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Thomas’ theorem meets Bayes’ rule: a model of the iterated learning of language
Vanessa Ferdinand (v.a.ferdinand@uva.nl)

Willem Zuidema (zuidema@uva.nl)
Cognitive Science Center Amsterdam & Institute for Logic, Language and Computation,

University of Amsterdam, Plantage Muidergracht 24, 1018 TV, Amsterdam, The Netherlands

Abstract

We develop a Bayesian Iterated Learning Model (BILM) that
models the cultural evolution of language as it is transmitted
over generations of learners. We study the outcome of iter-
ated learning in relation to the behavior of individual agents
(their biases) and the social structure through which they trans-
mit their behavior. BILM makes individual learning biases
explicit and offers a direct comparison of how individual bi-
ases relate to the outcome of iterated learning. Most earlier
BILMs use simple one parent to one child (monadic) chains of
homogeneous learners to study the outcome of iterated learn-
ing in terms of bias manipulations. Here, we develop a BILM
to study two novel manipulations in social parameters: pop-
ulation size and population heterogeneity, to determine more
precisely what the transmission process itself can add to the
outcome of iterated learning. Our monadic model replicates
the existing BILM results, however our manipulations show
that the outcome of iterated learning is sensitive to more fac-
tors than are explicitly encoded in the prior. This calls into
question the appropriateness of assuming strong Bayesian in-
ference in the iterated learning framework and has important
implications for the study of language evolution in general.

Introduction
The language that you speak is not a product of your mind
alone. Of course, in acquiring language, you did bring to task
a sophisticated learning apparatus able to discover intricate
patterns and track frequency distributions at all levels of lin-
guistic analysis. However, you learned your language from
data that had been shaped by countless generations of lan-
guage learners and users before you. Without this history,
your personal language would have looked quite different.

In the field of language evolution, the iterated learning
model (ILM) has emerged as a popular formalization of this
cultural transmission of language over successive genera-
tions. Through a series of models, it has become clear that
the iteration of learning may have profound influences on
the resulting languages. Many of the defining features of
natural language have been shown to be possible results of
iteration, including compositional semantics and recursive-
ness (Kirby, 2002) and the bidirectionality of the sign (Smith,
2002). Moreover, these models have shown that the learnabil-
ity of language in an important sense comes for free: seem-
ingly arbitrary choices of current learners are correct pre-
cisely because they are the same choices as those made by the
previous generations (Deacon, 1997; Zuidema 2003). This is
an instance of Thomas’ theorem: "If men define situations as
real, they are real in their consequences" (Thomas & Thomas,
1928).

However, learning in the ILM tradition is operationalized
with a variety of adhoc learning algorithms and many ques-
tions remain about the role and appropriateness of the built-in

biases. One way to disentangle the role of the learning biases
and the role of cultural transmission in iterated learning is to
implement ILMs with Bayesian rational agents, whose induc-
tive biases are explicitly coded. The first main BILM result
of this kind was that the outcome of iterated learning (i.e. the
stationary distribution of the transition matrix describing tran-
sition probabilities between all possible languages) exactly
mirrors the agents’ distribution over priors. This result im-
plied that the learners’ biases entirely determine the outcome
of iterated learning (Griffiths and Kalish, 2005). However,
when agents with a different hypothesis selection strategy are
used (i.e. they maximize as opposed to sample from the pos-
terior probabilities over hypotheses), the outcome of iterated
learning amplifies the biases and does not mirror the prior
exactly (Kirby et al, 2007). This is taken as evidence that
cultural transmission is adding something to the outcome of
iterated learning.

Given that ILMs are complex, dynamical systems we
should look at the outcome of iterated learning as a product
of the behavior of individual agents (agent properties) and the
ways in which they interact (social properties). In this way,
we can make a clear distinction between which aspects of the
outcome can be attributed to agent biases and which aspects
can be attributed to the transmission process itself. Normally,
only manipulations to the agent itself are made (in terms of
bias values and hypothesis selection strategies) and any out-
comes that do not strictly mirror the bias are attributed to un-
specified additions of the cultural transmission process.

In the present research, we have chosen to manipulate two
social parameters: population size and bias heterogeneity. In
doing so, we find that the outcome of iterated learning no
longer mirrors the prior and is sensitive to more biases in the
Bayesian agent than are explicitly encoded in the prior. If
the prior can no longer be seen as encoding the whole of an
agent’s bias, this calls into question the appropriateness of the
current BILM framework as a remedy for explicitly linking
specific properties of the agents to the outcome of iterated
learning.

Model description
In this section we outline the components of a Bayesian
ILM and describe how they are implemented in our model.
The components are the standard ones from any Bayesian
inference model (hypothesis space, data, prior, posterior)
combined with those from iterated learning (the learners or
’agents’, data production, population structure). The imple-
mentation and analysis were all carried out in Matlab (for de-
tails, see Ferdinand & Zuidema, 2008).
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Figure 1: Graph of hypotheses [.6 .3
.1; .2 .6 .2; .1 .3 .6] and example
prior vector [.7 .2 .1]. Each hypoth-
esis’ shape is entirely determined by
the likelihoods it assigns to the data.
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Figure 2: Bayesian iterated learning,
in the monadic (black) and polyadic
(+green/grey) condition. When all pri-
ors are equal, the chain is called homo-
geneous, otherwise it is heterogeneous.

Figure 3: Hypothesis structure and priors
affect stationary distribution of monadic
maximizers. b=1; hypotheses [α (1 −
α)/2) (1−α)/2); (1− x)/2 x (1− x)/2;
(1−α)/2) (1−α)/2) α], with x on hori-
zontal axis and α = .33 in curve (a), .4 in
(b), .6 in (c) and .8 in (d).

Hypotheses: agents are assumed to consider a fixed set of
hypotheses about the state of the world. Each of these hy-
potheses assigns different likelihoods to each of a fixed set
of possible observations (they are thus probability distri-
butions over data, P(d|h)). These hypotheses could repre-
sent, for instance, different languages that generate a set of
utterances, or different functions that describe a set of data
points. The exact nature of the hypotheses is left unspec-
ified, but the basic properties of the model should be gen-
eralizable to a variety of systems where information is cul-
turally transmitted (including not only language, but also,
e.g., music and bird song). In this paper, the hypotheses are
set at the beginning of each simulation and are the same for
all agents. In our examples, we will use a set of hypotheses
of size three: h ∈ H = {h1,h2,h3}.

Data: The observations that an agent can make about the
state of the world will be referred to as data points. Data
points are from a fixed set of possible values and in
our model we restrict the size of this set to three: D =
{d1,d2,d3}. In linguistic terms, a data point can be inter-
preted as any piece of evidence (a “trigger”) that the target
language has a particular property. Different hypotheses
assign different likelihoods to different data points. Mul-
tiple data points may be organized into a string, where the
likelihood of the string is the product of the likelihoods of
the points. Data in our model is any such string of length
b≥ 1: d ∈ Db.

Prior probability: The prior is a probability distribution
over hypotheses, defining the probability P(h) assigned to
each hypothesis before any data is seen. Thus, the prior
models the inductive bias of the learner. An example short-
hand we will use to note the prior is [.7 .2 .1], where the
prior probabilities for h1, h2 and h3 are .7, .2 and .1, re-
spectively1.

1Note that in Bayesian modelling the choice of priors is typi-
cally constrained by a set of principles that assure the outcome is
not trivially steered by the modeller (e.g., priors must be uninfor-
mative) and that calculations remain feasible (e.g., priors must be
conjugate to the likelihood function). In our model, we allow any
choice of prior over any set of hypotheses; this is ‘unorthodox’ yet

Agents perform inference by combining their prior beliefs
and observations of data using Bayes’ rule:

P(h|d) =
P(d|h)P(h)

P(d)
(1)

where P(h|d) denotes the posterior probability that a hypoth-
esis could have generated the data in question and P(d) =
∑h∈H P(h)P(d|h) is the probability of the data averaged over
all hypotheses.

Hypothesis choice: Once the posterior probabilities are cal-
culated, we still need a strategy to choose one particu-
lar hypothesis h, from which to generate the data. We
consider the same two strategies as in much earlier litera-
ture: (i) the maximizer simply chooses the hypothesis with
the maximum posterior probability (MAP) or, if there are
multiple maximums, a random one from the set of MAP-
hypotheses; (ii) the sampler chooses one hypothesis ran-
domly, but weighted by the posterior probabilities.

Data Production: Once a hypothesis is chosen, the next
step is to generate new data using that hypothesis. For
instance, assuming the agent has chosen h1, each data
point in the output string will be randomly generated, but
weighted according to the likelihood of each data point un-
der h1. The number of data points in this string defines
the “transmission bottleneck” b. A characteristic string
of size b = 10 under hypothesis h1 of figure 1 would be
< d1d1d1d2d1d2d2d1d3d1 >.

Population structure: Agents are organized into discrete
generations of one or more individuals (figure 2). If
the number of agents per generation is exactly 1, the
model resembles previous ILMs; we will call this condi-
tion monadic. We will also consider larger populations, a
condition labeled polyadic. Because each generation only
learns from the previous, the model can – regardless of

very relevant for some of our results, as one reviewer notes, but it is
consistent with our view that it is the reality of human biology that
ultimately determines which priors and hypotheses are appropriate
in linguistic modelling, and not the mathematical convenience for
the modeller.
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the population size – be characterized as a Markov chain2,
where the population at time t (after learning) is charac-
terized as a vector of hypotheses (~ht ), and for each pair
of hypotheses < ht ,ht+1 > the probability of transitioning
from one to the other is given by ∑d P(d|ht)×P(ht+1|d).

Cultural transmission (iteration) is modeled by using each
generation’s output data string as the next generation’s input
data string. All agents in one generation produce the same
number of data samples, which are all concatenated into the
output data string for that generation. The likelihood of a
data string is invariant to the order of the data samples it
contains. Each agent has no way of knowing the number of
agents which produced the data string or which data came
from which agent. Additionally, each generation has an iden-
tical composition of agents as the generation before it. If a
population is heterogeneous, then the same set of heteroge-
neous agents occur in each generation.

Results
We will study this model numerically while varying the prior,
hypothesis structure, bottleneck size, hypothesis choice strat-
egy, population size, and population heterogeneity in terms of
different priors per agent. In this section we will first briefly
describe how we monitor the behavior of the model. We then
show our model can replicate aspects of previous Bayesian
ILMs. We will then address new findings for multi-agent pop-
ulations with heterogeneous and homogeneous biases.

Monitoring model behaviour
We are looking for features that are invariant as well as
changes in the dynamics of the model that can be causally
attributed to specific changes in parameter settings. A con-
crete representation of a “dynamical fingerprint” can be ob-
tained by constructing a transition matrix Q for each model.
This matrix gives the probabilities that any of the hypotheses
will lead to itself or any other hypothesis in the next genera-
tion. In linguistic terms, the transition matrix is the idealized
equivalent of a theory of (generational) language change: it
gives the probability that a language in a particular state at
generation t will change into any of a set of possible states at
generation t +1 (cf. Niyogi, 2002).

If an ILM simulation could be run for an infinite amount
of time, the relative frequency of each chosen hypothesis
would settle into a particular distribution that is determined
entirely by these transition probabilities. This distribution is
known as the stationary distribution and serves as an ideal-
ized shorthand for the “outcome of iterated learning”. The
stationary distribution is proportional to the first eigenvector
of the transition matrix (Griffiths & Kalish, 2005). In some
cases, we can therefore easily determine the stationary dis-
tribution analytically. In linguistic terms, the stationary dis-
tribution is the idealized equivalent of linguistic typology, a

2(Note that for large populations and large sets of hypotheses the
transition matrix is of course too big to calculate exhaustively, but
identifying a system as a Markov chain can help us decide on the
right approximations to study such systems in simulations.

theory of language universals and variation: it gives the rela-
tive frequencies with which we should see particular language
variants, when very many (N →∞) independent cultural evo-
lution chains have run for a very long time (t → ∞).

In an experimental run, the relative frequency of all chosen
hypotheses are also entirely determined by the transition ma-
trix, but because a run contains a finite number of transitions,
it represents one actual trajectory of transitions, from a larger
set of probable trajectories under that matrix. However, when
a large number of transitions can be recorded in a simulation
(by setting the number of generations sufficiently high), then
a tally of the actual hypotheses chosen by the agents over the
course of the simulation closely approximates the analytical
stationary distribution. This is the normalized hypothesis his-
tory (HH); it is a reliable, experimental approximation of the
stationary distribution and is reported in most of our results.

Monadic iterated learning

Griffiths & Kalish (2005) showed, both analytically and nu-
merically, that the stationary distribution of iterated learning
of monadic (i.e., a single agent per generation) samplers mir-
rors the prior, independently from hypothesis structure or bot-
tleneck size. In our numerical model we easily replicate this
result; for all choices of priors, hypotheses and bottlenecks
we find that the (approximation) of the stationary distribution
(approximately) matches the prior (table 1).

analytical numerical
h1 h2 h3 h1 h2 h3

S1 .7 .2 .1 .6946 .2040 .1014
S2 .7 .2 .1 .7095 .1939 .0966
M1 .33 .33 .33 .3310 .3327 .3363
M2 .83 .15 .03 .8167 .1553 .0280

Table 1: Analytically and numerically determined stationary
distributions for 4 conditions of the monadic BILM. S marks
sampler, M maximizer, and the 1 and 2 give bottleneck sizes.
Prior = [.7 .2 .1], hypotheses as in figure 1; 10000 iterations.

One interpretation of this result is that, in the end, the fea-
tures of the languages of the world are entirely determined
by the biases of the learner – but we will see that this inter-
pretation is incorrect. (Kirby, Dowman, & Griffiths, 2007)
emphasized that in the maximizer condition, iterated learn-
ing will not converge to the prior. They describe the maxi-
mizer stationary distributions as amplifying the structure of
the prior, although they are careful to note that the exact dis-
tribution will depend on the hypothesis structure. We find that
it is in fact easy to choose parameters such that the stationary
distribution is entirely determined by the hypothesis structure
and prior play no role, as shown in the third line of table 1.
In figure 3 we show an example of the complex interaction
between priors and hypothesis structure under the maximizer
condition.
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Polyadic iterated learning

In our model, each agent in a polyadic run sees the same data
string, separately calculates its posterior values, chooses its
own hypothesis, and generates its own data. The data from
all agents of the same generation are then concatenated into
one unified data string, which is given to the next generation
as their input. When the population size is set to any number
n and the number of data samples is set to m, the bottleneck
size is b = n×m.

The polyadic and monadic configurations thus differ in
one respect: the data string that is passed between genera-
tions is not stochastically generated from one single hypoth-
esis, but from multiple. This has different consequences for
the maximizer and the sampler models.We find that polyadic
maximizers behave almost exactly as monadic maximizers.
Polyadic samplers, however, show markedly different behav-
ior. In particular, samplers in this condition do not converge
to the prior. This seems to be in contradiction with the math-
ematical result in Kalish et al. (2007), who show that their
single-agent results can be generalized to multi-agent popula-
tions, where the stationary distribution will continue to mirror
the prior.

It is worthwhile working out the reasons for this difference.
First consider a homogeneous, polyadic maximizer model.
The behavior of all agents in the population is identical: be-
cause all agents receive the same data string and have identi-
cal priors and hypotheses, the posterior of all agents will be
the same. Maximizers will all choose the same hypothesis,
because this choice is based on the maximum value of their
identical posteriors. The only exception is when there are
multiple maximum values in their posterior. In this case, they
each choose one of the maximum value hypotheses randomly,
with equal weight. This situation generally only arises when
there is no bias in the prior values (to help diversify the poste-
rior values). Aside from this exception, multiple maximizers
producing m samples, is equivalent to a single maximizer pro-
ducing n×m samples. Therefore, maximizer dynamics due
to population size are identical to the dynamics due to a larger
bottleneck.

For a homogeneous, polyadic sampler model, the dynam-
ics are very different. Because samplers choose their hy-
potheses weighted by their posteriors, a homogeneous pop-
ulation will not choose the same hypotheses. Therefore, the
actual data the next generation receives, may come from indi-
viduals with different hypotheses. This implies that the data
is a sample from the product of the distributions defined by
the hypotheses of those individuals. The actual probability
distribution over possible data strings is therefore not among
the set of hypotheses entertained by our learners!

This has interesting implications concerning the Bayesian
rationality of the agents. In general, when a string of data is
generated from a set of likelihoods which learners are not ex-
plicitly given, then they are not longer perfect Bayesian rea-
soners. This is exactly the case with a multi-population of
samplers. When a data string is generated from 2 different

hypotheses, these probabilities do not conform to the likeli-
hoods as defined by any of their hypotheses. The result is, for
a multi-agent population of samplers, the stationary distribu-
tion no longer mirrors the prior (figure 4).

Figure 4: The maximizer model’s stationary distribution is in-
variant to population size. For samplers, population size does
affect the dynamics and the stationary distribution no longer
mirrors the prior. Stationary distributions for populations 1
and 2, for maximizer and sampler models with: prior [.7 .2
.1], hypotheses [.8 .1 .1; .1 .8 .1; .1 .1 .8], 10,000 generations.

Hence, the mathematical proof of (Griffiths & Kalish,
2005) requires, in practice, that each sampler is given a new
set of hypotheses, for each corresponding population size,
where each hypothesis represents the combined likelihood set
for each possible combination of hypotheses that the agents of
the population may have when outputting into the data string.
This set is different when learners learn from 1, 2, 3, . . ., 100
individuals, but the proof requires a perfect hypothesis space.

The stationary distribution of polyadic samplers are a func-
tion of priors, hypotheses and population size. Figure 5 (left)
shows that the stationary distribution mirrors the prior less
and less as the hypothesis structure becomes strongly peaked
and the prior more biased. However, for a combination of
relatively flat hypotheses and weakly biased priors, the sta-
tionary distribution still mirrors the prior. Furthermore, in-
creasing the population size systematically amplifies the ef-
fect of the likelihoods on the sampler’s stationary distribution
(figure 5, right). The figure also shows that the stationary
distribution reflects hypotheses structure in the absence of a
prior bias.

Heterogeneous iterated learning
Finally, we implemented a heterogeneous ILM by taking a
polyadic model and assigning different prior vectors to each
of the agents (figure 2). This model, therefore, is the most
complex of all models constructed. The main result is that
heterogeneous agents’ hypotheses choices converge as they
are allowed to share more and more data, despite having fixed
and different priors from each other. In the case of hetero-
geneous samplers, we find that the stationary distribution is
simply the average of the stationary distributions of the cor-
responding homogeneous sampler runs. In the case of maxi-
mizers, however, the heterogeneous stationary distribution is
not a simple average, and depends on all hypothesis structures
and priors (details in Ferdinand & Zuidema, 2008).
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Figure 5: Population size amplifies sampler sensitivity to hy-
potheses structure. Hypotheses: a [.8 .1 .1; .1 .8 .1; .1 .1 .8],
b [.4 .3 .3; .1 .8 .1; .3 .3 .4], c [.8 .1 .1; .3 .4 .3; .1 .1 .8]; prior
= unbiased. Population sizes n=1 to 5.

Discussion
This Bayesian ILM both replicated the general properties of
previous existing Bayesian ILMs and provided new results re-
garding multi-agent populations and bias heterogeneity. The
replications are that a monadic sampler’s stationary distri-
bution always mirrors the prior bias of the agent (Griffiths
& Kalish, 2005), and a maximizer’s stationary distribution
is determined both by the prior and the hypothesis structure
(Kalish et al., 2007). Also, for a range of parameters, the prior
has no effect on the maximizer stationary distribution (Smith
& Kirby, 2008), but above this threshold, iterated learning
amplifies this bias (Kirby et al., 2007). Additionally, a strong
bottleneck effect was observed, with the general effect of in-
creasing transmission fidelity of both the sampler and maxi-
mizer models (Kalish et al., 2007). All of these replications
attest to this particular implementation as a valid Bayesian
iterated learning model.

Throughout the replication work, new insights into the role
of data likelihoods for both the maximizer and sampler were
obtained. The focus of all previous research with Bayesian
ILMs is the on the prior and how its manipulations affect the
stationary distribution. Kalish et al. (2007) manipulated the
degree of hypotheses overlap, as well as noise level, but it ap-
pears their hypothesis structures were all symmetrical. Smith
& Kirby (2008) demonstrate that the maximizer strategy of
hypothesis choice is evolutionarily stable over that of sam-
plers. However, the maximizer parameters for which this re-
sult was proven, it seems, were again derived from a symmet-
rical hypothesis structure and for the range of priors which are
unaffected by bias strength. The result is consistent behavior
of the Smith & Kirby’s maximizer model over the bias values
they selected. Our results show that this is a subset of max-
imizer behavior and that unstable behavior is easily obtained
for the right relationship between hypotheses and priors. So,
perhaps maximizer would not be the evolutionary stable strat-
egy in all cases, and a certain range of maximizer parameters
is evolutionary stable over other maximizer parameter sets.
Knowledge of this kind would help guide the choice of max-

imizer parameter sets to use for iterated learning simulations.
Our main result, however, was obtained from a manipu-

lation in population size. By just increasing the population
size to 2, the sampler model’s stationary distribution does not
strictly mirror the prior. One response to this finding could
be to claim that we have made a mistake by not giving our
agents the right set of hypotheses. Indeed, in a Bayesian ra-
tional analysis it is the task of the modeller to choose hypoth-
esis structure and prior carefully such that it objectively rep-
resents the uncertainty the learner faces. The learner doesn’t
have to actually use any of the Bayesian apparatus; it might
rely on completely different heuristics that have somehow
(e.g., by natural selection) been optimized to approximate
the Bayesian rational solution (i.e., it is a normative model).
However, if this line of attack is chosen, it should apply to all
cases where iterated learning does not converge to the prior
(and we listed many). In the stationary distribution, the objec-
tive prior probability for learners is the stationary distribution.
A Bayesian rational analysis of iterated learning that predicts
non-convergence to the prior is thus inconsistent.

The alternative response is to acknowledge that the prior
probabilities and the hypothesis structure (i.e., likelihoods)
together instantiate the subjective biases of the individual
agents. The Bayesian inference in that case should be in-
terpreted as a descriptive model, and the components of the
Bayesian apparatus must somehow correspond to cognitively
real processes. We have seen that convergence to the prior
only occurs in the exceptional case that (i) learners have per-
fect knowledge of the possible sources of the data they are
learning from, (ii) they carry out the Bayesian probability
calculation perfectly and (iii) they then sample from the pos-
terior. In all other cases – which include human language
learning, we suggest – predicting stationary distributions is
in fact a difficult task that depends on many variables. The
results in this paper form a further contribution to developing
the computational tools for that task.

Hence, Bayesian Iterated Learning does not actually give
us what it was intended to: an explicit and complete quantifi-
cation of an agent’s bias. When we look at the cultural trans-
mission system as a sum of the agents’ behavior and the way
they interact (the social structure) we see the prior does not
quantify the whole agent’s bias. We see that not only does the
hypothesis choice strategy affects agent behavior and there-
fore the outcome of iterated learning, but hypothesis structure
does the same (since we show an effect of different hypoth-
esis structures on the stationary distribution). If we attribute
these components to a cognitive agent, they should all fall un-
der the agent’s bias (innate or learned) if the bias is everything
that the learner brings to the task - so everything besides the
data itself.

Moreover, the particular dynamics which previously
thought to differentiate the sampler and maximizer models,
may not be as clear cut as they seemed and non-convergence
to the prior cannot be taken as direct evidence against the
sampling strategy or support for the maximizer strategy.
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These results are bad news when trying to interpet iterated
learning experiments with human and animal subjects, aimed
at connecting their learning biases to the outcomes of iteration
(Kalish, Griffiths, & Lewandowsky, 2007; Kirby, Cornish, &
Smith, 2008)

monadic polyadic heterogen.
manipulation S M S M S M
prior (b is small) + - - - - -
prior (b is large) + + + + + +
hypothesis structure - + + + + +
population size + - + +
homo/heterogeneity - +

Table 2: Summary of manipulations and effects. S and M
mark samplers and maximizers. A ‘+’ indicates that the (av-
erage) stationary distribution will change when the given ma-
nipulation is applied.

However, on a more positive note, we find that the station-
ary distributions in the many different conditions – monadic
or polyadic, samplers or maximizers, homogeneous or het-
erogeneous – are selectively responsive to particular manip-
ulations of the iterated learning regime. In table 2 we give a
summary of our results; the table indicates, for instance, that
if a population is assumed to be homogeneous, then change
in population size is the relevant manipulation to distinguish
between maximizers and samplers. Similarly, in monadic it-
erated learning, a change in hypothesis structure should only
result in a different stationary distribution when learners are
maximizers.

Conclusions
Children learn their native language efficiently and accurately
from very noisy data provided by earlier generations. Under-
standing how they accomplish this task, and why it is so dif-
ficult to mimick their learning in computer models, is a key
challenge for the cognitive sciences. In recent years, two ap-
proaches for solving bits of the puzzle – Bayesian inference
and iterated learning – have yielded many new insights. In a
series of papers, Griffiths, Kalish and co-workers have com-
bined the strengths of Bayesian modelling and iterated learn-
ing (Kalish et al., 2007; Kirby et al., 2007), and developed a
mathematical framework for understanding the dynamics of
cultural transmission and the roles of learning and innateness
in shaping the languages we see today. The best known result
from this work so far, is that “iterated learning converges to
the prior” (Griffiths & Kalish, 2005).

In this paper, we have extended this work by investigat-
ing the outcomes of iterated learning under a number of ma-
nipulations, including an increase in population size and het-
erogeneity of biases. However, by detailing several apparent
counterexamples to the “convergence to the prior” results, our
results also point to some caveats in the interpretation of those
earlier results and of Bayesian models of cognition more gen-
erally. Perhaps due to the mathematical sophistication of such

models, these caveats are often overlooked. In particular, a
Bayesian rational analysis is not applicable here. In such an
analysis, we (i) take the learning problem as fixed, and (ii)
calculate the ’rational’ strategy that would allow children to
solve it in an optimal way, and (iii) assume that the actual
learning strategy approximates the rational one. The latter
(iii) is a very strong assumption in general, but particularily
problematic in iterated learning where (i) is violated.

A consistent interpretation of Bayesian Iterated Learning
must therefore take the BI as an accurate description of in-
dividual learning. The ILM takes (i) the learning strategy as
fixed, and studies (ii) how the learning problem – the lan-
guage – changes over generations, and, while it becomes bet-
ter fitted to the learning strategies, (iii) gives rise to language
universals and variation. However, under this interpretation,
Bayesian rationality cannot be assumed and convergence to
the prior is rather the exception than the rule. This leaves the
original linguistic challenge – how are language universals
and learner biases connected? – still unsolved, although we
have progressed yet another step in developing the theoretical
and experimental paradigms for addressing that question and
established that cultural transmission really adds something
to the explanation.
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