞ and λN depend on the voltage and are defined as

[CM , gL, VL, gCa, VCa, gk, Vk, V1, V2, V3, V4, ϕ] =

[20, 2,−60, 4, 120, 8,−84,−1.2, 18, 12, 17.4, 0.066], (2.14)

taken from [272]. Here, it is assumed that the model parameters are fixed, as we aim to
reconstruct the system dynamics as a function of injected current xk = Iapp that can vary
within the range [0, 300] A. Specifically, we aim to predict the long-term system dynamics,
starting from given initial conditions, under a fixed Iapp. To compare our results with those in
[272], δk was chosen to be 0.2 ms; we did not consider the time-lag as part of the PCK model.
In other words, the input data consisted of samples in the form (Vk, Nk, xk)→ (Vk+1, Nk+1),
where xk is constant for every k ∈ [0, T ] for a given trajectory. This system exhibits a
saddle node bifurcation, which leads to an oscillatory behavior depending on the value of
input Iapp. Thus, the data-driven flow-map model must capture the oscillatory behavior for
different values of Iapp.

To train the PCK-based flow-map model, we generated one-step ahead samples of the
states Vk and Nk by randomly drawing the initial states from [−75, 75] × [0, 1]. Here,
we first examine the convergence error of the flow-map model to characterize how many
samples of states would be necessary for data-driven reconstruction of the system dynamics.
We quantify the convergence error in terms of the average MTE in Eq. (2.9) based on three
validation trajectories generated for Iapp = {0, 60, 150}. Figure 2.3 shows the average MTE
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estimated over 1,000 time steps in relation to the number of training samples, where the
vertical line around each error represents one standard deviation based on 5 repetitions of
the analysis. It is evident that the error converges after about 160 samples, suggesting that
a limited number of training samples is needed.

Figure 2.4 shows the reconstructed dynamics by the PCK-based flow-map model trained
using 240 samples in comparison with the true dynamics.

As can be seen, there is no visible discrepancy between the true time-evolution of the
system and the reconstructed dynamics. The system exhibits a bifurcation behavior, as
evident from the phase plots shown in Figure 2.4(c), (f), (i). Yet, the PCK-based flow-map
model is able to capture this complex behavior and accurately predict the system dynamics
over a long-time horizon. We note that a 500-fold saving in the number of training samples
is observed as compared to [272] in which a residual neural network representation was used
for the flow-map model. This is while the PCK model also yields slightly more accurate
predictions.

Lorenz System

We now consider a chaotic dynamical system based on the well-known Lorenz benchmark
problem [264]. The Lorenz system has been widely used in the data-driven modeling lit-

Figure 2.3: The average mean trajectory error, ϵ̂, of the PCK-based flow-map model for the
Morris-Lecar system in relation to the number of training samples, Ns. The error is estimated
based on three validation trajectories generated for the input Iapp values {0, 60, 150}. The
vertical bars represent the standard deviation of the error estimated based on 5 repeats of
the training.
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erature (e.g., [66, 224]). The Lorenz system is described by the following set of nonlinear
ordinary differential equations

da

dt
= σ(b− a) (2.15a)

db

dt
= a(ρ− c)− b (2.15b)

dc

dt
= ab− βc, (2.15c)

where s = [a, b, c]⊤ are the system states and x = [σ, ρ, β]⊤ are the uncertain model pa-
rameters. Chaotic behaviors can be encountered in various chemical and biological systems,
including in the growth of biological populations with non-overlapping generations [166] and

Figure 2.4: Reconstructed dynamics of the Morris-Lecar system by the PCK-based flow-map
model in comparison with the true system dynamics for the input Iapp values {0, 60, 150}.
The PCK-based flow-map model is trained using 240 samples. The left column shows the
time-evolution of voltage difference, V ; the middle column shows the time-evolution of the
channel opening probability, N ; and the right column shows the corresponding phase plots.
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Figure 2.5: Phase plots of the reconstructed dynamics of the Lorenz system by the PCK-
based flow-map model in comparison with the true system dynamics for different values of
model parameters. Subplots (a)-(c) correspond to the model parameters σ = 10, β = 8/3,
and ρ = 28. Subplots (d)-(f) correspond to the model parameters σ = 10, β = 8/3, and
ρ = 15.

the peroxidase–oxidase oscillator [188]. Here, we consider a constant time-lag δ = 0.01 that
captures the intrinsic time-scale of the system [35].

The Lorenz system exhibits a chaotic behavior based on the initial conditions s0, while
its long-term behavior is highly affected by the uncertain parameters x. The nominal initial
conditions and parameters of the system are, respectively,
s0 = [1.9427, −1.4045, 0.9684]⊤ and x0 = [10, 28, 8/3]⊤, for which the system oscillates
around two attractors. Here, the training data consisted of 500 random samples of the state-
space s within the range [−10, 10] × [−10, 10] × [−10, 10] and the parameters x within
the range [8, 12] × [10, 30] × [1, 5.5]. We used two validation trajectories to compare the
true system dynamics with those reconstructed by the PCK-based flow-map model: one
trajectory based on the nominal initial conditions and parameters and the other based on
x = [10, 15, 8/3]⊤ and s0 = [1.6655, −0.1178, 0.1748]⊤.

Figure 2.5 shows phase plots of the reconstructed oscillatory dynamics of the Lorenz
system, in comparison with the true system dynamics, over a simulation horizon of 5,000
time steps. We observe that the qualitative behavior of the Lorenz system is different when
the parameter ρ is varied, while the PCK-based flow-map model is able to reconstruct the
dynamics in both cases. The MTE is 0.522 for the nominal validation trajectory and 0.0013
for the second validation trajectory. Although the error for the nominal validation trajectory
seems relatively high, the main characteristics of the true dynamics are adequately captured,
as evident from Figure 2.5(a)-(c). That is, the limit cycles, the amplitude of oscillation and
period are adequately captured. These predictions are consistent with those reported in
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[224]. However, we note that reconstruction of the Lorenz dynamics using neural networks
typically requires on the order of a few thousands of training samples [240, 35], whereas the
PCK model here was trained using 500 samples.

Transient Co-culture System

In this case study, we demonstrate the ability of PCK-based flow-map models to learn
the transient behavior of a co-culture system with variable inputs. In particular, we focus
on the startup dynamics of a continuous bioreactor driven by the competition of several
auxotrophs [190]. To emulate data collection from a real system, we use a nonlinear dynamic
model of the bioreactor [286] to generate observations of the system states, which are then
corrupted with independent and identically distributed state-dependent measurement noise
ei ∼ N (0, 2.5 × 10−2sik), with i being an index for the measured states and k the time
index. The five state variables sk of the bioreactor include: the population of the two
species N1(Cells/L) and N2(Cells/L), the auxotrophic nutrients concentrations C1(g/L)
and C2(g/L), and the common shared carbon source concentration C0(g/L). The bioreactor
has three process inputs xk that can be varied in time. The process inputs are the dilution
rate D (hr−1) that varies within the range [0.75, 1.5] (hr−1), as well as the feed substrate
concentration of auxotrophs C1,in (g/l) and C2,in, both varying in the range [1.5, 2] (g/l). To
generate data for training the PCK-based flow map models, short simulation “experiments”
with a fixed length of T = 30 steps with δk ∈ [0.15, 0.25] hr−1 were performed. At each
time step k during the multi-step experiments, inputs xk were varied over the time interval
δk and noisy observations of the states were collected.

For the validation plots of Figure 2.6, we begin by some random initial condition at k = 0,
by applying an input x0 over some interval δ0. The model predicts the mean of the states at
k = 1, as well as their variance.

The integration proceeds by taking a next step based on the mean value of the states at
k = 1, predicting the states at k = 2. Using only the mean value to compute trajectories is
probably the simplest way when Gaussian Process state space models are utilized, however,
there are more sophisticated ways for the trajectory generation [107], which are beyond the
scope of the paper. Note that properly incorporating the uncertainty in multi-step ahead
predictions is a complicated issue addressed in the literature [214, 91]. Here, it suffices to
use a deterministic function, e.g., the mean value of the data-driven flow-map model, to
integrate in time since this way we avoid the major issue of using noisy inputs into our PCK
model. The validation trajectories have a length of Nk = 40 steps ahead, extending slightly
beyond the training range. Moreover, thanks to the nature of the PCK model, we can also
simply characterize the confidence of the model to the prediction of the dynamics. To get
some uncertainty estimates on the predicted trajectories, at each step k, we plot the 3σ(wk)
error bars around the mean. Overall, we observe that the true, noiseless trajectories are
embedded within the confidence intervals of the PCK predictions.
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2.4 Uncertainty Quantification of Expensive
Computational Models

In this section, we demonstrate the utility of data-driven flow-maps for the UQ of a Mi-
crobial Electrosynthesis (MES) bioreactor using a high-fidelity computational model that is
subject to uncertainty in model parameters and initial conditions. In particular, we show
how flow-maps can be used as surrogate models for efficient sample-based approximation of
distribution of state variables, global sensitivity analysis, and Bayesian parameter inference,
when the original model is prohibitively expensive for a sample-based analysis.

We consider the batch MES bioreactor shown in Figure 2.7 for CO2 fixation [1], with
potential applications in space biomanufacturing [20]. The bioreactor consists of a well-
mixed liquid bulk phase that contains dissolved CO2, i.e., substrate. A microbial community
forming a biofilm grows on the cathode of the bioreactor. The dissolved substrate diffuses
into the biofilm through a linear boundary layer and is then consumed by bacteria towards

Figure 2.6: Predictions of the state variables of the transient co-culture system via the
PCK-based flow-map models in comparison with the observed state trajectories. The colored
lines/points correspond to the predicted trajectories by the mean of the PCK models, starting
from some initial states at t = 0 hr. Black symbols represent the observed trajectories at
specific snapshots during a validation run. Vertical error bars represent the uncertainty in
the predictions of the PCK models, estimated as plus/minus two standard deviations from
the mean value. The shaded areas correspond to a time interval that was not accounted for
when training the PCK models.
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the growth of the biofilm. This leads to spatial distribution of the substrate concentration
within the biofilm. Voltage is applied to the cathode while the biofilm acts as a conductive
matrix through which electron transport takes place. Both the substrate CO2 in the biofilm
and the local overpotential due to the current flux contribute to the biofilm growth kinetics
described by the dual Monod-Nerst model [283].

A computational model of the dynamics of the MES bioreactor is adopted from [120,
161], with some modifications. Within the biofilm, the cell growth leads to the production
of acetate as a metabolic product. A primary modeling approach in the aforementioned pa-
pers assumes the total biomass has a constant concentration and exists in two forms, active
and inactive, each of which occupies some volume fraction. We assume that biomass exists
only in active form, thus the equations describing the volume-fraction change within the film
effectively become a single equation for the rate of change of film thickness, Lf , which is a dif-
ferential state in our system. Moreover, the film growth is affected by a constant detachment
rate. It is also assumed that the reaction occurs only within the biofilm, so the only source
of acetate in the bulk phase comes from exchange with the biofilm through the boundary
layer. We further assume the transport-reaction phenomena in the biofilm are much faster
than the transport that occurs across the boundary layer and in the bulk phase; accordingly,
the conservation laws inside the biofilm are considered to be in pseudo steady-state [120].
Hence, the computational model consists of a set of nonlinear second-order ordinary differ-
ential equations that describe the spatial distribution of substrate, acetate and overpotential
within the biofilm, coupled with a set of first-order ordinary differential equations that de-
scribe the concentration of CO2 in the bulk phase Sb, the acetate concentration in the bulk
phase Pb, and the biofilm thickness Lf . As such, the three state variables of the system are

Figure 2.7: Schematic of the microbial electrosynthesis bioreactor. The bioreactor consists of
3 regions: the bulk phase, the biofilm, and a boundary layer (BL) in between. The black line
represents a typical concentration profile of some species as predicted by the computational
model used in this work. The concentration is assumed to be constant in the bulk phase,
changing linearly across the boundary layer, and exhibiting a more complicated shape in the
biofilm.
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described by

dLf

dt
= (Y q̂ − rd)Lf (2.16a)

dSb

dt
=
Af

Vr
jS (2.16b)

dPb

dt
=
Af

Vr
jP , (2.16c)

where Y ( mgX
mmolS

) is the biomass yield coefficient, q̂( mmolS
mgXdays

) represents an average substrate
consumption specific rate within the biofilm, rd ( 1

days
) is a detachment rate, Af (cm

2) is the
cross-sectional area of the biofilm, and Vr (cm3) is the bioreactor volume. The mass balances
for the substrate and product are a function of the flux of each species across the linear
boundary layer described by

jm =
Db

Lb

(mf (z = Lf )−mb), m = S, P , (2.17)

where m denotes the species (i.e., substrate and product), Db (
cm2

days
) is the diffusivity co-

efficient in the boundary layer and Lb(cm) is the thickness of the boundary layer. The
subscript f denotes the species concentration in the film at position z = Lf . The equa-
tions that describe the diffusion phenomena within the film are given in the SI. In order to
determine the concentrations at Lf , a boundary value problem (diffusion within the film)
must be solved at each time step, as the concentrations in the biofilm are a function of
the bulk concentrations. The computational model is fairly expensive for UQ analyses that
rely on Monte Carlo sampling; each model run takes on average 4.5 minutes. The model
is subject to time-invariant uncertainty in its parameters and initial conditions. Specifi-
cally, the model uncertainty comprises of the conductivity of the biofilm kbio, the maximum
growth rate µmax of the Nerst-Monod model, the yield Y , the Monod affinity constant Ks,
as well as the acetate production-related parameters α and β. These six uncertain param-
eters are assumed to follow a uniform probability distribution. Their nominal values are
[kbio, µmax, Y, Ks, α, β]

⊤ = [1 × 10−3, 4.5, 0.25, 3.0, 0.1, 2 × 10−5]⊤, while they vary
uniformly ±10% from the nominal values.

In this case study, we construct data-driven flow-map models of the PCK form in Eq. (2.5)
for the output variables Y = [Lf Sb Pb]

⊤, such that the six sources of uncertainty constitute
the vector of input variables x in Eq. (2.5). The three flow-map models, one for each QoI,
were trained using simulation data generated via the computational model for lag times
in the range of δ = [0.05, 0.1] days, which allow us to adequately capture the bioreactor
dynamics. Notice that clearly the lag time δ must always be larger than the integration time
step of the computational model.

The training dataset consists of full state trajectories, as well as one-step ahead samples
of the states. We initially generate NT = 30 trajectories, with fixed uncertain parameters
in time, over a process time span from 0 to 3.5 days, which corresponds to approximately
T = 50 samples per trajectory. Then, using the states sk corresponding to each sample
wk, we randomize the uncertain parameters and perform one-step ahead simulations. In
this way, approximately 1,400 training samples were generated, while 800 samples are used
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for training the PCK models. The rationale behind not randomizing the states is that the
validation trajectories (step 0 of Figure 2.1) indicate that there is a high correlation among
state values. For instance, as Lf grows in time (under insignificant detachment), Sb decreases
due to consumption. Thus, for a given set of uncertain parameters and initial states, a few
full state trajectories will help generate more informative training samples.

Figure 2.8 shows the predicted trajectories using the data-driven flow-map PCK model
for a given realization of uncertainty and initial conditions, while the true trajectory is
juxtaposed. The trajectories correspond to a time-march of 50 steps ahead. We observe a
perfect agreement between the predicted and validation trajectories, with the average MTE
for the three states being approximately ϵ̂ = 2.5× 10−4.

An important remark should be made here regarding the benefits of the presented flow-
map approach to surrogate modeling of dynamical systems in comparison with the so-called
time-frozen approaches discussed in Section 2.1. First, the flow-map models provide the
flexibility to approximate the distribution of states at any time instant of interest without
the need for constructing a separate surrogate model for each time instant, as in time-frozen
surrogate modeling. For example, if we were to use a time-frozen approach, 50 separate
PCK models would need to be constructed for each QoI to predict the time-evolution of
the QoI distribution over the 50 time instants considered here. Thus, not only a flow-
map modeling approach significantly reduces the number of surrogate models that must be
constructed to only one model for each QoI, it also provides flexibility via alleviating the
need to build the models at pre-specified time points. Furthermore, the flow-map modeling
approach enables more efficient data generation. To clarify this point, let us assume that
Np realizations of uncertainty are sufficient for generating a rich training dataset that yields
surrogate models with low approximation error. In the case of the time-frozen approach, we
would require to generate Np full state trajectories since the states must be observed at all
time instants for all uncertainty realizations. This approach to data generation can become
prohibitively expensive, in particular when data generation relies on expensive simulations.
However, training the flow-map models, in principle, requires simulation of a limited number
of full state trajectories (in this study, 25 trajectories), whereas Np training samples can be
straightforward generated via one-step ahead integration of the computational model. In

Figure 2.8: Predicted state trajectories of the the microbial electrosynthesis bioreactor: (a)
biofilm thickness, Lf , (b) CO2 concentration in the bulk phase, Sb, and (c) acetate concen-
tration in the bulk phase, Pb. Hollow points represent the validation trajectories, while the
solid lines represent the trajectories predicted by the PCK-based flow-map models.
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Figure 2.9: Fast uncertainty propagation and global sensitivity analysis of the the microbial
electrosynthesis bioreactor using data-driven flow-map models of quantities of interest. Sub-
plots (a)-(c) show the kernel density estimates of the distribution of the biofilm thickness
(Lf ), concentration of CO2 in the bulk phase (Sb), and acetate concentration in the bulk
phase (Pb) predicted by the PCK models at time t = 3.5 days. The distributions of Lf , Sb

and Pb are approximated via Monte Carlo sampling using 20,000 realizations of uncertain
model parameters, where a 100-fold computational speedup in sample-based approximation
of the distributions is attained. Subplots (d)-(f) show the Borgonovo indices, denoted by
S, that quantify the global sensitivity of Lf , Sb and Pb at t = 3.5 days with respect to the
six uncertain model parameters. The Borgonovo indices are approximated based on 20,000
uncertainty realizations.

the following, the use of PCK-based flow-map models is demonstrated for expensive UQ
analyses.

Forward Uncertainty Propagation and Global Sensitivity Analysis

Here, we use the data-driven flow-map models for efficient uncertainty propagation via
sample-based approximation of the distribution of the three output variables. Figure 2.9(a)-
(c) shows the distribution of the states at t = 3.5 days.

To approximate their distribution, the flow-map models were evaluated using 20,000
realizations of the model uncertainty x. Each run of the data-driven flow-map model takes
on average less than 3 seconds,2 as opposed to the average run time of 4 minutes of the
computational model. This implies that the flow-map models significantly accelerate the

2Notice that the evaluation time of a PCK model depends on a multitude of factors, such as the de-
gree of the polynomial basis functions, kernel type, and, mainly, amount of data used to train the model.
Additionally, a kernel-based model such as PCK is more expensive to evaluate than a polynomial chaos
expansion.
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uncertainty propagation, enabling an approximately 100-fold increase in the computational
speed. This is especially beneficial when the distributions are skewed (or bi-modal), as in
Figure 2.9(a)-(c). In this case, a large number of samples, O(104 − 105), would be typically
required for accurate sampled-based approximation of distribution, or statistical moments
of the quantities of interest. Although not shown here, we can efficiently approximate the
distribution of states at any time instance using trajectories generated by the surrogate
model.

Moreover, we use the data-driven flow-map models to perform a global sensitivity analysis
in order to asses the importance of the six uncertain model parameters, x, on the state
variables Y . This is done via evaluation of the Borgonovo indices [28], denoted by S, which
are based on the full distribution of some quantity of interest, as opposed to their statistical
moments. The results of global sensitivity analysis of for the states at t = 3.5 days are shown
in Figure 2.9(d)-(f), where each bar corresponds to a different uncertain model parameter.
The Borgonovo indices are approximated using the same 20,000 samples used in forward
UQ. We observe that the probabilistic uncertainty of yield Y and maximum growth rate
µmax have the most dominant effects on the variability of the three states, while the product
concentration Pb is also significantly affected by the uncertainty in the parameter α, which
is the metabolism-related productivity constant.

Bayesian Inference of Unknown Model Parameters

We now use the data-driven flow-map models to solve a Bayesian inference problem in order
to infer the uncertain model parameters x. Bayesian inference relies on Bayes theorem to es-
timate the posterior probability distribution of the unknown model parameters from available
data. Here, noisy observations of Lf , Sb and Pb at time instants {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5}
days constitute the dataset D used for parameter inference; measurement noise is modeled
as a Gaussian distribution with zero mean and state-dependent variance. Once a vector of
system measurements d at a time instant is observed, the change in our knowledge about
the unknown parameters is described by Bayes’ rule [122]

fx|D (x|d) =
fD|x (d|x) fx (x)

fD (d)
, (2.18)

where fx|D denotes the posterior distribution of the uncertain parameters after observing the
data; fD|x is the likelihood function that describes the probability of observing data given
the parameter estimates; fx is the prior distribution of parameters; and fD is the so-called
evidence or marginal likelihood that ensures the posterior distribution integrates to 1.

As Eq. (2.18) implies, Bayesian inference provides an explicit representation of the un-
certainty in the parameter estimates via characterizing the full posterior distribution of un-
known parameters x. The prior distribution of parameters and the likelihood function must
be specified to solve Eq. (2.18). Here, we used the same uniform distributions as those used
to construct the PCK surrogate models to represent the prior distributions, although these
can be different. The likelihood function is specified by the observation noise model, which
is assumed to be zero-mean Gaussian with state-dependent variance in this work. We use
a particle filtering method, namely sequential Monte Carlo (SMC) [147], to approximately
solve the Bayesian inference problem by iteratively updating the posterior fx|D at every
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Figure 2.10: Bayesian inference of unknown parameters of the computational model of the
microbial electrosynthesis bioreactor. The parameters are estimated via sequential Monte
Carlo using 20,000 particles. Red and blue distributions represent the prior and posterior
distributions of the unknown model parameters at time 3.5 days, respectively. The red
vertical lines correspond to the true parameters, while the blue vertical lines are the estimated
posterior mean value of parameters.

time instant that system observations become available; see [154] for further details. Notice
that parameter estimation via Bayesian inference methods such as SMC relies on accurate
construction of the probability distributions in Eq. (2.18). As described in Section 2.4, the
data-driven flow-map models enable efficient sample-based approximation of the distribu-
tions using a very large number of samples, which otherwise could be impractical using an
expensive computational model.

Figure 2.10 shows the posterior distribution of the parameters x at t = 3.5 days esti-
mated via SMC using the dataset D, as specified above. The posterior distributions are
approximated using 20,000 particles. Note that the posterior distribution ranges seem to
be larger than the prior in some cases, which is an artifact of the kernel density estimation
(i.e., the selection of the bandwidth parameter) [59]. Figure 2.10 suggests that only the
posterior distributions of parameters Y and µmax have changed significantly with respect
to their priors. It is also evident that the mean of the posterior distributions (blue verti-
cal lines) for parameters Y and µmax provides a fairly accurate estimate for the true, but
unknown, parameter values (brown vertical lines). In particular, the true value and the
posterior mean are indistinguishable, while the posteriors are much more narrow compared
to priors as stated before. Nonetheless, the posterior distributions for the other parameters
remain similar to their priors with little to no change, suggesting these parameters cannot be
estimated using the available dataset D. This can be attributed to the lack of information
content of system observations D for inferring the unknown parameters; a deficiency that
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can be addressed via optimal experiment design [235, 199]. We again note the flexibility of
the flow-map models that would allow us to seamlessly add new observation points, should
that become necessary for better parameter inference, without the need to construct new
surrogate models for the states observed at new time points.

2.5 Conclusions
This paper presented a flow-map modeling approach based on polynomial chaos Kriging for
the discovery of system dynamics from data. Data-driven flow-map models directly approx-
imate the integration operator of differential equations that describe the state transitions
of a dynamical system as a function of system state and input variables. We illustrated
the usefulness of the proposed approach for learning mathematical descriptions of nonlinear
dynamical systems and deriving dynamic surrogate models for fast uncertainty quantifica-
tion applications. Our analyzes reveal that polynomial chaos Kriging-based flow-maps offer
significant benefits in terms of data efficiency, as well as computational efficiency of data
generation, for the discovery of nonlinear system dynamics and surrogate modeling.
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Chapter 3

Performance-Oriented Model Learning
via Bayesian Optimization

This chapter demonstrates the utility of data-driven modeling for decision-making and, in
particular, in the context of model learning for closed-loop control-based applications. The
closed-loop performance of model-based controllers, such as model predictive control, largely
depends on the quality of their underlying model of system dynamics. Inspired by the no-
tion of identification for control, this chapter presents a strategy for performance-oriented
model adaptation for control. Starting from a data-driven control-relevant model based on
prior knowledge about the system, the goal is to set up and solve a performance-oriented
model adaptation problem towards optimizing the closed-loop system performance. To han-
dle multiple conflicting objectives, multi-objective Bayesian optimization (MOBO) is used.
The MOBO approach is demonstrated on a benchmark bioreactor case study. This chapter
is adapted from [159].

3.1 Introduction
Model-based and optimization-based control approaches such as model predictive control
(MPC) are widely used for control of constrained multivariable systems in a wide range of
applications [229]. An important practical consideration in model-based control design is the
model quality, which can greatly affect the closed-loop control performance, especially when
the inherent robustness provided via measurement feedback is insufficient to mitigate model
uncertainties. There has been a plethora of work on robust and stochastic model-based
control and MPC to systematically account for model uncertainties and disturbances in the
control problem formulation (e.g., [167, 169]). However, these strategies generally provide
robustness to uncertainties at the expense of conservative control performance.

The traditional practice in model-based control design has relied on developing models
independent of their control-oriented performance, i.e., how the predictive quality of mod-
els would influence the closed-loop control performance. An alternative view in handling
system uncertainties in model-based control is to focus on the performance-oriented quality
of models, rather than their general predictive quality. This point-of-view inspired much
of the developments in the areas of closed-loop identification [292, 78] and identification for
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control (I4C) [88]. The notion of I4C has been extensively explored for designing fixed-order
controllers [87] and, more recently, for data-driven model learning and adaptation for MPC
[14, 210, 262]. The fundamental idea of I4C is that the model that provides the best closed-
loop performance may not be the one yielding the smallest prediction errors. This notion
suggests that, for control applications, data-driven models must be identified or adapted by
optimizing for their control-oriented predictive quality, which can be quantified in terms of
pre-selected closed-loop performance measures of interest.

This paper focuses on performance-oriented model learning for model-based control appli-
cations. In recent years, there has been significant work on augmenting physics-based or data-
driven models with a learning-based model such as deep neural networks or Gaussian process
regression to capture unmodeled system dynamics (e.g., [89, 316, 13, 47, 181, 320, 211]). This
modeling paradigm has been shown to be particularly useful in the context of learning-based
control to mitigate plant-model mismatch towards safe and high-performance operation of
complex technical systems (e.g., see [105, 168, 106, 26] and the references therein). To this
end, this paper presents a systematic approach for performance-oriented model adaptation
for control problems with multiple, possibly conflicting objectives. We consider a composite
model structure consisting of a prior system model (physics-based or data-driven) and a
data-driven model whose parameters can be efficiently adapted in a performance-oriented
manner. Since in general closed-form expressions do not exist for closed-loop control perfor-
mance measures, derivative-free optimization is used for performance-oriented model adap-
tation. In particular, we use Bayesian optimization (BO) [251], which has emerged as a
powerful derivative-free method for optimizing black-box functions.

Owing to its ability to directly handle expensive-to-evaluate and noisy functions, BO
has been employed in various applications, including hyperparameter selection for machine
learning algorithms [258, 27] and automated strategies for controller tuning [18, 14, 183,
76, 124, 150, 200, 262, 245, 197]. However, the proposed BO approaches to model learning
and controller auto-tuning rely on a single-objective formulation that is inadequate when
the control design problem entails multiple and often conflicting control objectives [10, 232].
Thus, this paper proposes a multi-objective BO (MOBO) approach to model learning by
leveraging the MOBO algorithm in [58]. The key notion of MOBO is to sample a probabilistic
surrogate model of the multiple performance objectives, learned from closed-loop data, in
an informed manner using a computationally efficient expected hypervolume improvement
acquisition function [58, 11], which aims to discover Pareto optimal solutions of the multi-
objective optimization problem.

We illustrate the MOBO approach to performance-oriented model learning on a bench-
mark bioreactor case study that has been widely used in MPC and input design studies
(e.g., [103, 203]). Our simulation results demonstrate that the proposed model adapta-
tion procedure can effectively learn the plant-model mismatch within fewer process runs, as
compared to closed-loop identification, yielding a control-oriented model that provides satis-
factory closed-loop performance with respect to multiple closed-loop performance measures
of conflicting nature. We note that the proposed MOBO approach is readily generalizable to
controller auto-tuning under process uncertainty. The paper is organized as follows. Section
3.2 presents the general formulation of the performance-oriented model learning problem.
Section 3.3 describes the MOBO algorithm. Section 3.4 presents the composite model struc-
ture considered in this work, along with a discussion on adaption of the composite model
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within a black-box optimization framework. Section 3.5 demonstrates the proposed ap-
proach on the benchmark bioreactor case study and compares its performance to closed-loop
identification.

3.2 Problem Statement
We aim to control the discrete-time, uncertain nonlinear system

x+ = f(x, u,w), (3.1)

where x ∈ Rnx is the current state, x+ is the successor state, u ∈ Rnu is the control input,
and w ∈ Rnw represents unknown system disturbances. For the case of perfectly measured
state of (3.1), we consider a model-based control law κ(x; θ), such that κ : Rnx ×Rnθ → Rnu

maps the state to the control input while parametrized by the adaptable model parameters
θ ∈ Θ that lie in a bounded set Θ ⊆ Rnθ .1 No assumptions are imposed on the complexity
or structure of the time-invariant control law κ(·), which can be a non-convex or implicitly-
defined function of x and θ. By substituting a given controller u = κ(x; θ) in (3.1), we arrive
at the closed-loop system

xk+1 = f(xk, κ(xk; θ),wk), (3.2)

where xk and wk are, respectively, the state and disturbance at discrete time step k ∈ N. We
note that every single trajectory of the closed-loop system (3.2) over a finite number of time
steps T is fully governed by the choice of the model parameters θ and system uncertainties
w = {x0,w0,w1, · · · ,wT−1}, where x0 denotes the initial system state. We assume the
uncertainties w ∈ W follow a probability distribution PW defined over a bounded support
W .

In this work, we look to determine the “optimal” model parameters θ⋆ by solving the
multi-objective optimization problem

θ⋆ = argminθ∈Θ{Ew[ϕ1(θ,w)],Ew[ϕ2(θ,w), . . . ,Ew[ϕM(θ,w)]}, (3.3)

where {ϕm(·)}Mm=1 : Θ × W → R are M measurable functions that define the closed-loop
performance objectives. The performance objectives in (3.3) are defined in terms of expecta-
tions Ew [ϕm(θ,w)] =

∫
W ϕm(θ,w)PW , for any scalar function of the closed-loop trajectories

(3.2).2 The performance objectives are generally defined in terms of reference tracking error,
nonlinear economic costs, and violation of quality or safety-critical constraints. Yet, closed-
form expressions do not exist for these closed-loop performance measures, which makes the
solution of the multi-objective optimization problem (3.3) particularly challenging.

The goal of this paper is to learn the parameters θ of a data-driven model that captures
the plant-model mismatch in a performance-oriented manner. We assume that a prior model

1In general, the parameters θ can include various controller design and tuning parameters (e.g., see [192]).
In this paper, however, we use θ to only denote model parameters that can be adapted.

2Alternatively, the optimization problem (3.3) can be formulated as a robust problem in which the
performance measures {ϕm(·)}Mm=1 are defined in terms of worst-case performance objective or constraint
violations [192, 201].
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(either physics-based or data-driven) of the system (3.1) is available. As such, a data-driven
component, whose parameters θ can be adapted, augments this prior model. This modeling
approach is particularly advantageous for solving the performance-oriented model learning
problem (3.3) for the following reasons. First, it encodes the a priori available knowledge
of the process, thus is more likely to yield improvements in the closed-loop performance
compared to initiating the model learning procedure randomly with no prior knowledge of
the system. This can significantly enhance the performance-oriented learning of θ, espe-
cially when experimentation budget for model learning is limited. Second, adapting θ in a
region informed by prior knowledge can translate to changes in parameters such that model
predictions still retain their physical meaning, significantly aiding in constraint satisfaction.
Third, particularly when a physics-based model is available a priori, the physics embedded
in the predictive model can aid achieving meaningful predictions, which is not guaranteed
with a data-driven model that operates outside the identification range. In the next section,
we review the main concepts of the MOBO algorithm used for solving the multi-objective
optimization problem problem (3.3).

3.3 Multi-Objective Bayesian Optimization
In general, closed-form expressions do not exist for the M closed-loop performance objectives
{ϕm(θ)}Mm=1 in the multi-objective optimization problem (3.3). Here, we resort to multi-
objective Bayesian optimization for solving the performance-oriented model learning prob-
lem. Let us define a vector-valued objective function as h(θ) : Rnθ → RM where each entry of
h(θ) corresponds to a closed-loop performance objective in (3.3), i.e., hm(θ) = Ew [ϕm(θ,w)],
given the real-valued decision variables θ ∈ Θ. We use sample average approximation (SAA)
[127] to approximate the expectation of each performance objective as

hm(θ) = Ew [ϕm(θ,w)] ≈ 1

Nw

Nw∑
j=1

ϕm(θ,wj), (3.4)

where Nw is the total number of realizations of disturbance w for a given θ. As such, the
sample-average approximations of (3.4) yields noisy observations of the closed-loop perfor-
mance objectives

ψm(θ) = hm(θ) + ϵm, (3.5)

where ϵm represents the observation noise for the mth performance objective. In the remain-
der, we use ψ(θ) to denote the measured performance objectives for a given θ.

The fundamental idea of BO is that the objective function(s) may have an unknown
mathematical form, but can be queried at any point in the design space [251]. This is partic-
ularly important since it avoids the necessity of having explicit expressions or approximations
of derivatives for solving the optimization problem (3.3). BO takes a sequentially querying
approach to update our belief over possible realizations of the performance objectives and,
subsequently, the location of the global optimum of the decision variables; or the true Pareto
front in MOBO, as described below. There are two key elements in BO. The first one is
a probabilistic surrogate model trained to approximate the objective function(s). Gaussian
processes regression [227] is the most common surrogate modeling approach in BO, although
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other options, e.g., tree Parzen estimators [322], have also been used. The second element is
the so-called acquisition function, which is optimized to determine the next query point in
the design space that is most promising to be global optimum. There are various acquisition
functions; the most widely used ones are the upper or lower confidence bound as well as
the expected improvement [80]. The core idea of the acquisition function is to use the un-
certainty information provided of the probabilistic surrogate of the objective function(s) to
systematically tradeoff exploration and exploitation of the design space, so that the “optimal”
combination of decision variables can be established within a given number of runs.

In this work, Gaussian process models are trained for the M performance objectives
using the closed-loop data {(θi,ψi

m)}Ri=1, ∀m = 1, . . . ,M , where the index R corresponds
to the Rth closed-loop control run. Since there is typically no single optimizer in multi-
objective optimization, the goal of MOBO is to discover a set of Pareto optimal points
that define the Pareto front. We denote the finite set of Pareto optimal points by P . A
solution h(θ) is said to Pareto dominate h(θ′) if hi(θ) ≥ hi(θ

′), ∀m = 1, . . . ,M , while
∃m′ ∈ {1, . . . ,M} : hm′(θ) > hm′(θ′).3 Here, we use the MOBO algorithm proposed in [58]
to discover the Pareto dominate solutions of the multi-objective optimization problem (3.3).
The MOBO algorithm uses a computationally efficient expected hypervolume improvement
(EHVI) acquisition function [58, 11], which is essentially the extension of the commonly used
expected improvement acquisition function in single-objective BO [70]. Since the multiple
objectives form hyperplanes in the M -dimensional space in which they reside, EHVI relies
on the hypervolume indicator [98] of a finite Pareto set P , given some reference point θr.
The hypervolume indicator is defined as HV(P , θr) = λM(

⋃|P|
i=1R[θr,θi]), where R[θr,θi] is

the hyper-rectangle bounded by the vertices [θr,θi] and λM is the M -dimensional Lebesgue
measure of the space dominated by P and bounded from below by θr. Thus, given a set of
new observed points Z, we are interested in the improvement of the hypervolume, denoted
by HVI, stemming from these observations. Accordingly, the EHVI acquision function,
denoted by αEHV I(θc), is defined in terms of HVI as

HVI(Z) = HV(P ∪ Z, θr)−HV(P , θr) (3.6a)
αEHV I(θc) = E [HVI(h(θc))] . (3.6b)

Intuitively, the EHVI acquisition function seeks to determine the decision variable θc that,
when observed, maximize the hypervolume covered by the corresponding Pareto front, given
a reference point. The HVI can be calculated by partitioning the non-dominated space
into disjoint hyper-rectangles [58]. Note that the acquistion function can seek more than
one point per iteration, i.e., q points can be queried. It is worth mentioning that since
the performance objectives h(θ) are probabilistically approximated by Gaussian process
models, the improvement of the hypervolume (HVI) in the EHVI acquisition function should
be marginalized over the probability distribution of possible objectives under the normal
distribution. Therefore, the EHVI acquisition function for q points is given by

αqEHV I = E[HVI({h(θi)}i=q
i=1)] =

∫
RM

HVI({h(θi)}i=q
i=1)dh, (3.7)

3This is the case for a maximization problem while the inequality should be reversed for minimization
problems.
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where the subscript qEHVI denotes that the acquisition is based on the EHVI after observing
q points. For the case of q > 1, the multivariate integral in (3.7) does not admit an analytical
solution. Thus, it is approximated via Monte Carlo sample-based integration.

3.4 Composite Model Structure for Model Adaptation
In this section, we present a composite model structure that is particularly suited for
performance-oriented model learning. The fundamental assumption is that a prior model of
the system (3.1) exists, which can be either physics-based or data-driven. We represent the
prior model by the discrete-time description

s̃k+1 = f̃(s̃k, uk), (3.8)

where s̃ ∈ Rns denotes the predicted state by the prior model and the model equations f̃
can take any linear or nonlinear functional form. In effect, the presented model learning
procedure relies on a prior model that predicts the future state as a function of the current
input and state.

The prior model (3.8) is augmented with a data-driven model whose parameters θ can
be learned in a performance-oriented manner using the MOBO approach described in Sec-
tion 3.3. This data-driven model essentially represents the mismatch between the prior
model (3.8) and the system (3.1), which can arise due to uncertainty in parameters or struc-
ture of model equations in (3.8). A commonly used approach in learning-based control to
represent state- and input-dependent plant-model mismatch is via Gaussian process regres-
sion (e.g., [105, 27]), although other data-driven methods can also be utilized. Here, we
consider a data-driven mapping Fθ : Rnx → Rnx parameterized by θ, which is an implicit
function of state and control input, to represent the uncertainty of the prior model (3.8).
Accordingly, the model used to design the control law κ(x; θ) (see Section 3.2) takes a general
composite functional form as

sc = (Fθ ◦ s̃k+1) (3.9a)
sk+1 = g(sc), (3.9b)

where ◦ denotes the composition operator, sc is the result of the composition, and g is a gen-
eral function of this composition that yields the successor state sk+1 of the composite model
used for control design. Notice the difference between the successor state s̃k+1 predicted by
the prior model (3.8) and the successor state sk+1 predicted by the composite model (3.9).

A popular choice for the data-driven mapping Fθ is artificial neural networks due to
their universal approximation capability [95], while offering sufficient flexibility for model
adaptation purposes. Note that Bayesian neural networks with confidence bounds on their
predictions could also be useful [284]. Here, we use a feedforward neural network to represent
the mapping Fθ, which is called a “performance adapted network” (PAN) in the remainder
of this paper.

The PAN constitutes a nonlinear, input-output mapping, where information is propa-
gated from the input layer to the output layer via L hidden layers that contain units known
as nodes [95]. Given an input z, the output of the PAN is defined as

F(z; θ, C) =W L+1 ◦ (σL ◦W L) ◦ · · · ◦ (σ1 ◦W 1)(z), (3.10)
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where W i is the weight and bias matrix between the ith and (i+1)th layers of the network
and σi is the activation function. In (3.10), θ = {W i}L+1

i=1 are the PAN parameters that must
be adapted via MOBO, whereas C are the preselected hyperparameters [72].

The construction of PAN must ensure that the predicted state s by the composite
model (3.9) is physically meaningful. Furthermore, we generally desire a PAN architecture
that has (i) a minimum number of parameters that must be adapted in a performance-
oriented manner; thus, keeping the MOBO problem tractable; and (ii) a form that is ex-
plainable such that we can establish meaningful bounds for the parameters θ. Bounding
the space of decision variables θ in the MOBO problem is crucial for both the convergence
of the optimization algorithm, as well as for ensuring that the predicted state is physically
meaningful. Here, we consider an implicit multiplicative form for the composite model (3.9),
which takes the form

sk+1 =
(
Fθ ◦ f̃(s̃, u)

)
f̃(s̃, u), (3.11)

where the term
(
Fθ ◦ f̃(s̃, u)

)
is in effect a muiltiplicative/scaling term to the predictions of

the prior model. This scaling property can be realized by using a sigmoid activation function
in the last layer of the PAN

σ(ζj) = ω0
1

1 + e−ζ
∈ [0, ω0] ζ ∈ R, (3.12)

where ζ is the input to the activation function, i.e., the output of the last hidden layer,
and ω0 is a factor that rescales the sigmoid as [0, 1] → [0, ω0]. We note that the choice of
activation functions and structure for the hidden layers of PAN is rather arbitrary.

Remark 1: An additive model with any choice of activation function can also be used for
capturing the plant-model mismatch. In this case, the composite model (3.9) would take the
form sk+1 = f̃(s̃, u) +

(
F ◦ f̃(s̃, u)

)
such that F can be an explicit function of the current

state and input. This is a commonly used model structure in learning-based MPC [105, 27].
The iterative performance-oriented model adaptation approach via MOBO is depicted

in Figure 3.1. This figure shows how a prior model of the system is augmented with the
PAN, i.e., (3.9), whose parameters θ are adapted after every process run using closed-loop
data. The iterative model learning procedure suggests new model parameters for the next
run. A potential challenge in the proposed approach can arise from a possibly large number
of parameters θ when a general PAN architecture with multiple layers/nodes and arbitrary
activation functions is used. Even a shallow, scaled PAN may suffer from the same issue if the
model state, s̃, has an excessively high dimension. One option to overcome this challenge is
to take advantage of high-dimensional BO (HDBO) algorithms that rely on low-dimensional
embeddings of the design space [301, 140]. However, HDBO is most useful when the intrinsic
dimensionality of the black-box optimization problem is small, which is often not known a
priori. Alternatively, here we take a heuristic approach, based on global sensitivity analysis
(GSA) [260, 242, 154], to determine a subset of PAN parameters θ to which the closed-loop
performance objectives are most sensitive. This is further discussed in Section 3.5.
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Figure 3.1: The iterative performance-oriented model learning approach via MOBO. A
prior model of the system is augmented with a so-called performance adapted network
(PAN) with parameters θ, resulting in a composite model structure g(sc) used for model-
based control. MOBO uses noisy observations of M closed-loop performance objectives,
{(θi,ψi

m)}Ri=1, ∀m = 1, . . . ,M , collected till process run R to suggest new model parameters
θ for the next process run.

3.5 A Bioreactor Case Study
We demonstrate the proposed performance-oriented model learning approach on a bench-
mark bioreactor case study with economic control objectives. Ensuring the optimal perfor-
mance of bioreactors for short operational cycles is crucial in the context of biologically-driven
mission design for deep space exploration.

Systems engineering of this type, where controllers and their models can be automatically
tuned, is of paramount importance for the automation of processes with limited human-
interaction, an objective of the Center for the Utilization of Biological Engineering in Space
(CUBES) [20].

The system used for this case study involves the operation of a continuous fermenter [4],
which has been used in control [103] and experimental design for active fault detection [203]
studies. The reactor has a constant volume and is assumed to be isothermal and well-mixed.
The process state variables consist of the concentrations of biomass X (g/L), substrate S
(g/L), and product P (g/L). The manipulated variables are the dilution rate D (hr−1) as
well as the feed concentration of the substrate Sf (g/L). The objective of the controller is
to strike a balance between maximizing the amount of product at the reactor outlet, while
maintaining a high biomass concentration. The transient mass balances that describe the
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process (i.e., the plant model) are given by

Ẋ = −DX + µX (3.13)

Ṡ = D(Sf − S)−
1

YX/S

µX (3.14)

Ṗ = −DP + (αµ+ β)X, (3.15)

where YX/S is the cell-mass yield, µ is the specific growth rate, while α and β are related to
the product yield. The specific growth rate is assumed to follow a modified Monod kinetics
law which takes into account both substrate and product inhibition

µ =

(
1− P

Pm

)
Sµmax

Km + S + S2

Ki

, (3.16)

where µmax is the maximum growth rate, Km is the Monod affinity constant, Pm is a maxi-
mum product concentration, denoting inhibition from P , and Ki is the substrate-inhibition
constant. The values of the parameters used in for the plant model are given in Table 3.1.
In addition, we induce some degree of plant-model mismatch by changing the parameters of
the plant model, obtaining a physics-based simulation model the parameters of which are
also reported in Table 3.1.

Table 3.1: Bioreactor model parameters

Parameters Plant Model Physics-based Model
YX/S (g/g) 0.25 0.1
α (g/g) 2.5 1.5
β (hr−1) 0.85 1
µmax (hr−1) 1 2
Km 1.25 1
Ki (g/L) 20 10
Pm (g/L) 5.75 10

Pefrormance Measures and MPC Problem Formulation

The bioreactor is assumed to operate for a total time of t = 5 (hr) with a control sampling
time of δt = 0.1 hr. Thus, the duration of the entire process is consists of k = 0, . . . , T time
steps where T = 50. The two performance metrics of interest are: (i) the total amount of
product that exits the reactor over the entire process horizon, denoted by and ϕ1(θ,w); and
(ii) the final concentration of the biomass ϕ2(θ,w), which are given by

ϕ1(θ,w) = V

∫ tf

0

P (τ, θ,w)D(τ, θ,w)dτ ≈
T−1∑
k=0

V Pk(θ,w)Dk(θ,w)δt (3.17a)

ϕ2(θ,w) = XT (w), (3.17b)
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where V = 10 L is the reactor volume. At each sampling step k ∈ NT
0 , the controller solves

the following finite-horizon optimal control problem (OCP)

V (x0) = minx·|k,u·|k

N−1∑
i=0

l(xi|k, ui|k) + αN lN(xN |k) (3.18a)

s.t. xi|k = N (xi|k, ui|k; θ), ∀i ∈ NN−1
0 (3.18b)

(xi|k, ui|k) ∈ X× U, ∀i ∈ NN
0 (3.18c)

x0|k = x0, (3.18d)

where N = 10 is the prediction horizon, l(·) denotes the stage cost, lN(·) the terminal cost,
while aN is a weight for the terminal cost. The stage cost has the form of ϕ1, however
defined over the prediction horizon instead the process horizon, and the terminal cost is
same as ϕ2, referring to the end of the prediction horizon (and not the end of the entire
process). Thus, having those two types of costs in the objective function aims to represent
a scalar version of the conflicting objectives problem. Nevertheless, the main idea is that
the MPC problem does not need to be treated as a MO dynamic optimization problem at
its design phase. Instead, the dynamics learning problem should be able to handle this
contradicting nature of costs. As for the disturbances that affect the BO learning procedure,
we assume uncertainty in the initial conditions that are drawn from a uniform distribution,
wj ∼ U(x0), with j denoting the index of the realization. The SAA approximation of the
expected value is the average of 2 runs per design variable queried. A nominal uncertainty
realization that we used in subsequent analysis is w0 = [0.4, 0.2, 0.1]. We solve the MPC
problem by interfacing IPOPT with the CasADi library [299, 7].

Modeling and Sensitivity Analysis

We assume the case where the HF model that is available is not efficient for on-line MPC. In
this case, an initial neural network (prior model) is trained using input-output data from the
physics-based model. To approximate the system dynamics, we resort to a residual Neural
Network (rNN) [220]. The neural network consists of L = 3 hidden layers and Ln = 20
nodes each. This leads to a total of 1023 trainable parameters. To obtain training data,
we use 100 simulations which yield 5000 data samples. A train-test splitting of the data is
perfromed and 80% of them are reserved for training. The neural network is constructed
using keras. The model is trained for 1000 epochs with a batch-size of 10, using a learning
rate of 5×10−3 and the Adagrad optimizer (whose default learning rate is 10−3 in keras) [48].
The achieved mean absolute error loss (MAE), based on the validation set, is approximately
ϵp = 2.8× 10−3, thus the HF model and its surrogate have negligible discrepancies. Once an
initial rNN is established, we augment the model with a PAN, based on the idea of transfer
learning [111, 208]. The rNN is “frozen”, i.e., its parameters remain fixed throughout the
learning process, while a PAN is added to its last layer. In particular, we use a shallow,
single layer PAN with sigmoid activation as described in Sec.3.4. Therefore, the input to the
sigmoid activation is a linear transformation of the prior model outputs

ζj = ωj,i · s̃ik+1 + bj, (3.19)
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where ωj,i is the weight connecting the ith node of prior model outputs to the jth node
of PAN layer and bj is the corresponding bias. In this case, a heuristic initialization of the
PAN parameters can be performed. Note that the input to the sigmoid function is a linear
transformation of the rNN outputs, i.e., physics-based predictions. Then, for ωi,j = 0 and
bi > 5, the sigmoid is σ(ζ) ≈ 1, due to the exponential term getting very small values.
Moreover, an order of magnitude analysis of the typical values of the states (based on the
HF model) reveals that for large and small enough ωj,i and bj, the input saturates, i.e., the
sigmoid is very close to 1 or 0, respectively. Therefore, we set lower and upper bounds to the
PAN parameters around the aforementioned values and perform a GSA on the performance
metrics based on the HF model, using the nominal value for uncertainty, w0. All weights
are bounded in [-0.5,2], the biases in [0,5], while the ω0 factor in [0.65,1.35]. Figure 3.2

Figure 3.2: Global sensitivity analysis (GSA) results that demonstrate the influence of the
shallow PAN parameters on the nominal performance metrics under a high-fidelity plant
model. The horizontal axis denotes the index of the parameter while the vertical axis shows
the total Sobol’ sensitivity index

shows the results of the GSA for both performance metrics. In both cases, we observe that
the most influential parameter is the scaling factor ω0, followed by ω2,3 and ω3,3 as well as
b3. Therefore, we select these 4 parameters for the dynamics learning. For the rest of the
parameters we fix their values based on the sample that maximizes ϕ̃1(θ;w0), which is the
primary objective.
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Single-Objective Model Learning

For the first case study, we consider the problem of single-objective BO (SOBO), attempting
to maximize h1(θ), i.e., the sample-average productivity of the reactor after a fixed opera-
tional time. To this end, we set αN = 0 for the MPC problem as we are not interested in the
concentration of biomass at the end of the process. For the initialization and bounding of the
tuning parameters, we rely on the GSA results as described previously, except for ω0 which
is set to 1, as we want the performance learning procedure to initiate from a point close to
the nominal model’s solution. Alternatively, one can use the baseline set of parameters (zero
weights, high biases, scaling factor equal to 1) as an initial guess (which would result into a
PAN that is equal to 1).

Figure 3.3: Convergence plot of SOBO. The blue points represent the average performance
(vertical axis) across the BO iterations (horizontal axis) in the case of Performance-Oriented
Learning (POL). Red points represent the average performance when the neural network
is retrained using new input-output data from the previous run of the process, i.e., closed-
loop identification (CLI). The green line represents the open-loop, theoretically best (OLB),
solution under a nominal realization of uncertainty. The vertical lines at each point represent
the range of performances observed during each replicate of the BO algorithm.

The results comparing the performance-oriented learning strategy (POL) and the closed
loop identification (CLI) approach are shown in Figure 3.3. We replicate the SOBO algorithm
5 times to investigate the effect of uncertainty realizations, by fixing the BO algorithm
random seed, but allowing for different realizations of process uncertainty each time.

The results indicate that a performance-oriented strategy is able to significantly improve
the closed-loop performance when a physics-based/data-driven informed initial guess is pro-
vided. The optimal performance that is discovered in each replicate of the SOBO algorithm,
denoted by the blue line and the corresponding vertical lines (performance range), is consis-
tently better than the performance observed when operational data are used to retrain the
initial rNN, denoted by the red line. For the latter, we use the latest batch input-output data
from the plant and update the last hidden layer parameters. Note that the first 5 iterations
of the SOBO algorithm correspond to a random search, since they are the points used to
train the GP surrogate of the objective. The green line represents an upper limit to the
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achievable performance (under the nominal disturbance realization), since it is calculated
via the theoretically best solution of the open-loop problem (OLB) over the entire process
horizon, without plant-model mismatch. It is observed that SOBO attains a performance
very close to the theoretical maximum after a number of iterations.

Furthermore, it is also interesting to examine the state and optimal input profiles that
are discovered via closed loop retraining and by applying SOBO after each set of closed-loop
runs, compared to the open loop prediction. For clarity we show only the profiles of the
states and inputs that appear in the MPC cost and SOBO learning objective. The plots
correspond to the nominal realization of uncertainty.

Figure 3.4: Closed-loop profiles under the nominal realization of uncertainties. The horizon-
tal axis denotes the current stage/time step and the vertical axis shows (i) the concentration
of product in the left plot, (ii) the dilution rate in the right plot. Green lines correspond to
open-loop theoretically best solution (OLB), blue lines to the Performance-Oriented Learn-
ing (POL) in the SOBO case and red lines correspond the closed-loop identification case
(CLI).

The MPC solution profiles are depicted in Figure 3.4 along with the open-loop solution.
As for the open-loop solution, given that it has full and perfect preview of the dynamics,
we observe that it predicts a simple switching-regime for the dilution rate, which is initially
kept at low levels in order to promote growth, but then increases to the upper bound so
that we are able to extract as much as possible product. For the performance-oriented
learned dynamics case, the dilution rate is qualitatively similar at the initial stages with
the only difference being some larger dilution rates being used sporadically in the middle
of the process. Subsequently, the state profiles of the BO and the open loop cases are
very close. On the other hand, the CLI profiles, denoted by the red lines, are qualitatively
different. Although the predictions of the model are more accurate, in a predictive plant-
model mismatch sense, the myopic nature of MPC forces the system to operate with high
dilution rates early on, without being able to anticipate that this leads to low product
concentration in later stages.
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Multi-Objective Model Learning

In this case, we modify the previous problem, as our goal is not just to discover the dy-
namical model that maximizes the amount of the available metabolic product, but we are
also interested in solutions that retain an acceptable amount of biomass at the end of the
process. For instance, this problem might arise in a scenario where our primary objective is
the production of P , however, there is a need for biomass for downstream processing. These
objectives are conflicting. In the SOBO case, we observed that the optimal strategy is to
initially enforce low-dilution rates and operate at high dilution rates mid-process in order
to get more quantity of P . Intuitively, however, one can reason that following the same
strategy in the MOBO case would not be optimal for maximizing the biomass concentration,
since increasing the dilution rate significantly can lead to near-washout conditions. For this
particular problem, we utilize the terminal cost that was introduced earlier with αN = 2,
leading to a scalar version of the MO problem within the MPC. The selection of this factor
depends on the significance of maximizing this secondary performance metric, i.e., the value
of biomass at the end of the process.

For the solution of the MOBO problem, we use the same bounds as in the SOBO case
for the search space and use 10 initial random samples (RS) in order to construct the initial
surrogates for the objectives. Moreover, we query and observe one point per MOBO iteration,
hence q = 1. First, we need to examine the algorithm convergence which is expressed by the
hypervolume indicator in the MO counterpart of the dynamics learning problem.

Figure 3.5: Hypervolume convergence plot for the MOBO problem. The horizontal axis
denotes the number of iterations of the acquisition-based search of the MOBO algorithm.
The vertical axis denotes the average hypervolume at each iteration. The vertical lines
represent the range of the HV observed across replicates.

Figure 3.5 shows the growth of the hypervolume as the MOBO iterations proceed. The
circles denote the average HV across replicates, while the vertical lines show the corre-
sponding range. We observe that the algorithm reaches acceptable performance levels after
approximately 10 queries. We should note, however, that the notion of convergence in the
MOBO case should be interpreted differently than the SOBO case. In particular, although
in SOBO more iterations would lead to a negligible reward after some iteration, in MOBO a
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number of extra informed runs (via the acquisition function), lead to the discovery of more
Pareto optimal points, which do not necessarily improve the HV much, but lie in the Pareto
front, thus constitute important candidate dynamical models for operation purposes.

Having discussed the HV convergence plot, we now examine the optimality of the points
discovered by the acquisition function. The fundamental result of MOBO is essentially the
approximate Pareto front that has been established after the querying the search space using
the acquisition function αqEHV I .

Figure 3.6: MOBO solutions for the two-objective problem. The triangles represent the
initial points that are discovered using random samples (RS) used for training the GPs.
The circles represent the points proposed by the acquistion function. Various replicates are
represented with different faintness.

Figure 3.6 shows the obtained Pareto front for 5 replicates of the algorithm (with a fixed
initial seed for the MOBO solver but different realization of the uncertainties in the plant).
The replicates are denoted with varying shade and faintness. It is interesting to first observe
the results of the RS performed in order to train the initial GP surrogates for the objectives,
represented by the triangles. Most of those random observations are limited in a narrow
region corresponding to both low productivity and concentration of biomass, with a few of
them corresponding to the extreme cases (high product amount/low concentration or vice-
versa). Nevertheless, the points discovered using MOBO seem to form a clear Pareto front,
which is consistent among runs.

Remark 2: The consistency of the algorithm is affected by the levels of process noise and
measurement noise. The effect of both of these noise sources can be mitigated by increasing
the number of experimental realizations of the plant, which is not always feasible due to
budget constraints. In simulation case studies, robust BO schemes can be used in order
to find the design that maximizes the performance in a worst-case sense. In addition, it is
interesting to inspect the closed-loop solution for a Pareto point that achieves high terminal
concentration of biomass but low P production.

The results on Figure 3.7 show that, although the primary objective of the MPC is to
achieve high productivity, MOBO has a learned a dynamical model that leads to a fundamen-
tally different solution landscape. In particular, the switching-regime that we observed in the
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Figure 3.7: Closed-loop profiles under the nominal realization of uncertainties. The horizon-
tal axis denotes the current stage/time step and the vertical axis shows (i) the concentration
of biomass in the left plot, (ii) the dilution rate in the right plot. Green lines correspond
to open-loop theoretically best solution (OLB) and blue lines to the Performance-Oriented
Learning (POL) approach in the MOBO case, for a design that maximizes the final concen-
tration of biomass.

SOBO case does not occur here, suppressing significantly the production of the metabolic
product, which has a value of ϕ1(θ

∗,w0) = 13.6(g), while ϕ2(θ
∗,w0) = 1.09(g/l). For the

numerical solution of the problem we used the BoTorch library 4

3.6 Conclusions
This paper presented a performance-oriented model adaptation approach for model-based
control of uncertain systems. The proposed approach relies on the notion of identification
for control in which the underlying model of a controller is adapted over several process
runs to reduce plant-model mismatch specifically towards maximizing preselected closed-loop
performance measures. The model learning problem is formulated as a black-box, multi-
objective optimization problem that is solved via Bayesian optimization. The effectiveness
of the proposed approach was demonstrated for control-relevant model learning for MPC of
a benchmark bioreactor problem for the cases of single- and multi-objective control. In the
single-objective case, we observed that, given a fixed budget of process runs, the proposed
approach gives control-oriented models that lead to a significant improvement in closed-
loop performance compared to model identification using closed-loop data. This can be
attributed to the use of a prior model in the proposed composite model structure that
helps BO target a relevant exploration space; thus, converging to a better-performing model
in terms of closed-loop performance in fewer process runs. In the multi-objective case, we
observed that the informed exploration of the model parameter space is able to accommodate
conflicting closed-loop performance objectives and lead to controllers that give rise to vastly
different closed-loop dynamics. Our future work will focus on investigating constrained BO
formulations for model learning and auto-tuning of controllers for safety-critical applications.

4The code used for the MOBO algorithm has been adapted by https://github.com/panos108/Multi-
objective-Bayesian-Opt.git.
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Chapter 4

Adversarially Robust Bayesian
Optimization for Auto-Tuning of General
Controllers Under Uncertainty

This chapter demonstrates the use Bayesian Optimization (BO) for controller autotuning in
the presence of uncertain parameters in the performance function. An open challenge when
applying BO to auto-tuning is how to effectively deal with uncertainties in the closed-loop sys-
tem that cannot be attributed to a lumped, small-scale noise term. We address this challenge
by developing an adversarially robust BO (ARBO) method that is particularly suited to auto-
tuning problems with significant time-invariant uncertainties in an expensive system model
used for closed-loop simulations. ARBO relies on a Gaussian process model that jointly de-
scribes the effect of the tuning parameters and uncertainties on the closed-loop performance.
From this joint Gaussian process model, ARBO uses an alternating confidence-bound pro-
cedure to simultaneously select the next candidate tuning and uncertainty realizations, such
that only one expensive closed-loop simulation is needed at each iteration. The advantages
of ARBO are demonstrated on two case studies, including an illustrative problem and auto-
tuning of a nonlinear model predictive controller using a benchmark bioreactor problem. This
chapter is adapted from [197].

4.1 Introduction
Recent years have witnessed significant progress in the design and application of optimization-
and learning-based controllers that can deal with multivariable dynamics, constraints, and
uncertainties that appear in the system and/or the environment. However, the design of
such advanced controllers hinges on the selection of several tuning parameters that may
strongly affect closed-loop performance and constraint satisfaction. Additionally, these tun-
ing parameters can come in a variety of different forms including continuous (e.g., weight
parameters), discrete (e.g., logical switching conditions such as adaptive tuning), and cat-
egorical (e.g., type of numerical discretization scheme) representations, which implies their
impact on performance can be highly nonlinear and non-convex. Therefore, in practice, these
tuning parameters are usually selected via trial-and-error experimentation or heuristic-based



CHAPTER 4. ADVERSARIALLY ROBUST BAYESIAN OPTIMIZATION FOR
AUTO-TUNING OF GENERAL CONTROLLERS UNDER UNCERTAINTY 54

strategies that rely on expensive closed-loop simulations or experiments, which can become
prohibitive when the effects of system uncertainties are accounted for [194].

To mitigate the expensive nature of tuning of advanced controllers, there has been an
increasing interest in automatic calibration (aka auto-tuning [85, 285, 183, 200, 324]) of
complex control structures to achieve desired closed-loop performance. To this end, data-
driven optimization methods have been found to be particularly promising since auto-tuning
can be interpreted as a black-box problem in which the objective function is expensive to
evaluate, potentially non-convex and multi-modal, and whose derivatives either do not exist
or cannot be determined. Bayesian optimization (BO) [258, 252] has emerged as a powerful
approach for handling these types of black-box problems, even when the measured objective
value is corrupted by noise. Several recent works have successfully demonstrated BO for
model learning and auto-tuning of model predictive control (MPC) [200, 210, 150, 262] and
other complex control structures [73, 124].

Standard BO approaches for auto-tuning rely on non-parametric Gaussian process (GP)
models [227], constructed from closed-loop simulation or experimental data, to describe the
impact of controller tuning parameters on the closed-loop performance measures; these GP
models can be interpreted as probabilistic “surrogate models” for the performance measures
of interest. Although GP models are able to account for the effect of system uncertain-
ties (e.g., exogenous disturbances, measurement noise, and/or time-invariant uncertainties
in process models used for closed-loop simulations) by optimizing an “effective noise” hyper-
parameter, this representation can lead to poor predictions when uncertainties are relatively
large. That is, the GP model yields such a large variance in predictions that the mean
prediction is dominated by noise, suggesting the GP model is uninformative. In such cases,
the BO procedure will become quite fragile and thus will lead to poor overall results. We
addressed this challenge in our recent work by introducing an auto-tuning approach, referred
to as probabilistically robust Bayesian optimization (PRBO), that provides a probabilistic
robustness certificate at every iteration (i.e., every time a new set of tuning parameters is
tested) [195]. The key idea in PRBO is to use sample-based estimates of the worst-case
performance measures at each iteration. We show how many samples are required — inde-
pendent of the number and probability distribution of the uncertainties — to ensure these
worst-case estimates are not violated by other randomly sampled uncertainties within a
prespecified probability level. However, since PRBO provides this certification at every iter-
ation, it generally requires a fairly large number of closed-loop simulations/experiments to be
performed in order to establish accurate estimates of the worst-case performance measures.
This can limit the applicability of PRBO especially when expensive “high-fidelity” process
models (or experiments) are utilized for generating closed-loop data.

In this paper, we present an alternative robust BO approach to PRBO that is well-suited
for auto-tuning problems that rely on expensive closed-loop simulations with significant
time-invariant uncertainties. This type of problem setting appears in a wide variety of appli-
cations that use complex process models and model predictive controllers (MPC), including
advanced manufacturing and energy systems [67], among many other applications. As op-
posed to measuring an estimate of the worst-case performance directly (as done in PRBO),
the proposed approach, referred to as adversarially robust BO (ARBO), looks to solve a prob-
lem that simultaneously captures the effect of the controller tuning parameters and system
uncertainties on the closed-loop performance. In contrast to typical BO approaches where
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a GP model is used to approximate the objective as a function of the decision variables
(in this case controller tuning parameters), we utilize a GP to approximate the objective
explicitly as a function of decision variables and uncertain parameters. In this way, we can
directly use this joint GP model (where joint refers to the simultaneous consideration of the
tuning and uncertain parameters) to predict the location of a minimax solution to the robust
auto-tuning problem. We show, however, that using a naive mean-based GP approximation
of the performance measure will yield overall poor tuning results, as it lacks the ability to
tradeoff between exploration of unknown parts of the design-uncertainty space and exploita-
tion of the current estimate of the best tuning parameters. Instead, the proposed ARBO
method uses a GP confidence bound-based procedure suggested in [24] to realize a tradeoff
between the exploration and exploitation of the design-uncertainty space. In this approach,
we alternate between an optimistic prediction of the performance measure to select the next
best set of tuning parameters and a pessimistic prediction of the performance measure to
select the most likely worst-case uncertainty for the suggested best tuning parameters. By
applying this two-step procedure, we only require one (expensive) closed-loop simulation at
each iteration of ARBO, which is significantly less than alternatives such as PRBO. Building
upon the theory in [24], we also discuss the rate of convergence of the ARBO method, and
provide an explicit upper bound on the distance from the best suggested tuning parameters
and the true minimax optimal solution, which decays to zero as the number of iterations
increases.

We demonstrate the value of the proposed ARBO method on two case studies; an il-
lustrative problem to highlight the key steps and advantages of ARBO and a challenging
auto-tuning problem in which a highly nonlinear bioreactor with several unknown parame-
ters is controlled using nonlinear MPC with multiple constraint backoffs that must be tuned.
It is important to note that, although we focus on nominal MPC, the ARBO can robustly
auto-tune any controller structure including those that incorporate recently proposed safety
schemes such as the model-predictive safety (MPS) method [263, 5]. MPS solves several
minimax optimization problems offline to identify potential worst-case uncertainty values
that may occur online using a nested particle swam optimization (PSO) algorithm. The
main disadvantage of PSO is that it requires a very large number of function evaluations,
which prevents its usage in applications with very expensive objective functions such as that
considered in this work.

4.2 Problem Statement
We are interested in the auto-tuning problem for a general class of controllers, i.e., we want
to select the unknown tuning parameters such that we achieve the best possible closed-loop
performance, while protecting against potentially adversarial effects of some “external” source
of uncertainty. Let θ ∈ Rp1 denote the vector of controller tuning parameters and δ ∈ Rp2

denote the system (plant) uncertainty vector. Given some scalar measure of the closed-loop
performance f : Rp1 × Rp2 → R whose structure is unknown, we formulate the auto-tuning
problem as the following robust black-box optimization problem

min
θ∈Θ

max
δ∈∆

f(θ, δ), (4.1)
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where Θ ⊂ Rp1 and ∆ ⊂ Rp2 are the compact sets of possible tuning parameters and un-
certainty realizations, respectively. The controller tuning parameters θ can represent any
manipulable value including discrete structural choices (e.g., turning on/off a component)
that are modeled with binary variables, as well as parametric choices that are modeled by
continuous variables (e.g., increasing a weight value between lower and upper bounds). To
account for the effects of uncertainty on controller tuning, we must quantify the impact of
different realizations of δ on the performance measure f . Thus, throughout this work, we
assume that a high-fidelity simulator of the process is available for simulating the effect of
specific controller configurations and uncertainty realizations on the closed-loop performance
measure f .1 This allows f to be flexibly specified by the user in terms of any finite-time met-
ric; some common examples include total operating cost or setpoint tracking error, average
or maximum constraint violation, and end-of-batch product quality.

We aim to find the (approximate) global solution to the controller auto-tuning problem
(4.1). The specific algorithm chosen to solve (4.1) will depend on its underlying characteris-
tics. Thus, we assume that the following characteristics hold, which is generally the case in
simulation-based tuning of advanced controllers under uncertainty [194].

Assumption 1 (1) The worst-case uncertainty δ⋆(θ) ∈ argmaxδ∈∆ f(θ, δ) cannot be de-
termined from prior knowledge.

(2) The feasible sets Θ and ∆ are known and compact.

(3) The closed-loop performance measure f(θ, δ) is fully black-box in nature such that no
closed-form expression exists for f and it does not have any known special structure
such as convexity or linearity.

(4) The total dimension of the inputs p = p1 + p2 is typically not too large; p ≤ 20 is a
good rule-of-thumb.

(5) When the closed-loop performance performance is evaluated, we only observe f(θ, δ),
meaning that first- or second-order derivatives cannot be evaluated.

(6) The observations of f(θ, δ) are corrupted by noise. That is, y = f(θ, δ) + ϵ, where
ϵ ∈ N (0, σ2

ϵ ).

Characteristics (1)-(3) in Assumption 1 imply minimal restrictions on the structure of the
to-be-designed controller such that the proposed method for controller auto-tuning can be
applied even when the control law is defined implicitly—for example, as is the case in model
predictive control (MPC). Characteristic (5) prevents application of derivative-based opti-
mization methods for solving (4.1). For simplicity, characteristic (6) assumes the effective
noise ϵ leading to noisy observations y of the closed-loop performance measure is normally
distributed with zero mean. The variance of noise can be treated as a hyperparmaeter, as dis-
cussed in Section 4.4. Notice that the closed-loop performance measure f(θ, δ) is quantified
through possibly expensive simulations of the closed-loop system using a process simulator.

1We refer to the process simulator as “high-fidelity” to denote the fact that it can be a computationally-
expensive model, such as a multiscale model, built from a collection of software codes/packages.
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As such, the performance measure can be queried a limited number of times; often on the
order of a few hundred of closed-loop simulations.

Remark 1 Although δ can in principle represent any source of uncertainty, this may lead to
a high-dimensional representation of δ due to the time-varying nature of control problems. As
such, this may not satisfy characteristic (4) in Assumption 1. Instead, δ should represent the
key time-invariant uncertainties (e.g., sensitive model parameters and/or initial conditions)
that have the most dominant influence on the performance measure f . If prior knowledge
about the dominant time-invariant uncertainties is not available, it can be obtained via global
sensitivity analysis [274], which can be facilitated via surrogate modeling [154]. Notice that,
although not included in δ, the effect of time-varying process and measurement noise is
accounted for through noisy observations of f ; see characteristic (6) in Assumption 1.

The most direct way to solve Problem (4.1) would be via a nested optimization approach
wherein an inner maximization is performed for each iteration of an outer minimization
algorithm [165]. This approach, however, will expend excessive effort computing the worst-
case closed-loop performance for every selected design variables θ, which is not appropriate
when dealing with expensive evaluations of f using a high-fidelity process simulator. This
also precludes the use of evolutionary algorithms [177], which are popular techniques when
the objective function can be evaluated a large number of times. Alternatively, we look
to reformulate (4.1) as a bandit feedback problem [266]. The main idea is to sequentially
select (θt, δt) ∈ Θ ×∆ at every iteration t = 1, 2, . . . , Nt (here, “iteration” refers to a single
closed-loop simulation), and receive the corresponding noisy observations of the cost yt =
f(θt, δt) + ϵt. Our regret in this decision can be quantified in terms of the instantaneous
robust-regret rδt , which is defined as

rδt = max
δ∈∆

f(θt, δ)−max
δ∈∆

f(θ⋆, δ), (4.2)

where θ⋆ ∈ argminθ∈Θmaxδ∈∆ f(θ, δ) is any global solution to (4.1). In words, the robust-
regret in (4.2) quantifies how far away our suggested decision θt is from the best possible solu-
tion θ⋆ (in units of the objective function). This definition is analogous to the standard regret
definition g(θt)−g(θ⋆) in the multi-armed bandit literature [296] when our objective function
is defined as the worst-case realization of the performance function g(θ) = maxδ∈∆ f(θ, δ).
Ideally, we could derive an algorithm that minimizes the cumulative robust-regret after T
iterations Rδ

T =
∑T

t=1 r
δ
t ; however, these quantities cannot be revealed to the algorithm since

they require perfect knowledge of the global solution. A viable alternative is to select an
algorithm that has no robust-regret, i.e., limT→∞

1
T
Rδ

T = 0 [24]. The only way that the
average robust-regret can approach zero is for the instantaneous robust-regret to approach
zero, since rδt ≥ 0 must be non-negative. This implies that there exists a t > 0 such that
maxδ∈∆ f(θt, δ) is arbitrarily close to maxδ∈∆ f(θ

⋆, δ) and the algorithm converges as long
as Rδ

T grows sublinearliy with T . In the absence of uncertainty (i.e., the nominal setting of
∆ = {δ̂}), we can easily find the point {θ1, . . . , θT} that minimizes the (non-robust) regret
by selecting the point that produces the smallest value of f(θt, δ̂). This is no longer true in
the robust case, however, due to the inclusion of the max operator in (4.2).

Therefore, we require a new recommendation procedure in addition to the selection policy
for (θt, δt). In the next section, we present a variant of the sequential learning algorithm in
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[24], referred to as adversarially robust Bayesian optimization, that can achieve the desired
no robust-regret property using a combined Gaussian process (GP) model for f(θ, δ), which
simultaneously models the effect of the design variables and uncertainty realizations on the
closed-loop performance measure.

4.3 Adversarially Robust Bayesian Optimization
In this section, we first review Gaussian process (GP) regression for data-driven model-
ing of the closed-loop performance measure. We will then present the adversarially robust
Bayesian optimization (ARBO) algorithm, followed by an overview of established theoretical
results [24] related to the robust-regret when solving (4.1) under the conditions specified in
Assumption 1.

Gaussian Process Regression

Let x = [θ⊤, δ⊤]⊤ ∈ X denote the concatenated vector of design variables and uncertainties,
where X = Θ×∆ ⊂ Rp and p = p1+p2. We interchangeably denote f(θ, δ) as f(x) (and vice
versa) throughout the paper. Since the structure of f is not known, we cannot make rigid
parametric assumptions for f . However, without further assumptions, it would be impossible
to achieve sublinear robust-regret for (4.1); for example, f could be discontinuous at every
input x ∈ X in the worst-case. Therefore, we assume that a certain degree of smoothness
holds in practice, such that we can leverage GP models that enforce smoothness implicitly
without making any parametric assumptions. The basic idea underpinning GPs is that the
function values f(x), associated with different values of x, are random variables and any
finite collection of these random variables have a joint Gaussian distribution [227]. A GP
distribution, denoted by f(x) ∼ GP(µ(x), k(x,x′)), is parametrized by a prior mean function
µ(x) and a covariance (or kernel) function k(x,x′). Without loss of generality, we assume
that the prior is zero mean, i.e., µ(x) = 0 for all x ∈ X .2 The chosen class of covariance
functions determines the properties of the fitted functions. In this work, we will focus on
stationary covariance functions from the Mateŕn class [86], defined as

k(x,x′; ν,Ψ) = ζ2
21−ν

Γ(ν)
(
√
2νr(x,x′))Bν

(√
2νr(x,x′)

)
, (4.3)

where r(x,x′) =
√

(x− x′)L−2(x− x′) is the scaled Euclidean distance, L = diag(l1, . . . , lp)
is a diagonal scaling matrix composed of length-scale parameters l1, . . . , lp > 0, ν is a param-
eter that dictates smoothness (i.e., the corresponding function is ⌈ν/2 − 1⌉ times differen-
tiable), ζ2 is a scaling factor for the output variance, Γ and Bν are the Gamma and modified
Bessel functions, respectively, and Ψ = {l1, . . . , lp, ζ} are the hyperparameters of the kernel
for a fixed value of ν.

Training a GP model corresponds to calibrating {Ψ, σϵ} to the available data. For now,
we assume the kernel hyperparameters are known and discuss the training procedure further
in Section 4.4. Although we focus on kernels of the form (4.3) for simplicity, many other

2This can easily be achieved by normalizing the data before training, as discussed in, e.g., [32].
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kernels are available and can be used in place of this structure, if needed. Furthermore, one
can treat the kernel structure as an additional hyperparameter that is sequentially updated
at each step of the Bayesian optimization process. However, since this introduces a set
of conditional hyperparameters (corresponding to the internal parameters specific to each
kernel), this can substantially increase the GP training cost.

A key advantage of GPs, in addition to their non-parametric nature, is the availability
of simple analytic expressions for the posterior distribution of f(x) for any input x ∈ X .
Let us assume that we have t previous observations of the objective yt = [y1, . . . , yt]

⊤ at
inputs Xt = {x1, . . . ,xt}. The GP model can account for the fact that these measurements
are noisy, i.e., yt = f(xt) + ϵt where ϵt ∼ N (0, σ2

ϵ ). Given that the noise ϵt obeys a normal
distribution, the posterior f |Xt,yt remains a GP GP(µt(x), kt(x,x

′)) with the following
expressions for the mean µt, covariance kt, and variance σ2

t [227]

µt(x) = k⊤
t (x)

(
Kt + σ2

ϵ It
)−1

yt, (4.4a)

kt(x,x
′) = k(x,x′)− k⊤

t (x)
(
Kt + σ2

ϵ It
)−1

kt(x
′), (4.4b)

σ2
t (x) = kt(x,x), (4.4c)

where kt(x) = [kj(x1,x), . . . kj(xt,x)]
⊤ contains the covariances between the input x and

observed data points Xt, the covariance matrix Kt has entries [Kt]ij = k(xi,xj) for all
i, j ∈ {1, . . . , t}, and It is the t× t identify matrix. The main advantage of the posterior GP
expressions in (4.4) is that they can be used to generate confidence bounds on the prediction
of f(θ, δ) for any choice of input. Both the upper and lower confidence bounds will be
leveraged in the development of the ARBO algorithm, as described next.

ARBO Algorithm

Given a so-called exploration parameter βt, we can define the following upper and lower
confidence bounds on f

ucbt(θ, δ) = µt(θ, δ) + β
1/2
t σt(θ, δ), (4.5a)

lcbt(θ, δ) = µt(θ, δ)− β1/2
t σt(θ, δ), (4.5b)

which are readily determined from the posterior GP in (4.4). For sufficiently large choices
of βt, these confidence bounds will be large enough to ensure the no robust-regret property
with high probability (see Theorem 1). The ARBO algorithm [24], which relies on the lower
and upper confidence bounds (4.5), is presented in Algorithm 1. The suggested θt at each
iteration is the one that has the minimum “robust” lower confidence bound, as given in
(4.8). For this choice of θt, we must select a feasible uncertainty sample. According to
(4.9), we select the uncertainty value δt that maximizes the upper confidence bound. We can
interpret these opposite choices as: (i) optimistic selections under uncertainty for θt and (ii)
pessimistic selections under uncertainty for the anticipated worst-case point δt. While the
choice (i) is common to traditional BO algorithms that utilize confidence bounds, the choice
(ii) is unique to ARBO to mitigate any possible negative effects caused by the uncertainty.
Once the main loop in Algorithm 1 has been completed, a final “recommended” point must
be selected from the sequence {θ1, . . . , θT}. Although there are many potential choices, we
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choose the one that minimizes a pessimistic bound on the robust-regret in (4.10). To this
end, let us assume f(θ, δ) ≤ ucbt−1(θ, δ) for all (θ, δ) ∈ Θ×∆; this condition will be more
formally stated later. Then, we can define the following pessimistic estimate of rδt

r̄δt = max
δ∈∆

ucbt−1(θt, δ)− f ⋆, (4.6)

where f ⋆ = maxδ∈∆ f(θ
⋆, δ) = minθ∈Θmaxδ∈∆ f(θ, δ), which must satisfy rδt ≤ r̄δt for all t ≥ 1

under the above-stated assumption. The main difference between (4.2) and (4.6) is that the
algorithm has enough information to identify the index t⋆ that minimizes r̄δt since the global
solution does not depend on t. Yet, r̄δt is related to another important quantity in bandit
optimization termed the simple robust-regret after T iterations, which is denoted by Sδ

T and
defined as

Sδ
T = min

t∈{1,...,T}
rδt = min

t∈{1,...,T}
max
δ∈∆

f(θt, δ)− f ⋆. (4.7)

It is evident that Sδ
T ≤ r̄δt⋆ for all T ≥ 1. This in turn implies that bounds established on

r̄δt⋆ immediately transfer to the simple robust-regret Sδ
T , as discussed in the next section.

Notice that Algorithm 1 relies on only a single expensive closed-loop simulation run to be
performed at every iteration, which is significantly fewer than the vast majority of available
alternatives, such as [165, 298].

Upper Bound on Simple Robust-Regret

The ARBO Algorithm 1 requires selection of the exploration parameters {βt}t≥1 that specify
the width of the confidence intervals on f . To this end, we rely on a simple result from [266]
to select this sequence. We will focus on the case of a finite set X = Θ ×∆ for simplicity,
and discuss the extension to a compact and convex set later.

Lemma 1 (Confidence bounds [266]) Let f(x) ∼ GP(0, k(x,x′)) be a sample of a GP
for which noisy observations yt = f(xt) + ϵt with ϵt ∼ N (0, σ2

ϵ ) are available. Let βt =
2 log(|X |t2π2/(6α)) for a specified failure probability α ∈ (0, 1) and finite discrete set |X | <
∞. Then, the following bounds on the objective function f(x)

f(x) ∈ [lcbt−1(x),ucbt−1(x)], ∀x ∈ X ,∀t ≥ 1, (4.11)

hold with probability (over the GP posterior at every iteration) at least 1− α.

Next, we define the maximum information gain (MIG), which provides a measure of the
informativeness of any finite set of sampling points A ⊂ X [55].

Definition 1 Let A ⊂ X denote any subset of sampling points from X and let f be a
sample of a GP model with the same sampling conditions stated in Lemma 1. The maximum
information gain for f under t measurements is defined as

γt = max
A⊂X :|A|=t

1

2
log det(It + σ−2

ϵ KA), (4.12)

where KA = [k(x,x′)]x,x′∈A is the kernel matrix. Note that the term inside of the max in
(4.12) is the Shannon mutual information between f and the observations at points x ∈ A. ◁
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Algorithm 1 The robust sequential learning algorithm for ARBO.
Input: The set of the design variables Θ and the uncertainty ∆; kernel k corresponding to
GP prior; exploration parameters {βt}t≥1; and total number of iterations T .
1: Initialize the mean and standard deviation (µ0, σ0)← (0, k1/2).
2: for t = 1 to T do
3: Solve the following min-max optimization problem for θt

θt = argmin
θ∈Θ

max
δ∈∆

lcbt−1(θ, δ). (4.8)

4: Solve the following maximization problem for δt

δt = argmax
δ∈∆

ucbt−1(θt, δ). (4.9)

5: Run a closed-loop simulation at xt = [θ⊤t , δ
⊤
t ]

⊤ to compute performance measure
yt = f(θt, δt) + ϵt.

6: Perform Bayesian posterior update to estimate µt, σt, lcbt and ucbt using (4.4) and
(4.5) by including the latest query of the closed-loop performance measure {xt, yt}.

7: end for
8: Return the point θt⋆ with the smallest upper confidence bound (our best guess of the

optimal design variables)

t⋆ = argmin
t∈{1,...,T}

max
δ∈∆

ucbt−1(θt, δ). (4.10)

We can now state the main theorem that bounds the performance of the ARBO Algorithm
1. We give a brief sketch of the proof of this result, which is a slightly different version of
that provided in [24, Supplementary Material].

Theorem 1 (Upper ARBO Performance Bound [24]) Fix α ∈ (0, 1) and also set βt =
2 log(|X |t2π2/(6α)), and T ≥ 1. Running the ARBO algorithm for a sample f of a GP with
zero mean and kernel k(x,x′), the simple robust-regret must satisfy

Pr

{
Sδ
T ≤ r̄δt⋆ ≤

√
C1βTγT

T

}
≥ 1− α, (4.13)

where C1 = 8/ log(1 + σ−2
ϵ ).

Proof 1 From Lemma 1, we know that lcbt−1(x) ≤ f(x) ≤ ucbt−1(x) holds for all x ∈
X , t ≥ 1 with probability greater than or equal to 1 − α. Given this, from the definitions in
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(4.2) and (4.6), we have

rδt = max
δ∈∆

f(θt, δ)−min
θ∈Θ

max
δ∈∆

f(θ, δ) ≤ r̄δt = max
δ∈∆

ucbt−1(θt, δ)−min
θ∈Θ

max
δ∈∆

f(θ, δ),

= ucbt−1(θt, δt)−min
θ∈Θ

max
δ∈∆

f(θ, δ),

≤ ucbt−1(θt, δt)−min
θ∈Θ

max
δ∈∆

lcbt−1(θ, δ),

= ucbt−1(θt, δt)−max
δ∈∆

lcbt−1(θt, δ),

≤ ucbt−1(θt, δt)− lcbt−1(θt, δt),

= 2β
1/2
t σt−1(θt, δt),

where the first line follows from the upper bound on f , the second line follows from the defini-
tion of δt in (4.9), the third line follows from the lower bound on f , the fourth line follows from
the definition of θt in (4.8), the fifth line follows from the fact that maxδ∈∆ lcbt−1(θt, δ) ≥
lcbt−1(θt, δt) for any feasible choice of δt ∈ ∆, and the sixth line follows from the difference
between the confidence bounds in (4.5). Given this bound, we can also see that the following
sequence of inequalities must hold with probability ≥ 1− α

(Rδ
T )

2 ≤ T
∑T

t=1(r
δ
t )

2 ≤ 4βT
∑T

t=1 σ
2
t−1(θt, δt),

where the first step follows from the Cauchy-Schwarz inequality and the second step follows
from the monotonicity of the sequence {βt}t≥1. Next, we use a special case of [266, Lemma
5.4] to establish a bound on the sum of variances in terms of the MIG (4.12)

4
∑T

t=1 σ
2
t−1(θt, δt) ≤ C1γT ,

for C1 = 8/ log(1 + σ−2
ϵ ). From these results, it follows that Pr{Rδ

T ≤
√
C1TβTγT} ≥ 1− α.

The assertion in (4.13) follows by noting that the minimum of a sequence must be less than
or equal to the average, i.e., Sδ

T ≤ 1
T
Rδ

T , in addition to the fact that the same inequalities
hold for r̄δt in place of rδt . ■

As the total number of iterations T increases in (4.13), we observe that the simple robust-
regret gets closer to the desired value of zero, implying the global minimax solution has
been found in the limit as T → ∞, as long as the numerator C1βTγT ∈ o(T ), where o is
little-o notation that implies C1βTγT decays faster than T . The choice of βT in Theorem 1
clearly shows logarithmic growth with respect to T . However, we also require bounds on the
MIG γT to establish convergence. It was shown in [266] that γT has sublinear dependence
with respect to T for many commonly used kernels, including the Mateŕn class, such that
the ARBO algorithm converges to function evaluations near θ⋆ with high probability for
sufficiently small choices of α. This is a key advantage of the confidence bound-based ARBO
algorithm compared to available alternatives whose theoretical properties have yet to be
understood.

4.4 Practical Implementation of ARBO
In this section, we discuss some of the main aspects in practical implementation of the ARBO
Algorithm 1, as also considered in the case studies presented in Section 4.5.
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Choice of Exploration Constant βt
Lemma 1 and Theorem 1 only hold for discrete spaces X . However, using the discretization
technique introduced in [266], these results can be extended to continuous spaces that are
compact and convex. The main added assumption is that the kernel function k(x,x′) must
be chosen such that it ensures the following high probability bounds on the derivatives of f
for some constants a, b > 0

Pr
{
sup
x∈X

∣∣∣∣∂f(x)∂xi

∣∣∣∣ > L

}
≤ ae−(L/b)2 , ∀i = 1, . . . , p, ∀L > 0. (4.14)

Whenever this condition holds, the results in Lemma 1 and Theorem 1 can be generalized
to any compact and convex set X ⊂ [0, r]p by enlarging the exploration constant

βt = 2 log

(
2π2t2

3α

)
+ 2p log

(
t2pbr log

1
2 (4pa/α)

)
. (4.15)

To the best of our knowledge, these results have not yet been extended to arbitrary non-
convex sets. However, this may not pose a challenge in practice since the choices of βt
are generally known to be conservative [117]. In the case studies in Section 4.5, we select
βt = β0p log(2t) to capture the dominant dependence of the exploration constant on t and
p. A tyical value for β0 is 0.1. An interesting direction for future work includes establishing
a more robust way to select {βt}t≥1 for specific applications.

Estimation of GP Hyperparameters

The results in Lemma 1 and Theorem 1 assume that the hyperparameters {Ψ, σϵ} of the GP
prior for f are known exactly. Since this is often not true in practice, we rely on the maximum
likelihood estimation (MLE) framework to determine the optimal hyperparameters {Ψ⋆

t , σ
⋆
ϵ}

that, at every iteration t, maximize the log-likelihood Lt(Ψ, σϵ) [227]

{Ψ⋆
t , σ

⋆
ϵ,t} ∈ argmax

Ψ,σϵ

Lt(Ψ, σϵ) = log(p(yt|Xt,Ψ, σϵ)). (4.16)

Based on the GP prior, the measured data vector yt must be distributed according to a
multivariate Gaussian distribution of the following form

yt ∼ N (0,Σt(Ψ, σϵ)), [Σt(Ψ, σϵ)]ij = k(xi,xj|Ψ) + σ2
ϵ δij, ∀i, j ∈ {1, . . . , t}. (4.17)

Using this representation, an analytical expression for the log-likelihood function can be
derived as

Lt(Ψ, σϵ) = −y⊤
t Σ

−1
t yt −

1

2
log(det(Σt))−

p

2
log(2π). (4.18)

The optimization problem (4.16) is a nonlinear program that can be solved using gradient-
based methods (e.g., IPOPT [300]) since (4.18) is a smooth, differentiable function. To
ensure the optimizer does not get stuck in a local solution, it is useful to “warm-start” the
local solver with the best solution found from a heuristic global optimization method such as
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the DIRECT solver [74]. Notice that the “warm-start” approach will introduce an additional
step into Algorithm 1 that could be somewhat computationally expensive depending on the
size of the optimization (4.16). A simple way to reduce the computational cost associated
with hyperparameter estimation is to update the hyperparameters of the GP model only
periodically, instead of at every iteration. In this work, we exclusively use the Python
package GPy [96] to train and make predictions with GP models.

Minimax Optimization for lcbt−1

Our analysis in Section 4.3 assumed that we could exactly optimize the acquisition functions
defined in terms of the lower and upper confidence bounds in (4.8) and (4.9). The maximiza-
tion problem (4.9) resembles the sub-problem that arises in the standard BO, suggesting that
the same basic principles can be leveraged to develop a practical solution method for the
ARBO Algorithm 1. Here, we propose to use a combination of derivative-free search with a
local gradient-based solver for the min-max optimization (4.8) at each itertation. Note that
since lcbt−1(θ, δ) may be non-convex with respect to θ and non-concave with respect to δ,
we cannot use traditional alternating gradient descent-ascent methods, as they may not even
locally converge [114].

The proposed approach partially exploits the differentiability of lcbt−1(θ, δ). Let gt−1(θ) =
maxδ∈∆ lcbt−1(θ, δ) denote the optimal objective value for the inner maximization problem.
We can then equivalently formulate (4.8) as

min
θ∈Θ

gt−1(θ), (4.19)

where gt−1 is a black-box function that can only be evaluated by calling an internal algorithm
to approximate gt−1(θ) for any choice of θ ∈ Θ. Since, for any fixed θ, lcbt−1(θ, δ) is a smooth
function whose derivatives can be efficiently computed, we can rely on gradient-based solvers
(e.g., the well-known L-BFGS-B algorithm [323]) to quickly converge to a local optimum.
Since we need a good estimate of the global solution for the inner maximization, we need some
type of globalization strategy. One approach is to apply a random multi-start for several δ
points, with the largest converged objective value being returned as our best approximation
to gt−1(θ). The initial guess can be obtained by randomly sampling ∆ or by computing a
large number of random samples of δ to evaluate lcbt−1(θ, δ) with θ fixed, and choose the
ones that lead to the highest lcbt−1(θ, δ) in order to warm start the local solver. We then
treat (4.19) as a black-box optimization problem that can be solved with any number of
available derivative-free optimization methods. In this work, we rely on BOBYQA [41, 217],
which is a local trust region-based approach, but various derivative-free algorithms can be
generally applied [17]. We again rely on a random multi-start procedure to protect against
local solutions for this outer minimization problem; however, since gt−1 is fairly expensive to
evaluate, we must carefully select the number of repeats to ensure a solution can be found
in a reasonable amount of time.
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4.5 Case Studies
In this section, we demonstrate the performance of the ARBO algorithm on two problems.
The first case study is an illustrative example that is meant to showcase several implemen-
tation details of Algorithm 1. Since the exact knowledge of the function and its min-max
solution is available, we can directly compute the key performance assessment measures, such
as the simple robust-regret, in the illustrative example. The second case study, on the other
hand, focuses on a challenging nonlinear MPC (NMPC) auto-tuning problem. Since this
auto-tuning problem involves a nonlinear plant simulator, we do not have exact knowledge
of the true solution and thus cannot use simple robust-regret as our performance measure.
Instead, we evaluate the solution quality directly in terms of the closed-loop performance
and constraint satisfaction profiles. The main goal of this section is to show that ARBO can
more reliably find high-performance tuning parameters with significantly fewer closed-loop
simulations than alternative methods.

Illustrative Example

Consider a problem in the form of (4.1), with the following analytic expression for f

f(θ, δ) = sin(θδ) +
√
δθ2 − 0.5θ, (4.20)

where Θ = [−1, 2] is the feasible set of decision variable and ∆ = [2, 4] is the feasible set of the
uncertainty. Throughout this section, (4.20) is unknown to any of the black-box algorithms,
and is only used for assessing our the regret-based performance measures. Figure 4.1 shows
a plot of f(θ, δ(i)) versus θ for a large number of random samples δ(i) ∈ ∆, with the worst-
case function g(θ) = maxδ∈∆ f(θ, δ) shown with a black dashed line. From this plot, we
can see that θ⋆ = −0.3573, which corresponds to an optimal minimax objective value of
f ⋆ = −0.2961.

For this illustrative problem we can identify the globally optimal solution in the domain
of interest, thus the regret metrics become readily available for assesing the convergence
of the proposed algorithm. Therefore, we use the simple robust-regret Sδ

T as our metric
since we aim to identify this robust solution in as few iterations as possible. Theorem 1
highlights the importance of the βt sequence within Algorithm 1, as this is the main tool
used to navigate the exploitation-exploration tradeoff in the joint {θ, δ} space. To better
illustrate this point, we compare ARBO to the a purely exploitative approach, namely a
Gaussian process-based robust optimization (GP-RO) approach. In GP-RO, we completely
ignore the variance information provided by the GP model for f(θ, δ) and, instead, sample
θ = argminθ∈Θmaxδ∈∆ µt−1(θ, δ) and δt = argmaxδ∈∆ µt−1(θt, δ). Similarly, for the rec-
ommendation process, we also rely only on the mean function, i.e., θt⋆ is returned with
t⋆ = argmint∈{1,...,T}maxδ∈∆ µt−1(θt, δ).

It is well-known that determining the hyperparameters of GP models, as discussed in Sec-
tion 4.4, is often unreliable for very small datasets. Thus, as opposed to starting Algorithm
1 from iteration 1, it is usually preferred to select the first N0 points uniformly at random
in any BO procedure to ensure a high-degree of exploration initially [37]. In this illustrative
problem, we select N0 = p2− 1 random points before running Algorithm 1. Since the simple
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Figure 4.1: Objective function plots for various values of the uncertain parameter δ. The
star symbol denotes the true minimax solution, while the vertical blue line represents the
best recommended solution discovered by ARBO. The black dashed line represents the point-
wise worst-case f while the collection of light-blue lines, represented as a "tube", shows the
function evaluated for 1000 random realizations of δ.

robust-regret is a function of these randomly selected initial points, Sδ
T itself is a random

quantity, so that showing results for a single initialization is not very informative. Instead,
we repeated both the ARBO and GP-RO methods Nr times (under the same random seeds)
to construct a sample average estimate for the expected simple robust-regret, i.e.,

E{Sδ
T} ≈

1

Nr

Nr∑
i=1

S
δ,(i)
T , (4.21)

where Sδ,(i)
T denotes the simple robust-regret for the ith run of the algorithm starting from

the ith set of N0 random initial points, while Nr = 10. Since this estimate is constructed
from a finite number of samples, we also report estimated confidence intervals computed as
1.96 times the standard deviation divided by the square root of the number of repeats (also
known as the standard error formula).

The simple robust-regret plots for both ARBO and GP-RO are shown in Figure 4.2, with
the estimated sample average and corresponding confidence-bound error bars on the left and
the individual sample paths Sδ,(i)

T for all i ∈ {1, . . . , Nr} shown on the right. We clearly
see that ARBO consistently converges to the true robust globally optimum, within a small
tolerance compared to the true f ⋆, for all considered initial points. This leads to E{Sδ

T} ≈ 0
using less than 15 function evaluations. GP-RO, on the other hand, shows considerably
worse performance for the individual sample paths as well as the sample average. Figure
4.2(b) is particularly informative, as we see that in several runs, the GP-RO algorithm makes
a little to no progress for the entire 30 allotted function evaluations. This behavior is not
unexpected, as it is well-known to occur in algorithms that lack any degree of exploration –
in this context, there is no clear incentive for GP-RO to sample in unexplored regions of the
Θ×∆ space.

To provide additional insights into the improved performance of ARBO over GP-RO, we
plot the lower confidence bound contour plots for various iterations of a single run of ARBO



CHAPTER 4. ADVERSARIALLY ROBUST BAYESIAN OPTIMIZATION FOR
AUTO-TUNING OF GENERAL CONTROLLERS UNDER UNCERTAINTY 67

Figure 4.2: The simple robust-regret for ARBO (blue lines) and GP-RO (red lines). The
runs are repeated for 10 times and the average simple robust regret is shown along with the
95% confidence intervals in (a). Individual simple robust-regret sample paths for different
uncertainty realizations are shown in (b).

in Figure 4.3. We observe that in early iterations, Figure 4.3(a), the lower confidence bound
attains relatively high values uniformly in most of the Θ×∆ space, since most of the space
is unexplored. As more of the samples suggested by ARBO have been incorporated, shown
as the light blue dots, we see that the lower confidence bound is able to filter out regions of
the space that are not likely to be near the global minimax solution (e.g., ARBO no longer
samples near θ = 2 after it sees large values there). In the later iterations, Figure 4.3(b-c),
we observe that the queried points start to form a pattern; The ARBO algorithm samples
in a region around θ∗, while the proposed points also start converging to worst-case value
for δ.

Lastly, in Figure 4.3(d), we plot the point-wise absolute error between the true function
f(θ, δ) and the mean value of the GP, i.e., the approximate objective at the final iteration.
As expected, the GP at this iteration provides a very good approximation of the unknown
true function in a large region around the global minimax solution denoted with a star,
since the error approaches zero. Nevertheless, it provides an optimistic prediction of f(θ, δ)
elsewhere, and, in particular for θ > 1 . Since this optimistic prediction is still worse than
our known, tested evaluation (we have already queried some points in the regions where,
eventually, it is very unlikely to find the global optimum), we can adaptively exclude regions
of our search space without wasting the computationally expensive samples. This highlights
a fundamentally important point about the BO perspective: it is easier (i.e., fewer samples
are needed) to find a globally optimal solution than building a globally accurate surrogate
model. Additionally, this is the key missing component in GP-RO (which can be interpreted
as ARBO with βt = 0), as the mean predictions alone do not posses enough information
about the quality of the predictions. This can lead to repeated evaluations at the same
uninformative points. Moreover, the gray symbols on Figure 4.3(d), show the evolution of
the recommended optimum based on the last step of Algorithm 1, which closely follows the
iterative generation of recommended queried points.
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Figure 4.3: (a)-(c) Contour plots showing the convergence of ARBO; the contour plots show
the lower confidence bound based on the current iteration’s GP, which guides the selection
of the queried θ. The sequence of optimal points to be queried {θt, δt} is superimposed
(light-blue circles), showing the convergence pattern. (d) Point-wise mismatch between the
true function and the mean of the GP approximation at the final iteration (contour) and the
sequence of recommended optimal points (circles)

Auto-tuning of NMPC for a Bioreactor

Having verified the practical implementation and important theoretical results of ARBO
on an illustrative example, we now apply ARBO to the auto-tuning problem of an NMPC
strategy for an uncertain bioreactor.

High-fidelity process model

We consider a benchmark continuous bioreactor problem originally presented in [4]. The
dynamics of the bioreactor can be modeled by a set of three nonlinear ordinary differential
equations given by

Ẋ(t) = −D(t)X(t) + µ(t)X(t), X(0) = X0, (4.22a)

Ṡ(t) = D(t)(Sf (t)− S(t))−
1

YX/S

µ(t)X(t), S(0) = S0, (4.22b)

Ṗ (t) = −D(t)P (t) + (αµ(t) + β)X(t), P (0) = P0, (4.22c)
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where X(t), S(t), and P (t) denote the biomass, substrate, and product concentration (units
of g/L), respectively, with initial conditions X0 = 0.3 g/L, S0 = 0.2 g/L, and P0 = 0 g/L;
D(t) is the dilution rate (units of hr−1); Sf (t) is concentration of substrate in the feed (units
of g/L); YX/S is the cell-mass yield (units of g/g); µ(t) is the specific growth rate (units of
hr−1); and α and β are parameters related to the product yield. The specific growth rate is
assumed to follow a modified Monod kinetic law that takes into account both substrate and
product inhibition

µ(t) =
µmax

(
1− P (t)

Pm

)
S(t)

Km + S(t) + S2(t)
Ki

. (4.23)

We consider µmax and Pm to be the dominant time-invariant uncertainties in the plant
simulator, as explored in several previous case studies [103, 203]. Here, we assume that
δ = (µmax, Pm) ∈ ∆ = [0.75, 1.35] hr−1 × [1.25, 1.75] g/L. The rest of the model parameters
are assumed to be constant and are listed in Table 4.1.

Table 4.1: Known parameters for the high-fidelity bioreactor model

Fixed Parameters Values Units
YX/S 0.2 g/g
α 2.5 g/g
β 0.8 hr−1

Km 1.2 g/L
Ki 20 g/L

The states of the bioreactor model (4.22) are given by z(t) = (X(t), S(t), P (t)), while
u(t) = (D(t), Sf (t)) denote the two manipulated inputs. As such, we can write (4.22) in the
following state-space representation

ż(t) = F(z(t), u(t), δ), z(0) = z0, (4.24)

where F : R3 × R2 × R2 → R3 is a function that represents the dynamics of the bioreactor
in (4.22) and (4.23). The control objective is to maximize the amount of product extracted
from the bioreactor over a finite processing time of tf = 6 hr, while satisfying minimum and
maximum constraints on the biomass concentration. We can generally denote such state (or
path) constraints as G(z(t), u(t)) ≤ 0, which reduce to the following in this case study

G(z(t), u(t)) = [XLB −X(t), X(t)−XUB, S(t)− SUB] ≤ 0, (4.25)

where XLB = 0.285 g/L and XUB = 0.385 g/L are the lower and upper bounds on the
biomass concentration, respectively, while SUB = 15 g/L is an upper bound to substrate
concentration. The manipulated inputs must also satisfy hard input constraints u(t) ∈ U =
[0.1, 1] hr−1 × [10, 20] g/L. We assume that the manipulated inputs can be updated every
δt = 0.1 hr in the simulation, such that there are a total of Nsim = 60 simulation steps to
compute the behavior for each uncertainty realization.
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Control-relevant model and NMPC formulation

Although a dynamic model of the bioreactor is available here (i.e., we have access to F), this
is not always the case in practice. Furthermore, even when plant simulators are available,
they may be excessively complex and computationally costly to use for MPC design and
implementation. Thus, a more practical approach is often to construct a control-relevant
model using system identification methods based on either plant simulation data or real
plant data. Here, we used a residual neural network approach [220] that learns the “flow-
map” function for time-invariant dynamic systems. In particular, this approach learns a
transition function F̃(zk, uk) that can be applied recursively to predict the forward evolution
of the states

zk+1 = F̃(zk, uk) (4.26)

from some initial condition z0 given a future input sequence. The weights and bias parameters
of the neural network representing F̃ are trained such that the successor state at the next
discrete time can be predicted given the current states and control inputs that have been
determined from the plant simulator described in Section 4.5. We only collect simulation
data for the nominal parameter values µmax = 1.0 hr−1 and Pm = 1.5 g/L, though one could
treat the unknown parameters as additional inputs to the model during training.

A deep neural network with 3 layers, 20 nodes per layer, and the Swish activation [225]
function was used to represent F̃ in (4.26). The training was efficiently carried out using
Tensorflow via the Keras API [48]. Standard best practices regarding the selection of
batch size, weight/bias initialization, and stochastic gradient descent optimizer settings were
utilized. As such, not only this case study considers time-invariant parametric uncertainty
in the plant simulator, but also plant-model mismatch with respect to the control-relevant
model used for the NMPC design at hand.

Given this control-relevant model and the control objective described in Section 4.5, we
formulate the following NMPC problem

min
zi|k,ui|k,εi|k

∑N−1
i=0 L(zi|k, ui|k) + ρ∥εi|k∥1, (4.27)

s.t. zi+1|k = F̃(zi|k, ui|k), ∀i = 0, . . . , N − 1,

G(zi|k, ui|k) + θ ≤ εi|k, ∀i = 0, . . . , N − 1,

εi|k ≥ 0, ∀i = 0, . . . , N − 1,

ui|k ∈ U, ∀i = 0, . . . , N − 1,

z0|k = z(tk),

where N is the prediction horizon; zi|k and ui|k are the predicted state and control inputs
i steps ahead of current time k; z(tk) is the measured state at time tk (from the plant
simulator); L(zi|k, ui|k) = −V DiPiδt is the stage cost with reactor volume V = 10 L; εi|k
are slack variables for the state constraints; ρ is a large penalty weight for state constraint
violations; and θ ∈ Θ = [0, 0.1]2 are the tunable backoff parameters that can be selected to
improve the inherent robustness guarantees in NMPC [193]. Note the stage cost is defined
as the negative of the amount of product extracted from the bioreactor over each δt period;
the negative arises since we want to maximize product, but formulated our problem in terms
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of a minimization. Let u⋆0|k(z(tk), θ) denote the first element of the solution to (4.27). We
can then define the closed-loop system as the combination of (4.24) and the NMPC law

u(tk) = u⋆0|k(z(tk), θ), (4.28)

where the control inputs are constant during each time interval [tk, tk+1), ∀k ∈ {0, . . . , Nsim−
1}. We solve the MPC problem by interfacing IPOPT with the CasADi library [299, 7].

Formulation of auto-tuning problem

Given the closed-loop simulation described in Section 4.5, we can now formulate the auto-
tuning problem as selecting backoffs θ ∈ Θ such that the worst-case mass of product (with
respect to uncertainties δ ∈ ∆) is maximized while the biomass constraints (4.25) are not
(significantly) violated. We denote the objective function of the NMPC tuning problem
as ϕ(θ, δ).To formulate the auto-tuning problem as in (4.1), we must select ϕ(θ, δ) to be a
weighted combination of productivity and constraint violations. Thus, we mathematically
represent the overall control objective in terms of the closed-loop simulation outputs as
follows

ϕ(θ, δ) =

Nsim∑
k=1

L(z(tk), u(tk)) + w∥[G(z(tk), u(tk))]+∥1, (4.29)

where [a]+ = max{a, 0} denotes the element-wise positive part operator and w = 20 is a
weight parameter chosen to have a significant penalty associated with constraint violations.

Results and performance comparison

In this subsection we compare the performance of ARBO and GP-RO to the previously de-
scribed NMPC auto-tuning under uncertainty problem. We allocate a maximum number of
50 iterations for both robust BO variants. We use Latin Hypercube Sampling [148] to gener-
ate the first 15 samples in Θ×∆ to ensure sufficient initial coverage of the search space,while
the same initial samples are used for both algorithms. There are two factors that mainly
determine the overall evolution of querying and recommended points; The initialization of
the algorithm, i.e., the initial samples that construct the GP, as well as the discovery of the of
true optimal solutions in the robust BO problems. Note that ARBO and GP-RO as defined
in this work, involve the solution of one nested (step 3 of Algorithm 1), one simple (step 4)
and a sequence of simple (step 8) optimization problems, which, albeit relatively computa-
tionally inexpensive, may lead to incorrect solutions if the used local solvers are "trapped"
in local minima. Therefore, to examine the consistency of the proposed algorithm, we repeat
the optimization procedure Nr = 5 times.

From examining the sequence of recommended optimum values, we have observed a sim-
ilar behavior to the illustrative problem; ARBO consistently explores the decision variables
space Θ while GP-RO recommendations do not update in several cases. To this end, we
analyze the closed-loop performance for the final recommended point of the ARBO and GP-
RO algorithms by evaluating {f(θt⋆ , δ(i))}Ns

i=1 at Ns = 150 LHS-based sampled uncertainty
values δ(i) ∈ ∆. The results are directly compared with the corresponding performance when
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a nominal value for backoffs, i.e., θ0 = [0, 0] is used. Note that in this analysis we use all
performance samples that were discovered by varying the final recommended point of ARBO
and GP-RO as discovered among the 5 replicates.

Figure 4.4: Histograms of the total cost ϕ(θ, δ) given in (4.29) established under 100 real-
izations of the parametric uncertainties in the plant simulator, for the cases of NMPC with
no-backoff, (θ0), NMPC auto-tuned with ARBO, (θ∗ARBO), and NMPC auto-tuned with GP-
RO,(θ∗GP−RO)

The resulting histograms are shown in Figure 4.4. We show the relative count since 150
samples have been used for the nominal case, while the BO-based plots use 750 samples
(150 samples for 5 trials). The comparison with the nominal setting, in which the backoffs
are set to zero, is provided to better highlight the advantages of auto-tuning. As seen from
Figure 4.4, the estimated worst-case total cost for ARBO is significantly lower than that for
the no-backoff case and GP-RO. This trend is also followed across the entire distributions
as, on average, ARBO discovers better solutions than the nominal and GP-RO cases. It is
important, though, to note that the algorithm is designed to discover the robust worst case
solution; the fact that this solution also leads to an overall improvement in performance in
a wide range of uncertainty values is a desired, and intuitively, expected side-effect. We also
observe that several solutions of the nominal case actually lead to lower costs than ARBO
and GP-RO. This is expected, again, based on minimax nature of the problem as well as
given that backoffs overall restrict the performance by reducing the feasible region. They
are important, though, as seen, for “protecting" against the worst-case scenario. Quantifying
the worst-case closed-loop behavior of the system, the following results have been obtained,
as seen in Table 4.2.

Table 4.2: Performance comparison between ARBO and GP-RO across trials

Trial Worst-Case Cost Final Recommended θ Final Worst δ
ARBO GP-RO ARBO GP-RO ARBO GP-RO

1 13.11 11.98 (1× 10−1, 7.8× 10−2) (0, 5.4× 10−2) (0.75,1.25) (0.75,1.75)
2 11.65 41.28 (0, 6.5× 10−2) (0, 1× 10−1) (1.35,1.25) (1.35,1.25)
3 13.09 22.86 (5.6× 10−2, 5× 10−2) (1× 10−1, 1× 10−1) (1.33,1.56) (1.35,1.25)
4 12.44 19.19 (0× 10−1, 7.2× 10−2) (6.2× 10−3, 8.6× 10−2) (0.75,1.75) (1.17,1.66)
5 12.13 12.73 (1.4× 10−2, 3.8× 10−2) (2× 10−2, 6.8× 10−2) (1.35,1.25) (1.35,1.75)

As a point of reference, we should mention that the worst-case cost for the nominal
solution is 36.57. From Table 4.2 we can observe that the worst case cost of ARBO is
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consistently lower than the nominal and GP-RO cases, except trial 1 where the costs are
comparable, although the final recommended point is quite different. Although the GP-
RO algorithm provides significantly sub-optimal results compared to ARBO, introducing
some backoff generally improves the worst-case performance due to enchanced constraint
satisfaction. However, in trial 2, the GP-RO solution is not able to encounter a candidate
worst case solution that leads to a cost even higher than the nominal case. Note also that,
in the case of ARBO, the values of the worst case costs are quite similar, even when the
final recommended θ are not very close in the Θ space. This highlights high degrees of
nonlinearity of the performance function in the joint design-uncertainty space.

To obtain more insight into effect of introducing backoff parameters, the dynamic closed-
loop behavior of the system is computed. Figure 4.5 shows the closed-loop state profiles for
the three cases considered in Figure 4.4. For ARBO we plot the profiles corresponding to
trial 1, while for GP-RO the profiles corresponding to trial 2, which are the respective trial
for which the algorithms yield the higher worst-case cost.

Figure 4.5: Closed-loop state profiles for the biomass, given for 150 realizations of parametric
uncertainties in the plant simulator for the cases of NMPC with no-backoff (a-c), NMPC
auto-tuned with ARBO (d-f), and NMPC auto-tuned with GP-RO (g-i).

From Figure 4.5(a), it is evident that in the no-backoff case, a large violation of XLB

occurs at later instances, thus incurring a large penalty in the performance cost function.
This issue is alleviated by using the optimal backoffs calculated by ARBO, which lead to
significantly less violation of the lower biomass bound XLB, while not sacrificing on the
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amount of product obtained throughout the processing time of interest, as seen by the
concentrations of product in Figure 4.5(c & f), which is even higher in the ARBO case. It
is important to note that achieving this behavior requires careful simultaneous tuning of
θ1 and θ2, as we need to allow for some level of XLB as well as XUB violation to obtain
a large enough amount of product, while staying within the desired bounds for biomass
concentration. It would be difficult for a practitioner to infer this careful balance without
running an impractically large number of closed-loop simulations. In fact, ARBO was able
to uncover this desired balance in an automated fashion using 65 total simulations (15
initial simulations the GP construction and 50 iterations for BO); this is fewer than the
150 simulations we used to estimate the worst-case performance for the final recommended
point. Lastly, we also observe that GP-RO attempts to improve the closed-loop behavior of
the system by decreasing the amount of XLB violations as ARBO, however, it does so by
introducing also more significant XUB violations.

4.6 Conclusions and Future Work
We have presented a robust BO method for auto-tuning of arbitrary complex control struc-
tures using a “high-fidelity” plant simulator with significant time-invariant uncertainties. The
proposed ARBO method uses a probabilistic Gaussian process surrogate model to jointly de-
scribe the effect of the tuning parameters and plant model uncertainties on the closed-loop
performance. The Gaussian process model allows for using an alternating confidence-bound
procedure to simultaneously select the next candidate tuning and uncertainty realizations.
As such, ARBO requires only one (expensive) closed-loop simulation in each iteration, as
compared to alternative robust BO approaches to auto-tuning that rely on vastly more
closed-loop simulations in each iteration. Our results on two simulation case studies demon-
strate the advantages of the confidence bound-based procedure of ARBO in systematically
realizing a tradeoff between the exploration and exploitation of the design-uncertainty space
relative to Gaussian process surrogate-based robust optimization that lacks an exploration
mechanism.

As a remark, we note that there are a series of challenges regarding the applicability of
ARBO to similar tuning problems. An important issue is related to the challenges associ-
ated with BO in high-dimensional spaces. Since ARBO relies on GPs that jointly learn the
decision variable and uncertainty space, it is expected to encounter difficulties in systems
that either have many uncertainties or many tunable parameters (or a combination of both).
A second challenge is related to the implementation of ARBO and, more specifically, the
selection of optimization strategies that solve the inner/outer problemsm including the rec-
ommendation procedure. The nested form of the problem makes it critical to ensure that the
aforementioned inner/outer problems are solved near global optimality. In the manuscript
we propose several practical implementation points, but improvements can be made in this
directions. Finally, other practical aspects such as an optimal selection strategy for the ex-
ploration constant and convergence criteria should be further examined. Our future work
will mainly focus on addressing these challenges, as well as using more complex non-Gaussian
noise models for robust BO.
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Chapter 5

Gradient-Enhanced Bayesian
Optimization Towards Efficient
Closed-Loop Policy Search

This chapter discusses the incorporation of gradient observations into Bayesian Optimization
(BO). Recent work has shown that BO can be augmented with gradient measurements to fur-
ther improve its convergence behavior. These approaches mostly rely on standard acquisition
functions and indirectly incorporate gradient information into a probabilistic surrogate model
of the performance function to improve its local predictions. Here, we present new strategies
to simultaneously exploit performance (zeroth-order) and gradient (first-order) data within a
single acquisition optimization step. We propose two methods: (i) an acquisition ensemble
approach, termed AEGBO, that suggests a point to query by jointly optimizing a zeroth-order
and a first-order acquisition and (ii) an approach that enforces the necessary optimality con-
ditions as constraints to the acquisition optimization, termed NOBO. The performance of the
proposed methods is demonstrated for closed-loop policy search via reinforcement learning on
a benchmark linear-quadratic-regulator (LQR) problem. This chapter is adapted from [155]
and [156]. .

5.1 Introdcution
The control of complex systems is often associated with the challenge of optimizing black-
box functions that are expensive to evaluate and lack an analytical, closed-form structure.
These functions may also be subject to noise, further complicating their optimization. Thus,
in many real-world applications, we resort to derivative-free global optimization techniques
that can effectively handle these challenges. In recent years, there has been a growing
interest in the use of black-box optimization methods for various control applications. In
particular, Bayesian optimization (BO) [80, 34] has emerged as an effective strategy for
generic controller auto-tuning [197, 159, 124], and direct policy-search reinforcement learning
(RL) [178, 139]. The main idea of BO is to convert a challenging black-box optimization
problem into a sequence of easier-to-solve sub-problems that aim at iteratively learning
and updating our belief about the objective by querying the system performance. This is
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achieved via constructing a Gaussian Process (GP) model of the objective given the current
set of observations and subsequently optimizing over a utility metric, a so-called acquisition
function (AF), to determine where to query the system next. AFs leverage the surrogate
objective to suggest new evaluation points, balancing the competing aims of exploration and
exploitation.

Although BO is by nature a zeroth-order optimization method, recent work has demon-
strated that gradient information, when accessible in practice, can be valuable since it pro-
vides additional information about the objective function [311, 308, 253], leading to the
development of various, so-called, gradient-enhanced BO. Conditioning the predictions of
the function on gradient observations allows for reducing the variance in unexplored points
in the domain, yielding a more accurate surrogate, hence accelerating the overall convergence
of the algorithm. This gradient-enhanced GP can then be utilized with typical zeroth-order
AFs [311] or with first-order AFs [178, 205].

Here, we present a framework for a gradient-enhanced BO method that directly incor-
porates the gradient information into the AF by leveraging the fact that the first-order
optimality conditions must hold for the optimal solution of a BO problem. The first method
we propose towards this goal is the use of an ensemble of two acquisition functions. that can
be simultaneously maximized (in a Pareto sense) using multi-objective optimization. We
initially derive a cheap-to-evaluate gradient-based acquisition function that can identify sta-
tionary points of the performance optimization problem. Subsequently, we propose a simple,
yet effective strategy for finding query points that optimally tradeoff between a zeroth-order
AF and the proposed gradient-based AF via multi-objective optimization. Thus, the pro-
posed acquisition-ensemble, gradient-enhanced BO (AEGBO) method [155] can discover a
set of valuable query points that are Pareto optimal with respect to both sources of infor-
mation. Albeit it’s promising results, a few issues with that approach are that (i) it is based
on multi-objective optimization which is a challenging problem, (ii) it is harder to generalize
to black-box constraint settings and, perhaps most importantly, (iii) it is not evident how
to select a point to query from the resulting Pareto set at each iteration, hence, problem
specific heuristics need to be developed while rendering convergence analysis cumbersome.
To this end, we alleviate seveal issues by also proposing a necessary-optimality BO [156],
or NOBO, method (second method) that uses GP surrogates for the partial derivatives of
the objective to approximately enforce the first-order optimality conditions as black-box con-
straints in the AF. These constraints allow for defining a feasible set that explicitly takes into
account the uncertainty present in approximating the partial gradients from data, which is
updated with observing new data. Thus, the feasible set enables narrowing down the search
of the design space to regions that are jointly informative with respect to both zeroth- and
first-order information. Unlike AEGBO that relies on an ensemble of acquisition functions
with first-order information, the performance of NOBO only depends on scalar exploration
hyperparameters that are easier to select. We further analyze the theoretical performance
of NOBO based on the cumulative regret metric, connecting it to the kernel properties of
the GP. We demonstrate the performance of AEGBO and NOBO for policy-based RL on a
benchmark LQR problem, in comparison with standard BO and REINFORCE.
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5.2 Problem Statement

Optimization goal and regularity assumptions

We consider the following "black-box" optimization problem

max
x∈X

f(x), (5.1)

where x ∈ X are decision variables that are restricted to some known compact domain
X ⊂ Rd and f : X → R is an expensive-to-evaluate objective function whose mathematical
structure is unknown. We assume that X can be expressed as the level set of a known
function c : Rd → Rc, i.e.,

X = {x ∈ Rd : c(x) ≤ 0}. (5.2)

We consider the bandit feedback setting wherein, at iteration t, a query point xt is selected
for which noisy evaluations of f(xt) and its gradient ∇f(xt) can be observed. That is, we
observe

y0,t = f(xt) + ϵ0,t, (5.3a)
yi,t = ∂xi

f(xt) + ϵi,t, ∀i ∈ Nd
1, (5.3b)

where ϵi,t are i.i.d. R-sub-Gaussian noise terms for a fixed constant R ≥ 0, meaning they
must satisfy

E
{
eλϵi,t | Σi,t−1

}
≤ e

λ2R2

2 , ∀i ∈ Nd
0, t ≥ 0, λ ∈ R, (5.4)

where Σi,t−1 denotes the σ-algebra generated by the random variables {xk, ϵi,k}t−1
k=1 and xt.

This is a standard assumption in the bandit feedback setting, and is relatively mild since it
holds for all distributions bounded in [−R,R] [49]. We note that this differs from traditional
bandit feedback problems that only assume the availability of zeroth-order information y0,t,
which can place a limitation on performance. Here, we look to incorporate gradient informa-
tion, which can often be observed (or estimated) in control applications such as closed-loop
policy optimization, as discussed in Section 5.6. We focus on functions f that satisfy the
following common “regularity” assumption.

Assumption 2 Let Hk(X) denote the reproducing kernel Hilbert space (RKHS) of functions
X → R, with a positive semi-definite kernel function k : X×X → R. Furthermore, let ⟨·, ·⟩k
denote the inner product that obeys the reproducing property f(x) = ⟨f, k(x, ·)⟩k for all
f ∈ Hk(X), which induces the RKHS norm ∥f∥k =

√
⟨f, f⟩k. We assume that ∥f∥k0 ≤ B0

and ∥∂xi
f∥ki ≤ Bi for all i ∈ Nd

1 have known finite bounds B0, . . . , Bd for some known kernels
k0, . . . , kd.

Assumption 2 allows for the construction of well-behaved confidence bounds on the target
functions and is valid as long as (f,∇f) satisfy basic properties such as being bounded,
continuous, and at least once differentiable over X. In the absence of such an assumption,
these functions could be arbitrarily complex (e.g., realization of a white noise sequence)
for which it may be difficult or impossible to exploit past data to make future selections.
Furthermore, we assume that the kernel functions are normalized.
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Assumption 3 The kernel functions k0, . . . , kd for f and ∇f satisfy ki(x, x) ≤ 1 for all
x ∈ X and i ∈ Nd

0.

This assumption can be easily satisfied for any kernel with bounded variance by dividing by
a scaling factor and is useful for making the theoretical bounds well-established.

Gaussian process models with gradient information

We place a GP prior over f to build a probabilistic surrogate model that is non-parametric.
A GP model is fully specified by its mean function µ : X → R and covariance (or kernel)
function k : X ×X → R. Since the gradient is a linear operator, the gradient of a GP must
remain a GP, such that we can create a joint GP model with the following updated mean
function µ̃ and covariance function k̃

µ̃(x) =

[
µ(x)
∇µ(x)

]
, (5.5a)

k̃(x, x′) =

[
k(x, x′) ∇x′k(x, x′)⊤

∇xk(x, x
′) ∇x(∇x′k(x, x′)⊤)

]
. (5.5b)

The extended mean function µ̃ : X → Rd+1 maps to a (d+ 1)-dimensional vector, while the
extended covariance function k̃ : X × X → Rd+1×d+1 maps to a (d + 1) × (d + 1) matrix,
which has the ability to capture correlation between the function and its d partial derivatives
that make up the gradient vector [305, 311].

The idea behind using such a joint kernel function is that it captures the correlation
between the function and the partial derivatives by specific selection of the kernel structure,
following the differentiation properties of GPs. Nevertheless, in certain cases, the observed
gradients are very noisy or prone to errors in the estimation process. When incorporating
such gradient observations into the gradient enhanced kernel, it is possible that they may
adversely affect the accuracy of the GP model by introducing misleading information about
the true objective function. To mitigate this issue, as discussed in [205], we can create
separate GP models for the objective function and each partial derivative. We consider a
GP prior GP(0, ki(·, ·)) over the target function f and its partial derivatives ∂xi

f to learn
the unknown black-box functions, where ki is the kernel function associated with the RKHS
Hki(X) (see Assumption 2). Additionally, we adopt an i.i.d. Gaussian zero-mean noise
model with variance ηi > 0. The GP model of f enables us to construct analytic expressions
for the posterior mean and covariance functions, as well as the maximum information gain in
the bandit feedback problem at hand, that will be useful for the ensuing theoretical analysis.

Given t observations yi,t = (yi,1, . . . , yi,t) under the GP prior, the posterior remains a GP
with the following mean µi,t, kernel ki,t, and variance σ2

i,t functions for all i ∈ Nd
0

µi,t(x) = k
⊤
i,t(x)(Ki,t + ηiI)

−1yi,t, (5.6a)

ki,t(x, x
′) = ki(x, x

′)− k⊤
i,t(x)(Ki,t + ηiI)

−1ki,t(x
′),

σ2
i,t(x) = ki,t(x, x), (5.6b)

where ki,t(x) = [ki(x1, x), . . . , ki(xt, x)]
⊤ andKi,t is the positive definite kernel matrix whose

elements are given by [Ki,t]n,m = ki(xn, xm) for all n,m ∈ Nt
1. Note that, in principle, one
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could replace this set of d+1 independent GP models with a joint GP model that captures the
correlation between f and ∇f (e.g., see [205]). Here, we consider the case of independent
GPs for the following reasons. First, it simplifies the analysis and the complexity of the
model substantially. Second, the established results straightforwardly carry over to the joint
GP case due to Slepian’s comparison lemma [255]. Third, it provides more flexibility in the
choice of the kernel structure for the derivative functions.

Next, we define the maximum information gain (MIG) for the unknown functions f and
∇f .

Definition 1 Let A ⊂ X denote any potential subset of points sampled from X. The maxi-
mum information gain for the (i+ 1)th element of (f,∇f) for t noisy measurements is

γi,t = max
A⊂X:|A|=t

1

2
log det

(
I + η−1

i Ki,A

)
, (5.7)

where Ki,A = [ki(x, x
′)]x,x′∈A.

Note γi,t depends on both the domainX and the kernel function ki, and can be interpreted
as a measure for the difficulty of the optimization task. Several results exist for bounding the
growth of γi,t as a function of the number of iterations t, as used in the theoretical analysis
of Section 5.4.

We now summarize a key result that shows how the posterior GP mean is centered around
the unknown functions by a multiplicative factor of the posterior standard deviation.

Lemma 2 (Theorem 2, [49]) Let X ⊂ Rd, {ϵi,t}∞t=1 be R-sub-Gaussian noise, and As-
sumption 2 holds. Then, for any δ ∈ (0, 1), the following holds for all x ∈ X and t ≥ 1

|µi,t−1(x)− gi(x)| (5.8)

≤
(
Bi +R

√
2(γi,t−1 + 1 + ln((d+ 1)/δ))

)
σi,t−1(x),

with probability at least 1− δ/(d+ 1), where gi denotes the (i+ 1)th element of (f,∇f) and
µi,t−1(x), σi,t−1(x), and γi,t−1 are given in (5.6) and (5.7).

Note that the value of δ in [49, Theorem 2] is replaced by δ/(d + 1) above since we will
require joint confidence bounds on (f,∇f), similar to [314].

Performance metrics

We now define the key performance metrics that will be used to analyze effectiveness of the
proposed approach. As in the standard bandit feedback setting, we look to minimize the
gap of f(xt) to the optimal value f ⋆ = maxx∈X f(x), i.e., the instantaneous regret

rt = f ⋆ − f(xt), (5.9)

where xt is the selected query point at iteration t ≥ 1. Given that gradient information is
available, we can also quantify

vt = ∥∇f(xt)−∇c(xt)λt∥1, (5.10)
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where λt ∈ Rc
+ will be Lagrange multipliers selected by our approach at iteration t. As shown

in Section 5.4, vt is the distance from a first-order stationarity condition being satisfied.
Ideally, our approach would be able to achieve zero regret and violation in a single step;
however, this is only possible when (f,∇f) are perfectly known. In the black-box setting,
we aim to minimize the cumulative regret over a time horizon T

RT =
∑T

t=1 rt =
∑T

t=1 (f
⋆ − f(xt)) . (5.11)

Formally, minimizing RT requires one to solve an intractable dynamic programming problem
(see, e.g., [202, 21]). Thus, this paper presents an efficient, simple-to-implement no-regret
approach that ensures RT/T → 0 as T → ∞. The no-regret property not only guarantees
vanishing per-round instantaneous regret, but also ensures convergence to the global solution.
In a similar fashion, we also define the cumulative violation of stationarity as

VT =
∑T

t=1 vt =
∑T

t=1 (∥∇f(xt)−∇c(xt)λt∥1) . (5.12)

5.3 Acquisition-Ensemble Gradient-Enhanced Bayesian
Optimization (AEGBO)

In this section we describe the first proposed method that is based on the interplay of utilizing
zeroth-order and first-order information during the querying stage. Given the probabilistic
surrogate model and posteriors as defined in (5.6), we must define an acquisition function
α(x) : X → R to provide a good measure of the (expected) desirability of querying any
point x ∈ X with respect to our end goal (maximizing the unknown function f). If properly
selected, one would like to preferentially sample at the point that produces the highest value
of the acquisition function. We can then formally define BO as the sequential learning
process of selecting next samples in the following fashion

x(t+1) ∈ argmax
x∈X

α(x), (5.13)

where α(·) represents the acquisition function induced by the posterior conditioned on data
observed up to iteration t, D(t). Therefore, the main distinction between traditional BO
and gradient-enhanced BO is that D(t) includes derivative information for the latter, which
necessitates the use of a more complex GP model. In principle, one could take advantage
of any of the previously developed acquisition functions [80], such as expected improvement
(EI), upper confidence bound (UCB), or knowledge gradient (KG), by replacing the standard
posterior mean and variance predictions for f with those derived from (5.5a). Nevertheless,
several computational aspects, tied with the acquisition optimization, reinforce our selection
for using separate GPs for each of the objective and partial derivatives; performing hyperpa-
rameter training and posterior update using (5.5a) can be computationally demanding. In
particular, inverting the covariance matrix K̃t for the joint GP model scales as O((t(d+1))3),
which can be challenging when either t or d are large in size. Furthermore, this additional
cost can have a big impact on the effort needed to solve (5.13), which requires repeated
forward predictions to be made with the joint GP model. To better understand the com-
putational implications, let us discuss the derivative-enabled KG (dKG) function, which is
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mathematically defined in [311]. The dKG function is defined as follows

dKGt(x) = En

[
max
x∈X

µ̃0,(t+1)(x)|x(t+1) = x

]
−max

x∈X
µ̃0,t(x) (5.14)

where µ̃0,t(x) = Et{f(x)} is the expectation of f(x) under the GP prior conditioned on data
D(t) (corresponds to the first element of the joint mean vector µ̃(T )(x)). dKG measures the
expected improvement in the maximum value of the mean function given a new observation is
taken at x(t+1) = x. The use of the mean function, as opposed to the function observations
themselves, is needed to filter out any noise present in the observations. Although dKG
is a quite effective measure of the value of information, it is very expensive to evaluate
due to the internal maximization over the future posterior mean function. To mitigate
this computational burden, [311] proposed to only use the best directional derivative at
each iteration. In addition to ignoring useful information in the form of the complete set
of partial derivatives of the objective function, this approach does not fully address the
inherent challenge of the two-level optimization procedure needed to globally solve (5.13)
when α(t)(x) = dKGt(x).

We now describe the proposed method for efficiently integrating noisy function and gra-
dient information into the BO framework, referred to as AEGBO.

Proposed Acqusition Function

Here, we focus on UCB-style acquisition functions due to their simplicity and established
convergence properties [149]. The UCB function is given by

α
(t)
UCB(x) = µ0,t(x) + βfσ0,t(x), (5.15)

where βf ∈ R+ is a hyperparameter that balances exploration and exploitation, and σ0,t(x) =
[k0,t(x, x)]

1/2 is the standard deviation of the posterior GP for f . Under the independence
assumption, the gradient predictions do not directly impact the UCB acquisition such that
we need a new strategy for quantifying the value of gradient information. To derive an
independent source of information, we recognize that a necessary condition for optimality in
(5.1) is ∇f(x) = 0 (assuming the global maximum lies in the interior of X). An equivalent
way to represent the solutions to this set of equations is minx∈X ∥∇f(x)∥, which can also
be stated as maxx∈X(−∥∇f(x)∥), where ∥ · ∥ denotes some vector norm; here, we use the
1-norm. Since the gradient is also an unknown function, we can use BO methods to tackle
this optimization problem as a way to efficiently search for stationary points of the original
maximization problem (5.1). An important distinction between the gradient norm (GN)
problem and (5.1) is that the former involves multiple unknown functions. This is often
referred to as a decomposed BO problem, for which standard acquisition functions do not
directly apply. We can straightforwardly develop an UCB acquisition function for multi-
output problems whenever the objective is defined as a linear transformation of the GP
models, as shown in [132]. Norms are nonlinear operators, however, we need a tailored
approximation strategy for the gradient norm. We propose the following gradient-based
acquisition function analogously to the UCB function (5.15)

α
(t)
GN(x) = −Et{∥∇f(x)∥}+ βg

√
Vart{∥∇f(x)∥}, (5.16)
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where Vart{·} denotes the posterior variance given D(t) and βg ∈ R+ is a hyperparmeter sim-
ilar to βf . We can construct analytic expressions for the mean and variance terms since the
absolute value of each partial derivative follows a folded normal distribution [289]. Starting
with the mean term, we can derive

Et{∥∇f(x)∥} =
∑d

i=1 Et

{∣∣∣∂f(x)∂xi

∣∣∣} , (5.17)

=
d∑

i=1

{
2σi,t(x)ϕ(z

(t)
i ) + µi,t(x)

[
Φ(z

(t)
i ) + Φ(z

(t)
i )
]}

,

where z(t)i = µi,t(x)/σi,t(x), and ϕ(·) and Φ(·) correspond to the standard normal density
function and cumulative density function, respectively. We can similarly derive a simple
overall expression for the variance

Vart{∥∇f(x)∥ =
∑d

i=1 Vart
{∣∣∣∂f(x)∂xi

∣∣∣} , (5.18)

=
d∑

i=1

{
(µi,t(x))

2 + (σi,t(x))
2 − Et

{∣∣∣∣∂f(x)∂xi

∣∣∣∣}2
}
.

Note that closed-form expressions for the inner expectation terms have already been com-
puted in (5.17). As such, our proposed gradient-based acquisition function in (5.16) can be
efficiently computed using the d separate GP models for each of the partial derivatives of the
objective function. This implies that maximizing α(t)

GN(x) should be at worst a linear factor
of the cost required to maximize the cheap-to-evaluate function α

(t)
UCB(x) with respect to d.

This is a substantial reduction in cost when compared to dKG.

Combining Function and Gradient Information using Acquisition
Ensembles

Now, we are equipped with two separate acquisition functions α(t)
UCB(x) and α

(t)
GN(x) that,

respectively, provide independent sources of zeroth- and first-order information regarding
the maxima of f . It is unlikely that the same point maximizes both of these functions simul-
taneously, meaning we need some procedure to select a common value xt+1 that performs
reasonably well with respect to both functions. The multi-objective optimization (MOO)
framework is suitable for this task since it allows us to systematically tradeoff between mul-
tiple objectives.

The main goal of MOO is to characterize the set of points on the so-called Pareto frontier,
which is the set of Pareto optimal points, i.e., feasible points x ∈ X in which favorable
movement in one objective comes at the expense of at least one other objective. In [46], a
related idea is applied to a set of standard BO acquisition functions that showed promising
results. Therefore, we look to develop a similar approach using αt(x) = {α(t)

1 (x), α
(t)
2 (x)} as

our set of acquisition functions, where the subscripts 1 and 2 will be used as shorthand for
the UCB and GN acquisition functions, respectively. We now formally present the AEGBO
method in terms of αt(x) as the following sequential sampling process

x(t+1) ∈ X⋆
t = {x ∈ X : αt(x) ∈ Pt}, (5.19)
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where X⋆
t denotes the set of Pareto optimal points given all currently available data D(t),

which is characterized by the Pareto frontier Pt

Pt = {αt(x) : ∄y ∈ X s.t. αt(x) ≺ αt(y)}. (5.20)

Here, αt(x) ≺ αt(y) implies point y dominates x, which occurs if and only if α(t)
i (x) ≤ α

(t)
i (y)

for all i ∈ {1, 2} and ∃i ∈ 1, 2 such that α(t)
i (x) < α

(t)
i (y). Therefore, Pt corresponds to the

set of points for which there does not exist any feasible point that dominates it.
Although the proposed AEGBO method requires the MOO problem (5.19) be solved at

every iteration, this problem involves only two cheap-to-evaluate objective functions and,
thus, can be straightforwardly solved (approximately) using established methods such as the
NSGA-II algorithm [63]. It is worth noting that all points in X⋆

n are Pareto optimal such that
there is no clear metric to select between the candidate points in this set. In general, any
selection criteria can be utilized. Uniform random selection criteria (in which all points from
X⋆

n are potentially chosen with equal probability) tend to reduce bias that may result from
a deterministic selection strategy. Nevertheless, other heuristics such as initially selecting
Pareto points that achieve the lowest gradient norm (in absolute value) may work well in
practice, as used in this paper.

5.4 Necessary Optimality-constrained Bayesian
Optimization (NOBO)

This section summarizes the proposed necessary optimality-constrained Bayesian optimiza-
tion (NOBO) approach for solving (5.1). The key observation that motivates NOBO is that
we can reformulate (5.1) as

max
x∈X

f(x) s.t. ∇f(x) ∈ NX(x), (5.21)

where NX(x) = {z ∈ Rd : z⊤(y − x) ≤ 0,∀y ∈ X} denotes the normal cone to the set
X at the point x. The newly added constraint ∇f(x) ∈ NX(x) implies x is a “stationary
point,” which constitutes the first-order necessary optimality conditions for x to be a (local)
maximum as long as the set X ensures constraint qualifications are satisfied. At the first
glance, (5.21) may not appear useful since the necessary optimality conditions are typically
solved numerically to identify possible solutions to (5.1). This would make ∇f(x) ∈ NX(x)
redundant; however, this is only true when the function f is exactly known. In the black-box
setting of this work, these constraints provide additional independent information that can
be exploited to restrict the set of possible query points.

Assuming the linear independence constraint qualification (LICQ) holds, we can equiva-
lently represent the feasible set of (5.21) using the Karush-Kuhn-Tucker (KKT) conditions

F = {x | ∃λ : ∇f(x) = ∇c(x)λ, 0 ≤ λ ⊥ c(x) ≤ 0},

where the notation “0 ≤ λ ⊥ c(x) ≤ 0” is shorthand for the complementary constraints, i.e.,
c(x) ≤ 0, λ ≥ 0, λ⊤c(x) = 0. Since neither the target function f or the feasible set F are
known in the black-box setting, we rely on constructing high probability relaxations using
GP models. To this end, we introduce the lower and upper confidence bound functions.
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Definition 2 The lower and upper confidence bounds for the (i+1)th element of (f,∇f) at
iteration t are given by

li,t(x) = µi,t−1(x)− β1/2
i,t σi,t−1(x), (5.22a)

ui,t(x) = µi,t−1(x) + β
1/2
i,t σi,t−1(x), (5.22b)

where β1/2
i,t = Bi +R

√
2(γi,t−1 + 1 + ln((d+ 1)/δ)).

Using Lemma 2, we can then establish the following result on the joint relaxation of
(5.21).

Theorem 2 Let the assumptions of Lemma 2 hold. Then, with probability at least 1 − δ,
the following bounds hold simultaneously for all x ∈ X and t ≥ 1

f(x) ∈ [l0,t(x), u0,t(x)] and F ⊆ Fu
t , (5.23)

where Fu
t = {x | ∃λ : (x, λ) ∈ Ru

t } is the relaxed feasible region defined in terms of the set

Ru
t =

{[
x
λ

] ∣∣∣∣ |µd,t−1(x)−∇c(x)λ| ≤ β
1/2
d,t σd,t−1(x)

0 ≤ λ ⊥ c(x) ≤ 0

}
,

with the following definitions

µd,t−1(x) = (µ1,t−1(x), . . . , µd,t−1(x)) ∈ Rd×1,

σd,t−1(x) = (σ1,t−1(x), . . . , σd,t−1(x)) ∈ Rd×1,

β
1/2
d,t = diag(β1/2

1,t , . . . , β
1/2
d,t ) ∈ Rd×d.

Proof: The confidence bounds li,t(x) and ui,t(x) are random variables since they depend
on observations yi,t that are corrupted by random noise. Therefore, we can define the fol-
lowing events that the unknown functions respect the confidence bounds for all x ∈ X and
t ≥ 1

E0 = ∩x∈X ∩t≥1 {l0,t(x) ≤ f(x) ≤ u0,t(x)},
Ei = ∩x∈X ∩t≥1 {li,t(x) ≤ ∂xi

f(x) ≤ ui,t(x)}, ∀i ∈ Nd
1.

We can then establish the following sequence of inequalities

P
{
∩di=0Ei

}
= 1− P

{
∪di=0Ei

}
≥ 1−

∑d
i=0 P

{
Ei
}

≥ 1−
∑d

i=0
δ

d+1
= 1− δ,

where the second inequality follows from Boole’s inequality and the third inequality follows
from Lemma 2. The first part of (5.23) directly follows. To see that F ⊂ Fu

t must also hold,
note that the stationarity condition ∇f(x) = ∇c(x)λ can be represented by two inequalities
∇f(x) − ∇c(x)λ ≤ 0 and ∇f(x) − ∇c(x)λ ≥ 0, which can be relaxed by replacing the
elements of ∇f by their lower and upper confidence bounds, respectively. After a few
algebraic manipulations, one can derive Fu

t as an equivalent representation. ■
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Algorithm 2 The relaxation-based Necessary Optimality-constrained Bayesian
Optimization (NOBO) algorithm
Input: The compact domain X; GP priors (µi, ki)

d
i=0, parameters {βi,t}i∈Nd

0,t≥1; and total
number of iterations T .
1: for t = 1 to T do
2: Solve (xt, λt) ∈ argmaxx,λ u0,t(x) s.t. (x, λ) ∈ Ru

t .
3: Get noisy observations of f and ∇f at xt.
4: Update GP posteriors (5.6) with new observations.
5: end for

We now state the proposed NOBO approach in Algorithm 2, which is conceptually
straightforward in that only a single auxiliary problem is solved at each iteration. This
auxiliary problem, shown in line 2, is an instance of a mathematical program with comple-
mentarity constraints (MPCC). Given the focus on expensive-to-evaluate functions f , we
assume that the cost of solving the MPCC is small relative to the cost of a function query.
Also, a direct consequence of Theorem 2 is that the set of global solutions x⋆ must be con-
tained within Fu

t with probability at least 1− δ, so that the “size” of Fu
t provides a measure

for progress of NOBO as t increases.

Remark 2 When x⋆ is known to lie strictly in the interior of X, we can directly set λ = 0,
which greatly simplifies the auxiliary optimization problem in line 4 of Algorithm 2. This is
equivalent to further simplifying the necessary optimality conditions to ∇f(x) = 0.

Theoretical Analysis of NOBO

In this section, we analyze the theoretical performance of NOBO (Algorithm 2). Our goal
is to establish bounds on the cumulative regret RT and the stationarity violation VT that
depend on the MIG of the unknown functions and the number of iterations T . We can then
use established bounds on the MIG in [267, Theorem 5] to bound the MIG growth over T ,
which will allow us to establish convergence of NOBO. First, a lemma is introduced to bound
rt and vt.

Lemma 3 If the inequalities (5.23) hold, then the auxiliary problem in line 4 of Algorithm
2 will always be feasible and the instantaneous regret and stationary violation will satisfy

rt ≤ 2β
1/2
0,t σ0,t−1(xt), (5.24a)

vt ≤
∑d

i=1 2β
1/2
i,t σi,t−1(xt), (5.24b)

for all x ∈ X and t ≥ 1.

Proof: From (5.9) and xt in line 4 of Algorithm 2, we have

rt ≤ u0,t(x
⋆)− l0,t(xt)

≤ u0,t(xt)− l0,t(xt) = 2β
1/2
0,t σ0,t−1(xt),
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where the first inequality follows from the assumed upper and lower bounds on the target
function and the second inequality follows from the fact that xt maximizes u0,t(x) over a
set Fu

t ⊆ X that contains x⋆ under the assumed bounds on the gradient ∇f . Feasibility of
x⋆ ∈ Fu

t directly implies feasibility of the auxiliary problem. We now consider the violation
of the stationarity condition. Let qt = ∇c(xt)λt ∈ Rd. We can rewrite (5.10) as

vt =
∑d

i=1 |∂xi
f(xt)− [qt]i|.

We look to bound each element of this sum

|∂xi
f(xt)− [qt]i|

≤ |∂xi
f(xt)− µi,t−1(xt)|+ |µi,t−1(xt)− [qt]i|

≤ β
1/2
i,t σi,t−1(xt) + β

1/2
i,t σi,t−1(xt) = 2β

1/2
i,t σi,t−1(xt),

where the first inequality follows from |a + b| ≤ |a| + |b| and the second inequality follows
from the assumed bounds in (5.23) and the fact that (xt, λt) ∈ Ru. ■

We can now combine these results, along with results from [314], to establish the main
theorem on the cumulative regret and stationarity violation for NOBO.

Theorem 3 Under the assumptions of Lemma 2, we have, with probability at least 1 − δ,
that the sample points {xt}t≥1 generated by NOBO (Algorithm 2) satisfy

RT ≤ 4β
1/2
0,T

√
(T + 2)γ0,T , (5.25a)

VT ≤
∑d

i=1 4β
1/2
i,T

√
(T + 2)γi,T . (5.25b)

Proof: Combining Lemma 2 and Theorem 2, the following event must hold with proba-
bility ≥ 1− δ

{rt ≤ 2β
1/2
0,t σ0,t−1(xt)} ∪ {vt ≤

∑d
i=1 2β

1/2
i,t σi,t−1(xt)}.

From the definition of cumulative regret, we can establish the following inequalities that
must hold with probability ≥ 1− δ

RT =
∑T

t=1 rt ≤ 2β
1/2
0,T

∑T
t=1 σ0,t−1(xt)

≤ 4β
1/2
0,T

√
(T + 2)γ0,T ,

where the first inequality follows from the monotonicity of {β0,t}t≥1 and the second inequality
follows from [314, Lemma 4], which shows that

∑T
t=1 σ0,t−1(xt) ≤

√
4(T + 2)γ0,T . The stated

result follows by applying the same analysis to the cumulative stationarity violation VT . ■
The following corollary to Theorem 3 is immediately established for the convergence rate

of NOBO to f ⋆.

Corollary 1 Under the assumptions of Theorem 2, we have, with probability at least 1− δ,
that there exists some x̃T ∈ {x1, x2, . . . , xT} such that

f ⋆ − f(x̃T ) ≤
4β

1/2
0,T

√
(T + 2)γ0,T

T
= O

(
γ0,T√
T

)
. (5.26)
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Proof: Let ST = mint∈{1,...,T} rt be the minimum of the regret sequence. Since rt is
non-negative and the minimum of a sequence must be less than or equal to the average, we
have 0 ≤ ST ≤ RT/T . The claim follows from Theorem 3 and letting x̃T be the point that
minimizes ST . ■

We note that the point x̃T cannot be identified by minimizing the regret sequence unless
the noise variance is zero, i.e., η0 = 0. In the noisy case, we can resort to the following
recommendation procedure

x̃T = argmax
xt∈{x1,...,xT }

l0,t(xt), (5.27)

which can be interpreted as a pessimistic estimate of the maximum value of f due to the
noise in the observations. This will not affect the result shown in Corollary 1 since Theorem
3 holds for the pessimistic estimate of the regret rt ≤ r̄t = f ⋆ − l0,t(xt). It is also interesting
to note that this result implies that NOBO has at least the same worst-case convergence rate
as the traditional zeroth-order GP-UCB algorithm. However, since we are optimizing over a
restricted set Fu

t ⊂ X, NOBO is expected to provide a faster convergence rate in practice.
Theorem 3 and Corollary 1 are given in terms of the MIG for general kernels. They imply

convergence of x̃T → x⋆ as T → ∞ as long as γ0,T = o(
√
T ), which can be guaranteed for

the common types of kernels. This is summarized below.

Lemma 4 (Theorem 5, [267]) Let X be compact and convex, d ∈ N, and assume k(x, x′) ≤
1. Then,

• Linear: γT = O(d log T );

• Squared exponential: γT = O((log T )d+1);

• Matern (ν > 1): γT = O(T d(d+1)/(2ν+d(d+1)(log T )).

Substituting the results of Lemma 4 into (5.26), it is evident that NOBO converges
for the linear, squared exponential, and Matern kernel with smoothness parameter ν > 1.
These results can also be used to derive kernel specific bounds as a function of T , e.g.,
f ⋆ − f(x̃T ) = O((log T )d+1/

√
T ) for the squared exponential kernel.

5.5 Episodic Reinforcement Learning
Reinforcement learning (RL) is a semi-supervised learning method in which a so-called
“agent” attempts to learn the best way to maximize a long-term reward function through
trial-and-error interactions with the “environment.” There has been a vast amount of work
on RL, which can be roughly viewed as a collection of solution approaches to stochastic
optimal control problems of the form

max
π0:N−1

Ew0:N−1

{∑N−1
k=0 rk(zk, uk, wk) + rN(zN)

}
, (5.28)

s.t. zk+1 = gk(zk, uk, wk), uk = πk(τk),
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when the system dynamics are unknown, where zk, uk, and wk are the system state, control
input, and disturbance at time k, respectively, gk(·) is the state transition function that
governs the dynamics at time k in response to stochastic disturbances wk, rk(·) is the reward
gained at time step k, πk(·) is the feedback control policy that can be any feasible function
of the observed data trajectory up until time k, i.e., τk = (u0, . . . , uk−1, x0, . . . , xk), and N
is the time horizon. Thus, RL methods attempt to solve (5.28) in cases where the state
transition rules {gk(·)} are unknown by transforming the problem into a learning task. We
can then classify different RL methods based on the chosen learning task (see, e.g., [171]).

One of the most popular variants is the so-called class of policy-based RL methods that
look to learn the optimal settings for a parametrized stochastic policy function p(τ ;x) where
x refers to adjustable policy parameters. We can think of the overall reward function in
(5.28) as simply a function of x since this represents the only degrees of freedom remaining
in the policy. Let us define R(τ) as the overall reward function computed over a single
dynamic trajectory τ . Due to the exploration noise (or stochasticity) of the policy, τ is
random with some probability distribution p(τ ;x) that is parametrized by x such that

f(x) = Ep(τ ;x){R(τ)} =
∫
R(τ)p(τ ;x)dτ, (5.29)

matches our starting problem (5.1) since f is unknown. The first key observation is that
noisy observations are critically important to handle in policy-based RL problems since we
cannot evaluate the integral in (5.29) exactly and must resort to some sampling strategy, e.g.,
1
Ns

∑Ns

i=1R(τ
(i)) where τ (i) ∼ p(τ ;x). Traditional BO methods can be applied in such cases,

however, this only takes advantage of zeroth-order information. Policy gradient methods are
a commonly used alternative that exploit the fact that gradient estimates of the reward can
be derived as follows

∇f(x) = Ep(τ ;x){R(τ)∇x log p(τ ;x)}, (5.30)

which can be evaluated using only gradients of the policy for Markov processes [276]. Tradi-
tional policy gradient methods, such as REINFORCE [307], then apply stochastic gradient
ascent to update an initial x(0) using a mini-batch of samples, i.e.,

x(t+1) = xt +
ηt
Ns

(
Ns∑
i=1

R(τ (i))∇x log p(τ
(i);x)

)
, (5.31)

where ηt is the step size at iteration t (sometimes referred to as a learning rate). However,
as observed from (5.31), these types of policy gradient methods only use estimates of the
current gradient at each iteration, which neglects valuable information about the current
and past reward and gradient estimates. For example, if the current reward value is small,
we should prioritize moving to a new region of the policy parameter space, as opposed to
wasting closed-loop evaluations at neighboring parameter values that are likely to perform
poorly. An efficient sampling strategy is extremely important whenever the closed-loop data
collection process is expensive, which will be the case when the system dynamics are defined
in terms of a high-fidelity simulator or a time-consuming experimental setup.

The proposed AEGBO method in Section 5.3 is well-suited to take advantage of the
complete history of reward and its gradient evaluations at every iteration. Therefore, we
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can think of AEGBO as a powerful hybrid strategy that inherits the efficient global search
capability of BO as well as the useful local search behavior of REINFORCE. It is worth noting
that the cost of evaluating ∇x log p(τ

(i);x) is roughly the same as a single evaluation of the
policy itself, meaning the gradient estimate can be obtained for free whenever the reward
evaluation R(τ (i)) is much more expensive than the policy evaluation p(τ (i);x), which will
often be the case for expensive systems.

5.6 Performance of Gradient-Enhanced BO on
RL-based Policy Search

We compare AEGBO to two baseline algorithms on the LQR problem to demonstrate its
performance improvements. Since our goal is to identify the policy parameters that maximize
the reward function in as few iterations as possible, we use simple regret as our performance
metric. UQLab [162] is used to construct the the GP surrogates with a zero prior mean and
a squared-exponential kernel. To get an accurate estimate of the cost for each input, as well
as to reduce the variance of the gradient estimates, a “mini-batch” size of Ns = 28 samples
is used during each episode (training epoch). In addition, we use a baseline value in the
estimate of the gradient as discussed in [230, 275].

First, we examine the performance of AEGBO and NOBO in comparison with traditional
BO and REINFORCE [230], which is a commonly used reinforcement learning strategy.

BO: The sampled point is x(t+1) ∈ argmaxx∈X α
(t)
UCB(x), which only considers zeroth-order

information. We keep all other settings the same as that used in AEGBO.
REINFORCE: The REINFORCE algorithm corresponds to the stochastic gradient

ascent update step shown in (5.31), which uses only local first-order information at every
iteration. We set the learning rate ηt = 0.1, which is a commonly used default value (and is
the same order as the exploration parameters used in BO and AEGBO).

The initial training dataset is composed of d points (here, d = 4) chosen uniformly at
random from the design space X. We quantify the average closed-loop performance by
repeating each algorithm 100 times for different initial datasets. For standard BO, AEGBO
and NOBO, we use β0,t = 0.1+10−2d ln(1+10−2t) for the acquisition objective. For AEGBO
the exploration constant of the GN acquisition is set to βg = 0. For the constraints in NOBO
we set βi,t = 2 + 5 × 10−2d ln(1 + 5 × 10−2t). The selection of the βi,t hyperparameters is
based the fact that in practice a fixed value is used in BO, while this form allows for a
slight increase in subsequent steps, capturing the main effects of d and t [197] and work well
in practice. Nevertheless, the results were not found to be particularly sensitive to these
choices.

Fig. 5.1 shows the estimated average simple regret ST = mint∈{1,...,T} rt versus the number
of episodes T for BO, REINFORCE, AEGBO and NOBO up to T = 40. REINFORCE
initially shows a drop in regret but it quickly stalls at a relatively large value after only
a few episodes. This can be attributed to fact that REINFORCE is only utilizing noisy
gradient information to update parameters x. All of BO, AEGBO and NOBO quickly
start to outperform REINFORCE and demonstrate continual improvement (as the number
of episodes increases), which can be attributed to the valuable reward observations that
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Figure 5.1: Simple regret (current best) for REINFORCE (green), BO (orange), AEGBO
(blue) and NOBO (red) over 40 closed-loop episodes. Solid lines represent the average regret
over 100 trials with different initial datasets. The shaded regions show the one standard
deviation about the average regret.

are interpolated to globally predict the reward function. NOBO consistently outperforms
REINFORCE, standard BO and AEGBO over all episodes by up to two orders of magnitude
in simple regret, while both gradient-based methods outperform simple BO which suggests
that the incorporation of the necessary optimality conditions into the search process leads
to improved query point selection at every iteration. For NOBO specifically, it also serves
as validation of Theorem 2 since the global solution was not eliminated from the estimated
feasible region. It is also worth noting that the differences between NOBO and AEGBO
can influenced by particular algorithmic settings, e.g., the heuristic used to select the Pareto
point to query in AEGBO.

Pareto Front for AEGBO

To better understand the underlying source of AEGBO’s improved performance, Fig. 5.2
shows the evolution of the Pareto frontier in (5.20) over different episodes. In the early
episodes, we see that Pareto frontier is fairly elongated since there is a significant amount of
uncertainty in the GP predictions. This implies there is significant mismatch between the
points that may lead to large reward values and those that are likely to satisfy the necessary
optimality conditions given our current information. As more data is collected, we see that
the Pareto frontier begins to shrink, indicating lower uncertainty in the predicted maximum
point. Furthermore, we see that the proposed GN acquisition function provides us with an
independent source of information that helps select high reward points that are also likely to
satisfy ∇f(x) = 0. Looking at e = 30, for example, we see that several points are predicted
to perfectly satisfy the necessary optimality condition while simultaneously having large
reward values. Thus, the fusion of zeroth- and first-order information appears to be at the
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Figure 5.2: Pareto frontiers for the multi-objective acquisition function for four different
closed-loop episodes e ∈ {1, 5, 15, 30} in a representative AEGBO run. The x-axis corre-
sponds to the zeroth-order UCB acquisition function in (5.15) and the y-axis corresponds to
the first-order GN acquisition function in (5.16).

heart of the improved performance observed in Fig. 5.1.

Feasibility Analayis for NOBO

To further investigate NOBO, we also look to measure the reduction in the volume of the
feasible region

φt = Vol(Fu
t )/Vol(X), (5.32)

where Vol(A) =
∫
A
dx is the volume of a set. The value φt, which quantifies the relative size

in the feasible region of standard BO can NOBO, can be straightforwardly estimated at any
iteration t by Monte Carlo integration. The evolution of φt over 50 closed-loop episodes or
iterations is shown in Fig. 5.3 (averaged over 100 random initial datasets). Even in the early
iterations, φt is ∼ 0.2, implying only ∼20% of the points inX have the potential to satisfy the
necessary optimality conditions (i.e., 80% of the points in X have been confidently eliminated
from the search process). Furthermore, as NOBO progresses, φt continually decreases, which
highlights its ability to continually learn from the collected gradient information. As such,
NOBO systematically exclude points that are inconsistent with the necessary optimality
conditions, leading to a substantial reduction in the search space, without compromising
performance.

5.7 Conclusion
This paper presents a gradient-enhanced Bayesian optimization framework for directly us-
ing zeroth- and first-order information during the querying process. The first proposed
method, AEGBO, defines value following (zeroth-order) and gradient following (first-order)
AFs which are jointly optimized via MOO, based on the premise that due to uncertainty
those two selection criteria will yield different suggested queries. Several issues related to the
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Figure 5.3: The percentage of feasible candidate points in the set Fu
t based on 30,000 uniform

random samples drawn from X over the number of closed-loop episodes T . The circles
denote the sample mean based on 100 randomly generated initial datasets, with the error
bars representing the sample standard deviation (cutoff at zero).

MOO nature of AEGBO are resolved via our second proposed method, NOBO, that simul-
taneously leverages zero- and first-order information to sequentially maximize an expensive
black-box objective function while imposing optimality constraints, The primary advantage
of NOBO is its ability to conduct a more focused search within the design space compared
to traditional Bayesian optimization (BO) by excluding points that cannot satisfy necessary
optimality conditions (with high probability). We theoretically establish convergence and up-
per cumulative and simple regret bounds for NOBO. We also demonstrate NOBO’s superior
performance over traditional BO and policy-based reinforcement learning on a benchmark
closed-loop policy optimization problem. Our future work will focus on the incorporation of
black-box safety constraints and demonstrations on high-dimensional problems.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions
The objective of this thesis has been to advance the application of data-driven methods for
the dynamical analysis and optimization of complex systems, with emphasis on chemical and
biochemical systems. The research encompasses various aspects of flow-map-based dynamical
modeling, model-based control, and Bayesian Optimization (BO) techniques, demonstrating
their value and applicability in a range of settings, such as uncertainty quantification (UQ),
model adaptation, controller auto-tuning, and reinforcement learning (RL).

In Chapter 2, we tackled the problem of data-driven model learning. We introduced
a flow-map modeling approach based on polynomial-chaos Kriging (PCK) for discovering
system dynamics from data. This method facilitated the efficient learning of nonlinear sys-
tem dynamics and provided a fast-to-evaluate surrogate model for UQ applications. By
directly approximating the integration operator of differential equations, the proposed ap-
proach addressed the challenge of capturing the dynamical behavior of complex biochemical
systems based on limited and possibly noisy data, which is a common situation in real-world
applications. The effectiveness of the PCK-based flow-maps was demonstrated in various
benchmark systems such as the Lorenz and the Morris-Lecar systems, as well as on more
complex systems such a transient co-culture bioreactor and a microbial electrosynthesis re-
actor. The results emphasized the benefits of this approach in terms of data efficiency and
computational efficiency for discovering nonlinear system dynamics and surrogate modeling.
In addition, the probabilistic nature of our proposed method is able to provide uncertainty
bounds on the predictions, making it useful for safety-critical real-time decision making
applications. This method can serve as a foundation for the design and optimization of
bioprocesses and integrated biomanufacturing systems.

In the next chapters we shifted the focus to data-driven optimization of closed-loop
systems. Chapter 3 focused on data-driven model-learning in the context of closed-loop
control, where the underlying learning objective is not based on prediction accuracy as in
Chapter 2, but rather relied a system-oriented goal. We introduced a performance-oriented
model adaptation approach for model-based control under uncertainty. This approach lever-
aged the concept of identification for control, in which the underlying model of a controller is
adapted over several process runs for maximizing several closed-loop performance measures.
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By formulating the model learning problem as a "black-box" multi-objective optimization
(MOO) problem solved via BO (hence MOBO), the proposed method systematically ac-
counted for multiple performance measures and demonstrated significant improvements in
closed-loop performance. We showed how prior knowledge about the system dynamics can
be incorporated into the learning procedure by proposing a composite model structure that
allowed for efficient adaptation of the data-driven model in a performance-oriented manner
in as few iterations as possible. The method’s effectiveness was showcased in a benchmark
bioreactor case study, highlighting its potential for multi-objective model learning and auto-
tuning of model-based controllers in processes with finite-time control objectives and high
costs associated with each process run. Chapter 4 also relied on the idea of controller tuning;
we addressed the challenge of complex controller structures autotuning under time-invariant
uncertainties by utilizing an adversarially robust BO (ARBO) method. The ARBO method
relied on a GP model that jointly described the effect of tuning parameters and model un-
certainties on closed-loop performance. Using an alternating confidence-bound procedure,
ARBO simultaneously selected the next candidate tuning and uncertainty realizations, re-
quiring only one expensive closed-loop simulation per iteration. This approach demonstrated
the advantages of systematically exploring and exploiting the joint design-uncertainty space,
leading to improved closed-loop performance in the presence of uncertainties. The ARBO
method was applied to two case studies, including an illustrative problem and the autotun-
ing of a nonlinear model predictive controller (MPC) for an uncertain bioreactor. Finally, in
Chapter 5 we investigated the incorporation of gradient information into BO by presenting
a gradient-enhanced BO framework. Two methods, were proposed to simultaneously exploit
performance (zeroth-order) and gradient (first-order) observations within a single acquisi-
tion optimization step. Both methods rely on the premise that a first-order based criterion
aids in directing the search process of a zeroth-order oracle that suggests query points that
maximize the system performance based on our current belief. The first method is called
acquisition ensemble gradient-based BO (AEGBO). It utilizes the gradient information to de-
fine a gradient-based acquisition function that is optimal if the norm of the gradient at some
queried point becomes zero (i.e., the first order optimality condition is satisfied, assuming
that the optimal solution is in the interior of the domain). This acquisition is optimized along
with a standard zeroth-order acquisition function, in our case the upper confidence bound,
using MOO. Several challenges associated with this method are tackled via directly using gra-
dient information into the acquisition optimization in the form of constraints that mimicked
the necessary optimality conditions for the original global optimization problem, restricting
the allowable search space of BO and leading to less exploration compared to zeroth-order
methods. This method is called Necessary Optimality-constrained BO (NOBO). Moreover,
theoretical convergence and regret bounds were established for NOBO. The superior per-
formance of the gradient-enhanced BO methods over traditional BO was demonstrated on
policy-based RL of a benchmark closed-loop linear quadratic regulator (LQR) system. A
rigorous comparison between AEGBO and NOBO would require more careful analysis of the
exploration hyperparameters associated with each method.



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 95

6.2 Future Work
Despite the successful application of these data-driven methods in various settings, there
remain open challenges and opportunities for future work. In this section we present several
directions that are relevant to the research theme of this thesis, both from a methods de-
velopment point of view as well as from the scope of application of these methods to space
biomanufacturing.

Integrated Design, Scheduling and Control (iDSC)

Design, scheduling and control of multiple interdependent processes has been a focal point
of process systems enginering (PSE), with special attention to integrated approaches of all
these elements. The aim is to optimize the overall performance of an integrated system by
concurrently considering various aspects of design, scheduling, and control, in contrast to
a traditional approach where these tasks are often performed sequentially or in isolation,
leading to suboptimal outcomes. Typically, most of research in this field is concerned with
integration of a pair of elements (out of design, scheduling and control). For instance, the
works of [295, 75, 191], as well as the review of [317], present novel methods and discuss
the state-of-the-art on integrated design and control (iDC), where dynamic mixed-integer
non-linear programming (MINLP) is the basis for formulating and tackling such problems.
The work of [212] highlights the difficulty in adopting an integrated view of all iDSC compo-
nents, while providing sophisticated multi-parametric programming solvers for mixed con-
tinuous/integer problems that serve as a framework for this task. Although MINLP methods
along with physics-based models have been the powerhouse of PSE, recently more novel ap-
proaches based on machine learning methods and data-driven models have shown promising
results [175, 123]. The work of [65] presents a framework for overall iDSC where surrogate
models are used to represent black-box constraints and subsequently perform a feasibility
analysis, while [125] shows how neural networks and GPs are jointly used within an MINLP
framework for problems relevant to process synthesis. The review of [8] discusses several
surrogate-enhanced approaches for integrated design, planning and control. To this end,
surrogate models that are able to capture uncertainties, such as the polynomial chaos-based
Gaussian Process model presented in Chapter 2, can be utilized for iDSC with embedded
uncertainty quantification for analyzing the impact of uncertainties into the optimal system
design. Since the task of iDSC is inherently dynamic, surrogate models that predict the dy-
namics can be embedded into a robust MINLP optimization framework that yields solutions
for a safe iDSC analysis.

Moreover, we envision that this iDSC point of view is of paramount importance for space
biomanufacturing. Given that several resources and hardware (e.g., reactors, materials,
available crew time) are limited in this context and that operations are time critical, optimally
allocating equipment while ensuring that the system performs as expected is essential for
the success of a human-based mission and survival of crew members.
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High-Dimensional and Mixed Variable Systems

BO has proven to be a powerful method for solving expensive black-box problems (with or
without gradient observations incorporated). Nevertheless, addressing the scalability of the
presented methods to high-dimensions or their applicability to mixed-integer spaces is non-
trivial and an open challenge in the literature. High-dimensional problems are ubiquitous
in real-world applications. In Chapter 3 we alluded to this issue and performed sensitivity
analysis to select only a few parameters to tune in our MOBO framework. However, this is
a special case of a heuristic utilized for choosing the parameters to tune, equipped with an
"importance" cutoff criterion for ultimately selecting the tunable parameters. Hence, more
structured and rigorous approaches are need to tackle BO of high-dimensional problems.
Methods that address this issue typically rely on dimensionality reduction techniques [173,
140, 301], or on the properties of the acquisition functions [226]. Thus, a possible future
research direction is to focus on the problem of policy search that has been presented in
Chapter 5, in the context of using highly-parametrized policies, for instance as in the case
of using neural network policies in deep RL [9]. In particular, it is interesting to explore how
methods that handle the aspect of high-dimensionality perform on policy learning tasks using
deep RL, as well as large scale optimization problems in the context of biomanufacturing.

Furthermore, MINLP black-box problems are common in industrial settings, as discussed
earlier in the context of scheduling, design and control. BO methods that address mixed
variable problems have been proposed in the literature [281, 60, 238],including problems
with integer, binary and categorial variables. Nevertheless, their combination with gradient-
enhanced approaches has not been explored to the best of our knowledge. This could be
an interesting extension as many policy search problems include a mix of continuous and
integer/binary actions, while problems of this nature are relevant for design and control for
deep space biomanufacturing.

Safety-Critical Applications

In the majority of real-world applications, safety restrictions play a crucial role in determining
the overall utility of the system. The integration of black-box safety constraints into the
optimization has given rise to constrained BO formulations designed for model learning and
auto-tuning of controllers in safety-critical applications [133, 84]. The gradient-enhanced
BO framework presented in Chapter 5 includes a necessary optimality constraint, however,
the framework, especially the NOBO method, can be extended beyond this to include black-
box equality and inequality constraints using the Karush-Kuhn-Tucker (KKT) conditions
that were mentioned. Thus, we are interested in the development of algorithms that can
efficiently handle multiple safety constraints especially in high-dimensional problems where
the complexity of the constraints increases. We further envision that techniques such as
transfer learning [6, 280] can greatly assist in incorporating any available knowledge about
the system performance and safe operating points in the BO search. Therefore, extending
the proposed gradient-enhanced BO methods to incorporate black-box constraints would be
a valuable contribution to the field of safe RL [83]. From an application standpoint, safety
is paramount in the context of deep space biomanufacturing. As discussed in Chapter 1,
space bioprocess engineering seeks to apply the principles of PSE to space biomanufacturing,
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where unique design and operational constraints emerge due to the highly uncertain nature
of unexplored environments. For examples, those constraints can be related to unexpected
environmental conditions and changes [2] that impede the efficiency of photovoltaics, which
are the primary energy source for the end-to-end biomanufacturing system. Black-box design
optimization under safety considerations is generally paramount for the entire mission as
discussed in [108].
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