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ABSTRACT
We analyse the baryon acoustic oscillation (BAO) signal of the final Baryon Oscillation
Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in the Fourier
space, using the power spectrum monopole and quadrupole. The data set includes 1198 006
galaxies over the redshift range 0.2 < z < 0.75. We divide this data set into three (overlapping)
redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the
reliability of our analysis pipeline using N-body simulations as well as ∼1000 MultiDark-
Patchy mock catalogues that mimic the BOSS-DR12 target selection. We apply density field
reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum
quadrupole we can separate the line of sight and angular modes, which allows us to constrain
the angular diameter distance DA(z) and the Hubble parameter H(z) separately. We obtain
two independent 1.6 and 1.5 per cent constraints on DA(z) and 2.9 and 2.3 per cent constraints
on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain
two independent 1 and 0.9 per cent constraints on the angular averaged distance DV(z), when
ignoring the Alcock–Paczynski effect. The detection significance of the BAO signal is of the
order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good
agreement with the Planck prediction within � cold dark matter. This paper is part of a set that
analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods
presented here are combined with others in Alam et al. to produce the final cosmological
constraints from BOSS.

Key words: gravitation – surveys – cosmological parameters – cosmology: observations –
dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

The baryon acoustic oscillation (BAO) signal in the distribution of
galaxies is an imprint of primordial sound waves that have prop-
agated in the very early Universe through the plasma of tightly

� E-mail: florian.beutler@port.ac.uk

coupled photons and baryons (e.g. Peebles & Yu 1970; Sunyaev
& Zeldovich 1970). The corresponding BAO signal in photons has
been observed in the cosmic microwave background (CMB) and
has revolutionized cosmology in the last two decades (e.g. Planck
Collaboration XIII 2016).

The BAO signal has a characteristic physical scale that represents
the distance the sound waves have travelled before the epoch of de-
coupling. In the distribution of galaxies, the BAO scale is measured
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in angular and redshift coordinates, and this observational metric
is related to the physical coordinates through the angular diame-
ter distances and Hubble parameters, which in turn depend on the
expansion history of the Universe. Therefore, comparing the BAO
scale measured in the distribution of galaxies with the true phys-
ical BAO scale, i.e. the sound horizon scale that is independently
measured in the CMB, allows us to make cosmological distance
measurements to the effective redshift of the distribution of galax-
ies. With this ‘standard ruler’ technique one can map the expansion
history of the Universe (e.g. Hu & White 1996; Blake & Astrophys
2003; Eisenstein 2003; Hu & Haiman 2003; Seo & Eisenstein 2003;
Linder 2005).

While the BAO feature itself can be isolated from the broad-
band shape of any galaxy clustering statistic quite easily due to
its distinct signature, it is still subject to several observational and
evolutionary non-linear effects that damp and shift the BAO feature,
thereby biasing such a measurement if ignored (e.g. Meiksin, White,
& Peacock 1999; Seo & Eisenstein 2005; Crocce & Scoccimarro
2006; Matsubara 2008b; Taruya et al. 2009; Seo et al. 2010; Mehta
et al. 2011). In redshift space, the signal-to-noise ratio of the power
spectrum is boosted along the line of sight due to the linear Kaiser
factor (1 + βμ2)2 (Kaiser 1987), but also suffers the non-linear
redshift-space distortion effects that cause additional smearing of
the BAO feature along the line of sight.

The BAO method has been significantly strengthened by Eisen-
stein et al. (2007b), who showed that non-linear degradation effects
are reversible by undoing the displacements of galaxies due to bulk
flow that is the very cause of the structure growth and redshift-
space distortions. This density field reconstruction technique has
been tested against simulations and adopted in current galaxy sur-
vey data analyses (e.g. Padmanabhan et al. 2012). In this paper, we
will apply this technique.

The galaxy BAO signal was first detected in the Sloan Digital
Sky Survey (SDSS)-luminous red galaxies (LRGs; Eisenstein et al.
2005) and 2dF Galaxy Redshift Survey (2dFGRS; Percival et al.
2001; Cole et al. 2005) samples. The WiggleZ survey extended these
early detections to higher redshifts (Blake et al. 2011; Kazin et al.
2014), while the 6dF Galaxy Survey (6dFGS) measured the BAO
signal at z = 0.1 (Beutler et al. 2011). Recently the BAO detection
in the SDSS main sample at z = 0.15 was reported in Ross et al.
(2015). The first analysis of the Baryon Oscillation Spectroscopic
Survey (BOSS) data set in DR9 (Anderson et al. 2012) presented a
1.7 per cent constraint on the angular averaged distance to z = 0.57,
which has been improved to 1 per cent with DR11 (Anderson et al.
2014). The LOWZ sample of BOSS has been used in Tojeiro et al.
(2013) to obtain a 2 per cent distance constraint.

While the BAO technique has now been established as the stan-
dard tool for cosmology, the anisotropic Fourier-space analysis has
been difficult to implement because of the treatment of the window
function. To simplify the window function treatment it often has
been assumed that the window function is isotropic, which simpli-
fies its treatment considerably. However, the window functions of
most galaxy surveys are anisotropic and can introduce anisotropies
by redistributing power between the multipoles and potentially bias
cosmological measurements. The first self-consistent Fourier-space
analysis that does not put such assumptions on the window func-
tion was presented in Beutler et al. (2013) using BOSS-DR11,
which focused on constraining redshift-space distortions and the
Alcock–Paczynski effect. Here we follow this earlier analysis with
a few modifications and present a BAO-only analysis, marginal-
izing over the broad-band power spectrum shape. Our compan-
ion paper (Beutler et al. 2016, hereafter B16) goes beyond BAO,

studying the additional cosmological information of redshift-space
distortions.

This paper uses the combined data from BOSS-LOWZ and
BOSS-CMASS, covering the redshift range from z = 0.2 to 0.75.
The data set also includes additional data from the so-called ‘early
regions’ that have not been included before (see Alam et al. 2016
for details). BAO measurements obtained using the monopole and
quadrupole correlation function are presented in Ross et al. (2016),
while Vargas-Magaña et al. (2016) diagnose the level of theoreti-
cal systematic uncertainty in the BOSS BAO measurements. Mea-
surements of the rate of structure growth from the Redshift-space
distortions signal are presented in Beutler et al. (2016), Grieb et al.
(2016), Sanchez et al. (2016) and Satpathy et al. (2016). Alam et al.
(2016) combine the results of these seven papers (including this
work) into a single likelihood that can be used to test cosmological
models.

The paper is organized as follows. In Section 2, we introduce
the BOSS DR12 data set. In Section 3, we present our anisotropic
power spectrum estimator, followed by a description of our win-
dow function treatment in Section 4. In Section 5, we present the
MultiDark-Patchy mock catalogues that are used to obtain a covari-
ance matrix, and in Section 6, we discuss the technique of density
field reconstruction. In Section 7, we introduce our power spectrum
model, which we test using N-body simulations and the MultiDark-
Patchy mock catalogues in Section 8. In Section 9, we present the
data analysis, followed by a discussion of the results in Section 10.
We conclude in Section 11.

The fiducial cosmological parameters that are used to convert
the observed angles and redshifts into comoving coordinates and
to generate linear power spectrum models as input for the power
spectrum templates, follow a flat � cold dark matter (�CDM) model
with �m = 0.31, �bh2 = 0.022, h = 0.676, σ 8 = 0.824, ns = 0.96,∑

mν = 0.06 eV and rfid
s = 147.78 Mpc.

2 T H E B O S S D R 1 2 DATA SE T

In this analysis we use the final data release (DR12) of the BOSS
data set. The BOSS survey is part of SDSS-III (Eisenstein et al.
2011; Dawson et al. 2013) and used the SDSS multifibre spectro-
graphs (Bolton et al. 2012; Smee et al. 2013) to measure spectro-
scopic redshifts of 1198 006 million galaxies. The galaxies were
selected from multicolour SDSS imaging (Fukugita et al. 1996;
Gunn et al. 1998, 2006; Smith et al. 2002; Doi et al. 2010; Reid
et al. 2015) over 10 252 deg2 divided in two patches on the sky and
cover a redshift range of 0.2–0.75. In our analysis we split this red-
shift range into three overlapping redshift bins defined by 0.2 < z
< 0.5, 0.4 < z < 0.6 and 0.5 < z < 0.75 with the effective redshifts
zeff = 0.38, 0.51 and 0.61,1 respectively.

We include three different incompleteness weights to account for
shortcomings of the BOSS data set (see Ross et al. 2012a; Anderson
et al. 2014 for details): a redshift failure weight, wrf, a fibre collision
weight, wfc and a systematics weight, wsys, which is a combination
of a stellar density weight and a seeing condition weight. Each
galaxy is thus counted as

wc = (wrf + wfc − 1)wsys. (1)

More details about these weights and their effect on the DR12
sample can be found in Ross et al. (2016).

1 The effective redshifts are calculated as the weighted average over all
galaxies (see e.g. equation 67 in Beutler et al. 2013).
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BOSS: Fourier-space analysis of BAO 3411

3 TH E P OW E R SP E C T RU M ES T I M ATO R

We employ the fast Fourier transform (FFT) based anisotropic
power spectrum estimator suggested by Bianchi et al. (2015) and
Scoccimarro (2015). This method divides the power spectrum esti-
mate in its spatial components that can then be calculated using 3D
Fourier transforms. While this technique requires multiple FFTs, it
still provides the computational complexity of O(N log(N )), sig-
nificantly faster than a straight forward pair counting analysis that
would result in O(N2), where N is the number of cells in the 3D
Cartesian grid in which the data and random galaxies are binned.

The first two non-zero power spectrum multipoles can be calcu-
lated as (Feldman, Kaiser & Peacock 1993; Yamamoto et al. 2006)

P0(k) = 1

2A
[F0(k)F ∗

0 (k) − S], (2)

P2(k) = 5

4A
F0(k)[3F ∗

2 (k) − F ∗
0 (k)], (3)

with

F0(k) = A0(k), (4)

F2(k) = 1

k2
[k2

xBxx + k2
yByy + k2

zBzz

+ 2(kzkyBxy + kxkzBxz + kykzByz)]. (5)

Following Bianchi et al. (2015) and Scoccimarro (2015) we can
write

A0(k) =
∫

drD(r)eik·r , (6)

Bxy(k) =
∫

dr
rxry

|r|2 D(r)eik·r , (7)

which allows these quantities to be calculated with FFTs. The over-
density field D is defined on a 3D Cartesian grid r:

D(r) = G(r) − α′R(r), (8)

where G(r) represents the number of data galaxies at r and R(r)
is the number of random galaxies at r . The normalization of the
random field is given by α′ = N ′

gal/N
′
ran, where N ′

gal and N ′
ran are

the total number of weighted data and random galaxies, respectively.
The normalization in equations (2) and (3) is

A = α′
Nran∑

i

n′
g(r i)w

2
FKP(r i), (9)

where n′
g is the weighted galaxy density. The shot noise term is only

relevant for the monopole and is given by

S =
Ngal∑

i

[fcwc(xi)wsys(xi)w
2
FKP(xi)

+ (1 − fc)w2
c (xi)w

2
FKP(xi)]

+ α′2
Nran∑

i

w2
FKP(xi), (10)

where fc is the probability of the fibre collision correction being
successful, which we set to 0.5 based on the study by Guo, Zehavi
& Zheng (2012). Even though this definition of the shot noise
deviates from the one used in Beutler et al. (2013), the difference
does not actually impact our analysis since we marginalize over any

residual shot noise (see Section 7). The signal-to-noise ratio weight
in the equation above is defined as

wFKP = 1

1 + n′
g(z)

wsys
10 000

. (11)

The final power spectrum is then calculated as the average over
spherical k-space shells:

P	(k) = 〈P	(k)〉 = 1

Nmodes

∑
k− 
k

2 <|k|<k+ 
k
2

P	(k), (12)

where Nmodes is the number of k modes in that shell. In our analysis
we chose 
k = 0.01 h Mpc−1, because this value is significantly
smaller than the BAO scale ∼0.06 h Mpc−1, to not smooth out
the BAO signature and about twice as large as the fundamental
mode, on which scale the modes are correlated due to the window
function.

We employ a triangular-shaped cloud method to assign galax-
ies to the 3D grid and correct for the aliasing effect following
Jing (2005). The set-up of our grid implies a Nyquist frequency
of kNy = 0.6 h Mpc−1, twice as large as the largest scale used in
our analysis (kmax = 0.3 h Mpc−1) and the expected error on the
power spectrum monopole at k = 0.3 h Mpc−1 due to aliasing is
<0.1 per cent (Sefusatti et al. 2016).

The measured power spectrum multipoles for the three redshift
bins are presented in Fig. 1 for NGC and in Fig. 2 for the SGC.
We decided not to include the hexadecapole in this analysis, since
analytic studies have shown that there is very limited additional in-
formation on the anisotropic BAO scale carried by the hexadecapole
(Ross, Percival & Manera 2015).

4 T H E S U RV E Y W I N D OW FU N C T I O N

The survey mask is defined as the multiplicative term that turns
the Poisson sampled galaxy density field in the observed galaxy
density field. In the Fourier space this multiplicative term becomes
a convolution. The broad extent of the window function in the
Fourier space makes the convolution computationally expensive.
Conversely, applying the window function in configuration space is
easy and straightforward. Here we follow a method suggested by
Wilson et al. (2015) which can be summarized in three steps.

(i) Calculate the model power spectrum multipoles and Fourier
transform them to obtain the correlation function multipoles
ξmodel
L (s).

(ii) Calculate the ‘convolved’ correlation function multipoles
ξ̂model
	 (s) by multiplying the correlation function with the window

function multipoles.
(iii) Conduct 1D FFTs (FFTlog; Hamilton 2000) to transform

the convolved correlation function multipoles back into the Fourier
space to obtain the convolved power spectrum multipoles, P̂ model

	 (k).
This result becomes our model to be compared with the observed
power spectrum multipoles.

In Wilson et al. (2015), the formalism following these three steps
is derived within the global plane parallel approximations, meaning
that a global line of sight, η̂, is defined for all galaxies in the sample.
B16 demonstrates that this method can be derived within the local
plane parallel approximation, which means that it is applicable to
wide angle surveys such as BOSS. Here we will summarize the
formalism and refer to B16 for more details.
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Figure 1. BOSS DR12 power spectra in the North Galactic Cap (NGC) for the three redshift bins used in this analysis. The panels in the top row show the
power spectra before density field reconstruction, while the bottom row displays the power spectra after density field reconstruction. The blue line indicates the
mean of the 2045 (pre-recon) and 996 (post-recon) MultiDark-Patchy mock catalogues, while the blue shaded area shows the rms between them. The errors
on the data points are the diagonal of the covariance matrix.

Figure 2. BOSS DR12 power spectra in the South Galactic Cap (SGC) for the three redshift bins used in this analysis. The panels in the top row show the
power spectra before density field reconstruction, while the bottom row displays the power spectra after density field reconstruction. The blue line indicates the
mean of the 2048 (pre-recon) and 999 (post-recon) MultiDark-Patchy mock catalogues, while the blue shaded area shows the rms between them. The errors
on the data points are the diagonal of the covariance matrix.
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Figure 3. Window function monopole and quadrupole for the three redshift bins of BOSS DR12 as given in equation (18) and used for the convolved
correlation functions in equations (19) and (20). As expected, the NGC window function extends to larger scales, because of the larger volume of the NGC
compared to the SGC.

The convolved correlation function multipoles can be expressed
as

ξ̂	(s) = (2	 + 1)
∑

L

ξL(s)
∑

p

1

2p + 1
W 2

p (s)a	
Lp, (13)

with the window function multipoles W 2
p (s):

W 2
p (s) = 2p + 1

2

∫
dμs

∫
dx1W (x1)W (x1 + s)Lp(μs), (14)

where L	 is the Legendre polynomial of order 	, s = x2 − x1 is the
pair separation vector and μs is the cosine angle of the separation
vector relative to the line of sight, i.e. μs = ŝ · x̂h. To calculate the
coefficients a	

Lp we use

L	Lp =
∑

t

a	
ptLt (15)

to multiply the polynomial expressions for the Legendre polynomi-
als on the left and apply

μn =
∑

	=n,(n−1),...

(2	 + 1)n!L	(μs)

2(n−	)/2( 1
2 (n − 	))!(	 + n + 1)!!

. (16)

The convolved power spectrum multipoles are given by

P̂	(k) = 4πi	

∫
ds s2ξ̂	(s)j	(sk). (17)

For any real survey data set the window function is calculated from
the random pair counts RR(s, μs) as

W 2
	 (s) ∝

∑
x1

∑
x2

RR(s, μs)L	(μs), (18)

with the normalization W 2
0 (s → 0) = 1.

We are interested in the monopole and quadrupole power spectra
and therefore, in equation (17), the convolved correlation function
multipoles relevant for our analysis are given by

ξ̂0(s) = ξ0W
2
0 + 1

5
ξ2W

2
2 + · · · , (19)

ξ̂2(s) = ξ0W
2
2 + ξ2

[
W 2

0 + 2

7
W 2

2

]

+ · · · , (20)

where we ignored all terms beyond the quadrupole ξ	. In B16
we find that the hexadecapole contribution to the monopole and
quadrupole due to the window function effect can be neglected. The
two different window function multipoles included in the equations

above are shown in Fig. 3. We assume that the window function is
the same for pre- and post-reconstruction.

We account for the integral constraint bias by correcting the
model power spectrum as

P ic−corrected
	 (k) = P̂	(k) − P0(0)W 2

	 (k), (21)

where the window functions W(k) can be obtained from W	(s) de-
fined in equation (18) as

W 2
	 (k) = 4π

∫
ds s2W 2

	 (s)j	(sk). (22)

The integral constraint correction in BOSS only affects modes k �
0.005 h Mpc−1 and does not affect any of the results in this analysis.

5 MO C K C ATA L O G U E S

To derive a covariance matrix for the power spectrum monopole
and quadrupole we use the MultiDark-Patchy mock catalogues
(Kitaura, Yepes & Prada 2014; Kitaura et al. 2016). These mock
catalogues have been produced using approximate gravity solvers
and analytical–statistical biasing models. The catalogues have been
calibrated to a N-body-based reference sample with higher res-
olution. The reference catalogue is extracted from one of the
BIGMULTIDARK simulations (Klypin et al. 2016), which was per-
formed using GADGET-2 (Springel 2005) with 38403 particles on
a volume of (2.5 h−1 Mpc)3 assuming a �CDM cosmology with
�M = 0.307115, �b = 0.048206, σ 8 = 0.8288, ns = 0.9611 and a
Hubble constant of H0 = 67.77 km s−1 Mpc−1.

Halo abundance matching is used to reproduce the observed
BOSS two- and three-point clustering measurements (Rodriguez-
Torres et al. 2016). This technique is applied to different redshift
bins to reproduce the BOSS DR12 redshift evolution. These mock
catalogues are combined into light cones, also accounting for the
selection effects and survey mask of the BOSS survey. In total we
have 2045 mock catalogues available for the NGC and 2048 mock
catalogues for the SGC. The BAO reconstruction procedure (Eisen-
stein et al. 2007b) has only been applied to 996 NGC catalogues
and 999 SGC catalogues.

The mean power spectrum multipoles for the MultiDark-Patchy
mock catalogues are shown in Fig. 1 for the NGC and in Fig. 2 for
the SGC together with the BOSS measurements (black data points).
The mock catalogues closely reproduce the data power spectrum
multipoles for the entire range of wavenumbers relevant for this
analysis.
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Figure 4. Correlation matrix before (top) and after (bottom) density field reconstruction for the NGC in the three redshift bins used in this analysis. The
matrices include the monopole (bottom left-hand corner) and quadrupole (top right-hand corner) as well as their correlation (top left and bottom right). The
pre-reconstruction matrices contain 2045 mock catalogues, while the post-reconstruction results contain 996 mock catalogues. The colour indicates the level
of correlation, with red corresponding to 100 per cent correlation and magenta corresponding to −25 per cent anticorrelation (there are not many fields lower
than −25 per cent). After reconstruction there is less correlation between different k modes and between the multipoles.

5.1 The covariance matrix

We can derive a covariance matrix from the set of mock catalogues
described in the last section as

Cxy = 1

Ns − 1

Ns∑
n=1

[
P	,n(ki) − P 	(ki)

]

× [
P	′,n(kj ) − P 	′ (kj )

]
, (23)

with Ns being the number of mock catalogues. Our covariance
matrix at each redshift bin contains the monopole as well as
the quadrupole, and the elements of the matrices are given by
(x, y) = ( nb	

2 + i, nb	′
2 + j ), where nb is the number of k bins in each

multipole power spectrum. Our k-binning (
k = 0.01 h−1 Mpc)
yields nb = 29 for the fitting range k = 0.01–0.30 h−1 Mpc, and
hence the dimensions of the covariance matrices become 58 × 58.
The mean of the power spectra is defined as

P 	(ki) = 1

Ns

Ns∑
n=1

P	,n(ki). (24)

Given that the mock catalogues follow the same selection as the
data, they incorporate the same window function as we separately
match the randoms to each hemisphere.

Figs 4 and 5 present the correlation matrices for BOSS NGC and
SGC for the three redshift bins, where the correlation coefficient is
defined as

rxy = Cxy√
CxxCyy

. (25)

For each panel in Figs 4 and 5, the lower left-hand corner shows
the correlation between bins in the monopole, the upper right-hand
corner displays the correlations between the bins in the quadrupole
and the upper left-hand corner and lower right-hand corners show
the correlation between the monopole and quadrupole. After recon-
struction there is less correlation between different k modes. Re-
construction not only sharpens the BAO feature, but also removes
some of the correlation between different k-modes and between the
multipoles, making the covariance matrix more diagonal.

Fig. 6 shows the diagonal elements of the covariance matrix for
the monopole and quadrupole power spectrum. We find an error of
∼1.5 per cent in the monopole and ∼10 per cent in the quadrupole
at k = 0.15 h Mpc−1. This result represents the most precise mea-
surements of the galaxy power spectrum to date.

Fig. 6 shows the fractional errors for the monopole and
quadrupole pre- and post-reconstruction. In the Gaussian limit the
fractional errors depend on the number of independent k-modes
and the shot noise contribution (on small scales). Because the er-
ror decreases by the same factor as the power spectrum decreases,
the fractional errors of the monopole are almost identical before
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BOSS: Fourier-space analysis of BAO 3415

Figure 5. Correlation matrix before (top) and after (bottom) density field reconstruction for the SGC in the three redshift bins used in this analysis. The
matrices include the monopole (bottom left-hand corner) and quadrupole (top right-hand corner) as well as their correlation (top left and bottom right). The
pre-reconstruction matrices contain 2048 mock catalogues, while the post-reconstruction results contain 999 mock catalogues. The colour indicates the level
of correlation, with red corresponding to 100 per cent correlation and magenta corresponding to −25 per cent anticorrelation (there are not many fields lower
than −25 per cent). After reconstruction there is less correlation between different k modes and between the multipoles.

and after reconstruction on large scales. Since reconstruction can-
not remove the shot noise contribution, the error on small scales
cannot decrease significantly, while non-linearity on the shot-noise
subtracted monopole is reduced by a small amount. This situation
makes the fractional errors of the monopole after reconstruction
(dashed lines) slightly larger than the monopole before reconstruc-
tion (solid lines) on small scales. The leading contribution to the
quadrupole error is produced by the monopole power spectrum, not
the quadrupole power spectrum (see appendix of Taruya, Nishimichi
& Saito 2010; Yoo & Seljak 2015). On small scales, the non-linear
effects on the quadrupole decrease after reconstruction, while again
the shot noise contribution to the quadrupole error remains the same.
As a result, the fractional error on the quadruple on small scales also
becomes larger after reconstruction. This result does not contradict
the observed improved information content (e.g. Ngan et al. 2012)
after reconstruction since the information content accounts for the
entire covariance between different modes and different multipoles,
which is reduced after reconstruction. Also, the main signal-to-noise
ratio improvement from the BAO reconstruction is produced by the
sharpening of the BAO.

5.2 Inverting the mock covariance matrix

As the estimated covariance matrix C is inferred from mock cat-
alogues, its inverse, C−1, provides a biased estimate of the true

inverse covariance matrix, (Hartlap, Simon & Schneider 2007). To
correct for this bias we rescale the inverse covariance matrix as

C−1
ij ,Hartlap = Ns − nb − 2

Ns − 1
C−1

ij , (26)

where nb is the number of power spectrum bins. This scaling as-
sumes a Gaussian error distribution and an uncorrelated data vector,
which is not strictly true for our data set (see Figs 4 and 5). We there-
fore produce many random simulations to keep this scaling factor
small. For our post-reconstruction case with nb = 58 and Ns = 999
for the SGC (Ns = 996 for the NGC) the correction of equation (26)
increases the parameter variance by about 6 per cent. With these co-
variance matrices we can then perform a standard χ2 minimization
to find the best-fitting parameters.

6 D ENSI TY FI ELD RECONSTRUCTI ON

The main complication of studying BAO in the distribution of galax-
ies compared to similar studies in the CMB arises due to non-linear
structure evolution; the damping of the BAO feature lessens the pre-
cision of the BAO measurements, and potential shifts in the BAO
scale can introduce a systematic bias on the resulting cosmology.
Redshift-space distortions enhance such complications along the
line of sight.

Density field reconstruction (Eisenstein et al. 2007b) is a tech-
nique to enhance the signal-to-noise ratio of the BAO signature
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Figure 6. The relative uncertainty of the NGC power spectrum monopole (left) and quadrupole (right) before (solid lines) and after (dashed lines) density
field reconstruction. The power spectrum monopole in the denominator does have the shot noise subtracted (we use the monopole in the denominator of the
quadrupole plot because the quadrupole is often nearly zero).

by partly undoing non-linear effects of structure formation and
redshift-space distortions, i.e. by bringing the information that
leaked to the higher order statistics of the galaxy distribution back
to the two-point statistic (Schmittfull et al. 2015). The main steps
of density field reconstruction are the following.

(i) Estimate the displacement field due to structure growth and
redshift-space distortions based on the observed galaxy density
field.

(ii) Displace the observed galaxies and a sample of randomly
distributed particles with this estimated displacement field.

(iii) Subtract the data and random displaced density fields.

In this analysis we follow the method of Padmanabhan et al. (2012).
The observed redshift-space galaxy density field is calculated as

δ(s) = G(s)

α′R(s)
− 1, (27)

where G and R are defined in equation (8). We smooth this field
with a Gaussian filter of the form

S(k) = exp
[−(k�smooth)2/2

]
, (28)

where we chose �smooth = 15 h−1 Mpc, which is close to the op-
timal smoothing scale given the signal-to-noise ratio of the BOSS
data (Xu et al. 2012; Burden et al. 2014; Seo et al. 2016; Vargas-
Magaña et al. 2015). In linear perturbation theory, the real-space

displacement field �(x) is related to the redshift-space density field
by

∇ · �(s) + β∇ · (� · ŝ‖)ŝ‖ = − δ(s)

b
, (29)

where ŝlos is the unit vector along the line of sight (Nusser & Davis
1994). Assuming the � is irrotational, we write � = ∇φ and solve
for the scalar potential φ. To do this, we convert all the derivatives
to their finite difference counterparts and solve the resulting linear
equation (Padmanabhan et al. 2012). Once φ is derived, � can be
calculated using finite differences.

We then apply the displacement to our galaxies by shifting their
line of sight and angular position following

snew
‖ = sold

‖ − (1 + f )�‖(sold), (30)

snew
⊥ = sold

⊥ − �⊥(sold), (31)

where we multiply the derived displacement with (1 + f) when
displacing the galaxies along the line of sight in order to remove
linear redshift-space distortions.

The procedure of reconstruction outlined above does rely on a
fiducial cosmological model providing the growth rate f(z), needed
in equation (30) as well as the bias parameter in equation (29).
We refer to Mehta et al. (2011) and Vargas-Magaña et al. (2015)
for a detailed study of how these initial assumptions influence the
reconstructed BAO results.
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This procedure leads to a shifted galaxy, Gs(r), and shifted ran-
dom catalogue, Rs(r), where the positions of all galaxies are mod-
ified based on the estimated displacement field. The overdensity
field, D(r), required for the power spectrum estimate can be ob-
tained in an analogous way to equation (8) and is given by

Ds(r) = Gs(r) − α′Rs(r). (32)

7 TH E P OW E R SP E C T RU M MO D E L

Here we introduce the anisotropic and isotropic power spectrum
model used to extract the BAO information by fitting to the mea-
surements. The method used in this paper follows Anderson et al.
(2012, 2014) with small modifications as discussed in Seo et al.
(2016).

7.1 The anisotropic case

Our anisotropic power spectrum model is given by

P (k, μ) = Psm(k, μ)

×
[
1 + (Olin(k) − 1) e−[k2μ2�2

‖+k2(1−μ2)�2
⊥]/2

]
, (33)

where μ is the cosine angle to the line of sight, Olin(k) represents
the oscillatory part of the fiducial linear power spectrum and Psm(k,
μ) is the smooth anisotropic power spectrum. We use two damping
scales to model the anisotropic non-linear damping on the BAO
feature, one for modes along the line of sight, �‖, and one for
modes perpendicular to the line of sight, �⊥. To obtain Olin(k) we
fit the fiducial linear power spectrum, Plin(k), with Eisenstein &
Hu (1998) no-Wiggle power spectrum, Pnw(k), together with five
polynomial terms and derive a smooth fit, Psm, lin(k). The oscillatory
part is then given by

Olin(k) = Plin(k)

Psm,lin(k)
. (34)

The smooth anisotropic power spectrum, Psm(k, μ), is given by

Psm(k, μ) = B2(1 + βμ2R)2Psm,lin(k)Ffog(k, μ, �s), (35)

where the parameter B is used to marginalize over the power spec-
trum amplitude. We set R = 1 before density field reconstruction
and R = 1 − exp [−(k�smooth)2/2] after reconstruction. Seo et al.
(2016) demonstrate that this R-term after reconstruction depends
on the conventions used in the reconstruction process. The R-term
we use accounts for the removal of redshift-space distortions on
large scales during reconstruction (‘Rec–Iso’ convention in Seo
et al. 2016), and the smoothing scale �smooth = 15 h−1 Mpc used
when deriving the displacement field (see Section 6 for details).
The damping term Ffog(k, μ, �s) due to the non-linear velocity field
(finger-of-God) is given by

Ffog(k, μ, �s) = 1

(1 + k2μ2�2
s /2)2

. (36)

We add extra polynomial terms to marginalize over the angle-
dependent overall shape of the power spectrum. The power spectrum
monopole and quadrupole are

P0(k) = 1

2

∫ 1

−1
P (k, μ)dμ + A0(k), (37)

P2(k) = 5

2

∫ 1

−1
P (k, μ)L2(μ)dμ + A2(k), (38)

where

A
pre-recon
	 (k) = a	,1

k3
+ a	,2

k2
+ a	,3

k
+ a	,4 + a	,5k, (39)

A
post-recon
	 (k) = a	,1

k3
+ a	,2

k2
+ a	,3

k
+ a	,4 + a	,5k

2. (40)

The decision which polynomial to use is based on the 
χ2 achieved
by each term. The data prefer a linear polynomial in the pre-recon
case and a k2 polynomial post-recon leading to a different set of
polynomials in the two cases.

Given that the galaxies in the NGC and SGC follow slightly
different selections (Alam et al. 2016), we use two separate pa-
rameters to describe the clustering amplitude in the two sam-
ples: BSGC and BNGC. In our analysis we fix �‖ = 4 h−1 Mpc
and �⊥ = 2 h−1 Mpc for the post-reconstruction case and
�‖ = 8 h−1 Mpc and �⊥ = 4 h−1 Mpc for the pre-reconstruction
case (Eisenstein, Seo & White 2007a). The exact choice for �⊥
and �‖ does not affect our analysis. This approach leads to 14 free
nuisance parameters (BSGC, BNGC, β, a	, 1–5, �s). In Section 7.2 we
will introduce the two BAO scale parameters α⊥ and α‖, which will
complete our set of 16 free fitting parameters (we fit the NGC and
SGC power spectra simultaneously).

7.2 The anisotropic standard ruler test

If the fiducial cosmological parameters used to convert galaxy red-
shifts into physical distances and angular separations into the phys-
ical separations deviate from the true cosmology, the observed BAO
scale will deviate from the true BAO scale, i.e. the sound horizon
scale rs(zd). In the full (i.e. anisotropic) standard ruler test, we can
measure the deviations along the line of sight and perpendicular
to the line of sight separately, thereby deriving constraints on the
true Hubble parameter and angular diameter distance relative to the
fiducial relations. We parametrize the observed BAO scales along
and perpendicular to the line of sight relative to the BAO scale in the
power spectrum template using following two scaling parameters:

α‖ = H fid(z)rfid
s (zd)

H (z)rs(zd)
, (41)

α⊥ = DA(z)rfid
s (zd)

Dfid
A (z)rs(zd)

, (42)

where Hfid(z) and Dfid
A (z) are the fiducial values for the Hubble pa-

rameter and angular diameter distance at the effective redshift of
the sample, and rfid

s (zd) is the fiducial sound horizon assumed in the
template power spectrum. The sound horizon scale rfid

s (zd) is con-
sidered here to correct for the fiducial location of the BAO feature
assumed in the template. Alternatively we can use the values

α = α
1/3
‖ α

2/3
⊥ , (43)

ε =
(

α‖
α⊥

)1/3

− 1, (44)

where α describes an isotropic shift (radial dilation) in the BAO
scale and ε captures any anisotropic warping. We will employ both
expressions for the rest of this paper.

The true wavenumbers (k′
‖ and k′

⊥) are related to the observed
wavenumbers by k′

‖ = k‖/α‖ and k′
⊥ = k⊥/α⊥. Transferring this in-

formation into scalings for the absolute wavenumber k =
√

k2
‖ + k2

⊥
and the cosine of the angle to the line of sight μ, we can relate the
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true and observed values by

k′ = k

α⊥

[
1 + μ2

(
1

F 2
− 1

)]1/2

, (45)

μ′ = μ

F

[
1 + μ2

(
1

F 2
− 1

)]−1/2

, (46)

with F = α‖/α⊥ (Ballinger, Peacock & Heavens 1996). The multi-
pole power spectrum, including the BAO radial dilation and warp-
ing, can be written as

P	(k)=
(

rfid
s

rs

)3
(2	 + 1)

2α2
⊥α‖

∫ 1

−1
dμ Pg[k′(k, μ), μ′(μ)]L	(μ), (47)

where
(

rfid
s
rs

)3
1

α2
⊥α‖

accounts for the difference in the cosmic volume

in different cosmologies. The ratio of sound horizons is needed to
compensate for the sound horizons included in the definitions of
the α values. However, since this term degenerates with our free
amplitude parameters, it has no effect on our BAO analysis.

7.3 The isotropic case

We also constrain the angle average BAO dilation scale using
only the monopole power spectrum, which ignores the Alcock–
Paczynski effect by holding the Alcock–Paczynski shape DAH fixed
at the fiducial shape, while spherically averaging the clustering in-
formation (i.e. we are assuming the radial and transverse distance
scales to be same). In that case we cannot separately constrain DA

and H, but only the radial BAO dilation in a spherically averaged
clustering, which is traditionally defined as

DV (z) =
[

(1 + z)2D2
A(z)

cz

H (z)

]1/3

. (48)

Our model for the isotropic (monopole only) analysis is a simplified
version of the model used in the anisotropic case. Since β and B are
degenerate when fitting only the monopole power spectrum before
reconstruction, we remove the (1 + βμ2)2 term. The oscillation

damping term simplifies to �nl ∼
√

(�2
‖ + 2�2

⊥)/3, and we remove

the μ dependence in equation (36). We therefore have

P (k) = Psm(k)
[
1 + (Olin(k) − 1) e−[k2�2

nl]/2
]

(49)

and

Psm(k) = B2Psm,lin(k)Ffog(k, �s), (50)

with Psm, lin as given in equation (35). The velocity damping term is
given by

Ffog(k, �s) = 1

(1 + k2�2
s /2)2

. (51)

The effect of the radial dilation of the BAO is included as

P0(k) =
(

rfid
s

rs

)3
(2	+1)

2α3

∫ 1
−1 dμ Pg

(
k′ = k/α, μ

)L0(μ), (52)

where

α = DV (z)rfid
s (zd)

Dfid
V (z)rs(zd)

. (53)

In total, we have 10 free parameters in the isotropic case (BNGC,
BSGC, a0, 1–5, α, �nl, �s).

We expect the constraint on α in the isotropic case to be tighter
than the constraint on α in the anisotropic case, since in the latter, α

Figure 7. The window function and discreteness effects for the lowest
redshift bin in the SGC. The three lines show the raw power spectrum
model (black solid line), the same model including the convolution with the
window function (black dashed line) and including the discreteness effect
of Section 7.4 (red solid line). The SGC in the lowest redshift bin has the
smallest volume and therefore both window function and discreteness effects
are expected to be the largest in this case.

(in equation 43) is marginalized over the warping effect while in the
former analysis it is not. We will consider the anisotropic constraints
as our main result, since the anisotropic analysis depends on fewer
assumptions. We will show constraints on DV from the isotropic
analysis only for comparison.

7.4 Correction for the irregular μ distribution

Because the survey volume is not infinite, the power spectra are
estimated on a finite and discrete k-space grid. Performing FFTs
in a Cartesian lattice makes the angular distribution of the Fourier
modes irregular and causes deviation from the isotropic distribution,
more so at smaller k. As a result, we see small fluctuation-like
deviations in the measured power spectrum multipoles that are not
caught by the window function, as shown in Fig. 7. The effect is
larger for the quadrupole than the monopole since the quadrupole
is more sensitive to an anisotropy of the mode distribution. Given
that the SGC in the lowest redshift bin has the smallest volume,
we expect this effect to be greatest for this case. In this paper, we
include this effect in our power spectrum monopole and quadrupole
model. When calculating multipoles, we weight each μ bin by the
normalized number of modes N(k, μ) counted on a k-space grid that
is same as the grid used to estimate the measured power spectrum.
More details of the correction method are given in B16. This effect,
being apparent only at small k, does not influence the result of our
analysis.

7.5 Fitting preparation

Using the covariance matrix we perform a χ2 minimization to find
the best-fitting parameters. In addition to the scaling of the inverse
covariance matrix of equation (26), we must propagate the error in
the covariance matrix to the error on the estimated parameters; this
is done by scaling the variance for each parameter by (Percival et al.
2014)

M1 =
√

1 + B(nb − np)

1 + A + B(np + 1)
, (54)
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where np is the number of parameters and

A = 2

(Ns − nb − 1)(Ns − nb − 4)
, (55)

B = Ns − nb − 2

(Ns − nb − 1)(Ns − nb − 4)
. (56)

Using our post-reconstruction values of Ns = 999 for SGC and
996 for the NGC, nb = 58 and np = 16, we obtain a correction of
M1 ≈ 1.013. When dealing with the variance or standard deviation
of a distribution of finite mock results, which has also been fitted
with a covariance matrix derived from the same mock results, the
standard deviation from these mocks needs to be corrected as

M2 = M1

√
Ns − 1

Ns − nb − 2
. (57)

8 T E S T I N G T H E MO D E L

8.1 Theoretical systematics

While perturbation theory can attempt to provide a model for the
non-linear power spectrum on quasi-linear scales (k ≤ 0.2 h−1 Mpc),
most observed modes are outside the realm of perturbation theory
and it has proven very difficult to extract information from these
modes. When focusing on the BAO feature, however, the two main
non-linear effects are non-linear damping and an additional small-
scale power due to mode coupling (Crocce & Scoccimarro 2006;
Eisenstein et al. 2007a; Matsubara 2008a; Seo et al. 2008, 2010):

Pg(k, μ) = G2(k, μ, z)Plin(k, μ) + PMC. (58)

Here the propagator G describes the cross-correlation between the
initial and final density field, which is responsible for the damping
of the BAO. In the high-k limit, the dominant behaviour of the
propagator can be predicted using perturbation theory (e.g. Crocce
& Scoccimarro 2006; Matsubara 2008a) as

G ∼ exp

(
−1

2
k2�2

)
. (59)

N-body simulations have demonstrated that this form is a good
approximation over the wave modes that are relevant to the BAO
feature before reconstruction, and often even after reconstruction
(e.g. Seo et al. 2010, 201).2

The mode coupling term in equation (58) can be written in the
standard perturbation theory (PT; Jain & Bertschinger 1994) as

PMC(k) � 2
∫

[F2(k − q, q)]2 Plin(q)Plin(|k − q|)dq + · · · (60)

with the second-order PT kernel

F2(k1, k2) = 5

7
+ 2

7

(
k1 · k2

k1k2

)2

+ k1 · k2

2

(
1

k2
1

+ 1

k2
2

)
. (61)

The F2-kernel divides the mode coupling term into three parts,
where the first describes the growth of perturbations, the second
represents the transport of matter by the velocity field and the last
term describes the impact of tidal gravitational fields in the growth
of structure. The leading contribution to the shift in the BAO scale
results from the product of the first and second term (Crocce &
Scoccimarro 2006; Sherwin & Zaldarriaga 2012). The amplitude of

2 White (2015) and Seo et al. (2016) show that it depends on the convention
and the details used in the reconstruction procedure.

this shift depends on redshift (through the growth factor) and galaxy
bias (Seo et al. 2008, 2010; Padmanabhan & White 2009; Mehta
et al. 2011) and is approximately described by

α − 1 ≈ 0.5 per cent

(
1 + 3b2

2b1

)
[D(z)/D(0)]2 , (62)

where D is the growth factor. Using the effective redshifts zeff = 0.38,
0.51 and 0.61 and assuming b1 = 2, b2 = 0.2 and �m = 0.3 within
a flat �CDM cosmology, the equation above predicts systematic
shifts of 
α = 0.39, 0.36 and 0.33 per cent, respectively, without
accounting for redshift-space distortions. These values are more
than a factor of 2 times smaller than our best measurement uncer-
tainties.

Furthermore, the technique of density field reconstruction, which
we described in Section 6, has been shown to substantially undo the
non-linear damping as well as remove the mode coupling bias (Seo
et al. 2008; Padmanabhan & White 2009; Sherwin & Zaldarriaga
2012). While the efficiency of density field reconstruction depends
on the noise level of the galaxy density field as well as various details
used during reconstruction, Seo et al. (2008) demonstrated that the
shifts are reduced to less than 0.1 per cent even in the presence
of non-negligible shot noise, implying the mode coupling term is
quite robustly removed. In our analysis, the BAO constraints clearly
improve after reconstruction to the degree that is consistent with
the effect seen in the mock catalogues. This result suggests that
reconstruction is working and therefore the mode coupling term
should be removed. We therefore proceed without any treatment for
a potential systematic bias due to mode coupling.

It has been suggested that the supersonic streaming velocity of
baryons relative to dark matter at high redshift may have left an im-
print in the low-redshift galaxy distribution such that the BAO scale
shrinks or stretches relative to the conventional, zero-streaming ve-
locity prediction (e.g. Dalal, Pen-L. & Seljak 2010; Tseliakhovich &
Hirata 2010; Yoo, Dalal & Seljak 2011; Beutler et al. 2016). Blazek,
McEwen & Hirata (2016) predict that a level of 1 per cent effect
on the density fluctuation (i.e. streaming velocity bias) will induce
a ∼0.5 per cent shift in the BAO scale. With little information on
the magnitude and sign of the streaming velocity bias and its effect
on the reconstruction process, we ignore a possible systematic bias
due to this effect.

8.2 Tests on N-body simulations

To test our fitting technique we use two different sets of N-
body simulations, designated as runA and runPB. The runA sim-
ulations are 20 halo catalogues of size [1500 h−1 Mpc]3 with
15003 particles using the fiducial cosmology of �m = 0.274,
�� = 0.726, ns = 0.95, �b = 0.0457, H0 = 70 km s−1Mpc−1

and rs(zd) = 104.503 h−1 Mpc. The runPB simulations are 10
galaxy catalogues of size [1380 h−1 Mpc]3 with �m = 0.292,
�� = 0.708, ns = 0.965, �b = 0.0462, H0 = 69 km s−1 Mpc−1 and
rs(zd) = 102.3477 h−1 Mpc. The runPB simulations use a CMASS-
like halo occupation distribution (HOD) model to populate dark
matter haloes with galaxies (see Reid et al. 2014 for details).

We calculate the power spectra for the runA and runPB simula-
tions and fit the individual power spectra using the model described
in Section 7. The results are summarized in Table 1 and displayed
in Fig. 8.

In the case of the runA simulations, the pre-reconstruction results
indicate a 2σ bias towards larger values of α‖. This bias is not sta-
tistically significant but might be related to the mode coupling shift
as discussed in Section 8.1. Our power spectrum model does not
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Table 1. Results for the fit to the mean of the runA and runPB simulations (in periodic boxes). The upper section of the table presents the fitting result using the
power spectrum template of the correct cosmology, so that the different scaling parameters α should agree with unity and ε should agree with zero. The lower
section of the table uses the runPB cosmology to define the power spectrum template when fitting the runA simulations and the runA cosmology for the fit to
runPB simulations. Using a power spectrum template with a different sound horizon results in a shift of the different αs, given by the ratio of the true sound
horizon to the used sound horizon. The rows with the label ‘scaled’ account for the difference in the sound horizon of the two templates, so that these values
again should agree with unity. This represents a test of the scaling formalism used to retrieve the BAO scale. The sound horizon for runA is 104.503 h−1 Mpc
(149.29 Mpc), while for runPB it is 102.3477 h−1 Mpc (148.33 Mpc). The parameters α and ε are derived from α‖ and α⊥. The fact that some values of α

before reconstruction are larger than unity is consistent with the mode coupling term, which predicts a sub-per cent level shift to larger α (see Section 8.1).
Mode coupling is removed after reconstruction.

runA runPB
Pre-recon Post-recon Pre-recon Post-recon

Anisotropic fit
α‖ 1.0128 ± 0.0058 0.9973 ± 0.0029 0.999 ± 0.012 0.9975 ± 0.0049
α⊥ 1.0016 ± 0.0027 1.0013 ± 0.0018 1.0099 ± 0.0047 1.0017 ± 0.0031

α 1.0053 ± 0.0026 1.0000 ± 0.0015 1.0061 ± 0.0050 1.0003 ± 0.0026
ε 0.0037 ± 0.0021 − 0.0013 ± 0.0011 − 0.0037 ± 0.0042 − 0.0014 ± 0.0019

Isotropic fit

α 1.0065 ± 0.0023 1.0003 ± 0.0013 1.0085 ± 0.0041 1.0015 ± 0.0022

Anisotropic fit (switched template)
α‖ 0.9929 ± 0.0058 0.9777 ± 0.0030 1.019 ± 0.012 1.0176 ± 0.0053
α⊥ 0.9816 ± 0.0026 0.9810 ± 0.0018 1.0306 ± 0.0048 1.0224 ± 0.0031
α‖ (scaled) 1.0138 ± 0.0059 0.9983 ± 0.0030 0.998 ± 0.012 0.9966 ± 0.0052
α⊥ (scaled) 1.0023 ± 0.0027 1.0017 ± 0.0018 1.0093 ± 0.0047 1.0013 ± 0.0030

α 0.9854 ± 0.0026 0.9799 ± 0.0012 1.0268 ± 0.0051 1.0208 ± 0.0027
α (scaled) 1.0062 ± 0.0027 1.0005 ± 0.0012 1.0056 ± 0.0050 0.9997 ± 0.0026
ε 0.0038 ± 0.0021 − 0.0011 ± 0.0012 − 0.0038 ± 0.0041 − 0.0016 ± 0.0020

Isotropic fit (switched template)
α 0.9868 ± 0.0024 0.9807 ± 0.0014 1.0287 ± 0.0039 1.0219 ± 0.0022
α (scaled) 1.0076 ± 0.0025 1.0014 ± 0.0014 1.0074 ± 0.0038 1.0008 ± 0.0022

Figure 8. The distribution of α‖ and α⊥ for the 20 realizations of the runA simulation (left) and the 10 realizations of the runPB simulation (right) before
density field reconstruction (black) and after reconstruction (red). The star data points with error bars show the results of the fit to the mean of the simulation
boxes again before (black) and after (red) reconstruction (the individual realizations are connected by black lines). The fact that the results before reconstruction
(black) are biased to α > 1 is consistent with the mode coupling term. Mode coupling is removed after reconstruction. One of the 10 runPB realizations has
α‖ = 1.28 before reconstruction, which indicates that for this realization there is no BAO detection along the line of sight.

account for the mode coupling term and therefore the presence
of bias is expected. However, the mode coupling term should
be removed after applying density field reconstruction. Our post-
reconstruction results are indeed consistent with α = 1, indicating
no systematic bias in our measurements.

The results for the runPB simulations (Fig. 8, right) are quite sim-
ilar, even though instead of having a 2σ bias in α‖ pre-reconstruction

we now find a 2σ bias in α⊥. Again our post-reconstruction results
are unbiased.

We also performed tests where we switched the input power
spectrum model using the runPB cosmology for the fit to runA and
the other way around. These results are included in Table 1 with
the label ‘switched template’. For these fits an unbiased result does
not mean agreement with α = 1, since the cosmology assumed in
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Figure 9. Maximum likelihood values for the MultiDark-Patchy mock catalogues (left) and the corresponding minimum, χ2 distribution (right) for the three
redshift bins used in this analysis. The magenta data points on the left and the magenta solid line on the right show the pre-reconstruction results, while the
black points (left) and the black line (right) present the post-reconstruction results. The red crosses in the left-hand panels are the mean and variance for the
mock catalogues post-reconstruction. The black dashed line on the right indicates the degrees of freedom. The results are summarized in Table 2.

the model is different from the true cosmology of the simulation.
The results with the label ‘scaled’ show the fitting results that are
adjusted with the ratio between the cosmology in the template and
the input cosmology of the simulations, where now these results
can be compared to unity. We found the results are consistent with
our previous findings, i.e. no bias on the measured BAO scale.

8.3 Tests on the MultiDark-Patchy mock catalogues

The tests in the last section have been performed on simulations
with periodic boundary conditions, which do not take into account
the survey geometry of BOSS. Here we use the MultiDark-Patchy
mock catalogues, introduced in Section 5, which incorporate the
BOSS survey geometry. The mean of the MultiDark-Patchy power
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Table 2. The results for the fits to the MultiDark-Patchy mock catalogues for the three redshift bins used in this analysis before and after
density field reconstruction. For each bin we present the anisotropic results (α‖, α⊥) and the isotropic result (α). The anisotropic results
also show the correlation coefficient r between the two α-parameters. The fiducial BOSS cosmology is used when analysing the mock
data, which means that the α values do not have to agree with unity. The expectation value for each redshift bin is given in brackets. The
uncertainties represent the variance between all mock catalogues (not the error on the mean).

Pre-recon rpre-recon Post-recon rpost-recon

0.2 < z < 0.5
α‖ 1.018 ± 0.076 (0.9999) −0.455 1.005 ± 0.036 (0.9999) −0.398
α⊥ 0.999 ± 0.031 (0.9991) 0.995 ± 0.018 (0.9991)
α 1.010 ± 0.022 (0.9993) – 1.002 ± 0.013 (0.9993) –

0.4 < z < 0.6
α‖ 1.019 ± 0.066 (1.0003) −0.482 1.005 ± 0.032 (1.0003) −0.397
α⊥ 0.999 ± 0.027 (0.9993) 0.998 ± 0.016 (0.9993)
α 1.010 ± 0.019 (0.9996) – 1.003 ± 0.012 (0.9996) –

0.5 < z < 0.75
α‖ 1.010 ± 0.053 (1.0006) −0.464 1.003 ± 0.033 (1.0006) −0.413
α⊥ 1.000 ± 0.024 (0.9995) 0.998 ± 0.017 (0.9995)
α 1.008 ± 0.019 (0.9999) – 1.003 ± 0.012 (0.9999) –

Table 3. The constraints from the BOSS DR12 data analysis, representing the main results of this paper. The upper section presents the anisotropic fits, while
the lower part lists the isotropic results. The fitting range is k = 0.01–0.3 h Mpc−1 for both monopole and quadrupole. We include the result before (pre-recon)
and after (post-recon) density field reconstruction. The α and ε values are derived from the α‖ and α⊥ values using equation (43). We also show the constraints
on the Alcock–Paczynski parameter FAP(z) = (1 + z)DA(z)H(z)/c and the isotropic distance scale DV (z) = [(1 + z)2D2

A(z)cz/H (z)]1/3. The uncertainties are
derived from the 68 per cent confidence levels. The results are displayed in Figs 12–14. The correlation between α⊥ and α‖ as derived from the measurement
likelihood is −0.378, −0.389 and −0.464 for the low-, middle- and high-redshift bins, respectively.

0.2 < z < 0.5 0.4 < z < 0.6 0.5 < z < 0.75
Pre-recon Post-recon Pre-recon Post-recon Pre-recon Post-recon

Anisotropic fit

α‖ 1.047 ± 0.037 1.028 ± 0.030 1.013 ± 0.049 0.988 ± 0.022 0.944 ± 0.041 0.964 ± 0.022
α⊥ 0.981 ± 0.021 0.984 ± 0.016 1.008 ± 0.023 0.997 ± 0.013 1.009 ± 0.025 1.000 ± 0.015
χ2/d.o.f. 109.9/(116 − 16) 101.2/(116 − 16) 105.6/(116 − 16) 68.0/(116 − 16) 96.8/(116 − 16) 97.2/(116 − 16)

α 1.002 ± 0.015 0.999 ± 0.011 1.009 ± 0.016 0.993 ± 0.0091 0.987 ± 0.017 0.988 ± 0.0090
ε 0.022 ± 0.016 0.015 ± 0.013 0.0016 ± 0.021 − 0.0030 ± 0.0099 − 0.022 ± 0.019 − 0.013 ± 0.011
FAP(z) 0.397 ± 0.018 0.406 ± 0.016 0.591 ± 0.037 0.598 ± 0.018 0.786 ± 0.046 0.761 ± 0.025
DV (z)rfid

s /rs (Mpc) 1479 ± 23 1474 ± 17 1903 ± 30 1873 ± 17 2141 ± 36 2144 ± 20
H (z)rs/r

fid
s (km s− 1 Mpc− 1) 79.3 ± 2.8 80.7 ± 2.4 88.7 ± 4.3 90.8 ± 2.0 101.1 ± 4.4 98.9 ± 2.3

DA(z)rfid
s /rs (Mpc) 1088 ± 23 1092 ± 18 1323 ± 30 1308 ± 18 1446 ± 36 1433 ± 21

Isotropic fit

α 1.006 ± 0.016 1.000 ± 0.010 1.016 ± 0.017 0.9936 ± 0.0082 0.991 ± 0.019 0.9887 ± 0.0087
DV (z)rfid

s /rs (Mpc) 1485 ± 24 1476 ± 15 1916 ± 32 1874 ± 16 2150 ± 42 2146 ± 19
χ2/d.o.f. 48.5/(58 − 10) 43.9/(58 − 10) 64.8/(58 − 10) 32.8/(58 − 10) 49.8/(58 − 10) 47.0/(58 − 10)

spectra (we have 2045 pre-reconstruction power spectra and 996
post-reconstruction power spectra for the NGC and 2048 pre-
reconstruction and 999 post-reconstruction power spectra for the
SGC) is included in Figs 1 and 2 for comparison with the data
measurements.

We fitted each individual mock catalogue and included the max-
imum likelihood value in Fig. 9 (left). The black data points corre-
spond to the post-reconstruction results, while the magenta points
show the pre-reconstruction results. The results are also included
in Table 2, where we list the mean and variance between the mock
results. The largest offset between our mean post-recon results and
the true underlying cosmology is 0.5 per cent, less than 1/6 of the
standard deviation expected in these measurements.

The distribution of maximum likelihood results for the
MultiDark-Patchy mock catalogues indicates a correlation between
α⊥ (∝DA) and α‖ (∝H−1) of ∼−0.47 pre-reconstruction, while
this value increases to ∼−0.4 in our post-reconstruction results.

Fisher matrix forecasts predict a correlation value of ≈−0.41 (i.e.
anticorrelated DA and H−1) pre- and post-reconstruction (Seo &
Eisenstein 2003, 2007) for the BAO-only analysis, i.e. when we
marginalize over any redshift-space distortion effects. Our post-
reconstruction values are in good agreement with the Fisher matrix
predictions, while for pre-reconstruction the correlation is smaller
(i.e. more negative) than expected. In the limit of the pure Alcock–
Paczynski test, i.e. when we have a constraint only on DAH, we
expect a correlation of unity between α⊥ and α‖; using less infor-
mation from the BAO scale will therefore increase the contribution
from the Alcock–Paczynski test and push the correlation towards
1 from −0.4 (Seo & Eisenstein 2003; Shoji, Jeong, & Komatsu
2009). The pre-reconstruction correlation coefficient we observe is
therefore not easily explained even if we assume a potential in-
clusion of non-BAO information. Note, however, that the Fisher
matrix forecast assumes complete information of P(k, μ), while
our data include only the monopole and quadrupole (excluding the
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Figure 10. The monopole power spectrum measurements (black data
points) relative to the best-fitting smooth power spectrum of equation (50).
The left-hand panel shows the pre-reconstruction results and the right-hand
panel presents the post-reconstruction results. The black solid line repre-
sents the best-fitting model to the data. The red data points are the mean
power spectrum monopole of the MultiDark-Patchy mock catalogues and
the black dashed line shows the best fit to the red data points. We observe a
larger damping of the BAO signal in the MultiDark-Patchy mock catalogues
compared to the data (see discussion Section 8.3 for details).

hexadecapole). The configuration space analysis of Ross et al.
(2016) found r ∼ −0.49 pre-reconstruction and r ∼ −0.4 post-
reconstruction. These values agree well with our findings. The con-
sensus result of the BOSS DR11 analysis (Anderson et al. 2014)
had r = −0.54 post-reconstruction, significantly more negative than
our DR12 correlation as well as the Fisher prediction.3

The rms between the maximum likelihood results of the
MultiDark-Patchy mock catalogues is larger than the constraints
we observe in the BOSS-DR12 data catalogues by ∼30 per cent
(compare Table 2 with Table 3). To understand this discrepancy, we
now investigate how well the MultiDark-Patchy mock catalogues
represent the data in terms of the BAO signal. Fig. 10 presents the
isotropic BAO signal in the data (black data points) compared to the
mean of the MultiDark-Patchy mock catalogues (red data points).
The mock catalogues show a larger damping of the BAO signal
compared to the data, which is more prominent post-reconstruction.

Post-reconstruction only 1.9 per cent of the mock catalogues in
the high-redshift bin and 7.7 per cent of the mocks in the low-redshift
bin have smaller uncertainties than the data. To investigate this ten-
sion we first look at the measured damping scale in the data, where
for simplicity we focus on the isotropic case. The best-fitting damp-
ing scales pre-reconstruction are �NL = 8.3 ± 1.4, 8.8+1.6

−1.3 and
9.8+2.1

−1.6 h−1 Mpc for the low-, middle- and high-redshift bins, re-
spectively. After density field reconstruction, we get �NL = 5.0 ±
1.2, 3.4+1.4

−3.0 and 3.2+1.6
−4.3 h−1 Mpc. We can compare these measure-

ments with the expectations given by the Zel’dovich approximation

3 The DR11 analysis used R = 1 in equation (35) for the post-reconstruction
power spectrum model. We find this old fitting model indeed tends to lead
to more negative correlation.

(e.g. Matsubara 2008a):

�2
xy = 1

3π2

∫
dpPlin(p, z), (63)

�z = (1 + f )�xy. (64)

We approximate the damping of the spherically averaged power
spectrum to be

�NL =
√

2
3 �2

xy + 1
3 �2

z . (65)

This predicts �NL = 8.8 h−1 Mpc at z = 0.38, �NL = 8.4 h−1 Mpc
at z = 0.51 and �NL = 8.1 h−1 Mpc at z = 0.61 before recon-
struction. These values are slightly smaller than our measurements
but consistent within the measurement uncertainties. The expected
damping scale post-reconstruction does depend on the effective-
ness of reconstruction, which depends on e.g. survey geometry. Seo
et al. (2016) measure �NL ∼ 4.3 h−1 Mpc at redshift z ∼ 0.57 post-
reconstructing, which agrees with our measurements. The PTHalo
mock catalogues (Manera et al. 2013, 2015) used in the BOSS DR9
(Anderson et al. 2012) and DR10/11 (Anderson et al. 2014) analy-
sis showed a damping of �NL ∼ 4.6 and ∼4.8 h−1 Mpc at redshift
0.57 and 0.32, respectively, again agreeing with out measurements.
Meanwhile, the MultiDark-Patchy mocks show �NL ∼ 7 h−1 Mpc
post-reconstruction. We therefore conclude that the BAO signal
from the BOSS DR12 data set is consistent with the expectation,
while the MultiDark Patchy mocks tend to underestimate the BAO
signal. We believe this excess damping is a limitation of the 2LPT
approximation used in the mock production (for more details about
the MultiDark-Patchy mock production see Kitaura et al. 2016). The
effect is presumably more apparent post-reconstruction because it
is hidden by the larger intrinsic damping pre-reconstruction.

The larger damping scale in the MultiDark-Patchy catalogues is
clearly visible when fitting the mock power spectra and comparing
to the BOSS-DR12 results (see Fig. 11). Given that the main purpose
of the mock catalogues is to estimate the band power precision of
our power spectrum measurements, these effects do not impact our
analysis. However, one should keep these effects in mind when using
these catalogues to study the BAO signal. We therefore consider our
pipeline tests with the N-body simulations as more robust.

9 D R 1 2 DATA A NA LY S I S

9.1 The anisotropic fit

Fig. 12 compares the best-fitting power spectrum multipole models
with the measurements. The best fit for the SGC (red solid line) and
the NGC (black solid line) use different amplitude parameters B to
account for potential differences due to target selection. Except for
the amplitude all parameters are identical and we obtain these results
by fitting the NGC and SGC simultaneously. The lower two panels
in Fig. 12 show the residuals for the monopole and quadrupole sep-
arately, indicating a good fit on all scales. The best-fitting χ2/d.o.f.
is 101.2/(116 − 16), 68.0/(116 − 16) and 97.2/(116 − 16). The
probabilities of having reduced χ2 values that exceed these values
are 44.8, 99.4 and 56.1 per cent. The middle-redshift bin has a χ2

below expectation (with a significance <3σ ), which might be re-
lated to the higher amplitude of the MultiDark-Patchy mocks for
this redshift bin that overestimates the uncertainties (see Fig. 1).

The correlation between α⊥ and α‖ as derived from the measure-
ment likelihood is −0.378, −0.389 and −0.464 for the low-, middle-
and high-redshift bins, respectively. These values are very similar
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Figure 11. The uncertainties on the angular average distance scale parameter α before and after density field reconstruction. The red stars show the measurement
in BOSS-DR12, while the black points indicate the results for the MultiDark-Patchy mock catalogues.

Figure 12. Comparison between the best-fitting model and the BOSS DR12 measurements in the three redshift bins used in this analysis. The errors on the
data points are the diagonal of the corresponding covariance matrix. The red line represents the best-fitting model to the SGC, while the black line shows
the best-fitting model for the NGC. The SGC best-fitting model includes a small discreteness effect mainly visible at small k. The NGC and SGC have been
fit simultaneously, using the same cosmological fitting parameters. However, the SGC and NGC have a separate amplitude nuisance parameter and different
window functions, which leads to the difference between the red and black line. The reason for having separate nuisance parameters for NGC and SGC is slight
differences in the galaxy sample selection (see Section 2 and Alam et al. 2016). See Table 3 for more details.

to −0.398, −0.397 and −0.413, which are the corresponding values
from the Multidark-Patchy mock catalogues.

The best-fitting BAO scale parameters for the three redshift bins
are shown in Table 3. For all redshift bins we found significant
(up to a factor of 2) improvements after applying density field
reconstruction. Post-reconstruction we have 2.9, 2.2 and 2.3 per cent
constraints on α‖ for the low- (zeff = 0.38), middle- (zeff = 0.51)
and high-redshift bin (zeff = 0.61), respectively. For α⊥, the post-
reconstruction constraints are 1.6, 1.3 and 1.5 per cent at zeff = 0.38,
0.51 and 0.61, respectively.

9.2 The isotropic fit

The best-fitting results in the case of the isotropic analysis
(monopole only) are shown in Fig. 14. The best post-reconstruction
constraints are α = 1.000 ± 0.010, 0.9936 ± 0.0082 and 0.9887
± 0.0087 at zeff = 0.38, 0.51 and 0.61, respectively. Thus we
have two independent (the middle-redshift bin is correlated with
the other two) ∼1 per cent distance constraints at the low- and
at high-redshift bins: 0.88 per cent at z = 0.61 and 1 per cent at
zeff = 0.38. The best-fitting reduced χ2 in the isotropic case is
χ2/d.o.f. is 48.5/(58 − 10), 64.8/(58 − 10) and 49.8/(58 − 10)
for pre-reconstruction and 43.9/(58 − 10), 32.8/(58 − 10) and
47.0/(58 − 10) for post-reconstruction fits. The second redshift bin

shows a large χ2 pre-reconstruction and a fairly small χ2 post-
reconstruction. The probability to have a reduced χ2 value that
exceeds this value is 6.5 per cent for the pre-reconstruction value
and 96.4 per cent for the post-reconstruction result, meaning that
these results are 2σ fluctuations from expectation.

1 0 D I S C U S S I O N

The likelihood distribution for our best-fitting isotropic and
anisotropic results in terms of DA(z) and H(z) are displayed in
Fig. 13, together with the likelihood distribution for Planck within
�CDM. Including the quadrupole our anisotropic analysis can
break the degeneracy between DA and H and constrain both pa-
rameters separately. Our constraints for all redshift bins are in good
agreement with the Planck prediction within �CDM.

10.1 Comparison to other DR12 BAO measurements

Ross et al. (2016) analysed the same BOSS DR12 data as used in this
analysis in configuration space, finding overall good agreement (any
difference is <0.5 per cent) for the best-fitting values and for the
measurement uncertainties. We find a correlation of ∼0.9 between
our BAO constraints and the constraints of Ross et al. (2016). Our
companion paper (Alam et al. 2016) combines the BAO constraint
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Figure 13. The likelihood distribution for the fit to the BOSS power spec-
trum multipoles for the three redshift bins. The red contours show the
isotropic (monopole only) fit, while the blue contours present the anisotropic
(monopole+quadrupole) fit. We added the likelihood distribution for H0

measured by Planck (Planck2015+lensing) where we assumed a �CDM
model to extrapolate from the redshift of decoupling to the effective redshifts
of the three samples. See Table 3 for more details.

derived in this paper with the results in Ross et al. (2016) to obtain
a combined likelihood, representing the final BOSS BAO result.

In Gil-Marin et al. (2016) the BOSS DR12 sample has been
analysed using the two redshift bins of CMASS and LOWZ. While
the CMASS results agree quite well with our high-redshift bin,
there are some differences between our low-redshift bin and the
LOWZ result. The LOWZ sample is defined by the redshift range
0.15–0.43, while our low-redshift sample covers 0.2 < z < 0.5.
The combined sample used in our analysis also includes some new
data based on the ‘early regions’ (see Section 2), which have been
excluded in LOWZ.

10.2 Significance of the BAO detection

We can test the significance of the detection of the BAO signal in
BOSS by comparing our results to the limit �NL → ∞, which cor-
responds to a power spectrum without the BAO signal. We focus
here on the isotropic analysis. Before applying density field recon-
struction, our no-BAO fits result in a χ2 of 60.2, 82.1 and 67.4 for
the low-, middle- and high-redshift bin, respectively. Comparing to
the best-fitting χ2 in Table 3 we have 
χ2 = 11.7, 17.3 and 17.6,
which indicate detection significances of 3.4σ , 4.2σ and 4.2σ . After
applying density field reconstruction, the χ2 for the no-BAO fits is
106.2, 97.3 and 113.6 for the low-, middle- and high-redshift bins,
respectively. Again comparing to Table 3 we have 
χ2 = 62.3, 64.5
and 66.6, which indicate detection significances of 7.9σ , 8.0σ and
8.2σ .

10.3 Comparison to the Fisher matrix forecasts

As a check that our results are close to optimal, and to assess the
reliability of predictions for the future, it is useful to compare our
results to pre-survey predictions of BOSS’s BAO measuring power
(Eisenstein et al. 2011) based on the code of Seo & Eisenstein
(2007). The details take us too far afield so are given in Appendix C,
with the following summary.

(i) Our measurements of α, which is approximately equivalent to
the dilation factor R of Seo & Eisenstein (2007), can be aggregated
to an overall 0.70 per cent distance error.

(ii) Eisenstein et al. (2011) predicted an error 1.44 times smaller,
0.48 per cent.

(iii) Our measured BAO errors are typical given the measured
band power covariance, i.e. there is no evidence that the measure-
ment was unlucky in its error bars. The aggregated error averaged
over many MultiDark-Patchy mock catalogues is 0.88 per cent, an
even worse 1.82 times larger than the Fisher forecast. We believe
this is because the BAO signal is smaller than it should be in these
mocks (see Section 8.3), not that this is evidence that the measure-
ment on the data was lucky.

(iv) We found that the measured galaxy bias is lower than what
was used for the original Fisher matrix forecast, which has a signif-
icant effect on the expected BAO constraints. Using the measured
number of galaxies and their measured bias predicts a BAO error
of 0.68 per cent, very close to our measurement. The Fisher pre-
dictions for the measured band power errors, using the pre-survey
expected number of galaxies and bias (instead of measured), predict
an aggregated error of 0.59 per cent. Here we are using the Planck
cosmology.

(v) The Fisher predictions for the measured band power er-
rors, using the pre-survey expected number of galaxies and bias,
and the 3-year Wilkinson Microwave Anisotropy Probe (WMAP3)
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Figure 14. The best-fitting models (black solid line) of the isotropic BAO analysis compared to the power spectrum monopole measurements (data points).
Both model and data have been plotted relative to the smooth model, and the data points for NGC and SGC have been combined using the corresponding
covariance matrices (see Appendix B). The left-hand panel shows the pre-reconstruction result, while the right-hand panel presents the post-reconstruction
result. Similar plots for the NGC and SGC separately are included in Appendix A. See Table 3 for more details.

cosmology, which is hard-coded into the Seo & Eisenstein (2007)
code, predict an aggregated error of 0.51 per cent, approximately
equivalent to the 0.48 per cent expectation based on the Seo & Eisen-
stein (2007).

Therefore we conclude that approximately half the difference
between the pre-survey expectation and the achieved measurement
(∼0.59/0.51) is due to the Planck cosmology being less favourable
for BAO than WMAP3 (e.g. lower baryon/CDM ratio) with another
half (∼0.68/0.59) being lower than expected bias. Note that con-
tributing effects do not add linearly, and there are various smaller
effects not mentioned in this summary. There is no sign of subopti-
mality in the data analysis.

1 1 C O N C L U S I O N

We have measured the power spectrum multipoles from the final
BOSS DR12 data set in three (overlapping) redshift bins, covering
the total redshift range 0.2 < z < 0.75. Our analysis focuses on
measuring the isotropic and anisotropic BAO signal in the Fourier
space. Our main results are the following.

(i) We measure the power spectrum monopole and quadrupole,
accounting for the window function, aliasing and discreteness ef-
fects and extract the BAO information by marginalizing over the
broad-band shape of the power spectrum. We validate our analy-

sis pipeline using two sets of N-body simulations as well as the
MultiDark-Patchy mock catalogues.

(ii) Fitting the monopole and quadrupole between k = 0.01 and
0.30 h−1 Mpc produces a constraint on the Hubble parameter of
H (z)rs/r

fid
s = 79.3 ± 2.8 km s−1 Mpc−1 and a constraint on the

angular diameter distance of DA(z)rfid
s = 1088 ± 23 Mpc for the

low-redshift bin and H (z)rs/r
fid
s = 98.9 ± 2.3 km s−1 Mpc−1 and

DA(z)rfid
s = 1433 ± 21 Mpc for the high-redshift bin (see Table 3

for a complete summary of the results). While the high-redshift
bin is in good agreement with previous results from the CMASS
sample, our low-redshift constraint is significantly improved com-
pared to previous studies. Our results are included in Alam et al.
(2016), where a detailed study of the cosmological implications is
performed.

(iii) Ignoring the Alcock–Paczynski effect we can constrain the
angular averaged distance, DV, for which we obtain a 1 per cent and
a 0.88 per cent constraints at the effective redshifts of zeff = 0.38
and 0.61, respectively.

(iv) The detection significances of the BAO signal are 3.4σ , 4.2σ

and 4.2σ before applying density field reconstruction for the low-,
middle- and high-redshift bins, respectively, and increases to 7.9σ ,
8.0σ and 8.2σ after density field reconstruction.

Alam et al. (2016) combine our measurements with the correspond-
ing correlation function measurements of Ross et al. (2016) and
the growth of structure measurements of Beutler et al. (2016),
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Grieb et al. (2016), Sanchez et al. (2016) and Satpathy et al.
(2016) into a final BOSS likelihood and investigate the cosmological
implications.
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A P P E N D I X A : N G C V E R S U S S G C

Fig. A1 shows the best-fitting isotropic power spectrum models
compared to the monopole measurements for the three redshift bins
pre- and post-reconstruction. These plots are similar to Fig. 14, but
here we separate the SGC and NGC components.

A P P E N D I X B: C O M B I N I N G N G C A N D S G C

We combine the NGC and SGC measurements in Figs 10 and 14
using

C−1
NGC+SGC = C−1

NGC + C−1
SGC (B1)

and

C−1
NGC+SGCP (k) = C−1

NGCPNGC(k) + C−1
SGCPSGC(k), (B2)

where C is the covariance matrix measured from the MultiDark-
Patchy mock catalogues.

A P P E N D I X C : C O M PA R I S O N TO TH E
FISHER MATRIX FORECASTS

As summarized in Section 10.3, here we compare our BOSS mea-
surements with the original Fisher forecasts for the survey (Seo
& Eisenstein 2007; Eisenstein et al. 2011) to see whether BOSS
has performed as expected. We start with the isotropic constraints.
Using the MultiDark-Patchy mock catalogues we can construct the
correlation matrix for the angle averaged distance constraint DV:

R =

⎛
⎜⎝

1

0.392 1

0.033 0.437 1

⎞
⎟⎠. (C1)

This matrix suggests that there is almost no correlation between the
low- and high-redshift bin. We can now derive a combined isotropic
constraint as

σα,comb iso = 1√∑
C−1

ij

, (C2)

where C−1 is the inverse covariance matrix, which can be ob-
tained by combining the correlation matrix above with the mea-
surement uncertainties in Table 3. We obtain a combined constraint
of σα,comb iso = 0.00643 (post-reconstruction). Ignoring the middle-
redshift bin and assuming that the high- and low-redshift bins are

not correlated, we find σ ′
α,comb iso = 1/

√
1/σ 2

z1 + 1/σ 2
z3 = 0.00656,

which is close to the former value. This result suggests that the
middle-redshift bin does not contain much additional information.
This is the combined error from our isotropic fits to the monopole
– the error on α from the anisotropic fit, similarly computed, is
a bit worse at σα,comb aniso = 0.0070. Generally we would expect
σα,comb aniso to correspond more directly to the optimally averaged
dilation factor error coming out of the Fisher matrix projections
(Seo & Eisenstein 2007). The difference must enter through the
isotropic versus anisotropic fitting details, as the error on the DV

factor α
1/3
‖ α

2/3
⊥ is only ∼1 per cent larger than an optimally weighted

dilation factor error.
BOSS was originally projected to achieve measurements of DA(z)

and H(z) to 1.0 and 1.8 per cent, respectively, at z = 0.35, and 1.0
and 1.7 per cent at z = 0.6 (Eisenstein et al. 2011). These original
projections combine to 0.48 per cent overall isotropic error (Font-
Ribera et al. 2014), which is a factor of 1.44 smaller than our mea-
surement of 0.70 per cent (see above, where we use the aggregated
anisotropic result). This is a larger discrepancy than we are happy
to accept without explanation (equivalent to a factor 0.48 reduction
in survey area, for example).

Statistical fluctuations are one potential source of discrepancy be-
tween predicted and achieved errors. For this reason we might at first
think it is better to look at results averaged over many mocks for a
more accurate gauge of the survey performance. By this criterion the
error discrepancy is actually quite a bit worse, at 1.82 times expected
(i.e. combined α error for mocks of 0.88 per cent in Table 2). How-
ever, as discussed in Section 8.3, we believe the large errors in the
mocks are due to excessively damped BAO in the mocks, and there-
for do not give a realistic survey expectation. An alternative way to
take randomness out of the achieved BAO errors is to estimate the er-
rors by taking approximate second derivatives of χ2 with respect to
model parameters around the pre-survey expected model, in contrast
to our standard estimate that fully marginalizes over all the parame-
ters. To be concrete: with χ2 = [d − t (θ )]t C−1 [d − t (θ )], where
d is the data vector (band power measurement) and t(θ ) the theory
predictions for it as a function of parameter vector θ , our standard
way of estimating errors on parameter θ i is to use the likelihood for-

mula L(θ ) ∝ exp
[−χ2 (θ ) /2

]
to compute σθi

=
〈(

θi − θ̄i

)2
〉1/2

,

with θ̄i = 〈θi〉, by integrating over all θ [e.g. by Markov chain Monte
Carlo (MCMC)]. An alternative method is to assume the likelihood
is Gaussian in θ around some Taylor expansion point and invert the

second derivative matrix d2χ2

dθidθj
to find the implied covariance matrix

for the parameters. The standard choice of expansion point would be
the maximum likelihood point, which is equivalent to the exact like-
lihood integration in the small-error limit, however, choosing this
point (or doing the exact integration) makes the results sensitive to
the actual data points (i.e. the maximum likelihood parameter vector
is θmaxL = θmaxL(d)), which can push you into an area of parameter
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Figure A1. The best-fitting results for the isotropic BAO analysis pre-reconstruction (left) and post-reconstruction (right). The NGC (black circles) and SGC
(open red squares) measurements are displayed relative to the smooth power spectrum (see equation 50). After dividing by the smooth power spectrum, the
best-fitting model for the NGC and SGC is the same (solid black line). The uncertainties are the diagonal of the covariance matrix. The covariance matrix has
significant non-diagonal terms at large wavenumbers, which are larger in the pre-reconstruction case. The best-fitting parameters and χ2 are included in the
lower part of Table 3.

space with bigger or smaller errors (e.g. because of statistical fluctu-
ations in the apparent shape of the BAO feature). On the other hand,
expanding around a prior expected θ , and approximating the second
derivative matrix as dt t

dθi
C−1 dt

dθj
gives an error manifestly insensitive

to the data points (i.e. d), only reflecting the covariance matrix and
the structure of the theory, i.e., this is like the Fisher matrix esti-
mate, except with a predicted C replaced with the achieved one.
For this comparison we use a slightly different broad-band model
that allows for more arbitrary fluctuations in BAO amplitude and
damping (in this model, we use interpolation points in k as the free
parameters, including both an additive function and function that
multiplies the BAO wiggles – an advantage of this model is that
the predicted power is linear in all parameters except the BAO dis-
tance scale, so that we can perform exact marginalization over all
the nuisance parameters essentially instantly, making the fits very
fast). The alternative model gives an error of 0.68 per cent (i.e. very
similar to our quoted 0.66 per cent, where we use only the upper
and lower redshift bins here, and fit the monopole only – this is
also close to the 0.70 per cent we found from the anisotropic fit)
with full marginalization, and also 0.68 per cent when expanding

around the a priori expected model (e.g. with BAO damping given
by 50 per cent reconstruction of the non-linear damping factors of
Seo & Eisenstein 2007). The similarity of these results suggests
that we are not seeing significant random fluctuations in the BAO
measurement error relative to expected (note that we do use the
lower bias mentioned below here, which has a small error driven by
the broad-band power spectrum and therefore should not contribute
randomness to the BAO error).

The next level of comparison is to estimate BAO errors given pre-
dictions for the Fisher band power errors based on the survey area,
galaxy number density and bias as a function of redshift (i.e. not
using the Seo & Eisenstein 2007 code). After computing the Fisher
band power errors, we derive BAO errors as discussed above, by
taking derivatives of χ2, using the same theory (t(θ )) that we use
to fit the data but now using the Fisher band power errors for C.
Given the pre-survey nominal bias b(z) = 1.7D(0)/D(z) and num-
ber densities (Font-Ribera et al. 2014) over 10 000 deg2, we find
that band power predictions propagate to 0.59 per cent distance er-
ror, still 23 per cent over the original expectation but closer than
the achieved ∼0.68 per cent. [To be clear: the difference between
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the original projection of 0.48 and 0.59 per cent is the difference
between using the Seo & Eisenstein (2007) code and a new pro-
jection of the expected Fisher band power errors given the original
survey parameters, propagated to BAO errors by direct application
of our BAO fitting theory instead of the approximations of Seo &
Eisenstein (2007).]

It turns out that the measured bias is ∼0.8 times expected, pro-
ducing larger fractional band power errors. Accounting for this in
the Fisher band power prediction results in a predicted BAO mea-
surement uncertainty of 0.68 per cent. Further accounting for small
differences between expected and achieved area and number density
brings this to 0.71 per cent, essentially equivalent to the measured
value. On the other hand, we know that the measured errors could
be 3 per cent smaller if we had infinite mocks (equation 26), and it
appears in Figs 1 and 2 that the power in the mocks is sometimes
too high relative to the measurement, which we estimate could be
wrongly adding another ∼3 per cent to the measured errors, i.e. run-
ning infinite mocks with correct power would result in measured
errors ∼6 per cent smaller than we quote. Putting these pieces to-
gether suggests that the band power errors estimated from the mocks
are, if anything, a little bit better than one would expect based on
observed survey volume, numbers and bias.

So with ∼20 per cent underachievement (0.71/0.59) relative to
pre-survey expectations accounted for by bias, number of galaxies
and sky area (mostly the lower than expected bias) we are left to
explain the remaining ∼23 per cent (0.59/0.48) discrepancy be-
tween predictions based on applying our BAO fitting apparatus to
the Fisher band power error predictions and based on the approx-
imations in the code of Seo & Eisenstein (2007) [i.e. the Seo &
Eisenstein (2007) projection is optimistic relative to both data and
the Fisher predicted band powers]. The two projections (Seo &
Eisenstein 2007 versus fitting Fisher band powers) nominally make
essentially the same assumptions, i.e. are supposed to be just dif-
ferent ways of numerically evaluating the same basic Fisher matrix
equation, so there is no reason to expect this kind of difference,
but the Seo & Eisenstein (2007) code employs approximations and
calibration of the signal strength that make a very direct comparison
difficult. Surprisingly, however, it seems that the difference is mostly
accounted for by the difference between our fiducial cosmology and
the WMAP3 cosmology hard-coded in the Seo & Eisenstein (2007)
code. The Fisher band-power BAO error based on the WMAP3
model, at fixed total number of observed galaxies and observed
power amplitude, is 0.51 per cent – within the margin of fine details
of the 0.48 per cent of Seo & Eisenstein (2007). A 16 per cent
(0.59/0.51) change between cosmologies may seem surprising, but
recall that the WMAP3 cosmology had ∼12 per cent higher baryon
to CDM density ratio than the current standard, with correspond-
ingly larger BAO signal amplitude, which very simply accounts for
most of the difference.

Now we want to look at the anisotropic constraints in the form
of α⊥ and α‖. The combined covariance matrix for α⊥ and α‖ is

Cz1+z3 = [
C−1

z1 + C−1
z3

]−1
(C3)

=
(

σ 2
α‖ rσα⊥σα‖

rσα⊥σα‖ σ 2
α⊥

)
(C4)

= 10−4
(

3.1 −0.83 − 0.83 1.2
)
. (C5)

This produces a 1.76 per cent constraint on α‖ (∝1/H) and a
1.09 per cent constraint on α⊥ (∝DA) with a correlation of r =−0.42
(post-reconstruction). Compared to the two 1 per cent DA measure-

ments originally predicted by Eisenstein et al. (2011), and 1.7 and
1.8 per cent predicted H measurements, the measurement errors are
1.54 and 1.42 times expected for DA and H, respectively. This is
similar to the 1.44 times expected that we found for α. We specu-
late that the reduction in signal due to bias and cosmology leads to
more degradation of the measurement in the transverse than radial
direction because the radial direction is boosted by redshift-space
distortions.
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