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In the past decades, theoretical calculations of materials properties have become more 

accurate and accessible due to the successful development of ab initio codes, as well as advances 

in computational power. With the booming development of high-throughput computational 

materials repositories, opportunities have emerged in the area of data-driven discovery of new 

materials guided by machine learning. However, the interpretation of large materials data sets 

needs to be performed from an integrated perspective of statistics and materials science intuition. 

In this thesis, we will address this challenge by demonstrating how the integration of high-

throughput software workflows, automated data generation, and machine learning can yield 

powerful new approaches to materials analysis and optimization. This thesis is broadly divided 

into two topics.  

In the first topic (Chapters 2 and 3), we present comprehensive first-principle 

investigations of the effect of transition metal mixing on layered P2 oxides, using P2 

Na#Co345Mn5O( and P2 Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O( as model systems. Our results show 

that transition metal mixing significantly suppresses the formation of strongly ordered 

intermediates. Using ab initio molecular dynamics simulations and the climbing image nudged 

elastic band method, we reveal that transition metal substitution has a pronounced effect on the 

Na site occupancy energy and Na diffusion energy barriers. By employing a site percolation 

model, we derive theoretical upper and lower bounds on the concentration of transition metal 

species in the layered P2 oxides based on their effects on Na diffusion energy barriers. Another 

key innovation is the use of the MatErials Graph Network (MEGNet) model, a graph-based deep 

learning approach recently developed in our group, on layered P2 oxides for accurate energy 

prediction, which we will apply to study mixing energies in a “high-entropy” P2 

Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O(.   



 

 xviii 

In the second topic (Chapters 4, 5, and 6), we present the development of a first-of-its-

kind computational reference XAS database (XASdb). More importantly, we have developed a 

novel Ensemble-Learned Spectra IdEntification (ELSIE) algorithm that leverages on ensemble 

learning techniques to match an unknown target K-edge XANES spectra with computed spectra 

in XASdb. We will also discuss the development of general machine learning approaches to 

rapidly and efficiently identify the coordination environment of absorbing atoms from K-edge 

XANES. 



 

 1 

 Introduction 

1.1 Background 

Materials innovations are vital to the advancement of new technologies. Admittedly, 

materials development is complex, making it difficult to achieve breakthroughs and 

commercialize over a short period of time.1 Many prospective materials technologies take 

approximately 20 years or even longer before being commercialized.2 This tardiness is partly due 

to the experimental input-centric procedure followed by researchers in the development of new 

materials. Materials synthesis and characterization are laborious tasks and cannot be routinely 

conducted in a high-throughput manner. At present, there is no unified protocol applicable for 

experimentally screening prospective materials across different application domains. The as-

developed high-throughput synthesis and characterization tools3–6 are generally chemical system-

specific. For example, in the case of hydrothermal and solvothermal synthesis, it can often be 

exceptionally difficult to achieve accurate control of reaction conditions at different scales.7   

In the recent decade, high-throughput computations have emerged as a complementary 

approach to experimental approaches for materials discovery. Maturing theoretical tools and the 

advent of inexpensive computational resources offer researchers a more cost-effective solution to 

the materials design problem. Electronic structure codes, especially those based on Kohn-Sham 

density functional theory (DFT),8,9 can be reliably applied to predict and assess a set of materials 

properties.10 Further, the advancement of computational workflow management software11, 

materials analysis packages12, just-in-time job management tools, and ab initio computational 

code has enabled a growing trend in data-driven materials design and discovery.13,14 By 

leveraging the growing and scalable computational power, large databases20 containing 
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electronic and thermodynamic properties of existing and hypothetical materials are now being 

constructed at unprecedented rates. For example, the Materials Project17 database, a core part of 

the materials genome initiative, contains computed properties of more than 130,000 inorganic 

compounds at the time of writing, including elasticity18, surface energy19, and band structures17. 

There are also many other publicly available materials databases spanning a wide range of 

applications.15,16  

The explosion in the quantity of computed materials data has shifted the paradigm in 

materials discovery and is playing a central role in the study of materials properties. However, it 

is equally true that large data sets bring their own set of unique challenges. Contemporary 

artificial-intelligence methods become promising approaches for studying the properties of the 

materials and have the potential to revolutionize the materials discovery paradigm.  

Machine learning algorithms can be divided into two broad categories: supervised and 

unsupervised learning. For supervised learning, the training datasets are well labeled and take the 

form of a collection of (𝑥, 𝑦) pairs. The fundamental goal of supervised learning algorithm is to 

generalize beyond the training examples and be able to predict 𝑦∗ in response to the new input 

 
Figure 1.1: The key elements of machine learning in materials science. a Schematic view of an 
example data set, b statement of the learning problem, and c creation of a surrogate prediction 
model via the fingerprinting and learning steps. 𝑁 and 𝑀 are, respectively, the number of 
training examples and the number of fingerprint (or descriptor or feature) components.20  
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sets 𝑥∗ (unseen data). Unsupervised learning, on the other hand, typically involves the analysis of 

unlabeled training data and identification of hidden patterns in the input data.21 In unsupervised 

learning, we generally have no access to the ‘correct’ output of the training dataset.  

In the field of computational materials science, most research problems can be classified 

into supervised learning. Figure 1.1 shows a schematic view of the elements of machine learning 

within materials science. In the first part, a sufficiently large input dataset is first constructed, 

either from experiments or more commonly, using high-throughput first principles calculations. 

This dataset is essentially a mapping between a material description (e.g., composition, atomic 

arrangement of atoms, local environments) and properties such as formation energies, 

mechanical properties, X-ray absorption spectra, etc. The result of running the machine learning 

algorithms can be expressed as establishing a mapping between new yet-to-be-synthesized 

materials’ attributes, such as compositional information or the electronic charge density 

distributions, and any or all of their properties. Subsequently, once the “hidden” rules that govern 

the materials properties have been discovered, the trained models can then predict the properties 

of a vast number of new materials at negligible additional computational cost, thereby by-passing 

the laborious and time-intensive computations. 

The past few years have seen a rapid increase in the amount of research related to the 

application of machine learning approaches in the materials science field. For example, the 

Meredig et al.22 have shown that the thermodynamic stability of ternary compounds can be 

predicted by leveraging a linear regression model trained on a database of thousands of first 

principles calculations. The Raccuglia et al.7 have demonstrated that the support vector machine 

derived decision tree models can predict reaction outcomes with a success rate of 89%, and 

reveal the chemical principles governing reaction outcomes. Other materials properties such as 



 

 4 

bandgap energy23, formation energy24,25, elastic moduli26 can also be determined with properly 

constructed machine learning models. Analyzing high-throughput computational datasets has 

now become a key component of materials property investigations, underpinning new waves of 

materials innovation. 

In this thesis, we seek to address the challenges of high-throughput computational 

materials studies through machine learning approaches on two topics: (i) the stability of P2-type 

layered sodium transition-metal (TM) oxides and (ii) local environment determination from X-

ray absorption spectroscopy (XAS). In each topic, its prominent material property assessment 

approaches and machine learning methods will be discussed.  

 

1.2 P2-type layered sodium transition-metal oxides 

1.2.1 Motivation and overview 

Sodium ion secondary batteries (SIB) are considered to be promising candidates for 

large-scale applications due to the larger abundance (Clark number: 2.63)  and lower cost of 

sodium compared to lithium (Clark number: 0.006). 27,28 In the last decade, new research lies in 

sodium ion battery has risen explosively.29–31 Among a vast range of possible cathodic materials 

sodium ion batteries, layered sodium TM oxides Na#MO( (M = Co, Ni, Mn, Fe, V, Cr, etc and 

their combinations) have been demonstrated to have among the most promising electrochemical 

performance.27,32,33 Most common Na#MO( compounds could be categorized into two 

polymorphs, P2 and O3, according to the classification by Delmas et al.34 P(prismatic) and 

O(octahedral) denote the alkali atom occupation environments between MO6 octahedra form 

stacking sheets. 2 and 3 describe the repetition number of MO6 layers. P2 structure materials, in 
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general, outperforms O3 structure materials in terms of higher reversible capacity and better 

cyclability.31  

While the benefits of P2-Na#MO( are well established, potential drops related to the 

formation of biphasic states in single TM layered sodium oxides P2-Na#CoO(35 and P2-

Na#MnO(36 make it difficult to put them into practical use. Thus, to eliminate the potential drops 

caused by the formation of dominant Na orderings, various first and second row transition 

elements have been introduced as substitutes of Co. The TM mixing strategy has proved to be 

effective in suppressing the formation of biphasic states during the charging and discharging 

process, as evidenced by the solid-solution behavior sloping electrochemical curves and superior 

electrochemical performance of various mixed-TM P2 compounds.30,32,37,38 However, the 

conventional way of discovering new P2 materials still involves a significant number of trail-

and-error attempts, making it difficult to predict and identify prospective compounds. Taking the 

twenty first and second row transition elements into consideration, the composition space of 

mixed-TM P2 compounds is enormous as the ratios of TM elements are adjustable as well.  

 

1.2.2 Challenges and opportunities of machine learning in layered P2 oxides research  

At the same time, studies of mixed-TM layered P2 oxides from computational 

approaches are rarely found. Current computational studies of P2-Na#MO2 materials are 

restricted to single TM oxides systems.39–41 The lack of computational studies prevents 

researchers from delving deeper into the mechanisms of how TM substitution can suppress the 

occurrence of phase transition and improve the electrochemical performance of single-TM P2 

Na#MO2 materials. It is still unclear how TM substitution and mixing could affect Na diffusion 
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kinetics of mixed-TM P2 Na#MO2 materials. Thus, ab initio study on mixed-TM P2 Na#MO2 

with accurate control on stoichiometry is crucial. 

One key limitation of previous computational studies is that a pure ab initio calculation 

strategy is limited in speed. Thus, the cluster expansion approach is usually adapted in 

combination with first-principles calculations to parametrize the energies of structures with 

different sodium concentrations and orderings. However, the number of candidate clusters to 

compute grows exponentially with the number of species, the supercell size, possible oxidation 

states, and spin states of elements.42 

 

1.2.3 Approach to study of layered P2 oxides 

Over the past few years, dramatic advances have been made in calculating materials 

properties quickly and accurately based on quantum-mechanical approaches. To accelerate the 

process of materials discovery, first principles computational workflows based on density 

functional theory (DFT) have been widely applied to the investigation and discovery of new 

materials. At the heart of DFT are the Hohenberg-Kohn (HK) theorem and Kohn-Sham (K-S) 

equation, which states that ground-state observables of any system of interacting particles are 

functionals of electron density 𝑛(r).43 In other words, the ground state energy of a system could 

be determined or approximated once the system’s unique electron density in three spatial 

coordinates is obtained. The total energy from K-S equation is written as: 

 𝐸VW[𝑛] = 	𝑇[[𝑛] + ]𝑉_#`(r)𝑛(r)𝑑8r +	𝐸b[𝑛] + 𝐸#c[𝑛], 
(1.1) 

where 𝑉_#`	is the external potential acting on the electrons due to the nuclei,	𝑇[ is the 

independent-particle kinetic energy 
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 𝑇[ =
1
2d]|∇∅h|(𝑑8r

h

, (1.2) 

𝐸b is the Hartree (or Coulomb) energy of electrons 

 
𝐸b = ]

𝑛(r)𝑛(𝒓j)
|r − 𝒓j| 𝑑8r𝑑8𝒓j, 

(1.3) 

and 𝐸#c	is the exchange and correlation energy accounting for the interactions among electrons.  

In the study of layered P2 oxides, the DFT-based energy calculation of different Na 

vacancy ordering structures is the key part. Through performing the energy calculation of 

different Na vacancy ordering structures, we could estimate the stability of Na ordering 

configurations with different Na concentrations. The pseudobinary 0-K stability diagram for each 

mixed-TM composition could then be constructed. The average Na intercalation potential 

(voltage profile) of cathode materials can be derived using the computed energies as well.    

Though the Hohenberg-Kohn (HK) theorem and Kohn-Sham (K-S) equation have made 

the calculation of periodic systems such as crystalline solids’ energy a practical and routine 

procedure, DFT simulations are generally restricted to the scale of hundreds of atoms. A single 

energy calculation of a structure takes hours to complete. For ternary or quaternary mixed-TM 

layered P2 oxides, the number of candidate structures to be computed is > 10m taking the 

possible arrangement of TMs and Na-vacancy orderings into consideration. Ternary or 

quaternary mixed-TM layered P2 oxides systems are thus cost-prohibitive and cannot be 

satisfactorily addressed with the traditional DFT approach due to their enormous configuration 

spaces.  

It is therefore our view that this gap can be addressed via the integration of DFT 

calculations and the graph network machine learning (ML) approach (MatErials Graph 

Network). Graph neural networks are a new ML framework that operates on a graph and 
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supports both relational reasoning and combinatorial generalization.24 For crystals, graph-based 

representations are a natural choice. Essentially, the atoms form the nodes in the graph and the 

bonds form the edges. Given a graph 𝐺, a node vh is characterized as an atomic attribute vector 

for atom 𝑖. Edge 𝐸 = {(𝑒s, 𝑟s, 𝑠s)}sw3:D_  denotes the bond between atoms, where 𝑒s is the  

bond attribute vector for bond 𝑘, 𝑟s and 𝑠s are the atom indices forming bond 𝑘, and 𝑁_ is the 

total number of bonds. To represent the crystal level or state attributes such as temperature of the 

system, the global state vector u is included and updated in the series of update operations. The 

architecture of the graph neural network models is provided in Figure 1.2. 

In this topic, we will use Na#Co345Mn5O( and Na&.zCo&.(Mn&.(Ti&.(Ni&.(Ru&.(O( as 

model systems to demonstrate how investigation of Na ordering can be carried out using a 

combined first-principles computational and MEGNet ML approach. We will first conduct high-

throughput DFT calculations of mixed-TM layered P2 oxides with different cell sizes and Na 

 

Figure 1.2: Architecture for the MatErials Graph Network (MEGNet) model. Each model is 
formed by stacking MEGNet blocks. The embedding layer is used when the atom attributes 
are only atomic numbers. In the readout stage, a set2set neural network is used to reduce sets 
of atomic and bond vectors into a single vector. The numbers in brackets are the number of 
hidden neural units for each layer. Each MEGNet block contains a MEGNet layer as well as 
two dense layers. The “add” arrows are skip connections to enable deep model training. 
Reprinted with Permission from Ref. [24]. Copyright 2019 American Chemical Society. 
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vacancy ordering patterns to generate high quality training and validation data. All the generated 

structures and their corresponding DFT results will then be applied to the construction of a 

predictive graph-based deep learning model. The optimized model will be extended to predict the 

energy from structure and search new ground state configurations. The two sub-projects under 

the layered P2 oxides topic are presented as follows. 

Project 1: Detailed study of transition-metal mixing on Na ordering and kinetics in 

Na𝒙Co𝟏4𝒚Mn𝒚O𝟐 using first principles calculations. In this project, we use DFT calculations to 

probe the fundamental relationships between transition-metal mixing, phase diagrams and Na 

diffusion kinetics in the P2 Na#Co345Mn5O( model system. By employing ab initio molecular-

dynamics simulation and nudged elastic-band calculations, we seek to identify the relative 

influence of TM composition on Na site energies and Na diffusion barrier. This fundamental 

investigation aims at providing a theoretical framework for optimization of mixed-TM 

compositions and filling the knowledge gap in layered P2 oxides.  

Project 2: Deep learning driven study of Na𝟎.𝟔Co𝟎.𝟐Mn𝟎.𝟐Ti𝟎.𝟐Ni𝟎.𝟐Ru𝟎.𝟐O𝟐 cathode 

material In this work, we will present our research efforts to overcome the imperfections in the 

conventional first-principle computational approaches utilizing deep learning neural networks. 

We extend the universally generalizable, high-performance MatErials Graph network (MEGNet) 

model24 to the high-entropy Na&.zCo&.(Mn&.(Ti&.(Ni&.(Ru&.(O( model system for fast and 

accurate calculation of different Na-vacancy ordering configurations’ formation energies. This 

investigation is expected to provide a robust foundation for further integration of novel machine 

learning techniques into simulations of complex chemistry. 
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1.3 X-ray Absorption Spectroscopy 

1.3.1 Motivation and overview 

X-ray absorption corresponds to an intrinsically quantum mechanical phenomenon based 

on the X-ray photoelectric effect. When incident X-ray photons are absorbed by an atom, the 

core-level electron is removed from its quantum level. Due to the photoelectric effect, the 

absorption will not occur when the binding energy of the electron is less than the energy of the 

incident X-ray. In XAS, the absorption coefficient, µ(𝐸) is measured as a function of X-ray 

energy 𝐸. Detailed descriptions of X-ray absorption theory and equation have been included in 

many excellent books and review papers.44,45  

X-ray absorption spectroscopy (XAS) has been widely used in the investigation of the 

properties, physical states and the local environments of materials.46–48 The X-ray absorption fine 

structure (XAFS) is typically divided into two regimes: X-ray absorption near-edge structure 

(XANES) and extended X-ray absorption fine structure (EXAFS).49 The XANES is a fingerprint 

of oxidation states and coordination chemistries of the absorbing atom. For example, K-edge 

XANES spectra have been widely used to probe the oxidation state changes of TMs during 

charging and discharging of mixed-TM layered P2 oxides.38,50 Quantitative XANES 

interpretation is a challenging problem and is usually conducted in combination with principal 

component analysis or least-squares fitting.51,52 The EXAFS, on the other hand, could be 

interpreted in a more quantitative and accurate way coupling with theoretically calculated XAFS 

spectra.53 
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1.3.2 Challenges and opportunities of machine learning in XAS  

One of the main challenges of interpreting XANES and EXAFS lies in obtaining 

reference spectra to fit the unknown spectra; experimentally measuring XAFS spectroscopy is 

laborious and time-consuming,54–56 requiring X-ray beams of finely tunable energy that are 

accessible only through synchrotron radiation facilities.45 The measurement data are therefore 

sporadic. 

Publicly available XAS databases have demonstrated to be valuable references for 

analysis. They are hosted across the world. However, existing XAS databases provide limited 

coverage of chemical space. To the authors’ knowledge, the largest open reference database54 for 

XAS is initiated in the 1990s, which contains a mere 271 experimental XAS spectra that cover 

39 elements of the periodic table. For each element, only a few common compounds’ spectra are 

available in the databases. Hence one main issue in XAS interpretation is the lack of available 

high-resolution reference spectra.   

Another challenge of XAS spectra interpretation is that researchers rely on visual spectral 

comparisons for the interpretation of unknown spectra. Because of the steep learning curve, it 

takes years to acquire the spectral interpretation skills. Spectral interpretation knowledge sharing 

is limited across teams, organizations, and projects. As researchers are exposed to a small set of 

spectral data at a time, the dependence of spectral features on the absorbing species’ coordination 

environments or chemical properties is usually evaluated with limited chemical compounds 

coverage.57–60 Also, it explains why the search for generalizable relationships between spectral 

characteristics and the coordination environments of XAS absorbing species is so challenging.61 

Meanwhile, we observe a resurgence of interest in integrating machine learning with the 

quantitative and qualitative interpretation of XAS. For example, Timoshenko et al.62 have 
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recently shown that the coordination number of Pt atoms could be predicted by leveraging the 

neural network model trained on the K-edge XANES of Pt nanoparticles. The Lu group has 

demonstrated that the convolutional neural network can be used to extract the local coordination 

environment of 3d TM species from their K-edge XANES with high accuracy.63 Nevertheless, 

these pioneering efforts are either validated on relatively small (~100) datasets or on datasets 

with limited chemical diversity.  

 

1.2.3 Approach for calculations of XAS spectra  

We have selected the latest version (v9) of FEFF for calculations of XAS spectra. The 

FEFF code is an implementation of the real-space Green’s function (RSGF) approach. The 

FEFF-computed spectra have been shown to yield great agreement with experimentally 

measured spectra. The XAS spectra computations are relatively cost-effective and require 

minimum adjustable parameters. Schematically, the contribution to the X-ray absorption 

coefficient 𝜇(𝜔) at X-ray energy ℏ𝜔 is proportional to the total absorption cross-section 𝜎(𝜔). 

This cross-section could be computed based on Fermi’s golden rule given by 

 𝜎(𝜔) = 4𝜋(
𝜔
𝑐 d|〈0|𝑑|𝐹〉|(𝛿(𝜔 + 𝐸& − 𝐸�),

�

 (1.4) 

where 𝑑 represents the coupling to the X-ray field, 𝐸& is the ground-state energy, 𝐸� is the 

excited-state energies.64 The real-space Green’s function (RSGF) approach is adopted to reduce 

the computational cost.  In terms of the Green’s function, 𝐺(𝑟, 𝑟j; 𝐸), the absorption coefficient, 

𝜇, from a given core level 𝑐 is given by: 

 𝜇 = − 3
�
𝐼𝑚〈𝑐|𝜖 ∙ 𝑟𝐺(𝑟, 𝑟j; 𝐸)𝜖 ∙ 𝑟|𝑐〉. (1.5) 
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The spectral representation of the Green’s function is an effective propagator in the 

presence of a core hole and multi-electron effects. The FEFF code computes the full propagator 

𝐺 incrementally using matrix factorization. This simplified and efficient ab initio approach 

makes FEFF possible to produce a wide variety of X-ray spectra.  

 

1.2.4 Machine learning for XAS spectra interpretation 

As XANES spectra provide precious information regarding the chemical environments of 

absorbing species, machine learning algorithms can be adapted to understand the quantitative 

relationship between XANES spectral features and the local chemical environment of absorbing 

species. In this topic, the computed spectral data is considered as a collection of the individual 

spectrum. Each spectrum is converted and presented as a vector of 200 intensity value, thus 

integrating seamlessly with off-the-shelf machine learning tools. The local environment features 

of absorbing species are preprocessed with the coordination environment assessment algorithm 

developed by Zimmermann et al.65 This process converts a single absorption site’s local 

chemical environment to a ranking label, which represents the mixed state of the site’s local 

environment. These coordination environments ranking labels are then used as the target 

information for follow-up supervised classification. 

We choose the five most commonly used classifiers includes random forest,  𝑘-Nearest 

Neighbor (𝑘NN), multi-layer perceptron (MLP), support vector machine (SVM) and 

convolutional neural networks (CNNs) in the coordination environment classification problem. 

Brief summaries of each machine learning classifier are as follows.   

The 𝑘-Nearest Neighbor classification is the most straightforward nonparametric decision 

rule. The classifier labels an unclassified observation by the majority label among its 𝑘-nearest 
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neighbor in the training set. The distance between two points 𝑋 = (𝑥3, 𝑥(,⋯ , 𝑥�) and 𝑌 =

(𝑦3, 𝑦(,⋯𝑦�) in the training set is computed using distance metrics. Popular distance metrics for 

𝑘NN classifiers are Euclidean distance (𝐷(𝑋, 𝑌) = �∑ |𝑥h − 𝑦h|(�
hw3 ), Manhattan 

distance	(𝐷(𝑋, 𝑌) = ∑ |𝑥h − 𝑦h|�
hw3 ), etc. 

The random forest classifier is an ensemble classifier that uses the decision tree as base 

classifiers.66 The decision trees are created by considering a random sample of 𝑚 training 

predictors from the full set of 𝑝 predictors through replacement. In other words, in building a 

random forest, at each split in the tree, the random forest algorithm is forced to consider only a 

subset of training samples. As each tree is independently produced based on a random subset of 

the predictors, decision trees in a random forest are weakly correlated. The random forest 

algorithm generates classification decisions by taking the average of the class assignment 

probabilities calculated by all tree.67  

The SVM is a generalization of a simple and intuitive classifier called the maximal 

margin classifier.68 SVM aims at solving the over-fitting problem as test observations are 

classified based on the adaptive margins. It can be seen as an extension of the support vector 

classifier by defining relevant kernel functions69 in order to accommodate a non-linear boundary 

between the classes. The separating hyperplane of SVM is computed using a kernel function of 

the form 𝐾(𝑥h, 𝑥h�). A kernel function is a function that quantifies the similarity of two 

observations. In SVM, non-linear kernels such as polynominal kernel or radial kernel are popular 

choices. The advantage of using a non-linear kernel rather than the standard linear kernel 

(𝐾(𝑥h, 𝑥h�) = ∑ 𝑥h�
�
�w3 𝑥h��) is that the support vector classifier will have much more flexible 

decision boundaries. It can help to classify the non-linear data. In our topic, we adapt the radial 

kernel, which takes the form 



 

 15 

 𝐾(𝑥h, 𝑥h�) = exp	(−𝛾 ∑ (𝑥h� − 𝑥h��
�
�w3 )(). (1.6) 

 

MLP is one of the most common neural networks in use. Typically, an MLP network 

consists of multiple layers of connected neurons regarded as the processing units. By choosing 

an error function, the learning process of an MLP neural network is based on the minimization of 

the error function. In each iteration, the error at the output is fed backward through the network. 

The weights of neurons get updated adaptively. Training of the MLP neural network ends once 

the error reaches a convergence criterion.  

 Deep CNNs were proposed by LeCun et al.71 in the 1980s. The CNNs are feedforward 

networks consist of convolutional and pooling (or subsampling) layers. The CNNs require no 

manual feature engineering and can learn the representations from the image by only feeding the 

image itself into the model. Figure 1.3 illustrates the typical CNN architecture for a spectrum 

classification task. In the XANES spectra interpretation task, computed spectra could be 

 

Figure 1.3: CNN spectrum classification pipeline.  Reprinted with Permission from Ref. [70].  
Copyright 2019 Nature Publishing Group 
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considered as 1-D images. Using a 1-D convolutional layer as the first layer of CNNs, we can 

directly input a spectrum to the network, followed by several stages of convolution and pooling. 

The last fully connected layer outputs the spectrum’s coordination environment class labels.   

In this topic, we will capitalize on the recent advances in ab initio computations of X-ray 

spectra and machine learning techniques to address the needs of efficient XAS interpretation. 

The goal can be broken into three sub-projects. 

Project 1:  Developing a high-throughput framework to generate a reference XAS 

database (XASdb) spanning tens of thousands of materials. In this project, we will discuss 

the development of a high-throughput framework to generate a reference XAS database (XASdb) 

for all materials in the Materials Project17 database. We select the latest version (9) of the 

popular FEFF program as our software of choice in this work. FEFF is a program for ab initio 

multiple scattering calculations of XAFS and various other spectra for clusters of atoms. The 

high-throughput framework combines the power of the Python Materials Genomics (pymatgen) 

materials analysis library12 with the FireWorks workflow management software11 to carry out 

hundreds of thousands of XAFS calculations using the FEFF9 code.64 

Project 2: Implementing an automated XANES spectra matching algorithm capable 

of identifying similar XANES spectra from the computed reference XASdb. The second 

project involves the application of spectral matching and comparative algorithm on the computed 

reference XASdb. In this project, we will present the development of a novel automated XANES 

spectra matching algorithm that leverages on ensemble learning techniques to identify similar 

XANES spectra from our computed reference XASdb. We believe the combination of the 

XASdb with these machine-learned spectra matching tools will be an invaluable resource to the 
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materials research community by significantly enhancing the efficiency at which experimental 

XAS spectra can be analyzed.   

Project 3: Developing a novel spectral interpretation algorithm that allow for 

identification of local environments of absorbing atoms. The development of the largest 

computed reference XASdb also changes the approaches to the interpretation of XANES spectral 

data. In the classical analysis of XANES, researchers rely on comparisons between the 

experimentally measured sample spectrum and reference spectra of known compounds to 

estimate ratios of various standard compositions in a sample material. We believe the most 

useful way to view the theoretically computed XASdb is as an input dataset for machine learning 

based quantitative XANES characterization. In this project, we will discuss the state-of-the-art 

development of general machine learning approaches to identify the local structure motifs from 

XANES rapidly. Our work covers 33 elements in 259 distinct coordination environments. A 

broad repertoire of machine learning tools is systematically evaluated for XANES spectra 

characterization. We propose to use the random forest classifier on the local chemical 

environment characterization from the XANES. Finally, we demonstrate that the usage of feature 

importance measures opens the ‘black box’ implementation of machine learning techniques in 

XAS characterization and enhances the awareness of interpretability in materials informatics. 
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 Effects of Transition-Metal Mixing on Na Ordering 

and Kinetics in Layered P2 Oxides 

2.1 Introduction 

 Rechargeable sodium-ion batteries (SIBs) have recently emerged as promising candidates 

for large-scale energy-storage applications.29–31  Sodium (2.3% of Earth’s crust) is 3 orders of 

magnitude more abundant than lithium (0.0017%).27,28 More importantly, sodium-ion battery 

chemistry enables new cell designs that can potentially yield significant advantages over lithium-

ion chemistry. For instance, the possibility of using Al foil as an anode current collector instead 

of the more expensive Cu makes it probable that Na-ion batteries can be produced at less than 

half the cost of Li-ion ones.72 Also, a great variety of sodium superionic conductors are known, 

73–76 paving the way for the potential development of all-solid-state Na-ion batteries that may be 

safer with higher-energy density than traditional architectures based on organic liquid 

electrolytes. 

 One of the key challenges in SIBs is the development of cathodes with sufficiently high 

voltage and capacity. The most promising candidates are the layered sodium transition-metal 

(TM) oxides Na#𝑀O(, which have been extensively investigated as cathodes in SIBs due to their 

excellent electrochemical performance.32,33,77–86 Here, M can be either a single TM, e.g., Co, Ni, 

Mn, Fe, V, or Cr, or a mixture of these TMs, sometimes with other elements such as Li. Unlike 

the layered Li𝑀O(, which exists only in the O3 polymorph, Na#𝑀O( compounds exist in both 

the P2 and O3 stackings. In this stacking classification first proposed by Delmas, Fouassier, and 

Hagenmuller34, P and O denote the environment occupied by the alkali atom (prismatic and 

octahedral, respectively) between the MO6 octahedral stacking sheets, while the numerals 2 and 
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3 refer to the number of MO2 layers per repeating unit. P2 Na#𝑀O( generally outperform their 

O3 analogs in terms of the reversible capacity and cyclability.31 

The P2 Na#𝑀O( crystal structure is shown in Fig. 2.1. Na in P2 Na#𝑀O( can occupy two types 

of sites: The Na(1) site shares faces with two MO6 octahedra, and the Na(2) site shares only 

edges with MO6 octahedra. Adjacent Na(1) and Na(2) sites cannot be occupied simultaneously 

due to strong Coulombic repulsion. 

 

Figure 2.1 Crystal structure of P2 Na£MO(with ABBA-type layer stacking. Na occupies two 
distinct prismatic sites: The Na(1) site (yellow) shares faces with two MO6 octahedra, and the 
Na(2) site (blue) shares only edges. 

 For the single-TM P2 Na#CoO( and P2 Na#MnO(,35,36 potential drops related to the 

formation of biphasic states during the charge and discharge processes indicate the existence of 

dominant Na orderings across the entire Na insertion or deinsertion range. These orderings, 

especially for P2 Na#CoO(, have been extensively investigated using both experimental and 

computational approaches.39,41,87–90 The presence of ordered intermediate phases plays a critical 

role in the electrochemical performance of P2 cathodes, as highly favored orderings may 

introduce kinetic limitations that may, in turn, limit the achievable capacity. 

 Various mixed-TM P2 Na#𝑀5𝑀345
j O( and Na#𝑀5𝑀345

j 𝑀3454¤
jj O( have been 

investigated30,32,37,38,78,91,92 with the aim of eliminating phase transformations during the charge 
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or discharge process and extending the stability of the P2 phase over a wider Na intercalation 

region. Studies of binary or ternary TM P2 compounds suggest that Mn mixing can suppress the 

occurrence of long-range sodium orderings.31,32,92 Recent studies on a series of P2 Na#𝑀O( (M = 

Co, Mn) also suggest that a small amount of Co substitution with Mn in P2 Na#CoO( reduces the 

formation of stable Na orderings at certain Na concentrations and results in the solid-solution-

like behavior over a wide range of Na compositions.48,93 

 Previous computational studies have shown that the Na-ion diffusion in O3 layered 

Na#𝑀O( can be as facile as the Li analog,29 even though the difference in the ionic radius 

between Na+ (1.02 Å) and Li+ (0.76 Å) is substantial.94–96 Mo, Ong, and Ceder96 have also 

demonstrated using ab initio molecular-dynamics (AIMD) simulations that P2 Na#CoO( exhibit 

excellent Na conductivity over a wide range of Na concentrations. More recently, Guo and co-

workers97,98 showed that there is a strong correlation between the crystal structure and the Na 

diffusion in P-type Na0.62Ti0.37Cr0.63O2. In addition, the investigation of Na-ion conductivity in 

different com- pounds at the interphase layer of SIBs has been carried out using a combined 

experimental and theoretical approach.99 

 In this work, we present a density-functional-theory (DFT) study on the effects of 

transition-metal mixing on Na ordering and kinetics in layered P2 oxides using 

Na#Co345Mn5O( as a model system. The choice of the P2 Na#Co345Mn5O( system is 

motivated by the fact that this system has been well studied in experiments,32,48,93 providing a 

wealth of data for comparison and validation. We demonstrate that Co-Mn mixing reduces the 

energetic differences between Na orderings and present a theoretical framework to tune mixed-

TM compositions for optimal Na kinetics. 
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2.2 Methods 

2.2.1 Structure enumeration 

 All symmetrically distinct Na orderings in P2 Na#Co345Mn5O( for 𝑦 =

0, 1/3, 2/3, 1	are enumerated using the algorithm of Hart and Forcade.100 For the single-TM 

systems (𝑦 = 0, 1), enumerations are carried out at both 1/8 and 1/6 Na-concentration intervals, 

i.e.,	𝑥 = 0, 3
§
, 3
z
, 3
¨
, 3
8
, 8
§
, 3
(
, ©
§
, (
8
, 8
¨
, ©
z
, ª
§
, 1. For the mixed-TM systems, enumerations are carried out 

only at 	1/6 Na-concentration intervals, i.e., 𝑥 = 0, 3
z
, 3
8
, 3
(
, (
8
, ©
z
, 1, due to the lower symmetry of 

these systems. For each 𝑦, we first determine the lowest-energy Na, Co, and Mn orderings at 𝑥 =

2/3 within a √3𝑎 × √3𝑏 × 𝑐 supercell [Fig. 2.2(b)] to mimic initial synthesis Na concentrations 

of layered P2 cathodes. The supercell we use is comparable to those used in previous first-

principles investigations of layered Na TM oxides.88,101 The lowest-energy Co-Mn ordering at 

each 𝑦 is then retained at all other Na concentrations 𝑥. We note that it has been well established 

experimentally that Co and Mn generally form a solid solution in this system,93,102 and we 

discuss the implications of fixing the Co-Mn ordering in the results section. 

 

Figure 2.2 Supercells of P2 Na£Co34¯Mn¯O( used to enumerate Na and Co/Mn orderings, 
viewed along the [001] direction. Top view on the AB plane. 
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 To keep the number of orderings manageable, we adopt the following constraints in 

performing the enumeration of Na orderings at different Na concentrations: 

i. Three supercell sizes that comprise up to twelve formula units (f.u.), as shown in Fig. 2.2, 

are used. 

ii. Each 𝑃2 cell comprises two Na layers. For the mixed-TM systems, the Na concentrations 

in both layers are constrained to be equal to limit the total number of orderings. 

iii. Although Na can occupy both Na(1) and Na(2) sites, the simultaneous occupation of 

adjacent Na(1) and Na(2) sites is not allowed. Because of the large Coulombic repulsion 

between Na+, these structures are likely to be of too high energy to be of any interest. 

In total, structural optimization and total energy calculations of more than 5000 distinct 

structures at various Na concentrations and TM-mixing ratios are performed using an automated 

workflow implemented with the FIREWORKS scientific workflow software.11 The lowest-

energy structures of P2 Na#Co345Mn5O( are then adopted in subsequent calculations. 

 

2.2.2 Energy calculations 

All DFT energy calculations are performed using the Vienna ab initio simulation package 

(VASP) within the projector-augmented-wave approach101. Spin-polarized calculations are 

performed using a 𝑘-point density of at least 1000/(number of atoms in the unit cell) and an 

energy cutoff of 520 eV. The exchange-correlation functional used is the Perdew-Burke-

Ernzerhof (PBE)103 generalized-gradient approximation and the Hubbard 𝑈 extension to it (PBE 

+ 𝑈)104. The spherically averaged scheme of the on-site Coulomb interactions is adopted105,106, 

and the effective 𝑈 values used for Mn and Co are 3.9 and 3.32 eV, respectively, similar to the 

values used in the Materials Project17. These effective 𝑈 values are average values that have been 
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well tested to reproduce the energies of redox energies involving Mn3+/4+ and Co3+/4+ in 

accordance with the approach proposed by Wang, Maxisch, and Ceder105. Co3+ and Co4+ are 

initialized in low spin, and Mn3+ and Mn4+ are initialized in high spin, which are found to yield 

the lowest energy in P2 Na#Co345Mn5O(. All calculations are initialized in a ferromagnetic 

configuration107, and the total magnetic moment of the unit cell is constrained to the expected 

value determined from the Na concentration and the consequent oxidation states of Co and Mn. 

0-K stability diagram. —The pseudobinary 0-K stability diagram for each TM-mixing 

ratio 𝑦 is constructed by plotting the formation energy of each ordering 𝜎h at Na concentration 𝑥 

with respect to the fully sodiated and desodiated end members, given by the following equation: 

 

 Δ𝐸±
²³ = 𝐸(𝜎h) − 𝑥𝐸´NaCo345Mn5O(µ − (1 − 𝑥)𝐸(Co345Mn5O() (2.1) 

   

where 𝐸(𝜎h), 𝐸´Na#Co345Mn5O(µ, and 𝐸(Co345Mn5O() are the total DFT energies per f.u. of 

the ordering: 𝜎h , NaCo345Mn5O(, and Co345Mn5O(, respectively. The stable phases are then 

identified using the convex-hull construction108. Because no entropic effects (e.g., vibrational, 

configurational, etc.) are taken into account, these diagrams are by definition 0-K stability 

diagrams and not finite-temperature phase diagrams. 

Intercalation potential.—The average intercalation potential V of the cathode between two stable 

Na ordered phases at Na concentrations 𝑥3 and 𝑥( is calculated using the following 

expression109: 

 
V = 	−

𝐸´Na#·Co345Mn5O(µ − 	𝐸´Na#¸Co345Mn5O(µ − (𝑥( − 𝑥3)𝐸(𝑁𝑎)
(𝑥( − 𝑥3)𝑒

, 
(2.2) 

where E is the DFT total energy and 𝑒 is the electronic charge. 
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2.2.3 Ab initio molecular-dynamics simulations 

AIMD simulations are carried out in the constant volume (NVT) ensemble at 1000 K 

with a Nosé-Hoover thermostat110,111. The aim of these calculations is not to obtain converged 

statistics for an estimate of the diffusivity but rather to elucidate the Na site occupancies and 

diffusion mechanisms in P2 Na3/(Co345Mn5O(, 0 ≤ 𝑦 ≤ 1, at nondilute Na concentrations. As 

such, these calculations are performed at a single, relatively high temperature (no melting is 

observed in our simulations), and simulations are carried out for a relatively short time of 80 ps. 

To reduce computational costs, all AIMD simulations are non-spin polarized, and a smaller 

plane-wave energy cutoff of 300 eV and Γ-centered 1 × 1 × 1	𝑘-point grid are employed. 

Supercells of 4 × 4 × 1	 (32 formula units) and 3√3 × 2√3 × 1 (36 formula units) are used for 

the single- and mixed-TM systems, respectively. The time step of simulations is 2 fs. The initial 

models for the simulations are obtained by removing half of the Na atoms in each Na layer from 

fully sodiated structures to model compounds at Na concentration 𝑥 = 1/2. 

2.2.4 Climbing-image nudged elastic-band calculations 

Na migration barriers are calculated using the climbing-image nudged elastic-band 

method (CINEB)112,113. The PBE generalized gradient approximation functional is adopted in the 

NEB calculations to exclude the impact of electron transfer on the diffusion barrier calculation29. 

Supercells of 4 × 4 × 1 (32 formula units) and 2√3 × 2√3 × 1 (24 formula units) are used for 

mixed- and single TM systems, respectively. A Γ-centered 2 × 2 × 2	𝑘-point grid is used, and 

each interpolated image is relaxed until the forces on each atom are less than 0.05 eV Å43. 

At a dilute Na concentration, to isolate the role of the transition metal on Na diffusion, 

different Na(1) site configurations are created in the lattice of CoO2 with Ni, Mn, and Fe as 

dopants. Na migration barriers from a Na(2) site to its nearest Na(2) site via different Na(1) sites 
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are evaluated. We also adopt the Co(/8Mn3/8O( framework to study the influence of the Ni 

dopant on the Na migration energy in the P2 ternary TM oxides. 

All analyses are performed using the Python Materials Genomics (PYMATGEN) 

package12. 

 

2.3 Results 

2.3.1 0-K stability diagram and Na ordering 

1.  NaCoO2 

The stability diagram, Na ordering, and diffusion in P2 Na#CoO( have been extensively 

investigated through DFT calculations39,41,88–90,96 and electrochemical characterization35,114. 

Figure 2.3 shows the computed 0-K stability diagrams of Na#CoO( using the PBE and PBE + 𝑈 

functionals. These 0-K stability diagrams are in good agreement with previous studies. Stable 

orderings of Na#CoO( are found at 𝑥 = 3
§
, 3
¨
, 3
8
, 3
(
, (
8
, 8
¨
	 with the PBE approximation, as shown in 

Fig. 2.3(a). Although our study does not identify any stable orderings at 𝑥 = 5/6	 and 𝑥 = 7/8, 

the formation energy of the lowest-energy orderings at these concentrations are within 10 meV 

f.u.-1 of the convex hull. The two stable Na orderings previously reported by Berthelot, Carlier, 

and Delmas35 at these concentrations require larger supercells than those used in our high-

throughput study. Nevertheless, these high-Na-concentration compositions are of less practical 

interest given that the layered P2 materials are typically synthesized at 𝑥 ≤ 0.75. For the PBE + 

𝑈 functional, stable Na orderings are found at the same Na concentrations as the PBE functional, 

with the exception of 𝑥 = 1/8. Also, the lowest-energy orderings at 𝑥 = 5/6	 and 𝑥 = 7/8 are 

significantly higher in energy above the convex hull (56 and 45 meV f.u.-1, respectively), 

consistent with previous works35,41. 
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Despite the better qualitative agreement of the stable Na orderings calculated without the 

Hubbard 𝑈 parameter, especially at lower Na concentrations, we find that PBE + 𝑈 reproduces 

absolute voltages much better than PBE [Fig. 2.3(c)]. This is due to the better self-interaction 

error cancellation for the redox reaction with the application of the Hubbard 𝑈.115 The agreement 

between our DFT-predicted voltage profiles and experimental studies is on par with the previous 

first-principles investigation of the P2 systems.41 

 

Figure 2.3 (a) PBE and (b) PBE + U 0-K stability diagrams of Na£CoO(. Black line, convex 
hull; red dots, stable orderings; black cross, unstable orderings. (c) Comparison of PBE and 
PBE + U voltage profiles with the experimental data from Ref.35. 

 

2.  NaMnO2 

Figures A.1(a) and A.1(b) show the PBE and PBE + 𝑈 0-K stability diagrams of 

Na#MnO(. The stable Na orderings with both functionals are given in Figs. A.2 and A.3 in 

Appendix A. Although the Na concentrations at which stable orderings occur are the same in 
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PBE and PBE + 𝑈, we find considerable differences in the predicted stable Na orderings at 𝑥 =

1/2. The PBE + 𝑈 ground state for Na3/(MnO( has only Na(2) sites occupied, while the PBE 

ground state shows characteristic “row” motifs formed by alternating Na(1) and Na(2) lines, 

similar to Na3/(CoO( . The difference in orderings is likely due to a greater energy penalty 

associated with the face-sharing Na(1) sites due to the Jahn-Teller distortion of Mn3+ , which is 

better captured with the application of the Hubbard 𝑈.116,117 

To our knowledge, the experimental stability diagram of P2 Na#MnO( has not been 

previously reported because O3 Na#MnO( is significantly more stable than the P2 structure at 

low temperatures36,118,119. Similar to Na#CoO(, we find that the PBE + 𝑈 voltages are in much 

better agreement with experimental voltages compared to PBE [see Fig. A.1(c)]. 

3.  Na𝒙Co𝟏4𝒚Mn𝒚O𝟐, 𝒚 =
𝟏
𝟑
, 𝟐
𝟑
   

For Na#Co345Mn5O(, we discuss mainly the PBE + 𝑈 results. With the presence of a 

non-negligible amount of Mn, these systems are likely to exhibit strong 3d localization, for 

which the application of the Hubbard 𝑈 is appropriate. The PBE (no 𝑈) results are given in Figs. 

A.4 and A.5 in Appendix A for interested readers. Figure A.6 shows the lowest-energy 

Na#Co345Mn5O( structures at 𝑥 = 2/3 and 𝑦 = 3
8
, (
8
. We find that the lowest-energy structures 

in both instances exhibit a hexagonal ordering pattern similar to that observed in other mixed-

TM layered P2 systems. It is well established in the experimental literature [14,38,47] that the 

mixed Co-Mn system tends to exhibit a solid-solution behavior; i.e., no superstructure ordering is 

observed for Co and Mn. Indeed, we find that the Co-Mn ordering has a small effect on relative 

energies, regardless of the specific Na ordering (see Tables A.1 and A.2 in Appendix A). 

  From Figs. 2.4(a) and 2.4(b), we make the observation that the mixed-TM 

Na#Co345Mn5O( are characterized by the presence of many metastable orderings whose 
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energies are within 30 meV f.u.-1 of the convex hull. This is unlike the single-TM Na#𝑀O( 

[Figs. 2.3(b) and A.1(b)], which exhibit distinct stable Na orderings that are substantially lower 

in energy compared to other orderings; i.e., there is a large energy gap between the ground-state 

ordering and the next lowest-energy ordering. 

 

Figure 2.4 PBE + U 0-K stability diagrams of (a) Na#Co(/8Mn3/8O( and (b) 
Na#Co3/8Mn(/8O(. The solid black line shows the convex hull with red dots representing 
stable orderings on the hull. The black cross dots show unstable orderings. (c) and (d) show 
the comparison between PBE + 𝑈 and experimental voltage profiles of Na#Co34¯Mn5O(	for 
y	 = 1/3	and 2/3. Experimental voltage profiles for Na#Co(/8Mn3/8O( and 
Na#Co3/8Mn(/8O( (x shifted by −0.2) are from Refs.93and 32, respectively. 

Figures 2.4(c) and 2.4(d) compare the PBE + 𝑈 voltage profiles for Na#Co(/8Mn3/8O( 

and Na#Co3/8Mn(/8O( with the electrochemically measured voltage profiles of Wang et al.32. 

Again, we find that the calculated voltages are in relatively good agreement with the 

experimental ones. For Na#Co(/8Mn3/8O(, the small potential drop at 𝑥 = 1/2 in the PBE + 𝑈 
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voltage profile indicates the formation of a stable ordered phase during the deintercalation or 

intercalation process, in agreement with previous experiments32,93. It should be noted that, for 

Na#Co3/8Mn(/8O(, we shift the experimental voltage curve by −0.2 Na concentration to 

properly align the computed and experimental voltage profiles. This shift accounts for the 

artificial oversodiation (which results in Na stoichiometry > 1 in experiments) observed in the 

electrochemical measurements32. 

2.3.2 Na diffusion kinetics 

To identify the effect of TM mixing on Na kinetics, we perform AIMD simulations on 

Na#Co345Mn5O( at a single Na concentration of 𝑥 = 1/2 and Mn concentrations of 𝑦 =

0, 3
z
, 3
8
, 3
(
, (
8
, and 1 in our study. The choice of 𝑥 = 1/2 is motivated by the fact that strong Na 

orderings are typically observed at that Na concentration in the single TM, and even in mixed-

TM systems, which may have a significant effect on Na kinetics. 

We classify the Na sites of Na3/(Co345Mn5O( into four types according to our Co-Mn 

frameworks: 

i. Na(2), which shares only edges with MO6 octahedra; 

ii. Na(1)Mn-Mn, which shares faces with two MnO6 octahedra; 

iii. Na(1)Co-Co, which shares faces with two CoO6 octahedra; and 

iv. Na(1)Co-Mn, which shares faces with one CoO6 octahedra and one MnO6 octahedra. 

Figure 2.5 shows the isosurfaces of the Na probability density distribution extracted from the 

AIMD simulations of the ground-state TM orderings. The probability density distribution is 

calculated by averaging the Na occupation on a uniform grid over the trajectories during AIMD 

simulations of 25 ps. As can be observed from Fig. A.8, thermal equilibration is achieved for all 
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systems after 10 ps of simulation time, and the relevant statistics are obtained after this 

equilibration period. In the ground-state orderings of 𝑦 = 1/3 and 2/3, all Na sites either share  

edges with MO6 octahedra or share faces with only one type of TM; i.e., there are no Na(1)Co-Mn 

sites. We relax this constraint shortly. We may observe that the Na trajectories in the single TM 

[Figs. 2.5(a) and 2.5(b)] exhibit the typical honeycomb network observed in previous studies96. 

At 𝑦 = 1/3 [Fig. 2.5(d)], we observe that there is a clear preference for Na diffusion to occur via 

 

Figure 2.5 Isosurfaces of Na ion (yellow) probability density distribution 𝑃 at 𝑃 = 𝑃max	/12 
for P2 Na3/(Co345Mn5O(	 at 1000 K, top view from the AB plane. Metallic blue dots indicate 
the positions of Na(1)Co-Co sites, and red dots represent the positions of Na(1)Co-Mn sites. 
Magenta circles correspond to Na(1)Mn-Mn site positions. All simulations are carried out using 
ground-state Co-Mn frameworks of P2 Na3/(Co345Mn5O( except P2 Na3/(Co(/8Mn3/8O(

∗ . 
The Na3/(Co(/8Mn3/8O(

∗  framework in (e) is randomized such that it contains all three types 
of Na(1) site. This framework is different from the ground-state Co-Mn framework of 
Na3/(Co(/8Mn3/8O( as shown in Fig. A.6(a). 
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the Na(2) and Na(1)Co-Co sites, which form a percolating diffusion network, while the Na(1)Mn-Mn 

is clearly less preferred. At a higher concentration of Mn [𝑦 = 2/3, Fig. 2.5(g)], the Na 

trajectories once again follow the honeycomb topology given that a percolating diffusion  

network cannot be formed from Na(2) and Na(1)Co-Co sites. 

To obtain a more quantitative assessment of site preferences, the Na site-occupancy 

fractions (SOFs) are estimated from the AIMD trajectories for the four kinds of sites in 

Na3/(Co345Mn5O(. Each Na is assigned to the closest site within the Na honeycomb network. 

The average Na SOFs are then given by 

 
𝑆𝑂𝐹(𝑖, 𝑡) =

1
𝑡𝑁Â

] 𝑁h(𝑡j)𝑑𝑡j
`

&
, 

(2.3) 

wherein 𝑁h(𝑡j) is the total number of Na+ ions in sites of type 𝑖 at time 𝑡j and 𝑁Â is the total 

number of Na+ ions in the system. 

Figure 2.6 summarizes the average Na SOFs. Here, we present the results for an 

additional AIMD simulation of the 𝑦 = 1/3 structure where the Co-Mn ordering is randomized 

in such a way that it contains all four types of Na sites (denoted as 𝑦 = 1/3∗). We notice that the 

randomized TM ordering and the ground-state one are close in energy for Na3/(Co(/8Mn3/8O( 

with identical Na ordering (< 10 meV atom-1). We may make the following observations. 

i. At all Mn concentrations, the Na(2) site is clearly the most preferred site, with an 

average SOF of approximately 0.6. 

ii. At 𝑦	 < 1/2, we find that Na(1)Co-Co is the next most-preferred site, followed by 

Na(1)Co-Mn. Na(1)Mn-Mn is the least preferred. The higher SOF of Na(1)Mn-Mn 

compared to Na(1)Co-Mn at 𝑦 = 1/3 is an artifact, as the ground-state 𝑦 = 1/3  

ordering does not contain Na(1)Co-Mn sites. When the Co-Mn ordering is 

randomized (𝑦 = 1/3∗), the SOF of Na(1)Co-Mn is clearly higher than Na(1)Mn-Mn. 
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iii. At 𝑦 = 1/2, the SOF of the Na(1)Co-Co decreases substantially given that there are 

more Na(1)Co-Mn sites. Nevertheless, both Na(1)Co-Mn and Na(1)Co-Co exhibit 

significantly higher SOFs than Na(1)Mn-Mn. 

iv. Finally, at 𝑦 = 2/3, the much higher concentration of Mn results in an almost 

equal Na(1)Co-Co and Na(1)Mn-Mn SOF. 

 

Figure 2.6 Average Na SOFs in P2 Na3/(Co345Mn5O( from AIMD simulations at 1000 K. 
The average SOFs are estimated from 25-ps AIMD simulation results. All AIMD simulations 
are carried out using ground-state Co-Mn frameworks of P2 Na3/(Co345Mn5O( except	y =
1/3∗, in which the Co-Mn ordering is randomized such that it contains all four types of Na 
sites. 

 

2.4 Discussion 

A.  Na ordering in P2 Na𝒙Co𝟏4𝒚Mn𝒚O𝟐 

We provide an overview of the P2 Na#Co345Mn5O( 0-K stability diagram as a function 

of 𝑥 and 𝑦 in Fig. 2.7, with the stable orderings indicated by blue circles. The background color 

indicates the formation energy relative to the fully sodiated and desodiated single-TM end points, 

calculated as 
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 ∆𝐸±´Na#Co345Mn5O(µ

= 𝐸´Na#Co345Mn5O(µ

− 𝑥[(1 − 𝑦)𝐸(NaCoO() + 𝑦𝐸(NaMnO()] − (1

− 𝑥)[(1 − 𝑦)𝐸(CoO() + 𝑦𝐸(MnO() 

(2.4) 

where 𝐸(𝑋) refers to the energy of phase 𝑋. Values between data points are linearly interpolated. 

In general, we find that both PBE and PBE + 𝑈 give stable orderings at similar Na 

concentrations for each 𝑦, especially in the Na-concentration range of interest 3
8
≤ 𝑥 ≤ (

8
 . 

Though there are minor differences in the actual stable ordered structures, the qualitative features 

of the 0-K stability diagrams are generally consistent between PBE and PBE + 𝑈. The notable 

exception is the Na#CoO( system, for which it has been well established that the application of 

the Hubbard U leads to 0-K stability diagrams that are in disagreement with experiments at lower 

𝑥.41 

 

Figure 2.7 P2 Na#Co345Mn5O( 0-K stability diagrams calculated using (a) PBE and (b) PBE 
+ 𝑈. Stable orderings are indicated by blue circles. Background color indicates the formation 
energy per formula unit with respect to the fully sodiated and fully desodiated structures. See 
the text for details. 
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From Fig. 2.7, we observe that the formation of mixed Co-Mn phases is very unfavorable 

(positive formation energies relative to the single-TM end members) at close to full sodiation (𝑥 

∼ 1) and desodiation (𝑥 ∼ 0) at 0 K. Formation of mixed Co-Mn phases is most favorable at 

0.25	 ≤ 	𝑥	 ≤ 	0.75. Most mixed-TM layered P2 materials are typically synthesized at 𝑥 ∼ 

0.67 − 0.75,32,78,85,86,92,93 which is within the range of 𝑥 where the predicted formation energies 

relative to the end members are negative. We also note that the mixed Co-Mn phases are known 

to be disordered at finite temperatures32, and configurational entropic effects are not taken into 

account in the 0-K stability diagram. 

Previously, Wang et al.32 have carried out an extensive experimental study of P2 

Na#Co345Mn5O(. Their findings were that, as Co is substituted by Mn, i.e., increasing y, the 

accessible capacity increases, and a number of ordered states, particularly that at 𝑥 = 2/3, 

disappear. The computed 0-K stability diagrams also predict a large number of nearly degenerate 

Na orderings upon TM mixing, particularly at 𝑥 = 2/3, which supports these experimental 

observations. We also find that Co-Mn ordering has a relatively small effect on total energies, 

regardless of Na ordering, which again supports experimental observations of Co-Mn disorder in 

this system.102 

It should be noted that a key limitation of this work is that it is based on 0-K DFT 

calculations of Na orderings up to relatively small supercell sizes, and the effects of temperature 

are not considered. Na orderings at other compositions that require a larger supercell size are not 

included in our study. For the Na composition range of general interest (i.e., 0.33	 < 	𝑥	 <

	0.75), however, our predicted stability diagrams and intercalation voltage profiles are in 

reasonably good agreement with the experimental literature.32,35 A possible extension to 

incorporate these effects to some degree is to fit a cluster expansion Hamiltonian120 using the 
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calculated energies and perform Monte Carlo simulations121 on much larger supercell sizes to 

obtain finite-temperature voltage profiles and diffusivities. However, this effort would require 

accounting not just for Na or vacancy orderings but also electron or hole orderings for two 

transition metals. This significant undertaking is outside the scope of this work and would be the 

subject of future studies. 

 B.  Na migration barriers 

From the AIMD simulations, we have established that the Na(1) site that shares faces 

with two MnO6 octahedra [Na(1)Mn-Mn] is higher in energy relative to Na(1) sites that share faces 

with two CoO6 [Na(1)Co-Co] or one CoO6 and one MnO6 [Na(1)Co-Mn]. We here generalize these 

results into a universal theoretical framework for the rational optimization of mixed-TM layered 

P2 oxides. 

 In the layered P2 oxides, Na diffusion occurs in a 2D honeycomb lattice96, which can be 

decomposed into two intersecting triangular lattices comprising Na(2) and Na(1) prismatic sites. 

 

Figure 2.8 Schematic view of 2D Na diffusion pathways (top view on the AB plane) consisting 
of triangular lattices. Black dots are Na(1) sites. White circles represent Na(2) sites. Solid 
black lines highlight the two-dimensional honeycomblike diffusion pathways. Red dashed 
lines show triangular lattices formed by Na(2) sites. Blue dashed lines show triangular lattices 
consisting of Na(1) sites. Green arrows represent the Na migration pathway between two 
nearest-neighbor Na(2) sites via a Na(1) site from CINEB calculations. 
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The Na(2) sites are generally lower in energy, as they share only edges and not faces with MO6 

octahedra. However, diffusion between Na(2) sites must occur via the Na(1) sites. Hence, we 

may treat the triangular network of the higher-energy Na(1) sites as the effective diffusion 

topology for P2 layered oxides [Fig. 2.8]. From the site-percolation theory, a long-range 

percolating diffusion path exists at the macroscopic limit if the probability of site occupancy 

exceeds the percolation threshold 𝑝c. For the triangular network, this threshold can be shown 

analytically to be 0.5122. 

Consider the introduction of a new TM species 𝑀j at some concentration 𝓏 into a layered 

P2 oxide. 𝑀j can have either a beneficial or detrimental effect on Na diffusion by lowering or 

increasing the energy of Na(1) sites that share faces with it. Here, we assume that the new 

mixed-TM P2 layered oxide is disordered, which can occur because of either an intrinsically low 

enthalpy of mixing or through the synthesis or processing that usually takes place at elevated 

temperatures. There are four limiting cases. 

i. 𝑀j has a substantial beneficial effect such that any Na(1) site that shares faces with at 

least one 𝑀jO6 has a sufficiently low barrier for diffusion at 300 K. The probability of 

any Na(1) site having at least one 𝑀jO6 is 2𝓏(1 − 𝓏) + 𝓏( . The condition for 

macroscopic fast diffusion is then 2𝓏(1 − 𝓏) + 𝓏( > 	0.5, i.e., 𝓏 > 0.293. 

ii. 𝑀j	has a moderate beneficial effect such that only Na(1) sites that share faces with 

two 𝑀jO6 have a sufficiently low barrier for diffusion at 300 K. The probability of 

any Na(1) site having two 𝑀jO6 is 𝓏(. The condition for macroscopic fast diffusion is 

then 𝓏( > 	0.5, i.e., 𝓏 > 	0.707. 

iii. 𝑀j has a substantial detrimental effect such that any Na(1) site that shares faces with 

at least one 𝑀jO6 has a high barrier for diffusion at 300K.Theprobabilityof any Na(1) 
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site having at least one 𝑀jO6 is 2𝓏(1 − 𝓏) + 𝓏(. The condition for macroscopic fast 

diffusion is then 1 − [	2𝓏(1 − 𝓏) + 𝓏(] > 	0.5, i.e., 𝓏 < 0.293. 

iv. 𝑀j has a moderate detrimental effect such that only Na(1) sites that share faces with 

two 𝑀jO6 have a high barrier for diffusion at 300 K. The probability of any Na(1) site 

having two 𝑀jO6 is 𝓏(. The condition for macroscopic fast diffusion is then 1	 −

	𝓏( > 0.5, i.e., 𝓏 < 0.707. 

Using CINEB calculations, we calculate the Na(2)-Na(1)-Na(2) (see Fig. 2.8 for the path) 

migration barriers for various Na(1) site compositions. These calculations are performed for a 

single Na hopping in an otherwise empty lattice of P2 Na#CoO(, i.e., at the fully charged limit, 

with different 𝑀j introduced at the Na(1) site. As can be seen from Table 2.1, Mn is indeed 

predicted to have a detrimental effect on Na diffusion, consistent with the results of the AIMD 

simulations and SOFs. We find that Fe and Ni are predicted to have a beneficial effect on Na 

diffusion, i.e., lowering of the Na(1) site energies relative to the pure NaCoO( at the end of the 

charge. We perform similar calculations using NaCo(/8Mn3/8O( [see Table A.4], and the same 

qualitative trends in the effect of 𝑀j are observed. 

C.  Na migration barriers 

From the preceding analyses, we may surmise that TM mixing can have two effects: (i) 

the suppression of Na vacancy ordering, leading to a wider range of single-phase behavior, and 

(ii) the modification of the Na(1) site energies, and hence diffusion barriers, especially towards 

the end of the charge. The former effect is well established in the literature, with many 

experimental works conclusively demonstrating the suppression of Na-vacancy ordering in the 

Co-Mn32,35, Co-Mn-Fe92, Co-Mn-Ni123, and other systems. However, the latter effect has not 
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been explored in detail, and, indeed, most TM mixing in the search for compositions that offer a 

greater rate capability have been carried out mostly in an trial-and-error fashion thus far. 

Table 2.1 Na migration barriers of different Na(1) site compositions. 

Na(1) site TM NEB barrier (meV) 

Co-Co 76 

Co-Mn 90 

Mn-Mn 100 

Co-Fe 63 

Fe-Fe 61 

Co-Ni 46 

Ni-Ni 65 
 

 

This work provides a rational basis for the selection of mixed-TM compositions by 

establishing the effect of different TMs on Na(1) site energies and the necessary minimum and 

maximum limits for beneficial and detrimental TM dopants, respectively. We have indirect 

evidence from the experimental literature supporting these conclusions. Most mixed-TM P2 

layered materials reported with a reasonable rate capability thus far have a concentration of Mn, 

which a high Na(1) site energy, of around 0.6733,37,78,124–127, close to the upper limit of 0.707 

predicted in order for a percolating network of sites that do not contain two Mn to exist. In 

particular, two reported compositions with a high rate performance are Na2/3Mn1/2Co1/4Mn1/4O292 

and Na2/3Co2/3Mn2/9Ni1/9O2123, wherein the Mn concentration is well below 0.707. In the case of 

Na2/3Co2/3Mn2/9Ni1/9O2, the Mn concentration is below 0.293, indicating that a percolating 

network of Na(1) without Mn exists in this material. Furthermore, the improved rate 
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performance of both these materials compared to Na2/3CoO2128, P2 Na0.6MnO236, and P2 

Na(/8Co345Mn5O(32suggests that Ni and Fe do indeed have a beneficial effect as suggested by 

the CINEB results. 

It should be noted that the above conclusions are based on CINEB calculations on model 

frameworks in the dilute Na (fully charged) limit and under the assumption of fully disordered 

TM mixing. No consideration is given to a possible effect of the TM mixing composition on 

interlayer spacing at various Na concentrations, a factor that is known to have a significant effect 

on diffusion barriers close to the end of the charge129,130. Nevertheless, we believe the results 

provide a useful rational framework to further explore TM composition tuning in the layered P2 

oxides. We hope that future systematic experimental investigations would provide a quantitative 

verification (as opposed to the indirect evidence highlighted above) of the effects of the different 

TMs on diffusion barriers and the concentration limits suggested by our model. 

 

2.5 Conclusion 

In conclusion, we perform a first-principles investigation on the Na diffusion kinetics of 

mixed-TM P2 Na#Co345Mn5O(. The calculated 0-K stability diagrams suggest that Co-Mn 

mixing tends to decrease the energy difference between different Na orderings, which may 

suppress the formation of strongly ordered intermediates and promote single-phase behavior over 

a wider range of Na concentration. Using AIMD simulations and CINEB calculations, we show 

that the TM composition at a particular Na(1) site can have a profound effect on the Na site 

occupation energy. The presence of Mn is shown to lead to an increase in the Na(1) site energy, 

leading to higher diffusion barriers. Fe and Ni, on the other hand, are shown to lower Na(1) site 

energies and diffusion barriers relative to Co. By employing a site-percolation model based on 
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Na site occupancy and CINEB results, we also establish theoretical upper and lower bounds on 

the concentration of various TM species based on their beneficial or detrimental effect on Na 

diffusion barriers at the end of the charge. These results provide a useful rational framework for 

the further optimization of TM mixing composition in the P2 layered oxides. 

Chapter 2, in full, is a reprint of the material “Effects of Transition-Metal Mixing on Na 

Ordering and Kinetics in Layered P2 Oxides” as it appears in Physical Review Applied, Chen 

Zheng, Balachandran Radhakrishnan, Iek-Heng Chu, Zhenbin Wang, and Shyue Ping Ong, 2017,  

7 (6), pp 064003. The dissertation author was the primary investigator and author of this paper.  
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 Deep learning driven study of high entropy cathode 

Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O( 

 

3.1 Introduction 

Studying high entropy materials using density functional theory (DFT) is extremely 

challenging due to the relatively slow computing time of DFT (> hours for single energy 

calculation) and exponentially complex configuration space. A fast, general and accurate surrogate 

energy model replacing the time consuming DFT is mandatory to shed light on this type of problem. 

Recently we developed a MatErials Graph Networks (MEGNet) framework for general materials 

property predictions and the models show excellent agreement with the DFT results in terms of 

formation energy, band gap and elasticity on the entire Materials Project data base131 containing 

around ~70,000 crystal structures132. In particular, the formation energy model error is as low as 

28 meV/atom. This model is employed here for fast calculation of energies for different 

configurations of high entropy materials.  

 

3.2 Methods 

The structural formation energy for all configurations were first predicted using the 

MEGNet pre-trained model from our previous work132. Using the MEGNet surrogate model, a 

Monte Carlo simulated annealing method coupled with Metropolis sampling algorithm was used 

for finding the structural configurations with lowest energies. We started from the well-known Na 

vacancy configuration pattern for P2-Na0.6CoO2, and then we replaced Co with equal molar Co-

Ti-Mn-Ni-Ru randomly. The chosen supercell contains 10 formula unit and 36 atoms.  Note that 
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the possible arrangement for transition metals (TMs) is 113400 if not considering symmetry. If the 

configuration of Na vacancies (38760) is also considered, the total configuration space is >

	4 × 10m even for this relatively small supercell. All distinct structures from simulated annealing 

trace were then calculated using DFT. Those represent the lowest energy structures for the entire 

configuration space. To make comparisons, two simulated annealing optimizations were 

performed with one only swapping the TMs and the other also flipping the Na occupancy.  

The PBE generalized gradient approximation functional was adopted in density functional 

theory calculations. Na migration barriers were calculated using the climbing-image nudged 

elastic-band (CINEB).112 In this study, supercells of 4 × 4 × 1 (32 formula units) were used for 

mixed- and single TM systems. The 𝑘-point grid was generated following the automated k-mesh 

generation method. Each interpolated image was relaxed until the forces on each atom are less 

than 0.02	eV Å43. To investigate the role of the transition metal on Na diffusion, we performed 

CINEB calculations at the dilute Na concentration. In the P2 layered sodium TM oxides, there are 

two kinds of Na sites. The Na(f) site shares faces with two TM oxide octahedra, and the Na(e) site 

shares only edges with TM oxide octahedron. A total of 25 different Na(f) site configurations were 

created in the lattice of CoO2 with Ni, Mn, Ru, Ti as dopants, and considering TM species 

combinations. We calculated the Na(e)-Na(f)-Na(e) migration barriers for various Na(f) 

compositions.  

AIMD simulations were carried out in the constant volume (NVT) ensemble at 1000K with 

a Nosé-Hoover thermostat.110 Instead of estimating the diffusivity of P2 Na0.6(CoMnNiTiRu)0.2O2, 

we aimed to elucidate the Na site occupancies and diffusion mechanism of the material at non-

dilute Na concentration. AIMD simulations were carried out for a relatively short time of 60 ps. 

We conducted non-spin-polarized simulations with a smaller plane-wave energy cutoff of 300 eV 
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and Γ-centered 1 × 1 × 1 𝑘-point grid to reduce computational costs. Two simulated annealing 

optimized structures were adopted in the AIMD simulations. One lowest-energy structure of P2 

Na0.6(CoMnNiTiRu)0.2O2 was obtained by performing optimization with swapping the TMs only 

(TM ground-state structure), and the other one was obtained by flipping the Na occupancy as well 

(Na-TM ground-state structure).  

 

3.3 Results and discussions 

3.3.1 MEGNet results validation 

As a first step, the MEGNet predictions were validated using DFT calculations. The 

pristine P2-NaCoO2 structure from Materials Project was taken as the initial structure and then 

rescaled match experimental lattice parameters. Then different TMs were substituted into the Co 

site and the MEGNet predictions were performed. These results were compared to the DFT 

relaxation results, as shown in Table 3.1.  

 

Table 3.1 MEGNet predicted results compared to DFT for NaTMO2 (TM=Ti, Mn, Co, Ni or Ru). 

TM Ti Mn Co(Nae) Co(Naf) Ni Ru 

       

𝑬𝒇𝑫𝑭𝑻(eV/atom) -2.79 -1.94 -1.59 -1.46 -1.18 -1.38 

𝑬𝒇𝑴𝑬𝑮(eV/atom) -2.78 -1.94 -1.51 -1.4 -1.21 -1.42 

 

The MEGNet prediction results match well with the DFT values across all single-TM 

structures, with the largest error of only 80 meV/atom as found in Co case with edge sharing Na 

polyhedron Na(e). Most importantly, the energy trend and difference are in line with DFT 
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predictions. In particular, the predicted Na face sharing energy is higher than the edge sharing 

energy by 110 meV/atom, close to the DFT values of 130 meV/atom. In P2 systems, the 

Na/vacancy ordering patterns are largely determined by the Na interactions with the TM layer. 

Thus the matching differences between edge sharing and face sharing local environment predicted 

by MEGNet make it promising for studying the Na disordering behavior.  

To further benchmark the MEGNet predictions in the high entropy 

Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O(, we first obtained the energy range of all TM configurations 

using MEGNet and then found the structures with predicted energies lying on the energy quantiles 

(see Appendix B for details). Those structures were subsequently calculated using DFT.  

 

Table 3.2 MEGNet predicted results compared to DFT for structures with predicted energy 
quantiles (0, 0.25, 0.5, 0.75, 1). 

MEG-Order DFT-Order 𝑬𝒇𝑴𝑬𝑮 (eV/atom) 𝑬𝒇𝑫𝑭𝑻 (eV/atom) 

1 1 -1.921 -1.893 

2 4 -1.909 -1.879 

3 3 -1.918 -1.865 

4 2 -1.919 -1.851 

5 5 -1.864 -1.837 

 

For the five structures, the MEGNet model predicts mostly the correct energy trend. 

However, the 2nd and 4th structures are swapped in positions. This is however understandable given 

their energy differences (28 meV/atom) within our model error. The energy range is predicted to 

be 57 meV/atom, close to the DFT range of 56 meV/atom. 
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3.3.2 The possibility of high entropy cathode formation 

Two simulated annealing simulations were performed with one only swapping the TMs 

and the other also flipping the Na occupancy but keeping the overall Na concentration fixed.  The 

sampled unique structures were subsequently computed using DFT. The distribution of DFT 

formation energies for both cases are shown in Figure 3.1.  

 

Figure 3.1 The probability distribution function (PDF) of energies for different orderings of 
TMs (TM) and for both Na ordering and TM ordering (All). The rugs indicate the DFT 
calculated values. 

Here we show the distribution of structural DFT formation energies below -1.91 eV/atom 

(178 for All, and 65 for TM). The spreads of energies are within thermal energy at room 

temperature (~26 meV/atom). This small energy spread suggests that all those states can be 

reached via thermal excitation even at room temperature with considerate probability (>0.37). In 

addition, the entropy contribution to the overall free energy is -41.4 meV/atom for TM disordering 

and -30.2 meV/atom for Na disordering (Eq. B.1) in Na&.zCo&.(Mn&.(Ti&.(Ni&.(Ru&.(O( . Such 
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large free energy driven force will smear the small enthalpy gap between disordered and ordered 

phase, favoring the formation of high entropy compounds.  

 

3.3.3 Na diffusion kinetics 

Figure 3.2 shows the isosurfaces of the Na probability density distribution extracted from 

the AIMD simulations of the ground-state TM orderings of P2 

Na&.zCo&.(Mn&.(Ti&.(Ni&.(Ru&.(O( resulted from two simulated annealing optimizations. We 

estimated the probability density distribution by averaging the Na occupation on a uniform grid 

over the trajectories during AIMD simulation of 20 ps following the thermal equilibration period.   

 

 

           (a) TM ground-state structure                            (b) Na-TM ground-state structure 

 

 

(c) 

Figure 3.2 Isosurfaces of Na ion (yellow) probability density distribution 𝑃 at 𝑃 = 𝑃max/32 for 
𝑃2 Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O( at 1000K of ground state structures obtained by 
performing optimization with (a) swapping the TMs only, and (b) flipping the Na occupancy 
and TMs simultaneously. Top view on the AB plane. (c) The color scheme of circles 
correspond to different Na(f) site configurations. 
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As can be observed from Fig. 3.2(a), the Na trajectories in the TM ground-state structure 

exhibit the typical honeycomb topology consistent with previous studies.96,133 For Na-TM ground-

state structure, we notice that Na(f)Ti-Ru is the least preferred site and the formed percolating 

diffusion network bypasses the Na(f)Ti-Ru sites. It should be noted that due the limitations in 

computational resources, the ground-state structures were enumerated based on a relatively small 

supercell sizes (30 formula units). Generating structures including all 15 Na(f) sites’ TM 

configurations requires a larger supercell size and is impractical for AIMD studies.  

 

3.3.4 Na migration barriers results 

Figure 3.3 summarizes the Na migration barriers of different Na(f) site compositions. Here, 

consider the migration barrier values. We could classify the TM species into 3 categories.  

(1) Ni and Co: The Ni and Co have a substantial beneficial effect on Na diffusion as the 

diffusion barrier of Na(f) site that shares faces with at least one CoO6 or NiO6 has a low 

barrier for diffusion. For those Na(f) site that share faces with two NiO6, the diffusion 

barrier drops to 89 meV.  

(2) Ti and Mn: Comparing to the Ni and Co, these two TM species are predicted to have a 

moderate detrimental effect on Na diffusion. For Na(f) sites that share faces with one TiO6 

or MnO6, the diffusion barriers are around 140 meV. 

(3) Ru: Ru is predicted to have substantial detrimental effect such that Na(f) site that shares 

faces with at least one RuO6 has a high barrier for diffusion. For those Na(f) site that shares 

two faces with RuO6, the Na diffusion barrier spike to 306 meV, which is about 200 meV 

higher than the Na(f) site that shares faces with two beneficial TM species (Ni or Co).  
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Figure 3.3 Na(e) - Na(f) - Na(e) single Na hopping migration barriers (meV) of different Na(f) 
site compositions at the fully charged limit. 

In general, the TM concentrations of P2 Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O(’s are within the 

minimum and maximum limits estimated through the previously reported site-percolation model 

in the P2 systems.133 For macroscopic fast diffusion, the lower bound concentration 𝑧 of TM with 

substantial beneficial effects is estimated to be 0.293133. In the P2 

Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O( , 𝑧DhÑCÒ  is 0.4, which is above the percolation limit. For TM 

dopants with substantial or moderate beneficial effect on Na diffusion, their concentration should 

exceed 0.707133. In this case, the total concentration is 0.8 for the TM species Ni, Co, Mn, Ti, that 

have beneficial effect on Na diffusion. Once again, this concentration satisfies the necessary 

minimum limit estimated by the percolation model. From the preceding results, Ru is predicted to 

have a substantial detrimental effect on Na diffusion. Fortunately, 𝑧ÓÔ	is below the upper limit of 

0.293 predicted in the percolation model133 in order for a percolating network of sites that do not 

contain two Ru to exist.  
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Chapter 3, in full, is currently being prepared for submission for publication of the 

material “Deep learning driven study of high entropy cathode 

Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O(”, Chi Chen, Chen Zheng, and Shyue Ping Ong. The 

dissertation author was the primary investigator and author of this paper.  
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 High-throughput Computational X-ray Absorption 

Spectroscopy 

4.1 Background 

A crucial step in the process of novel materials discovery is the characterization of the 

synthesized material. There exists a wide array of tools and spectroscopic techniques that are 

used in the material identification process, e.g. X-ray diffraction (XRD), X-ray emission 

spectroscopy (XES), and X-ray absorption spectroscopy (XAS). XAS is widely-employed in the 

characterization of the local structural environment surrounding select elements within a 

material. 

Great progress has been made over the past few years in the development of laboratory-

based X-ray spectrometers for high-resolution x-ray absorption near edge structure (XANES) 

and X-ray emission spectroscopy (XES)134. The availability of relatively inexpensive laboratory-

based XAFS system (http://easyxafs.com/) and third generation synchrotron facilities135 have 

established the groundwork for the broad application of high-resolution XAS in characterization 

of materials. On the other hand, modern computational resources and methodologies have 

reached a level of maturity and efficiency to complement as well as to fast-track new discoveries. 

In the case of XAS, a variety of theoretical frameworks including time-dependent density-

functional theory (TDDFT)136,137, multiplescattering64, and Bethe-Salpeter equation (BSE) based 

approaches138 have been implemented, each exhibits its advantages and drawbacks. Leveraging 

spectroscopic simulation software with large crystal structure databases enables the computation 

of a large number of reliable theoretical spectra corresponding to well defined crystal 

structures17, providing a broad reference dataset with clean unique structural fingerprints that can 
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be used for identification purposes. With the help of carefully crafted software tools, these 

computations can be performed in a high-throughput fashion and can be used to scan the 

structural phase space for novel materials. In addition, through proper integration with modern 

database tools, these scans can be saved for future use and leveraged for training machine 

learning algorithms to assist the characterization process. Some examples of such publicly 

available spectroscopic database are the EELS Data Base54, a compilation of valence and core-

loss spectra from EELS and XAS experiments containing 271 spectra that covers 39 elements of 

the periodic table, and XCOM (https://www. nist.gov/pml/xcom-photon-cross-sections-

database), which provides photon cross sections for scattering, photoelectric absorption and pair 

production, as well as total attenuation coefficients, for any element, compound or mixture. 

Other existing XAS databases139,140, i.e. https:// www.cat.hokudai.ac.jp/catdb/ and 

http://cars.uchicago.edu/xaslib, covering a few hundred spectra, are hosted across the world and 

serve as valuable references for analysis. 

The FEFF framework affords relatively inexpensive calculations compared to other 

approaches and requires minimum adjustable parameters. It provides an efficient means of 

generating high quality XAS spectra for a larger amount of chemical systems and structures. 

Hence, in our study, we selected the FEFF9 (ref. 5) program for the ab initio calculation of K-

edge X-ray absorption near edge spectra (XANES). Using the parameter settings obtained from 

recent benchmarking work against experimental spectra141 and the FEFF workflow infrastructure 

available in the open source materials science workflow package Atomate142 , we generate 

spectra of all the materials available in the publicly accessible and widely used materials 

database, Materials Project (MP)17. 
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A comprehensive database of computed XAS spectra enables comparison between 

different spectroscopic signatures across chemical systems and structures such that rapid 

determination of oxidation states, coordination environment, and other local atomic structure 

information can be obtained. Furthermore, using matching algorithms141 or other machine 

learning methods143, the data can be leveraged for on-the-fly characterization. Though the peak 

positions and amplitudes of the computational K-edge XANES spectral may exhibit differences 

compared to experimental spectra, theoretically computed XANES spectra provide sufficient 

information to identify oxidation state and coordination chemistry of the probe atom, and can be 

highly useful when experimental data are not available or scarce. For example, a previous study 

by Timoshenko et al.62 showed that ab initio XANES spectra provide excellent input data for 

training supervised machine learning models aimed at reconstructing metal catalyst structures 

from their experimental XANES. The current authors have also shown in a previous study144 that 

an ensemble-learned algorithm to match experimental K-edge XANES spectra in the EELS Data 

Base to computed spectra can achieve nearly 80% accuracy in identifying the correct oxidation 

state and coordination environment. In addition, the data is associated with download options 

and programmatic analyses tools for each structure in the Materials Project database, thereby 

making it accessible to the broader materials science community. Furthermore, the MP web 

application enables users to select spectra from the database, upload experimental spectra data 

and predict the material composition using the matching tool. To date, this is the largest 

computed XAS dataset available and it is still expanding. 

The paper is organized as follows; first we briefly describe the XAS computation 

methodology as implemented in the FEFF code, and thereafter the high-throughput framework 

used in the generation of the spectra. We then describe the data storage and dissemination 
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details, followed by the technical validation of the computational methodology and the high-

throughput framework. 

4.2 Method 

4.2.1 Theory 

The K-edge XANES spectra were computed using the FEFF64 code which employs the 

Green's formulation of the multiple scattering theory to compute the spectra64. The X-ray 

absorption 𝜇 is computed in a manner similar to Fermi's golden rule when written in terms of the 

projected photoelectron density of final states or the imaginary part of the one-particle Green's 

function, 𝐺(𝑟, 𝑟j; 𝐸). In terms of the Green's function, 𝐺(𝑟, 𝑟j; 𝐸), the absorption coefficient, 𝜇, 

from a given core level 𝑐 is given by ref. 15. 

 𝜇 = 	−
1
𝜋 𝐼𝑚 < 𝑐|𝜀 ∙ 𝑟𝐺(𝑟, 𝑟j; 𝐸)𝜀 ∙ 𝑟|𝑐 > (4.1) 

with the Green’s function, 𝐺(𝑟, 𝑟j; 𝐸) given by 

 
𝐺(𝑟, 𝑟j; 𝐸) =d

𝜓±(𝑟)𝜓±(𝑟j)∗

𝐸 − 𝐸± + 𝑖Γ±

 (4.2) 

where 𝜓±	are the final states, with associated energies 𝐸± and net lifetime Γ, of a one-particle 

Hamiltonian that includes an optical potential with appropriate core hole screening.  

The FEFF code computes the full propagator 𝐺 incrementally using matrix factorization 

and uses the spherical muffin-tin approximation for the scattering potential145. For a more 

detailed description, we direct the readers to the review paper by Rehr et al.145 
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4.2.2 High-throughput Workflow 

For the high-throughput XAS spectra generation, we use the FEFF workflow [Fig. 4.1] 

available in the open source computational materials science workflow package Atomate142. 

Atomate provides a high-level interface to compose workflows using open source materials 

science softwares such as pymatgen12 , FireWorks11 and Custodian 

(https://github.com/materialsproject/custodian). Each FEFF calculation involves the following 3 

steps: 

• Selection of the absorbing site and the cluster of atoms to be included in the scattering 

calculations.  

• Generation of the FEFF input files for each site and its surrounding atomic cluster. 

• Execution of the FEFF binary on the generated input files. 

 

Figure 4.1: Schematic diagram of the high throughput framework employed in the generation 
of XAS spectra for the Materials Project.  

 

As shown in Fig. 4.1, the workflow is initiated by importing a structurally optimized 

compound from MP. Each site in the downloaded structure is a possible absorbing center and 
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FEFF calculation sequence must be initiated for each site. However, the number of calculations 

can be reduced by considering only the symmetrically unique sites in the structure. The FEFF 

input files for each such symmetrically unique absorbing site are generated subsequently and the 

FEFF binary is invoked on each input set. In the final step, the computed spectra from each 

calculation is inserted into a MongoDB database and disseminated via the Material Project 

(https://materialsproject.org/) website. 

 

4.2.3 Code availability 

Except the for FEFF code, which is proprietary, all the other aforementioned packages 

used in the highthroughput XAS workflow are open source and can be found at 

https://github.com/ materialsproject and https://github.com/hackingmaterials/atomate. 

 

4.3 Data Records 

All the data described in this section can be found in the file, xas.json.tgz (Data Citation 

1). The same data is also stored in the Materials Project database and is made freely available to 

the public. We also provide a user friendly web application called XAS Matcher (screenshot 

shown in Fig. 4.2) that enables user interaction with the computed data. The app can be reached 

at https://materialsproject.org/#apps/xas. Users can employ the app to search for computed XAS 

spectra, upload experimental spectra and find structures in the MP database whose computed 

spectra match that of the uploaded one. Details on spectra matching algorithm employed on 

Materials Project were published separately141. 
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Figure 4.2: Screen shot of XAS Matcher web application. The web application is hosted at 
https://materialsproject.org/#apps/xas. 

 

 

4.3.1 Data Representation 

To date, spectra for more than half of the compounds(≈40000) in the Materials Project 

database are available, for all the symmetrically unique sites in each structure. Each structure 

dataset is stored in the database in the binary JavaScript Object Notation (BSON) format. The 

keys and respective descriptions are summarized in Table 4.1. Although the workflow yields 

separate spectra for each unique atomic site, the averaged absorption coefficient over all the sites 
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in the structure with that element is presented on the MP website. This will facilitate comparison 

with experimental spectra, where the averaging over each element is unavoidable. However, the 

full data, e.g spectra for all unique sites, are available to the user for download and further 

analysis. 

Table 4.1: Keys and their description for each spectra data JSON file. 

Key Data Type Description 

input_parameters string the FEFF input settings used in the computation of the 
spectrum. 

xas_id string unique id for each spectrum, e.g. ‘mp-505011-28-
XANES-K’. 

spectrum_type string type of XAS e.g. ‘XANES’. 

edge string absorption edge e.g. ‘K’. 

mp_id string mp id of the structure 

absorbing_atom string site index of the absorbing site in the structure 

structure string the structure in dictionary format (can be loaded as a 
Structure object in pymatgen) 

spectrum float 

array of shape (100, 6) where each codlumn means the 
following (in that order): Energy (eV), Energy with 
respect to the fermi level (eV), Wave number, 𝜇 (total 
absorption coefficient), 𝜇& (the background absorption 
coefficient), 𝑥 (normalized fine structure) 

 

 

4.3.2 Data Download 

The spectral data as well as the input parameters used for the calculations can be 

downloaded either directly from the Material Project website or using the REST Application 

Programming Interface (API) available in pymatgen146. Data can be downloaded for each 

element in the selected structure. The downloaded spectrum is provided in a tab separated file 
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format and includes the spectral data for all the symmetrically unique sites of the selected 

element in the structure. The standard XAS data interchange (XDI) format147 is also available for 

download, which can be directly imported into most existing XAFS data analysis programs148 for 

further detailed analysis. 

 

Figure 4.3: Benchmarking results of rfms1 parameter in the SCF card for K-edge XANES of 
various materials. Pearson correlation coefficients were calculated between spectra calculated 
at different rfms1 and the experimental reference provided by electron energy-loss 
spectroscopy (EELS) Data Base54.  

 

4.4 Technical Validation 

4.4.1 Verification of the default parameter settings for the workflow 

The workflow described above relies on the default FEFF input parameter settings to 

generate the K-edge XANES spectra in a high throughput fashion. In this section, we will briefly 

describe the major FEFF input parameters relevant to the calculation of the XANES spectra, the 
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bench-marking procedure and sample validation cases against experimentally available XANES 

spectra. 

FEFF9 is capable of achieving quantitative agreement with XAS experimental results 

with a minimal set of adjustable parameters. The development and implementation of parameter-

free models within the FEFF9 code permit consistent calculations across different chemical 

systems and constitute the main advantage for high-throughput calculations. In the benchmarking 

process, we included 13 unique compounds and their corresponding high-quality K-edge XAS 

spectra available in the open EELS/XAS database54, supplemented by 6 experimental XANES 

spectra of V2O5 , V2O3, VO2, LiNiO2 , LiCoO2, and NiO from previous studies149,150. 

Compounds included in the earliest commentary64 of FEFF9 software were also evaluated. The 

benchmark compound dataset has a high structural diversity and covers a wide chemical space. 

Detailed benchmark information is provided in a previous publication144. For benchmark 

compounds that contain detailed structural information, we used structures from the Materials 

Project (https://materialsproject.org/) database that exhibit an optimized geometry with the same 

space group as the benchmark compound. For benchmark compounds without provided 

structural information, MP ground state structures with identical chemical compositions were 

used144. 

The following input fields in FEFF9 were subjected to convergence and optimization 

tests: 

• Self-consistent field (SCF): The SCF card controls FEFF automated self-consistent potential 

calculations. The self-consistent potential calculation is required in the XANES calculation 

for the Fermi level 𝐸& estimation. In the convergence test, we varied the number of atoms 
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included in the self-consistent potential calculations through changing the rfms1 value from 2 

Å to 8 Å at 1 Å interval. 

• Full multiple scattering (FMS): The FMS card is required in the XANES calculation as the 

multiple scattering (MS) expansion's convergence might not be stable in the XANES 

calculation64. To identify the effect of rfms field on XANES calculation results, we varied the 

rfms value from 3 Å to 11 Å at 1 Å interval. 

• EXCHANGE: The EXCHANGE card specifies the exchange correlation potential model used 

for XANES calculation. The Hedin-Lundqvist self-energy is chosen as previously 

recommended for most applications151. 

• COREHOLE: The COREHOLE card is used for specifying how the core is treated during 

XANES calculation. The default choice in FEFF treats the core-hole interaction based on the 

Final State Rule (FSR), which could overestimate the strength of the core-hole and excludes 

the core-hole mixing effect152. To overcome these deficiencies and avoid possible break 

down of FSR for the L-shell metals153, the random phase approximation (RPA) is used to 

approximate the core-hole interactions in our high-throughput K-edge XANES calculations. 

Through the benchmarking study, a set of optimized FEFF parameters were determined 

to achieve the best balance between the computational cost and convergence performance. The 

Pearson correlation coefficient is used to compare spectra calculated using different parameters. 

The Pearson correlation coefficient between two same energy grid spectra, 𝑋h and 𝑌h, is 

calculated using the following expression: 

 
𝑆×_ØÙ[Ò�(𝑋, 𝑌) =

∑ (𝑋h − 𝑋Ú)(𝑌h − 𝑋Ú)Û
hw3

Ü(∑ (𝑋h − 𝑋Ú)(Û
hw3 )(∑ (𝑌h − 𝑌Ú)(Û

hw3 )
 (4.3) 

where 𝑋h and 𝑌h are the corresponding absorption coefficients.  
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Figure 4.4: Sample comparisons of FEFF computed K-edge XANES spectra with the 
corresponding experimental ones for six different compounds. Computational spectra are 
shifted upwards by 0.5. (a) LiCoO2, (b) LiNiO2, (c) NaCl, (d) V2O5, (e) VO2, (f) V2O3 

 We noticed that the Pearson correlation coefficients between FEFF computed spectra and 

experimental spectra obtained from EELS Data Base are above 0.85 in general (see Fig. 4.3). For 

C and B2O3, the FEFF-computed spectra are not in good agreement with experimental spectra. 

Possible solutions include the adoption of other higher-level real-space full-potential multiple 

scattering theory or first principles approaches154, which are not ideal for high-throughput 

implementation due to their high computational cost. Figure 4.4 depicts some sample 
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comparisons between the computed and the experimental K-edge XANES spectra. We note that 

the computed spectra match with that of the experimental ones only up to a constant shift in the 

energy. The computed K-edge XANES spectra of vanadium oxides given in Fig. 4.4d–f show a 

strong change in their first peak intensity. Reasonably good agreement between computational 

and experimental spectra was found. 

 

4.5 Usage Notes 

We present a database of K-edge XANES spectra computed using FEFF. The data is 

made freely available to all researchers via the Materials Project(www.materialsproject.org). 

Users can also download the data using the REST API that is part of pymatgen. All the codes 

used to create the high throughput are made freely available at Github 

(https://github.com/materialsproject and https://github.com/hackingmaterials/atomate). We hope 

that the users will find the data to be useful and will find novel ways to employ the data to 

accelerate their research. One such use case would be using machine learning techniques to 

predict structures from the experimentally measured spectra. 

For users of FEFF and the spectra resulting in this study, it should be noted that K-edge 

XANES spectra computed by FEFF are more accurate for the investigation of elements in the 

periodic table up to the fifth-row. For excitations in heavier elements, e.g., the rare earth 

elements and 5d elements, L-edge XANES spectra are primarily used. FEFF is also applicable 

for the simulation of L-edge XANES spectra, though in certain cases155–157 ground-state DFT 

methodologies need to be used for better agreement between computed spectra and experimental 

results. A detailed study of high-throughput FEFF calculation and implementation of L-edge 

XANES is currently being conducted by our research group. Furthermore, the analysis of 
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XANES is recommended for the identification of oxidation state and coordination chemistry of 

the absorbing atom158. We note that the quantitative accuracy of XANES calculations is not 

comparable to EXAFS in identification of the distances, coordination number, and species of the 

neighbors of the absorbing atom. The accurate and precise interpretation of EXAFS is routinely 

conducted coupled with well-established software packages159 using the FEFF calculated 

EXAFS. The FEFF calculated K-edge EXAFS of all the materials available in the Materials 

Project database is underway, and a significant portion will be released in parallel with this 

publication. 

Chapter 4, in full, is a reprint of the material “High-throughput computational X-ray 

absorption spectroscopy” as it appears in Scientific Data, Kiran Mathew, Chen Zheng, Donald 

Winston, Chi Chen, Alan Dozier, John J. Rehr, Shyue Ping Ong, and Kristin A. Persson, 2018,  

5, pp 180151. The dissertation author was the primary investigator and author of this paper.  
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 Automated Generation and Ensemble-Learned 

Matching of X-ray Absorption Spectra 

5.1 Introduction  

X-ray absorption spectroscopy (XAS) is a widely used technique in the study of the 

properties, physical states and local environments of materials.160–162 When incident X-ray 

photons with energy greater than the binding energy are absorbed by an atom, a core-level 

electron is removed from its quantum level. In XAS, the absorption coefficient, 𝜇(𝐸) is 

measured as a function of X-ray energy 𝐸. Detailed descriptions of X-ray absorption theory and 

equation have been included in many excellent books and review papers.163,164 

The X-ray absorption fine structure (XAFS) is typically divided in to two regimes: X-ray 

absorption near-edge structure (XANES) and extended X-ray absorption fine structure 

(EXAFS).165 The XANES is a fingerprint of the oxidation states and coordination chemistries of 

the absorbing atom. Quantitative XANES analyses are typically difficult and are usually 

conducted in combination with principle component analysis or least-squares fitting. The 

EXAFS provides local atomic structure information, which can be extracted via coupling with 

theoretically calculated XAFS spectra using well-established software packages.166 One of the 

main challenges of interpreting XANES and EXAFS lies in obtaining reference spectra to fit the 

unknown spectra; measuring XAFS spectroscopy experimentally is laborious and time-

consuming, requiring X-ray beams of finely tunable energy that are accessible only through 

synchrotron radiation facilities.164  To the authors’ knowledge, open reference database usually 

contains at most hundreds of XAS spectra. For example, the Electron Energy Loss Spectroscopy 

(EELS) database167 initiated in the 1990s contains 271 spectra, but only 21 of which are XAS 
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spectra and 17 of which are K-edge spectra. EELS is theoretically equivalent to X-ray 

absorption168 under common acquisition conditions, but is of lower quality in terms of signal to 

noise and energy resolution. Most XAS data are available only via publications in the literature, 

which cannot be extracted easily for comparison. 

In recent years, theoretical calculations of XAFS have become more accurate and 

accessible due to the successful development of ab initio codes, such as the FEFF program145,169, 

as well as advances in computing power. In this work, we will discuss the development of a 

high-throughput framework to generate a reference XAS database (XASdb) for all materials in 

the Materials Project170 database. This framework combines the power of the Python Materials 

Genomics (pymatgen) materials analysis library171 with the FireWorks workflow management 

software172 to carry out hundreds of thousands of XAFS calculations using the FEFF9 code.169 

This framework has been implemented in the Atomate package.142 More importantly, we have 

developed a novel automated XANES spectra matching algorithm that leverages ensemble 

learning techniques to identify similar XANES spectra from our computed reference XASdb. We 

believe the combination of the XASdb with these machine-learned spectra matching tools will be 

an invaluable resource to the materials research community by greatly enhancing the efficiency 

at which experimental XAS spectra can be analyzed. It should be noted that this work primarily 

focuses on common K-edge XANES spectra; higher edge XANES and EXAFS computations 

and analysis are currently ongoing and will be discussed in future publications. 

 

5.2 Results and discussion 

We have selected the latest version (v9) of the popular FEFF program as our software of 

choice in this work. FEFF is a program for ab initio multiple scattering calculations of XAFS 
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and various other spectra for clusters of atoms. This choice is motivated by three factors: (i) 

FEFF-computed spectra has been shown to yield excellent agreement with experimentally 

measured spectra in a broad range of studies;173–175 (ii) FEFF calculations are relatively 

inexpensive compared to other approaches for computing XAS spectra (e.g., a typical FEFF 

calculation takes < 1 hour on a single node, while multi-day, multi-core calculations are 

necessary for DFT-based spectra calculations); and (iii) FEFF requires minimal adjustable 

parameters. These three advantages make FEFF an ideal candidate for automation to generate 

XAS spectra across a broad range of chemistries. A key step in any automation framework is 

benchmarking of computational parameters for convergence and accuracy. The benchmarking 

dataset and criterion details are included in the methods section. The Pearson correlation 

coefficient, as given by the following expression, is used as the benchmarking criterion.  

 
𝑆×_ØÙ[Ò�(𝑋, 𝑌) = 	

∑ (𝑋Ý − 𝑋Ú)(𝑌Ý − 𝑌Ú)Þ
Ýw3

Ü(∑ (𝑋Ý − 𝑋Ú)()Þ
Ýw3 (∑ (𝑌Ý − 𝑌Ú)(Þ

Ýw3 )
, (5.1) 

where 𝑋Ý and 𝑌Ý represent the absorption coefficients of two spectra on the same energy grid. The 

value of 𝑆×_ØÙ[Ò� can range from -1 to 1, with a value of 1 being a perfect match. Used in this 

context, the Pearson correlation coefficient is a similarity metric, i.e., it measures the degree of 

similarity between two spectra.  

We have tested the convergence of the FEFF calculated spectra with respect to four 

parameters: the radius of the cluster considered in the full multiple scattering calculation (SCF 

rfms1), the total number of multiple-scattering paths considered (FMS rfms), the exchange-

correlation potential (EXCHANGE) and the treatment of the core (COREHOLE) (see Methods 

for a detailed description of the FEFF input file).  
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The SCF rfms1 was varied from 2	Å to 8	Å, and the spectrum at the highest value (8	Å) 

was set as the reference for each material. Figure 5.1 shows the computed Pearson correlation 

coefficients between spectra computed at lower rfms1 and the reference. We find that the 

computed spectra are converged (𝑆×_ØÙ[Ò� > 0.95) at around rfms1 = 6	Å for all material, 

though the Al K-edge for AlN is converged only for rfms1 = 6.5	Å. Given that the computational 

cost increases substantially for rfms1 > 7	Å (see Figure C.1), we have chosen rfms1 = 𝟕	Å as 

the default setting for SCF in the high-throughput XANES computations.  

The rfms field in the FMS card was varied from 3.0	Å to 11.0	Å at 1.0	Å intervals, and the 

spectrum at the highest value (11	Å) is set as the reference for each material. We find that the 

computed spectra are converged (𝑆×_ØÙ[Ò� > 0.95) at around rfms = 9	Å for all materials (see 

Figure C.2). Since the computational cost increases substantially for rfms > 9	Å (see Figure C.3), 

 

Figure 5.1: Benchmarking results of rfms1 parameter in the SCF card for K-edge XANES of 
various materials. The rfms1 parameter specifies the radius of the cluster considered for the 
full multiple scattering during self-consistent potential calculations. Pearson correlation 
coefficients were calculated between spectra calculated at different rfms1 and the reference 
calculated at rfms1 = 8.0 Å. 
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we have chosen rfms = 𝟗	Å as the default setting for FMS in the high-throughput XANES 

computations. 

In FEFF9, two approximations of the core-hole potentials have been implemented, i.e., a 

fully screened potential based on the final-state rule (FSR) and a linear random-phase-

approximation (RPA) screening. Systematic reviews of these two approaches have been done by 

Rehr et al.176 We evaluated the performance of all three core-hole options in FEFF9 on the 

computed K-edge XANES. As shown in Figure C.4(a), spectra obtained using both the FSR and 

RPA are in much better agreement with experimental results than ones without core-hole 

treatment. The spectra computed without a core-hole treatment lack the edge enhancement 

observed in the experiments. In general, spectra obtained using FSR and RPA are similar (Figure 

C.5). We have chosen RPA screening as the default setting for the high-throughput XANES 

computations as the FSR might breakdown for the L-shell metals.177  

Similar evaluations of the EXCHANGE card options reveal that the default Hedin-Lundquist 

model is the best option (see Figure C.6).  

 

5.2.1 Sensitivity of computed XAS spectra to lattice parameters 

The FEFF code uses a self-consistent DFT calculation of the Fermi-energy based on the 

real-space Green’s function (RSGF) approach with muffin-tin potentials for a given lattice 

structure. Comparing to the full-potential calculations, we find that the FEFF calculation of the 

densities of states is typically in fairly good agreement with DFT for many materials. In the 

Materials Project, the Perdew-Berke-Ernzerhof (PBE)103 generalized gradient approximation 

functional was used as the default for all relaxation calculations. As it is well known that PBE 

leads to systematic errors of up to 5% in the lattice parameters (with a tendency to 
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overestimate),178–181 we tested the sensitivity of computed XANES spectra to ±5% changes in 

the lattice parameters. The results are shown in Figure 5.2.  

We find that the Fermi energy level of the spectrum is sensitive to the lattice parameter 

variation [Figure 5.2(a)]. The Fermi energy level shifts towards lower energy as the lattice 

parameter increases, while the spacing of the spectral features contracts at the same time. An 

example for Na K-edge of Na2O is shown in Figure 5.2(b), and additional examples are available 

in Figure C.7.  

 

Figure 5.2: (a) Relationship between the Fermi energy level of K-edge XANES and a lattice 
parameter changes. Fermi energy levels of the unstrained structures are used as references. (b) 
Visualization of Na K-edge XANES spectra in Na2O (mp-2352) calculated with different 
applied strain values. 

 

A portion of the Fermi energy shift can be attributed to the artifacts of the FEFF’s 

potential approximation model (see Figure C.9). Nevertheless, the shape of the spectra remains 

unchanged. While different corrections to eliminate the artificial component of the dependence 

have been reported,  these approaches are not amenable to a high-throughput approach. Here, we 

note that due to the approximations used in FEFF, we need to calibrate the Fermi level with 

(a) (b)



 

 70 

experimental spectra. Therefore, a pure energy shift only translates to an energy calibration value 

in the post processing.  

In summary, the PBE-relaxed structures from the Materials Project can be used as the 

input for high-throughput XANES calculations, even though there are other functionals183,184 that 

may provide better lattice parameters estimates.185–188  

 

5.2.2 Workflow & Database 

Using the high throughput parameters outlined above, we developed a high-throughput 

workflow for FEFF XAS calculations within the open source computational materials science 

workflow package Atomate142. Atomate provides a high level interface to compose workflows 

using the widely used open source materials science software such as Pymatgen171, FireWorks172 

and Custodian. The proposed default FEFF9 parameters have been implemented as “input sets” 

in Pymatgen171, which ensures reproducible and automated generation of standardized input files 

for any material. The compounds used in the high-throughput spectra generation were obtained 

from the Materials Project database170. For each compound, the K-edge XANES spectrum was 

computed with each symmetrically unique site in the structure as the absorbing atom.  

All computed spectra, as well as accompanying meta-data (e.g., input structure, absorbing 

atom, materials project id, etc.), are stored in a MongoDB database for on-demand querying and 

retrieval of data. So far, K-edge XANES spectra have been computed for more than 40,000 

unique materials in the Materials Project database, which amounts to over 800,000 K-edge 

spectra. This is by far the largest repository of XANES spectra in the world, and is growing 

rapidly. Future plans include the calculation of XANES for L, M, and N shells as well as EXAFS 

spectra. 
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Figure 5.3: Workflow schema of the Ensemble-Learned Spectra IdEntification (ELSIE) 
algorithm. The algorithm consists of two steps. In the first step, the absorption species is 
identified and used to narrow down the candidate computed reference spectra. In the second 
step, the spectral matching ensemble yields a rank-ordered list of computational spectra 
according to similarity with respect to the target spectrum. 
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5.2.3 Spectra Matching using Ensemble Learning  

To extract the most utility and power from the XASdb, we have developed a novel 

Ensemble-Learned Spectra IdEntification (ELSIE) algorithm that allows for rapidly 

identification of matching spectra for any experimental XAS spectra. The main goal of spectral 

matching is to obtain a list of compounds (the “hit list”) whose spectra are most similar to that of 

the target spectrum. The success and failure of matching is defined by the characteristics of the 

spectrum. In the case of XANES spectra, the relevant information to be extracted is the 

coordination environment and oxidation state of the absorbing atom. As multiple materials can 

have atoms in the same oxidation state and coordination environment, we define the matching to 

be successful if the correct coordination environment and oxidation state are within the top entry. 

The ELSIE algorithm uses the ensemble method to improve the robustness of XAS 

identification. In ensemble learning, the core concept is the combination of multiple weak 

learners to achieve superior performance. It relies on the assumption that each weak learner is 

better than a random guess and each weak learner captures different aspects of the problem. At 

the core of the algorithm is the process of building individual weak learners. Taking inspiration 

from the spectra matching algorithms for Raman spectroscopy189 and other spectra190,191, we 

broke down the problem of matching XAS spectra into two main steps, namely preprocessing 

and similarity computations. We define each weak learner to be a combination of a preprocessor 

(a specific series of preprocessing steps) with a similarity metric. Figure 5.3 provides an 

overview of the ELSIE algorithm (see Methods section for the details on the construction of the 

ELSIE algorithm). 

We evaluated the ELSIE algorithm using 13 XANES spectra from EELSDb [Table C.1], 

supplemented by 6 high quality experimental XANES spectra of V2O5, V2O3, VO2, LiNiO2, 
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LiCoO2, and NiO from previous studies.149,150 The inclusion of this latter dataset is motivated by 

our desire to improve the diversity of the test data, especially with regards to transition metal 

species. 

The first step is to narrow down the candidate computed reference spectra by the 

absorption element (A). Though this information is usually known a priori, the characteristic 

XAS absorption edge energy follows a power law with the atomic number,164,165 which leads to 

clearly separated energy ranges. Hence, we can identify the absorption element with 100% 

accuracy by comparing the energy range of the target spectrum to tabulated X-ray absorption 

edge data.192 

Once the absorbing element A is identified, the computed spectra of all materials within 

the same chemical system are queried from the XASdb. For example, for the Al K-edge of 

Al2O3, we include the Al K-edge spectra of all Al and AlxOy materials as reference spectra. We 

excluded compounds with energy above hull (Ehull) larger than 100 meV/atom since they are not 

likely to be stable.193 For C K-edge XANES of the diamond structure (𝐹𝑑3Ú𝑚), we relaxed the 

constraint to 200 meV/atom as the corresponding entry (mp-66, diamond) has an Ehull of 136 

meV/atom. It should be noted that though the individual absorption spectrum for each 

symmetrically distinct site was computed for all crystal structures in the Materials Project 

database, the reference spectra used for comparison with the target spectra are constructed by 

summing these individual spectra taking into account the site multiplicities. 

To evaluate the overall performance of ELSIE, we looked at three key metrics: (i) 

whether the correct structure is within the top 5 ranked computed spectra, (ii) whether the top 

ranked entry has the absorbing species in the correct oxidation state, and (iii) whether the top 

ranked entry has the absorbing species in the correct coordination environment, i.e., coordination 
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number and geometry. Where the exact structural information is not available (e.g., in the 

experimental spectra from EELSdb), it is assumed that those spectra correspond to the ground 

state structures in the Materials Project database with the same chemical composition. It should 

also be noted that some reference materials may have the same element in multiple oxidation 

states and coordination environments. Therefore, the application of metrics (ii) and (iii) merely 

indicates whether at least one of the distinct sites in the top entry have the correct oxidation state 

and coordination environment. The results are summarized in Table 5.1.  

Of the 19 test spectra, we find that the correct structure is within the top 5 ranked 

structures for 11 systems, i.e., only 57.9% accuracy. However, the correct oxidation state and 

coordination environment are in the top entry for 16 and 15 systems, i.e., accuracies of 84.2% 

and 78.9%, respectively. The best coefficient	𝛼 is found to be 0.01. Given that XANES is a 

technique primarily used to extract oxidation state and coordination environment information, 

these results are a major validation of the effectiveness of the ELSIE matching algorithm.  

To emphasize the effectiveness of the ensemble approach, we also performed the same 

benchmark using a single learner utilizing just the sigmoid squashing function and cosine 

similarity measure on spectra that have been pre-normalized with respect to summed intensity. 

The ELSIE algorithm outperforms the single learner approach by 15.8% in identifying both the 

correct oxidation state and coordination environment.  

We will now illustrate the performance of our spectral matching algorithm with a few 

case studies on diverse chemistries. For all spectra, we have confined our comparison to the 

energy range from -10 eV to 45 eV from the absorption edge, which is the region typically 

referred to as XANES. 
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Table 5.1: Performance of ELSIE algorithm on 19 test spectra 
 

Formula Space 

Group 

Absorbing 

Species 

Correct 

Structure 

within 

Top 5 

Rank? 

Correct 

Oxidation 

State in Top 

Entries? 

Correct 

Coordination 

Environment in 

Top Entries? 

SiO2 𝑃3(21 Si No Yes Yes 

Si 𝐹𝑑3Ú𝑚 Si Yes Yes Yes 

AlPO4 𝐼4Ú Al No Yes Yes 

SiC 𝐹4Ú3𝑚 Si No Yes Yes 

Al2O3 𝑅3Ú𝑐 Al Yes Yes Yes 

Al 𝐹𝑚3Ú𝑚 Al Yes Yes Yes 

Na2O 𝐹𝑚3Ú𝑚 Na Yes No No 

C 𝐹𝑑3Ú𝑚 C No Yes No 

B2O3 𝑃3(21 B Yes No No 

Si3N4 𝑃31𝑐 Si Yes Yes Yes 

Si3N4 𝑃68/𝑚 Si Yes Yes Yes 

AlN 𝑃68𝑚𝑐 Al Yes Yes Yes 

NaCl 𝐹𝑚3Ú𝑚 Na Yes Yes Yes 

V2O5 𝑃𝑚𝑚𝑛 V No Yes No 

VO2 𝑃23/𝑐 V No Yes Yes 

V2O3 𝑅3Ú𝑐 V No Yes Yes 

LiNiO2 𝑅3Ú𝑚 Ni No No Yes 

NiO 𝐹𝑚3Ú𝑚 Ni Yes Yes Yes 

LiCoO2 𝑅3Ú𝑚 Co Yes Yes Yes 
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Case study 1: Main group metals 

Figure 5.4(a) and (b) shows the ELSIE spectral matching results of the Al K-edge 

XANES of 𝛼-Al2O3 and Na K-edge XANES of NaCl, respectively. For both target spectra, the 

correct  

 

Figure 5.4: Results of the similarity ranking returned by the ELSIE matching algorithm on (a) 
Al K-edge XANES of 𝛼-Al2O3 entry; (b) Na K-edge XANES of NaCl; and (c) Na K-edge of 
Na2O. Detailed information about the retrieved compounds can be found in the Materials 
Project website, (a) Al2O3 (𝑃𝑏𝑐𝑛, mp-1938),  Al2O3 (𝑃𝑛𝑎23, mp-2254),  Al2O3 (𝑅3Ú𝑐, mp-
1143) and  Al2O3 (𝐶2/𝑚 , mp-7048), (b) NaCl (𝐹𝑚3Ú𝑚, mp-22862), Na (	𝐼𝑚3Ú𝑚, mp-127), Na 
(𝑃68/𝑚𝑚𝑐, mp-10172) and Na (𝐼4Ú3𝑑, mp-567772) and (c)  Na (𝐼𝑚3Ú𝑚, mp-127),  Na 
(𝑃68/𝑚𝑚𝑐, mp-10172), Na2O (	𝐹𝑚3Ú𝑚, mp-2352) and  Na (𝐼4Ú3𝑑, mp-567772), in decreasing 
similarity order. 

(a) (b)

(c)
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oxidation states and coordination environments are found in the top candidates. Furthermore, we 

may observe that our proposed peak shifting approach is effective in aligning the target and 

reference spectra. 

Figure 5.4(c) shows a notable case – the Na K-edge of Na2O – where the ELSIE 

algorithm fails. Here, the ELSIE algorithm returns elemental Na as the top ranked result, as 

opposed to Na2O. The main reason for this failure is that the FEFF computed spectra is not in 

good agreement with experimental spectra (see Figure C.7 for this and a few other examples). 

Possible solutions include the use of real-space full potential multiple scattering theory or other 

first principle approaches.194 For Na2O in particular, we find that the experimental Na K-edge 

XANES of Na2O is more similar to the computed Na K-edge XANES of Na2CO3 [Figure 

C.7(c)], which may indicate possible contamination by the atmosphere in experiments. 

 

Case study 2: Transition metal oxides 

Figure 5.5 shows the ELSIE spectra matching results of the Ni K-edge XANES in NiO, 

Co K-edge XANES in LiCoO2. From Figure 5.5(a), we note that although the computed peak 

positions and amplitude are not in great quantitative agreement with the experimental measured 

spectra, the ground state NiO entry is nevertheless returned as the top ranked candidate. In 

particular, the small Ni 1s-3d peak at 8332 eV in the experimental Ni K-edge XANES of NiO is 

not present in the FEFF calculated spectra. There is, however, a small peak at 8337 eV in the 

FEFF calculated spectra, which we believe is the Ni 1s-3d peak. The inaccuracy in the position 

of the peak may be due to the muffin tin approximation used in FEFF. 

For LiCoO2 [Figure 5.5(b)], the ground state structure of LiCoO2 (𝑅3Ú𝑚) is among the top 

five entries. All Co3+ ions in the top entry (Li(CoO2)2) are in octahedral coordination, i.e., the 
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same coordination environment of Co3+ ions in LiCoO2 (𝑅3Ú𝑚). We may therefore conclude that 

the ELSIE algorithm performs satisfactorily in both instances. 

 

Figure 5.5: Results of the similarity ranking returned by the ELSIE matching algorithm on (a) 
Ni K-edge XANES of NiO; (b) Co K-edge XANES of LiCoO2; and (c) V K-edge of V2O5.  
Detailed information about the retrieved compounds can be found in the Materials Project 
website, (a) NiO (𝐹𝑚3Ú𝑚, mp-19009), NiO2 (𝑃68𝑚1, mp-543096), NiO2 (𝑅3Ú𝑚, mp-25593) 
and  NiO (𝐹𝑚3Ú𝑚, mp-715434), (b) Li(CoO2)2 (𝑃2/𝑚, mp-553952), Li6CoO4 (𝑃4(/𝑛𝑚𝑐, mp-
18925), CoO2 (𝑃3Ú𝑚1, mp-714976) and LiCoO2 (𝑅3Ú𝑚, mp-24850), and (c) V2O5 (𝐶2/𝑐, mp-
542844), VO2 (𝑃𝑛𝑛𝑚, mp-714880), V6O13 (𝐶𝑚𝑐𝑚, mp-715617) and V9O17 (𝑃1, mp-716723), 
in decreasing similarity order. 

 

Figure 5.5(c) shows the ELSIE spectra matching results for the V K-edge of V2O5 

(𝑃𝑚𝑚𝑛). The ELSIE algorithm fails to retrieve the correct square-pyramidal coordination 

(a) (b)

(c)
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environment of V5+ in V2O5 (𝑃𝑚𝑚𝑛). Indeed, vanadium ions in the top five matches returned by 

the ELSIE algorithm are in octahedral coordination. Here, the relative similarity of the V K-edge 

spectra for the different V oxidation states and coordination environments seems to be the key 

issue. Further structural refinement based on EXAFS simulations therefore becomes critical, 

which will be available in the XASdb in the near future.  

In conclusion, we have demonstrated the development of a large database for XAS using 

high-throughput FEFF calculations. Parameter benchmark results indicate that the overall quality 

of the FEFF9 calculations with default input parameters is in quantitative agreement with 

experiments, which is adequate for comparison purposes. We developed a novel spectra-

matching algorithm – the Ensemble-Learned Spectra IdEntification (ELSIE) algorithm – that 

enables the rapid matching of computed reference spectra to any target spectra. The ensemble 

learning approach far outperforms any single approach based on a pre-defined set of 

preprocessing and similarity metric; outstanding ~84% and ~79% accuracies in identifying the 

correct oxidation state and coordination environment are demonstrated based on a diverse test set 

comprising 19 experimental XANES spectra. The XASdb with the ELSIE algorithm has been 

integrated into a web application in the Materials Project, providing an important new public 

resource for the analysis of XAS to all materials researchers, and the ELSIE algorithm itself has 

been made available as part of veidt, an open source machine learning library for materials 

science. 
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5.3 Methods 

Benchmarking details 

Robust, well-defined datasets are necessary for any benchmarking exercise. We have 

used the existing high quality K-edge XAS spectra available in the open EELS Data Base 

(EELSDb)167 as reference data, and matched them with the corresponding materials in the 

Materials Project170 using the Materials API195 and pymatgen171. For materials in the EELSDb 

without structural information, ground state structures with identical chemical compositions in 

the Materials Project were used. For spectra in EELSDb taken using the same materials, we 

selected one and adopted it in our study. Table C.1 summarizes the 13 unique materials used in 

this work. 

The FEFF software calculates X-ray absorption spectra using the real-space Green’s 

function formulation of the multiple scattering theory.145 The X-ray absorption 𝜇 is written in 

terms of the imaginary part of the one-particle Green’s function 𝐺(𝑟, 𝑟j; 𝐸), which incorporate 

both the inelastic losses and other quasiparticle effects. In terms of 𝐺(𝑟, 𝑟j; 𝐸), 𝜇 is given by:  

 		𝜇 = −
1
𝜋 𝐼𝑚

〈𝑐|𝜖̂ ∙ 𝑟𝐺(𝑟, 𝑟j; 𝐸)𝜖̂ ∙ 𝑟j|𝑐〉𝜃é(𝐸 − 𝐸�), (5.2) 

where 𝜃é is a broadened step function at the Fermi energy 𝐸�. This yields a unified treatment of 

EXAFS and XANES. The treatment of X-ray absorption can then be separated into atomic and 

scattering parts, i.e., 𝐺(𝑟, 𝑟j; 𝐸) = 𝐺c(𝑟, 𝑟j; 𝐸) + 𝐺[c(𝑟, 𝑟j; 𝐸). The exact result of 𝐺[c(𝑟, 𝑟j; 𝐸) 

is given by the full matrix inverse, or equivalently, a sum over all multiple-scattering paths. 196 

For the XANES calculation, FEFF implements the full multiple scattering technique, which 

includes the contributions from all orders of scattering within a cluster containing the absorber 

and scatterers. The FEFF code also incorporates a GW-based self-energy based on the Hedin-

Lundqvist plasmon-pole model which includes effects of electron-electron interactions such as 
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mean-free paths and self-energy shifts. This method has been well tested and is usually a good 

approximation for EXAFS and reasonable for XANES. FEFF includes a screened corehole and 

gives results for excitonic enhancements comparable to GW/BSE calculations in many materials. 

FEFF can also incorporate Debye-Waller factors using correlated-Debye or more advanced 

models. Further details on the FEFF code and its theoretical foundations can be found in ref 11 

for interested readers. 

In the FEFF input file, parameters are specified in control “cards”. The following 

parameters in FEFF were tested for convergence. 

i. Self-consistent field (SCF): The rfms1 field in the SCF card specifies the radius of the 

cluster considered in the full multiple scattering calculation. The higher the rfms1 is, the 

greater the number of atoms is included in calculation. 

ii. Full multiple scattering (FMS): The rfms field in the FMS card determines the total 

number of multiple-scattering paths considered in the XANES calculation. Default values 

are used for the other five optional fields in the FMS card. 

iii. EXCHANGE: The EXCHANGE card specifies the exchange correlation potential model 

used for XANES calculation. No shift was applied to the Fermi energy level in this work, 

i.e., the second and third fields of the EXCHANGE card were kept being 0. 

iv. COREHOLE: The COREHOLE card is used to specify the treatment of the core during 

XAS calculations. ‘Core hole’ is the hole in the orbital formed by the excitation of a 

single electron from that orbital.164 In FEFF9 code, a combination of Bethe-Salpeter 

equation (BSE) and time-dependent density functional theory (TDDFT) is used to 

improve the approximation of the core hole interactions.169,177  
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ELSIE algorithm construction 

We adopted the concept of ensemble method to index the most similar spectra from the 

database with respect to a target spectrum. Each weak learner has a unique combination of a few 

spectral preprocessing techniques and one similarity metric, we will describe the preprocessing 

approaches and similarity metrics in turn.  

Each preprocessor comprises a series of steps, designed to emphasize or weaken certain 

characteristics of the experimental and computed spectra. A preprocessor is generated as follows: 

1) Peak shifting and quantization. This step is necessary to all preprocessors. Because of the 

differences in energy sampling intervals and energy ranges, linear interpolation was used 

to convert each spectrum to a vector of 200 intensity values with identical energy grid. 

The reference spectra are shifted such that the onset of absorption, which is well-defined 

by the photoelectric effect, is aligned with that of the target spectra. This onset is 

determined by ascertaining the lowest incident energy at which the computed absorption 

intensity reaches 6% of the peak intensity.  

2) Pre-normalization. We included an optional pre-normalization step to rescale the 

intensity to a similar range. Given the spectrum 𝑋 with 𝑋h represents the 𝑖th intensity, 

four normalization approaches are adopted197: 

 𝑋hêëìí =
𝑋h
∑𝑋h

. (5.3) 

        

 𝑋hêëìí =
𝑋h

Ü∑𝑋h(
 (5.4) 
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 𝑋hêëìí =
𝑋h − 𝑋íÝê
𝑋íî£ − 𝑋íÝê

. (5.5) 

 

 
𝑋hêëìí = (𝑋h − 𝜇)/𝜎 (5.6) 

where 𝜇 = ∑𝑋h/𝑛 and 𝜎 = �∑(𝑋h − 𝜇)(/𝑛.  

3) Feature transformation. Several feature transformation functions were implemented in 

the third step, which include the square root and sigmoid squashing functions. The 

sigmoid squashed spectrum is calculated using 𝑋j = 34ïëð	(�ñ)
(

. The squared root 

squashing uses 𝑋j = √𝑋, where 𝑋j is the squashed new spectrum. This technique has 

shown to improve the response sensitivity with respect to different spectral features.198 

The feature transformation functions also include taking the first or second order 

derivative of spectrum, or weighted the spectra with the first and second order 

derivatives. This step is necessary to make distinct weak learners.  

4) Normalization. This last step is for all preprocessors. The spectra are all normalized such 

that the sum of intensities is equal to 1, i.e.	∑ 𝑋h = 1Þ
hw3 . 

Both the computed and target spectra are processed using the same series of steps for 

each pre-processor.  

The preprocessed target and computed spectra are then compared in a pairwise manner 

using a similarity metric. Only bin-to-bin similarity metrics are used in the ELSIE algorithm 

development as they are less computationally demanding for high-throughput datasets.199 Four 

commonly used similarity metrics in the literatures are used in the ELSIE algorithm: 

1) Pearson correlation as defined in the Benchmarking section. 
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2) Euclidean similarity. In the D-dimensional spectral feature space, the Euclidean distance 

between two spectra X and Y is given by the following equation: 

 

𝑑òóï = ôd|𝑋h − 𝑌h|(
Þ

hw3

. 		 (5.7) 

The spectral similarity measure can be derived from the distance calculated using the 

following expression:  

 
𝑆òóï(𝑋, 𝑌) = 	1 −	

𝑑òóï(𝑋, 𝑌)
𝑑òóïíî£ , (5.8) 

where 𝑑òóïíî£ is the absolute maximum expected Euclidean distance between two 

probability mass functions.199  

3) Cosine similarity. The cosine similarity measure is the normalized inner product and 

measures the angle between two spectral vectors.200 The cosine similarity between two 

spectra can be calculated as: 

 
𝑆õëð =

∑ 𝑋h𝑌hÞ
hw3

Ü∑ 𝑋h(Þ
hw3 Ü∑ 𝑌h(Þ

hw3

. (5.9) 

4) Ruzicka similarity. The Ruzicka199 similarity between two spectra is given by the 

following equation:  

 
𝑆öó÷ =

∑ min	(𝑋h, 𝑌h)Þ
hw3

∑ max	(𝑋h, 𝑌h)Þ
hw3

. (5.10) 

The combination of preprocessors and similarity metrics results in a total of 168 learners 

that can potentially be used to construct the ELSIE algorithm. To make an ensemble that 

outperforms individual learners, one prerequisite is that each learner should have an error rate 
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lower than random guessing. We therefore filtered the 168 leaners to 33 and adopted them in the 

ELSIE algorithm. The detailed filtering procedure can be found in the Appendix C.  

For each target spectrum, each learner (one preprocessor + one similarity metric) outputs 

similarity scores for the reference spectra. However, the quantitative scores for different 

similarity metrics cannot be compared even for the same target spectrum. In the ELSIE 

algorithm, we instead combine the reference spectra ranking from each learner to derive an 

ensemble result. For a mixture of classifiers of various types, ranking-based combination 

methods have been shown to be more reliable.201 Based on the rankings, we compute the Borda 

count, defined as the number of candidates that are ranked equal and below the specific 

candidate. For example, the top spectrum among 10 computed candidates would receive a Borda 

count of 10, while the second ranked spectrum has a Borda count of 9. For each target spectrum, 

the Borda counts of the reference spectra under all learners are then summed to arrive at a 

consensus ranking.202  

Finally, the Borda ranks of all reference spectra are then combined with a penalty term 

for the peak shift and converted to a probabilistic estimate using the modified softmax function. 

The probability	of a reference spectrum 𝑋ø is indicated by 𝑃(𝑋ø) where the superscript k 

indicates the k-th spectrum, and is calculated as follows:  

1) The Borda count of each reference (𝑅ø) is normalized with respect to the count sum: 

𝑅êëìíø = Óù

∑Óù
. This step is required to avoid the exponential overflow. 

2) 𝑃(𝑋ø) is then calculated by the following equation: 

 

𝑃´𝑋øµ =
exp´𝑅êëìíø µ exp	(−

𝛼ú∆𝑆øú
𝛿W

)

∑ exp(𝑅êëìíø ) exp	(−𝛼|∆𝑆
ø|

𝛿W
)
, (5.11) 
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where ∆𝑆ø could be calculated as ∆𝑆ø = 𝑆ø −	𝑆̅. 𝑆ø is the peak shift amount between the 

reference spectrum 𝑋ø and the target spectrum. 𝑆̅ is the mean peak shift of the reference 

spectra. 𝛿W is the standard deviation of 𝑆ø. Coefficient	𝛼 is fitted to the test dataset. 

exp	(− üú∆Wùú
ýþ

)	is therefore a term that imposes a larger penalty on large peak shifts 

relative to smaller peak shifts.  

The algorithm itself has been highly optimized by leveraging on well-established 

numerical packages such as numpy and scipy.203,204 On a laptop computer with Intel i5 2.6GHz 

single CPU and 2 GB of RAM, the ELSIE algorithm can perform a comparison between a target 

and candidate spectrum in about 0.03 s. Typically, 20-30 spectra are selected for comparison 

according to the rules that the computational reference spectra should have identical absorption 

species, limited number of elements and Ehull < 100 meV/atom. The overall time to perform a 

complete ranking is therefore around 1 s, which allows for on-the-fly matching of uploaded 

spectra. 

Chapter 5, in full, is a reprint of the material “Automated generation and ensemble-

learned matching of X-ray absorption spectra” as it appears in npj Computational Materials, 

Chen Zheng, Kiran Mathew, Chi Chen, Yiming Chen, Hanmei Tang, Alan Dozier, Joshua J. Kas, 

Fernando D. Vila, John J. Rehr, Louis F.J. Piper, Kristin A. Persson, and Shyue Ping Ong, 2018,  

4 (12). The dissertation author was the primary investigator and author of this paper.  
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 Accurate Chemical Environment Classification from 

X-ray Absorption Near-Edge Structure using a Random Forest 

Model    

6.1 Introduction  

X-ray absorption spectroscopy (XAS) is an important technique for probing the local 

environments in a material, as it can provide information about atomic coordination symmetries, 

the number and chemical identities of neighboring atoms and oxidation states.205–207 Depending 

on the energy range, XAS is divided into the X-ray absorption near-edge structure (XANES) at 

low energy and the extended X-ray absorption fine structure (EXAFS) at high energy. While the 

quantitative analysis of the EXAFS is relatively mature, the analysis of the XANES is 

challenging, partly due to its sensitivity to many factors including coordination number 

(CN)208,209, orbital hybridization210, spin state211, oxidation state212 and symmetry213  of the 

central absorbing atoms. However, the XANES signal usually dominates the XAS spectrum and 

in principle, it provides richer information regarding the chemical environments compared to 

EXAFS. 

In a typical analysis of XANES, researchers rely on comparisons between experimentally 

measured spectroscopy and spectra from well-known compounds.58,214  There have been attempts 

for quantitative interpretations of XANES spectra using principal component analysis215–217 

(PCA) and linear deconvolution methods.218  These approaches seek to deconvolute the XANES 

spectrum of a multi-component system into individual component spectra, which provide the 
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statistical basis for estimating the presence and ratios of individual species. However, these 

techniques are difficult to apply on systems that do not have well-established reference spectra. 

Theoretical calculations based on time-dependent density-functional theory (TDDFT),219 

multi-scattering145,169 and Bethe-Salpeter equation (BSE) approaches220 are an additional means 

of obtaining the XANES of any material. Recently, the current authors have developed a high-

throughput workflow based on the FEFF multi-scattering code64 to build a large, public 

database144,221 of 580,000 K-edge XANES spectra of over 52,000 crystals in the Materials 

Project.17 This database not only provides an important reference for experiments but also opens 

new paths for large-scale quantitative XANES analysis. For example, the authors have also 

shown that an ensemble-learning algorithm spectra matching algorithm can achieve a 84.2% 

accuracy in identifying oxidation state and local environment by matching unknown spectra with 

this large, open database. 

The extraction of chemical environment information from the XANES is akin to that of 

image recognition, a field where machine learning (ML) techniques have made great strides and 

sometimes surpassing even human performance. Indeed, there have been attempts to apply ML 

to quantitative and qualitative XANES analysis. For example, Timoshenko et al.62 have 

demonstrated that neural networks can be utilized to extract the coordination number of Pt atoms 

from L-edge XANES spectra of metallic nanoparticles. Carbone et al.63 have shown that local 

coordination environment information of 3d transition metal species can be extracted from site-

specific K-edge XANES spectra of 3d transition metal oxides using convolutional neural 

networks with high accuracy. It has also been reported that material information, such as 

chemical, elemental and geometric information, can be obtained from the interpretation of 

calculated oxygen K-edges ELNES/XANES spectra of metal oxides and SiO2 based on decision 
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tree methods.222 Very recently, Suzuki et al.223 use L-edge XAS or EELS spectra of MnO in 

conjunction with a regression model to capture the crystalfield parameters. However, all these 

studies are either restricted to relatively small (∼100) datasets or a few chemical species. 

In this work, we present the state-of-the-art development of general ML approaches to 

accurately identify the local coordination environment of absorbing atoms from K-edge XANES 

using the largest computational XANES spectra database. We investigate and analyze a broad 

repertoire of ML tools applicable to spectral interpretation. Through careful analysis of the key 

performance drivers, our study provides a fundamental understanding of the use of machine 

learning techniques on local chemical environment characterization from x-ray absorption 

spectra. We show that random forest models trained on ∼ 190000 K-edge XANES of ∼ 22500 

oxides compounds can achieve an environment prediction accuracy of ∼ 85.4%. The as-

developed model is transferable to 33 elements, covering most technologically relevant elements 

including alkali, alkaline, metalloid, transitional metals, post-transition metals and carbon. This 

study marks by far the most thorough data-driven study of K-edge XANES. Lastly, the model’s 

generalizability is further demonstrated on public available experimental data by showing 

consistent high accuracy. Incorporating variable importance measures into the random forest 

model performance interpretations, we are able to give a clear analysis of the correlations 

between spectral data and absorbing atoms’ chemical properties, which re-establishes the link 

between spectra features and the coordination environments from a data-driven point of view. 

This work presents the synergy of model accuracy and interpretability as key focuses in the 

development XANES interpretation models, and provides valuable tools and data-driven insights 

for identifying and understanding the coordination environment from XANES for theorists and 

experimentalists. 
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6.2 Results 

6.2.1 Training dataset and machine learning model construction 

To demonstrate the generalization ability of the ML algorithm, we considered site-

specific K-edge XANES of all cations in oxides available from the Materials Project Database.17 

Cations with atomic number larger than 52 were excluded due to the lack of distinguishable K-

edge spectral features. We selected 0 to 45 eV energy window after the onset of spectra and 

converted it to a vector of 200 intensity values using linear interpolation. This is the strong 

scattering XANES region covering the pre-edge, main- and post-edge spectral features.224 All 

three regions have shown to be critical for the identification of local chemical environments.63 

The intensity vector was then normalized so that the value of maximum magnitude equals 1. 

Since experimental XANES spectra are representations of site-averaged signals, for each 

compound, we also included the same absorbing species site-averaged ensemble spectra 

considering the site multiplicity. 

In our previous investigation,144 we found that the broadness of the computed XAS 

spectral feature is sensitive to the lattice parameter variation. We therefore randomly sampled 

30% of spectra and stretched or compressed them to ±5𝑒𝑉 changes in energy range to mimic the 

variations in feature broadness. The augmented data were then added to the training set to 

improve the robustness of classification models. This spectral shape distortion corresponds to up 

to 7% variations in the lattice parameters, which exceeds the ∼5% systematic errors introduced 

by the Perdew-Berke-Ernzerhof (PBE)103 generalized gradient approximation function used in 

the Materials Projects17 for crystal structure optimization. 
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Our computed XAS spectra training dataset includes ∼ 190000 spectra for 33 elements in 

more than 22500 oxides compounds. To the authors’ best knowledge, our dataset represents the 

broadest element coverage to date in the study of XANES. To gain more insights into the 

relationship between chemical property and coordination environments, we divided the 

absorbing species into six groups according to their chemical properties: 

i. Alkali group (lithium, sodium, potassium, and rubidium), 47789 spectra. 

ii. Alkaline group (beryllium, magnesium, calcium, and strontium), 15246 spectra. 

iii. Metalloid group (boron, silicon, and germanium), 19773 spectra. 

iv. Carbon group, 7839 spectra. 

v. Transition Metal (TM) (20 row 3 and row 4 transition metal elements), 86584 

spectra. 

vi. Post-transition metal (Post-TM) group (aluminum, indium, tin, and gallium), 9458 

spectra. 

In this study, we define the coordination environment as the union of coordination 

number (CN) and its coordination motif (CM). We adopted the coordination environment 

assessment algorithm developed by Zimmermann et al.65 to represent the mixed state of local 

environments. In this algorithm, the first step identifies the number of bonded neighbors, i.e., 

CN, of an atom based on the Voronoi tessellations method implemented in pymatgen.12 In the 

second step, the coordination pattern was evaluated based on pattern-matching to determine the 

CM. Twenty-five coordination prototype motifs work as candidates for assessing the first-shell 

atomic configuration. The resemblances, i.e., order parameters (OPs), are numerical values 

between 0 and 1, with 1 being a perfect match for CN or CM. We then transformed the CNs OPs 

and CMs OPs into ranking labels to represent the full picture of the coordination environment 
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(see Methods section for the details on the construction of the ranking labels). In this way, the 

coordination environment recognition problem becomes a multi-label classification problem, 

where an absorption spectrum might reflect the existence of more than one coordination 

environment. This is an attractive problem transformation approach which provides both 

scalability and flexibility225 and most off-the-shelf multi-label classification algorithms226–228 

could therefore be considered in our investigation. 

We selected 𝑘 nearest neighbor (𝑘NN) classifier, random forest classifier, multi-layer 

perceptron (MLP) classifier,71 convolutional neural network229 (CNN) and support vector 

machines (SVM) to learn the mapping from spectral features to predefined coordination 

environment ranking labels. Model fitting and hyperparameter optimization were performed with 

five-fold cross validation using the high-throughput computational dataset,230 excluding the 

experimental spectra. The adoption of this strategy is to minimize data leakage, which gives a 

more rigorous estimation of the model’s generalizability. 

As the characteristic XAS absorption edge energy follows a power law with atomic 

number and is well separated,49 the absorbing species can be identified with 100% accuracy prior 

to the coordination environment classification. Hence, classifiers were optimized element-wisely. 

One benefit of the element-wise optimization approach is the high specificity of individual 

classifier. As the XAS database size continues to grow at a steady pace, the element-specific 

lightweight classifiers also provide the flexibility to be further optimized with evolving data 

streams. 

Due to the limitation in computational resource, the dramatic hyper-parameter search 

space cannot be navigated using the grid search techniques. Thus, during the optimization 

process, we adopted the heuristic optimization approach and restricted certain ML parameters 
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based on domain knowledge. The same hyper-parameter space was adopted in the optimization 

of ML models for each classification subtask (see Methods section for the details on the hyper-

parameter optimization of ML algorithm). Figure 6.1 provides an overview of the spectrum-

based coordination environment classification workflow. For each element, we separated the 

coordination environment classification model training process into two steps. In the first step, 

we trained models for identifying the CN ranking labels. We then trained models for determining 

the CN-type-specific CM. This training strategy was designed to improve the specificity of the 

classification models. Because the coordination environment of an absorbing atom needs to be 

represented by mixed states, data sets size under each label condition is intrinsically smaller. As 

depicted in Figure D.2, for the CN classification task, the median dataset size per CN ranking 

label per element is 99. For the coordination motif classification task, given a specific CN, the 

median dataset size per ranking label per element is 112. The dataset size distributions of both 

classification tasks showed a similar pattern. The two boxplots’ interquartile ranges were ∼ 300, 

which means that the sample size of half datasets is within the range from 50 to 350. 

Similarly, the identification of an unknown spectrum’s coordination environment was 

conducted following the two-step procedure. Element-specific CN classifiers were first applied to 

predict the number of bonded neighbors, i.e., CN ranking labels. Based on the predicted CN 

ranking label, the corresponding trained CM classifiers were then be utilized for CM ranking 

label assessment. We combined the results of both steps to generate the coordination 

environments label sets. Each coordination environment label is a representation of CN and CM. 
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Figure 6.1: Workflow schema of the coordination environment identification algorithm.  

 

The ranking of coordination environment labels was determined by the predicted CN 

ranking list as the CNs OPs are used as multiplying factors during the determination of CMs 

OPs.65 Therefore, the top-ranked coordination environment label is supposed to represent the 

dominant coordination environment of the absorbing species. 
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6.2.2 Computational spectra classification performance 

We systematically evaluated the performance of various classifiers using the Materials 

Project computational K-edge XANES spectra database.230 We used the accuracy and Jaccard 

score as metrics to measure and compare the performances of different classifiers. The accuracy 

score is a way to measure how well an ML model performs in predicting the dominant 

coordination environment of the absorbing species. The sample-average Jaccard score is a more 

strict performance metric than accuracy and emphasizes the performance of ML models on 

identifying all coordination environments related to the absorbing species. 

Figure 6.2 compares the accuracy and Jaccard score of various classifiers categorized by 

elemental groups. All five classifiers performed similarly on the carbon group, with classification 

accuracy of ∼ 93.1%. The random forest classifier outperforms the other four classifiers 

significantly on the rest elemental groups and maintains a consistent level of performance. 

Overall, the random forest model achieves an accuracy of 85.4% on the top coordination 

environment prediction task and Jaccard score of 81.8% on the multi-label coordination 

environment classification problem. 

As shown in Figure 6.2, we notice that the classification performance is highly correlated 

with elemental group. All five models suffer from performance drops on the alkali group. To 

elucidate the origin of the performance degradation, we borrow the concept of entropy to 

measure how disorganized the spectral coordination environment labels are in each group. The 

definition of entropy comes from information theory231 and can be calculated using the following 

expression: 
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 𝑆 = 	−d𝑃h𝑙𝑜𝑔(𝑃h
h

, (6.1) 

where 𝑃h	is the probability of a ranking label 𝑖 out of all ranking labels. We computed the 

coordination environment ranking label entropy of each element. The entropy value will be high 

if the variability of the label values is high and vise versa. 

 

Figure 6.2: Elemental group-wise coordination environment classification accuracy and 
Jaccard score derived from different ML classifiers. 

 

Figure 6.3(a) shows a quasi-linear relationship between the random forest classifier’s 

performance and label entropy. The label entropy values of alkali and alkaline groups are 

generally high, which indicates that these two sub-datasets are more diverse and make 

classification tasks more challenging. The results are expected, however, since the Materials 

Project database contains considerable amount of alkaline-conducting compounds, where the 

alkaline elements tend to form various local environments with low local symmetry. 

The accuracy drop might also come from the inferior performance of FEFF in 

reproducing the spectra of light alkali elements.232 In FEFF, the approximation of core hole 

potentials could result in too strong screening effects for the core hole, which causes a tendency 
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to underestimate the white line intensity of light elements in compounds. In the previous 

study,233 𝑍	 + 	1 approach was adopted to enhance the intensities of the pre-edge features of K-

edge XANES for lower Z elements. However, this strategy is not suitable for our large-scale 

high-throughput spectral simulations. As a comparison, Figure D.3(a) shows CNN’s prediction 

accuracy as a function of label entropy values. We notice that the CNN classifier failed to deliver 

classification performances comparable to the random forest classifier. Besides, the CNN 

classifier showed a higher rate of prediction accuracy decreasing as label entropy increases. 

 

Figure 6.3: Relationship between the random forest model’s classification accuracy and (a) the 
label entropy; (b) training dataset size. 

 

While the classification accuracy or Jaccard score may well be the main criterion that 

influence the selection of a ML model under most circumstances, care must be taken in model 

selection. In the context of selecting supervised learning algorithms for materials science 

applications, the importance of prior knowledge and problem analysis ought not to be 

overlooked. 
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To further validate this hypothesis, we produced Figure 6.3(b) and Figure D.3 depicting 

the relationship between dataset size and classifiers’ performances. It is worth noting that the 

dataset size is not a deterministic factor affecting the classifier’s performance. The correlation 

between dataset size and the model’s performance is relatively weak. The random forest 

classifier was capable of achieving ≥ 	80% accuracy in data-scarce regions. From Figure 6.3(b) 

and Figure D.3(b), we make the observation that CNN is more data hungry than the random 

forest model. Under the same training dataset conditions, CNN based models resulted in inferior 

performance than the random forest model. 

 

Figure 6.4: The random forest classifier’s element-wise classification accuracy of top 
coordination environment. We do not have sufficient sample sizes of computed Technetium 
(Tc), Ruthenium(Ru) and Rhodium (Rh) K-edge XANES to form reliable training sets for 
classification tasks. 

 

This once again suggests that random forest classifier is more applicable in the 

coordination environment identification problems. Thus, we adopt the random forest classifier 

for the identification of spectra’s coordination environment. Element-wise random forest 

classifiers’ accuracy and Jaccard scores of coordination environment classification tasks are 
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provided in Figure 6.4 and Figure D.4. The models have also been made publicly available as a 

part of veidt (https://github.com/materialsvirtuallab/veidt), an open-source Python ML library. 

 

6.2.3 Model insights 

As ML models penetrate materials science community, the inability of humans to 

understand these models seems problematic. However, due to the underlying nonlinear structure 

of most ML models, they were usually applied in a black-box manner. We argue that ML 

implementations should not lack an explicit declarative knowledge and believe that the usage of 

high-throughput computational dataset ought not to be limited to the model-fitting stage. We 

need to understand which spectral attributes are the most important in determining the chances 

for successful identification since the interpretation of K-edge XANES tends to be an insight-

driven activity. 

In this section, we seek to clarify the relationship between K-edge XANES spectra and 

the geometrical structure around absorption atoms from a computational perspective. Here, we 

mainly consider the 4, 5 or 6 coordinated nine 3d transition metal elements (Ti, V, Cr, Mn, Fe, 

Co, Ni, Cu, Zn) as extensive research has been carried out to reveal the link between their 

characteristic spectral features and coordination chemistry. To gain conceptual clarity of spectral 

characteristics related to coordination environment identification, we examined the variable 

importance measure of spectral coefficients. 

In our study, we divide the K-edge XANES spectra into three regions of 0 − 15	eV, 15 −

30	eV and 30 − 45	eV, which correspond approximately to the pre-edge region, main-edge 

region and post-edge region features, respectively. Instead of using the variable importance 

measures produced by the random forest model, we employed the brute force drop-variable 
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importance mechanism. Its rationale is the following: by dropping a region of spectra, the 

prediction accuracy will change relative to the full-spectrum trained baseline model’s 

performance. A reasonable measure for spectral feature importance is the absolute difference in 

prediction accuracy before and after dropping the spectral region. The advantage of the random 

forest drop-variable importance measure is that it provides the ground truth feature importance 

compared to alternative importance measures.234 

Figure 6.5 shows the normalized feature importance of different spectral regions. We find 

that model performances decrease significantly when two spectral regions were eliminated. In 

most cases, models completely failed to identify the relevant coordination environment using 

only one of the three spectral regions. This finding demonstrates that the precise identification of 

coordination environment relies on full spectral characteristics, consistent with previous study63 

indicating the critical importance of features beyond the pre-edge region in accurately classifying 

local chemical environments for 3d transition metals. 

The advanced feature importance figure also provides a pragmatic view of the 

informativeness of various spectral regions. We find that the importance of main-edge and post-

edge regions’ features was relatively high for the four coordinated early 3𝑑 transition metals (Ti, 

V, and Cr). As illustrated in Figure 6.5, six coordinated compounds exhibited higher main-edge 

and post-edge regions feature importance than four-coordinated compounds. It is well recognized 

in the experimental and computational literature that the pre-edge peak intensity of 3𝑑 elements’ 

K-edge XANES decreases with an increase in the CN for 3𝑑 oxides. Thus, the decrease of pre-

edge spectral features importance may be partially attributed to the drop in pre-edge peak 

intensity when species change from tetrahedral symmetry to octahedral symmetry.212 It is 

important to note that features beyond pre-edge regions become more critical for coordination 
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environment classifications in those six coordinated 3d transition metal oxides. These 

observations are in good agreement with previous studies63,208,212 demonstrating that the pre-edge 

region feature intensities are a function of the number 3d electrons, which maximizes at 𝑑& and 

gradually decreases to zero at 𝑑3&. For five coordinated compounds, we observe that two spectral 

regions features are necessary for reliable classification, and the pre-edge region feature 

importance is weaker than in four, and six coordinated compounds. 

 

Figure 6.5: Normalized feature importance for different regions of spectra. The drop-variable 
feature importance is normalized with respect to the maximum importance of a spectral region 
element-wisely. 

 

Furthermore, the feature importance measure allows us to study the dependence of Kedge 

XANES features on the CN for each 3𝑑 transition element. In the cases of Ti, Mn, Fe, Ni, Cu, 

and Zn, we observe that the dependence relationships are complicated. The low feature 

importance values of pre-edge and main-edge regions suggest that the use of these two spectral 
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regions alone gives less robust information on the central atoms’ coordination environment. 

Multiple spectral regions need to be considered together during classification learning. This 

provides the direct evidence that the spectral characteristics of 3d transition elements are 

influenced by valence,211 symmetry,235 electric quadrupole, and dipole transitions.60,213 In V, Cr, 

and Co, we find that the pre-edge region is informative for six coordinated compounds. This 

might be due to the distortion of symmetry. For example, six-coordinated V compounds236 have 

been confirmed to have intense pre-edge peaks caused by out-of-center displacements. Wong et 

al.237 have also demonstrated that the pre-edge absorption features’ intensity grows as the 

oxidation state of six coordinated V increases. 

 

6.2.4 Coordination environment identification of experimental XANES spectra 

The ultimate goal of ML classification algorithm development using computational 

XANES spectra is to identify the correlation between spectra and the local chemical environment 

of experimental XANES spectra. Generalizing ML model to the unseen and experimental dataset 

is not only the central concept of our work but also should be considered as the golden rule in 

evaluating the performance of computational data parameterized models. It is therefore critical to 

understand the generalization performance of the optimized models on open access experimental 

spectral datasets. 

We evaluated the random forest classifiers using high-quality normalized XANES 

experimental spectra available from XAFS Spectra Library (http://cars.uchicago.edu/xaslib), 

EELS database,54 and supplemented by six high-quality experimental XANES spectra of V2O5 , 

V2O3, VO2 , LiNiO2 , LiCoO2 , and NiO from previous studies.238,239 We selected the spectral 

region from −5 eV to 55 eV with reference to edge energy (𝐸&) determined by the MBACK 
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algorithm.240 As PBE usually leads to up to 5% lattice parameter overestimation error,180,241 the 

expanded spectral region compromises this artificial spectral feature difference between 

computational and experimental XANES spectra. 

We excluded the Al2O3, SrCO3 and Mn3O4 spectra from the evaluation dataset. As for 

Al2O3, the Al is six coordinated by oxygen atoms, octahedral | pentagonal pyramidal | hexagonal 

planar is the only CM ranking label with sufficient computed spectral data. The rest CM ranking 

labels of six coordinated Al all had less than 30 spectral samples and were insufficient for 

training. Therefore, coordination motif classification for six coordinated Al could not be 

performed. For nine coordinated Sr2+ ion of SrCO3, no CM type was provided by the 

coordination environment labeling tool.65 In the experimental Mn3O4 entry, Mn4+ is four 

coordinated and there were only two computational XANES spectra with the same CM ranking 

label. Thus, the computational data is insufficient for proper training of the classifier. 

Nevertheless, the 27 spectra comprise a diversity dataset covering 13 chemical species for 

classifiers’ performance assessment. For those experimental spectra from EELS database and 

XAFS Spectra Library without available structural information, we assumed those spectra 

correspond to the ground state structures in the Materials Project database with the same 

chemical composition. 

On the out-of-sample test set, the random forest classifier successfully identified 22 of 27 

top coordination environment ranking labels. The top coordination environment prediction 

accuracy is 81.5% and the coordination environment identification Jaccard score is 0.82. We find 

that the predictive capacity of the random forest classifier is on par with the performance 

obtained using the computational dataset. This indicates that models trained on high-throughput 

computational dataset exploit spectral features of the experimental dataset. 
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We observe that the classifier failed to retrieve the correct coordination environment of 

CuO, Na2O and ZnO and two V2O5 spectra. It is worth noting that the classifiers were cable of 

predicting the dominating CN (CN with highest 𝑞CD) with 100% of accuracy. Indeed, for V 

atoms, the classifier predicted that there exists a secondary CN condition. This may be primarily 

due to high similarity of the V K-edge spectra for different coordination environments. For V2O5, 

the classify successfully predicted the dominant CM, i.e., trigonal bipyramidal. We notice that 

the OPs difference between the second (i.e., 𝑞$%ê&î'ëêî(	$(îêîì) and third (i.e., 𝑞ð)óîì%,$¯ìîíÝ*î() 

rank CMs is ∼ 0.029, and the OPs difference between the dominant and secondary CMs is ∼ 

0.033. Thus, the coordination pattern of the five coordinated V can be identified as resembling 

three coordination motifs to the same extent. In ZnO, the coordination pattern of four 

coordinated Zn did not resemble any target CM to a great extent, i.e., all CM OPs < 	0.22. Here, 

the relative low degree of resemblance between the absorbing atom’s coordination pattern and 

target motifs seems to be the critical issue. For Na2O spectrum, the failure of the model might be 

attributed to the possible contamination of the experimental sample.144 For CuO, Cu2+ ion is four 

coordinated by oxygens and has a fairly complex coordination environment. The Cu2+ ion’s 

coordination pattern is identified in a matching with 5 target motifs, where OPs of three CMs 

(i.e., rectangular see−saw−like, see−saw−like and square co−planar) exceed 0.5. In this case, the 

local environment investigation conducted using EXAFS measurements becomes critical. 

 

6.3 Discussion 

To summarize, we have shown that the random forest classifier can be a powerful tool for 

identifying the atomic coordination environments. The random forest classifier trained using 

high-throughput FEFF computed K-edge XANES spectra exhibits excellent generalizability and 
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demonstrates the state-of-the-art performance on a diverse experimental spectra test set 

comprising 27 experimental XANES spectra of 13 chemical species. The model shows an 

outstanding ∼ 81.5% top 1 accuracy in identifying the complex and mixed states of coordination 

environment from experimental spectra, respectively. This breaks the limitation of using the 

group theory derived character tables242 in XANES spectra evaluation. Since in a real-world 

scenario, there are quite few compounds with completely regular symmetry. With the presence 

of unsymmetrical lattice vibration, short- and median-range disorders, the XANES spectral 

features might not perfectly reassemble those characteristics deduced from 1s-3d transition or d-

p hybridization.208,212 

In addition, we performed a comparative study on the performance of various modern 

modeling techniques and clarified how the sample sizes, classification problem complexity are 

related to the models’ discriminatory ability. A key advantage of our random forest classifiers is 

that they are capable of delivering a high level of accuracy across 33 elements by training data 

size varying from 100 to 10000. Most importantly, we performed a systematic investigation on 

the feature importance of K-edge XANES 3d TMs and identified spectral attributes that are 

relevant for coordination environment classification. Using the feature importance measure, we 

show that the pre-edge spectral region is a relatively important factor in distinguishing four, or 

six coordinated absorbing species coordination environments. We reveal that the main-edge and 

post-edge spectral regions become more distinguished as CN changes from four to six. 

Accordingly, our interpretation process provides a useful rational framework for the element-

wisely investigation of the relationship between spectral features and coordination environments 

by directly probing the models’ variable importance measure. Understanding opacity in the ML 

algorithm will significantly advance the implementation of artificial intelligence technologies in 
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the materials science regime. The knowledge mined from the high-throughput computational 

spectral database will guide researchers’ decisions about where to dedicate their efforts to 

improve spectra interpretation. Moreover, understanding why ML models behave the way they 

do empowers materials scientists to utilize the classification model more effectively and 

efficiently. 

 

6.4 Methods 

6.4.1 Coordination environment ranking labels construction 

Determining and feature engineering of the absorbing element’s local environment is 

surprisingly a nontrivial task. This is because in the real material geometry, the structural 

distortion will introduce ambiguity to the identification of local environments. Using a 

deterministic label to represent an absorbing element’s coordination environment from its site-

averaged experimental XANES spectrum is ill-defined. A single absorption site’s local chemical 

environment could resemble various coordination motifs (CMs) simultaneously. For instance, 

one site might have both tetrahedral and bcc-like coordination as the bcc motif can be viewed as 

two point-symmetric tetrahedra.65 Therefore, it is insufficient to describe an absorbing specie’s or 

site’s coordination environment by utilizing one geometrical label.63 More complex feature 

engineering techniques of the local chemical environment must be developed for accurate and 

reliable assessment. 

To embed the nature of coordination environment conditions into the ML model, we 

quantified the coordination environment using order parameters243 (OPs) and then transformed 

them into ranking labels. Here OPs are the similarity assessment scores used to quantify the 

degree of matching between local structural motifs and certain CNs or CMs, which range from 0 
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to 1. A numerical value of 1 represents perfectly resemblance of a CN or CM prototype, and vise 

versa. In our investigation, 𝑞CD (e.g. 𝑞CD43, 𝑞CD4(, etc.) is the CN specific order parameter that 

describes how consistent a site is with a particular CN. Symbols such as	𝑞`_`, 𝑞Òc`, 𝑞+ccand etc., 

are the motif-specific order parameters used to discern the similarity between coordination 

prototype motifs and local environments. We restricted our investigations to coordination 

environments with CN equals or less than 12 in our study. This cutoff was chosen as no 

coordination prototype motifs are given for geometries with CN greater than 12. A total of 25 

perfect coordination motif prototypes were provided to assess the coordination patterns. 

Given a vector ΟPs/ ∈ ℝ2 of real-valued order parameters (OPs) output of an absorption 

sites local chemical environment, each 𝑖th OPs represents how closely the sites local chemical 

environment resembles a CN condition or a certain CM. A threshold 𝑡 is applied to ΟPs/  to create 

a bipartition of relevant and irrelevant CN and CM labels. The multi-label prediction y3 can be 

obtained as: 

 
𝑦45 = 6

1	if	ΟP/𝑠� ≥ 𝑡	
0	if	ΟP/ 𝑠� < 𝑡.

 (6.2) 

Instead of using an arbitrary threshold like 0.5, we adopted the concept of label 

cardinality (LCard) and rigorously calibrated the threshold 𝑡 to minimize the possibility of a 

spectrum being assigned to the no-label set. The LCard244 is a standard measure of “multi-

labeled-ness”, which is simply the average number of labels associated with each example. For N 

examples, the LCard measure can be calculated as: 

 
𝐿𝐶𝑎𝑟𝑑 = 	

1
𝑁dd𝑦�h

2

�w3

.
D

hw3

 (6.3) 
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The threshold 𝑡3	for CN and threshold 𝑡( for CM are calibrated using the same procedure 

as follows: 

 𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛9𝐿𝐶𝑎𝑟𝑑´𝐷[h`_4[�_ch±hcµ − 𝐿𝐶𝑎𝑟𝑑(𝐷[h`_4Ø:_ÙØ;_Â)9, (6.3) 

where 𝐷[h`_4[�_ch±hc refers to the dataset consist of ∼ 110000 site-specific computational Kedge 

XANES spectra and 𝐷[h`_4Ø:_ÙØ;_Â is the dataset of ∼ 36000 site-averaged absorption spectra. 

The site-averaged spectral dataset is populated as the experimental XANES spectra of elements 

are the averaged absorption coefficients. The OPs of site-averaged spectra are obtained by 

summing those individual spectral OPs and normalizing using the site multiplicities. The 

calibration procedure results in the average observed label cardinality of site-specific spectra 

becomes close to the average label cardinality of site-averaged spectra. This calibration approach 

is found to be more effective and efficient in reducing the probability of empty-set prediction 

issues than simply using an arbitrary threshold value.225  

To shine a light on the nature of mixed coordination environments for an absorption site, 

we evaluated the threshold value 𝑡3 and 𝑡( from 0 to 0.4 at 0.01 intervals. The average number of 

labels associated with each spectrum will naturally decrease as the threshold value increases. 

Since the average number of CN labels associated with each spectrum drops below 1 when 𝑡3 

exceeds 0.37, the highest threshold value was set to 0.4. For the CN label set, we find that the 

LCard difference between the site-specific dataset and site-averaged dataset is minimized at 𝑡3 = 

0.2. The average number of CN labels associated with each spectral example is ∼ 1.2. For the 

CM label set, the two datasets’ LCard difference reaches a minimum at 𝑡( = 0.05. The average 

number of coordination environment labels associated with each spectrum is ∼ 3.2. 

After applying the calibrated thresholds, we then encoded the CN and CM label sets into 

the form of ranking labels in the descending order of computed OPs. By using 0.2 as cutoff for 
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CN OPs, the average number of CN ranking labels per element is 10. Note that the labels contain 

joint labels such as CN4-CN6. In the CM classification task, the average number of CM ranking 

labels is 5 per element per CN. 

As expected, we observe that the distribution of relevant CN labels, i.e., CN with 𝑞CD ≥

0.2, is inhomogeneous [Figure D.5]. In each elemental group, there are a few dominating CNs. 

The numbers of data points with prevailing CN were an order of magnitude more than the rest. In 

the CM classification problem, we could therefore restrict our consideration to those most 

abundant CN cases of each elemental group. We excluded CN nine to twelve from the CM 

classification task as no target CM was provided for those CNs. 

As ML algorithms are highly ”data hungry”, for each absorbing specie, we excluded CN 

and CM ranking labels with less than 30 spectral samples. After we applied the minimum 

number of data points rule, all Tc and Rh ions are six coordinated. Therefore, we removed the Tc 

and Rh K-edge XANES from the first step CN classification task’s training dataset. For the 

second step CM classification task, we repeated this operation and excluded those sub-datasets 

(see Table D.1) associated with only one CM label from the training dataset as well. Finally, the 

following CN schemes in each elemental group were subjected to the coordination environment 

classification task. 

i. Alkali group: The range of CN from 3 to 8 

ii. Alkaline group: The range of CN from 4 to 8. 

iii. Metalloid group: Values of CN at 3 and 4. 

iv. Carbon group: The range of CN from 2 to 4. 

v. Transition Metal (TM): The range of CN from 4 to 6. 

vi. Post-transition metal (Post-TM) group: The value of CN at 4 and 6. 
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To validate the necessity of using ranking labels to represent the absorption elements’ 

coordination environments, we visualized the joint distributions of the CN and CM OPs of the 

alkali and the transition metal elemental group [Figure D.6]. From Figure D.6, we observe that 

there are correlations across different CN OPs or CM OPs. The locations of those dark blue areas 

on the OPs distribution map are direct indicators of the coexistence of multiple coordination 

environments. We also note that the correlation between CM OPs is quite substantial. Most six 

coordinated transition metal ions’ coordination patterns resemble two or more CMs to a great 

extent, i.e., various CM OPs exceed ≥ 0.4. These findings emphasize that labeling the absorbing 

sites’ coordination environments with one label cannot adequately represent the full coordination 

environment schemes. 

 

6.4.2 Hyper-parameter optimization of machine learning algorithm 

As most binary class classification algorithm can be naturally extended to the multi-label 

classification problem, five most commonly used classifiers includes random forest, 𝑘-Nearest 

Neighbor (𝑘NN), multi-layer perceptron (MLP), support vector machine and convolutional 

neural network (CNN) were chosen and modified to make multi-ranking label predictions. For 

each classification model, we first performed parameter optimization using the computational 

spectra through a heuristic approach. The parameters configurations with the highest accuracy 

were selected as the optimal parameter sets. We then compared the performance of the five 

parameter-optimized classification models across elemental groups in order to determine the 

optimal solution for the coordination environment classification task. The details on hyper-

parameter space are as follows:  
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i. 𝑘NN: The 𝑘 nearest neighbors classifier is optimized with respect to the number 

of neighbors (𝑁) and the distance metric (𝑝). The value of 𝑁 is examined for 10, 

20, 30, and 50. We restricted the minimum value of 𝑁 to 10 during the parameter 

search to avoid overfitting and increase the generalizability of models. Manhattan 

distance and Euclidean distance were used to assess the distances metric effects. 

We did not vary the tree structure, leaf size, and the algorithm used to compute 

the nearest neighbors of 𝑘NN classifier as these three parameters are invented in a 

general sense to address the computational inefficiencies of 𝑘NN.228 

ii. Random forest classifier: We varied the number of trees (n_estimators) in the 

forest, n_estimators= 10, 20, 30, 50, 100, 200. The rest parameters were kept at 

the empirical good default settings. 

iii. MLP classifier: For the MLP classifier, we varied the number of hidden layers (𝐿) 

from 1, 2 and 3. The number of hidden layer neurons was selected from 10 to 100. 

iv. SVC:  The penalty parameter 𝐶 was drawn exponentially from 0.001 to 100.0. We 

restricted the maximum value of 𝐶 to 100.0, as high 𝐶 is prone to overfitting. We 

experimented two kernal coefficient (𝛾) values. The possible 𝛾 were (a) 1 divided 

by the number of features (𝛾	 = 	0.005), and (b) 1 divided by the number of 

features multiplied by spectral absorption coefficients variance (𝛾	 ≃ 	0.013). We 

chose the radial basis function (RBF) kernel as the number of observations is one 

or two orders of magnitude higher than the number of features in the training data. 

In addition, previous study 55 has shown that it is unnecessary to consider the 

linear kernel if the model selection is conducted using the RBF kernel. 
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v. CNN: In our study, we used the 2-layer convolutional neural network classifier. 

The two layers were fully connected, feed-forward hidden layers with 50 and 100 

neurons, ending with a softmax output layer. The number of neurons in the output 

layer equals to the number of target ranking labels. It has been shown that the 

performance of the CNN-based model in the classification of XAS spectra is 

invariant across different neural network structures.63 

For CN ranking labels classification, we find that the random forest classifier’s 

performance converged at n_estimators=30 for all elemental groups. As the time it takes to train 

a random forest classifier increase with the number of trees in the forest, we chose 

n_estimators=30 for random forest classifier. In the case of 𝑘NN classifier, we find that the 

model using 10 nearest neighbors and manhattan distance performs the best. For the MLP 

classifier, the two-layer neural network architecture with ReLU activation function outperforms 

the rest models with tanh or logistic sigmoid neurons. The first layer has 50 neurons. The second 

layer consists 100 neurons. We find that increase in the number of hidden layers has a 

detrimental effect on classification performance. For the RBF SVC classifier, the model with 

𝐶	 = 	100 and 𝛾	 ≃ 	0.013 performs the best. 

Chapter 6, in full, is currently being prepared for submission for publication of the 

material “Accurate Chemical Environment Classification from X-ray Absorption Near-Edge 

Structure using a Random Forest Model”, Chen Zheng, Chi Chen and Shyue Ping Ong. The 

dissertation author was the primary investigator and author of this paper.   
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 Summary and Outlook 

Machine learning methods and artificial intelligence are beginning to make major inroads 

within modern materials science and engineering. During the last decades, significant advances 

in high-throughput computational techniques and architectures have already met phenomenal 

successes in the field of materials design and discovery, which turns the big materials data into 

the backbone of the next generation materials discovery. In this thesis, we report the 

development of machine learning frameworks for the investigations of P2 layered sodium TM 

oxides cathode materials and X-ray absorption spectroscopy.  

For the layered sodium TM P2 oxides, we present a detailed first-principle DFT study of 

the phase diagram and Na-vacancy arrangement of P2 Na#Co345Mn5O( system, with an 

emphasis on searching for stable ground state structures corresponding to different intermediate 

phases. Calculated voltage discharge curves were in excellent agreement with experimental 

results. DFT calculations were successfully applied to reveal the effect of TM substituents on the 

phase diagram, the tendency of forming ordered Na patterns at various Na concentrations. Our 

calculations demonstrate that mixing distinct TM elements results in significantly weaker and 

more consistent Na/vacancy ordering tendency in the entire sodium concentration region, 

compared with single TM Na layered oxides. Using ab initio molecular dynamics simulations 

and nudged elastic band (NEB) calculations, we elucidate that TM substitution has a pronounced 

effect on Na diffusion energy barriers and Na site occupation energy. Furthermore, by employing 

a site percolation model, we derive theoretical upper and lower bounds on the concentration of 

TM species in the P2 layered oxides based on their effects on Na diffusion energy barriers. To 

our knowledge, this is the first time that a universal framework to rationally tune mixed TM 

layered P2 compositions for optimal Na diffusion has been proposed.  
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We show that graph neural network technology, developed for applications such as 

computer vision, social network prediction, and recommender systems, can be used to capture 

the energy-density maps for quinary P2 layered TM oxides systems with negligible loss in 

accuracy. We attempt to generalize the MatErials Graph Network (MEGNet) model to the 

formation energy prediction task of high entropy cathode P2 

Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O(	materials, bypassing the need to solve the Kohn-Sham 

equations. MEGNet is able to correctly predict the energy trend of different Na/vacancy ordering 

configurations with various TM frameworks. These results indicate that graph neural network 

has the great potential to represent ground state wavefunctions and holds the promise of allowing 

larger systems to be tackled. This should yield orders of magnitude savings in computer time and 

now allows the first-principles investigation being performed in quaternary or quinary compound 

systems. We believe these advances would no doubt accelerate novel materials discovery. 

From chapter 4 to chapter 6, we attempt to solve X-ray absorption spectroscopy 

interpretation problems using machine-learning-based models, as the application of XAS for the 

screening of large quantities of materials remains to be relatively labor intensive and expensive. 

In the case of XAS, efficient computational codes like FEFF provide a means to generate high 

quality spectra computationally. In contrast to the experimental spectra, the computed spectra are 

unhampered by sample impurities, background noise, and equipment specific aberrations. We 

present the development of a high-throughput framework to generate a reference XAS database 

for all materials in the Materials Project database. This reference so far includes more than half 

millions of K-edge X-ray absorption near-edge structure (XANES) and extended X-ray 

absorption fine structure (EXAFS) spectroscopy of close to 60,000 compounds. Input parameters 
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used for the calculations can be downloaded directly from the Materials Project website or using 

the REST Application Programming Interface.  

For the searching and interpretation of computational X-ray absorption spectroscopy, we 

separate our work into two sub-projects. We first demonstrate the development of a novel 

automated XANES spectra matching algorithm that leverages on ensemble learning techniques 

to find the similar XANES spectra from out computed reference XAS database. The as-

developed spectral matching algorithm allows users to efficiently acquire similar spectra with 

respect to the query spectra through the Materials Project web page. The hit-list provided by the 

spectral matching algorithm will facilitate the drill-down analysis of materials in different 

aspects. In the second sub-project, we present the development of general machine learning 

approaches to rapidly and efficiently identify the local coordination environment of absorbing 

atoms from K-edge XANES. We evaluate and select the best machine learning algorithm from a 

broad repertoire of machine learning tools. A random forest model is built using the largest high-

throughput computational K-edge XANES spectra dataset. The random forest model used to 

predict experimental spectra has an accuracy of 82% in identifying the absorbing atoms’ 

coordination environments in mixed states. Finally, we demonstrate an approach that helps better 

understand what the random forest model has learned. Our study enhances the awareness of 

explainability in machine learning and artificial intelligence.  

To conclude, the work outlined in this thesis represents a key step forward toward 

combining machine learning models with high-throughput materials data. We have demonstrated 

that machine learning techniques could be customized and integrated with massive materials 

datasets to make high-fidelity predictions on materials properties (including formation energy, 

structural properties, and coordination environment of X-ray absorbing species). The machine 



 

 116 

learning paradigm presented in this work can be considered as a stepping stone for future 

applications of machine learning methods within materials science.  

To date, machine learning techniques have been widely applied to different areas of 

materials science research. Data-driven “materials informatics” strategies are now core parts of 

many materials studies. However, we notice that there remains significant scope for 

improvement for successful applications of machine learning methods within materials science. 

For instance, most predictive models only cover a small fraction of the properties in materials 

design. Machine learning algorithms were usually trained on a case-by-case manner. One well-

trained model might perform poorly when the model is generalized to “unseen” datasets. Another 

challenging lies in the generation of large scale and high-fidelity computational datasets. Taking 

X-ray absorption spectroscopy computation as an example, even with modern efficient and well 

tested computational codes, approximations of the electronic structure using DFT-based 

approach still require substantial computational resources and thus are impractical in high 

throughput studies. For practical high-throughput materials modeling, a common strategy to 

reduce the computational cost is applying universal parameter sets and approximations across 

different systems. This procedure inevitably results in information loss and questionable 

accuracy associated with human intervention. Therefore, we hope that this thesis can be a first 

step in spurring further research on the adoptions of machine learnings techniques in materials 

science.  
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Appendix A Supplementary Information Effect of Transition 

Metal Mixing on Na Ordering and Kinetics in Layered P2 

Oxides 

 

Figure A.1: (a) PBE and (b) PBE + 𝑈 0K stability diagrams of	Na#MnO(. Black line: convex 
hull; red dots: stable orderings; black cross: unstable orderings. (c) PBE and PBE + 𝑈 voltage 
profiles of 	Na#MnO(. Experimental voltage profile is obtained from Ref. 1. 
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Figure A.2: Stable ground-state Na orderings of  Na#MnO( with PBE. Na(1) site (yellow 
circles); Na(2) site (blue circles). 

 

 

Figure A.3: Stable ground-state Na orderings of Na#MnO( in PBE + 𝑈 at  𝑥 = (a) 0.33, (b) 
0.5, (c) 0.67, (d) 0.75. Legend: Na(2) site (blue dot). Bold lines indicate unit cell. 
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Figure A.4: PBE 0K stability diagram of Na#Co3/8Mn(/8O(. Black line: convex hull; red dots: 
stable orderings; black cross: unstable orderings. 

 

 

Figure A.5: PBE 0K stability diagram of Na#Co(/8Mn3/8O(. Black line: convex hull; red dots: 
stable orderings; black cross: unstable orderings. 
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Figure A.6: Lowest energy hexagonal Co-Mn orderings. Bold lines indicate the hexagonal 
ordering of Co-Mn. Co site (blue circles); Mn site (magenta circles). 
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Table A.1: Comparison of energies (meV atom−1 ) of different Na orderings among different 
Co-Mn frameworks of Na(/8Co(/8Mn3/8O(. Each row has an identical Na ordering but 
different Co-Mn frameworks across columns. Each column has the same Co-Mn framework 
but different Na orderings. The value in each cell refers to the energy difference with respect to 
its corresponding Na ordering with the ground state Co-Mn framework. As can be observed, 
different Co-Mn orderings have a relatively small effect on the energy (< 	10 meV atom−1). 

Na orderings ID Co-Mn 

Framework 1 

Co-Mn 

Framework 2 

Co-Mn 

Framework 3 

1 0.0 0.0 1.4 
    
2 0.3 0.3 7.6 

3 0.0 5.7 6.1 

4 0.7 0.8 11 

5 0.4 1.7 7.9 

6 0.9 0.2 0.8 

7 0.1 0.3 0.5 

8 0.1 0.2 0.1 

9 0.2 0.0 0.3 
 

10 0.5 0.0 0.2 
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Table A.2: Comparison of energies (meV/atom) of different Na orderings among different Co-
Mn frameworks of Na(/8Co(/8Mn3/8O(. Each row has an identical Na ordering but different 
Co-Mn frameworks across columns. Each column has the same Co-Mn framework but 
different Na orderings. The value in each cell refers to the energy difference with respect to its 
corresponding Na ordering with the ground state Co-Mn framework. As can be observed, 
different Co-Mn orderings have a relatively small effect on the energy (< 	10 meV atom−1). 

Na orderings ID Co-Mn 

Framework 1 

Co-Mn 

Framework 2 

Co-Mn 

Framework 3 

1 -0.2 0.1 0.0 
 

2 0.7 2.4 2.6 

3 2.7 5.1 0.1 

4 0.4 0.3 0.1 

5 0.6 6.3 0.7 

6 2.6 4.3 0.5 

7 0.2 1.5 0.2 

8 0.0 0.4 2.1 

9 0.4 0.4 2.1 
 

10 2.1 0.4 0.0 
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Table A.3: Average Na site occupancy fractions of P2 Na3/(Co345Mn5O( extracted from 25 
ps of NVT AIMD simulations at 1000 K in Figure A.7. Site availability refers to the total 
proportion of such sites within the framework, while site occupancy refers to the actual 
occupancy during the AIMD simulations. The main observation is that sites containing Mn has 
a significantly lower site occupancy relative to site availability, suggesting that diffusing Na 
avoids such sites during the simulation. 

Materials Na site type Site occupancy 
(simulation) 

Site availability 

Na3/(CoO( Na(1)Co-Co 
Na(2) 

0.474 
0.526 

0.5 
0.5 

Na3/(Co©/zMn3/zO( Na(1)Co-Co 
Na(1)Co-Mn 

Na(2) 

0.31 
0.096 
0.594 

0.333 
0.167 
0.5 

Na3/(Co(/8Mn3/8O( Na(1)Mn-Mn 
Na(1)Co-Co 

Na(2) 

0.042 
0.387 
0.571 

0.167 
0.333 
0.5 

Na3/(Co(/8Mn3/8O(∗  Na(1)Mn-Mn 
Na(1)Co-Co 
Na(1)Co-Mn 

Na(2) 

0.033 
0.265 
0.128 
0.574 

0.083 
0.25 
0.167 
0.5 

Na3/(Co3/(Mn3/(O( Na(1)Mn-Mn 
Na(1)Co-Co 
Na(1)Co-Mn 

Na(2) 

0.038 
0.095 
0.238 
0.629 

0.083 
0.083 
0.333 
0.5 

Na3/(Co3/8Mn(/8O( Na(1)Mn-Mn 
Na(1)Co-Co 

Na(2) 

0.215 
0.202 
0.583 

0.333 
0.167 
0.5 

Na3/(MnO( Na(1)Mn-Mn 
Na(2) 

0.484 
0.516 

0.5 
0.5 
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Table A.4: Na migration barriers of different Na(1) site configurations in selected 	
Co(/8Mn3/8O(∗  framework with and without Ni dopant. 

Framework 
Materials 

Dopant Doping site Na(1) site TM NEB barrier 
(meV) 

Co(/8Mn3/8O(∗  N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

Co-Co 
Co-Mn 
Mn-Mn 

102 
153 
170 

Co(/8Mn3/8O(∗  Ni 
Ni 

Co 
Co 

Ni-Co 
Ni-Ni 

114 
81 

Co(/8Mn3/8O(∗  Ni 
Ni 

Mn 
Mn 

Ni-Mn 
Ni-Ni 

171 
151 
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Appendix B Supplementary Information Deep Learning Driven 

Study of High Entropy Cathode 

Na#Co&.(Mn&.(Ti&.(Ni&.(Ru&.(O( 

Finding structures with predicted energy quantiles 

The structures with lowest energies [Figure B.1(a)] and highest energies [Figure B.1(c)] 

were find individually by simulated annealing and the structures with random energies were 

sampled randomly [Figure B.1(b)]. The structures with energy value quantiles were obtained by 

this method and DFT calculations were calculated.  

 

                        (a)                                            (b)                                         (c) 

Figure B.1: Simulated annealing and random sampling for determining the energy range for the 

disordered TMs. Simulated annealing is used to find the structures with lowest energies (a) and 

highest energies (c). Random sampling obtains structures with intermediate energies (b).  
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Finding lowest energy configurations 

 

                                 (a)                                                                         (b)  

Figure B.2: Temperature profile for simulated annealing (a) and MEGNet predicted energy 

evolution for only swapping TMs (TM) and also flipping the Na occupancy at the same time 

(All) (b) 

 

  

Computation of entropy contributions 

Here we assume an ideal mixing case, and the entropy contribution to the free energy can 

be computed as  

−𝑇𝑆 = −𝑘=𝑇d𝑥h𝑙𝑜𝑔𝑥h
h

 (B.1) 
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Appendix C Supplementary Information Automated Generation 

and Ensemble-Learned Matching of X-ray Absorption Spectra 

Table C.1: Materials used in benchmarking of FEFF parameters for K-edge XANES spectra 
calculations.1 

Composition Space Group 
Materials 

Project Id 

Absorbing 

Species 
Reference 

SiO2 𝑃3(21 mp-6930 Si [167] 

Si 𝐹𝑑3Ú𝑚 mp-149 Si [167] 

AlPO4 𝐼4Ú mp-7848 Al [167] 

SiC 𝐹4Ú3𝑚 mp-8062 Si [167] 

Al2O3 𝑅3Ú𝑐 mp-1143 Al [167] 

Al 𝐹𝑚3Ú𝑚 mp-134 Al [167] 

Na2O 𝐹𝑚3Ú𝑚 mp-2352 Na [167] 

C 𝐹𝑑3Ú𝑚 mp-66 C [167] 

B2O3 𝑃3321 mp-306 B [167] 

Si3N4 𝑃31𝑐 mp-2245 Si [167] 

Si3N4 𝑃68/𝑚 mp-988 Si [167] 

AlN 𝑃68𝑚𝑐 mp-661 Al [167] 

NaCl 𝐹𝑚3Ú𝑚 mp-22862 Na [167] 

 

1There are two B K-edge XANES of B2O3, two C K-edge XANES of the diamond structure 
(𝐹𝑑3Ú𝑚) and three Si K-edge XANES of quartz alpha SiO2 (𝑃3(21) in the EELSDb. For spectra 
taken using the same structure, only one of them is adopted in our study, which reduces the number 
of K-edge XAS spectra included in the benchmarking dataset from 17 to 13. 
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Figure C.1: Total computational time vs rfms1 value in SCF card for K-edge XANES 
calculations. The first term in the label represents the absorption species. The second term 
represents the chemical compositions. 

 

 

Figure C.2: Benchmark results of the K-edge XANES using different rfms value in the FMS 
card. Pair-wise spectra Pearson correlation coefficients are calculated considering rfms set to 
11.0 as references. Calculation of C K edge XANES in diamond cubic crystal structure (mp-66) 
at rfms equals 11 fails due the insufficiency of node memory. For mp-66, the spectrum 
computed at rfms equals 10 is adopted as the converged referential spectrum. The first term in 
the label represents the absorption species. The second term represents the chemical formula. 
The third term corresponds to the mp-id. 
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Figure C.3: Total computational time vs rfms value in FMS card. The first term in the label 
represents the absorption species. The second term represents the chemical formula. 

 

 

(a)                                                                     (b)  
 

Figure C.4: (a): Comparison of K-edge XANES spectra computed using different core-hole 
treatment approaches with experimental spectra from EELSDb167 for (a) Na K-edge of NaCl and 
(b) Al K-edge of Al2O3. The theoretical curves are shifted vertically for clarity. The energy of the 
computed spectra of Na K-edge and Al K-edge has been shifted to align with experimental 
spectra (this shift will be discussed in the spectra matching section). 
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Figure C.5: Benchmark results of the K-edge XANES obtained with different core-hole 
treatment approaches. We use RPA as the default core-hole treatment setting. 

 

Figure C.6: Benchmark results of the K-edge XANES calculations obtained with different 
exchange models. We use the Hedin-Lundqvist functional as the default setting for energy 
dependent exchange correlation potential calculation. Using the Dirac-Hara exchange correlation 
potential causes computational instabilities of B K-edge XANES of B2O3, we excluded the B K-
edge XANES results in this figure. 
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Figure C.7: Benchmark results of the K-edge XANES obtained using structures with applied 
strains. Pearson correlation coefficients between spectra are calculated using strain value set to 
0.0 as reference. The relative Fermi energy shifts between the reference spectrum and the spectra 
calculated with applied strains are determined using the raw output data. Indeed, the Pearson 
correlation coefficients remain above 0.85 when the applied strain value ranges from -0.05 to 
0.05 once the shift in Fermi energy is accounted for.  

 

 

Figure C.8: Comparison of the P L2,3-edge XANES for FePO4 where Gaussian noise with 
different signal to noise ratio were manually added. The experiment reference P L2,3-edge 
XANES FePO4 is obtained from EELSDb.167 
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(a) (b)            

 

(c)  

Figure C.9: Visualization of the divergence between the experimental target spectra and the 
FEFF computational spectra. Comparison between (a) the EELSDb experimental and the 
computed C K-edge XANES of the diamond structure (𝐹𝑑3Ú𝑚) and (b) the experimental and 
calculated B K-edge XANES spectra of B2O3. (c) Comparison between the Na K-edge XANES 
calculated using ground state Na2CO3, Na2O structures in the Materials Project database and the 
EELSDb Na K-edge XANES of Na2O. The energy of the computed spectra has been shifted to 
align with experimental spectra. 
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Selection of valid learners using distorted computational FEFF spectra  

To examine and filter out learners with error rate below 0.5, distorted computational 

FEFF spectra were used for the valid learner selection. It is motivated by the fact that the spectra 

extracted from our computed spectra database provide a wealth of labeled data for training and 

validation. 

We note that the XAS spectra in the EELSDb contains 7 distinguish absorbing species. 

We therefore constructed 7 computational spectra subgroups. Each subgroup is composed of all 

currently available K-edge XANES spectra from our XAS database with one absorbing specie 

included in EELSDb. We include carbon, oxygen and nitrogen in our chemical system 

construction to mimic the XAS measurement environment. There are total 453 spectra that meet 

the requirement [Table C.2]. In the following section, we will use these 453 spectra for the valid 

learner selection.  

Gaussian noise and spectra shift were added to the 453 spectra. The signal to noise (SNR) 

ratio ranges from 16 to 30 at 2 intervals. The spectra shift values are 1, 3, 5 eV at two directions. 

A total number of 48 synthetic ‘distorted’ spectra of each spectrum were generated. 

As each synthetic spectrum includes Gaussian noise, a Savitzky-Golay filter of width of 9 bins 

and polyorder of 4 is first applied to reduce the spectral noise. We note that this window width is 

much smaller than in the IFEFFIT software,166 it is because most of our computed XANE spectra 

are featured with narrow overall energy range (< 100 eV), low SNR ratio (< 30) and shape peaks 

with narrow FWHM. Wider window width would therefore smear out the peak features and 

degrade the classification performance of the learner unexpectedly. The denoised spectra were 

then adopted in the spectral matching learner selection. 
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Considering each one of the 48 distorted computational spectrum as the target spectrum, 

the top 1 spectrum returned by a desired learner from our database is supposed to be the pristine 

spectrum we add distortions to. If the top one returned spectrum matches with the pristine 

spectrum, the correct count number of the learner increased by 1. For those learners included in 

spectral matching ensemble construction, the average correct count number over all 453 spectra 

needs to exceed 24. We note that this criterion is more strict than random guessing, as each valid 

learner is supposed to be capable of selecting the correct spectrum out from a spectra group with 

size range from 20 to 192.  

It should be noted that, all original K-edge XAS of EELSDb show no noise. The noisiest 

XAS spectrum of EELSDb is the P L2,3-edge XAS of FePO4. As shown in Figure C.6, the SNR 

ratio of the P L2,3-edge XAS is close to 30. According to our strain effect investigation, a 5 eV 

spectral shift is an indication of more than 10% difference in lattice constants. The spectrum 

matching ensemble constructed by the selected learners is expected to perform well under harsh 

conditions.  
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Chemical System Absorbing Species 
Chemical system spectra 

count 

Al-P-O-N-C Al 64 

B-O-N-C B 20 

Na-O-C-N-Cl Na 42 

Si-O-C-N Si 192 

Li-Co-N-C-O Co 31 

Li-Ni-N-C-O Ni 36 

V-N-C-O V 68 

Table C.2:  FEFF9 computed spectra used for learner validation and selection. 
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Appendix D Supplementary Information Accurate Chemical 

Environment Classification from X-ray Absorption Near-Edge 

Structure using a Random Forest Model 

 

Figure D.1: Top coordination environment classification Jaccard scores of random forest 
classifier with respect to (a) datasets’ label entropy categorized by elemental groups and (b) 
training dataset size. 

 

 

Figure D.2: Boxplots of dataset size distribution per distinct coordination number or 
coordination motif ranking label. 
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Figure D.3: Overview of convolutional neural network classifier’s classification performance 
with respect to datasets’ label entropy and training dataset size. Relationship between the top 
coordination environment classification accuracy and (a) datasets’ label entropy and (b) 
training dataset size. Relationship between the Jaccard score and (c) datasets’ label entropy 
and (d) training dataset size. 
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Figure D.4: The random forest classifier’s element-wise classification Jaccard scores of 
coordination environment classification. We do not have sufficient sample sizes of computed 
Tc, Ru, Rh K-edge XANES to form a reliable training set for classification tasks. 

 

 

Table D.1 Absorbing species and CNs with only one CM ranking label. Twelve coordinated 
(𝑞CD43( 	≥ 	0.2) entries were excluded as their coordination environments all resemble the 
cuboctahedral coordination motif, i.e., 𝑞ïó>ëï&î?%*ìî( 	≥ 	0.05. 

Absorbing 
specie 

Coordination 
number 

ranking label 
Coordination motif ranking label 

Si CN6 octahedral | pentagonal pyramidal | hexagonal planar 
Al CN6 octahedral | pentagonal pyramidal | hexagonal planar 
Cd CN5 trigonal bipyramidal | square pyramidal | pentagonal planar 
In CN6 octahedral | pentagonal pyramidal | hexagonal planar 
Ge CN6 octahedral | pentagonal pyramidal | hexagonal planar 
Ru CN6 octahedral | pentagonal pyramidal | hexagonal planar 
Mg CN7 pentagonal bipyramidal | hexagonal pyramidal 
Sr CN4 tetrahedral | trigonal pyramidal | seesaw like square co-planar 
Mn CN4 tetrahedral | trigonal pyramidal | seesaw like square co-planar 
C CN1 single bonds 
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Figure D.5: Counts of K-edge XANES entries with coordination number order parameters 
(OPs) larger than 0.2. 
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Figure D.6: Joint distribution of CNs and CMs order parameters (OPs) of alkali group and 
transition metal group entries. Dark color represents high probability. 
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Table D.2: Coordination motif ranking labels prediction accuracy of optimized random forest 
classifiers on 27 experimental spectra 

Formula Space-
group 

Absorbing 
species 

Correct 
CN 

labels 

Correct CM labels Correct 
CN-
CM 

labels 
in top 
entry? 

Data 
source 

LiCoO2 𝑅3Ú𝑚 Co CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes Ref.238,239 

LiNiO2 𝑅3Ú𝑚 Ni CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes Ref.238,239 

NiO 𝐹𝑚3Ú𝑚 Ni CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes Ref.238,239 

VO2 𝑃23/𝑐 V CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes Ref.238,239 

V2O5 𝑃𝑚𝑚𝑛 V CN-5 trigonal bipyramidal | 
pentagonal planar | 
square pyramidal 

No Ref.238,239 

V2O3 𝑅3Ú𝑐 V CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes Ref.238,239 

AlPO4 𝐼4Ú Al CN-4 tetrahedral | trigonal 
pyramidal | 

see−saw−like | square 
co−planar 

Yes EELS 
Data 

Base54 

B2O3 𝑃3321 B CN-3 trigonal planar | 
trigonal non−coplanar | 

T−shaped 

Yes EELS 
Data 

Base54 
SiO2 𝐼4Ú2𝑑 Si CN-4 tetrahedral | trigonal 

pyramidal | 
see−saw−like | square 

co−planar 

Yes EELS 
Data 

Base54 
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Na2O 𝐹𝑚3Ú𝑚 Na CN-4 tetrahedral | trigonal 
pyramidal | 

see−saw−like | square 
co−planar 

No EELS 
Data 

Base54 

MnO 𝐹𝑚3Ú𝑚 Mn CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

MnO2 𝐼4/𝑚 Mn CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

Mn2O3 𝑃𝑏𝑐𝑎 Mn CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

K2Cr2O7 𝑃1Ú Cr CN-4 tetrahedral | trigonal 
pyramidal | 

see−saw−like | square 
co−planar 

Yes XAFS 
Library140 

K2CrO4 𝑃𝑛𝑚𝑎 Cr CN-4 tetrahedral | trigonal 
pyramidal | 

see−saw−like | square 
co−planar 

Yes XAFS 
Library140 

Cr2O3 𝑅3Ú𝑐 Cr CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

Na2CrO4 𝐶𝑚𝑐𝑚 Cr CN-4 tetrahedral | trigonal 
pyramidal | 

see−saw−like | square 
co−planar 

Yes XAFS 
Library140 

Fe2O3 𝑅3Ú𝑐 Fe CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

FeO I4/mmm Fe CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

ZnO 𝑃68𝑚𝑐 Zn CN-4 tetrahedral | trigonal 
pyramidal | 

see−saw−like | square 
co−planar 

No XAFS 
Library140 
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Ni2O3 𝐶𝑚𝑐𝑚 Ni CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

CuO 𝑃4(/𝑚𝑚𝑐 Cu CN-4 square co−planar | 
rectangular 

see−saw−like | 
see−saw−like | trigonal 
pyramidal | tetrahedral 

No XAFS 
Library140 

V2O5 𝑃𝑚𝑚𝑛 V CN-5 trigonal bipyramidal | 
pentagonal planar | 
square pyramidal 

No XAFS 
Library140 

VO2 𝑃4(
/𝑚𝑛𝑚 

V CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

V2O3 𝐼𝑎3 V CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

VO 𝑅3Ú𝑚 V CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 

CdO 𝐹𝑚3Ú𝑚 Cd CN-6 octahedral | pentagonal 
pyramidal | hexagonal 

planar 

Yes XAFS 
Library140 
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