
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Hierarchical Reinforcement Learning with Model-Based Planning for Finding Sparse Rewards

Permalink
https://escholarship.org/uc/item/89j5c7j1

Author
Bartley, Travis D.

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at
https://creativecommons.org/licenses/by-nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89j5c7j1
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Hierarchical Reinforcement Learning with Model-Based
Planning for Finding Sparse Rewards

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Travis D. Bartley

Dissertation Committee:
Assistant Professor Yasser Shoukry, Co-Chair

Professor Fadi Kurdahi, Co-Chair
Associate Professor Marco Levorato

2023

© 2023 Travis D. Bartley

DEDICATION

To my wife, Nikita.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 The Sparse Reward Problem . 1
1.2 Thesis Outline . 2

2 Background 3
2.1 Markov Decision Processes . 5
2.2 Semi–Markov Decision Processes . 6
2.3 Model-Free RL . 8
2.4 Model-Based RL . 10

2.4.1 Model-Based Planning . 11
2.4.2 Monte Carlo Tree Search . 13

2.5 Hierarchical Reinforcement Learning . 16

3 Hierarchical Reinforcement Learning Agent for Path Planning 20
3.1 Introduction . 20

3.1.1 Waterworld Random Maze Task . 22
3.1.2 Gridworld Random Maze Task . 23

3.2 Methods . 24
3.2.1 Hierarchical Agent with Feature Crafted Goals 24

3.3 Results . 27
3.4 Discussion . 29

iii

4 Learning Diverse Policies for Path Planning 30
4.1 Introduction . 30
4.2 Hierarchical Agent with Learned Diverse Policies 31
4.3 Results . 33

4.3.1 Deepmind Lab Random Maze Task 33
4.4 Discussion . 36

5 Hierarchical Reinforcement Learning Agent for General Tasks 37
5.1 Introduction to OpenAI Gymnasium Atari Tasks 37
5.2 Hierarchical Agent for General Task Solving 39

5.2.1 PUCT . 39
5.2.2 NN Architecture . 40
5.2.3 Worker Policy Termination . 40

5.3 Results . 41
5.3.1 Experimental Procedure . 41
5.3.2 Atari Games Performance . 42

5.4 Discussion . 42

6 Conclusion 46
6.1 Summary . 46
6.2 Future Directions . 47

Bibliography 48

Appendix A OpenAI Baselines for Atari Learning Environment 52

iv

LIST OF FIGURES

Page

2.1 The reinforcement learning paradigm. [1] . 4
2.2 Hierarchical reinforcement learning example. [2] 5
2.3 The state trajectory of an MDP is made up of small, discrete-time transitions,

whereas that of an SMDP comprises larger, continuous-time transitions. Op-
tions enable an MDP trajectory to be analyzed in either way. [3] 7

2.4 Monte Carlo tree search method. [4] . 14

3.1 Waterworld environment. 23
3.2 Gridworld random maze task. 23
3.3 Hierarchical agent with goal-based planning. 24
3.4 Illustration Monte Carlo tree search planning process for maze solving. . . . 26
3.5 Planning results and illustration of goals (red) from a random episode. . . . 28
3.6 Training results for A3C agent . 28

4.1 DIAYN Algorithm. [5] . 32
4.2 DIAYN Algorithm: the discriminator is updated to better predict the skill,

and the skill is updated to visit diverse states that make it more discriminable. [5] 32
4.3 DeepMind Lab environment. 34
4.4 Textual representation of 4 selected random mazes in DeepMind Lab naviga-

tion task. The goal is represented by "G" and walls represented by "*". . . . 34
4.5 Worker policies trained according to DIAYN. Each color represents a different

policy. The plot shows the trajectories of the agent over 10 mini-episodes of
100 frames for each different policy. 35

4.6 Training loss of worker DIAYN actor. 35
4.7 Training loss of worker DIAYN critic1. 35
4.8 Training loss of worker DIAYN critic2. 36
4.9 Training loss of worker DIAYN discriminator. 36
4.10 Maze solving performance of hierarchical agent, as measured in average time

to solve maze per episode. 36

5.1 Performance of hierarchical agent on BeamRider. 42
5.2 Performance of hierarchical agent on Breakout. 43
5.3 Performance of hierarchical agent on Enduro. 43
5.4 Performance of hierarchical agent on Pong. 43
5.5 Performance of hierarchical agent on Qbert. 44

v

5.6 Performance of hierarchical agent on Seaquest. 44
5.7 Performance of hierarchical agent on SpaceInvaders. 44

vi

LIST OF TABLES

Page

5.1 Summary of the results of the hierarchical agent (HRL) on selected games
from the Atari Learning Environment. 42

vii

LIST OF ALGORITHMS

Page
1 Pseudocode for manager function . 25
2 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread 27
3 Pseudocode for Path Planning Hierarchical Agent. 31

viii

ACKNOWLEDGMENTS

I would like to thank...

My advisors Professor Fadi Kurdahi and Assistant Professor Yasser Shoukry for their guid-
ance. Professor Anima Anandkumar and Associate Professor Aparna Chandramowlishwaran
for advising me early on in my Ph.D. journey. Professor Emre Neftci and Professor Nikil
Dutt for advising me through the bulk of my PhD work and serving on my Ph.D. candidacy
committee- thank you for your mentorship and the knowledge you shared with me. Professor
Jeff Krichmar for serving on my candidacy committee. Associate Professor Marco Levorato
for providing helpful feedback and for serving on my candidacy committee and dissertation
committee.

Professor Kazusuke Maenaka and all of the members of the ERATO Maenaka Human-
Sensing Fusion Project, as well as Professor Shuji Tanaka and all of the members of the
Tanaka Shuji MEMS Lab. Thank you for helping me start my research career and for all
the things you taught me.

All the members and friends of the Neuromorphic Machine Intelligence (NMI) Lab for the
fascinating discussions and debates: Roman Parise, Armaan Saini, Dan Barsever, Takashi
Nagata, Georgios Detorakis, Andrew Hanson, Jack Kaiser, Massimiliano Iacono, Jinwei Xing,
and Jordan Rashid.

All the members of the Cognitive Anteater Robotics Laboratory (CARL) for the many
excellent presentations and discussions.

Amy Pham, who saved me more times than I can count in my academic journey.

My good friends Micah Jackson, Armond Murray, Lingge Li, Alexios Vulomekas, Evelia
Salinas, and Cami Sifferlen.

The funding sources that made my Ph.D. studies possible: National Science Foundation
(NSF), Defense Advanced Research Projects Agency (DARPA), and Intel Corporation.

My whole family, the Bartleys and Paranjapes, for their love and support, especially my
parents, Terry and Jennifer Bartley.

ix

VITA

Travis D. Bartley

EDUCATION

Doctor of Philosophy in Electrical and Computer Engineering 2023
University of California, Irvine Irvine, California
Master of Science in Electrical and Computer Engineering 2017
University of California, Irvine Irvine, California
Bachelor of Science in Electrical and Computer Engineering 2010
The Ohio State University Columbus, Ohio

WORK AND RESEARCH EXPERIENCE

Graduate Intern 2019
Irvine Sensors Corporation Irvine, California

Graduate Student Researcher 2016–2020
University of California, Irvine Irvine, California

Graduate Tech Intern 2016–2017
Intel Corporation Toronto, Canada

Researcher 2013–2015
Tohoku University Sendai, Japan

Research Engineer 2010–2013
The University of Hyogo Himeji, Japan

TEACHING EXPERIENCE

Teaching Assistant 2015–2023
University of California, Irvine Irvine, California

x

PUBLICATIONS

G. Detorakis, T. Bartley, E. Neftci, Contrastive Hebbian Learning with Random Feedback
Weights, Neural Networks, No. 114, pp. 1–14, 2019.

G. Detorakis, T. Bartley, E. Neftci, Random Contrastive Hebbian Learning as a Biologically
Plausible Learning Scheme, to appear in OCNS 2018, Seattle (WA, USA).

G. Detorakis, T. Bartley, R. Parise, S. Sheik, C. Augustine, S. Paul, B. U. Pedroni, N.
Dutt, J. Krichmar, G. Cauwenberghs, and E. Neftci, Three-factor Embedded Learning on
Neuromorphic Systems, COSYNE, Denver (CO, USA), 2018.

G. Detorakis, T. Bartley, R. Parise, S. Sheik, C. Augustine, S. Paul, B. Pedroni, N. Dutt, J.
Krichmar, G. Cauwenberghs and E. Neftci, Embedded Learning on Neuromorphic Systems:
Towards a Unified Computing Framework, Neuro Inspired Computational Elements (NICE)
Workshop, (Portland, OR), 2018.

G. Detorakis, T. Bartley, R. Parise, C. Augustine, S. Paul, E. Neftci, Embedded learning
on neuromorphic systems: Towards a Unified Computing Framework, IEEE International
Conference on Computer Aided Design (ICCAD), Hardware and Algorithms for Learning
on a Chip (HALO) Workshop, 2017.

T. Bartley, M. Elkoussy, A. Anandkumar, and A. Chandramowlishwaran, “Minimizing Com-
munication for Tensor Decompositions,” SC16, The International Conference for High Per-
formance Computing, Networking, Storage and Analysis, (Salt Lake City, UT), Nov. 2016.

C. Shao, T. Nakayama, Y. Hata, T. Bartley, Y. Nonomura, S. Tanaka, and M. Muroyama, “A
Multiple Sensor Platform with Dedicated CMOS-LSIs for Robot Applications,” NEMS 2016,
The 11th Annual IEEE International Conference on Nano/Micro Engineered and Molecular
Systems, (Sendai and Matsushima Bay, Japan), Apr. 2016.

S. Asano, M. Muroyama, T. Bartley, T. Nakayama, U. Yamaguchi, H. Yamada, Y. Hata, Y.
Nonomura, and S. Tanaka, “3-Axis Fully-Integrated Surface-Mountable Differential Capac-
itive Tactile Sensor by CMOS Flip-Bonding,” MEMS 2016, The 29th IEEE International
Conference on Micro Electro Mechanical Systems, (Shanghai, China), Jan. 2016.

T. Bartley, S. Tanaka, Y. Nonomura, T. Nakayama, Y. Hata, and M. Muroyama, “Sen-
sor Network Serial Communication System with High Tolerance to Timing and Topology
Variations,” The IEEE Sensors Conference, (Busan, South Korea), Nov. 2015.

S. Asano, M. Muroyama, T. Bartley, T. Kojima, T. Nakayama, U. Yamaguchi, H. Yamada,
Y. Nonomura, Y. Hata, H. Funabashi, and S. Tanaka, “Flipped CMOS-diaphragm capacitive
tactile sensor surface mountable on flexible and stretchable bus line,” 18th International Con-
ference on Solid-State Sensors, Actuators and Microsystems Transducers 2015 (Anchorage,
AK), pp. 97–100, June 2015.

xi

T. Bartley, S. Tanaka, Y. Nonomura, T. Nakayama, and M. Muroyama, “Delay Window
Blind Oversampling Clock and Data Recovery Algorithm with Wide Tracking Range,” The
IEEE International Symposium on Circuits and Systems (Lisbon, Portugal), pp. 1598–1601,
May 2015.

M. Muroyama, M. Makihata, S. Tanaka, T. Kojima, Y. Nakano, T. Bartley, T. Nakayama,
U. Yamaguchi, H. Yamada, Y. Nonomura, Y. Hata, H. Funabashi, and M. Esashi, “Practical
Application of MEMS-LSI Integration Technology: Tactile Sensor Network,” (Japanese)
InterLab No. 110, pp. 17–23, Mar. 2014.

O. Nizhnik, K. Higuchi, K. Maenaka, and T. Bartley, “Energy-efficient, 0.1 nJ per conversion
temperature sensor with time-to-digital converter and 1 deg C accuracy in -6 to 64 deg C
range,” The IEEE Sensors Conference, (Baltimore, MD), pp. 1–5, Nov. 2013.

M. Nii, T. Tanaka, Y. Matsumoto, T. Bartley, U. Maksudi, O. Nizhnik, K. Sonoda, H. Takao,
K. Maenaka, and K. Higuchi, “Heart Rate Extraction Hardware from ECG Data,” Transac-
tions of Japanese Society for Medical and Biological Engineering Vol. 51, No. Supplement
p. M-159, Sep. 2013.

H. Takao, K. Maenaka, K Higuchi, O. Nizhnik, O. Vinluan, U. Maksudi, and T. Bartley,
“ASIC for Monitoring of Human Motion,” Transactions of Japanese Society for Medical and
Biological Engineering Vol. 51, No. Supplement p. M-157, Sep. 2013.

xii

ABSTRACT OF THE DISSERTATION
Hierarchical Reinforcement Learning with Model-Based

Planning for Finding Sparse Rewards

By

Travis D. Bartley

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2023

Assistant Professor Yasser Shoukry, Co-Chair
Professor Fadi Kurdahi, Co-Chair

Reinforcement learning (RL) has proven useful for a wide variety of important applications,

including robotics, autonomous vehicles, healthcare, finance, gaming, recommendation sys-

tems, and advertising, among many others. In general, RL involves training an agent to make

decisions based on a reward signal. One of the major challenges in the field is the sparse

reward problem, which occurs when the agent receives rewards only occasionally during the

training process. This can make conventional RL algorithms difficult to train since the agent

does not receive enough feedback to learn the optimal policy. Model-based planning is one

potential solution to the sparse reward problem since it enables an agent to simulate their

actions and predict the outcome far into the future. However, planning can be computation-

ally expensive or even intractable when too many time steps are required to be internally

simulated, due to combinatorial explosion.

To address these challenges, this thesis presents a new RL algorithm that uses a hierarchy

of model-based (manager) and model-free (worker) policies to take advantage of the unique

advantages of both. The worker takes guidance from the manager in the form of a goal

or selected policy. The worker is computationally efficient and can respond to changes or

uncertainty in the environment to carry out its task. From the manager’s perspective, this

xiii

abstracts away the trivially small state transitions, reducing the depth needed for tree search,

and greatly improving the efficiency of planning.

Two different applications were used for evaluation of the hierarchical agent. The first

is a maze navigation environment, with continuous-state dynamics and unique episodes.

This makes the environment extremely challenging for both model-based and model-free

algorithms. The performance of the agent was evaluated on multiple platforms for the

random maze task, including DeepMind Lab. For the second demonstration, the proposed

algorithm was compared against other algorithms with the Arcade Learning Environment,

which is a popular RL benchmark. In comparison with state-of-the-art algorithms, the

proposed hierarchical algorithm is shown to have a faster convergence and greater sample

efficiency on several tasks. Overall, the proposed hierarchical approach is a potential solution

to the sparse rewards problem, and may enable RL algorithms to be applied to a wider range

of tasks, ultimately leading to better outcomes in various applications.

xiv

Chapter 1

Introduction

1.1 The Sparse Reward Problem

The sparse reward problem is a common challenge in RL where an agent is trying to learn a

task, but the rewards it receives for its actions are sparse or infrequent. In some environments,

the rewards are sparse, meaning that the agent only receives a reward for completing the

task or reaching a certain milestone, while all other actions receive a reward of zero. This

makes it difficult for the agent to learn the optimal policy because it may not receive any

feedback for a long time, making it hard to distinguish between good and bad actions. This

is especially problematic in complex environments where the optimal policy is not obvious.

The sparse reward problem can lead to slow learning, or even the failure of the agent to learn

anything useful. This is also related to the credit assignment problem, where the agent may

not immediately know which of its actions led to a particular reward or penalty.

To overcome this challenge, researchers have developed a number of techniques, such as

shaping the reward signal, using a proxy reward, or using intrinsic motivation to encourage

exploration. These techniques can provide more frequent feedback to the agent, making it

1

easier to learn the optimal policy even in the presence of sparse rewards. However, these

techniques may not be applicable to all problems.

1.2 Thesis Outline

This dissertation presents a new solution to the sparse reward problem by using hierarchical

RL (HRL) that exploits temporal abstraction. The primary contribution of this research

is a hierarchical agent which uses Monte Carlo tree search (MCTS) methods for the high-

level controller (manager) and a model-free policy for the low-level controller (worker). The

combination of the two elements allows the manager to plan over long time horizons, which

in turn enables the agent to find rewards that may be sparse and distant. At the same time,

the worker is highly efficient for acting on the environment at base level time steps, which

avoids the heavy computational demands of using MCTS alone. The result is an agent that

is highly capable of solving a variety of tasks, computationally efficient, and sample efficient.

Chapter 2 provides a background of the most seminal works of research in RL and HRL,

including the algorithms used by the proposed agent. Chapter 3 introduces a basic version of

the hierarchical agent, where the manager based on MCTS plans over a feature-engineered

discrete 2D space and provides proxy rewards to the worker, which is based on A3C and acts

on a continuous 2D space. Chapter 4 shows a more advanced version of the hierarchical agent

which uses the “diversity is all you need” (DIAYN) method, which eliminates the need for

any feature engineering. This performance of this version of the agent is demonstrated on the

random maze task of the DeepMind Lab platform. Chapter 5 demonstrates the hierarchical

agent successfully solving a variety of general tasks in the Atari Learning Environment and

discusses the advantages and drawbacks of the approach in comparison to other state-of-the-

art RL baseline algorithms. Finally, a summary of the findings and future directions of this

research are presented in Chapter 6.

2

Chapter 2

Background

RL is a type of machine learning (ML) that involves an agent learning how to make decisions

in an environment by maximizing a cumulative reward signal [1]. The agent interacts with the

environment by taking actions and receiving feedback in the form of rewards or punishments.

The goal of the agent is to learn the optimal policy that maps states to actions, in order to

maximize the cumulative reward over time. The basic steps involved in RL are as follows:

1. Define the problem. First, the problem needs to be defined in terms of the environment,

the agent, and the rewards.

2. Define the state space, action space, and reward function. The state space defines all

possible states of the environment, the action space defines all possible actions that

the agent can take, and the reward function defines the reward that the agent receives

for each action, given the state of the environment.

3. Determine the policy. The policy is a mapping of states to actions that the agent

uses to make decisions. The goal is to learn the optimal policy that maximizes the

cumulative reward over time.

3

4. Agent interacts with environment. The agent takes actions in the environment, and the

environment responds by transitioning to a new state and providing a reward signal.

5. Update the policy. The agent uses the reward signal to update its policy, in order to

improve its decision-making over time.

6. Repeat. The agent continues to interact with the environment, updating its policy

based on the feedback it receives, until it converges on an optimal policy.

This classical RL paradigm is formalized as in Figure 2.1. The basic structure is that the

agent observes the state St and reward Rt, and produces some action on the environment At.

The environment then transitions according to its internal transition model, which may be

deterministic or stochastic, and produces the next state and reward for the next time step,

St+1 and reward Rt+1.

Figure 2.1: The reinforcement learning paradigm. [1]

HRL is a subfield of RL which focuses on breaking down a complex task into smaller subtasks

and learning how to perform these subtasks in an hierarchical manner to achieve the overall

goal. This can make the learning process more efficient and easier for RL agents, as well as

provide a structure for representing and learning about the task.

As illustrated in Figure 2.2, there are typically two levels of decision making in HRL: a

high-level controller that selects subtasks and a low-level controller that executes them. The

high-level controller can learn to coordinate and plan long-term goals while the low-level

controller focuses on learning the optimal control policy for each subtask. The high-level and

low-level controllers are also referred to in this text as “manager” and “worker,” respectively.

4

Figure 2.2: Hierarchical reinforcement learning example. [2]

RL and HRL are often used in domains where there is no known optimal solution, or where

the solution is too complex to be determined by traditional methods. It has been applied to

a wide range of real-world applications, including games, robotics, and autonomous driving.

HRL has shown promising results in terms of faster convergence and improved performance

compared to flat RL, especially in domains that benefit from using a structured approach to

problem solving.

2.1 Markov Decision Processes

To further expand on Figure 2.1, a Markov decision process (MDP) is a framework used

to model decision-making in situations where outcomes are partially uncertain and depend

on the actions of a decision maker [1]. In an MDP, a decision maker interacts with an

environment by choosing actions at each step, and the environment responds by transitioning

to a new state and providing a reward or penalty to the decision maker.

The key assumption in an MDP is that the future state and reward depend only on the

current state and action taken, and not on any previous states or actions. This is known as

the Markov property. This property allows MDPs to be represented compactly as a state

space, action space, transition function, and reward function.

More formally, an MDP can be expressed as a tuple: (S, A, T, R), where S is the set of

5

states, A is the set of possible actions, T is the transition function, and R is the reward

function. Upon initialization, the environment produces state s, and the agent produces

action a, which results in a new state s′ and reward according to the transition function T

and reward function R, respectively.

The goal of solving an MDP is to find a policy, which is a mapping from states to actions, that

maximizes the expected cumulative reward over time. This can be done using algorithms such

as value iteration or policy iteration, which compute the optimal value function or policy

for the MDP. MDPs have many applications, including in robotics, finance, and artificial

intelligence.

2.2 Semi–Markov Decision Processes

A Semi-Markov Decision Process (SMDP) is an extension of the standard MDP framework,

as illustrated in Figure 2.3 [3]. While in an MDP, a state is considered to be fully observable

and a transition from one state to another occurs instantaneously. In an SMDP, states

may have different durations, and transitions between states may take variable amounts of

time. In an SMDP, the time spent in a state is a random variable, and the probability of

transitioning from one state to another depends not only on the current state and action

but also on the amount of time spent in the current state.

The state space in an SMDP is typically composed of pairs of (state, time) and the transitions

are described by a set of transition probabilities that depend on the state, the action taken,

and the amount of time spent in the current state. The reward function is typically defined

as a function of the state and time, rather than just the state.

SMDPs are used to model decision-making problems in which the time spent in a state is

important, such as resource allocation problems or production scheduling problems. Optimal

6

Figure 2.3: The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options enable an
MDP trajectory to be analyzed in either way. [3]

control algorithms, such as the Semi-Markov Decision Process algorithm, can be used to find

the optimal policy in an SMDP, taking into account the duration of the state and the

expected reward over time.

The fact that there may be different durations between state transitions in an SMDP allows

for temporal abstraction. The closely related concept of options enable an MDP trajectory

to be analyzed in either coarse or fine time scales. This can be utilized in HRL to enable

the high-level controller to funtion at a course timescale, whereas the low-level controller

functions at a fine timescale. Using a dedicated module for the fine time horizon allows

for computationally efficient behavior when seeking short-term goals. At the same time, a

separate module for planning over coarse time horizon allows the agent to see the big picture

and connect the dots to achieving a distant reward.

Options have been used together with MCTS using predefined symbolic goals like GoToMov-

ableOption [6]. However, the drawback of this approach is that the symbolic goals are not

learned autonomously must be feature engineered. Another important work is the option

critic algorithm, which uses the intra-option policy gradient and termination gradient to

learn options from scratch [7].

7

2.3 Model-Free RL

Model-Free RL allows for end-to-end navigation methods, where there is no clear separation

between the exploration and exploitation phases. These methods have gained traction due

to recent advancements [8, 9, 10]. The appeal of such approaches is generality. The man-

ual extraction of input features and the manual design of map-building and path-planning

algorithms can be avoided by instead formulating a reward function as a proxy for the navi-

gation objective. The RL agent then learns intermediate map representations that enable it

to maximize its reward.

End-to-end learning is a hot topic in the Deep Learning field for taking advantage of Deep

Neural Network’s (DNNs) structure, composed of several layers, to solve complex problems.

Similar to the human brain, each DNN layer (or group of layers) can specialize to perform

intermediate tasks necessary for such problems. The appeal of End to End models is that the

intermediate steps to solve a task, i.e. sensors abstraction, world model, behavior generation,

etc. are automatically learned by the multi-layered model.

A recent investigation reveals significant shortcomings of A3C, which is the state-of-the-

art DRL navigation algorithm [11]. Experiments show that while the algorithm is able to

efficiently exploit map information when trained and tested on the same map, it is unable to

do so when trained and tested on different maps. Even when tested and trained on the same

map, the performance of the algorithm deteriorates when the placement of the destination

is randomized. These observations indicate that A3C does not learn to solve the general

problem of maze navigation, but only the much narrower task of navigating in environments

it has been trained on. DRL also shows very poor ability to generalize over multiple tasks, as

in Atari 2600 games [12]. It was shown that the performance of these algorithms drastically

deteriorates after the positions of objects were subtly perturbed. This indicates that even

state-of-the-art DRL models still rely on exploiting brittle stimulus-response associations.

8

While DRL agents may outperform humans on narrow tasks they have previously trained

on, there is still a long way to go until human-level generalization across tasks is achieved.

There are several limitations of model-free end to end learning. A huge amount of data is

necessary. In the RL context, this means many episodes need to be played out. Also, it can

be difficult to understand, improve or modify such a system. It may not be clear what a

certain neuron has learned or what its function is in the context of the whole network. If

some structural change must be applied, such as increasing the input dimensions, the whole

neural network (NN) must be replaced and trained all over again. Another limitation is

that some sub-tasks may have highly efficient solutions. If modules are used to solve sub-

tasks and cannot be integrated into the DNN, then the system cannot be considered end to

end anymore. Finally, it may be unfeasible to validate end to end systems. The potential

number of input/output/state tuples can be big enough to make validation of such systems

impossible. This especially important for some applications, such as self-driving vehicles,

where safety is a top priority.

Additionally, end to end may not work for some applications, as shown in [13] “We have

demonstrated that end-to-end learning can be very inefficient for training NN models com-

posed of multiple non-trivial modules. End-to-end learning can even break down entirely;

in the worst case none of the modules manages to learn. In contrast, each module is able

to learn if the other modules are already trained and their weights frozen. This suggests

that training of complex learning machines should proceed in a structured manner, training

simple modules first and independent of the rest of the network.”

Agent57

Agent57 is a state-of-the-art model-free RL agent that outperforms the standard human

benchmark on all 57 Atari games [14]. To achieve this result, a NN was trained which

9

parameterizes a family of policies ranging from very exploratory to purely exploitative. The

agent has an adaptive mechanism to choose which policy to prioritize throughout the training

process. Additionally, Agent57 has a parameterization of the architecture that allows for

more consistent and stable learning.

2.4 Model-Based RL

To achieve transfer learning in video game playing, Kansky et. al. [12] argue that 1) object-

based representations can be used to exploit the structure of the domain, 2) a causal

model of the environment is necessary for planning, and 3) goal-oriented planning

enables generalization to new environments composed of familiar elements. To this end,

the authors developed a Probabilistic Graphical Model (PGM) named Schema Networks,

which was able to substantially generalize beyond its training experience. These findings

need not be limited to PGMs, but can be readily applied create new DRL algorithms which

can transfer experiences between similar tasks.

The approach proposed in this thesis is to solve the exploitation phase for general problem

solving using DRL, by adopting the above three conclusions that were reached by Kan-

sky et. al.. To exploit the structure of the domain, we use object-based representations

from the environment state. Using environment states directly could be avoided by using a

vision system for detecting and tracking entities in an image, e.g. a Capsule Network [15].

Object-based representations enable the agent to model the environment accurately using,

for example, an interaction network [16]. This, in turn, could allow the agent to plan its

actions according to a Monte Carlo tree search (MCTS) [4].

10

2.4.1 Model-Based Planning

Model-based planning is a category of RL algorithms that utilize a model of the environment

to make decisions. There are two main approaches to model-based planning in RL: planning

with a learned model and planning with a known model.

In planning with a learned model, the agent learns the dynamics of the environment through

experience and then uses this learned model to plan ahead. This approach has the advan-

tage of being able to handle complex and partially observable environments, but it can be

computationally expensive to learn the model.

In planning with a known model, the agent has access to a pre-defined model of the en-

vironment, which is often provided by the designer of the environment. This approach is

computationally efficient but requires the designer to have a good understanding of the

environment.

In either case, the agent can use the model to simulate possible future states and evaluate

the expected value of taking different actions. This allows the agent to choose actions

that maximize expected future rewards. Overall, model-based planning can be a powerful

approach to RL, particularly when the environment is complex and uncertain. However, it

requires the agent to have a good model of the environment, which can be difficult to acquire

in practice.

Latent Action Partition

Latent Action Partition (LaP3) is a path planning method which extends the LaMCTS [17]

method to path planning. The method uses a latent representation of the search space

and adaptive region partitioning to reduce dimensionality. The method works by searching

over the trajectory space and recursively partitioning the space into subregions based on

11

trajectory reward.

The disadvantage of this approach is that dimensionality reduction is performed after a

large number of states have already been generated. To perform planning efficiently, the

partitioning must first be performed to clean up the search space. This is in contrast with

the algorithm presented in this paper, where trivial states are abstracted away before being

stored in the tree data structure. In this case, planning can be performed efficiently at any

time, without any need to perform partitioning to clean up the search space.

Automatically Generating Abstractions for Planning

In general, problems can be hierarchically broken down, where lower-level tasks are solved

without violating the conditions set in higher levels. The authors in [18] propose a framework

for this hierarchical deconstruction of tasks. They propose assigning a level to each literal,

with level 0 being the complete ground state and higher levels being abstractions. Any plan

at level i can only access literals with level i or higher.

The authors also introduce the ordered monotonicity property, which specifies the conditions

necessary for a successful hierarchy. The property has three conditions: operators at level

i − 1 must preserve their order in level i, the addition of an operator at level i − 1 is only

allowed if it achieves some precondition for an operator at level i and if that precondition

has level i− 1, and if an operator at level i− 1 changes a literal with level i, that operator

must exist at level i. The authors provide some sufficient conditions for the property, which

can be used to organize literals in a topological order to create an abstraction hierarchy.

12

2.4.2 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) [4] is a versatile method used for planning, and methods

with world champion-level performance on discrete Markov Decision Processes (MDPs) such

as chess and Go rely on MCTS.

MCTS uses a tree data structure, which is used to contain the various possible actions and

their resulting states. Each node in the tree represents a particular state s, and each edge

represents a particular action a from state s, which leads to a new state s′. The branching

factor is the number of children at each node. In this case, the branching factor is the

action space of the environment. The tree is initialized with a single node, the root, which

represents the initial state of the episode.

MCTS consists of four stages: selection, expansion, rollout and backup.

Selection Starting at the root node, a tree policy based on the action values attached to

the edges of the tree traverses the tree to select a leaf node.

Expansion On some iterations (depending on details of the application), the tree is ex-

panded from the selected leaf node by adding one or more child nodes reached from the

selected node via unexplored actions.

Simulation From the selected node, or from one of its newly-added child nodes (if any),

simulation of a complete episode is run with actions selected by the rollout policy. The result

is a Monte Carlo trial with actions selected first by the tree policy and beyond the tree by

the rollout policy.

13

Backup The return generated by the simulated episode is backed up to update, or to

initialize, the action values attached to the edges of the tree traversed by the tree policy

in this iteration of MCTS. No values are saved for the states and actions visited by the

rollout policy beyond the tree. Figure 2.4 illustrates this by showing a backup from the

terminal state of the simulated trajectory directly to the state-action node in the tree where

the rollout policy began (though in general, the entire return over the simulated trajectory

is backed up to this state-action node).

Figure 2.4: Monte Carlo tree search method. [4]

UCT Algorithm

Upper Confidence bounds applied to Trees (UCT) is an algorithm that deals with a flaw in

MCTS where a sub-optimal action with only a few bad potential outcomes may be chosen

instead of a better action. Regarding action selection in the framework of the multi-armed

bandit problem, the tradeoff faced by the agent is exploration vs exploitation, i.e. whether

the agent should seek more information about the expected payoffs or the agent should

choose the action with the highest expected payoff. Balancing these two, UCT uses upper

confidence bounds to select a node. Child node j is selected which maximizes the UCT

evaluation:

14

UCTj = Xj + C ∗
√

ln(n)
nj

,

where Xj is the ratio of the child, n is the number of times the parent has been visited, nj

is the number of times the child has been visited, and C is a constant to adjust the amount

of exploration.

PUCT

The probabilistic upper confidence bound for trees (PUCT) algorithm is a popular algorithm

used in MCTS [9]. The PUCT algorithm works by constructing a search tree to represent

the state space of the problem. Each node in the tree represents a state, and the edges

represent possible actions that can be taken from that state. The algorithm selects nodes to

expand and simulate using a combination of two factors: the value estimate of the state and

the exploration bonus.

The value estimate is based on the expected reward for taking a certain action from a certain

state, and is updated as the algorithm explores the tree. The exploration bonus is a term

that encourages the algorithm to explore new, untried actions in order to find the best

solution. The exploration bonus is calculated using the upper confidence bound formula,

which balances the exploration-exploitation trade-off.

As in standard MCTS, PUCT repeats the following steps until a certain stopping criterion

is met: selection, expansion, simulation, and backpropagation.

The PUCT algorithm is able to efficiently find the optimal solution by balancing exploration

and exploitation, and by using the Monte Carlo approach to estimate the value of states.

The AlphaGo system combined deep neural networks and MCTS to achieve state-of-the-art

performance in the game of Go [19]. PUCT was one of the key algorithmic innovations that

15

made this possible, and the paper provides a detailed explanation of the algorithm and its

implementation.

MuZero

The MuZero algorithm [20], by combining a tree-based search with a learned model, achieves

superhuman performance in a range of challenging and visually complex domains, without

any knowledge of their underlying dynamics. The MuZero algorithm learns an iterable model

that produces predictions relevant to planning: the action-selection policy, the value function

and the reward.

There is also a variant of the MuZero algorithm called MuZero Unplugged [21]. It is improved

by the Reanalyse algorithm which uses model-based policy and value improvement operators

to compute new improved training targets on existing data points, allowing efficient learning

entirely from demonstrations without any environment interactions, as in the case of offline

RL.

2.5 Hierarchical Reinforcement Learning

The benefits of HRL over standard RL are the following [22]:

• Faster learning of complex tasks: HRL can help speed up the learning process of

complex tasks by breaking them down into smaller sub-tasks, making the learning

process more efficient.

• Improved exploration: HRL can help an agent explore its environment more effectively

by guiding it to focus on the most promising areas of the environment.

16

• Generalization to new tasks: HRL can learn a hierarchical policy that can be general-

ized to new, unseen tasks more easily than a flat RL agent, which has to learn a new

policy from scratch.

• Robustness to environmental changes: HRL can adapt to changes in the environment

more effectively by reusing learned sub-tasks and modifying them as necessary, instead

of starting the learning process from scratch.

• Increased interpretability: HRL can provide more insight into the decision-making

process of the agent by decomposing it into smaller sub-tasks, which can help make

the policy more interpretable and explainable.

• Reduced dimensionality: HRL can help reduce the dimensionality of the state and

action space, making it easier to learn and optimize the policy.

• Facilitation of transfer learning: HRL can facilitate transfer learning, where an agent

can use knowledge learned from one task to improve its performance on another related

task.

Standard RL planning suffers from the curse of dimensionality when the action space is too

large or when the state space is unfeasible to enumerate. Humans simplify the problem of

planning in such complex conditions by abstracting away details which are not relevant at

a given time and decomposing actions into hierarchies. Several researchers have proposed

to model the temporal-abstraction in RL by composing some form of hierarchy over actions

space [23, 24, 25]. By modeling actions as hierarchies, researchers extended the primitive

action space by adding abstract actions. Options framework [23], refer the abstract actions as

options, MAXQ [23] refer to them as tasks and Hierarchical Abstract Machines (HAM) [25]

refers to them as choices.

The common theme among these papers is to extend the Markov Decision Process (MDP)

to a Semi-Markov Decision Process (SMDP), where actions can take multiple time steps. As

17

compared to MDP, which only allow actions of a discrete time-steps, SMDP allows modeling

temporally abstract actions of varying length over a continuous time. As represented in first

two trajectories of figure below. By extending the action space of the MDP over primitive

and abstract actions, hierarchical RL approaches superimpose MDPs and SMDPs.

HRL is appealing because the abstraction of actions facilitate accelerated-learning and gen-

eralization while exploiting the structure of the domain. Faster learning is possible because

of the more compact representation. The original MDP is broken into sub-MDP with fewer

states and fewer actions. The abstraction of states hides irrelevant details and hence reduces

the number of states. For example, in the Taxi Domain introduced in [23], if the agent

is learning to navigate to a location it does not matter if the passenger is being picked or

dropped. Details about location of passenger are irrelevant and hence the state space is

reduced.

Better generalization is possible because of the abstracted actions. In the taxi domain,

because an abstract action is defined, called NavigationNavigation, agent learns a policy

to navigate the taxi to a location. Once that policy is learned for navigation to pick up

a passenger, the same policy can be leveraged when then agent is navigating to drop the

passenger.

Two important promises of HRL are prior-knowledge and transfer-learning. A complex task

in HRL is decomposed into hierarchy (usually by humans). Hence, it is easier for humans

to provide some prior on actions from their domain knowledge. Different levels of hierarchy

encompass different knowledge and hence ideally it would be easier to transfer that knowledge

across different problems.

One minor limitation of HRL is that all the hierarchical methods converge to hierarchically

optimal policy, which can be a sub-optimal policy. For example in the taxi domain, if the

hierarchy decomposition states first navigate to the passenger location and then navigate to

18

the fuel location, the HRL agent will find an optimal policy to do that in exactly that order.

This policy might be sub-optimal given an initial state which is closer to the fuel location.

This limitation is an artifact of restricting the action space while solving sub-MDPs. If the

full action space is available in all the MDPs, the exponential increase in computational

overhead makes the learning infeasible.

Max-Q Learning

The Max-Q framework has a clear hierarchical decomposition of tasks, while the options

framework do not have clear hierarchy. Options framework achieves temporal abstraction

of actions, Max-Q framework additionally also achieves state abstractions. While there has

been an attempt on discovering and transferring the Max-Q hierarchies [26], learning Max-Q

hierarchies directly from the trajectories is still an open problem. For large and complex

problem it might be a challenge to provide the task hierarchy or options and their termination

conditions.

19

Chapter 3

Hierarchical Reinforcement Learning

Agent for Path Planning

3.1 Introduction

Path planning is an important optimization tool not just for reinforcement learning, but

many other applications such as biology [27], chemistry [28] and robotics [29]. In general,

the objective is to find the best trajectory x = (s0, a0, s1, a1, . . . , sn) in the search space

Ω : x∗ = arg maxx∈Ω f(x), where f(x) is the reward.

The ability to plan is vital for solving tasks where rewards are sparse and may require

several sequential actions. For a reinforcement agent to solve such tasks, it is useful to

have an internal model of the environment, so that the agent can simulate their actions and

predict the outcome, allowing them to plan action sequences that maximize total reward

farther into the future. Model-based planning provides two main benefits: 1) it enables the

agent to find sparse rewards more consistently, and 2) it enables generalization to unfamiliar

scenarios [12]. On the other hand, planning can require many time steps to be simulated,

20

making it computationally expensive.

In environments with continuous state space, real-valued positions and short time steps, the

branching factor is large, and the length of the sequence x∗ can be huge if rewards are sparse

and distant from the agent. The MCTS method will need to be modified and enhanced in

order to navigate in more challenging environments.

The sparse reward problem has been a problem for RL agents since it is very difficult for

conventional agents to find rewards that require long sequences of actions. This is because in

training it is difficult to assign credit to actions that are temporally distant from the reward

and yet we ultimately necessary to reach the reward. This is known as the credit assignment

problem.

The general maze navigation problem can be thought of as a sequential multi-task problem.

In this case, each task is a different random maze composed of a fixed set of entities (walls,

agent, destination). After learning the principles of navigation by training on some set

of mazes, the agent should be able to transfer its knowledge to solve new unseen mazes

efficiently. Therefore, some form of transfer learning between tasks [30] is required for a

general solution to the random maze navigation problem.

To make MCTS–based planning tractable for navigating environments with a state space

that is unfeasible to enumerate, such as a 2D or 3D space with real–valued positions, we first

note that many of these states may have only minor differences. In an environment with

short time steps, the vast majority of states are just empty space, and the distance between

s0 and s1 after just a single action a0 is tiny. It would be unnecessary and inefficient to

plan at the level of single time steps, as the tree data structure would become astronomical

in size. Instead, we wish for MCTS to plan only over the most interesting states by fast

forwarding through many of these uninteresting states.

To accomplish this we propose to use options [3] for temporal abstraction. Using this frame-

21

work, we construct a hierarchical agent with separate components for the planning function

(manager) and the acting function (worker). The worker takes semantic goals from the man-

ager in the form of a goal or selected option. The worker is efficient at acting on single time

steps and can react to small changes in the environment state to carry out its task. This

frees up the manager from the minutiae of many small state transitions in the environment,

allowing it to plan more efficiently over extended time periods.

This approach is inspired by Figure 2.3 [3], where options enable a Markov Decision Process

to be analyzed on both coarse and fine time horizons. Using a dedicated module for the fine

time horizon allows for computationally efficient behavior when seeking short-term goals. At

the same time, a separate module for planning over coarse time horizon allows the agent to

see the big picture and connect the dots to achieving a distant reward.

3.1.1 Waterworld Random Maze Task

For evaluating the hierarchical learning algorithm, we use a 2D random maze environment

as shown in Figure 3.1. In each episode, a new maze appears, which requires the agent to

generalize to solving any maze, rather than overfitting to solving a particular maze. the

player (blue dot) must navigate from a random position in a random maze to the target

(green dot) before time runs out. The environment has complex continuous-state dynamics,

including inelastic collisions with walls which can be utilized by a skill player to conserve

velocity through turns. There are four possible actions, (up, down, left, right), which apply

thrust to the player sprite in the corresponding direction.

The mazes are generated according to a pseudorandom algorithm [31]. In total, the pre-

generated pool consists of 2,342 mazes, each 9x9 tiles in size with 31 wall tiles. The

reason for using a fixed number of wall tiles was so that the observation vector is of

constant size. Using a fixed-size observation vector is convenient and simplifies the de-

22

Figure 3.1: Waterworld environment.

sign of the agent. The observation vector consists of the (x, y) coordinates of each entity:

(xplayer, yplayer, xtarget, ytarget, xwall0, ywall0, . . . , xwall30, ywall30).

3.1.2 Gridworld Random Maze Task

To facilitate planning, a simplified navigation environment called Gridworld is provided to

the manager. The environment consists of 3 elements, as shown in Figure 3.2: walls (black),

target (green) and player (blue). At each step in the internally-simulated environment, the

manager may take one of the following actions: move up, move down, move left, move right,

none.

Figure 3.2: Gridworld random maze task.

The GridWorld environment makes the 2D path planning problem very easy by making

the number of possible states small (with a discrete grid of only 9 × 9 tiles), and therefore

the maximum length of x∗ was small. This makes it tractable to use MCTS without any

enhancements or modifications.

23

In the actual Waterworld environment, navigation is more challenging than the GridWorld

environment. In environments with continuous spaces, real-valued positions and short time

steps, the branching factor becomes much larger, and the length of the sequence x∗ can be

huge if rewards are sparse and distant from the agent. The MCTS agent from the previous

chapter will need to be modified and enhanced in order to navigate in more challenging

environments.

3.2 Methods

3.2.1 Hierarchical Agent with Feature Crafted Goals

As an initial foray into solving the continuous-space random maze task using a hierarchical

RL agent, we use some feature crafting (Gridworld) to create a proof of concept agent in

this section. The section after this will describe how to learn worker policies to avoid this

feature crafting.

The hierarchy consists of a manager and a worker, which work together by solving certain

functions necessary for solving the overall environment, as shown in Figure 3.3.

f managerEnv
zt

f worker

zi, ω

at

{g0, ..., gk}

zi'

Macro

Env

Planning phase

Acting phase

Figure 3.3: Hierarchical agent with goal-based planning.

The manager has access to the state of the environment and a discrete model of the envi-

ronment (denoted macro env). The model of the environment was feature crafted to allow

24

MCTS to be performed over tiles of the environment (denoted zi) instead of raw environment

states (denoted zt). This dramatically reduces the branching factor and therefore the search

space for MCTS. MCTS takes the initial state of the episode, and searches paths in macro

env tile by tile until the target tile is reached. The overall plan then produced by fmanager is

denoted as G, which is defined as the sequence of subgoals, G = g0, g1, . . . , gn. The detailed

algorithm for the hierarchical agent is presented in Algorithm 1.

Algorithm 1 Pseudocode for manager function
// Assume Euclidean distance between two latent environment states d(x, y)
// Assume do_planning initialized to TRUE before first execution
rwt ← rtick
if do_planning then

do_planning← FALSE
G← tree_search(st) // Perform MCTS to produce goal matrix

end if
if d(g0, st) < goal_met_th then

rwt ← rwt + rgoal_met // Reward for reaching goal
end if
if d(g0, st) > goal_div_th then

do_planning← TRUE
rwt ← rwt + rgoal_div // Punishment for diverging from goal

end if

We extend the option-critic architecture by using MCTS to plan over options, rather than

using the output of the manager policy πΩ directly. In this case, the edges of the tree cor-

respond to options in a SMDP, rather than actions in a MDP. In the expansion phase of

MCTS, a candidate option is carried out with worker policy πω(a | s) acting on a simulated

environment until the goal is reached. The tree is then expanded with a new node repre-

senting the state resulting from that option. There is no training necessary for the manager,

as it simply enumerates new child nodes until the goal is found. Since the space is discrete,

it can easily enumerate over all tiles of the maze if necessary.

An illustration of the planning process is shown in Figure 3.4. The tree is shown on the left

with edges representing actions and vertices representing the resulting states from macro

env. The shortest path to the goal is shown in the branch to the right. The right side of the

25

figure shows the path in the maze that corresponds to the tree. The arrows are color coded

to options. For example, blue represents the move left goal, and purple represents the move

up goal.

Figure 3.4: Illustration Monte Carlo tree search planning process for maze solving.

There are a few tuneable hyperparameters for this hierarchical agent. The threshold within

which a goal is considered met is named g_met_th, which was set to the diameter of the

goal, which is half the tile width. The threshold above which the worker policy has diverged

from the goal is named g_div_th, which signals that planning must be done again to give

the worker a more feasible (nearby) goal. g_div_th was set to twice the tile width for all

experiments.

The plan from the manager is then fed as input to the worker, denoted as fworker. The

worker is given a sequence of the next 3 goal positions, along with the environment state.

The worker is trained to reach the intermediate goals, one at a time. When the agent comes

close to the next goal a positive reward is given, denoted as rgoal_met, and set to 1 in the

experiments. When the worker goes beyond a certain threshold distance to the goal, a

negative reward value is given, denoted as rgoal_div, and set to 1 in the experiments. and the

planning process is restarted to provide new goals that are more easily reached. The worker

26

policies are trained using the A3C algorithm in Figure 2 [8].

Algorithm 2 Asynchronous advantage actor-critic - pseudocode for each actor-learner
thread

// Assume global shared parameter vectors θ and θv and global shared counter T = 0
// Assume thread-specific parameter vectors θ′ and θ′

v

Initialize thread step counter t← 1
while T ≤ Tmax do

Reset gradients: dθ ← 0 and dθv ← 0
Synchronize thread-specific parameters θ′ = θ and θ′

v = θv

tstart = t
Get state st

while not terminal st and t− tstart < tmax do
Perform at according to policy π(at|st; θ′)
Receive reward rt and new state st+1
t← t + 1
T ← T + 1

end while

R =

0 for terminal st

V (st, θ′
v) for non-terminal st // Bootstrap from last state

for i = t− 1, . . . , tstart do
R← ri + γR
Accumulate gradients wrt θ′ : dθ ← dθ +∇θ′ log π(ai|si; θ′)(R− V (si; θ′

v))
Accumulate gradients wrt θ′

v : dθv ← dθv + ∂(R− V (si; θ′
v))2/∂θ′

v

end for
Perform asynchronous update of θ using dθ and of θv using dθv

end while

3.3 Results

The goal-based hierarchical agent was able to solve the continuous-space random maze task.

An illustration of the how the overall agent performs is shown in Figure 3.5. The total

sequence of goals G provided by the manager is shown as red dots. The worker is then

trained to reach the tile goals one at a time in order until the the target is reached.

The results of the feature-engineered hierarchical agent are shown in Figure 3.6. For com-

parison with a model-free agent, we also show the results of an A3C agent. The A3C agent

27

Figure 3.5: Planning results and illustration of goals (red) from a random episode.

is able to learn some simple sweeping and searching behaviors, but is unable to solve the

random mazes consistently. This is because each episode is randomized, and policies that

were learned on the past maze are not useful for solving the next maze. In other words,

the ideal stimulus-response associations are unique to each maze. Without a model of the

environment and the ability to plan, the agent is unable find a general solution.

In comparison, the hierarchical agent quickly reaches a high performance in solving the mazes

consistently in a small number of steps. As the worker learns to reach intermediate goals,

the performance of the agent quickly improves.

Figure 3.6: Training results for A3C agent

The results show that the HRL approach can learn to solve the random maze task in more

efficiently than a model-free reinforcement learning algorithm. This is because the HRL

approach is able to generalize to new mazes and can adapt to changes in the environment.

These results suggest that the use of a hierarchical reinforcement learning approach can im-

prove the performance of reinforcement learning algorithms on tasks with complex dynamics

and long time horizons.

28

3.4 Discussion

The goals-based hierarchical agent was able to solve the Waterworld environment well. How-

ever some human feature-engineering was required to get the agent to work successfully. Ide-

ally, we would like the agent to learn discretization strategies itself, rather than be provided

with a suitable discrete model. This is the topic of the next chapter.

29

Chapter 4

Learning Diverse Policies for Path

Planning

4.1 Introduction

To avoid human feature engineering as in the previous chapter, it would be better to have the

worker automatically learn policies that are suitable for exploring the environment. This can

provide the manager with suitably discrete space to search, without providing a specialized

model of the environment. To achieve this, we use “diversity is all you need” (DIAYN) to

train a set of skills for the agent [5].

The path planning problem involves discovering high reward trajectories, which requires

optimizing a high-dimensional reward function. MCTS algorithms can be highly efficient at

this [17].

We propose a new path planning method that improves MCTS by making the sampling

function more efficient. We use options [3] over diverse policies [5] to provide dimensionality

30

reduction in the MCTS sampling space via temporal abstraction. Together in a hierarchical

agent, the MCTS-based manager plans over the different states resulting from the diverse

worker policies. The worker policies automatically learn behaviors which are distinct from

each other and search the sampling space in different directions. Since the DIAYN policies

are temporally extended sequences, and have diverse behaviors, they lead to more interesting

and meaningful samples for MCTS. This makes exploration more efficient and greatly extends

the distance over which path planning can be performed by MCTS, allowing the agent to

find sparse rewards that may be very far away.

4.2 Hierarchical Agent with Learned Diverse Policies

The method for the hierarchical agent using DIAYN together with MCTS is shown in Algo-

rithm 3.

Algorithm 3 Pseudocode for Path Planning Hierarchical Agent.
Input: number of rounds T, Environment Oracle: f(x), Dataset D, DIAYN Sampling
Model h(x)
Parameters: Number of worker policies Npolicies, DIAYN re-training interval Nretrain,
Nworker_samples, UCB parameter Cp

Pretrain h(·) on D when D ≠ ∅
Draw Ninit samples uniformly from S0 = {(xi, f(xi))}Ninit

i=1 ⊂ Ω
for t = 0, . . . , T −Ninit − 1 do

if t divides Nretrain then
Train the sampling model h(·) using samples S ∪ D

end if
// Perform UCB MCTS using samples from h(·)

end for

First, the worker policies can be pretrained according to DIAYN as in Figure 4.1. Samples

from the environment were recorded into a dataset D. Pretraining is not strictly required

for the agent to successfully learn to solve the task, but it is recommended since untrained

worker policies are random and not diverse which will cause MCTS to waste computational

resources.

31

Figure 4.1: DIAYN Algorithm. [5]

Figure 4.2: DIAYN Algorithm: the discriminator is updated to better predict the skill, and
the skill is updated to visit diverse states that make it more discriminable. [5]

MCTS then proceeds as usual, with the exception that the expansion step is carried out by

worker policies, as selected by the manager.

There are a few tuneable parameters for this method. First is Npolicies. This is the number of

worker policies, which will search the environment in different directions. For 2D navigation,

4 is enough to cover the cardinal directions and provides enough diverse policies to explore

the space efficiently. More policies can provide more granularity, or provide more behaviors

which may be required for a more rich environment. In the implementation of the worker

policies, the first two layers are shared by all policies. The output of these first layers are

then fed to the individual policy heads.

The Nretrain parameter determines how many samples should lapse before the worker policies

are retrained on the new data. If the initial dataset provides enough episodes, it may not be

necessary to fine tune the worker policies. If the environment is non-stationary, periodically

32

retraining the worker may make it more efficient.

The number of rollout samples is determined by Nworker_samples. This sets the amount of

temporal abstraction (and dimensionality reduction) provided by the worker policies. If this

number is small, MCTS planning will occur more often, and the tree will be loaded with

more nodes. If this number is large, the worker policies will act for a long time without the

direction of the manager, which may result in wandering. For the experiments in this paper,

this number was set to 100 samples.

4.3 Results

To demonstrate the efficiency of the hierarchical navigation agent, we use a random maze

task from Deepmind Lab. The environment has some movement dynamics and short time

steps which make rewards very sparse, and requires the agent to make a very long action

sequences before reaching the goal.

4.3.1 Deepmind Lab Random Maze Task

DeepMind Lab [32] is a 3D learning environment which provides a suite of challenging 3D

navigation and puzzle-solving tasks for learning agents. Its primary purpose is to act as a

tested for research in AI, especially DRL. The DeepMind Lab environment also has some

basic physics such as acceleration and momentum.

Similar to the Waterworld random maze task, DeepMind lab contains a random maze task

located in the repository at

game_scripts/levels/demos/random_maze.lua

33

Figure 4.3: DeepMind Lab environment.

Mazes were randomized for each episode in the testing and training in the experiments. A

few selected random mazes are shown below in Figure 4.4. As before, the mazes are size 9×9

with continuous valued positions within each tile. The mazes are large enough to require

thousands of time steps to traverse.

Figure 4.4: Textual representation of 4 selected random mazes in DeepMind Lab navigation
task. The goal is represented by "G" and walls represented by "*".

The complex dynamics together with the reasoning and planning required to solve large

mazes make the environment challenging for both model-free and model-based reinforcement

algorithms. Model-free agents perform well when presented with the same maze repeatedly.

However, they learn a brittle policy that does not perform well when presented with a

different maze. Model-free agents are unable to extract the principles of how the environment

works so that they can generalize to new instances. On the other hand, the continuous state

space is challenging for model-based planning agents, as planning would have to be performed

over very long action sequences.

34

The worker policies were trained on dataset D, and their learned behaviors are illustrated

in Figure 4.5. The policies learn to search the space in different directions.

Figure 4.5: Worker policies trained according to DIAYN. Each color represents a different
policy. The plot shows the trajectories of the agent over 10 mini-episodes of 100 frames for
each different policy.

The training loss for the DIAYN worker is shown below in Figures 4.6–4.9.

Figure 4.6: Training loss of worker DIAYN actor.

Figure 4.7: Training loss of worker DIAYN critic1.

The average time to solve a maze is shown in Figure 4.10. The plot shows the agent is able

to find the goal reliably after about 40k training steps. This is around the same time the

DIAYN worker training loss reaches a minimum. After training, the MCTS agent was able

to solve all random mazes on the first trial.

35

Figure 4.8: Training loss of worker DIAYN critic2.

Figure 4.9: Training loss of worker DIAYN discriminator.

Figure 4.10: Maze solving performance of hierarchical agent, as measured in average time to
solve maze per episode.

4.4 Discussion

This chapter presented a hierarchical reinforcement learning algorithm that uses a manager-

worker architecture. The manager uses MCTS to select actions and the worker policies

are trained using DIAYN. The worker policies are then used by the manager during the

expansion step of MCTS to search the environment in different directions.

36

Chapter 5

Hierarchical Reinforcement Learning

Agent for General Tasks

5.1 Introduction to OpenAI Gymnasium Atari Tasks

For evaluating the agent, Atari environments are simulated via the Arcade Learning Envi-

ronment [33]. This popular benchmark provides a diverse set of reference environments, each

with unique agent-environment interactions and rules. Contained in the set is 57 Atari 2600

environments simulated through Stella and the Arcade Learning Environment. There is a

broad range of complexity for agents to learn. This set is part of the Gymnasium (formerly

Gym) open source Python library for benchmarking reinforcement learning algorithms.

Observation Space The observation issued by an Atari environment may be: the RGB

image that is displayed to a human player, a grayscale version of that image or the state of

the 128 Bytes of RAM of the console. For all experiments below, the state of the 128 Bytes

of RAM is used. Although this is not the same exact challenge a human would face, it is

37

possible to use a vision model that can give a sufficient approximation of the RAM state.

The scope of this paper is the development and evaluation of the RL policy, and so the vision

model is outside the scope.

Rewards The exact reward dynamics depend on the environment and are usually doc-

umented in the respective game’s manual. Each game has a different range of possible

rewards.

Stochasticity Atari games use a pseudorandom number generator to produce variabil-

ity in gameplay. Given a fixed random seed, Atari games are entirely deterministic [33].

Therefore, in an unmodified Atari environment, agents could achieve optimal performance

by memorizing an optimal sequence of actions while completely ignoring observations from

the environment. To avoid this, ALE implements some elements to introduce stochastic-

ity [34]. One such element is sticky actions, where instead of always simulating the action

passed to the environment, there is a small probability that the previously executed action

is used instead.

Another element that produces stochasticity in the gameplay is stochastic frame skipping. In

each environment step, the action is repeated for a random number of frames. This behavior

may be altered by setting the keyword argument frameskip. If frameskip is an integer, frame

skipping is deterministic, and in each step the action is repeated frameskip many times. If

frameskip is a tuple, the number of skipped frames is chosen uniformly at random between

frameskip[0] (inclusive) and frameskip[1] (exclusive) in each environment step.

Different games in the ALE suite may have sticky actions, frame skipping, neither or both,

depending on their implementation. Each time an episode is presented, it may be different

than any previous episodes. This variability creates challenge for the RL agent to solve the

task. Agents must be able to generalize to perform well on ALE tasks.

38

5.2 Hierarchical Agent for General Task Solving

A number of improvements and modifications were made the the hierarchical agent in the

previous chapters to make it more adapted for solving the Atari environments. The first is

that the PUCT variant of MCTS is used. The second alteration is to the NN architecture

to make it suitable for the RAM observation states. Finally, hyperparameters such as the

worker policy termination were tuned based on the performance in the various Atari tasks.

5.2.1 PUCT

The manager component of the HRL agent is once again implemented using a Monte Carlo

tree search algorithm, which uses random simulations to evaluate the potential value of

different actions. This algorithm is used to learn and execute high-level plans based on the

output of the DIAYN worker.

The PUCT variant of the MCTS algorithm was used [9], as described in Section 2.4.2. As in

standard MCTS, the algorithm proceeds with the four stages as outlined in 2.4.2: Selection,

Expansion, Simulation and Backup. The key difference with PUCT is that in each time

step in the the Selection stage, an action is selected according to the statistics in the search

tree, at = arg maxa(Q(st, a) + u(st, a)) using a variant of the PUCT algorithm: u(s, a) =

cpuctP (s, a)
√∑

b
Nr(s,b)

1+Nr(s,a) , where cpuct is a constant determining the level of exploration. This

search control strategy initially prefers actions with a high prior probability and low visit

count (dominated by left term), but asymptotically prefers actions with high reward value

(dominated by right term).

39

5.2.2 NN Architecture

The NN architecture of the HRL agent based on the previous chapters has been implemented

for solving the ALE suite in the following ways:

The DIAYN worker consists of a deep neural network with 3 hidden layers, each containing

128 neurons. The input layer has 128 neurons, one for each byte of RAM observation. The

output layer has the same number of neurons as the number of possible actions in the game.

The activation function for the hidden layers is a rectified linear unit (ReLU), which is

generally fast to calculate and has been found to work well in many RL tasks. The output

layer uses a softmax activation function, which allows the outputs to be interpreted as

probabilities. The layers in the DIAYN worker are fully connected.

Overall, this implementation of the HRL agent is a deep neural network with multiple layers

that are fully connected, using ReLU and softmax activation functions, and optimized using

Adam. The DIAYN worker provides sub-plans to the MCTS component, which would be

used to learn and execute high-level plans. The parameters of the model, such as the weights

and biases of the neurons, are optimized using Adam.

5.2.3 Worker Policy Termination

In the HRL algorithm described above, it is necessary to determine when to terminate the

DIAYN worker, i.e. how many timesteps it should run, denoted by Nworker_samples. As before,

the approach taken for this problem is to use a predefined maximum number of timesteps

for the DIAYN worker, and to terminate it once this number of timesteps has been reached.

This maximum number of timesteps is determined through experimentation and testing, by

trying different values and observing the effect on the agent’s performance. Each game may

have a different optimal value, balancing computational efficiency with overall performance.

40

5.3 Results

5.3.1 Experimental Procedure

The games selected for comparison were the ones with results available from the baselines

repository, as shown in Appendix A: BeamRider, Breakout, Enduro, Pong, Seaquest, and

SpaceInvaders. These games were selected to be diverse and challenging, in order to provide

a good test of the agent’s learning abilities.

The agent was trained on the selected games by providing it with the state of the 128 bytes

of RAM of the console as the input observation. This allows the agent to learn the dynamics

of the game and develop strategies for playing it. During training, the agent was evaluated

periodically to measure its performance on the games. This was done by running the agent

on the games and measuring its score and other relevant metrics and saving them to a log

file. This evaluation process occurred at an interval of every 1, 000 training samples. The

maximum score attained during training was used to measure its performance for comparison

with other RL algorithms, to evaluate the effectiveness of the hierarchical algorithm.

Hyperparameter Tuning Grid search was used to tune the hyperparameters of the algo-

rithm, such as the number of worker policies and the duration of the worker rollout. In grid

search, a range of values for each hyperparameter was specified, and the algorithm is trained

and evaluated for each combination of hyperparameter values within the specified range.

The combination of hyperparameter values that yields the best performance on the games

was then selected as the optimal set of hyperparameters, as shown in the results below.

41

Game HRL High Score Npolicies Nworker_samples
BeamRider 6823 3 20
Breakout 464 3 30
Enduro 708 4 20
SpaceInvaders 1343 4 30
Qbert 19839 5 10
Seaquest 1904 5 10
Pong 20 3 10

Table 5.1: Summary of the results of the hierarchical agent (HRL) on selected games from
the Atari Learning Environment.

5.3.2 Atari Games Performance

Table 5.1 shows the performance of the hierarchical agent on several Atari games. Each

game was run for 10M time steps. The table also shows the optimal hyperparameters found

by grid search: the number of worker policies, Npolicies, and the duration of worker activity,

Nworker_samples.

0.0 0.2 0.4 0.6 0.8 1.0
Training Sample 1e7

3000

3500

4000

4500

5000

5500

6000

Sc
or

e

BeamRider

Figure 5.1: Performance of hierarchical agent on BeamRider.

5.4 Discussion

The results of the hierarchical agent show that it was able to successfully solve all 7 of the

Atari games from the Baselines data set (Appendix A). In comparison with the state-of-the-

42

0.0 0.2 0.4 0.6 0.8 1.0
Training Sample 1e7

100

150

200

250

300

350

400

450

Sc
or

e

Breakout

Figure 5.2: Performance of hierarchical agent on Breakout.

0.0 0.2 0.4 0.6 0.8 1.0
Training Sample 1e7

300

400

500

600

700

800

Sc
or

e

Enduro

Figure 5.3: Performance of hierarchical agent on Enduro.

0.0 0.2 0.4 0.6 0.8 1.0
Training Sample 1e7

20

15

10

5

0

5

10

15

20

Sc
or

e

Pong

Figure 5.4: Performance of hierarchical agent on Pong.

43

0.0 0.2 0.4 0.6 0.8 1.0
Training Sample 1e7

2500

5000

7500

10000

12500

15000

17500

20000

Sc
or

e

Qbert

Figure 5.5: Performance of hierarchical agent on Qbert.

0.0 0.2 0.4 0.6 0.8 1.0
Training Sample 1e7

0

500

1000

1500

2000

Sc
or

e

Seaquest

Figure 5.6: Performance of hierarchical agent on Seaquest.

0.0 0.2 0.4 0.6 0.8 1.0
Training Sample 1e7

600

700

800

900

1000

1100

1200

1300

Sc
or

e

SpaceInvaders

Figure 5.7: Performance of hierarchical agent on SpaceInvaders.

44

art algorithms shown in the Appendix, the algorithm achieves comparable high scores.

Another interesting result from the evaluation is the steepness of the learning curves. In

many of the games the hierarchical agent had the steepest performance gains initially, even

if it the high score saturated at a similar value as the baseline algorithms. This suggests that

the hierarchical agent may be more sample efficient, allowing the agent to achieve moderate

performance with fewer training samples.

Performance Variability There is variability in the performance of common agents used

in the OpenAI Baselines repository. this is why post-training agent performance has been

reported as a distribution, rather than a point estimate [35]. The graphs show the average

performance, as well as the min and max over 6 runs with varied random seeds.

45

Chapter 6

Conclusion

6.1 Summary

An HRL algorithm was presented which uses MCTS as a high-level controller, and DIAYN as

a low-level controller. The combination of model-based planning together with a model-free

controller combines the best of both worlds, and is able to efficiently solve the sparse reward

problem.

The algorithm was shown to perform well on random maze navigation tasks, as well as

general-purpose Atari tasks. In comparison with state-of-the-art RL algorithms, the HRL

agent was shown to be competitive in terms of performance. In addition, the algorithm was

shown to be sample efficient, achieving moderate results after a small number of training

samples.

46

6.2 Future Directions

There are several potential avenues for future research based on this research. First is

that automatic hyperparameter tuning could avoid the expensive sweeping of grid search.

Autonomous addition of new worker policies as needed could avoid trying different values

and training each variation repetitively.

The other hyperparameter that could be made learnable is the worker rollout duration. This

could also be a variable duration termination function. This choice is environment dependent,

and there is a tradeoff between overall MCTS search effort and overall performance. If the

duration is a single base level time step, the hierarchy collapses, and the efficiency gains

of the hierarchical approach are lost. On the other hand, if the duration is too long, the

performance of the overall agent may suffer, as time steps are wasted with a suboptimal

policy being active.

HRL is a promising area of research in RL, with many challenges and opportunities. Over-

coming these challenges can enable the development of more efficient and effective RL algo-

rithms that can be used in a wide range of applications.

47

Bibliography

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[2] Nicolas Bougie and Ryutaro Ichise. Hierarchical learning from human preferences and
curiosity. Applied Intelligence, 52(7):7459–7479, may 2022.

[3] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112(1):181 – 211, 1999.

[4] G.M.J.B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. Van Den Herik, and
B. Bouzy. Progressive strategies for Monte-Carlo Tree Search. Information Sciences
2007, page 655–661, 2007.

[5] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is
all you need: Learning skills without a reward function. CoRR, abs/1802.06070, 2018.

[6] M. de Waard, D. M. Roijers, and S. C. J. Bakkes. Monte Carlo Tree Search with options
for general video game playing. In 2016 IEEE Conference on Computational Intelligence
and Games (CIG), pages 1–8, Sept 2016.

[7] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. CoRR,
abs/1609.05140, 2016.

[8] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages
1928–1937, 2016.

[9] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, and et al. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

[10] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea
Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan

48

Kumaran, and Raia Hadsell. Learning to navigate in complex environments. CoRR,
abs/1611.03673, 2016.

[11] Vikas Dhiman, Shurjo Banerjee, Brent Griffin, Jeffrey Mark Siskind, and Jason J.
Corso. A critical investigation of deep reinforcement learning for navigation. CoRR,
abs/1802.02274, 2018.

[12] Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla,
Xinghua Lou, Nimrod Dorfman, Szymon Sidor, D. Scott Phoenix, and Dileep George.
Schema networks: Zero-shot transfer with a generative causal model of intuitive physics.
CoRR, abs/1706.04317, 2017.

[13] Tobias Glasmachers. Limits of end-to-end learning. CoRR, abs/1704.08305, 2017.

[14] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex
Vitvitskyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the
atari human benchmark. CoRR, abs/2003.13350, 2020.

[15] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between cap-
sules. CoRR, abs/1710.09829, 2017.

[16] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray
Kavukcuoglu. Interaction networks for learning about objects, relations and physics.
CoRR, abs/1612.00222, 2016.

[17] Kevin Yang, Tianjun Zhang, Chris Cummins, Brandon Cui, Benoit Steiner, Linnan
Wang, Joseph E. Gonzalez, Dan Klein, and Yuandong Tian. Learning space partitions
for path planning, 2022.

[18] Craig A Knoblock. Automatically generating abstractions for planning. Artificial Intel-
ligence, 68(2):243–302, 1994.

[19] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489, January 2016.

[20] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
Timothy P. Lillicrap, and David Silver. Mastering atari, go, chess and shogi by planning
with a learned model. CoRR, abs/1911.08265, 2019.

[21] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain,
Ioannis Antonoglou, and David Silver. Online and offline reinforcement learning by
planning with a learned model. CoRR, abs/2104.06294, 2021.

49

[22] Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement
learning: A survey and open research challenges. Machine Learning and Knowledge
Extraction, 4(1):172–221, 2022.

[23] Thomas G. Dietterich. The maxq method for hierarchical reinforcement learning. In
Proceedings of the Fifteenth International Conference on Machine Learning, ICML ’98,
page 118–126, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[24] Richard S. Sutton, Doina Precup, and Satinder P. Singh. Intra-option learning about
temporally abstract actions. In Proceedings of the Fifteenth International Conference
on Machine Learning, ICML ’98, page 556–564, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc.

[25] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines.
In Proceedings of the 1997 Conference on Advances in Neural Information Processing
Systems 10, NIPS ’97, page 1043–1049, Cambridge, MA, USA, 1998. MIT Press.

[26] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Dietterich. Automatic
discovery and transfer of maxq hierarchies. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, page 648–655, New York, NY, USA, 2008.
Association for Computing Machinery.

[27] Christian Kroer and Tuomas Sandholm. Sequential planning for steering immune sys-
tem adaptation. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, page 3177–3184. AAAI Press, 2016.

[28] Marwin H. S. Segler, Mike Preuss, and Mark P. Waller. Learning to plan chemical
syntheses. CoRR, abs/1708.04202, 2017.

[29] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser. Heuristic
approaches in robot path planning: A survey. Robotics and Autonomous Systems,
86:13–28, 2016.

[30] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning do-
mains: A survey. J. Mach. Learn. Res., 10:1633–1685, December 2009.

[31] Nicolas P Rougier. Maze generation algorithm. https://en.wikipedia.org/wiki/
Maze_generation_algorithm, 2010.

[32] Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Hein-
rich Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrit-
twieser, Keith Anderson, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen
Gaffney, Helen King, Demis Hassabis, Shane Legg, and Stig Petersen. Deepmind lab.
CoRR, abs/1612.03801, 2016.

[33] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. CoRR, abs/1207.4708,
2012.

50

https://en.wikipedia.org/wiki/Maze_generation_algorithm
https://en.wikipedia.org/wiki/Maze_generation_algorithm

[34] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J.
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment: Evalu-
ation protocols and open problems for general agents. Journal of Artificial Intelligence
Research, 61:523–562, 2018.

[35] Kaleigh Clary, Emma Tosch, John Foley, and David D. Jensen. Let’s play again:
Variability of deep reinforcement learning agents in atari environments. CoRR,
abs/1904.06312, 2019.

[36] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai
baselines. https://github.com/openai/baselines, 2017.

51

https://github.com/openai/baselines

Appendix A

OpenAI Baselines for Atari Learning

Environment

Below are the results for 7 different RL algorithms, reproduced from the OpenAI Baselines

repository [36].

Table A.1: Baseline results for the Atari environments.

52

Figure A.1: Performance of baseline algorithms on BeamRider.

Figure A.2: Performance of baseline algorithms on Breakout.

Figure A.3: Performance of baseline algorithms on Enduro.

Figure A.4: Performance of baseline algorithms on Pong.

Figure A.5: Performance of baseline algorithms on Qbert.

53

Figure A.6: Performance of baseline algorithms on Seaquest.

Figure A.7: Performance of baseline algorithms on SpaceInvaders.

54

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	The Sparse Reward Problem
	Thesis Outline

	Background
	Markov Decision Processes
	Semi–Markov Decision Processes
	Model-Free RL
	Model-Based RL
	Model-Based Planning
	Monte Carlo Tree Search

	Hierarchical Reinforcement Learning

	Hierarchical Reinforcement Learning Agent for Path Planning
	Introduction
	Waterworld Random Maze Task
	Gridworld Random Maze Task

	Methods
	Hierarchical Agent with Feature Crafted Goals

	Results
	Discussion

	Learning Diverse Policies for Path Planning
	Introduction
	Hierarchical Agent with Learned Diverse Policies
	Results
	Deepmind Lab Random Maze Task

	Discussion

	Hierarchical Reinforcement Learning Agent for General Tasks
	Introduction to OpenAI Gymnasium Atari Tasks
	Hierarchical Agent for General Task Solving
	PUCT
	NN Architecture
	Worker Policy Termination

	Results
	Experimental Procedure
	Atari Games Performance

	Discussion

	Conclusion
	Summary
	Future Directions

	Bibliography
	Appendix OpenAI Baselines for Atari Learning Environment

