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evolution?
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ScienceDirect
Virus infection can elicit changes in host plant cues that

mediate vector orientation, feeding, and dispersal. Given the

importance of plant cues for vector-mediated virus

transmission, it is unlikely that selection is blind to these effects.

Indeed, there are many examples of viruses altering plant cues

in ways that should enhance transmission. However, there are

also examples of viruses inducing transmission-limiting plant

phenotypes. These apparently mal-adaptive effects occur

when viruses experience host plant environments that also limit

infectivity or within-host multiplication. The apparent link

between virus effects and pathology argues for consideration

of prior evolutionary relationships between viruses and host

plants in order to understand how viruses might evolve to

manipulate vector behavior via effects on host plant cues.
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Introduction
Virus infection can fundamentally alter the way that host

plants interact with other organisms. In particular, many

viruses change host plant phenotypes in ways that influ-

ence interactions with vectors [1–3,4�], with significant

implications for virus transmission. These phenotypic

changes involve alteration of visual or odor cues mediat-

ing vector orientation to plants (recruitment), quality or

palatability cues mediating feeding behavior (virus acqui-

sition), and effects on vector movement from infected to

susceptible hosts (virus transmission) [3,4�]. In the case of

viruses that also circulate and/or replicate in their vectors,

phenotype changes that permit discrimination between

infected and healthy plants can also interact with direct
Current Opinion in Virology 2016, 21:114–123 
effects of the virus on vector physiology and behavior

[5–9]. For example, virus-free aphids prefer to settle and

feed on wheat infected with Barley yellow dwarf virus
(BYDV), but once aphids have acquired the virus, their

settling preferences change to favor healthy plants, facili-

tating virus spread [5]. This example, along with other

recent studies reporting complex, transmission-condu-

cive effects of viruses on plants and vectors [4�,10],

support the hypothesis that such effects are the result

of specific viral adaptations, and are not just by-products

of pathology. However, much of this work has ignored

natural genetic variation in virus and host plant popula-

tions. Among insect-vectored viruses, genetic diversity is

generated by mutations that occur during replication

(particularly for RNA viruses) coupled with biotic and

abiotic heterogeneity in plant communities [11–14], and

variation in vector competencies or host preferences [15].

Despite this diversity, most studies to date involve culti-

vated model host plants infected with virus strains origi-

nally isolated from monocultures and subsequently

maintained in the laboratory [3,4�]. A more robust test

of the adaptive significance of virus effects on plant

phenotypes would be one that considers natural genetic

variation in both the virus and the host plant, as well as the

ecological context in which different virus isolates have

evolved. This review highlights examples of recent prog-

ress toward this goal and synthesizes this work to gain

insight into the factors shaping the evolution of virus

effects on plant cues mediating plant–vector interactions.

Expectations for virus effects on host plant
phenotypes
Since the earliest reports of viruses influencing vectors via

a shared host plant [16], there has been speculation about

whether these effects constitute evidence of specific virus

adaptations for manipulating plant phenotypes in ways

that enhance transmission. Unlike clear cases of manipu-

lation involving higher organisms (reviewed in [17,18]),

for plant viruses it is often difficult to distinguish adaptive

effects from by-products of infection because viruses alter

suites of existing cues, such as volatile emissions or free

amino acids [19,20], rather than inducing complex mor-

phological [21�] or behavioral [18] changes. Nonetheless,

given the importance of host cues for vectors, selection

should tend to favor virus genotypes that alter plant

phenotypes in ways that are generally conducive to trans-

mission (no effect or a positive change) and disfavor virus

genotypes that change plant phenotypes in ways that

have clear negative effects on transmission [3,4�].
www.sciencedirect.com
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Expectations for transmission-mechanism specific effects of viruses on host plant phenotypes. Plant viruses can be either circulative or non-

circulative. Circulative viruses are acquired during long-term feeding, usually in the phloem, after which they circulate within the vector (sometimes

replicating) and migrate to specific tissues, such as salivary glands, from which they can be inoculated to multiple plants. Since long bouts of

feeding are required for circulative virus acquisition and inoculation, it is expected that these viruses should have neutral to positive effects on

plant attractiveness (to encourage vector contacts) and palatability or quality (to ensure uptake of a sufficient number of virions). Following virion

acquisition, it is beneficial for the virus if the vector disperses from the infected plant and then exhibits a preference for healthy plants (as for C-

PVs, shown above). In contrast, acquisition of most non-circulative viruses (particularly NC-NPVs, shown above) is favored by vectors making brief

probes of non-vascular epidermal cells, then rapidly dispersing from infected plants to healthy plants. Non-circulative viruses are not retained

internally, instead binding to specific regions of the mouthparts (e.g. NC-NPVs that adhere to aphid stylets, shown above) or foregut (most semi-

persistently transmitted viruses, not depicted) for a few hours to a few days. This transmission mechanism should be facilitated by phenotypic

changes to hosts that render them attractive to vectors, but less palatable following acquisition of plant cues and virions in order to encourage the

rapid dispersal necessary for transmission. It is beneficial for a non-circulative virus if this shift in preference is temporary, as this will ensure that

vectors do not permanently avoid infected hosts. For comprehensive reviews on each transmission mechanism, see [65,66].
One key line of evidence supporting the hypothesis that

virus effects on plant cues are not mere by-products of

infection is the apparent convergence of phenotypic

effects across distantly-related pathogens transmitted

in the same way [3,4�]. Viruses sharing a transmission

mechanism will benefit from similar sequences of vector

orientation, feeding, and dispersal behavior, and are

thus expected to induce similar phenotypic shifts in

host plants (Figure 1). This hypothesis has been recent-

ly discussed in two reviews [3,4�] which document clear
www.sciencedirect.com 
patterns of congruency in virus effects based on shared

transmission mechanism. But despite this broad pattern,

individual reports of apparently mal-adaptive  effects

also exist (Table 1). This seems unlikely to be the

result of publication bias, since mal-adaptive effects

of a virus on its own transmission are still of ecological

interest [22]. Rather, these reports may constitute evi-

dence that viruses experience trade-offs in their ability

to alter the phenotypes of multiple plant genotypes or

species.
Current Opinion in Virology 2016, 21:114–123



116 Virus-vector interactions

Table 1

Summary of studies describing changes in the magnitude or sign of virus effects due to intraspecific or interspecific variation in the host

plant or vector

Transmission mechanism Virus Sources of variation Variation associated with virus

infectivity or severity of infection?

References

Non-circulative

Non-persistent

Cucumber mosaic virus (CMV)

Bromoviridae

Host species, host novelty

for virus

Yes [41��]

Disease progression Yes [48]

Host species Untested [71]

Potato virus Y (PVY)

Potyviridae

Host species Untested [72]

Zucchini yellow mosaic virus

(ZYMV) Potyviridae

Disease progression Untested [73]

Turnip mosaic virus (TuMV)

Potyviridae

Host cultivar

Vector species

Disease progression

Yes [74]

Sweet potato feathery mottle

virus (SPFMV) Potyviridae

Host species Yes [42,43]

Non-circulative

Semi-persistent

Beet yellows virus

(BYV) Closteroviridae

Virus genotype

Vectors’ previous

host plant

Yes [75]

Circulative

Persistent

Non-propagative

Potato leafroll virus (PLRV)

Luteoviridae

Host cultivar Yes [36��]

Disease progression Yes [45,47]

Age of inoculation Yes [46��,47]

Barley yellow dwarf virus

(BYDV) Luteoviridae

Host cultivar Yes [37–39]

Host species Yes

Severity of symptoms associated

with greater attraction of vectors

[76]

Host cultivar No

Effects vary with aphid resistance

level of each cultivar

[77]

Tomato yellow leaf curl virus

(TYLCV) and Tomato yellow

leaf curl China virus (TYLCCV)

Geminiviridae

Host cultivar Yes [10]

Vector biotype Unknown

Possible direct effects of virus

circulating in vectors

[78–81]

Squash leaf curl virus (SLCV)

Geminiviridae

Host species Unknown [82]

Circulative

Persistent

Propagative

Tomato spotted wilt virus

(TSWV) Bunyaviridae

Host species Unknown

Magnitude of effects varies with

quality of each species for vector

[83]

Host species

Host genotype

Unknown

Magnitude of effects varies with

quality of each species for vector

[84]

Host species

Vector species

Virus genotype

Temperature

Unknown [85,86]

Maize mosaic virus (MSV)

Rhabdoviridae

Age of inoculation

Disease progression

Yes

Severity of symptoms associated

with greatest effects

[87]
Potential constraints on the evolution of
‘manipulative’ viruses
Viruses can evolve increased infectivity or multiplication

rates when repeatedly passed through one plant species or

genotype, with the cost of lower infectivity or multiplica-

tion rates in other (novel) plants [23–27,28�]. These fitness

costs can become more pronounced as phylogenetic dis-

tance between the original plant host and the novel host

increases [29�]. Virus specialization on a host plant occurs

via several non-exclusive mechanisms. Under one mech-

anism, called antagonistic pleiotropy, a virus accumulates
Current Opinion in Virology 2016, 21:114–123 
mutations that are beneficial in the local host but detri-

mental in a novel host (reviewed in [24,25,30��]). Muta-

tional effects are also typically not additive, but

interactive: the effect of one mutation can depend on

the presence of a second mutation, and vice versa — a

mechanism known as epistasis. Epistasis can limit the

range of adaptations available to plant viruses by making

it difficult to transition from one ‘adaptive peak’ to the

next because this shift requires the virus to exist for some

period of time in a ‘fitness valley’ (mutation combination

with lower titer or infectivity) [31–33]. Epistatic effects
www.sciencedirect.com
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Figure 2
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Hypothesized effects of host and vector communities on the evolution of manipulative virus genotypes. In these hypothetical scenarios, the

extremes of different plant and vector communities are portrayed and virus effects are examined in terms of a single host plant species (the target

host), as is typically done in empirical studies exploring virus effects on host phenotype and vector behavior. The host plant community can be

heterogeneous in terms of interspecific or intraspecific variation, or homogeneous (as in monocultures). Within each plant community, vectors can

be more or less consistent in how they respond to virus effects on plant phenotypes. In heterogeneous plant communities, where there are higher

costs for specializing, viruses are expected to maximize fixation of mutations that make them better generalists. As a result, selection should

disfavor traits that permit host-specific phenotype manipulations (panel A), unless vector responses are very consistent and favor movement

between certain hosts over others (i.e. the target host pictured here) (panel B). In a homogeneous plant community, where costs of specializing

are low, selection will favor mutations that enhance fitness within the uniform host plant environment at the expense of mutations that enhance

fitness across multiple host plant environments (panels C and D showing no selection for adaptations that minimize across-host trade-offs). If

vector responses to virus effects on host phenotype are consistent, this will favor manipulative genotypes (panel C). If vector responses are

inconsistent, manipulative genotypes will not increase in frequency (panel D) and selection will favor viruses that maximize infectivity or titer in the

one host available. Neutral virus genotypes (those causing no shift in phenotype or a shift that does not result in altered vector behavior) are also

expected to persist in the population, while genotypes causing a reduction in the likelihood of virus transmission via changes to host phenotypes

should be selected against. This graphic provides one possible explanation for why there is substantial variation in virus effects on host phenotype

and vector behavior in empirical studies, since effects will depend on the evolutionary history of a virus with a given host and vector combination.

Other factors that could alter host phenotype (and expression of virus effects) include abiotic environmental effects, other plant-associated

microbes, host age, plant interactions with non-vector herbivores, vector–predator interactions, and vector abundance.
can also be pleiotropic [29�]. That is, the effect of one

mutation on the other (magnitude or sign-positive or

negative) depends on the host plant genotype or species.

When viruses induce a transmission-conducive pheno-

type in one host and a detrimental phenotype in anoth-

er, this effect could also be due to antagonistic

pleiotropy or epistatic pleiotropy. If virus effects on

plant phenotypes are constrained by one or both of

these mechanisms, then natural selection for or against

‘manipulative’ genotypes should be shaped, at least in
www.sciencedirect.com 
part, by the degree of heterogeneity in the plant

community coupled with the consistency of vector

behavioral responses (Figure 2) [24].

The influence of host identity on virus-induced
changes in host phenotype
Studies of virus effects on plant phenotype have largely

focused on single virus–plant–vector combinations exam-

ined under controlled conditions, and almost never con-

sider the plant backgrounds in which a virus has evolved
Current Opinion in Virology 2016, 21:114–123
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[3,4�,34]. Recent work has begun to address this discrep-

ancy by examining virus effects under both intraspecific

and interspecific host plant variation (Table 1). These

studies support the hypothesis that virus effects on plant

phenotype can be pleiotropic. Furthermore, when pleio-

tropic effects are apparent, there are often positive cor-

relations between transmission-conducive plant

phenotypes and other measures of within-plant fitness
(infectivity, titer, or systemic spread). For example, in-

fection of potato by the circulative virus, Potato leafroll
virus (PLRV), renders plants more attractive (via vola-

tiles) to a key aphid vector, Myzus persicae [6,35]. Howev-

er, this effect only occurs in cultivars that are more easily

infected by PLRV [36��]. Earlier studies with the related

circulative virus, Barley yellow dwarf virus (BYDV) found

that wheat plants with low BYDV titers exhibited trans-

mission-limiting phenotypes, but those with high titers

exhibited transmission-enhancing phenotypes [37–39].

And in a very different system involving a whitefly-

transmitted circulative virus (Tomato yellow leaf curl virus
[TYLCV]) beneficial effects on vector settling and per-

formance were more pronounced for susceptible tomato

cultivars that also had higher titers of the virus [10].

Interspecific host plant variation might be expected to

have even stronger effects on the magnitude or sign of

virus-induced changes in host phenotypes because fitness

burdens are often greater during interspecific host jumps

[24,25,40]. This was the case in an explicit test of local

adaptation performed with two isolates of the non-circu-

lative virus, Cucumber mosaic virus (CMV), originating

from different plant communities (monocultures of

squash vs. pepper). Each isolate induced changes in

volatile cues and palatability in its native host plant that

were conducive to virus transmission by aphids [41��]. But

in a novel host, isolates either did not infect, or induced a

transmission-limiting phenotype. This phenotype was

also associated with lower within-plant fitness relative

to virus infections in native hosts [41��]. And in another

non-circulative virus system, more transmission-condu-

cive phenotypes were only observed in Ipomoea species

that supported high titers of Sweet potato feathery mottle
virus (SPFMV) [42,43].

These studies, and several others (Table 1), provide

evidence of pleiotropy in virus effects on plant phenotype

and vector behavior across host plant environments while

exposing positive correlations between transmission-con-

ducive effects and greater within-host fitness or virulence.

The observed pleiotropy can be more or less antagonistic

depending on whether the phenotypes induced in alter-

nate host plants are neutral or detrimental for transmis-

sion (Table 1). These findings are consistent with the

general observation of antagonistic pleiotropy and/or epi-

static pleiotropy constraining the ability of viruses to be

equally fit in all possible hosts [24], but are not sufficient

to demonstrate that transmission-conducive effects are
Current Opinion in Virology 2016, 21:114–123 
the result of specific viral adaptations (Figure 2) because

these effects often correlate with the severity of infection.

Variation in virus effects across host
developmental stages
Virus within-plant fitness also varies with plant phenology

[44]. Thus, another way to examine the relationship

between virus effects and within-plant fitness is to deter-

mine how these effects change with host development. A

few studies have taken this approach (Table 1). In the

PLRV-potato system, attraction of aphids to volatiles of

infected potatoes depends on both the time since inocu-

lation (disease progression) [45] and the developmental

stage of the plant at inoculation [46��]. In both cases,

effects are putatively linked to age-related variation in

PLRV susceptibility: potatoes at younger stages are more

susceptible to PLRV infection and systemic spread [47]

and show more transmission-conducive phenotype shifts

when infected [45,46��]. A relationship between within-

host fitness and the sign of virus effects (positive or

negative) has also been shown for CMV [48]. Infection

in tobacco enhances palatability and quality for vectors at

early stages of infection when CMV titer is low — an

effect that hinders transmission of this non-circulative

virus by inducing aphid arrestment (Figure 1). However,

just a few days later, once virus titer is at maximum, plants

become unpalatable, low-quality hosts for vectors and

also stimulate production of winged offspring, which are

better dispersers [48]. The phenotypic changes with

disease progression described here seem to be beneficial

for their respective pathogens because they first enhance

the probability of virus acquisition and later, inoculation

[7] (Figure 1). But they also track within-plant fitness,

further supporting a connection between pathology and

the magnitude or sign of virus effects on the probability of

vector transmission.

Implications for the evolution of ‘manipulative’
viruses
Although most of the reports discussed above and

highlighted in Table 1 are not explicit tests of virus

adaptation for manipulating specific plant hosts (but

see [41��]), they do suggest a link between transmis-

sion-conducive virus effects and other within-plant fitness

traits that are expected to be under stronger selection

pressure [25]. Based on this finding, it is possible to derive

specific hypotheses regarding the mechanisms underlying

this apparent relationship, which are described in detail in

Box 1. These hypotheses can serve as a framework for

future studies focused on discriminating adaptive effects

from by-products of infection, testing for local adaptation

in virus effects on plant phenotype, and determining the

relevance of virus effects for the spread of disease in

agricultural and natural landscapes.

The hypotheses presented in Box 1 are also excellent

starting points for incorporating the vector community
www.sciencedirect.com



Variation in virus effects on host–vector interactions Mauck 119

Box 1 Potential mechanisms underlying variation in virus

effects on host phenotypes and vector behavior

Hypothesis 1. Virus-induced changes in host phenotype are by-
products of infection. Apparently adaptive patterns of transmis-

sion-mechanism specific, neutral to beneficial host phenotype

changes (Figure 1) could reflect sampling biases toward agriculturally

relevant viral pathogens that have been selected for high patho-

genicity in agricultural landscapes. These viruses have typically been

the focus of most plant virology research to date, including

observations of virus effects on host phenotypes and vector

behavior. Under this hypothesis, effects on host phenotype reflect

the relative infectivity and/or replication rates of highly virulent

pathogens across host genotypes or species.

Hypothesis 2. Mutations that result in ‘manipulative’ virus

genotypes are epistatically linked to traits conferring infectivity

or pathogenicity in local hosts, and so are selected together

during the process of local adaptation. Mutations for manipulating

plant phenotype are somewhat analogous to mutations that affect

vector transmissibility in that the beneficial effects of such mutations

are (theoretically) only realized during movement between plants,

with potentially weak selection for maintenance within a plant.

Nonetheless, vector transmissibility is rarely lost during within-plant

amplification and systemic spread, probably owing to the fact that

traits conferring vector transmissibility can also influence infectivity,

replication, and expression of symptoms [67,68]. This may also be

the case for traits that affect plant phenotype. If mutations conferring

manipulative ability have epistasis with mutations that are favored

during local adaptation, then the sign (positive or negative) or

magnitude of these mutations could change in new host plants

(epistatic pleiotropy), creating an apparent link between virus within-

host fitness and manipulative effects.

Hypothesis 3. Hosts that are highly susceptible to viruses exhibit
more pronounced, transmission-conducive phenotypic shifts

when infected relative to more resistant hosts. This hypothesis is

derived from the finding that the best virus reservoirs are short-lived

hosts that tend to have poor immune defenses, high nutrient levels,

and high metabolisms — features that make them susceptible to

both pathogen infection and vector attack [69,70]. These features are

typical of the annual crop hosts in which most virus effects have

been observed. Such features may be modified during breeding for

virus resistance, resulting in an apparent correlation between lower

titer and less transmission-conducive plant phenotypic shifts under

virus infection.
into the adaptive landscape. Ultimately, the fitness out-

come of any virus effect on plant phenotype will depend

on whether this phenotype consistently elicits a positive

response by vectors (Figure 2). It is now apparent that two

or more vector genotypes or species can have divergent

responses to the same suite of virus-induced phenotype

changes (Table 1). This can have important implications

for the evolution of manipulative virus genotypes since

many viruses are transmitted by more than one vector

species, each of which can vary substantially in prefer-

ences, competence (transmission ability) and efficiency

(likelihood of transmitting). Thus, we might expect to

detect more instances of host phenotype manipulation

among virus species that have tightly co-evolved relation-

ships with only one or two vectors (e.g. many circulative

viruses), and more variable phenotypic effects of viruses
www.sciencedirect.com 
that are transmitted by several vector species [49]. For

example, many non-circulative viruses are spread by a

large number of non-colonizing vectors that already per-

form the rapid probing and dispersal behaviors necessary

for transmission [50]. Given that most of these viruses are

also multi-host pathogens, many transmission events are

mediated by non-colonizing vectors that disperse readily

after perceiving taste cues of an unsuitable (but infected)

host plant species. This frequent transmission by non-

colonizing vectors could weaken selection pressure for

viruses to influence the probing behavior of colonizing
vectors via changes to plant phenotype. Instead, selection

may favor virus genotypes that induce plant phenotypes

which are broadly attractive to vectors regardless of their

colonizing status (e.g. yellow coloration or enhanced

volatile emissions), as this will increase recruitment of

both colonizing and non-colonizing species.

Conclusions
Teasing apart the different selection pressures and test-

ing the proposed hypotheses (Box 1) will require move-

ment away from work with laboratory strains and toward a

renewed consideration of the contexts in which viral

pathogens evolve. For example, testing for local adapta-

tion (Box 1, Hypothesis 2) involves crossing multiple

field-collected virus isolates with multiple populations

(or species) of host plants, then examining changes in

virus replication, plant phenotypes, and vector behavior

using a common set of experimental approaches

[51�,52,53�]. Ideally, such studies would also consider

the past history of a virus isolate with a given plant

[34], plant phylogenetic relatedness [29�], and plant sus-

ceptibility [28�]. And discriminating by-products of in-

fection from adaptations (Box 1, Hypothesis 1) will

require combining these approaches with virus sequenc-

ing [28�] or examination of effects on different plant

phenotypes following experimental evolution, targeted

mutagenesis of viral genes, or transgenic expression of

virus genes in plants [53�,54,55�,56��]. These are well-

established approaches for elucidating the molecular

mechanisms underlying virus evolution and adaptation

to plant hosts, but are not routinely incorporated into

studies on virus-induced changes in host phenotype (but

see [56��]). Furthermore, these approaches have not

incorporated vector transmission, instead relying on me-

chanical passage of large numbers of virions or the use of

infectious clones. Thus, combining experimental evolu-

tion with studies of virus effects on host phenotype and

vector behavior will require an integrated approach that

unites the fields of virology and entomology.

Beyond mechanistic studies, it is also essential to deter-

mine if the differential suitability of pathogen infected vs.

healthy hosts for vectors actually influences pathogen

spread in real-world plant communities. For example,

extensive research on the dynamics of infection and

co-infection of wild grasses by diverse strains of BYDV
Current Opinion in Virology 2016, 21:114–123
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has provided conflicting reports on the role of vector

preferences in driving virus prevalence. Some studies

suggest that host suitability for vectors does play a role

in overall disease spread [57–59] while other studies

report no connection between host suitability for vectors

in the laboratory and importance of that host for disease

spread in the field [60,61]. However, these studies only

assessed the relative suitability of wild hosts for vectors

using healthy plants and did not examine how infection

might alter host suitability or attractiveness to vectors

[59]. Nonetheless, the BYDV-grassland system, as well as

other recently described wild plant pathosystems (e.g.

viruses of wild cucurbits [62–64]), are promising systems

for future studies that explore links between virus-in-

duced changes in host phenotypes, vector behavior, and

the incidence of host species and virus genotypes within

wild plant communities. Although expanding the context

in which we study virus effects on host-vector interactions

will be challenging, it is a necessary step on the path to a

deeper understanding of plant virus evolution and adap-

tation.
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3. Mauck K, Bosque-Pérez NA, Eigenbrode SD, De Moraes CM,
Mescher MC: Transmission mechanisms shape pathogen
effects on host–vector interactions: evidence from plant
viruses. Funct Ecol 2012, 26:1162-1175.

4.
�

Mauck K, De Moraes CM, Mescher MC: Effects of pathogens on
sensory-mediated interactions between plants and insect
vectors. Curr Opin Plant Biol 2016, 32:53-61.

This short review highlights the complexity of virus effects on plants and
vectors by discussing examples of direct virus effects on vector percep-
tion of, or responses to, host plant cues. These effects occur when
circulative viruses reside or replicate in their vectors, and in many cases,
result in shifts in vector preferences to favor healthy plants over virus-
infected plants. Such ‘conditional vector preferences’, when modeled,
lead to enhanced virus spread relative to fixed vector preferences for
infected hosts.

5. Ingwell LL, Eigenbrode SD, Bosque-Pérez NA: Plant viruses alter
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