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Abstract

The top-of-atmosphere (TOA) radiation field from a coupled atmosphere-ocean system (CAOS) 

includes contributions from the atmosphere, surface, and water body. Atmospheric correction of 

ocean color imagery is to retrieve water-leaving radiance from the TOA measurement, from which 

ocean bio-optical properties can be obtained. Knowledge of the absolute and relative magnitudes 

of water-leaving signal in the TOA radiation field is important for designing new atmospheric 

correction algorithms and developing retrieval algorithms for new ocean biogeochemical 

parameters. In this paper we present a systematic sensitivity study of water-leaving contribution to 

the TOA radiation field, from 340 nm to 865 nm, with polarization included. Ocean water inherent 

optical properties are derived from bio-optical models for two kinds of waters, one dominated by 

phytoplankton (PDW) and the other by non-algae particles (NDW). In addition to elastic 

scattering, Raman scattering and fluorescence from dissolved organic matter in ocean waters are 

included. Our sensitivity study shows that the polarized reflectance is minimized for both CAOS 

and ocean signals in the backscattering half plane, which leads to numerical instability when 

calculating water leaving relative contribution, the ratio between polarized water leaving and 

CAOS signals. If the backscattering plane is excluded, the water-leaving polarized signal 

contributes less than 9% to the TOA polarized reflectance for PDW in the whole spectra. For 

NDW, the polarized water leaving contribution can be as much as 20% in the wavelength range 

from 470 to 670 nm. For wavelengths shorter than 452 nm or longer than 865 nm, the water 

leaving contribution to the TOA polarized reflectance is in general smaller than 5% for NDW. For 

the TOA total reflectance, the water-leaving contribution has maximum values ranging from 7% to 

16% at variable wavelengths from 400 nm to 550 nm from PDW. The water leaving contribution 

to the TOA total reflectance can be as large as 35% for NDW, which is in general peaked at 550 

nm. Both the total and polarized reflectances from water-leaving contributions approach zero in 

the ultraviolet and near infrared bands. These facts can be used as constraints or guidelines when 

estimating the water leaving contribution to the TOA reflectance for new atmospheric correction 

algorithms for ocean color imagery.
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OCIS codes

(010.4450) Oceanic optics; (010.4458) Oceanic scattering; (010.5620) Radiative transfer

1. Introduction

Ocean color remote sensing is an important tool for monitoring global ocean productivity 

and environmental health [1]. An ocean color satellite-borne sensor measures the total 

radiance at the top of the atmosphere (TOA) from the coupled atmosphere and ocean system 

(CAOS), which includes contributions from the atmosphere, ocean surface, and ocean water 

body [2]. Atmospheric correction algorithms have been developed to remove the atmosphere 

and surface contributions to obtain the water-leaving radiance [3–10]. Traditionally, 

atmospheric correction algorithms assume negligible water-leaving radiance in the near 

infrared (NIR), which allows the aerosol type and loading to be determined in NIR and 

extrapolated into visible [3]. This strategy is highly successful in open ocean, however, its 

application is limited for scenes involving either turbid ocean waters in which the NIR 

water-leaving radiance is not zero, or absorbing aerosols in which extrapolation from NIR to 

visible is questionable [6,8].

Several algorithms have been proposed to improve atmospheric corrections for these scenes. 

One scheme assumes negligible water-leaving radiance in the shortwave infrared (SWIR) 

bands [9]. Werdell et al. have shown that the SWIR scheme leads to significant errors for 

shorter wavelengths at 555 nm or 443 nm due to the large spectral range of data 

extrapolation and insufficient signal to noise ratios (SNR) in the SWIR [10]. Another 

method is to estimate water-leaving radiance in NIR iteratively for turbid waters (see [11], 

and references within). In the above NIR or SWIR methods extrapolation has to been done 

to derive aerosol properties in the visible from longer wavelengths. He et al. have proposed 

an atmospheric correction scheme that assumes water-leaving radiance in ultraviolet (UV) is 

negligible due to the high concentration and large absorption coefficient of colored dissolved 

organic matter (CDOM) [12]. In this scheme the aerosol properties can be interpolated 

between UV and NIR. However, atmospheric correction using the UV bands is difficult 

because molecular scattering is large, coupling between particle absorption and scattering is 

significant, and aerosol hight distribution has large influences to the measurement. In order 

to develop efficient atmospheric correction schemes, the water leaving contribution to the 

TOA total measurement should be examined and well understood. However, the magnitude 

of the water-leaving radiance in UV for a variety of waters has not been demonstrated yet.

Other methods have been proposed to retrieve water-leaving radiance and aerosol properties 

jointly using the least squares fitting of the TOA radiance in combination with ocean bio-

optical models [13,14]. In recent years, the aerosol and ocean color joint retrieval has been 

advanced using multi-angle polarized measurements at multiple wavelengths [15–18]. 

Overall the joint retrieval methods can be called 1-step approaches, while the traditional 

methods assuming negligible water-leaving radiance in NIR or SWIR can be regarded as 2-

step approaches. The 1-step approaches have the advantage of addressing absorbing aerosols 

if the inherent optical properties (IOPs) of ocean waters can be adequately represented by 
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bio-optical models. On the other hand, the 2-step approaches are numerically efficient and 

physically sound with a limited number of assumptions about ocean water reflectance. 

Consequently, the 2-step approaches are the robust and reliable source of global data on 

ocean biology and biogeochemistry research today.

To further advance the research of atmospheric correction for ocean color imagery, it is 

important to understand the water leaving contribution to the TOA radiance. Chowdhary et 

al. have studied the magnitude and angular variation of the total and polarized water-leaving 

reflectances based on bio-optical models of case 1 waters, in which IOPs are parameterized 

solely in terms of chlorophyll concentration [15]. The wavelength range was from 400 nm to 

600 nm and for chlorophyll a concentration from 0.03 to 3.0 mg/m3. The case 1 and case 2 

classification of ocean waters has been under debate in the ocean optics community [19]. In 

this paper, we use the term of case 1 and case 2 classification in the same sense of what was 

used in the cited references. Chami has studied the importance of the TOA polarized 

reflectance to both open ocean and coastal waters [20]. The wavelength range was from 443 

to 870 nm. Chami suggested that polarized signals can be used for atmospheric correction 

because the TOA polarized signals are insensitive to open ocean water properties. This has 

been verified by the PARASOL (Polarization and Anisotropy of Reflectance for 

Atmospheric Sciences coupled with Observations from a Lidar) measurement [21]. This is 

however not true for bright waters dominated by algal blooms or sediments [20, 22]. He et 

al. have studied the water-leaving contribution to the TOA polarized reflectance at 443 nm 

and 670 nm for the purpose of using parallel polarization for ocean color retrieval [23]. Shi 

et al. have shown the impacts of ocean particle properties on the radiation field at three 

levels: just below the water surface, just above the water surface, and TOA [24]. Ibrahim et 

al. have also shown the responses of TOA degree of linear polarization to both case 1 and 

case 2 waters at 440, 550, and 665 nm [25].

To date the water-leaving contribution to the TOA radiation field has not been explored in 

UV, which is critical to develop advanced atmospheric correction algorithms using the UV 

wavelengths. The sensitivity study of water-leaving contribution to the TOA radiation field 

relies on the theoretical radiative transfer models for CAOS [26–47]. The TOA water-

leaving contribution studies [15, 20, 24] outlined above did not include the inelastic 

scattering in the VRT models. In this paper we systematically studied the water leaving 

contribution to the TOA radiation field, for both the total and polarized reflectance, in the 

spectral range from UV to NIR, with a focus on understanding the magnitude and angular 

variation of the water-leaving contribution in the UV and blue wavelengths for two types of 

waters, one dominated by phytoplankton and the other by non-algae (i.e., mineral sediment) 

particles (NAP). The water leaving radiances in shortwave infrared bands are not included in 

this study because they are essentially zero due to large water absorption. Both elastic and 

inelastic scattering are included in the vector radiative transfer simulation [48,49]. This work 

will pave the path for new atmospheric correction algorithms using the UV channels.

This paper is organized as follows: Sec. 2 describes the radiative transfer model and the 

single scattering properties of atmosphere and ocean systems for two types of waters, one is 

dominated by phytoplankton and the other by NAP; Sec. 3 shows the simulation result and 

discussion; Sec. 4 summarizes the conclusions based on the simulation.
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2. Radiative transfer model and bio-optical models

The radiative transfer model used in this study is the vector radiative transfer model for 

CAOS based on the successive order or scattering (SOS) method [39,40,48,49]. The SOS 

code assumes plane-parallel geometry and accounts for polarization, atmosphere and ocean 

coupling, elastic and inelastic scattering. The major inelastic scattering mechanisms include 

ocean water Raman scattering, fluorescence of dissolved organic matter (FDOM), and 

chlorophyll fluorescence [48,49]. The SOS code has been validated against other radiative 

transfer models, including the matrix operator method [15] and the Monte Carlo method 

[38]. To simulate inelastic scattering, we need the solar spectral irradiance and single 

scattering optical properties for both aerosols and hydrosols for the whole spectrum from 

UV to NIR. In this work, the solar spectral irradiance is from [50]. The atmosphere is 

assumed to be a mixture of aerosols and molecules. The aerosol model used is taken from 

Ahmad et al. [51] with a fine-mode volume fraction of 20% and relative humidity of 80%. 

This aerosol model is weakly absorbing with the single scattering albedo around 0.98 from 

340 nm to 865 nm. The aerosol vertical distribution is from [52]. An aerosol optical depth of 

0.15 at 550nm is used and a larger optical depth will reduce the TOA water leaving signal. 

The molecules vertical profile is the 1976 US standard atmosphere [53] with optical depth 

determined by [54]. The molecular scattering is described by the Rayleigh scattering matrix 

with a depolarization of 0.0284 [55].

Water vapor absorption has been considered in order to properly calculate the inelastic 

source function for Raman scattering and FDOM. The water vapor volume mixing ratio is 

around 2.5% at the surface, decreasing to 1% at 2.5 km and almost zero at 10 km. The 

atmospheric radiative transfer simulator (ARTS) is used to calculate the water vapor 

absorption coefficient [56,57] with the water vapor line parameters based on the high-

resolution transmission molecular absorption database (HITRAN) [58]. The water vapor 

absorption coefficient is calculated from 300 nm to 900 nm with spectral resolution of 1 nm, 

which is then averaged to 5 nm when calculating the inelastic source function in ocean 

inelastic scattering. Other gas absorption in the atmosphere is ignored due to their generally 

weak contribution in the wavelengths considered. The absorbing effect of ozone was not 

considered in our calculations for simplicity. While ozone absorption can lead to as much as 

a 10% reduction in visible radiance scattered into the satellite sensor field of view, this 

absorption occurs high in the atmosphere where coupling between scattering and absorption 

is minimal. As such, ozone absorption impacts the ocean and atmosphere signal equally, and 

thus it will not significantly impact the fractional contribution of water leaving radiance to 

top of atmosphere radiance. The ocean surface roughness is specified by the Cox-Munk 

model [59], with the wind speed of 5m/s. The dependence of ocean roughness on wind 

direction is neglected.

The ocean water IOPs are derived from bio-optical models for two kinds of waters, one 

dominated by phytoplankton and the other by NAP. For waters dominated by phytoplankton 

particles, ocean water is consisted of three components: pure sea water, chlorophyll a 

covariant phytoplankton particles, and colored dissolved organic matter (CDOM). The 

absorption coefficient aw of pure sea water is from measurements in [60,61]. The scattering 

coefficient bw of pure sea water is based on [2,62] without considering the dependence on 
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salinity and temperature. The IOPs of phytoplankton particles are parameterized in terms of 

cholorophyll concentration [Chla]. The absorption coefficients ap of phytoplankton particles 

is from [63], which is valid between 400 nm and 700 nm. The ap value for λ<400 nm is 

from the measurement in the BIOSOPE field campaign [64], which is rescaled to make sure 

ap is continuous at 440 nm with [63]. The phytoplankton scattering coefficient bp = cp − ap, 

with cp takes the same format as in [49], which is based on [65,66]. The phytoplankton 

phase function is the Fourier-Forand (FF) phase function determined by the backscattering 

ratio Bbp = bbp/bp [67–69]. The backscattering ratio Bbp is spectrally flat and only depends 

on [Chla] [70]. The FF phase function is then mixed with pure sea water phase function 

weighted by their scattering coefficients. The scattering coefficient of the CDOM is assumed 

to be negligible and its absorption coefficient ay = ay,440 exp[−S(λ − 440)], with S=0.018 

[71] and ay,440 covariant with ap at 440 nm [49, 66]. The Mueller matrix of phytoplankton 

dominated waters is expressed as a product of the FF function and the reduced Mueller 

matrix from [72,73]. Hereafter we refer this first water type as phytoplankton dominated 

waters (PDW), whose bio-optical model has been described in greater details in [49].

The second water type is dominated by NAP, which is referred to as NDW hereafter. NDW 

is consisted of four components: pure sea water, chlorophyll a covariant phytoplankton 

particles, CDOM and NAP. The IOPs of pure sea water and CDOM are the same as PDW, 

while the phytoplankton particles are however modeled differently. The absorption 

coefficient of phytoplankton particles in NDW is modeled as a linear combination of micro- 

and pico- plankton particles weighted by parameter Sf [74]. In this study we adopted Sf = 

0.287 among other values in [74]. For wavelengths shorter than 400 nm, the BIOSOPE 

measurement is again used [64], in a way similar to PDW. The scattering coefficient of 

phytoplankton particle is bp = cp − ap, with cp determined from [65]. The Mueller matrix of 

the phytoplankton particle is determined by spherical particles with Junge particle size 

distribution (PSD). The index of refraction of phytoplankton particle is np = 1.06 relative to 

water; and the Junge PSD slope is ξp = 4 [75]. The NAP absorption coefficient is modeled as 

aNAP = aNAP(443){0.75 exp[−0.0123(λ − 443)]} with aNAP(443) = 0.041[NAP], where 

[NAP] is the NAP concentration in the unit of g/m3 [76]. The NAP scattering coefficient 

bNAP is determined by the spherical particle scattering cross section with Junge particle size 

distribution (see Eqs. 4 – 6 of [25, 77]). The spectral backscattering coefficient calculated 

from the Mie theory assuming zero imaginary index of refraction can be 5% to 30% higher 

than the field measurements [78]. We have adopted an empirical correction scheme to 

correct this artifact (see Eq. (13), [78]). The NAP Mueller matrix is also modeled by the 

spherical particles with Junge PSD. The NAP index of refraction is nNAP = 1.2 relative to 

water; and the Junge PSD slope is ξNAP = 4 [75]. The Mie code used here is developed by 

Mishchenko et al. [79]. A more detailed description of the NDW bio-optical model has been 

provided in [25], in which NDW is referred as case 2 waters.

The SOS code is used to simulate the polarized radiation field at TOA in the following 

discrete wavelengths: 340 nm, 354 nm, 388 nm, 416 nm, 442 nm, 452 nm, 470 nm, 510 nm, 

551 nm, 670 nm, 765 nm, and 865 nm, which covers the spectral range from UV to NIR in 

which water leaving radiance is significant. All inelastic scattering mechanisms for ocean 

waters have been accounted for, which include Raman scattering [33,48,80–90], FDOM 

[91–96], and chlorophyll fluorescence [97–103]. Chlorophyll fluorescence is only 
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significant near the wavelength of 685 nm, which we did not include in this work. For details 

of the inelastic scattering implementation, readers are referred to [48,49]. The vertical 

profile of the chlorophyll a concentration [Chla] is a generalized Gaussian superposed to a 

linear background [104, 105], which can be uniquely determined by the [Chla] at the surface 

[49]. Hereafter we refer [Chla] to the surface chlorophyll a concentration. The non-algae 

concentration [NAP] is considered uniform within the water column. The simulation 

assumes that the total ocean depth is 200 meter without ocean bottom reflection, which is 

deep enough for water leaving radiance to converge at the TOA.

3. Simulations and discussion

In this section we studied the radiation field at the TOA in response to different [Chla] and 

[NAP] values. The total reflectance ρt is defined as:

(1)

where Lt is the TOA radiance; Es is the extraterrestrial solar irradiance; λ is the wavelength; 

θs and θv are the solar and viewing zenith angles, respectively; ϕv is the viewing azimuth 

angle. In this paper θs = 45° is used. The range of the viewing angle covers all upwelling 

direction at the TOA. The total reflectance ρt is a summation of signals from all components 

of CAOS. The water-leaving signal  in the TOA reflectance is:

(2)

where  is the water-leaving radiance contribution at the TOA. Lw is not used here because 

it is conventionally used to denote water leaving radiance just above the ocean surface. In 

this work  is calculated by

(3)

where L is the Stokes vector and Lt,w/o water denotes the TOA measurement for a system 

with the same atmosphere and ocean surface but no ocean water is present. Radiance L is the 

first element of L, and Q and U used in the following are the second and third elements. 

Equation (3) accounts for all multiple scattering and polarization effects in the atmosphere 

and ocean coupled system.

To study the polarized radiation field, the linearly polarized reflectance is introduced, for 

both the total and water-leaving signals:
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(4)

where subscripts t and w represent the total and water-leaving signals, respectively. The 

calculation of  and  follows Eq. (3). Hereafter the linearly polarized reflectance is 

called the polarized reflectance for conciseness, as the circular component is generally small 

in the TOA measurement [106]. In the above reflectance quantities, the spectral variation of 

the radiation field due to the solar irradiance is largely removed so that they are mainly 

sensitive to the atmospheric and oceanic IOPs. We have also defined the relative 

contributions of the total and polarized water leaving signal at the TOA in the following 

way:

(5)

3.1. Total reflectance

Figures 1(a) and 1(b) show the TOA reflectance ρt and  at the nadir viewing angle for 

PDW and NDW, respectively. The solar zenith angle is 45° and the aerosol optical depth τa 

at 550 nm is 0.15. For PDW, three [Chla] values are used: 0.03, 0.1, and 10 mg/m3. For 

NDW, the chorophyll a concentration is fixed at [Chla]=10.0 mg/m3 and two [NAP] values 

are used: 1 and 10 g/m3. In all cases, the total reflectance ρt, which includes contributions 

from both the atmosphere and ocean, increases with decreasing wavelength. This is mainly 

due to the increase of molecular and aerosol scattering as wavelength decreases. The water-

leaving signal in the total reflectance is noticeable from Fig. 1 between 400 nm and 600 nm 

for both PDW and NDW, the signal from NDW being more prominent.

For PDW, there is an inflection wavelength between 510 nm and 550 nm where the 

values for different [Chla] values are comparable. When wavelength is shorter than this 

inflection wavelength, the water-leaving signal  is larger for smaller [Chla] values. This 

trend is reversed if wavelength is longer than the inflection wavelength. This is due to the 

compound effect of spectral variations of the backscattering and absorption coefficients, 

which has led to similar spectral behavior of irradiance reflectance in [17]. As [Chla] 

increases from 0.03 to 10 mg/m3 for PDW, the wavelength of the  maximum shifts from 

around 412 nm to 550 nm. For [Chla]=0.03 and 0.1 mg/m3,  has a local minimum around 

442 nm, which is from the compound effect of the total absorption and backscattering 

coefficient spectra. The water-leaving signal  decreases as wavelength approaches both 
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UV and NIR at both sides of the maximum for all chlorophyll a concentrations. The 

maximum value ranges from 0.025 to 0.005 as [Chla] changes from 0.03 to 10 mg/m3.

Different from PDW, the NDW water-leaving signal  does not have an inflection 

wavelength, at which the relative magnitude of  changes for different [NAP] values. The 

NDW water-leaving signal is larger for larger [NAP] across the whole spectrum. The 

wavelength of the  maximum is not sensitive to [NAP]. For both PDW and NDW, the 

values are smaller in both UV and NIR than in the visible bands, which is the basis of 

atmospheric correction using the UV and NIR bands. The reflectance  at 865 nm for 

[NAP]=10 g/m3 is around 0.001, which is small but not negligible in terms of atmospheric 

correction. At 340 nm,  is around the same level as NIR.

Besides the spectral variation, another important property of the radiation field is the angular 

distribution. Figure 2 displays the fisheye projection of of TOA reflectance ρt and  contour 

at 354 nm for both PDW and NDW, respectively. In the plot the radial coordinate represents 

the viewing zenith angle with scales denoted by white numbers along a radius; the angular 

coordinate shows the viewing azimuth angle, with scales denoted by the black numbers from 

0 to 180° around the semicircle. The azimuth angle of 0° corresponds to the azimuth half 

plane which contains the sun glint; while the azimuth angle 180° refers to the backscattering 

half plane. For PDW, [Chla] is 0.03 mg/m3; for NDW, [NAP]=1.0 g/m3 and [Chla]= 10 

mg/m3 are used. The angular patterns of ρt for both PDW and NDW are similar, as the 

atmosphere is the same for the two cases and water leaving signal is relatively a small 

portion of the total signal. The total reflectance ρt is generally small at nadir in comparison 

with large viewing zenith angels, with the exact minimum value location determined by the 

atmospheric and oceanic phase matrices. For the water leaving signal,  is smallest at large 

viewing zenith angles due to increasing atmospheric attenuation. The maximum water 

leaving signal is in the backscattering plane but not located at the exact backscattering 

direction of θv = 45° and ϕv = 180° due to the complicated interaction of light multiple 

scattering and atmospheric attenuation, which was also observed in [15].

To have a direct sense of the reflectance magnitude, Fig. 3 shows the line plots of ρt and 

as a function of viewing zenith angle θv for two selected wavelengths: 354 nm and 442 nm. 

The chlorophyll a concentration is 0.03 mg/m3 for the PDW in Fig. 3; for NDW, [Chla]=10 

mg/m3 and [NAP]=1 g/m3 are used. Three viewing azimuth angles are used: 0, 90, 180°. 

Consistent with the fisheye contour plot of the total reflectance ρt increases with increasing 

viewing zenith angle due to the increasing atmospheric path length. The water-leaving signal 

, however, decreases as θv increases, because of the larger atmospheric attenuation from 

larger atmospheric path length. This means that the water-leaving signal at nadir is usually 

largest among signals at different viewing angles at the TOA, both in absolute and relative 

measures. The sun glint at 354 nm is not obvious from the total reflectance ρt due to the 

large molecular scattering optical depth; while at 442 nm, the sun glint is apparent around θv 

= 45° at ϕv = 0°, as θs = 45° is used in this paper. The sun glint peak may also contain 

contributions from diffuse scattering [107].
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The total reflectance shows larger variation for the three azimuth angles; while the water-

leaving signal shows much smaller azimuth variation in Fig. 3. For PDW,  is the largest at 

the backscatter plane ϕv = 180°, which gradually decreases as ϕv approaches zero. This has 

been observed in Fig. 2. However, this is not true for turbid NDW ([NAP]=10 g/m3 and 

λ=442 nm), in which the relative magnitude of  at different ϕv changes depending on the 

viewing zenith angle. Similar variability of  on azimuth angle has been observed in [15], 

depending on [Chla] and wavelength. The  maximum value at 354 nm is around 9E-3 for 

PDW with [Chla]=0.03 mg/m3, which is around 40% of the 442nm water leaving signal. For 

NDW and [NAP]=1g/m3, the maximum value of  at 354 nm is 3.5E-4, which is around 

20% of the corresponding maximum value at 442 nm. This fraction of 20% is smaller than 

that of PDW, due to the strong [NAP] absorption in the UV. The CDOM absorption at 354 

nm is less for PDW than NDW in this case due to the smaller [Chla] in PDW.

Besides the absolute signal, it is important to understand the relative fraction of water-

leaving contribution in the total reflectance. Figure 4 shows the relative fraction 

 for both PDW and NDW at nadir. For PDW, the maximum fraction ranges 

from 8% to 16%, and the wavelength corresponding to the maximum fraction shifts from 

470 nm to 670 nm as [Chla] increases from 0.03 to 10 mg/m3. At both sides of the 

maximum peak, the fraction decreases as wavelength decreases toward the UV or increases 

toward NIR. The fraction is around or less than 2% at wavelengths shorter than 354 nm or 

longer than 760 nm. For NDW, the maximum fraction happens around 550 nm, which is not 

sensitive to the [NAP] value. The maximum fraction changes from around 15% to 35% 

when [NAP] increases from 1 g/m3 to 10 g/m3. As wavelength approach UV, the fraction 

decreases at a faster rate than that of PDW due to the [NAP] absorption. In the NIR, the 

water-leaving fraction is still significant for NDW, which is around 8% or less at nadir. This 

is the reason that black pixel approximation in atmospheric correction fails in coastal waters 

[6].

Tables 1 and 2 summarize the maximum values of  and η for PDW and NDW, 

respectively, for selected wavelengths. For each wavelength, the maximum values of  and 

η for all range of viewing zenith and azimuth angles are reported. The magnitude of values 

in Tables 1 and 2 are consistent with the values in Figs. 1 and 4, because the maxima of 

water leaving signal and contribution are normally located at nadir, as suggested by Fig. 3.

3.2. Polarized reflectance

The polarized reflectance is very important for characterizing aerosol properties and has the 

potential to help atmospheric correction for ocean color imagery. Figure 5 shows the 

polarized reflectance for the same CAOS shown in Fig. 1. The wavelength dependence of 

the polarized reflectance at nadir is similar to that of the total reflectance, except that the 

magnitudes are much smaller. For PDW at 354 nm, ρt,pol is around 0.065 regardless of the 

[Chla] value, while the corresponding ρt value is 0.28 as in Fig. 1. The degree of linear 

polarization (DOLP) is approximately 0.065/0.28=0.23 at nadir. For polarized water-leaving 

signal, ,pol for [Chla]=0.03 mg/m3 at 354 nm is around 2.0E-3, while the corresponding 
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 in Fig. 1 is 0.025. This suggests that the water-leaving signal DOLP is around 0.08 at 

nadir, which is smaller than the total radiation field DOLP. Overall the DOLP for the total 

field is 2-3 times larger than the water-leaving signal, which is the main motivation of using 

the polarized reflectance for aerosol retrieval and atmospheric correction.

For PDW, the maximum  in Fig. 5 is around 2E-3 for [Chla]=0.03 mg/m3, which 

decreases to 2.5E-4 for [Chla]=10 mg/m3. For NDW, the maximum  values are 1.0E-3 

and 2.5E-3, for [NAP]=1 and 10 g/m3, respectively. The polarized water-leaving signal 

 is small in both UV and NIR due to strong CDOM and [NAP] absorption in UV and 

water absorption in NIR. For the cases shown, the  value is around or smaller than 

5E-4 at 354 nm, which is near the detection limit of most ocean color sensors [20]. This 

suggests that one may use the polarized reflectance at 354 nm and nearby UV bands to 

perform atmospheric correction by assuming the water-leaving signal is small and well 

constrained and identifying aerosol types and optical depths.

To understand the angular dependence of the polarized reflectance, Fig. 6 shows the fisheye 

projection contour plot of ρt,pol and  and for both PDW and NDW. For PDW, 

[Chla]=0.03 mg/m3 is used, and for NDW, [NAP]=1.0 g/m3 is used. The minimum polarized 

reflectances for both ρt,pol and  appear around the backscattering direction of θv = 45° 

and ϕv = 180°. As viewing zenith angle approaches 90°, ρt,pol increases while 

decreases, for the same reason as the case of ρt and , i.e., increasing scattering path length 

for the total field and attenuation path length for water leaving signal. The angular pattern of 

ρt,pol is similar for both PDW and NDW due to the dominant contribution of the atmospheric 

signal. The water leaving signals for PDW and NDW show different maximum reflectance 

and angular distribution, with the PDW peak exhibiting a larger angular area in the principal 

plane around the scattering angle of 90°. The NDW peak is comparably narrower due to the 

PDW and NDW phase matrix difference. These characterizations have a potential to be used 

for ocean color atmospheric correction using multiangle polarimetry.

In comparison to the total reflectance, the polarized reflectance shows much larger angular 

variation for different cases, which prompts us to examine the polarized reflectance in a 

greater detail. Figure 7 shows the polarized reflectance for PDW as a function of viewing 

zenith angles for three azimuth angles: ϕv=0, 90, 180°. Two [Chla] values, 0.03 and 10 

mg/m3 are used; and the wavelengths are 354 and 442 nm. For both ρt,pol and , the 

maximum values are at ϕv=0° around the scattering angle of 90°; the minimum values are at 

ϕv=180°. This is consistent with the synoptic view reported in [15]. For [Chla]=0.03 mg/m3, 

the  maxima are 1.6E-3 and 5E-3 for the wavelengths of 354 and 442 nm, respectively. 

For [Chla]=10 mg/m3, the  maxima are 6E-5 and 3E-4 for 354 nm and 442 nm, 

respectively. Overall the  values are smaller for [Chla]=10 mg/m3 than those for 

[Chla]=0.03 mg/m3 for λ< 550 nm. In the principal plane of ϕv = 0°, the relative differences 
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between  and the  maximum are around 100%. At ϕv = 90°, the 

variations are more smooth as a function of viewing zenith angle.

Figure 8 is the same as Fig. 7, except for NDW. Two [NAP] values, 1 and 10 g/m3, are used. 

The angular variations of the polarized reflectance for NDW are similar to those of PDW, 

i.e., maximum values are at ϕv = 0° and minimum values are at ϕv = 180°. In comparison 

with PDW, the viewing zenith angle of the  maximum at ϕv = 0° appears closer to the 

zenith (40° versus 45°). This is due the Mueller matrix difference of the PDW and NDW. In 

PDW, the average reduced Mueller matrix measured by Voss and Fry are used [72], in which 

the P12/P11 has a maximum around 90°. For NDW, the Mie theory is used to calculate the 

particle Mueller matrix, whose P12/P11 maximum deviates from 90°, especially for non-

algae particles with high refractive index particles [79].

For NDW with [NAP]=1.0 g/m3 at 354 nm,  at ϕv = 0° changes from 3E-5 to 7.5E-5 

when the viewing zenith increases from 0 to 45°, an increase of more than 100%. For the 

wavelengths from 354 nm to 442 nm, the  maxima for [NAP]=1.0 g/m3 in Fig. 8 range 

from approximately 2.0E-4 to 5E-4. For [NAP]=10.0 g/m3, the  maxima are between 

2E-4 to 1.5E-3 for the wavelengths from 354 nm to 442 nm. The  maxima for NDW 

are in the same order of magnitude as those of PDW. At 354 nm, the maximum values are 

again smaller than 5E-4, which confirms that polarized measurements at 354 nm will be a 

powerful band for characterizing aerosol properties and performing atmospheric correction, 

by assuming a small fraction of water leaving contribution at this wavelength.

To show the polarized water leaving contribution to the TOA polarized reflectance, Fig. 9 

shows  at nadir as a function of wavelength. The spectral behavior of 

the polarized water leaving fraction is similar to that of the total reflectance, with the 

wavelength of the PDW maximum fraction strongly depending on [Chla] and with the 

wavelength of the NDW maximum fraction less sensitive to [NAP]. The PDW maximum 

fraction is larger for smaller [Chla]; while the NDW maximum fraction is larger for larger 

[NAP]. The PDW maximum fraction ranges from 2% to 5.5% for [Chla] decreasing from 10 

to 0.03 mg/m3; while the NDW maximum fraction ranges from 6% to 16% for [NAP] 

increasing from 1 to 10 g/m3

Different from the total reflectance, the polarized water leaving contribution has more 

complicated angular pattern. Figure 10 shows  for both PDW and 

NDW as a function of viewing zenith angle for three azimuth angles. At 354 nm, the fraction 

is in general smaller than 2% except for ϕv = 180°. In the backscattering plane the polarized 

reflectance is minimized for both ρt,pol and , which leads to numerical instability when 

calculating the ratio of two small numbers. When the backscattering half plane is excluded, 

the fraction is smaller than 6% at 442 nm. While the angular variations of  and ρt,pol 

are large (i.e., Figs. 7 and 8), the fraction ηpol shows little angular dependence except for the 

backscattering plane. Moreover, the fraction is generally maximized at nadir, and slowly 
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decreases to zero for large viewing zenith angles. All these facts can be used as constraints 

to develop new atmospheric correction algorithms in least squares fitting of the multi-angle 

polarimeter measurements.

Table 3 and 4 summarize the maximum values of  and ηpol for PDW and NDW, 

respectively, for selected wavelengths. The maximum values of  apply to all range of 

viewing zenith and azimuth angles. For ηpol, the backscattering direction between ϕv = 150° 

and 180° are however excluded to avoid numerical instability as we discussed above. The 

relative contribution for PDW at 865 nm is in general smaller than 1%. This is not the case 

for NDW, in which ηpol could be up to 8.17% as shown in Table 4 for [NAP]=10 g/m3. 

Noticeably, the polarized water leaving contributions at 354 nm and 388 nm are smaller than 

those of 765 nm and 865 nm, which makes the UV bands a better choice for atmospheric 

correction for turbid NDW.

4. Conclusion

In this paper we have systematically investigated the water-leaving absolute signal and 

relative contribution in both total and polarized reflectances at TOA. The spectrum ranges 

from UV to NIR, which covers all spectral bands in which water-leaving radiance has 

noticeable contribution to the TOA radiation field. Bio-optical models for both PDW and 

NDW are included in this study. The PDW IOPs are primarily determined by chlorophyll a 

concentration, while those of NDW have an additional non-algae component that both 

scatters and absorbs light. The radiative transfer model based on the successive order of 

scattering method is used to perform the simulation, in which polarization, atmosphere and 

ocean coupling, and elastic and inelastic scattering are included. Main inelastic scattering 

mechanisms are Raman scattering and fluorescence by dissolved organic matter.

For the total reflectance in PDW, the wavelength of the maximum water-leaving signal shifts 

from 412 nm to 550 nm when chlorophyll a concentration increases from 0.03 to 10 mg/m3. 

This is not the case for NDW, in which the wavelength of the maximum water-leaving signal 

does not change with different non-algae concentrations. The maximum reflectance for 

PDW is larger for smaller chlorophyll a concentrations, while the reflectance in NDW is in 

general larger for larger non-algae concentrations. As viewing zenith angle increases, the 

water-leaving signal decreases for both PDW and NDW, which is due to the increase of 

atmospheric attenuation path. On the other hand, the total reflectance for the whole CAOS 

increases as viewing zenith angle increases, which makes the water-leaving relative 

contribution in the total field decreases quickly towards large viewing zenith angles. The 

water-leaving signal is small in both UV and NIR. At 354 the water-leaving fraction in the 

total reflectance is less than 4% and 0.5% for PDW and NDW, respectively. At 865 nm, the 

water-leaving fraction for PDW is smaller than 1%. This fraction is around 8% for turbid 

NDW ([NAP]=10 g/m3).

For the TOA polarized field, the spectral variation is similar to that of the total reflectance, 

with much smaller magnitude. The DOLP of the whole CAOS is normally 2-3 times larger 

than the water-leaving signal, which means that the TOA polarized field is dominated by 
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atmospheric scattering. The polarized reflectance is expected to show maximum values in 

the principle half plane, which contains the sun glint. The minimum polarization is around 

the backscattering half plane. The polarization peak is around the scattering angle of 90° for 

PDW. The peak location is shifted away from 90° for NDW, depending on the single 

scattering Mueller matrix, which in turn depends on the refractive index and particle size 

distributions. If the backscattering half plane is excluded, the water-leaving contribution in 

the polarized field is less than 2% at 354 nm and 9% at 442 nm, for both PDW and NDW. In 

the backscattering plane, the fraction is larger due to the numerical instability of dividing 

two near-zero numbers (both polarized water-leaving and total signals are minimized in the 

backscattering plane). The relative and absolute magnitudes of these different contributions 

in PDW and NDW will provide important guidelines in designing new aerosol retrieval and 

atmospheric correction algorithms for the future satellite missions by allowing a better 

separation of the water and aerosol contributions to the TOA signal.
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Fig. 1. 
TOA Reflectance at nadir as a function of wavelength. The total reflectance is shown in blue 

by the left y axis and the water leaving signal is shown in maroon by the right y axis. This 

arrangement applies to all other similar plots in this paper. The solar zenith angle is 45° and 

the aerosol optical depth at 550 nm is 0.15.
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Fig. 2. 
Fisheye projection of TOA reflectance contour at 354 nm. The solar zenith angle is 45° and 

the aerosol optical depth at 550 nm is 0.15.
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Fig. 3. 
Reflectance at the TOA as a function of viewing angle for selected wavelengths. Both the 

total reflectance and the water-leaving signal are shown. The solar zenith angle is 45° and 

the aerosol optical depth at 550 nm is 0.15.
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Fig. 4. 
Water-leaving contribution in the TOA reflectance at nadir as a function of wavelength. The 

solar zenith angle is 45° and the aerosol optical depth at 550 nm is 0.15.

Zhai et al. Page 22

Opt Express. Author manuscript; available in PMC 2018 August 07.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 5. 
TOA Polarized reflectance at nadir as a function of wavelength. Both the TOA polarized 

reflectance and the polarized water-leaving signal are shown. The solar zenith angle is 45° 

and the aerosol optical depth at 550 nm is 0.15.
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Fig. 6. 
Fisheye contour plot of the TOA polarized reflectance as a function of viewing angle at 354 

nm. Both the TOA polarized reflectance and the polarized water-leaving signal are shown. 

The solar zenith angle is 45° and the aerosol optical depth at 550 nm is 0.15.
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Fig. 7. 
TOA polarized reflectance for PDW as a function of viewing angle for selected wavelengths. 

Both the total field and the water-leaving signal are shown. The solar zenith angle is 45° and 

the aerosol optical depth at 550 nm is 0.15.
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Fig. 8. 
TOA polarized reflectance for NDW as a function of viewing angle for selected 

wavelengths. Both the total field and the water-leaving signal are shown. The solar zenith 

angle is 45° and the aerosol optical depth at 550 nm is 0.15.
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Fig. 9. 
Polarized water-leaving contribution in the TOA polarized reflectance at nadir as a function 

of wavelength. The solar zenith angle is 45° and the aerosol optical depth at 550 nm is 0.15.
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Fig. 10. 
Water-leaving contribution to the TOA polarized reflectance as a function viewing angles for 

selected wavelengths. The solar zenith angle is 45° and the aerosol optical depth at 550 nm 

is 0.15.
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