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Abstract

Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving 

interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, 

making structure identification arduous and time consuming. Currently, comprehensive analysis of 

mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are 

small compared to the large number of compounds found in the biosphere, including xenobiotics. 

Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-

stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees 

explore the fragmentation process, generate fragmentation rules and aid in sub-structure 

identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-

induced dissociations. This review covers advancements over the past 10 years as a tool for 

metabolite identification, including algorithms, software and databases used to build and to 

implement fragmentation trees and mass spectral annotations.
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1. Introduction

Mass spectrometry (MS) is the dominant analytical technique in metabolomics. The 

elemental composition and structural information of a molecule can be readily determined 

by information provided by MS, such as accurate mass-to-charge ratio (m/z), isotope 

abundance [1] and fragmentation patterns [2]. The Metabolomics Standards Initiative (MSI) 
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categorizes structure elucidation into four different levels: identification, annotation, 

characterization and classification [3,4]. These levels establish a thorough standard for the 

validation of metabolites that are identified across non-targeted metabolomic studies [4]. 

However, MSI does not provide a scoring schema to rank identified compounds within the 

identified and annotated categories, a caveat that was recently highlighted by metabolomics 

investigators [5]. Identification of metabolites refers to complete identification of the 

structure, including molecular connections and stereochemical assignments [6]. The 

identification process of small molecules in metabolomics is similar to that in other fields, 

such as toxicology and proteomics. All fields use accurate mass analysis, databases or 

libraries, and mass spectral fragmentations, such as LC-MS/MS. Some major differences 

between metabolomics and proteomics are the presence of multiply-charged ions from 

peptides and the much larger chemical diversity in metabolomics and exposome analyses 

[7–9]. Synthesizing reference standards for confirmation of putative identifications is 

limited, time consuming, and uneconomical. According to MSI, annotation is putative 

compound identification in which the assignment of structures is highly likely, but not 

validated through chemical-reference standards [4]. Structure annotations are often 

ambiguous due to the large number of possible isomers, data inaccuracies, limited amounts 

of corroborating information, and human errors, including misclassification of sub-

structures. However, annotation can also be viewed as a strategy to reduce the need for 

isolation of compounds and de-novo elucidation. The idea is to annotate mass spectra using 

the most probable elemental compositions found in public databases and to add additional 

orthogonal filters to decrease the number of structure hits [10].

Computer-assisted structural elucidation (CASE) encompasses structural dereplication using 

various analytical techniques from tandem MS (MS2) and multi-stage MS (MSn) to 

ultraviolet-visible (UV), infrared (IR) and nuclear magnetic resonance (NMR) 

spectroscopies. CASE first reduces chemical and spectral properties of an unknown 

compound, second generates candidate structures compatible with spectral features, and then 

ranks these candidates [11–13]. CASE can be used when manual interpretation of data is 

impractical and outcomes are unreliable using certain techniques, such as artificial 

intelligence, pattern recognition, library search, and spectral simulation [12,14]. Conversely, 

structural dereplication is performed by comparing experimental data to well-known 

databases that have standard reference data. Essentially, dereplication is a process to identify 

“known unknowns”, which are compounds that are unknown at the time of detection and 

with further investigation are then found to be known compounds [15]. For example, the 

National Institute of Standards and Technology (NIST) database can be used to identify 

unknown compounds in gas chromatography-MS (GC-MS) studies [16]. Both structural 

dereplication and CASE are not considered de-novo identification because they rely on 

database searches with pre-existing known metabolites or reference standards [17]. Full de-

novo identification by MS alone can hardly be achieved because isomers are difficult to 

distinguish by MS [10]. Mass spectral data inform about elemental compositions by 

combining accurate mass and isotopic information [1]. Collision-induced fragmentation data 

on the MS2 or MSn levels are used to find structural information from unique fragmentation 

patterns to test for the presence and the absence of functional groups. Interpretation of data 

in CASE may subsequently yield a partial structure or a sub-structure [12] (e.g., by using 
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graphs that represent MSn fragmentation-tree spectra in a hierarchical and data-dependent 

format). In CASE, rules, such as the calculation of “Rings plus double-bond equivalents” 

(RDBE), the nitrogen rule and the “even-electron rule”, are applied when interpreting MS 

data to identify the formation of fragment ions and neutral species [18].

The scope of this review is to discuss advancements in techniques used by MS for structure 

elucidation, specifically the use of MSn ion trees for small organic molecules with molecular 

weights less than 2 kDa.

2. Limitations of tandem mass spectrometry

While collision-induced dissociation (CID) MS/MS today is the dominant technique for 

library matching and interpreting fragment patterns to find structural information [6], using 

MS/MS alone falls short because product ions found in the MS/MS spectrum may be 

derived from intermediary ions instead of being produced directly from the molecular 

adduct precursor ion. For example, although epinine (deoxyepinephrine) conjugates in urine 

can be determined by MS/MS via precursor ion and neutral loss scans [19], MS/MS is 

unable to distinguish between positional isomers of such catecholamines. In addition, many 

fragment ions in MS/MS cannot be explained through fragmentation pathways even when 

structures are known [19]. Isomeric flavonoid O-diglycosides may yield different product-

ion ratios in MS/MS fragmentation spectra [20]. However, such fragment-ion ratios cannot 

be used to infer interglycosidic linkages or glycan sequences in structural annotations of 

unknowns (Fig. 1) even though the authors successfully constructed a decision tree to 

differentiate these O-diglycosyl flavonoids [20].

Similarly, the annotation of positional sub-structures of taxanes in Taxus could not be 

achieved by MS/MS alone but only by using additional analytical methods [21]. Taken 

together, MS/MS certainly does not provide full structural information to elucidate an 

unknown compound completely. MS/MS fails to yield specific positional information of 

sub-structures, and many fragment ions remain unannotated with respect to presence of sub-

structures or detailing fragmentation pathways.

3. Fragmentation trees and mass spectral trees

Trees are data structures defined by graph theory to organize and store data (e.g., the 

fragmentation process of an analyte of interest, or MSn spectra generated by an ion-trap 

mass spectrometer). A tree is generated by nodes that are linked by edges (Fig. 2). Typically, 

the graphs are called fragmentation trees [22], family trees [23] or identification trees [24], if 

these trees show the fragmentation pathway of a molecule (Fig. 2A). Fragmentation trees are 

generated computationally to predict the fragmentation pathway of a molecule [22]. An 

implication of the fragmentation relationship between precursor ions and product ions is 

made before acquiring MSn data. Conversely, ion trees or mass spectral trees refer to the 

sequential stages and relationships of mass spectral acquisition in MSn processes, 

representing precursor and product ions as nodes and neutral losses as edges [25,26] (Fig. 

2B). MSn trees can therefore link ion-fragmentation pathways with (sub)structure 

relationships in a hierarchical order. An important aspect of MSn trees is that they reveal 

both the dependency of precursor/product ion and product ion/product ion within the same 
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MSn stage or between different MSn stages. This idea is rooted in the concept that any two 

MSn spectra can ideally be treated as virtual MS/MS data: an ion has no memory. Hence, 

organizing large MSn libraries will yield a tremendous expansion of publicly available 

MS/MS spectra, as long as each mass spectrum (Fig. 2B) is associated with a defined 

structure (Fig. 2A). For both fragmentation and mass spectral trees, computational methods 

are required to organize dependencies and extract specific information.

3.1. MSn ion tree for fragmentation analysis in natural products research

MSn multistage analysis provides means to link all product ions to specific precursor ions, 

hence enabling recursive reconstruction of fragmentation pathways that link specific 

substructures to complete molecular structures [27]. Oligosaccharides and sugar nucleotides 

were annotated using MS4 ion trees with Mass Frontier 2.0 software [28], but the ion trap 

used lacked accurate mass capabilities to associate fragmentation rules unambiguously with 

potential fragmentation pathways to identify unknown metabolites detected in plant-phloem 

samples. Fabre et al. [29] successfully used MSn to characterize structurally fragment ions 

and fragmentation mechanisms of flavonoid aglycones in negative-ion mode. MS3 data 

supported fragmentation mechanisms, helped distinguish common neutral losses for specific 

sub-structures, and gave sufficient information to propose reasonable structures for 

fragments using both experimental and computational MS. However, for some flavonoid 

aglycones, MS3 experiments did not provide sufficient data to deduce fragmentation 

mechanisms conclusively [29].

Importantly, MSn can be used for dereplication of natural products, specifically to 

differentiate C-glycosidic flavonoid isomers [30]. MS2 yielded insufficient data to 

distinguish 6-C and 8-C-glycosidic flavonoids because no specific diagnostic ions were 

present to differentiate such isomers, even though ion-intensity ratios were different (Fig. 3). 

In order to establish rules about how ion ratios could distinguish isomers, many more 

natural-product MS2 spectra would need to be acquired and computationally analyzed. 

However, on the MS3 stage, clear diagnostic ions were present to distinguish vitexin and 

isovitexin (Fig. 3) because mechanisms of C-ring cleavages were very different for these 

two isomers. Moreover, MS4 yielded data to prove the exact position of C-glycosylation on 

vitexin-2-O”-rhamnoside [30]. These data formed a decision tree for dereplication of 

flavonoids in the analysis of complex mixtures [30]. MSn data therefore provide more 

information to unambiguously identify natural products. Twenty-five citrus flavonoid O-

diglycosides were identified by comparing experimental MS3 spectra to MS3 spectra of 

reference compounds isolated from F. aurantii [31], as MS/MS spectra proved to be 

insufficient for high confidence identifications.

4. MSn data-acquisition methods

Data-dependent ion tree experiments (dd-ITe) are generally used to collect MSn data on ion 

trap mass spectrometers such as the linear quadrupole ion trap or Orbitrap instruments. 

Usually spectra are acquired under electrospray ionization (ESI) either using direct infusion 

or flow injection [32]. Direct infusion-MSn data acquisition provides the necessary time to 

populate the ion trap with ions of sufficient signal intensity and to acquire exhaustive mass 

spectral trees (Fig. 2). As example, structure analysis of lipid A in Francisella tularensis 
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subspecies novicida [33] was acquired in this manner on a hybrid linear ion-trap Fourier 

transform (FT) ion-cyclotron resonance mass spectrometer. In comparison, flow injection, 

while being compatible with liquid chromatography (LC) systems, often does not yield 

sufficient time during the elution profile of the flow-injection peak to yield strong enough 

signals for mass spectral tree acquisitions [34]. An alternative might be posed by the 

Orbitrap Fusion mass spectrometer that is equipped with a quadrupole, ion trap and Orbitrap 

mass analyzer. Reportedly, this instrument may be compatible to fit the timescale of ultra-

high pressure LC (UHPLC) peak widths and generate MSn trees for profiling and structure 

elucidation of metabolites using mzCloud, an MSn library for high- and low-resolution data 

[35].

A comprehensive method was developed using both MSn spectra and fragmentation trees for 

metabolite identification [36]. A very extensive dd-ITe was programed to perform 107 mass 

spectra per analyte with a maximum MSn depth of n = 5 by data-dependent fragmentation 

using the five most abundant product ions at the MS2 and MS3 levels, and the three most 

abundant product ions at the MS4 level [36]. Such dd-ITe was used to investigate structures 

of intact polar lipids of microbes found in two regions in an artesian sulfur-rich spring 

source [37]. DD-ITe was used for structural analyses of seven vergauamide compounds in 

marine cyanobacteria, using a maximum MS3 depth [38]. Non-genotoxic carcinogens in rats 

and lipid species were also structurally elucidated and confirmed using dd-ITe [39]. 

However, there are alternatives to ion-trap-based MSn studies. Using quadrupole time-of-

flight (TOF)-MS, pseudo-MS3 spectra can be acquired using high energy to produce in-

source fragmentation and subsequent collision-induced fragmentation with accurate mass 

product-ion analysis. As the precursor ion and initial neutral-loss product ion are fragmented 

simultaneously, composite MS3 spectrum are generated [40]. MSn data were also acquired 

using a triple-quadrupole mass spectrometer to identify and to characterize 

glycerophosphatidylethanolamine lipids structurally [41], specifically to characterize 

substituents on the fatty acyl chains.

A second alternative method combines LC with MSn and subsequent solid-phase extraction 

(SPE) with NMR spectroscopy [42]. This method was used for structural elucidation of 

tomato flavonoids present at sub-μg amounts in crude extracts (e.g., quercetin-3-O-

glucoside) [43]. A combination of LC-FT ion cyclotron MSn and LC-TOF-MS-SPE-NMR 

proved to be successful in two studies: 138 urinary metabolites were annotated and 36 

phenolic conjugates were structurally elucidated in a study on consumption of black or green 

teas [44]. In a related study, 177 phenolic compounds in tea products were annotated to be 

derivatives of flavan-3-ols and flavonols using spectral trees to profile conjugates and 

derivatives [45].

LC with high-resolution MS3 has been combined with a mass spectral tree similarity-filter 

technique (MTSF) to identify 68 compounds in traditional Chinese medicine [46]. Some 14 

reference compounds were used to generate mass spectral trees and build a user library in 

Mass Frontier version 7.0 software. MTSF workflow includes collecting MSn data on all 

detected compounds and using Mass Frontier 7.0 to calculate the similarity between the MSn 

tree of the reference compound and the detected compound and to assign a similarity score. 

After the candidate compound was determined, accurate m/z value and fragmentation rules 
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were used to determine the identity further [46]. Similarly, Jia et al. [47] characterized and 

identified 38 compounds in Saussurea involucrate using the same method of combining LC-

high-resolution MSn with MSTF. In human-urine samples, 10 compounds were annotated 

from 30 target unknown molecules using MSn trees and similarity matching to find and to 

verify sub-structures and validate that unknown metabolites belong to a specific compound 

class [48]. Similarly, 127 phenolics and glucosinolates were identified by MSn with MTSF 

matching from crude extracts of tomatoes and Arabidopsis leaves [49]. Wang et al. [50] also 

used the MSTF method to report detection and confirmation of illegal adulterants in health 

foods and herbal medicines.

5. Computational tools for MSn and fragmentation trees

When accounting for the huge chemical complexity of natural products in plants and 

microbes and biotransformations in microbial communities, such as the human gut, there are 

millions of small molecules in nature. It is impossible to acquire reference mass spectra for 

all these compounds in libraries [16,51]. Instead, in-silico prediction tools can be used to 

generate much larger virtual MS/MS and MSn spectral libraries [51,52]. Such prediction 

tools could be developed and validated by mass spectral libraries of authentic compounds. 

Especially the large LipidBlast library of over 200,000 MS/MS spectra of complex lipids is 

a good example how rule-based generation of virtual spectra may upend the dominance of 

small reference spectral libraries used in metabolomics [53]. Computational MS is a 

necessity for big data initiatives involving MS/MS and MSn analyses and fragmentation 

trees [36,51,54,55]. Use of such tools is evaluated in a new initiative, the Critical 

Assessment of Small Molecule Identification contest (CASMI) [56,57].

Fragmentation and ion trees aim to identify the molecular formulas of compounds, elemental 

compositions of fragment ions and neutral losses, to perform automatic annotations on 

MS/MS or MSn spectra, to aid in structure and sub-structure elucidation by in-silico 

fragmentation, to predict molecular fingerprints and to provide a de-novo identification 

strategy. Fragmentation trees have been primarily calculated from MS/MS data, GC 

electron-ionization-MS data, and MSn data [2,22,58–61]. Fragmentation trees were 

developed for MS/MS spectra annotation by representing each peak by a node with a 

molecular formula [22]. Similarly, fragmentation trees were computed to show the 

dependencies between fragment ions found in CID spectra [62]. More recently, the SIRIUS2 

software (Sum Formula Identification by Ranking Isotope Patterns Using Mass 

Spectrometry) was released to determine the molecular formula aided by fragmentation trees 

[63–65] but limited to MS2 data. Calculation of fragmentation trees is more difficult from 

MSn data because the number of relationships between ions explodes with MSn data [60,61]. 

Molecular formulas are computationally generated and assigned to each fragments on a 

fragmentation tree. This calculation requires an input of MSn data. Fig. 4 shows the multiple 

relationships and fragment dependencies found between MS2 and MS3 spectra.

A published approach to calculate fragmentation trees used a tree-completion heuristic 

method [66] and a strategy was developed that computed fragmentation trees and used 

kernel-based machine-learning techniques to improve identification of metabolites [67]. 

Alignments of fragmentation trees are required to find similar fragmentation pathways 
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across different compounds. Compounds that share similar fragmentation pattern correlate 

with strong chemical similarity. Tentative structural information can be gained by the 

alignment of unknown compounds to known compounds [68]. The fragmentation tree basic 

logic alignment search tool (FT-BLAST) compares fragmentation patterns and groups 

compounds based on those similarities (Fig. 5). Eight compounds from 89 m/z features were 

annotated from MSn data of extracts of Icelandic poppies (P. nudicaule) [69]. As tree 

alignments present multiple solutions, comparison results need to be scored. New methods 

may prove useful for both metabolite identification and searching databases [70].

Structure and sub-structure annotations based on in-silico fragmentations are based on 

known chemical rules or use combinatorial approaches. The state-of-the-art commercial 

software Mass Frontier generates fragments based on rule-based predictions, produces mass 

spectral trees, calculates fragmentation pathways, searches for sub-structures by FISh 

(Fragment Ion Search), calculates molecular formulas, and develops fragmentation rules. 

For fragment-structure predictions, Mass Frontier employs common fragmentation and 

rearrangement rules and literature-based assignments. Mass spectral trees are linked to 

predicted fragments and mechanisms. Fragmentation rules obtained from such MSn trees are 

best applied to sets of specific compound classes. A novel mass spectral database, such as 

mzCloud, supports the precursor-ion-fingerprinting (PIF) algorithm to interpret mass spectra 

by performing library searches for the precursor ion, generating spectral trees, and 

generating MSn tree libraries [25]. As an alternative to Mass Frontier, academic software 

was released to analyze MSn spectra and generate spectral trees [36]. This software was 

specifically designed to remove or filter artefacts present from the LTQ-Orbitrap XL. Such 

artefacts have been previously described as a result of electronic interference found in 

Fourier-transformation instruments, such as ion-cyclotron resonance and Orbitrap mass 

spectrometers [71]. Recently, an iontree R-package was developed for handling MS/MS and 

MS3 spectra, comparing MSn spectra and building ion-tree libraries [72]. The iontree 

package is platform independent, which improves the capability of managing MSn data from 

different instruments and laboratories [72].

MSn data are also analyzed by the Multistage Elemental Formula (MEF) software, which 

determines elemental compositions for precursor ion, fragment ion and neutral losses [48]. 

This software annotated several candidate structures from human urine by matching spectral 

sub-trees of known reference compounds to sub-trees of unknown metabolites. Such sub-

trees are portions of the overall MSn tree that have sub-structures in common.

Recently, MAGMa (MS Automation based on in silico Generated Metabolites) was 

introduced as a tool for LC-MSn spectra annotation [42,73] and to provide structure 

elucidation and was reported to be the best automated tool in CASMI 2013 [57]. Sub-

structures and spectral tree annotation using MAGMa are found by using systematic bond 

dissociation to fragment a candidate structure. In itself, systematic bond dissociation has 

been a popular method for enumerating all possible fragment-candidate structures.

MetFrag was developed to generate all in-silico fragments using a bond-disconnection 

method [54] and was reviewed [26,74,75]. MetFrag generates fragmentation trees to reduce 

the number of calculated fragments. The problem with bond-disconnection-method 
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approaches is that all bonds are fragmented, without initially accounting for bond strengths 

or bond-dissociation energies. They are taken into account when the scores of all in-silico 

candidate fragments are computed. MetFrag is limited to accurate mass data and performs 

best when generating a fragmentation tree with a maximum depth of 2 [54]. Subsequently, 

MetFusion was developed to improve compound identification by combining both MetFrag 

and mass spectral searching in MassBank [76].

The alternative fragmenter software ISIS (In Silico Identification Software) was developed 

for fragmentation-pattern analysis using artificial neural network machine learning and 

kinetic Monte Carlo algorithms to learn bond cleavages from ion-trap spectra in order to 

predict in-silico MS/MS spectra [77]. Systematic bond dissociation is also implemented in 

MIDAS (Metabolite Identification via Database Searching) software [78].

Originally, EPIC (Elucidation of Product Ion Connectivity) was created as a program to 

assign automatically sub-structures generated by systematic bond dissociation to only 

MS/MS data [79]. A further algorithm finds parent/fragment ion pairs and also helps to 

distinguish peaks from unrelated compounds or contaminants [80].

Recently, CASS (Chemically Aware Sub-structure Search) was developed to provide a tool 

that automatically detects functional groups in compound libraries [81]. CASS is also 

designed to create a functional group-resolved metabolite database. CASS is not hard-coded 

and flexible to customize with additional functional groups.

Sub-structure generation via exhaustive combinatorial tools, such as MOLGEN (MOLecular 

structure GENeration) [82], quickly leads to computational performance problems and may 

not explain all peaks found in experimental or in-silico fragmentation spectra due to the vast 

number of similar candidate structures and the lack of rich sub-structure information from 

spectra [83]. Sub-structures and characteristic product ions are searchable using 

MS2Analyzer [84].

Overall, fragmentation trees and MSn trees combined may be best suited to search for 

substructures to provide annotations of unknown metabolites. Common sub-structures can 

provide evidence to annotation of compound classes and presence of specific functional 

groups.

Web-based analysis of MSn data has been made available by the MetiTree (Metabolite 

Identification Tree) application. Spectral data, fragmentation trees, and fragmentation 

reactions can be simultaneously explored and deciphered for both structure and sub-structure 

identification [85,86]. MetiTree was used to investigate secondary metabolites in 

filamentous fungus Penicillium chrysogenum [87].

A different solution to find characteristic sub-structures was presented by the 

MoleculePuzzle software [88] to predict in-silico fragmentations, sub-structures and 

structural isomers via rule-based logic. Linking MSn and sub-structure trees [89] may indeed 

provide a systematic and efficient method for structure elucidation, since the sub-structure 

tree is linked to the hierarchical order of MSn data.
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Additionally, LC retention-time information may be added to workflows. The main idea is 

that successfully identified metabolites in LC-MS data sets may be used as bait to fish for 

derivatives of these compounds. By searching for characteristic m/z differences (e.g., for 

hydroxylations) and predicting that hydroxylated derivatives of identified metabolites will 

elute earlier in reversed-phase LC, the CSPP algorithm suggests pairs of substrate/product 

candidate pairs that may be annotated by MSn spectra [90].

Overall, recent years saw very active developments of a range of algorithms, approaches and 

software tools to use directly the tree-based approaches that are summarized in Table 1. 

CASMI may be a suitable test bed for comparing this array of novel opportunities in 

identification of unknowns.

Apart from the direct application of trees in computational MS, data and information may be 

generated that can be used indirectly to identify unknown metabolites. The MZmine 2 

framework [91] combines heuristic rules, fragmentation-pattern analysis, and isotopic 

pattern matching to predict molecular formula from HRMS data. FingerID uses MS/MS data 

to predict molecular fingerprints or properties of a metabolite that are subsequently matched 

against PubChem to provide a metabolite identity [92,93]. Most recently, CFM (Competitive 

Fragmentation Modelling) and CFM-ID (Competitive Fragmentation Modelling 

Identification) were specifically developed to predict MS/MS spectra based on machine 

learning and probabilistic generative models [94,95]. Results of such predictions appear to 

outperform MetFrag and FingerID.

6. Tandem and MSn spectral libraries and databases

Accuracy of spectral predictions by any of the aforementioned algorithms or software 

programs can best be validated by authentic, curated mass spectral repositories, such as the 

NIST14 library that currently holds MS/MS spectra for 8171 distinct compounds acquired 

on ion traps and 7692 distinct compounds acquired on QTOF or triple-quadrupole mass 

spectrometers. Such libraries and databases require high-resolution and high mass accuracy 

data for annotation of metabolites. Software that performs structural annotation relies on 

structural databases that may be larger than spectral libraries but nonetheless still 

incomplete. However, most mass spectral libraries and databases do not store MSn data, 

except for HighChem's commercial Spectral Tree library with currently 2740 spectral trees, 

mzCloud [35] (a freely available Web interface) with currently 2625 spectral trees, and the 

open access MassBank database [76] that contains 2.2% MS3 or MS4 spectra. Both High 

Chem's Spectral Tree library and mzCloud support precursor-ion fingerprinting [25] and are 

fully integrated with Mass Frontier 7.0.

HAMMER (High-throughput AutoMation of Mass frontiER) is freely available software 

that was developed to compensate for the lack of chemical space that current MSn spectral 

libraries cover [55]. HAMMER allows users to control Mass Frontier 7.0 to build in-silico 

MSn mass spectral libraries.

The ground-breaking FragLib [96] library was developed in 2005 for the characterization of 

glycans and oligosaccharides as the first repository that was structured to encompass MSn 

data and to build MSn fragmentation trees from MSn data. This glycan MSn spectral library 
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was built to differentiate isobars, characterize sub-structures due to extensive fragmentation, 

and allow for complete structure elucidation from these sub-structures, leading to discovery 

of novel compounds. Another glycan and glycolipid library is GMDB, which holds mas 

spectra up to the MS4 level [97].

7. Conclusions

While over 95% of all acquired LC/MS fragmentation studies currently remain at the 

MS/MS level, the lack of standardized mass spectral libraries and the huge number of 

unidentified metabolites limit overall progress in metabolomics. The bottleneck of 

compound identification in metabolomics cannot be overcome without better mass spectral 

prediction tools. Fragmentation trees and MSn mass spectral trees may here give the answer. 

In recent years, a large increase in efforts was noted for acquisition of MSn data and 

developments of tools for structure elucidation and spectra annotations. Advancements have 

come to a point where bottlenecks may be limited by the number of publicly-available data 

with respect to authentic and curated MSn spectra of natural products as well as high-quality 

MSn data sets from metabolomics studies. The increasing interest in metabolomics by 

researchers and funding agencies raises hope that larger data sets may soon be available to 

test, to validate and to compare the multitude of algorithms and software tools that promise 

to yield accurate compound-annotation results. Computational contests, such as CASMI, 

will aid in developing standards similar to developments in proteomics and prediction of 

protein-crystal structures in the past.
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Highlights

• State of the art in mass spectrometry (MS)-fragmentation-based identification

• Differentiation between MSn trees and fragmentation process trees

• Analytical aspects include data acquisition, time requirements, and problems

• Topics include data processing, software, open access versus commercial 

libraries

• Highlights of recent MSn-tree studies
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Fig. 1. 
Ion trap MS/MS spectra of (a) naringin (blue), (b) narirutin (red), acquired at 20% CID. 

While m/z values of MS/MS product ions are identical, normalized ion ratios (mid panel) 

can distinguish these isomeric flavonoids. Ion ratios cannot be used to determine glycan 

sequences on the aglycone backbone or specific interglycosidic linkages. Mass spectra 

adapted from [20].
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Fig. 2. 
Left panel: A fragmentation tree and graph (A) represents structures or chemical formulas 

as nodes, here symbolized by rectangles with color coded ‘sub-structures’. Grey edges 

represent a fragmentation graph and black edges show the fragmentation process and 

mechanism used to generate the fragmentation tree. {Figure adapted from [94]}. Right 
panel: A mass spectral tree (B) shows nodes as individual mass spectra. Mass spectral trees 

are characterized by depth (MSn level) and breadth (the number of ions from each mass 

spectra that are selected for subsequent MSn-level fragmentations).
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Fig. 3. 
MS2 and MS3 ion-trap spectra for the 8-C-glycosidic flavonoid vitexin (top left and top 
right) and the 6-C-glycosidic flavonoid isovitexin (bottom left and bottom right). The 

product ion in MS2 m/z 313 produced many different fragment ions that can be used as 

diagnostic ions to differentiate the two C-glycoside isomers. Using the fragment ions, a 

decision tree (right) was made to differentiate 6-C and 8-Cglycosidic flavonoid isomers. 

{Reproduced with permission from [30]}.
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Fig. 4. 
Workflow for generating fragmentation trees from MSn data. MSn ions are assigned by 

molecular formulas, organized into a fragmentation graph and ultimately assembled into a 

tree that best explains likely fragmentation steps. {Reproduced with permission from [61]}.
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Fig. 5. 
An example how FT-BLAST generating fragmentation trees identifies sub-structures from 

complex mass spectra data. (a) Alignment of CID mass spectra shown in panel (b) of 

rosmarinic acid (c) and (-)-shikimic acid (d). While ions do not directly align in the mass 

spectra, the fragmentation-tree alignment shows structural similarity and similar key losses 

of: H2O, CO2, and C2O2. {Reproduced with permission from [69], ©2012 American 

Chemical Society}.
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Table 1
Summary of software and computational tools for mass spectral and fragmentation trees

Software Main Function Ref.

FiD Substructure Prediction [92]

PIF Generates spectral trees [25]

Mass Frontier Generates spectral trees [98]

MetFrag Fragmenter [54]

MEF Calculates molecular formulas [85]

MoleculePuzzle Predicts fragmentation of a compound [88]

MetiTree Generates spectral trees [86]

ISIS Fragmenter [77]

MetFusion Combines MetFrag with spectral library search [51]

R-package “iontree” Generates spectral trees [72]

MAGMa Fragmenter and annotates spectra [73]

CSPP Spectra annotation tool [90]

SIRIUS2 Calculates molecular formulas and fragmentation trees [63]
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