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Abstract

Learning leads to rapid microstructural changes in grey (GM) and white (WM) matter. Do these 

changes continue to accumulate if task training continues, and can they be reverted by sleep? We 

addressed these questions by combining structural and diffusion weighted MRI and high-density 

EEG in 16 subjects studied during the physiological sleep/wake cycle, after 12h and 24h of intense 

practice in two different tasks, and after post-training sleep. Compared to baseline wake, 12h of 

training led to a decline in cortical mean diffusivity. The decrease became even more significant 

after 24h of task practice combined with sleep deprivation. Prolonged practice also resulted in 

decreased ventricular volume and increased GM and WM subcortical volumes. All changes 

reverted after recovery sleep. Moreover, these structural alterations predicted cognitive 

performance at the individual level, suggesting that sleep's ability to counteract performance 
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deficits is linked to its effects on the brain microstructure. The cellular mechanisms that account 

for the structural effects of sleep are unknown, but they may be linked to its role in promoting the 

production of cerebrospinal fluid and the decrease in synapse size and strength, as well as to its 

recently discovered ability to enhance the extracellular space and the clearance of brain 

metabolites.
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1. Introduction

Sleep deprivation has long been known to result in longer and/or deeper sleep. Recent 

studies, however, show that sleep need increases not only with the duration of wake, but also 

with its “intensity”, and specifically with the amount of experience-dependent plasticity and 

learning, a finding confirmed in insects, rodents, and humans (Tononi and Cirelli, 2014). 

Fruit flies, for instance, sleep longer after being awake in an enriched environment than in 

isolation (Bushey et al., 2011; Donlea et al., 2009; Ganguly-Fitzgerald et al., 2006). In 

mammals, slow wave activity (SWA), the EEG power between 0.5 and 4.5 Hz during non-

rapid eye movement (NREM) sleep, is an established marker of sleep need and intensity, 

since it increases with wake duration, declines in the course of sleep, and is positively 

correlated with arousal threshold during sleep (Vyazovskiy et al., 2011). Rats that spent time 

exploring new objects later show higher NREM SWA relative to rats that ignored the 

objects, even though wake duration was the same in all animals (Huber et al., 2007). In 

humans, high-density EEG (hd-EEG) experiments also show that SWA can be regulated 

locally, depending on the specific wake experience. For example, SWA peaks in left frontal 

cortex after training in a language task, and in parietal regions after learning a visuo-motor 

task (Huber et al., 2004; Hung et al., 2013). Thus, there is strong electrophysiological 

evidence that wake-related learning and sleep need are linked.

Long or enriched wake also leads to structural changes in neurons. In the fly brain, dendritic 

branches and synaptic puncta increase with wake and decrease with sleep (Bushey et al., 

2011; Donlea et al., 2009; Donlea et al., 2011). In the adolescent mouse cortex, wake leads 

to net spine formation while sleep results in net spine elimination (Maret et al., 2011; Yang 

and Gan, 2012). Electron microscopy studies also show that wake/sleep dependent structural 

changes also occur in astrocytes. Thus, astrocytic processes move closer to the synaptic cleft 

after short sleep deprivation, and astrocytic coverage of cortical spines increases after 

chronic sleep loss (Bellesi et al., 2015). While direct evidence for similar changes in the 

human brain cannot be easily achieved, diffusion weighted imaging (DWI) is widely used to 

derive several indices reflecting the micron-scale density and organization of brain tissues 

(Sagi et al., 2012). In particular, mean diffusivity (MD) – a measure of tissue density based 

on the rate of water diffusion – has been proposed as a potential marker for the detection of 

relatively rapid changes in the microstructure of grey matter (GM) and white matter (WM). 

Indeed, careful investigations have shown that MD decreases in hippocampus, 

parahippocampus and fornix after just a few hours of visuo-spatial training (Hofstetter et al., 
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2013; Sagi et al., 2012; Tavor et al., 2013). Similar changes occur in the rat hippocampus, 

presumably due to an increase in glial cell volume and/or a decrease in extracellular space 

(Hofstetter et al., 2013; Sagi et al., 2012; Tavor et al., 2013). These findings, however, raise 

some fundamental questions. If the brain's ultrastructure can be altered so quickly after a few 

hours of training, what happens if subjects continue to practice? Do these structural changes 

continue to accumulate if subjects are kept awake and continue to practice a task at night, 

when they would normally be asleep? And if so, can sleep revert them? To address these 

questions we performed structural Magnetic Resonance Imaging (MRI) and DWI during the 

physiological sleep/wake cycle, after 12-24h of intense task training, and after post-training 

sleep.

2. Material and Methods

2.1. Participants

Sixteen healthy volunteers (age 24.0 ± 3.4 years, 8 females; 13 right-handed) were recruited 

from the University of Wisconsin-Madison campus. All participants had sleep duration of 

∼7h/night, consistent bed/rise times, no daytime nap habit, no excessive daytime sleepiness 

(total scores in the Epworth Sleepiness Scale ≤ 10) and no history of sleep, medical, or 

psychiatric disorders as assessed by a clinical interview and by one 8h night sleep recording 

with hd-EEG. Polysomnographic parameters (see Table 4), including total sleep time and 

the percentage of different sleep stages were comparable to those of healthy individuals of 

similar age (Ohayon et al., 2004). Sleep scoring was performed over 30 sec epochs 

according to standard criteria by a sleep medicine board certified physician (Silber et al., 

2007). Subjects were asked to maintain a regular sleep-wake schedule for at least one week 

before each experiment, and compliance was verified with sleep diaries and wristworn 

actimeters (Actiwatch 64, MiniMitter). Use of alcohol and caffeine-containing beverages 

was prohibited starting the day of the first MRI scan and throughout each experiment. The 

study was approved by the local IRB. Each participant signed an IRB approved informed 

consent form before enrollment into the study.

2.2. Experimental Design

This study was part of a project assessing the effects of extended wake with training and 

post-training sleep on EEG, behavioral, and structural measures (Bernardi et al., 2015). Each 

subject participated in two experiments (DS and EF, see below), spaced at least 2 weeks 

apart (Fig. 1). Each experiment included 5 consecutive MRI sessions (every ∼12h) with 

both functional and structural scans, all occurring in quiet wake: 1) WB (wake baseline) at 

∼7pm, after a wake day spent outside the lab without any specific training; 2) SB (sleep 

baseline) the next morning at ∼8am, after subjects slept at home as usual; 3) WT12 (wake 

with training) ∼8pm, after 12h of wake with extensive training in the lab; 4) WT24 

(extended wake with training) ∼8am, after 24h of continuous wake with extensive training 

in the lab; 5) SR (sleep recovery) ∼8pm, after ∼8h of recovery sleep with hd-EEG recording 

in the lab (256 channels; Electrical Geodesics Inc.; recovery sleep onset ∼10am). During the 

24h of continuous wake all subjects completed six 2h-training sessions (12h total of 

training) of either a mouse-controlled driving simulation game (DS experiment), or a battery 

of tasks based on impulse control, decision-making and conflict resolution (executive 
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functions, EF experiment). As discussed in previous work (Bernardi et al., 2015), the two 

tasks were selected to involve cognitive domains and brain cortical networks that were as 

distinct as possible, namely a bilateral occipito-parietal and motor network for DS and a 

network that includes inferior frontal gyrus, medial prefrontal cortex, cingulate cortex and 

pre-supplementary motor area for EF. The order of the two experiments was randomly 

assigned and counterbalanced across subjects. During the 24h of wake subjects alternated 

between 2h-training sessions of task practice (DS or EF) and ∼1h blocks of behavioral tests 

and hd-EEG recordings. Each test-block included two 4min eyes-open and eyes-closed 

recordings, a 5min psychomotor vigilance test (PVT), 3 trials of a response inhibition test, 3 

trials of a visuo-motor coordination test, and self-rating questionnaires that were used to 

assess subjective sleepiness (Bernardi et al., 2015). Two experimenters took turns attending 

to the participants to prevent them from falling asleep and to ensure adherence to the 

protocol throughout the experiment.

2.3. MRI Data acquisition

During each MRI session (3T scanner, Discovery MR750, GE Healthcare) subjects 

underwent a 5min eyes-closed EPI resting-state scan (as reported in previous work Bernardi 

et al., 2015) and a high-resolution 3D inversion-prepared fast spoiled gradient echo (IR-

fSPGR) T1-weighted (T1w) anatomical scan (inversion time: 450ms, repetition time: 8.2 

ms, echo time: 3.2 ms, flip angle: 12°, voxel size: 1×1×1 mm, in-plane matrix: 256×256, 

number of slices: 156). DWI data were acquired using repetition time = 7000 ms, echo time 

= 66.3 ms, flip angle = 90°, acquisition matrix = 96×96, field of view = 230 mm, in-plane 

resolution = 2.396 × 2.396 mm (resolution after on-scanner interpolation = 0.898 × 0.898 

mm), and slice thickness = 2.3 mm with no gap. Diffusion-sensitizing gradient encoding was 

applied in 52 directions with three different diffusion-weighted factors, corresponding to b = 

400, 800 and 1200 s/mm2. Six images (b0 image) were acquired without use of a diffusion 

gradient. For each encoding direction, 61 axial images were acquired to cover the entire 

brain. Due to technical problems, MRI data were not obtained in subjects S05 and S14 

(males, 1 left handed) during experiment EF. In addition, structural data were not obtained 

in SB of subjects S07 and SR of subject S15 during experiment EF (females, right handed), 

and in session WB of subject S08 (female, right handed) during experiment DS.

2.4. Structural data preprocessing

High-resolution T1w images were automatically processed using the Freesurfer longitudinal 

pipeline (Reuter et al., 2012). Differently from common procedures for structural analysis, 

the longitudinal approach allows to obtain more reliable cortical and subcortical 

morphological measurements by incorporating temporal information. Specifically, an 

unbiased within-subject template was created using robust, inverse consistent registration 

(Reuter et al., 2010). Then, subsequent preprocessing steps, including skull stripping, 

standard-space transformation, atlas registration and spherical surface maps generation and 

parcellations were performed using common information from the within-subject template 

(Reuter et al., 2012). Thus, for each subject and time-point, the software automatically 

assigned neuroanatomical labels to each brain location using probabilistic information 

estimated from both geometric data derived from the cortical model and neuroanatomical 

convention obtained from a pre-labeled training set (Desikan et al., 2006; Fischl et al., 
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2004). Importantly, this parcellation strategy allowed to minimize potential biases related to 

inter-subject anatomical differences and alignment issues caused by data transformation in a 

common reference system, as well as to take into account relative within subject structural 

variations.

Analysis of diffusion images was performed using the FSL software package (Smith et al., 

2004). For each session and subject, all diffusion weighted and b0 images were affinely 

coregistered to the b0 image of the first repetition using FLIRT (FMRIB's Linear Image 

Registration Tool; Jenkinson and Smith, 2001), to correct both for eddy current induced 

distortion (eddy_correct tool) and subject's motion effects. Moreover, computed motion 

parameters were used to adjust the direction of gradient vectors. A brain mask was created 

from the first b0 image using BET (Brain extraction Tool; Smith, 2002) and used to 

constrain the tensor fitting within voxels of interest. A linear least squares (LLS) approach 

was used to fit the tensor models at each voxel (FDT, FMRIB's Diffusion Toolbox; Behrens 

et al., 2003) and compute the MD maps (of note, partially different absolute MD values, but 

analogous statistical results were obtained if the weighted linear least squares approach was 

used instead). Finally, DWI data were aligned to the Freesurfer within-subject template 

using a two-step procedure. First, using an affine linear registration (FLIRT, 12 degrees of 

freedom), the average b0 image of each DWI scan was coregistered to the b0 image obtained 

in the same MRI session of the T1w image representing the reference of the anatomical 

template. Then, 3dQwarp (Cox, 2012) was used to perform a constrained non-linear 

registration to the obtained b0 images and match the within-subject anatomical template. 

Importantly, a cost function that is insensitive to contrast differences (mutual information) 

was adopted to optimize correction of geometrical distortions in DWI data (Gholipour et al., 

2006). Resulting transformation matrices and deformation fields were then concatenated and 

applied to individual MD maps (Fig. S1).

2.5. Brain structural changes associated with intensive practice and sleep deprivation

2.5.1. Global and regional changes in structural measures—MD was measured in 

four large regions of interest (ROIs; Fig. 2): cortical grey matter (GM), subcortical GM, 

white matter (WM) and ventricles. In the same ROIs we also measured volume (cortical and 

subcortical GM, WM and ventricles). Cortical GM thickness was measured instead of 

cortical volume because the latter is affected both by cortical thickness and by area, and thus 

its variations may be more difficult to interpret (Winkler et al., 2010). These measures were 

extracted for each subject, experimental condition (DS, EF) and available time point (1-5). 

To improve the accuracy of MD calculation for each ROI, structure-specific masks were 

created for each time-point and subject, using the segmentation information previously 

obtained in Freesurfer. In addition, to minimize biases related to potential changes in the 

number of voxels included in each time point, we created a unique conjunction mask 

(logical AND) for each subject and structure of interest (Table S1). Thus, only voxels for 

which the ‘structural labeling’ did not change across scans were included in the MD 

analysis. Mean MD values were subsequently extracted from the obtained masks. For 

measures of MD, volume, and cortical thickness, we performed a three-way repeated 

measures (rm)-ANOVA in SPSS Statistics 21 (IBM Corporation), including training 

condition (WB, SB vs. WT12, WT24), time-of-day (8am vs. 8pm), and task (DS vs. EF) as 
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within-subjects factors. To ensure a balanced design with no missing data, only the 12 

subjects having all time points were included in these analyses. However, to better 

characterize reliability of potential findings, analyses were also repeated using analytical 

models allowing for the inclusion of all subjects (N=16) and time-points (Linear Mixed 

Effect Analysis, LME). Results of these auxiliary analyses are reported in Table S2. Planned 

post-hoc comparisons tested the effects of normal sleep (WB vs. SB), 12h of wake with 

training (WB vs. WT12), and sleep deprivation with training (WT12 vs. WT24), as well as 

differences between morning and evening time points (morning: SB vs. WT24; evening: WB 

vs. WT12). Statistical significance accounting for multiple comparisons was assessed by 

applying the Bonferroni-Holm adjustment. Finally, the effect of recovery sleep was 

investigated through paired t-tests comparing WT24 and SR.

To investigate smaller scale structural modifications and evaluate local effects related to the 

practiced task we also performed additional ROI-based analyses using the 40 cortical and 

subcortical regions of the Desikan-Killiany Atlas (Fischl et al., 2004). Given that no 

lateralization of the effects of interest was expected, extracted values of MD, cortical 

thickness, or volume were averaged across homologue areas of the two hemispheres. Then, 

independent rmANOVAs were performed at each ROI for either thickness/volume or MD 

and the obtained p-value of each tested effect was subsequently adjusted to account for 

multiple comparisons. Specifically, a Bonferroni-Holm correction was applied across the 40 

ROIs and significance threshold was set to corrected p < 0.05.

2.5.2. Investigation of partial volume effects—MD measurements are known to be 

potentially affected by the so called “partial volume effect”, that is, the presence of multiple 

tissue types within the same voxels (Alexander et al., 2001). Specifically, CSF 

contamination in GM or WM may be responsible for erroneous estimations of diffusivity 

measures. We addressed this issue using a combination of different approaches. First, we 

performed a serial visual inspection of MD distributions in each ROI to exclude the possible 

influence of partial volume effects. Specifically, for each subject and time point we divided 

MD values in 0.1*10-3 mm2/s bins (from 0 to 3*10-3 mm2/s) and determined the percentage 

of voxels included in each bin. The distributions of the group-averaged values in the 

baseline condition without training (SB) and in the experimental condition with training 

(WT12, WT24) were plotted and qualitatively compared. Second, in order to further evaluate 

the possible influence of partial volume artifacts on our results, we repeated the cortical GM 

analysis using an approach based on a “skeletonized” cortical mid-GM mask excluding 

voxels with a high probability of containing multiple tissues (Ball et al., 2013). Specifically, 

segmentation maps obtained in Freesurfer were initially used to identify the WM-GM and 

the GM-CSF boundaries. Then, a mid-GM mask was defined as the line passing at equal 

distance from the two boundaries (i.e., 50% of cortical thickness) in each point. Finally, 

voxels lying along this line, and included in the previously defined conjunction cortical 

mask, were used to create a final “mid-GM mask” (Fig. S2 and S3). This procedure allowed 

to retain only voxels relatively distant from both the WM-GM and the GM-CSF boundaries, 

and thus characterized by a minimal probability of containing mixed tissues. The obtained 

mid-GM mask included 60.4 ± 1.4 % less voxels than the conjunction cortical mask. 

Cortical MD values were extracted from this new mask and analyzed as previously 
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described. Moreover, given that a few voxels affected by CSF contamination may have 

remained included also in the mid-GM mask, the above calculations were repeated after 

further discarding voxels containing MD values greater than 1.0*10-3 mm2/s.

2.5.3. Investigation of other potential confounding factors—Recent findings 

suggest that the human brain may undergo morning-to-evening size variations and it has 

been suggested that these changes may depend on a redistribution of body fluids (Nakamura 

et al., 2015). However, global or structure-specific volumetric variations may also reflect 

other underlying phenomena potentially associated with changes in water diffusivity (e.g., 

compression). In these conditions MD and volumetric measures are expected to covary. 

These observations highlighted the need to evaluate global brain volumetric changes in our 

samples and to explore their possible relationship with MD measures. Importantly, however, 

recent studies also suggested that head movement could lead to erroneous estimations of 

diffusivity-based measures and recommended to include head motion as a nuisance variable 

in statistical analyses to reduce the risk of biases related to this potential confounding factor 

(Yendiki et al., 2014). Therefore, statistical LME models were specifically computed with 

the inclusion of covariates represented by the total in-scanner head movement (estimated 

from the coregistration of DWI volumes using the RMS deviation measure; Jenkinson, 

1999) and either the total brain volume (calculated here as the sum of the volumes of 

cortical GM, subcortical GM and WM) or the total volume of each examined structure (e.g., 

cortical GM). The models included the same within subject factors introduced in the 

rmANOVAs (task, time-of-day, training condition). Finally, relative global volumetric 

changes were also investigated using a rmANOVA, as previously described.

2.6. Relationship between sleep parameters and structural recovery

We tested whether global changes in MD, volume or cortical thickness that occurred after 

recovery sleep (SR vs. WT24) correlated with different sleep parameters, including total 

SWA and changes in SWA and slow waves amplitude. EEG recordings were first-order 

high-pass filtered (0.1 Hz) and band-pass filtered between 0.5 and 58 Hz. For scoring 

purposes, four of the 256 electrodes placed at the outer canthi of the eyes were used to 

monitor eye movements (electro-oculography), while electrodes located in the chin-cheek 

region were used to evaluate muscular activity (electromyography). Due to technical 

problems during the recordings, EEG data were not available in subjects S03 and S07 

(experiments EF and DS, respectively). Bad channels were visually identified, rejected, and 

replaced with data interpolated from nearby channels using spherical splines (NetStation, 

Electrical Geodesics Inc.). SWA activity was calculated for each NREM epoch as the 

spectral power in the range between 0.5 and 4.5 Hz. Specifically, after excluding electrodes 

located on the neck/face region, the signal of each channel was re-referenced to the average 

of the remaining 185 electrodes, and the power spectral density estimates were computed 

using the Welch's method (pwelch function, MATLAB signal processing toolbox) in 2sec 

data segments (Hamming windows, 8 sections, 50% overlap). The resulting power spectral 

densities in the SWA range were then averaged across the 185 electrodes and within each 

epoch.
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For the slow wave detection procedure, preprocessed EEG signals from each NREM epoch 

and channel were initially referenced to the average of the two mastoid electrodes. Then, an 

automatic detection algorithm adapted from a previous study (Siclari et al., 2014) was 

applied. Specifically, we first created a single timing reference by calculating the negative-

going signal envelope, defined as the 0.025 quantile of the signal values detected across all 

channels for each point in time. The resulting signal was broadband filtered (0.5-40 Hz, 

stop-band at 0.1 and 60 Hz) prior to the application of the wave detection. Only slow waves 

with a duration of 0.25-1.25 sec between consecutive zero crossings were further evaluated. 

Additional criteria were applied to exclude negative signal deflections of potential artifactual 

origin. Specifically, for each slow wave we first calculated the scalp involvement as the 

mean signal achieved in the 20ms around the wave peak in each channel. Then, the top 5% 

electrodes showing the lowest EEG signal values (maximal involvement) were identified. A 

slow wave was discarded if at least half of these electrodes were located in the neck/face 

regions (possible muscular artifact) or around both eyes but not in the medial and lateral 

frontal areas (possible ocular artifact).

Finally, for each subject and experimental condition, we calculated the total number of 

detected slow waves, the total SWA (defined as the mean SWA computed across all NREM 

epochs), and the variation in slow wave amplitude and SWA from the first to the last NREM 

sleep cycle (difference last-first). The Pearson's correlation coefficient was used to 

investigate the potential existence of a correlation between structural changes following 

recovery sleep and examined sleep parameters (p < 0.05, Bonferroni-Holm correction). The 

correlations with total sleep time and N2, N3 and REM time were also examined.

2.7. Analysis of the relationship between structural changes and behavioral correlates

2.7.1. Relationship between structural changes and vigilance levels—Vigilance 

levels were measured by calculating the mean reaction time during PVT (Bernardi et al., 

2015) for test blocks completed in temporal proximity with each MRI scan except the first 

one (PVT was not performed before the first scan). A machine learning procedure was 

developed using MATLAB (The MathWorks, Inc.) and LibSVM (Wang et al., 2011) to 

assess the potential relationship between structural changes and variations in vigilance 

levels. Specifically, using support vector regression (SVR) machines (Drucker et al., 1997), 

PVT reaction times were predicted from the 8 measures derived from the global structural 

analyses (MD, volumes and cortical thickness for the 4 ROIs) in both DS and EF 

experiments. Reaction times and MRI measures were normalized (subtracting the mean and 

dividing it by the standard deviation) across sessions and within each subject. A leave-one-

subject-out cross-validation procedure (based on the removal of all time-points of the test 

subject) was then used to train and test linear SVR machines, which resulted in predicted 

reaction times for the left-out subject across MRI sessions. The mean squared error (MSE) 

was estimated by comparing real and predicted data. Moreover, to assess the goodness of the 

prediction, a procedure based on permutation tests was developed (1,000 repetitions). 

Specifically, a MSE null distribution was obtained by training and testing SVR machines 

with data shuffled across subjects and within each time point. Collected MSE values from 

the permutation procedure were compared to the MSE estimated from real data with a one-

tailed rank test (p < 0.05). Importantly, the leave-one-subject-out procedure allowed 
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excluding a possible bias of subject-specific values on the prediction accuracy. Moreover, 

the null distribution obtained from the permutation test allowed ruling out a possible 

generalized mean effect related to the examined time points (i.e., an identical effect of the 

time-of-day in all subjects). The R2 coefficient between predicted and original data was 

calculated for each subject.

2.7.2. Relationship between structural changes and cognitive performance—A 

machine learning procedure similar to the one applied to explore the relationship between 

structural changes and vigilance level was used on behavioral parameters reflecting the 

individual performance in the response inhibition test and in the visuo-motor test (Bernardi 

et al., 2015). As described in previous work, the response inhibition test consisted of a 

classical Go/NoGo test during which a stream of visual stimuli, that are capital letters X or 

Y, was presented in alternating order (1Hz). Subjects were requested to press a button for 

every stimulus that followed a different stimulus (Go), and to withhold their response each 

time two identical stimuli followed each other (NoGo). The proportion of commission errors 

(i.e., cases in which the subject responded despite a NoGo stimulus was presented) and the 

intraindividual coefficient of variation (ICV, defined as the standard deviation of reaction 

time divided by the individual mean) were used as indices of inhibitory efficiency. 

Differently, during the visuo-motor test, participants were required to perform straight, out 

and back movements of a tracker, held with the dominant hand, from a central starting area 

to one of 8 radial targets (time interval = 1.5 sec). The movement time (time from movement 

onset to reversal) and the linear error (distance of the reversal point from the center of the 

target) of each movement were collected and used as measures of visuo-motor control 

efficiency. As described above, impulse control and visuo-motor performance levels were 

calculated in test blocks completed in temporal proximity with each MRI scan except the 

first one.

2.7.3. Reliability of the prediction of behavioral parameters from structural 
data—Given that the present study design does not include independent datasets for 

training and testing the SVM classifier, a relative risk of “overfitting” is implied in the 

adopted leave-one-out procedure. Thus, in order to evaluate stability and reliability of 

obtained results, all analyses were repeated while replacing the leave-one-out method with a 

recursive half-split of the examined sample. Thus, for each of 1000 iterations, available 

subjects were equally divided in a training sample, used to train the classifier, and in a test 

sample, used to evaluate accuracy of the prediction of behavioral performance in the 

remaining participants. As described for the leave-one-out procedure, the goodness of the 

prediction was assessed using permutation tests through a shuffling of available data across 

subjects and within time-points. Results of this auxiliary analysis are reported in Table S9.

3. Results

All subjects except one participated in two experiments (S14 completed only DS; see 

below). Each experiment included 5 MRI scans acquired following baseline wake without 

training (WB), baseline sleep (SB), 12h and 24h of wake with training (WT12 WT24), and 

post-training recovery sleep (SR) (Fig. 1). The only difference between the two experiments 
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was in the practiced task, either a driving simulation task (DS) involving visuo-motor areas, 

or a battery of executive function tasks (EF) mainly relying on prefrontal cortex.

3.1. Global changes in MD

MD was measured in four large regions of interest (ROIs; Fig. 2, Table S1): cortical grey 

matter (GM), subcortical GM, white matter (WM) and ventricles. As a first step, a three-way 

repeated measures (rm)-ANOVA - including training condition (with, without), time-of-day 

(am, pm), and task (DS, EF) as within-subjects factors - was run using the 12 subjects for 

which time points from WB to WT24 (4 in DS, 4 in EF) were available (Table 1; also see 

Table S2). Neither the main effect of task, nor its interactions with other factors, reached 

statistical significance in any of the examined ROIs. By contrast, a significant main effect of 

training was identified in cortical GM (corrected p < 0.05). Importantly, this result was 

confirmed by statistical models that included total in-scanner head movement and either 

total brain volume or cortical volume as covariates (Table S3). No significant effects were 

seen in WM, subcortical GM and ventricles (Fig. S4B-D; Table 1). Next, planned post-hoc 

comparisons tested the effects of sleep and wake in the absence of training (SB vs. WB), 

training during the first 12h of wake, i.e. without sleep deprivation (WT12 vs. WB), and sleep 

deprivation with training (WT24 vs. WT12). Finally, the effect of recovery sleep was 

investigated through paired t-tests by comparing SR and WT24. Relative to baseline sleep 

(SB), a decrease in MD was already evident in cortical GM after the first 12h of wake with 

training (mean variation ± SE, computed across subjects after averaging across ROI voxels, 

SB-WT12 = -0.52 ± 0.17%), but not after 12h of baseline wake (Fig. 3A, Tables S4-S5). 

After 24h of training, cortical MD continued to decrease (SB-WT24 = -0.94 ± 0.15%), and 

this trend was reverted by subsequent recovery sleep.

Of note, typical MD values are substantially different in GM (∼0.8*10-3 mm2/s), WM 

(∼0.7*10-3 mm2/s), and most notably, cerebrospinal fluid (CSF, ∼3.0*10-3 mm2/s). Thus, 

DWI analyses can be affected by confounds related to the partial volume effect, that is, the 

inclusion of voxels representing a mixture of multiple tissue types (Alexander et al., 2001), 

with erroneous estimations of diffusivity arising especially because of CSF contamination. 

However, a serial visual inspection of the distributions of MD values in the cortical ROI 

allowed to identify a clear shift of the histograms' peak after prolonged training: in fact, 

WT24 had a relatively higher percentage of voxels in the 0.6-0.8*10-3 mm2/s range, while SB 

had relatively more voxels in the 0.8-1.0*10-3 mm2/s range. No clear differences were 

observed in the tails of the distributions, which contain voxels with higher probability of 

being affected by partial volume artifacts. Moreover, we repeated the rmANOVA using MD 

values extracted from a cortical mid-GM mask that excluded voxels along the WM-GM and 

the GM-CSF interfaces (Ball et al., 2013). This approach confirmed the existence of a strong 

and significant effect of training condition in cortical GM, which survived after the further 

removal of voxels with MD value greater than 1.0*10-3 mm2/s (Table S6, Fig. 3B). Of note, 

the independence of detected MD variations from potential partial volume artifacts was also 

supported by the additional ROI analysis described below, in which we found that MD 

changes are relatively widespread (i.e., do not depend on few outlier regions). Finally, we 

found that MD changes are relatively independent from variations in brain or cortical 

volumes, and from relative changes in the extent of head movements (Table S3).
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3.2.Regional changes in MD

To test for regional effects, a three-way rmANOVA (training condition, time-of-day, task) 

was run using the 40 cortical and subcortical regions of the Desikan-Killiany Atlas (Fischl et 

al., 2004). Significant effects of training condition were found in several brain areas, 

including superior temporal sulcus, inferior temporal cortex, middle temporal cortex, lateral 

and medial orbitofrontal cortex (corrected p < 0.05; Table 2; Fig. S5). Moreover, the 

rmANOVA revealed a significant time by condition interaction in the superior temporal 

cortex and in the pars triangularis of the inferior frontal gyrus.

Analyses based on LME models taking into account changes in total head movement and in 

brain volume were also used to evaluate the potential influence of these possible 

confounding factors. Importantly, results of this additional analysis confirmed the effects 

detected in the inferior frontal gyrus and in the middle, inferior and superior temporal 

cortices. Differently, the main effects of experimental condition identified by the 

rmANOVA in superior temporal sulcus and medial/lateral orbitofrontal cortex did not reach 

the set threshold for statistical significance, although a clear trend was observed 

(uncorrected p < .008; Table S7). On the other hand, the LME analysis identified an 

additional condition effect in the fusiform gyrus, and time by condition interactions in the 

rostral anterior cingulate cortex and in the pars orbitalis of the inferior frontal gyrus. Overall, 

obtained results point to a distributed effect of the experimental condition on cortical MD, 

with the strongest variations in temporal and prefrontal brain areas. Finally, the LME models 

also detected significant main effects of the task (DS, EF) in mid/posterior cingulate cortex 

and in superior temporal cortex, although no interactions with other examined factors 

emerged.

Post-hoc tests confirmed the existence of a significant MD decrease after prolonged task 

practice in ROIs characterized by a significant condition effect or time by condition 

interaction. Recovery sleep was associated with a significant MD increase relative to the end 

of the sleep deprivation period.

3.3. Global changes in volume and cortical thickness

We then focused on other structural parameters, namely cortical thickness and volume of 

subcortical GM, WM, and ventricles. The rmANOVA identified significant main effects of 

training on all 3 volumetric measures, but not on cortical thickness (corrected p < 0.05; 

Table 3; also see Table S2). A time of day effect was present in the ventricles, while neither 

the main effect of task, nor its interaction with other factors, was significant. Significant 

time by training interactions were present for cortical thickness and ventricular volume. 

Planned post-hoc comparisons identified no significant change in cortical thickness between 

baseline sleep and the first 12h of training (Fig. 4A, Tables S4-S5), although a relative 

increase was observed in most subjects (SB-WT12 = +0.26 ± 0.19). Similarly, there was no 

significant difference between 12h and 24h of training, although a trend towards a decrease 

was present (W12-WT24 = -0.88 ± 0.31%; p < 0.05, uncorrected). By contrast, a significant 

increase in cortical thickness was found after recovery sleep relative to a night of sleep 

deprivation (Fig. 4A).
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Planned post-hoc comparisons for other structural parameters also found that relative to 

baseline sleep, volumetric changes were present after 12 and/or 24h of training in all three 

ROIs, but in different directions, with increases in subcortical GM and WM and decreases in 

the ventricles (Fig. 4B-D). All these changes were reverted by recovery sleep. No regional 

changes were found using the ROI-based analysis of thickness and volume in cortical and 

subcortical structures, with the exception of the thalamus, where a significant increase in 

volume was found after 24h of training (SB-WT24 = +0.64 ± 0.13%).

All described structural changes were not accompanied by significant variations in total 

brain volume (calculated as the sum of cortical GM, subcortical GM and WM). In fact, 

rmANOVA (task, time-of-day, training condition) failed to identify any significant effects 

(Table S8). Moreover, evening-to-morning changes - specifically explored through paired t-

test in light of recent findings suggesting the existence of diurnal brain volumetric variations 

(Nakamura et al., 2015) - were not found in either the “baseline” condition (WB-SB: p > 

0.18) or the “experimental” condition (WT12-WT24: p > 0.31).

3.4. Sleep parameters and structural measures of recovery

All subjects had the possibility to sleep for ∼8h during the day after the end of 24h of 

training (Table 4). Although recovery sleep occurred at the wrong circadian time (sleep 

onset ∼10am), most of its features, including the proportion of NREM (N2+N3) and REM 

stages, were not different from those of baseline sleep during the night. However, in all 

subjects of both DS and EF the latency of the first REM sleep episode was significantly 

reduced (p < 0.05, Bonferroni-Holm correction), a sign of high REM sleep pressure likely 

due to the combined effect of sleep deprivation and sleeping during the day (Dijk and 

Czeisler, 1995). Moreover, in both experiments the proportion of time spent in deep sleep 

(N3) increased in recovery sleep as compared to baseline sleep, mainly at the expenses of 

the proportion of light sleep (N2). Actual sleep time, including all non-wake epochs, 

corresponded to 6.8 ± 1.3 h in DS, and to 7.1 ± 0.9 h in EF. Overall, no significant 

differences were observed between recovery sleep of DS and that of EF (all p > 0.05, 

uncorrected). In both experiments no correlation was found between total sleep time, or time 

spent in REM, N2 and N3, and any of the structural parameters that showed a significant 

change between 24h of training and recovery sleep (GM thickness and MD, subcortical GM 

volume and MD, WM volume, ventricular volume and MD). Total SWA, total number of 

detected slow waves, as well as changes in SWA and slow waves amplitude between the 

first and the last NREM sleep cycle also did not correlate with any structural measure of 

recovery (p < 0.05, corrected).

3.5. Relationship between structural changes and vigilance level

Next, we examined whether global structural variations were reflected in vigilance changes, 

measured using the mean reaction time during the PVT (Bernardi et al., 2015), a sustained 

vigilance task known to be highly sensitive to sleep loss (Basner and Dinges, 2011). In the 

previous study that used the same subjects we confirmed that PVT performance declines in 

the course of the 24h of practice and renormalizes after recovery sleep (Bernardi et al., 

2015). Here mean PVT reaction times for test blocks completed in temporal proximity with 

each MRI scan were predicted from the 8 measures derived from the global structural 
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analyses (MD, volumes and cortical thickness for the 4 large ROIs). The regression 

procedure identified a significant relationship between structural changes and variations in 

vigilance level in both DS (average R2 across subjects ± SD = 0.46±0.30; p < 0.001) and EF 

(R2 = 0.47±0.31; p < 0.001). Thus, variations in global structural measures were able to 

predict to some extent changes in sustained attention (Fig. 5; also see Table S9). Based on a 

qualitative evaluation across the two experimental conditions, we found that the most 

relevant predictors were represented by ventricular volume, MD of cortical GM and WM 

volume.

3.6. Relationship between structural changes and cognitive performance

Finally, by applying the same procedure described above, we tested whether global 

structural changes were reflected in performance changes in two tests used to track 

variations in impulse control and visuo-motor coordination. In the previous study (Bernardi 

et al., 2015), we demonstrated that performance in the response inhibition test, as measured 

using the number of commission errors or the intraindividual coefficient of variation in 

reaction time (ICV), is characterized by a time-course similar to the one described for the 

PVT test, suggesting a relevant influence of the vigilance level. Indeed, ICV values were 

successfully predicted by global structural changes in both DS (R2 = 0.51±0.35; p < 0.001) 

and EF (R2 = 0.32±0.33; p = 0.017) experiments (Figure S6). Differently, prediction 

accuracy for commission errors reached significance in DS (R2 = 0.64±0.30; p < 0.001) but 

not in EF (R2 = 0.26±0.27; p = 0.053), perhaps due to lower statistical power in this latter 

condition (N=13 in EF; N=15 in DS). Of note, however, the quality of the prediction in EF 

may have been also negatively affected by local, experience-dependent changes in the 

impulse control network, which seem to be independent from changes in the general 

vigilance level (Hung et al., 2013). Indeed, in line with a possible dissociation between EF 

performance and vigilance levels, we previously showed that prolonged practice with tasks 

based on executive functions was associated with a relative performance impairment during 

the test-block corresponding to WT12, although no differences in the PVT performance were 

present between DS and EF in the same time-point (Bernardi et al., 2015). With regard to 

the visuo-motor test (Figure S7), both linear error (LE, a measure of movement accuracy) 

and movement time (MT, an index of eye-hand coordination efficiency) were not predicted 

by global structural changes in either DS (LE: R2 = 0.40±0.32; p = 0.288 – MT: R2 = 

0.16±0.16; p = 0.233) or EF (LE: R2 = 0.33±0.39; p = 0.218 - MT: R2 = 0.28±0.28; p = 

0.207). These findings are consistent with previous observations suggesting a lower 

vulnerability of the visuo-motor function to the effects of sleep deprivation (Bernardi et al., 

2015), and potentially reflect a lower dependence of these parameters on the global 

vigilance state.

4. Discussion

4.1. Extended task practice is associated with a decrease in cortical diffusivity

We found that MD declined in cortical GM after 12h of wake with intensive task practice, 

both compared to wake after a night of sleep and relative to 12h of wake without task 

practice. Moreover, we observed that cortical MD declined even further after 24h relative to 

12h of practice, and that all changes were reverted by ∼7h of sleep.
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Recent studies in humans and rats had shown a link between short-term learning, such as 

practicing a visuo-spatial task for less than 2h, and decreases of MD (Hofstetter et al., 2013; 

Sagi et al., 2012). These studies also demonstrated that MD changes are due to learning 

rather than movement and general activity (Hofstetter et al., 2013; Sagi et al., 2012). Other 

studies had examined MD changes in the context of chronic sleep disorders and found 

heterogeneous local changes, including an increase in the upper brainstem with REM sleep 

behavior disorder (Scherfler et al., 2011), an increase in hypothalamus and frontal cortex 

with narcolepsy-cataplexy (Scherfler et al., 2012), and a decrease in some cortical and 

subcortical areas with obstructive sleep apnea, an effect that reverts after treatment (refs in 

Castronovo et al., 2014).

MD reflects tissue density, and thus its decrease in GM may result from several not mutually 

exclusive factors including increase in synapse size, cell swelling, changes in extracellular 

space, and/or increase in glial cell volume. Although synaptic strength, which is correlated 

with size (Meyer et al., 2014), is known to increase with wake and decrease with sleep 

(Tononi and Cirelli, 2014), synapses contribute little to the overall GM volume, making it 

unlikely that rapid changes in MD after training and extended wake can be accounted for 

primarily by synaptic changes per se. More likely candidates are microstructural changes 

that are triggered by and/or are associated with synaptic activity and plasticity, such as 

variations in the ratio between intra- and extracellular volumes and astrocytic changes 

(Assaf and Pasternak, 2008). For instance, neuronal activity leads to a decrease in 

extracellular space (Ransom et al., 1985), and learning, sustained neuronal activity, or 

induction of long-term potentiation result in astrocytic hypertrophy and increased astrocytic 

coverage of synaptic processes (Anderson et al., 1994; Bernardinelli et al., 2014; Genoud et 

al., 2006; Jones and Greenough, 1996; Wenzel et al., 1991). Using serial-block-face electron 

microscopy, we recently found that after extended wake peripheral astrocytic processes in 

mouse frontal cortex move closer to the synaptic cleft, expand, and increase their surface to 

volume ratio (Bellesi et al., 2015). These changes likely enhance the housekeeping functions 

of astrocytes and promote glutamate clearance from the cleft. At the same time, however, 

since the neuropil is filled with astrocytic processes, their wake-related “expansion” may 

impair the diffusion of water and other small molecules, potentially accounting for changes 

in MD.

In our paradigm, we did not detect a significant global change in MD after sleep following 

baseline wake. A previous study using voxel-based analyses found large local increases in 

brain diffusivity in the morning relative to the evening in the absence of training (4.4-5.6% 

increase in apparent diffusion coefficient) (Jiang et al., 2014). Voxel-based analysis may 

permit a more powerful detection of localized MD changes, but it can also lead to spurious 

results if partial volume effects or within-subject and across-subjects alignment issues are 

not adequately controlled for. Our analytical approaches were selected to minimize these 

problems.

4.2. Acute sleep deprivation and cortical thickness

While MD changes occur early during wake with practice and are sensitive to training per 

se, no significant global or regional changes in cortical thickness were found after 12h of 
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training relative to baseline (after wake and/or after sleep), although there was a tendency 

towards an increase. The subsequent change from 12h to 24h of practice was significantly 

different from the variation in the normal sleep night (WB-SB), although we detected no 

significant differences between individual time points. Moreover, recovery sleep was 

associated with a significant cortical thickness increase. Changes in cortical thickness have 

been observed mainly during development, aging, or in response to chronic manipulations. 

A case in point is adolescence, during which cortical GM shows a progressive thinning, a 

phenomenon that has been linked to improvement in cognitive functions and may result 

from selective pruning of inefficient synaptic connections and increases in myelination 

(Schnack et al., 2014). Changes in cortical thickness have also been reported in chronic 

primary insomnia, but results are inconsistent (Dang-Vu, 2013). Finally, increases in GM 

thickness have been described after weeks or months of training (May, 2011), but not after 

short training.

In our case, cortical thickness trended in opposite directions after 12h (increase) and 24h 

(decrease) of practice. This result suggests that sleep loss per se may have a more prominent 

influence on this parameter than synaptic plasticity, but more experiments are needed to test 

this hypothesis.

4.3. Volumetric changes potentially reflect an altered circulation of interstitial fluids

Training and extended wake also led to increased volume in subcortical GM and WM and 

decreased volume in the ventricles, and all changes were reverted by recovery sleep. These 

findings may be related to the recently discovered role of sleep in modulating circulation of 

interstitial fluids (ISF) (Xie et al., 2013). In fact, CSF is known to interchange with the brain 

ISF, and their combined movement allows the clearance of solutes from the brain (Brinker et 

al., 2014; Iliff et al., 2012). CSF production as measured by phase-contrast MRI also shows 

a strong circadian pattern in humans, being lower during the day and peaking at night 

(Nilsson et al., 1992). Importantly, the CSF-ISF movement is favored by sleep and impaired 

by wake (Xie et al., 2013) and sleep deprivation (Plog et al., 2015). Given these premises, 

sleep deprivation at night may have significantly reduced CSF-ISF movement and CSF 

production, impairing the clearance of brain metabolites and causing a reduction in 

ventricular volume and a compensatory expansion, or a swelling, of nearby structures such 

as subcortical GM and WM. Recovery sleep would revert described changes by promoting 

CSF-ISF movement and CSF production.

Importantly, all described structural modifications do not simply reflect alterations 

determining global, uniform variations in brain size, as indicated by the absence of 

significant changes in total brain volume throughout the experiments. The apparent contrast 

with recent work suggesting the existence of brain diurnal volumetric fluctuations 

(Nakamura et al., 2015) may depend on several differences in experimental design, since we 

only included healthy young adult volunteers who were not assuming any medications, and 

who were kept in homogeneous and controlled (although “extreme”) experimental 

conditions. On the other hand, we cannot exclude that modest global volumetric variations 

could have remained undetected in our dataset due to our smaller sample size.
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4.4. Relationship between structural changes and sleep or behavioral parameters

Structural changes associated with recovery sleep did not correlate with any single sleep 

parameter that we tested. This may suggest that sleep as a whole, or at least several sleep 

features together, contributed to the effect. Other factors however, cannot be ruled out, 

including a “ceiling effect” caused by the high efficiency of sleep in all subjects, most likely 

due to the combination of 24h of continuous wake with the intense task practice.

Previous studies suggested that specific structural measures taken at rest may reflect the 

degree of individual cognitive vulnerability to sleep deprivation (Cui et al., 2015; Rocklage 

et al., 2009). Here, we found that structural changes occurring during extended wake can be 

used to predict individual vigilance levels, and may partially contribute to predict variation 

in specific behavioral measures related to performance in an impulse control test. Thus, our 

results confirm and support the existence of a link between microstructural alterations and 

cognitive performance, and suggest that some individuals may be more resilient to sleep loss 

because of an optimal initial “structural reserve” that makes them less vulnerable to the 

microstructural alterations occurring during extended wake. Overall, they suggest that sleep' 

ability to counteract performance deficits is linked to its effects on the brain microstructure.

4.5. Methodological considerations

Our study has several limitations. First, MRI-based approaches can only provide indirect 

measures of microstructural changes occurring within the human brain. Consequently, 

hypotheses regarding the link between variations in MRI-based parameters and the 

underlying biological mechanisms will require verification in different experimental models. 

On the other hand, several previous studies support the reliability of MRI-derived indices for 

studying a variety of physiological processes, including experience-dependent learning 

(Johansen-Berg et al., 2012; Zatorre et al., 2012), thus providing a solid foundation for the 

interpretation of present findings.

MRI-based parameters, and in particular measures related to water diffusivity, can be 

influenced by many confounds, including the partial volume effect (Alexander et al., 2001). 

While there are currently no commonly accepted gold-standard methods to address this 

problem, here we applied several strategies to minimize the potential impact of artifacts 

related to the partial volume effect, including the exclusion of voxels with a high probability 

of CSF contamination, and the adjustment of statistical models based on volumetric changes 

(associated to relative variations of the GM-CSF boundary). The obtained results suggest 

that changes in CSF contamination cannot account, alone, for the observed variations in 

cortical MD. This conclusion is further supported by the observation, during prolonged 

wakefulness, of parallel changes in cortical MD and thickness, and by the detected 

relationship between changes in cortical MD and in vigilance level. We acknowledge, 

however, that future studies using additional methods to limit the partial volume effect are 

required to provide an independent validation of the present results.

Another potential issue is the occurrence of wake-sleep transitions during the acquisition of 

DWI-scans, especially because deep sleep is known to be associated with relative changes in 

participants' movements and in brain temperature (Franken et al., 1992; Ogilvie, 2001), 
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which, in turn, may affect diffusivity measures. The most accurate approach to control for 

this confound is MRI-EEG co-registration. However, this solution was not appropriate in the 

context of the present study for at least two reasons: i) the complexity of the experimental 

setup, together with technical and temporal constraints, limited the possibility to prepare a 

MRI-compatible EEG registration in our samples; ii) the EEG-net is known to affect the 

MRI signal, potentially leading to alterations of the estimation of structural parameters 

(Klein et al., 2015; Luo and Glover, 2012). On the other hand, several observations suggest 

that changes in behavioral state (wake/sleep) cannot account for our findings. First, the 

inclusion of head motion as a nuisance variable in statistical analyses had no relevant impact 

on our results. Moreover, the influence of a general decrease in brain temperature appears 

implausible, because relative changes in MD occurred with different timings in different 

structures. Of note, the initial MD decrease in cortical GM was also observed at a time-of-

day typically associated with the circadian minimum in sleep pressure (Lavie, 1986). In 

summary, several empirical and theoretical considerations indicate that the possible 

occurrence of a transition to sleep in some of the subjects would not be sufficient to account 

for our results, leaving the change in tissue microstructure as the most plausible explanation.
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Highlights

• Wake-dependent brain changes were explored using structural MRI and DWI

• Intensive, prolonged task practice is associated with changes in structural 

indices

• Sleep reverts brain structural changes caused by wake-dependent training

• Structural alterations can predict cognitive performance at the individual level

• Sleep may counteract performance deficits through effects on brain 

microstructure
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Figure 1. Experimental design
Each subject completed two experiments (DS and EF), spaced at least 2 weeks apart. During 

both experiments MRI sessions were performed every ∼12 hours: WB (wake baseline), after 

a wake day spent outside the lab without any specific training; SB (sleep baseline) the next 

morning, after subjects slept at home as usual; WT12 (wake with training), after 12h of wake 

with extensive training in the lab; WT24 (extended wake with training), after 24h of 

continuous wake with extensive training in the lab; SR (sleep recovery), after ∼8h of 

recovery sleep with hd-EEG recording in the lab. Each MRI session included a high-

resolution anatomical scan, a 5-min eyes-closed resting state functional scan, and a diffusion 

weighted scan (DWI).
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Figure 2. Large-scale ROIs used for the analyses of global brain changes
The four ROIs (here shown in a representative subject) are: [green] subcortical grey matter 

(GM), [yellow] white matter (WM), [blue] ventricles and [red] cortical GM. Moreover, a 

mid-GM cortical mask was generated in order to eliminate voxels characterized by a high 

probability of containing mixed tissues (see text for details).
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Figure 3. Comparison of MD variations detected using the cortical GM mask (A) and the mid-
GM mask (B) excluding voxels along the WM-GM and GM-CSF interfaces
On average the mid-GM mask included 60.4 ± 1.4 % less voxels than the original cortical 

mask. Large circles represent the group-level average, while each small circle represents a 

different subject (black bars indicate one standard deviation from the mean). Values were 

zero-mean normalized by subtracting the across-time-points mean. *, significant differences 

for planned comparisons (p < 0.05, after Bonferroni-Holm adjustment; N = 12); ◆, 

significant effect of recovery sleep (paired t-test).
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Figure 4. Global changes in cortical thickness (A) and volume changes in subcortical GM, WM 
and ventricles (B-D)
Large circles represent the group-level average, while each small circle represents a different 

subject (black bars indicate one standard deviation). Values were zero-mean normalized by 

subtracting the across-time-points mean. *, significant differences for planned comparisons 

(p < 0.05, after Bonferroni-Holm adjustment; N = 12); ◆, significant effect of recovery sleep 

(paired t-test).
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Figure 5. Prediction of vigilance level based on structural parameters
For both DS (top) and EF (bottom), the graphs show the “real” (purple) vigilance level 

observed during sessions SB, WT12, WT24 and SR (measured as the reaction time during the 

PVT test), in comparison with the vigilance level predicted based on global structural 

parameters (green), in a representative subject (S06).
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Table 2
Results of the rmANOVAs exploring regional MD changes

Only statistically significant effects surviving Bonferroni-Holm adjustment are shown (p < 0.05). The last 

column shows the mean relative MD change following 24h spent awake (SB-WT24 variation). Given that no 

significant effects of the task were observed, the reported variation was calculated after averaging DS and EF 

measures. PT, Pars Triangularis.

rmANOVA Significant Effects Significance Level % MD Variation (±SE)

Bank Superior Temporal Sulcus Condition p = .0013; F(1,11) = 18.498 -1.14 (.33)

Inferior Temporal Cortex Condition p = .0004; F(1,11) = 25.250 -1.17 (.25)

Middle Temporal Cortex Condition p = .0001; F(1,11) = 36.456 -1.16 (.15)

Superior Temporal Cortex Time × Condition p = .0004; F(1,11) = 25.799 -1.36 (.26)

Lateral Orbitofrontal Cortex Condition p = .0002; F(1,11) = 28.434 -1.98 (.38)

Medial Orbitofrontal Cortex Condition p = .0002; F(1,11) = 29.604 -2.70 (.57)

Inferior Frontal Gyrus (PT) Time × Condition p = .0005; F(1,11) = 23.521 -1.64 (.35)
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Table 4
Polysomnographic parameters

BL DS EF

Total Sleep Time [min] 415.1 ± 83.2 406.7 ± 81.0 423.8 ± 53.1

N1 Time [min] 23.2 ± 15.7 13.9 ± 9.1 16.9 ± 14.3

N2 Time [min] 214.9 ± 59.4 176.0 ± 46.9 175.8 ± 45.5

N3 Time [min] 83.5 ± 31.7 116.9 ± 32.4 * 120.1 ± 18.1**

REM Time [min] 93.5 ± 32.1 99.9 ± 46.4 110.9 ± 42.6

N1 % 5.8 ± 4.4 3.7 ± 3.0 4.2 ± 3.8

N2 % 51.7 ± 9.1 43.3 ± 8.3 * 41.0 ± 8.3**

N3 % 20.5 ± 6.9 29.2 ± 7.3** 28.8 ± 5.8**

REM % 22.0 ± 6.3 23.8 ± 7.6 26.0 ± 8.0

N2 Latency [min] 4.4 ± 2.9 13.6 ± 17.5 12.1± 27.6

N3 Latency [min] 22.5 ± 17.2 26.1 ± 18.6 32.6 ± 26.3

REM Latency [min] 85.7 ± 30.2 26.3 ± 28.0** 21.3 ± 25.6**

Sleep parameters (group average ± SD) during the first baseline night (BL) and the recovery sleep periods of the two experiments (DS, EF). 
Percentages are expressed relative to total sleep time. Latency of the first N2, N3 and REM period is expressed from the first non-wake (N1) epoch.

**
marks significant differences between DS/EF and BL (p < 0.05, unpaired t-tests, Bonferroni-Holm correction for multiple comparisons), while

*
marks p < 0.05 uncorrected. No significant differences were observed between recovery sleep of DS and EF (p < 0.05, uncorrected).
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