
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title

Spectrum-Revealing Randomized Matrix Factorization: Theory and Algorithms

Permalink

https://escholarship.org/uc/item/89m5j25p

Author

Xiao, Jianwei

Publication Date

2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89m5j25p
https://escholarship.org
http://www.cdlib.org/

Spectrum-Revealing Randomized Matrix Factorization: Theory and Algorithms

by

Jianwei Xiao

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ming Gu, Chair
Professor James Demmel

Professor John Strain
Professor Laurent El Ghaoui

Fall 2018

Spectrum-Revealing Randomized Matrix Factorization: Theory and Algorithms

Copyright 2018
by

Jianwei Xiao

1

Abstract

Spectrum-Revealing Randomized Matrix Factorization: Theory and Algorithms

by

Jianwei Xiao

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Ming Gu, Chair

This thesis contains my work on Spectrum-revealing randomized matrix algorithms. This
thesis has been divided into three chapters. Each chapter is self-contained.

In chapter 1, we discuss spectrum-revealing Cholesky factorization and its applications to
kernel methods. Kernel methods represent some of the most popular machine learning tools
for data analysis. Since exact kernel methods can be prohibitively expensive for large prob-
lems, reliable low-rank matrix approximations and high-performance implementations have
become indispensable for practical applications of kernel methods. We introduce spectrum-
revealing Cholesky factorization, a reliable low-rank matrix factorization, for kernel matrix
approximation. We also develop an efficient and effective randomized algorithm for com-
puting this factorization. Our numerical experiments demonstrate that this algorithm is as
effective as other Cholesky factorization based kernel methods on machine learning problems
but significantly faster.

In chapter 2, we discuss spectrum-revealing QR factorization and also distributed memory
implementation of randomized QRCP. Factorizing large matrices by QR with column pivot-
ing (QRCP) is substantially more expensive than QR without pivoting, owing to communi-
cation costs required for pivoting decisions. In contrast, randomized QRCP (RQRCP) algo-
rithms have proven themselves empirically to be highly competitive with high-performance
implementations of QR in processing time, on uniprocessor and shared memory machines,
and as reliable as QRCP in pivot quality. We show that RQRCP algorithms can be as reliable
as QRCP with failure probabilities exponentially decaying in oversampling size. We also ana-
lyze efficiency differences among different RQRCP algorithms. More importantly, we develop
distributed memory implementations of RQRCP that are significantly better than QRCP
implementations in ScaLAPACK. As a further development, we introduce the concept of and
develop algorithms for computing spectrum-revealing QR factorizations for low-rank matrix
approximations, and demonstrate their effectiveness against leading low-rank approximation
methods in both theoretical and numerical reliability and efficiency.

In chapter 3, we present Flip-Flop Spectrum-Revealing QR (Flip-Flop SRQR) factoriza-
tion, a significantly faster and more reliable variant of the QLP factorization of Stewart, for

2

low-rank matrix approximations. Flip-Flop SRQR uses SRQR factorization to initialize a
partial column pivoted QR factorization and then compute a partial LQ factorization. As
observed by Stewart in his original QLP work, Flip-Flop SRQR tracks the exact singular val-
ues with “considerable fidelity”. We develop singular value lower bounds and residual error
upper bounds for Flip-Flop SRQR factorization. In situations where singular values of the
input matrix decay relatively quickly, the low-rank approximation computed by Flip-Flop
SRQR is guaranteed to be as accurate as truncated SVD. We also perform a complexity
analysis to show that for the same accuracy, Flip-Flop SRQR is faster than randomized
subspace iteration for approximating the SVD, the standard method used in Matlab tensor
toolbox. We additionally compare Flip-Flop SRQR with alternatives on two applications,
tensor approximation and nuclear norm minimization, to demonstrate its efficiency and ef-
fectiveness.

i

ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Spectrum-Revealing Cholesky Factorization 1
1.1 Introduction . 1
1.2 The Setup and Background . 4
1.3 New Algorithms and Main Results . 5
1.4 Numerical Experiments . 14
1.5 Incomplete Randomized Cholesky . 21

2 Spectrum-Revealing QR 26
2.1 Introduction . 26
2.2 Introduction to QRCP . 28
2.3 Randomized QRCP . 29
2.4 Spectrum-Revealing QR Factorization . 34
2.5 Experimental Performance . 41

3 Flip-Flop SRQR 53
3.1 Introduction . 53
3.2 Preliminaries and Background . 54
3.3 Flip-Flop SRQR Factorization . 62
3.4 Numerical Experiments . 68
3.5 Appendix . 78

Bibliography 80

iii

List of Figures

1.1 Run time comparison between SRCH and DPSTRF.f. 15

1.2 Top 10 singular value approximation relative error
λj(A)−σ2

j (L)

λj(A)
. 16

1.3 Approximation quality comparison on MNIST. 17
1.4 Prediction error comparison on MNIST. 17
1.5 Run time comparison on MNIST. 18
1.6 Run time comparison on CCPP. 20
1.7 Mean squared prediction error comparison on CCPP. 20

2.1 Approximation quality comparison on HAPT. 42
2.2 Run time comparison on HAPT. 42
2.3 Approximation quality comparison on MNIST. 43
2.4 Run time comparison on MNIST. 43
2.5 Run time comparison on distributed memory machines, n=20000. 46
2.6 Strong scaling comparison on distributed memory machines, n=20000. 47
2.7 Run time comparison on distributed memory machines, n=50000. 47
2.8 Strong scaling comparison on distributed memory machines, n=50000. 48
2.9 Run time comparison on distributed memory machines, n=200000. 48
2.10 Strong scaling comparison on distributed memory machines, n=200000. 49
2.11 Approximation quality comparison, CUR based algorithms. 50
2.12 Run time comparison, CUR based algorithms. 51
2.13 Approximation quality comparison, CX based algorithms. 51
2.14 Run time comparison, CX based algorithms. 52

3.1 Type 1: Random square matrix . 70
3.2 Type 1: Random short-fat matrix . 70
3.3 Type 1: Random tall-skinny matrix . 70
3.4 Type 2: GEMAT11 . 70
3.5 Run time comparison for approximate SVD algorithms. 70
3.6 Type 1: Random square matrix . 71
3.7 Type 1: Random short-fat matrix . 71
3.8 Type 1: Random tall-skinny matrix . 71
3.9 Type 2: GEMAT11 . 71

iv

3.10 Relative approximation error comparison for approximate SVD algorithms. . . . 71
3.11 Type 1: Random square matrix . 72
3.12 Type 1: Random short-fat matrix . 72
3.13 Type 1: Random tall-skinny matrix . 72
3.14 Type 2: GEMAT11 . 72
3.15 Top 20 singular values comparison for approximate SVD algorithms. 72
3.16 Run time and relative approximation error comparison on a sparse tensor. . . . 74

v

List of Tables

1.1 Matlab notations. 4

2.1 Residual ‖R22‖F
‖A‖F

comparison on the Kahan matrix. 44

2.2 Singular value approximation ratio
σj(R11)

σj(A)
. 44

3.1 Methods for approximate SVD. 69
3.2 Parameters used in RSISVD, FFSRQR, and LTSVD. 69
3.3 Comparison on handwritten digits classification. 74
3.4 Comparison on robust PCA. 76
3.5 Parameters used in the IALM method on matrix completion. 77
3.6 Comparison on matrix completion. 77

vi

Acknowledgments

I would like to thank my advisor Prof. Ming Gu for motivating and encouraging me to work
on these fascinating research topics. He is not only an outstanding advisor who taught me
a lot of matrix techniques, but also a good friend that I can frankly share my thoughts. It
has been a pleasant experience to work with him.

Appreciation goes to my other committee members as well. Prof. James Demmel in-
troduced me to the fascinating world of parallel computing. Prof. John Strain taught me
matrix computations and led me to choose numerical linear algebra as my Ph.D. research
area. His incredible sense of humor while teaching impressed me. Prof. Laurent El Ghaoui
taught me convex optimization which is full of amazing facts and useful techniques.

I am fortunate to have benefited from numerous people. I would like to thank Yuehua
Feng for many helpful discussions during her stay at UC Berkeley. Her passionate attitude
towards research has indeed motivated me. I also would like to thank my classmates Qiaochu
Yuan and Ruochen Liang for their helpful career advice. I would like to thank Prof. Julien
Langou for pointing out the improvement technique we can use when I wrote the distributed
randomized QRCP implementation. I also would like to thank my friends Zeming Wang and
Zheng Cai for their support these years.

Last but not least, I would like to express my deepest gratitude to my parents. This
dissertation would not have been possible without their warmest love, continued patience,
and endless support.

1

Chapter 1

Spectrum-Revealing Cholesky
Factorization

1.1 Introduction

1.1.1 Kernel Methods and Their Practical Performance

Kernel methods have become increasingly popular tools for machine learning tasks such
as classification, prediction, novelty detection, and clustering, with diverse applications in-
cluding inverse distance weighting, 3D image reconstruction, information extraction, and
handwriting recognition. 1

Kernel methods owe their names to the use of positive definite kernel functions, which
enable them to operate in a high-dimensional feature space, typically defined through the
inner products between the images of all pairs of data points in the feature space. However,
one critical drawback of kernel methods is their inability to solve very large-scale learning
problems owing to their computational complexity. Given a set of n data points, the kernel
matrix K is of size n× n, which means a computational complexity of at least Ω(n2). More
importantly, most kernel methods require matrix inversions or eigenvalue decompositions as
their computational cores, leading to complexities as high as O(n3).

There are two major approaches to significantly improving the practical performance
of kernel methods. Firstly, the aforementioned complexities can typically be reduced by
approximating the kernel matrices with their low-rank approximations, and this is one of
the major reasons for the practical success of kernel methods. The underlying intuition is
that the kernel matrices usually have rapidly decaying singular value spectra and thus have
relatively small numerical ranks [117]. The kernel matrix K can be approximated in the
form

K ≈ LLT , where L ∈ Rn×k, (1.1)

1Materials in this chapter are mainly from the paper titled Spectrum-Revealing Cholesky Factorization
for Kernel Methods [120], which was published in 2016 IEEE 16th International Conference on Data Mining.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 2

and the approximate rank k is generally chosen so that k � n. Moreover, it is often possible
to reformulate kernel methods to make direct use of the matrix L instead of K. This can
result in learning methods of a much lowered computational complexity of O(k3 + k2n), i.e.,
linear in n [40, 5].

Another approach is to develop highly-tuned software libraries for major machine learning
algorithms for kernel methods [18, 88, 83]. By re-organizing their internal computations
to take maximum advantage of high-performance linear algebra packages such as BLAS
[72, 10] and LAPACK [2], significant practical speedups can be produced without major
mathematical changes to the algorithms themselves.

1.1.2 Cholesky Factorization Based Low-rank Approximation

One of the most popular methods to obtain a low-rank approximation of a kernel matrix
in the form (1.1) is based on the Cholesky factorization, due to its relative simplicity and
computational efficiency. Such approximations have been used in many areas: SVM training
[40], kernel independent component analysis [5], predictive low-rank decomposition for kernel
methods [6], and computation of the two-electron integral matrix [54]. The essential part
in finding a low-rank approximation of kernel matrix using Cholesky factorization is to
find representative training samples, which is equivalent to doing Cholesky factorization of
kernel matrix with certain pivoting strategy in numerical linear algebra. Diagonal pivoting
is commonly used in these Cholesky factorization based algorithms.

However, there are two major well-known drawbacks of this diagonal pivoting strategy.
Firstly, pivots (representative training samples) are computed one at a time, which results
in mostly level-2 BLAS operations (matrix-vector multiplications), much less efficient than
level-3 BLAS operations (matrix-matrix multiplications). Secondly, the pivots chosen by
diagonal pivoting may occasionally fail to produce a reliable low-rank approximation to the
original kernel matrix.

1.1.3 Randomized Cholesky for Reliable Low-rank
Approximation

In recent works, randomization has emerged as an especially potent tool for large-scale data
analysis. Reliable and efficient randomized algorithms have been successfully developed for
low-rank approximation of general matrices [42, 52, 48], sketching problems [30, 119, 26],
and fast solution to the least squares problem [4, 31, 19]. [81] is a good review paper of
randomized algorithms for matrices.

In this chapter, we develop a randomized blocked Cholesky factorization algorithm for
reliable low-rank matrix approximation of the kernel matrix. This algorithm is run in two
stages. In the first stage, we first use randomization to project the original kernel matrix into
a matrix of much smaller dimension; we then find pivots on the smaller-dimensioned matrix,
and finally, we apply these pivots to the kernel matrix in a block form to fully take advantage

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 3

of level-3 BLAS performance. We repeat this process until we reach the approximate rank
k. Despite the inherent randomness, this approach works very well in practical applications.

However, every now and then the approach above may not lead to reliable low-rank ap-
proximations. To guard against this possibility, in the second stage we further employ a
novel follow-up pivoting strategy that simultaneously ensures a reliable low-rank approxima-
tion and separates the representative training samples from those that are collinear to them.
This separation feature of our pivoting strategy is of significant interest in its own right in
some applications [118, 53]. We will establish strong singular value and matrix error bounds
to demonstrate the effectiveness of this pivoting strategy.

Although the computational complexity of our algorithm is no longer linear in n, the
implementation of our algorithm is still faster than other Cholesky factorization based algo-
rithms. The main reason is that runtime of an algorithm is not only dependent on arithmetic
cost but also dependent on communication cost, which represents the time (or energy) of
moving data, either between levels of a memory hierarchy or between processors over a
network. The communication cost of an algorithm often dominates arithmetic cost, and
technological trends indicate this cost gap will continue to increase in the future as new plat-
forms become available. Level-3 BLAS operations have significantly lower communication
cost than level-2 BLAS operations. As a blocked algorithm, our novel method fully utilizes
level-3 BLAS. As our empirical experiments demonstrate, while our method is at least as
reliable as other Cholesky factorization based algorithms in all applications, it is much faster
for large-scale low-rank approximations.

1.1.4 Our Contributions and Chapter Outline

• Spectrum-revealing Cholesky factorization: We demonstrate the existence of the
Spectrum-revealing Cholesky factorization (SRCH) and develop strong singular value
and matrix error bounds for SRCH. Our analysis shows that SRCH provides a highly
reliable low-rank approximation to the kernel matrix for any given approximate rank
k.

• A randomized algorithm for computing an SRCH: Unlike existing Cholesky fac-
torization algorithms, this randomized algorithm is efficient and correctly computes an
SRCH. It is especially suitable to obtain quality low-rank approximations for matrices
with fast decaying singular-value spectra, which are ubiquitous in kernel matrices in
machine learning.

• Empirical validation: We compare our method with other Cholesky factorization
based algorithms in two different applications: a prediction problem and the Gaussian
process. All of these methods show similar effectiveness while our method is signifi-
cantly faster.

In Section 1.2 we briefly introduce previous work of pivoted Cholesky. In Section 1.3.1
we develop a randomized blocked left-looking algorithm to compute a pivoted Cholesky

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 4

Matlab notation for 1 ≤ i ≤ p ≤ m and 1 ≤ j ≤ q ≤ n
Notation Dimensions Description
A(:, :) Rm×n entire matrix A
A(i, :) row in Rn ith row of A
A(:, j) column in Rm jth column of A
A(i, j : q) row in Rq−j+1 jth through qth entries of ith row of A
A(i : p, j) column in Rp−i+1 ith through pth entries of jth column of A

A(i : p, j : q) R(p−i+1)×(q−j+1) submatrix from intersection of ith through
pth rows and jth through qth columns of A

Table 1.1: Matlab notations.

factorization without explicitly updating the Schur complement. In Section 1.3.2 we define
and discuss properties of an SRCH, and develop an efficient modification to the algorithm
in Section 1.3.1 to reliably compute an SRCH. In Section 1.4 we compare our algorithm and
other alternatives in different applications. In Section 1.5 we introduce results of incomplete
randomized Cholesky factorization.

1.2 The Setup and Background

1.2.1 Notation

σj(A) denotes the jth largest singular value of A. If A is real symmetric, λj(A) denotes its
jth largest eigenvalue. Πi,j denotes the permutation matrix that interchanges the ith and
jth columns of the identity matrix. diag(A) is the vector of the main diagonal elements of
A. diag(v) is the square diagonal matrix with the elements of vector v on the main diagonal.
In this chapter we follow Matlab notation, summarized in Table 1.1.

1.2.2 Diagonal Pivoted Cholesky Factorization

Diagonal pivoting is the most popular pivoting strategy in computing a Cholesky factoriza-
tion for low-rank approximation. This strategy simply chooses the largest diagonal entry
as the pivot at every pivoting step within the Cholesky factorization process. Lucas [79]
developed an LAPACK-style code, double precision subroutine DPSTRF.f, for the diagonal
pivoted Cholesky factorization of a symmetric positive semidefinite matrix. In order to be
able to compare our new algorithm with DPSTRF.f, we modified its stopping criterion from
error tolerance to approximate rank and present it as Algorithm 1. The difference D −W
stores the diagonal elements of Schur complement, and the function swap(x, y) swaps en-
tries in x and y. Algorithm 1 performs blocked right-looking diagonal pivoted Cholesky
factorization, and returns LLT as a low-rank approximation of A under permutation Π.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 5

Algorithm 1 DPSTRF.f. Blocked Right-Looking Diagonal Pivoted Cholesky Factorization
Inputs:
Positive semidefinite A ∈ Rn×n. Block size b. Approximate rank k.
Outputs:

Permutation vector Π ∈ Rn. L
def
= lower triangular part of A(1 : n, 1 : k).

Algorithm:
Π = (1 : n) ∈ Rn, D = diag(A) ∈ Rn, W ∈ Rn,W (1 : n) = 0.
for i = 1 : b : k do

b = min(b, k − i+ 1)
for j = i : i+ b− 1 do

for l = j : n do
W (l) = W (l) + A(l, j − 1) · A(l, j − 1)

end for
q = argmaxj≤s≤n{D(s)−W (s)}}
swap ([A(j : n, j), A(j, 1 : n)], [A(j : n, q), A(q, 1 : n)])
swap ([D(j),W (j),Π(j)], [D(q),W (q),Π(q)])
A(j, j) =

√
D(q)−W (q)

A(j + 1 : n, j) = A(j + 1 : n, j)− A(j + 1 : n, i : j − 1) A(j, i : j − 1)T

A(j + 1 : n, j) = A(j + 1 : n, j) / A(j, j)
end for

A(i+ b : n, i+ b : n) –= A(i+ b : n, i : i+ b− 1) A(i+ b : n, i : i+ b− 1)T (1.2)

end for

1.3 New Algorithms and Main Results

There are two major problems with Algorithm 1. Firstly, most of its work is in updating the
Schur complement, the matrix A(i+ b : n, i+ b : n) in (1.2). However, the Schur complement
on exit from Algorithm 1 is typically discarded in a low-rank matrix approximation, meaning
most of this work is unnecessary if k � n. Secondly, Algorithm 1 is a greedy algorithm for
computing a low-rank approximation by pivoting to the largest diagonal element in every
Schur complement. There are well-known classes of matrices for which this strategy fails
to compute a reliable low-rank approximation [57, 59, 58]. [50] provides an algorithm that
can always compute a reliable low-rank approximation by doing suitable columns and rows
swaps after obtaining a partial Cholesky factorization with a certain pivoting strategy like
diagonal pivoting.

In Section 1.3.1 we develop a randomized blocked left-looking algorithm to compute a
pivoted Cholesky factorization without explicitly updating the Schur complement. In Section
1.3.2 we define and discuss the desired properties of an SRCH, and develop an efficient
modification to the algorithm in Section 1.3.1 to reliably compute an SRCH.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 6

1.3.1 A Randomized Blocked Left-Looking Cholesky
Factorization

The Cholesky factorization can be computed in a number of different, but mathematically
equivalent, variants. Algorithm 2 is a left-looking variant that computes the full Cholesky
factorization without directly updating the Schur complement. For a symmetric positive
definite X, chol(X) is the Cholesky factor such that (chol(X)) (chol(X))T = X.

Algorithm 2 Blocked Left-Looking Cholesky Factorization
Inputs:
Positive semidefinite A ∈ Rn×n. Block size b.
Outputs:

L
def
= lower triangular part of A.

Algorithm:
for j = 1 : b : n do

b = min(b, n− j + 1)

A(j : n, j : j + b− 1) –=A(j : n, 1 : j − 1)A(j : j + b− 1, 1 : j − 1)T (1.3)

A(j : j + b− 1, j : j + b− 1) = chol(A(j : j + b− 1, j : j + b− 1))

A(j + b : n, j : j + b− 1) = A(j + b : n, j : j + b− 1)A(j : j + b− 1, j : j + b− 1)−T

end for

Unlike Algorithm 1, most of the work in Algorithm 2 is in updating the matrix A(j : n, j :
j + b − 1) in (1.3). This work starts small but increases linearly with j. Thus, Algorithm
2 would be much faster than Algorithm 1 if we restricted j ≤ k for some k � n. But such
restriction, without the benefit of any pivoting strategy, might not lead to a very meaningful
approximation of the matrix A.

Based on this consideration, we now introduce a novel pivoting strategy into Algorithm 2.
For a given small integer p and A ∈ Rn×n, we generate a random matrix Ω ∈ N (0, 1)(b+p)×n

where the entries are independent and identically distributed (i.i.d.) random variables drawn
from standard normal distribution N (0, 1). We compute a random projection B = ΩA ∈
R(b+p)×n, which is significantly smaller than A in row dimension if b + p� n. We compute
a partial QR factorization with column pivoting (QRCP) [13, 46] on B to obtain b pivot
columns and apply them as b diagonal pivots on A. Intuitively, good pivots for B should also
be good pivots for A. For this strategy to work, we need to compute a random projection
for the Schur complement A(j + b : n, j + b : n) for each j, without explicitly computing
A(j + b : n, j + b : n). Remarkably, such a random projection can indeed be quickly
computed via an updating formula. Algorithm 3 computes a partial Cholesky factorization,
with diagonal pivots chosen by partial QRCP on successive random projections.

Most work in Algorithm 3 is done in (1.4), which increases in j. On the other hand, most
work in Algorithm 1 is done in (1.2), which decreases in n − i. Thus, Algorithm 3 is much

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 7

Algorithm 3 Randomized Blocked Left-Looking Cholesky Factorization
Inputs:
Positive semidefinite A ∈ Rn×n. Block size b. Oversampling size p. Approximate rank
k � n.
Outputs:

Permutation vector Π ∈ Rn. L
def
= lower triangular part of A(1 : n, 1 : k).

Algorithm:
Generate Ω ∈ N (0, 1)(b+p)×n; compute B = ΩA; initialize Π = (1 : n) ∈ Rn.
for j = 1 : b : k do

b = min(b, k − j + 1)
Compute partial QRCP on B(:, j : n) to obtain b column pivots (j1, j2, . . . , jb)
Swap (j1, j2, . . . , jb) and (j, j + 1, . . . , j + b− 1) columns in B,Ω, and entries in Π
Swap corresponding rows and columns in A

A(j : n, j : j + b− 1) –= A(j : n, 1 : j − 1)A(j : j + b− 1, 1 : j − 1)T (1.4)

A(j : j + b− 1, j : j + b− 1) = chol(A(j : j + b− 1, j : j + b− 1))

A(j + b : n, j : j + b− 1) = A(j + b : n, j : j + b− 1)A(j : j + b− 1, j : j + b− 1)−T

if j + b− 1 < k then
B(:, j + b : n) –= Ω(:, j : n) A(j : n, j : j + b− 1) A(j + b : n, j : j + b− 1)T

end if
end for

more efficient than Algorithm 1 when k � n. Numerical experiments suggest that Algorithm
3 typically computes a better low-rank approximation than Algorithm 1. However, for a full
Cholesky factorization (i.e., k = n), Algorithm 1 is still better.

Updating formula for B: The formula for successively computing B(:, j + b : n) for
increasing j in Algorithm 3 is what makes Algorithm 3 so efficient. To derive it, we first
compute the random projection B = ΩA. Algorithm 3 then computes b pivots based on
a partial QRCP on B and performs a block Cholesky step. To continue, Algorithm 3 will
need to compute a random projection on the corresponding Schur complement, which it does
not directly compute. It turns out that we can re-use the initial random matrix Ω and the
corresponding random projection B to compute a special random projection for the Schur
complement.

After the necessary row and column swaps and the block Cholesky step, we can write the

matrices A, and Ω as

(
L11

L21 I

)(
LT11 LT21

S2

)
, and

(
Ω1 Ω2

)
, respectively, where S2 is

the aforementioned Schur complement. The column swapped B can be written as(
B1 B2

)
=
(

Ω1 Ω2

) (L11

L21 I

)(
LT11 LT21

S2

)
,

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 8

which, in turn, implies a special random projection formula

Ω2 S2 = B2 −
(

Ω1 Ω2

)(L11

L21

)
LT21. (1.5)

In plain English, with Ω2 as the random matrix, we can compute the random projection
Ω2 S2 for S2 via the right hand side expression in (1.5). Generalizing this consideration for
all j results in the formula for computing B(:, j + b : n) in Algorithm 3.

Complexity analysis: The most computationally intensive parts of Algorithm 3 are com-
puting the initial random projection matrix B = ΩA and updating pivoted block A(j :
n, j+ b− 1) for each j. Computing B requires O(n2(b+ p)) operations and updating all piv-
oted blocks requires O(nk2) operations, leading to the overall complexity of O(n2(b+p)+nk2)
operations. It is interesting to note that if both p � n and k � n, then the complexity
is O(n2(b+ p)), i.e., the dominant computation is in the overhead – computing the random
projection matrix. Of course, if the matrix A is itself sparse then the overhead cost will be
much lower.

1.3.2 Spectrum-Revealing Cholesky Factorization

Greedy pivoting strategies in Algorithm 1 and Algorithm 3 typically compute good quality
low-rank approximations, but not always. Below we first discuss what low-rank approxi-
mations are possible based on diagonal pivoting alone, and then develop a swap strategy
to modify the truncated Cholesky factorization computed from Algorithm 3 to ensure such
an approximation. With a slight abuse of notation, Π in Theorem 1 denotes a permutation
matrix. Recall that for any matrix X, ||X||2,1 is equal to the largest of the column l2 norms
of X, and ||X||max is equal to the largest entry of X in absolute value.

Theorem 1. Let A ∈ Rn×n be symmetric positive definite with a partial Cholesky factoriza-
tion for k < n:

ΠTAΠ = LLT +

(
0 0
0 S

)
, (1.6)

with L =

 L11

lT

L21

 , and S =

(
α sT

s Ŝ

)
,

where L11 ∈ Rk×k, l ∈ Rk×1, L21 ∈ R(n−k−1)×k, α ∈ R, s ∈ R(n−k−1)×1, Ŝ ∈ R(n−k−1)×(n−k−1).
Assume that α = ||S||max and that for a given g > 1,

1√
α
≥ 1
√
g

∣∣∣∣∣
∣∣∣∣∣
(
L11

lT
√
α

)−1
∣∣∣∣∣
∣∣∣∣∣
2,1

, (1.7)

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 9

then there exists a τ ≤ g(n− k)(k + 1) such that for 1 ≤ j ≤ k,

λk+1(A) ≤
∥∥ΠTAΠ− LLT

∥∥
2
≤ τ λk+1(A), (1.8)

λj(A) ≥ σ2
j (L) ≥ λj(A)

1 + τ min

{
1, (1 + τ)

λk+1(A)

λj(A)

} . (1.9)

Proof of Theorem 1.

λj(A) = λj
(
ΠTAΠ

)
= λj

(
LLT +

(
0 0
0 S

))
≤ λj

(
LLT

)
+ ‖S‖2 = σ2

j (L)

(
1 +
‖S‖2

σ2
j (L)

)
, (1.10)

where we have used the fact that λj
(
LLT

)
= σ2

j (L).
Since α is the largest diagonal entry of the Schur complement S and α = ||S||max,

||S||2 ≤ ||S||F ≤ trace(S) ≤ (n− k)α. (1.11)

On the other hand,

1√
α
≥ 1
√
g

∣∣∣∣∣
∣∣∣∣∣
(
L11

lT
√
α

)−1
∣∣∣∣∣
∣∣∣∣∣
2,1

≥ 1
√
g

1√
k + 1

∣∣∣∣∣
∣∣∣∣∣
(
L11

lT
√
α

)−1
∣∣∣∣∣
∣∣∣∣∣
F

(1.12)

≥ 1
√
g

1√
k + 1

(
σk+1

(
L11

lT
√
α

))−1

,

therefore

α ≤ g(k + 1)σ2
k+1

(
L11

lT
√
α

)
= g(k + 1)λk+1

(
L11L

T
11 L11l

lTLT11 lT l + α

)
≤ g(k + 1)λk+1(A). (Cauchy interlacing theorem)

Combining the last inequality with relation (1.11),

‖S‖2 ≤ (n− k)α ≤ τλk+1(A), (1.13)

which is the desired matrix error upper bound in relation (1.8).

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 10

For the singular value lower bound (1.9), relation (1.12) implies

1√
α
≥ 1
√
g

1√
k + 1

∥∥L−1
11

∥∥
F
≥ 1
√
g

1√
k + 1

(σk(L11))−1,

or α ≤ g(k + 1) σ2
k(L11).

Together with relation (1.11),

‖S‖2 ≤ g(k + 1)(n− k) σ2
k(L11) = τ σ2

k(L11). (1.14)

Now combine relations (1.10) and (1.14)

λj(A) ≤ σ2
j (L)

(
1 +

τσ2
k(L11)

σ2
j (L)

)
≤ σ2

j (L)(1 + τ). (1.15)

Rewrite relation (1.10) as

λj(A) ≤ σ2
j (L)

(
1 +
‖S‖2

λj(A)

λj(A)

σ2
j (L)

)
.

Replacing ‖S‖2 in the first ratio by its upper bound (1.13), and σ2
j (L) in the second ratio

by its lower bound (1.15),

λj(A) ≤ σ2
j (L)

(
1 + τ(1 + τ)

λk+1(A)

λj(A)

)
.

In view of relation (1.15), we finally have

σ2
j (L) ≥ λj(A)

1 + τmin
{

1, (1 + τ)λk+1(A)

λj(A)

} ,
which is relation (1.9).

If conditions on α hold, then Theorem 1 asserts that the matrix approximation error is
at most a factor of τ away from being optimal in 2-norm; and all the singular values of L
are at most a factor of

√
1 + τ away from being optimal. In addition, for the largest singular

values of A where
λk+1(A)

λj(A)
� 1, the corresponding approximate singular values σj(L) are

very close to
√
λj(A), the best possible for any rank-k approximation.

A partial Cholesky factorization of the form (1.6) is said to be Spectrum-revealing if it
satisfies the conditions on α in Theorem 1. The singular value lower bound in relation (1.9)
represents a unique feature in an SRCH.

Algorithm 1 ensures the condition α = ||S||max by performing diagonal pivoting, but
may not satisfy condition (1.7), leading to potentially poor approximations.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 11

Algorithm 4 is a randomized algorithm that efficiently computes a Spectrum-revealing
Cholesky factorization. It initializes the permutation with Algorithm 3. If Algorithm 3 fails
condition (1.7), Algorithm 4 makes additional randomized column and row swaps to ensure

it. In the algorithm, we denote L̂ =

(
L11

lT
√
α

)
, with L =

 L11

lT

L21

 def
= lower triangular

part of A(1 : n, 1 : k).

Algorithm 4 A Randomized Algorithm to Compute an SRCH
Inputs:
Positive semidefinite A ∈ Rn×n. Block size b. Oversampling size p. Parameter g > 1.
Approximate rank k � n.
Outputs:
Permutation vector Π ∈ Rn. Matrix L.
Algorithm:
Compute Π and L with Algorithm 3
Generate random matrix Ω ∈ N (0, 1)d×(k+1)

Compute α = max(diag(Schur complement))

while
1√
α
<

1√
gd

∥∥∥ΩL̂−1
∥∥∥

2,1
do

ı = argmax1≤i≤k+1{ith column l2 norm of ΩL̂−1}
Swap ı-th and (k + 1)-st columns and rows of A
Swap ı-th and (k + 1)-st entries in Π
Givens-rotate L back into lower-triangular form.
Compute α = max(diag(Schur complement))

end while

Remarks:

1. We only need to look through the diagonal entries of the Schur complement to find α,
thereby avoid computing the Schur complement itself.

2. The while loop in Algorithm 4 will eventually stop, after a finite number of swaps,
leading to a permutation that satisfies condition (1.7). The number of swaps is bounded
above by O(n), but in practice at most a few swaps are enough. See the proof of
correctness of Algorithm 4 below.

3. Each swap will make the ı-th row out of the lower-triangular form. A round-robin
rotation is applied to the rows of L and a quick sequence of Givens rotations are
right multiplied to L to restore its lower-triangular form. These Givens rotations are
orthogonal and will cancel themselves out of the matrix product LLT .

4. In some practical applications where more accurate singular values are desirable, one
can compute an SRCH for a rank-k̂ approximation L̂ L̂T with k̂ > k and then SVD-

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 12

truncate the matrix L̂ into a rank-k matrix L. This will lead to a rank-k approximation
LLT that satisfies

λk+1(A) ≤
∥∥ΠTAΠ− LLT

∥∥
2
≤ λk+1(A) + τ̂ λk̂+1(A),

λj(A) ≥ σ2
j (L) ≥ λj(A)

1 + τ̂ min
{

1, (1 + τ̂)
λ
k̂+1

(A)

λj(A)

} ,
for 1 ≤ j ≤ k, and scalar τ̂ ≤ g(n− k̂)(k̂+ 1). Especially for rapidly decaying singular
values, i.e., λk̂+1(A) � λk+1(A), these bounds make LLT almost indistinghishable
from the best possible, the SVD-truncated rank-k approximation.

Complexity analysis: In addition to initialization, Algorithm 4 repeatedly computes the
diagonal entries in the Schur complement, of which there are n − k. As in Algorithm 1,
this can be done in O(k(n − k)) operations. We need to swap the column with the largest
diagonal element to the front of trailing matrix and update the pivoted column, which needs
a matrix-vector multiplication, costing another O(k(n − k)) operations. Then we need to

compute ΩL̂−1 and the corresponding column l2 norms, costing O(dk2) operations. The
program stops if the while loop condition fails. Otherwise, we need to swap the column with
the largest column l2 norm of ΩL̂−1 and the leading column in the Schur complement. The
Givens rotations required to restore lower-triangular form in L cost O(nk) operations. In
total, the cost of performing one swap in Algorithm 4 is O(nk + dk2) operations. Assuming
k � n, this cost becomes O(nk), which is negligible compared to O(n2(b + p)), the cost of
initialization in Algorithm 3.

Proof of correctness of Algorithm 4 For this analysis, we need the following version of
a result by Johnson and Lindenstrauss.

Theorem 2. (Random Projection (Johnson-Lindenstrauss) [20, 63, 111]). Let x1, · · · , xn ∈
Rm be non-zero, ε > 0 and ∆ > 0. Assume that the entries of Ω ∈ Rd×m are sampled

independently from N (0, 1). Then for d ≥ 4

ε2 − ε3
log

2n

∆
,

P

(√
1− ε ≤

||Ωxj||2√
r ||xj||2

≤
√

1 + ε

)
≥ 1−∆, 1 ≤ j ≤ n.

Theorem 2 is the basis of many a randomized numerical linear algebra algorithm. The
magic of random projection rests on the fact that the required row dimension d depends
only logarithmically on ∆ and n, and not on m.

Given a partial Cholesky factorization with L11 ∈ Rk×k

ΠTAΠ =

 L11

lT
√
α

L21 s I

 L11

lT
√
α

L21 s Ŝ

T

.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 13

Assume that Algorithm 4 decides to swap the j-th and (k+1)-st columns and rows of ΠTAΠ.
For computational efficiency, Algorithm 4 performs a round-robin rotation by permuting the
j-th through the (k+1)-st columns and rows of ΠTAΠ to the (k+1)-st, and the j-th through
the k-th columns and rows. This corresponds to the same round-robin rotation on the rows

of

 L11

lT

L21

. Denote the new permutation matrix as Π. Algorithm 4 then right applies

k − j + 1 Givens rotations on the rows of

 L11

lT

L21

 to restore its lower-triangular form,

leading to a new partial Cholesky factorization

Π
T
AΠ =

 L11

l
T √

α
L21 s I


 L11

l
T √

α

L21 s Ŝ


T

.

Since the round-robin rotation involves only the rows of the matrix

L̂
def
=

(
L11

lT
√
α

)
,

and since the Givens rotations are orthogonal and right applied on its rows, it follows that
its determinant remains invariant. In other words,∣∣∣∣det

((
L11

lT
√
α

))∣∣∣∣ =

∣∣∣∣∣det

((
L11

l
T √

α

))∣∣∣∣∣.
This quickly leads to the identity

det2(L11)

det2(L11)
=
α

α
. (1.16)

The round-robin rotation re-arranges rows in L̂, and consequently the column l2 norms
in L̂−1. The Givens rotations, being orthogonal, will leave them invariant. Since the column

l2 norm of the (k + 1)-st column of

(
L11

l
T √

α

)
is simply

1√
α

, it must also be the j-th

column l2 norm of L̂−1. Therefore,

det2(L11)

det2(L11)
=
α

α
= α ·

{
jth column l2 norm of L̂−1

}2

.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 14

Define ı = argmax1≤i≤k+1

{
ith column l2 norm of L̂−1

}
. If Algorithm 4 performed a

swap with j = ı every time it found that
1√
α
≤

∥∥∥L̂−1
∥∥∥

2,1√
g

, by (1.16) we would have

det2(L11)

det2(L11)
≥ g.

In other words, for any given g > 1, each swap in Algorithm 4 would have increased the de-
terminant of L11L

T
11 by a factor of at least g. Since L11L

T
11 is a permuted principal submatrix

of A, this determinant is bounded above by ‖A‖n−kmax. Thus Algorithm 4 would only be able
to perform a finite number (O(n) based on the analysis in [50]) of swaps in the worst case.

To reduce the cost in computing ı, Algorithm 4 chooses to compute the maximum col-
umn l2 norm on the random projection matrix ΩL̂−1. For any given ∆ > 0, ε > 0, and

d ≥ 4

ε2 − ε3
log

2(k + 1)

∆
, Algorithm 4 correctly estimates the maximum column l2 norm of

L̂−1 within a factor of

√
1 + ε

1− ε
with probability at least 1 − ∆, according to Theorem 2.

Thus, by choosing g � 1 + ε

1− ε
, Algorithm 4 increases the determinant of L11L

T
11 by a factor

of at least g
1− ε
1 + ε

for every swap it performs with probability at least 1 − ∆. In practice,

rarely any swaps will be required for machine learning applications.

1.4 Numerical Experiments

Data and source code are available at following URL 2. Section 1.4.1 compares the run times
of DPSTRF.f and SRCH to obtain a partial Cholesky factorization. Section 1.4.2 compares the
approximation effectiveness of low-rank approximations computed by DPSTRF.f and SRCH.
Section 1.4.3 and Section 1.4.4 compare SRCH with other pivoted Cholesky factorization
based algorithms in a prediction problem and Gaussian process, respectively. DPSTRF.f is
an LAPACK Fortran routine, while our SRCH is also written in Fortran. Both DPSTRF.f and
SRCH call the same version of BLAS. All experiments are implemented on a laptop with a
2.7 GHz Intel Core i5 CPU and 8GB of RAM.

1.4.1 Runtime Comparison

We compare the run times of DPSTRF.f and SRCH on a kernel matrix of Combined Cycle
Power Plant Data (CCPP) [66, 107] with size of 9568 × 4. We use radial basis function
(RBF) kernel k(xi, xj) = exp(−‖xi − xj‖2

2 /2σ
2) and set σ = 1.0. In SRCH, we choose block

size b = 20 and oversampling size p = 10. Run times are in Figure 1.1.

2https://math.berkeley.edu/~jwxiao/

https://math.berkeley.edu/~jwxiao/
https://math.berkeley.edu/~jwxiao/

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 15

0 500 1000 1500 2000 2500 3000

Approximate Rank

0

2

4

6

8

10

12

14

R
u

n
 T

im
e

 (
s
e

c
)

Run Time Comparison of SRCH and DPSTRF.f

DPSTRF

SRCH

Figure 1.1: Run time comparison between SRCH and DPSTRF.f.

DPSTRF.f is faster when the approximate rank is small. This is because SRCH must
compute the random projection B = ΩA, which is an overhead. As approximate rank
increases, SRCH becomes faster than DPSTRF.f as predicted.

1.4.2 Approximation Effectiveness Comparison

For the same kernel matrix used in Section 1.4.1, we compare the approximation effectiveness
of SRCH and DPSTRF.f with their low-rank approximations. We choose k = 20, 40, 60, b = 20
and p = 10. Figure 1.2 shows the approximation relative errors of the top 10 eigenvalues of
A. Although SRCH will be slower than DPSTRF.f because of the overhead cost of computing
B = ΩA, the approximation effectiveness of SRCH is much better than DPSTRF.f.

If we choose a large approximate rank k, both SRCH and DPSTRF.f will provide very
high quality low-rank approximations and there will be little difference between SRCH and
DPSTRF.f in relative approximation errors for the leading singular values, but SRCH is signif-
icantly faster than DPSTRF.f, as Figure 1.1 suggests.

1.4.3 Cholesky Factorization with Side Information (CSI)

[6] presents an algorithm that exploits side information in the prediction of unlabeled data
with low-rank approximations for kernel matrices. To compute a low-rank approximation,

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 16

1 2 3 4 5 6 7 8 9 10

Top Singular Value Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

la
ti
v
e

 E
rr

o
r

Singular Value Approximation Relative Error

DPSTRF,k=20

DPSTRF,k=40

DPSTRF,k=60

SRCH,k=20

SRCH,k=40

SRCH,k=60

Figure 1.2: Top 10 singular value approximation relative error
λj(A)−σ2

j (L)

λj(A)
.

this algorithm minimizes the objective function with a greedy strategy to incrementally select
representative samples.

In this section, we apply SRCH on the kernel matrix for a low-rank approximation without
the benefit of side information and make predictions on unlabeled data with this low-rank
approximation. Details of the prediction formulas can be found in Section 6 of [6].

We compare approximation effectiveness of the low-rank approximation, run time, and
prediction error on unlabeled data. We compare four methods: CSI decomposition with 40
look-ahead steps, CSI decomposition with 80 look-ahead steps, diagonal pivoted Cholesky
without look-ahead, and SRCH. The first three methods are from [6]. We test these four meth-
ods on handwritten digit (MNIST) [73]. We use RBF kernel k(xi, xj) = exp(−‖xi − xj‖2

2 /2σ
2)

and set σ = 1.0. We set block size b = 50 and oversampling size p = 5 in SRCH.
We choose 3000 training samples, 3000 testing samples, and approximate rank k =

200. Figure 1.3 and Figure 1.4 show approximation effectiveness and prediction accuracy,
respectively. There is a slight advantage of SRCH on both approximation effect and prediction

accuracy. We define the approximation error as trace(K−LLT)
trace(K)

.
The more impressive improvement is in run time. Figure 1.5 shows the run time com-

parison on the kernel matrix K ∈ R3000×3000 for different approximate ranks k. SRCH is
significantly faster than the other three methods.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 17

0 50 100 150 200 250

Number of Pivoting Training Samples Used

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
p

p
ro

x
im

a
ti
o

n
 E

rr
o

r

Approximation of Kernel Matrix

CSI-40

CSI-80

Cholesky

SRCH

Figure 1.3: Approximation quality comparison on MNIST.

0 20 40 60 80 100 120 140 160 180 200

Number of Pivoting Training Samples Used

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

d
ic

ti
o

n
 E

rr
o

r

Prediction Error Comparison

CSI-40

CSI-80

Cholesky

SRCH

Figure 1.4: Prediction error comparison on MNIST.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 18

50 100 150 200

Approximate Rank

4

6

8

10

12

14

16

18

20

22

R
u
n
 T

im
e
 (

s
e
c
)

Run Time Comparison on MNIST

CSI80

CSI40

Cholesky

SRCH

Figure 1.5: Run time comparison on MNIST.

1.4.4 Gaussian Process

Supervised learning is the problem of learning input-output mappings using empirical data.
We assume the training data is a n× d matrix X. Each row represents one data sample and
each column represents one feature. We assume the target values of X is a n × 1 vector y.
The task is to use the training data (both X and y) to make predictions on new data with a
trained model. Let the new data be a n∗× d matrix X∗. The n∗× 1 vector y∗ will represent
the target values to X∗. The goal is to predict y∗ given X, y, and X∗ [41].

In the Gaussian process approach the prediction of y∗ involves a covariance function
κ(x, x′), where x and x′ are vectors with d components. It is required that the covariance
function be positive semidefinite [116] which implies that the n×n covariance matrix A with
entries Aij = κ(xi, xj) where xi and xj are rows of X is symmetric positive semidefinite. The
covariance function can be used to construct A and also the n∗ × n cross covariance matrix
A∗ where A∗ij = κ(x∗i , xj) where x∗i is the ith row of X∗. The prediction ŷ∗ for y is given by
the Gaussian process equation [116]

ŷ∗ = A∗(λI + A)−1y (1.17)

where λ is a regularization parameter.
It is not practical to solve (1.17) with large n since the number of floating point operations

required is O(n3). Therefore for large n it is useful to develop approximate solutions to
equation (1.17).

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 19

To this end, we choose an approximate rank k < n and apply permutation Π to matrices
A and A∗ and partition them

ΠTAΠ =

(
A11 A12

A21 A22

)
=
(
A1 A2

)
, A∗Π =

(
A∗1 A∗2

)
,

where A11 is k× k, A21 is (n− k)× k, A12 = AT21 is k× (n− k), A22 is (n− k)× (n− k),
A1 is n× k, A2 is n× (n− k), A∗1 is n∗ × k, and A∗2 is n∗ × (n− k). We approximate ΠTAΠ
and A∗Π with

ΠTAΠ ≈ Â ≡ A1A
−1
11 A

T
1 , A

∗Π ≈ Â∗ ≡ A∗1A
−1
11 A

T
1 .

It follows that
ŷ∗ = A∗(λI + A)−1y = A∗Π(λI + ΠTAΠ)−1ΠTy

can be approximated by

ỹ∗ = Â∗
(
λI + Â

)−1

ΠTy

= A∗1A
−1
11 A

T
1

(
λI + A1A

−1
11 A

T
1

)−1
ΠTy

= A∗1A
−1
11 (λI + AT1A1A

−1
11)−1AT1 ΠTy

= A∗1(λA11 + AT1A1)−1AT1 ΠTy.

The partial Cholesky factorization(
A11 A12

A21 A22

)
=

(
L11

L21 In−k

)(
LT11 LT21

S

)
,

implies

A11 = L11L
T
11, A1 =

(
L11

L21

)
LT11 = LLT11,

and therefore

ỹ∗ = A∗1(λA11 + AT1A1)−1AT1 ΠTy

= A∗1(λL11L
T
11 + L11L

TLLT11)−1LTΠTy

= A∗1L
−T
11 (λIk + LTL)−1LTΠTy. (1.18)

(1.18) suggests that to compute ỹ∗, we need L, Π, and A∗1, but not the Schur complement
S or A∗2. L and Π can be computed by a partial Cholesky factorization and A∗1 can be
computed directly using covariance function after obtaining Π.

We compute the Gaussian process on CCPP dataset with DPSTRF.f and SRCH. The test
was implemented on a single node of the NERSC machine Edison using Intel math kernel
library [113]. The training data matrix is of size 3000 × 4 and the testing data matrix is
of size 6000 × 4. The covariance function is κ(xi, xj) = exp(−‖xi − xj‖2

2 /2σ
2). We choose

λ = 0.0001 and σ = 2.0. In SRCH, we choose block size b = 30 and oversampling size p = 5.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 20

0 100 200 300 400 500 600 700 800 900 1000

Approximate Rank

0

0.5

1

1.5

R
u
n
 T

im
e
 (

s
e
c
)

Run Time Comparison

DPSTRF

SRCH

Figure 1.6: Run time comparison on CCPP.

0 100 200 300 400 500 600 700 800 900 1000

Approximate Rank

16

17

18

19

20

21

22

23

24

25

M
e

a
n

 S
q

u
a

re
d

 P
re

d
ic

ti
o

n
 E

rr
o

r

MSE Comparison

DPSTRF

SRCH

Figure 1.7: Mean squared prediction error comparison on CCPP.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 21

We compare the runtime and mean squared prediction error in Figure 1.6 and Figure 1.7,
respectively.

In Figure 1.6, the run times of DPSTRF.f and SRCH intersect at around 250. SRCH

out-performs DPSTRF.f for larger approximate ranks. Figure 1.7 demonstrates that while
DPSTRF.f makes better predictions than SRCH for smaller approximate ranks k, they are not
the range in which the best predictions are made. For larger k, SRCH provides slightly smaller
prediction error than DPSTRF.f, as suggested in Figure 1.6.

1.5 Incomplete Randomized Cholesky

This section contains my unpublished results about incomplete randomized Cholesky. We
start with Lemma 1.

Lemma 1. Assume

R =

(
A B

C

)
,

where R ∈ Rm×n, A ∈ Rl×l, B ∈ Rl×(n−l), and C ∈ R(m−l)×(n−l), then

σj
(
A B

)
≥ σj (R)√

1 +
‖C‖22

σ2
j

(
A B

) (1 ≤ j ≤ l).

Proof of Lemma 1. R1
def
=
(
A B

)
∈ Rl×n, R2

def
=
(
O C

)
∈ R(m−l)×n, for 1 ≤ j ≤ l,

σ2
j (R) = λj

(
RTR

)
= λj

((
RT

1 RT
2

)(R1

R2

))
= λj

(
RT

1R1 +RT
2R2

)
≤ λj

(
RT

1R1

)
+
∥∥RT

2R2

∥∥
2

= σ2
j (R1) + ‖R2‖2

2 .

Recall the definitions of R1 and R2, we have

σj
(
A B

)
≥ σj (R)√

1 +
‖C‖22

σ2
j

(
A B

) (1 ≤ j ≤ l).

Now we are ready to introduce a new low-rank approximation to a given symmetric
positive semidefinite matrix.

Theorem 3. Consider an incomplete Cholesky factorization of a symmetric positive semidef-
inite matrix A ∈ Rn×n with any permutation matrix Π,

ΠAΠT = LDLT , where L =

(
Al
Bl In−l

)
, D =

(
Il

C

)
.

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 22

Consider the QR factorization of

(
Al
Bl

)
= Q̂R̂, we define Â

def
= Q̂Q̂TΠAΠT Q̂Q̂T , which

is equivalent to

(
Al
Bl

)(
Il +

(
ATl Al +BT

l Bl

)−1
BT
l CBl

(
ATl Al +BT

l Bl

)−1
) (

ATl BT
l

)
.

σj

(
Â
)
≥ σj(A)√

1 +
2‖C‖22
σ2
j (Â)

(1 ≤ j ≤ l).

Proof. We do Cholesky factorization of the trailing matrix C = ClC
T
l ,

ΠAΠT =

(
Al
Bl Cl

)(
ATl BT

l

CT
l

)
.

We do QR decomposition of

(
Al
Bl Cl

)
=
(
Q1 Q2

)(R11 R12

R22

)
, and observe that

(
QT

1

QT
2

)
ΠAΠT =

(
QT

1

QT
2

)(
Al
Bl Cl

)(
ATl BT

l

CT
l

)
=

(
R11 R12

R22

)(
ATl BT

l

CT
l

)
=

(
R11A

T
l R11B

T
l +R12C

T
l

R22C
T
l

)
.

Applying Lemma 1,

σ2
j

(
R11A

T
l , R11B

T
l +R12C

T
l

)
+
∥∥R22C

T
l

∥∥2

2
≥ σ2

j

((
QT

1

QT
2

)
ΠAΠT

)
= σ2

j (A).

Define H
def
= R11R

T
11 +R12R

T
12, Ĥ

def
= R12R

T
22, then(

R11A
T
l R11B

T
l +R12C

T
l

)
=

(
R11 R12

)(ATl BT
l

CT
l

)
=
(
R11 R12

)(RT
11

RT
12 RT

22

)(
QT

1

QT
2

)
=

(
R11R

T
11 +R12R

T
12 R12R

T
22

)(QT
1

QT
2

)
=
(
H Ĥ

)(QT
1

QT
2

)
.

Notice that (
ATl BT

l

CT
l

)(
Al
Bl Cl

)
=

(
RT

11

RT
12 RT

22

)(
R11 R12

R22

)
⇔

(
ATl Al +BT

l Bl BT
l Cl

CT
l Bl CT

l Cl

)
=

(
RT

11R11 RT
11R12

RT
12R11 RT

12R12 +RT
22R22

)
,

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 23

therefore
RT

11R12 = BT
l Cl ⇒ R12 = R−T11 B

T
l Cl,

and

R12R
T
12 = R−T11 B

T
l ClC

T
l BlR

−1
11

= R11

((
RT

11R11

)−1
BT
l ClC

T
l Bl

(
RT

11R11

)−1
)
RT

11

= R11

(
ATl Al +BT

l Bl

)−1
BT
l CBl

(
ATl Al +BT

l Bl

)−1
RT

11,

and

R11R
T
11 +R12R

T
12 = R11

(
Il +

(
ATl Al +BT

l Bl

)−1
BT
l CBl

(
ATl Al +BT

l Bl

)−1
)
RT

11.

Notice that

Â =

(
Al
Bl

)(
Il + (ATl Al +BT

l Bl

)−1
BT
l CBl

(
ATl Al +BT

l Bl

)−1
)
(
ATl BT

l

)
= Q

(
R11

O

)(
Il + (ATl Al +BT

l Bl

)−1
BT
l CBl

(
ATl Al +BT

l Bl

)−1
)
(
RT

11 O
)
QT

= Q1R11

(
Il +

(
ATl Al +BT

l Bl

)−1
BT
l CBl

(
ATl Al +BT

l Bl

)−1
)
RT

11Q
T
1

= Q1

(
R11R

T
11 +R12R

T
12

)
QT

1 ,

and hence
σj

(
Â
)

= σj
(
R11R

T
11 +R12R

T
12

)
= σj(H) (1 ≤ j ≤ l).

Therefore

σ2
j

(
R11A

T
l R11B

T
l +R12C

T
l

)
= σ2

j

(
H Ĥ

)
= σj

(
HHT + ĤĤT

)
= λj

(
HHT + ĤĤT

)
≤ σ2

j (H) +
∥∥∥ĤĤT

∥∥∥
2

= σ2
j

(
Â
)

+
∥∥∥Ĥ∥∥∥2

2
,

and hence

σ2
j (A) ≤ σ2

2

(
R11A

T
l R11B

T
l +R12C

T
l

)
+
∥∥R22C

T
l

∥∥2

2

≤ σ2
j

(
Â
)

+
∥∥∥Ĥ∥∥∥2

2
+
∥∥R22C

T
l

∥∥2

2
.

Notice that CT
l Cl = RT

12R12 +RT
22R22, then ‖R12‖2 ≤ ‖Cl‖2 and ‖R22‖2 ≤ ‖Cl‖2. There-

fore
∥∥R22C

T
l

∥∥2

2
≤ ‖Cl‖4

2 = ‖C‖2
2 and

∥∥∥Ĥ∥∥∥2

2
≤ ‖Cl‖4

2 = ‖C‖2
2. Finally we obtain

σ2
j (A) ≤ σ2

j

(
Â
)

+ 2 ‖C‖2
2 ,

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 24

which is equivalent to

σj

(
Â
)
≥ σj(A)√

1 +
2‖C‖22
σ2
j (Â)

(1 ≤ j ≤ l).

In Theorem 3, we use the whole matrix A to compute Â. Now we design a different low-
rank approximation Adeep, which only uses part of A. In fact, we do incomplete Cholesky
factorization of A and then we do another incomplete Cholesky factorization of the trailing
matrix C,

Π1AΠT
1 =

(
Al
Bl

)(
ATl BT

l

)
+

(
O O
O Π2CΠT

2

)
(l steps Cholesky)

=

(
Al
Bl

)(
ATl BT

l

)
+

(
O O

O HlH
T
l + Ĉ

)
(δ steps Cholesky)

=

(
Al
Bl Hl

)(
ATl BT

l

HT
l

)
+

(
O O

O Ĉ

)
,

where Π1 and Π2 are any permutations matrices. Our low-rank approximation is

Adeep
def
=

(
Al
Bl

)
(I +H)

(
ATl BT

l

)
,

where

H
def
=

(
Al
Bl

)(
Il +

(
ATl Al +BT

l Bl

)−1
BT
l HlH

T
l Bl

(
ATl Al +BT

l Bl

)−1
) (

ATl BT
l

)
.

We have the following theorem for the singular values bounds of Adeep.

Theorem 4. Assume we do incomplete Cholesky factorization of a symmetric positive
semidefinite matrix

A =

(
Al
Bl Hl

)(
ATl BT

l

HT
l

)
+

(
O O

O Ĉ

)
.

Adeep is defined as

Adeep =

(
Al
Bl

)
(I +H)

(
ATl BT

l

)
,

where H =

(
Al
Bl

)(
Il + (ATl Al +BT

l Bl)
−1BT

l HlH
T
l Bl(A

T
l Al +BT

l Bl)
−1
) (

ATl BT
l

)
.

σj (Adeep) ≥
σj(A)

‖Ĉ‖
2

σj(Adeep)
+

√
1 +

2‖HlH
T
l ‖

2

2

σ2
j (Adeep)

(1 ≤ j ≤ l).

CHAPTER 1. SPECTRUM-REVEALING CHOLESKY FACTORIZATION 25

Proof of Theorem 4. Using the bounds in Theorem 3, we have

σ2
j

((
Al
Bl Hl

)(
ATl BT

l

HT
l

))
≤ σ2

j (Adeep) + 2
∥∥HlH

T
l

∥∥2

2
(1 ≤ j ≤ l), (1.19)

and by Weyl inequality we have

σj(A) ≤ σj

((
Al
Bl Hl

)(
ATl BT

l

HT
l

))
+
∥∥∥Ĉ∥∥∥

2
(1 ≤ j ≤ l). (1.20)

Taking the square root of (1.19) and then combine it with (1.20), we obtain

σj(A) ≤
√
σ2
j (Adeep) + 2 ‖HlHT

l ‖
2

2 +
∥∥∥Ĉ∥∥∥

2
(1 ≤ j ≤ l),

and hence

σj(Adeep) ≥
σj(A)

‖Ĉ‖
2

σj(Adeep)
+

√
1 +

2‖HlH
T
l ‖

2

2

σ2
j (Adeep)

(1 ≤ j ≤ l).

26

Chapter 2

Spectrum-Revealing QR

2.1 Introduction

2.1.1 QR Factorizations with Column Pivoting

A QR factorization of a matrix A ∈ Rm×n is A = QR where Q ∈ Rm×m is orthogonal and
R ∈ Rm×n is upper trapezoidal. In LAPACK [2] and ScaLAPACK [11], the QR factorization
can be computed by xGEQRF and PxGEQRF, respectively, where x indicates the matrix
data type. 1

In practical situations where either the matrix A is not always known to be of full rank or
we want to find representative columns of A, we compute a full or partial QR factorization
with column pivoting (QRCP) of the form

AΠ = QR (2.1)

for a matrix A ∈ Rm×n, where Π ∈ Rn×n is a permutation matrix and Q ∈ Rm×m is an
orthogonal matrix. A full QRCP, with R ∈ Rm×n being upper trapezoidal, can be computed
by either xGEQPF or xGEQP3 in LAPACK [2], and either PxGEQPF or PxGEQP3 in
ScaLAPACK [11]. xGEQP3 and PxGEQP3 are Level 3 BLAS versions of xGEQPF and
PxGEQPF respectively. They are considerably faster while maintaining the same numerical
behavior.

Given an approximate rank 1 ≤ k ≤ min (m,n) in partial QRCP, equation (2.1) can be
written in a 2× 2 block form as

AΠ = Q

(
R11 R12

0 R22

)
=
(
Q1 Q2

)(R11 R12

0 R22

)
,

with upper triangular R11 ∈ Rk×k. If Π is chosen appropriately, the partial QRCP can sepa-
rate linearly independent columns from dependent ones, yielding a low-rank approximation

1Materials in this chapter are mainly from the paper titled Fast Parallel Randomized QR with Column
Pivoting Algorithms for Reliable Low-rank Matrix Approximations [121], which was published in 2017 IEEE
24th International Conference on High Performance Computing (HiPC).

CHAPTER 2. SPECTRUM-REVEALING QR 27

A ≈ Q1

(
R11 R12

)
ΠT . Efficient and reliable low-rank approximations are useful in many

applications including data mining [120] and image processing [103].

2.1.2 Randomization in Numerical Linear Algebra

Traditional matrix algorithms are prohibitively expensive for many applications where the
datasets are very large. Randomization allows us to design provably accurate algorithms
for matrix problems that are massive or computationally expensive. Randomized matrix
algorithms have been successfully developed in fast least squares [19], sketching algorithms
[26], low-rank approximation problems [48], etc.

The computational bottleneck of QRCP is in searching pivots, which requires updating all
the column l2 norms in the trailing matrix. While the number of floating point operations
is relatively small, column l2 norm updating incurs excessive communication costs and is
at least as expensive as QR. [34] develops a randomized QRCP (RQRCP), where random
sampling is used for column selection, resulting in dramatically reduced communication
costs. They also introduce updating formulas to reduce the cost of sampling. With their
column selection mechanism they obtain approximations that are comparable to those from
the QRCP in quality, but with performance near QR. They demonstrate strong parallel
scalability on shared memory multiple core systems using an implementation in Fortran
with OpenMP.

2.1.3 Contributions

• Reliability analysis: We show, with a rigorous probability analysis, that RQRCP
algorithms can be as reliable as QRCP up to failure probabilities that exponentially
decay with oversampling size.

• Distributed memory implementation: We extend RQRCP shared memory im-
plementation of [34] to distributed memory machines. Based on ScaLAPACK, our
implementation is significantly faster than QRCP routines in ScaLAPACK, yet as ef-
fective in quality.

• Spectrum-revealing QR factorization: We propose a novel variant of the QR fac-
torization for low-rank approximation: spectrum-revealing QR factorization (SRQR).
We prove singular value bounds and residual error bounds for SRQR, and develop
RQRCP-based efficient algorithms for its computation. We also propose SRQR based
CUR and CX matrix decomposition algorithms. SRQR based algorithms are as ef-
fective as other state-of-the-art CUR and CX matrix decomposition algorithms, while
significantly faster.

CHAPTER 2. SPECTRUM-REVEALING QR 28

Algorithm 5 QR with Column Pivoting (QRCP)

Inputs:
A is m× n matrix, k is approximate rank, 1 ≤ k ≤ min (m,n)
Outputs:
Q is m×m orthogonal matrix
R is m× n upper trapezoidal matrix
Π is n× n permutation matrix such that AΠ = QR
Algorithm:
Initialize Π(0) = In, rs = ||A (1 : m, s) ||2 (1 ≤ s ≤ n)
for i = 1 : k do

Find j = argmaxi≤s≤nrs
Swap ri and rj, A (1 : m, i) and A (1 : m, j)
Update permutation with last swap Π(i) = Π(i−1)Πi,j

Form Householder reflection Hi from A (i : m, i)
Update A (i : m, i : n)← HiA (i : m, i : n)
Update rs = ||A (i+ 1 : m, s) ||2 (i+ 1 ≤ s ≤ n)

end for
Q = H1H2 · · ·Hk is the product of all reflections
R = upper trapezoidal part of A, Π = Π(k)

2.2 Introduction to QRCP

QRCP is introduced in Algorithm 5. In each loop, QRCP swaps the leading column with the
column in the trailing matrix with the largest column l2 norm. It is a very effective practical
tool for low-rank matrix approximations, but may require additional column interchanges to
reveal the rank for contrived pathological matrices [49, 65].

To find a correct pivot in the (i+ 1)th loop, trailing column l2 norms must be updated
to remove contributions from row i. This computation, while relatively minor flop-wise [32],
requires accessing the entire trailing matrix, and is a primary cause of significant slow-down
of QRCP over QR.

LAPACK subroutines xGEQPF and xGEQP3 are based on Algorithm 5. The difference
is that xGEQP3 re-organizes the computations to apply Householder reflections in blocks to
the trailing matrix, partly with Level 3 BLAS instead of Level 2 BLAS, for faster execution.
ScaLAPACK subroutines PxGEQPF and PxGEQP3 are the parallel versions of xGEQPF
and xGEQP3 in distributed memory systems, respectively, with PxGEQP3 being the more
efficient.

CHAPTER 2. SPECTRUM-REVEALING QR 29

2.3 Randomized QRCP

2.3.1 Introduction to RQRCP

Algorithm 6 Randomized QRCP (RQRCP)

Inputs:
A is m× n matrix, k is approximate rank, 1 ≤ k ≤ min (m,n)
Outputs:
Q is m×m orthogonal matrix
R is m× n upper trapezoidal matrix
Π is n× n permutation matrix such that AΠ = QR
Algorithm:
Determine block size b and oversampling size p ≥ 0
Generate i.i.d Gaussian matrix Ω ∈ N (0, 1)(b+p)×m

Compute B = ΩA, initialize Π = In
for i = 1 : b : k do

b = min (b, k − i+ 1)
Partial QRCP on B(:, i : n) to get b pivots (j1, . . . , jb)
Swap (j1, . . . , jb) and (i : i+ b− 1) columns in A, Π

Do unpivoted QR on A (i : m, i : i+ b− 1) = Q̃R̃

A(i : m, i+ b : n)← Q̃TA(i : m, i+ b : n)
B(1 : b, i + b : n) = B(1 : b, i + b : n) − B(1 : b, i : j + b − 1)(A(i : i + b − 1.i :

i+ b− 1))−1A(i : i+ b− 1, i+ b : n)
end for
Q is the product of Q̃, R = upper trapezoidal part of A

RQRCP applies a random matrix Ω of independent and identically distributed (i.i.d.)
random variables to A to compress A into B = ΩA with much smaller row dimension, where
the block size b and oversampling size p are chosen with b + p � m. QRCP and RQRCP
make pivot decisions on A and B, respectively. Since B has much smaller row dimension
than A, RQRCP can choose pivots much more quickly than QRCP. RQRCP repeatedly runs
partial QRCP on B to pick b pivots, computes the QR factorization on the pivoted columns,
forms a block of Householder reflections, applies them to the trailing matrix of A with Level
3 BLAS, and then updates the remaining columns of B. RQRCP exits this process when it
reaches an approximate rank k.

The RQRCP algorithm as described in Algorithm 6 computes a low-rank approximation
with an approximate rank k. While it can be modified to compute a low-rank approximation
that satisfies an error tolerance, our analysis will be on Algorithm 6. The block size b is
a machine-dependent parameter experimentally chosen to optimize performance; whereas
oversampling size p is chosen to ensure the reliability of Algorithm 6. In practice, a value
of p between 5 and 20 suffices. At the end of each loop, matrix B is updated, via one of

CHAPTER 2. SPECTRUM-REVEALING QR 30

several updating formulas, to become a random projection matrix for the trailing matrix. In
Section 2.3.3 we will justify Algorithm 6 with a rigorous probability analysis.

2.3.2 Updating Formulas for B in RQRCP

We discuss updating formulas for B and their efficiency differences. Consider partial QRs
on AΠ and BΠ = ΩAΠ,

AΠ = Q

(
R11 R12

R22

)
, BΠ = Q̂

(
R̂11 R̂12

R̂22

)
, (2.2)

where A ∈ Rm×n. We describe two different updating formulas introduced in [34] and [82],
respectively.

For the first updating formula [34], partition Ω̂
def
= Q̂TΩQ

def
=
(

Ω̂1 Ω̂2

)
, equation (2.2)

implies

Ω̂

(
R11 R12

R22

)
=

(
R̂11 R̂12

R̂22

)
, (2.3)

leading to the updating formula of Algorithm 6,(
R̂12

R̂22

)
← Ω̂2R22 =

(
R̂12 − R̂11R

−1
11 R12

R̂22

)
, (2.4)

where only the upper part of updating formula (2.4) requires computation, at a total cost of
O (n k b).

For the second updating formula [82], partition

Ω
def
= ΩQ

def
=
(

Ω1 Ω2

)
, and BΠ

def
=
(
B1 B2

)
,

leading to an updating formula,(
R̂12

R̂22

)
← Ω2R22 = B2 − Ω1R12. (2.5)

The approach in [82] decomposes Q and is mathematically equivalent to but computationally
less efficient than (2.5), which requires totaling O ((b+ p) (m+ n) k) operations.

Both updating formulas are numerically stable in practice. Since Ω̂ = Q̂T Ω, the up-
dating formula (2.5) differs from formula (2.4) only by a pre-multiplied orthogonal matrix

Q̂. Consequently, both updating formulas produce identical permutations and thus identical
low-rank approximations. However, updating formula (2.4) requires 50% fewer operations
than (2.5) and is much faster in numerical experiments.

CHAPTER 2. SPECTRUM-REVEALING QR 31

2.3.3 Probability Analysis of RQRCP

In this section, we show that RQRCP is as reliable as QRCP up to negligible failure proba-
bilities. Since QRCP chooses the column with the largest norm as the pivot column in each
loop, QRCP satisfies the following pseudo-diagonal dominance property.

Lemma 2 (QRCP pseudo-diagonal dominance). Let A ∈ Rm×n. Perform a k-step partial
QRCP on A,

AΠ = QR = Q

(
R11 R12

R22

)
, with R = (rij) ,

then |rii| ≥

√√√√ m∑
l=i

|rlj|2 (1 ≤ i ≤ k, i+ 1 ≤ j ≤ n).

Actually, the column pivots of A found by QRCP and the symmetric pivots of ATA found
by diagonal pivoted Cholesky would be the same. A similar pseudo-diagonal dominance
property holds for RQRCP with approximate rank k.

Theorem 5 (RQRCP pseudo-diagonal dominance). A ∈ Rm×n, ε,∆ ∈ (0, 1). Draw Ω ∈
N (0, 1)(b+p)×m with p ≥ d 4

ε2−ε3 log
2nk
∆
e − 1. Perform RQRCP on A given k,

AΠ = QR = Q

(
R11 R12

R22

)
, with R = (rij) ,

then |rii| ≥
√

1− ε
1 + ε

√√√√ m∑
l=i

|rlj|2 (1 ≤ i ≤ k, i+ 1 ≤ j ≤ n)

with probability at least 1−∆.

We prove Theorem 5 in two stages. Firstly, we prove that the updating formulas for B
are indeed products of i.i.d. Gaussian matrices and the trailing matrix of A, conditional on
Π. Secondly, we use Johnson-Lindenstrauss Theorem 2 and the law of total probability to
establish Theorem 5.

2.3.3.1 Correctness of Updating Formulas for B

For correctness, we show that the matrices Ω̂2 and Ω2 in updating formulas (2.4) and (2.5)
remain i.i.d. Gaussian given permutation matrix Π. Consider s-step partial QRs of AΠ and
BΠ in equation (2.2) with R11, R̂11 ∈ Rs×s. Recall that

Ω = ΩQ =
(

Ω1 Ω2

)
, Ω̂ = Q̂TΩ =

(
Ω̂1 Ω̂2

)
.

CHAPTER 2. SPECTRUM-REVEALING QR 32

Given Π, Q is an orthogonal matrix decorrelated with Ω so Ω = ΩQ remains i.i.d.
Gaussian. From equation (2.2),

Q̂

(
R̂11 R̂12

R̂22

)
= Ω

(
R11 R12

R22

)
.

The orthogonal matrix Q̂ is completely determined by its first s columns, which in turn are
completely determined by Ω1, which is decorrelated with Ω2.

It now follows that Ω̂2 = Q̂T Ω2 must remain i.i.d. Gaussian given Π. The matrices Ω̂2

and Ω2 in updating formulas (2.4) and (2.5) correspond to the special case s = b, and thus
must remain i.i.d. given permutation matrix Π.

Applying the above argument on each loop in RQRCP, we conclude that, with both
updating formulas, the remaining columns of B in each loop are always a product of an i.i.d.
Gaussian matrix and the trailing matrix of A, conditional on Π.

Additionally, equation (2.3) implies that Ω̂ must be a 2×2 block upper triangular matrix
since R11 is invertible for any 0 ≤ s ≤ b− 1:

Ω̂ =
(

Ω̂1 Ω̂2

)
=

(
Ω̂11 Ω̂12

Ω̂22

)
,

which allows us to write from equation (2.3)

R̂22 = Ω̂22R22.

Thus every trailing matrix in B is a matrix product of an i.i.d. Gaussian matrix with
b + p − s ≥ p + 1 rows and the trailing matrix of A, given Π. Together with above ar-
gument on updating formulas, we conclude that every pivot computed by Algorithm 6 is
based on choosing the column with the largest column l2 norm of the matrix product of an
i.i.d. Gaussian matrix and a trailing matrix of A, conditional on the corresponding column
permutation matrix Π.

2.3.3.2 Probability Analysis of Reliability of RQRCP

Our probability analysis is based on the Johnson-Lindenstrauss Theorem 2. We say a vector
x ∈ Rd satisfies the Johnson−Lindenstrauss condition for given ε > 0 under i.i.d Gaussian
matrix Ω ∈ N (0, 1)r×d if

(1− ε) ‖x‖2
2 ≤

∣∣∣∣∣∣∣∣ 1√
r

Ωx

∣∣∣∣∣∣∣∣2
2

≤ (1 + ε) ‖x‖2
2 .

The Johnson−Lindenstrauss Theorem states that a vector x satisfies the Johnson−Lindenstrauss
condition with high probability

P

(
(1− ε) ‖x‖2

2 ≤
∣∣∣∣∣∣∣∣ 1√

r
Ωx

∣∣∣∣∣∣∣∣2
2

≤ (1 + ε) ‖x‖2
2

)
≥ 1− 2 exp

(
−(ε2 − ε3) r

4

)
.

CHAPTER 2. SPECTRUM-REVEALING QR 33

Before we prove Theorem 5, we need Lemma 3.

Lemma 3. Suppose that RQRCP computes an s-step partial QRCP factorization AΠ = QR
with R = (ri,j), then for any ε ∈ (0, 1),

|rs,s| ≥
√

1− ε
1 + ε

√√√√ m∑
l=s

|rlj|2, (s+ 1 ≤ j ≤ n) (2.6)

with probability at least 1−∆s where

∆s = 2(n− s+ 1) exp

(
−(ε2 − ε3)(p+ 1)

4

)
.

Proof of Lemma 3. Let Π be a random permutation in equation (2.2) with R11, R̂11 ∈
R(s−1)×(s−1), let Esj be the event where R22 (:, j) satisfies the Johnson−Lindenstrauss con-
dition. Therefore Es =

⋂n−s+1
j=1 Esj is the event where all columns of R22 satisfy the

Johnson−Lindenstrauss condition. By correctness of RQRCP, the event Esj for any given Π
satisfies the Johnson−Lindenstrauss condition, therefore

P (Es|Π) ≥
n−s+1∑
j=1

P (Esj|Π)− (n− s)

≥
n−s+1∑
j=1

(
1− 2 exp

(
− (ε2 − ε3) (p+ 1)

4

))
− (n− s)

= 1−∆s.

We now remove the condition Π by law of total probability,

P (Es) =
∑

Π

P (Es|Π)P (Π) ≥ 1−∆s.

Denote columns of R22 as rs, rs+1, . . . , rn, columns of R̂22 as r̂s, r̂s+1, . . . , r̂n after the sth

column pivot, then ‖r̂s‖2 ≥ ‖r̂j‖2 for s+ 1 ≤ j ≤ n. With probability at least 1−∆s, event
Es holds so that

‖rj‖2

‖rs‖2

≤
√

1 + ε‖r̂j‖2√
1− ε‖r̂s‖2

≤
√

1 + ε

1− ε
, for all s+ 1 ≤ j ≤ n,

equivalent to inequality (2.6) after one-step QR.

Proof of Theorem 5. Denote E as the event where all column lengths used in comparison
satisfy the Johnson−Lindenstrauss condition so that E =

⋂k
s=1Es, with Es being the event

CHAPTER 2. SPECTRUM-REVEALING QR 34

where all columns of R22 satisfy the Johnson−Lindenstrauss condition in sth step. By
Lemma 3,

P (E) ≥
k∑
s=1

P (Es)− (k − 1) ≥
k∑
s=1

(1−∆s)− (k − 1)

= 1−
k∑
s=1

∆s

= 1−
k∑
s=1

2 (n− s+ 1) exp

(
− (ε2 − ε3) (p+ 1)

4

)
≥ 1− 2n k exp

(
− (ε2 − ε3) (p+ 1)

4

)
,

which is at least 1−∆ for the choice of p in Theorem 5.

Theorem 5 suggests that p needs only to grow logarithmically with n, k and 1/∆ for
reliable column selection. For illustration, if we choose n = 1000, k = 200, ε = 0.5,∆ = 0.05,
then p ≥ 508. However, in practice, p values like 5 ∼ 20 suffice for RQRCP to obtain high
quality low-rank approximations.

2.4 Spectrum-Revealing QR Factorization

2.4.1 Introduction

Before we introduce spectrum-revealing QR factorization (SRQR), we need Lemma 4 for

partial QR factorizations with column interchanges. Let σj(X) be the jth largest singular

value of any matrixX, and let λj (H) be the jth largest eigenvalue of any positive semidefinite
matrix H.

Lemma 4. Let A ∈ Rm×n, with 1 ≤ l ≤ min(m,n). For any permutation Π, consider a
block QR factorization

AΠ = Q

(
R11 R12

R22

)
,

with R11 ∈ Rl×l. Define R̃ = (R11 R12) . For any 1 ≤ k ≤ l, denote R̃k the rank-k truncated

SVD of R̃. Therefore,

σ2
j (A) ≤ σ2

j

(
R̃
)

+ ‖R22‖2
2 , (1 ≤ j ≤ k), (2.7)

∥∥∥∥AΠ−Q
(
R̃k

0

)∥∥∥∥
2

≤ σk+1 (A)

√
1 +

(
‖R22‖2

σk+1 (A)

)2

. (2.8)

CHAPTER 2. SPECTRUM-REVEALING QR 35

We introduced a new parameter l, in Lemma 4. It will become clear later on that an
l-step partial QR with properly chosen Π for an l somewhat larger than k can lead to a much
better rank-k approximation than a k-step partial QR.

Proof of Lemma 4. By definition, for 1 ≤ j ≤ k,

σ2
j (A) = λj

(
ΠTATAΠ

)
= λj

(
R̃T R̃ +

(
0 0
0 RT

22R22

))
≤ λj

(
R̃T R̃

)
+
∥∥RT

22R22

∥∥
2

= σ2
j

(
R̃
)

+ ‖R22‖2
2 .∥∥∥∥AΠ−Q

(
R̃k

0

)∥∥∥∥2

2

=

∥∥∥∥Q(R̃− R̃k

R

)∥∥∥∥2

2

≤
∥∥∥R̃− R̃k

∥∥∥2

2
+
∥∥R∥∥2

2
≤ σ2

k+1(A) + ‖R22‖2
2 ,

where R
def
=
(

0 R22

)
.

2.4.2 Spectrum-Revealing QR

We exhibit the properties of equation (2.7) in more detail.

σ2
j (A) ≤ σ2

j

(
R̃
)1 +

‖R22‖2
2

σ2
j

(
R̃
)
 ≤ σ2

j

(
R̃
)1 +

‖R22‖2
2

σ2
k

(
R̃
)
 , or

σj

(
R̃
)
≥ σj(A)√

1 +

(
‖R22‖2
σk(R̃)

)2
, (1 ≤ j ≤ k). (2.9)

Additionally,

σ2
j (A) ≤ σ2

j

(
R̃
)1 +

σ2
j (A)

σ2
j

(
R̃
) ‖R22‖2

2

σ2
j (A)


≤ σ2

j

(
R̃
)1 +

(
σ2
j

(
R̃
)

+ ‖R22‖2
2

)
σ2
j

(
R̃
) ‖R22‖2

2

σ2
j (A)


≤ σ2

j

(
R̃
)1 +

1 +
‖R22‖2

2

σ2
k

(
R̃
)
 ‖R22‖2

2

σ2
j (A)

 , or

CHAPTER 2. SPECTRUM-REVEALING QR 36

σj

(
R̃
)
≥ σj(A)√

1 +

(
1 +

‖R22‖22
σ2
k(R̃)

)
‖R22‖22
σ2
j (A)

, (1 ≤ j ≤ k). (2.10)

By the Cauchy interlacing property,

σl (R11) ≤ σl

(
R̃
)
≤ σl(A) and ‖R22‖2 ≥ σl+1(A).

Relations (2.8)(2.9)(2.10) show that we can reveal the leading singular values of A in R̃ well
by computing a Π that ensures

‖R22‖2 ≤ O(σl+1(A)). (2.11)

Indeed, equation (2.10) further ensures that such permutation Π would make all the leading

singular values of R̃ very close to those of A if the singular values of A decay relatively
quickly. Finally, equation (2.8) guarantees that such a permutation would also lead to a
high quality approximation measured in 2-norm. In summary, for a successful SRQR, we
only need to find a Π that satisfies equation (2.11).

For most matrices in practice, both QRCP and RQRCP compute high-quality SRQRs,
with RQRCP being significantly more efficient. We will develop an algorithm for computing
an SRQR in 3 stages:

1. Compute an l-step QRCP or RQRCP.

2. Verify condition (2.11).

3. Compute an SRQR if condition (2.11) does not hold.

In next section, we develop a rather efficient scheme to verify if a partial QR factorization
satisfies (2.11).

2.4.3 SRQR Verification

Given a QRCP or RQRCP, we discuss an efficient scheme to check whether it satisfies
condition (2.11). We define

g1
def
=
‖R22‖1,2

|α|
and g2

def
= |α|

∥∥∥R̂−T∥∥∥
1,2
, (2.12)

where ‖X‖1,2 is the largest column l2 norm of any X and

R̂
def
=

(
R11 a

α

)
is a leading submatrix of R,

CHAPTER 2. SPECTRUM-REVEALING QR 37

where we do one step of QRCP or RQRCP on R22. Then

‖R22‖2 =
‖R22‖2

‖R22‖1,2

‖R22‖1,2 = τσl+1 (A) , (2.13)

where τ
def
= g1g2

‖R22‖2

‖R22‖1,2

∥∥∥R̂−T∥∥∥−1

1,2

σl+1 (A)
.

While τ depends on A and Π, it can be upper bounded as

τ = g1g2
‖R22‖2

‖R22‖1,2

∥∥∥R̂−T∥∥∥−1

1,2

σl+1

(
R̂
) σl+1

(
R̂
)

σl+1 (A)
≤ g1g2

√
(l + 1)(n− l).

On the other hand,

‖R22‖2 =
‖R22‖2

‖R22‖1,2

‖R22‖1,2 ≤ τ̂σl

(
R̃
)
, (2.14)

where τ̂
def
= g1g2

‖R22‖2

‖R22‖1,2

∥∥R−T11

∥∥−1

1,2

σl

(
R̃
) .

While τ̂ depends on A and Π, it can be upper bounded as

τ̂ = g1g2
‖R22‖2

‖R22‖1,2

∥∥R−T11

∥∥−1

1,2

σl (R11)

σl (R11)

σl

(
R̃
) ≤ g1g2

√
l(n− l). (2.15)

It is typical for the first two ratios in equations (2.14) and (2.15) to be of order O(1), and
the last ratio o(1). Thus, even though the last upper bounds in equations (2.14) and (2.15)
grow with matrix dimensions, τ is small to modest in practice.

For notational simplicity, we further define τ
def
= τ̂

σl(R̃)
σk(R̃)

. Plugging equation (2.14) into

equation (2.9), we obtain

σj

(
R̃
)
≥ σj(A)√

1 + τ 2
, (1 ≤ j ≤ k). (2.16)

Plugging both equations (2.13) and (2.14) into equation (2.10),

σj

(
R̃
)
≥ σj(A)√

1 + τ 2 (1 + τ 2)
(
σl+1(A)

σj(A)

)2
, (1 ≤ j ≤ k).

CHAPTER 2. SPECTRUM-REVEALING QR 38

Combining the last equation with (2.16), for 1 ≤ j ≤ k,

σj

(
R̃
)
≥ σj(A)√

1 + min

(
τ 2, τ 2 (1 + τ 2)

(
σl+1(A)

σj(A)

)2
) . (2.17)

Equation (2.17) shows that, under definition (2.12) and with R̃, we can reveal at least a
dimension dependent fraction of all the leading singular values of A and indeed approximate
them very accurately in case they decay relatively quickly.

Finally, plugging equation (2.13) into equation (2.8),∥∥∥∥AΠ−Q
(
R̃k

0

)∥∥∥∥
2

≤ σk+1(A)

√
1 + τ 2

(
σl+1(A)

σk+1(A)

)2

. (2.18)

Equation (2.18) shows that we can compute a rank-k approximation that is up to a factor of√
1 + τ 2

(
σl+1(A)

σk+1(A)

)2

from optimal. In situations where singular values of A decay relatively

quickly, our rank-k approximation is about as accurate as the truncated SVD with a choice
of l such that

σl+1(A)

σk+1(A)
= o(1).

2.4.4 Spectrum-Revealing Bounds of QRCP and RQRCP

We develop spectrum-revealing bounds of QRCP and RQRCP. It comes down to estimating
upper bounds on g1 and g2. We need Lemma 5, presented below without a proof:

Lemma 5. Let W = (wi,j) ∈ Rn×n be an upper or lower triangular matrix with wi,i = 1 and
|wij| ≤ c (i 6= j). Then ∥∥W−1

∥∥
1,2
≤
∥∥W−1

∥∥
1
≤ (1 + c)n−1.

For QRCP, g1 = 1 since |α| is the largest column l2 norm in the trailing matrix R22. For

g2, decompose R̂ = DW where D is the diagonal of R̂ and W satisfies Lemma 5 with c = 1.

g2 = |α|
∥∥D−TW−T∥∥

1,2
≤
∥∥W−T∥∥

1,2
≤
∥∥W−T∥∥

1
≤ 2l.

For RQRCP, we find upper bounds for g1 and g2. According to our probability analysis of
RQRCP, the following inequalities are valid with probability 1−∆ for given ε.

|α| ≥
√

1− ε
1 + ε

‖R22‖1,2 ⇒ g1 =
‖R22‖1,2

|α|
≤
√

1 + ε

1− ε
,

g2
2 = α2

∣∣∣∣∣∣∣∣(R−T11

− 1
α
aTR−T11

1
α

)∣∣∣∣∣∣∣∣2
1,2

≤ α2 max

{ ∣∣∣∣R−T11

∣∣∣∣2
1,2

+

∣∣∣∣∣∣∣∣− 1

α
aTR−T11

∣∣∣∣∣∣∣∣2
1,2

,
1

α2

}
.

CHAPTER 2. SPECTRUM-REVEALING QR 39

We decompose R11 = DW where D is the diagonal of R11 and W satisfies Lemma 5 with

c =
√

1+ε
1−ε . Assume the smallest entry in D is t, then t satisfies t ≥

√
1−ε
1+ε

σl(A),

∥∥R−T11

∥∥2

1,2
=
∥∥∥D−1

(
W T

)−1
∥∥∥2

1,2
≤ 1

t2

∥∥∥(W T
)−1
∥∥∥2

1,2
≤ 1

σ2
l (A)

·
(

1 + ε

1− ε

)
·

(
1 +

√
1 + ε

1− ε

)2l−2

,

∣∣∣∣∣∣∣∣− 1

α
aTR−T11

∣∣∣∣∣∣∣∣2
1,2

=
1

α2

∣∣∣∣∣∣(D−1a)T
(
W T

)−1
∣∣∣∣∣∣2

1,2
≤ 1

α2
·
(

1 + ε

1− ε

)
·

(
1 +

√
1 + ε

1− ε

)2l−2

.

It follows that

g2
2 ≤ 1 + ε

1− ε
·

(
1 +

√
1 + ε

1− ε

)2l−2

·
(

α2

σ2
l (A)

+ 1

)

≤ 1 + ε

1− ε
·

(
1 +

√
1 + ε

1− ε

)2l−2

·
(

1 + ε

1− ε
+ 1

)

⇒ g2 ≤
√

2(1 + ε)

1− ε

(
1 +

√
1 + ε

1− ε

)l−1

.

In summary,

g1 ≤

{
1 for QRCP,√

1+ε
1−ε for RQRCP with probability 1−∆.

(2.19)

g2 ≤

{
2l for QRCP,√

2(1+ε)

1−ε

(
1 +

√
1+ε
1−ε

)l−1

for RQRCP with probability 1−∆.
(2.20)

where ∆ is definded in Theorem 5.

2.4.5 An Algorithm to Compute SRQR

The parameter g1 is always modest in equation (2.19). Despite the exponential nature of
the upper bound on the parameter g2 in equation (2.20), g2 has always been known to
be modest with real data matrices. However, it can be exceptionally large for contrived
pathological matrices [65]. This motivates Algorithm 7 for computing SRQR. Algorithm
7 computes a partial QR factorization with RQRCP. It then efficiently estimates g2 and
performs additional column interchanges for a guaranteed SRQR only if g2 is too large.

After RQRCP, Algorithm 7 uses a randomized scheme to quickly and reliably estimate
g2 and compares it to a user-defined tolerance g > 1. Algorithm 7 exits if the estimated

g2 ≤ g. Otherwise, it swaps the ıth and (l+ 1)st columns of A and R. Each swap will make

CHAPTER 2. SPECTRUM-REVEALING QR 40

Algorithm 7 Spectrum-Revealing QR factorization (SRQR)

Inputs:
A is m× n matrix,
l ≥ k, the approximate rank, 1 ≤ k ≤ min (m,n)
Block size b. Oversampling size p.
g > 1 is user defined tolerance for g2

Outputs:
Q is m×m orthogonal matrix
R is m× n upper trapezoidal matrix
Π is n× n permutation matrix such that AΠ = QR
Algorithm:
Compute Q,R,Π with Algorithm 6
Compute squared 2-norm of the columns of B(:, l + 1 : n) : r̂i (l + 1 ≤ i ≤ n)
Approximate squared 2-norm of the columns of A(l + 1 : m, l + 1 : n) : ri = r̂i

b+p
(l + 1 ≤

i ≤ n)
ı = argmaxl+1≤i≤n{ri}
Swap ı-th and (l + 1)-st columns of A,Π, r
One-step QR factorization of A(l + 1 : m, l + 1 : n)
|α| = Rl+1,l+1

ri = ri − A(l + 1, i)2 (l + 2 ≤ i ≤ n)
Generate random matrix Ω ∈ N (0, 1)d×(l+1) (d� l)

Compute g2 = |α|
∥∥∥R̂−T∥∥∥

1,2
≈ |α|√

d

∥∥∥ΩR̂−T
∥∥∥

1,2

while g2 > g do
ı = argmax1≤i≤l+1{ith column l2 norm of ΩR̂−T}
Swap ı-th and (l + 1)-st columns of A and Π in a Round Robin rotation
Givens-rotate R back into upper-trapezoidal form
rl+1 = R2

l+1,l+1

ri = ri + A(l + 1, i)2 (l + 2 ≤ i ≤ n)
ı = argmaxl+1≤i≤n{ri}
Swap ı-th and (l + 1)-st columns of A,Π, r
One-step QR factorization of A(l + 1 : m, l + 1 : n)
|α| = Rl+1,l+1

ri = ri − A(l + 1, i)2 (l + 2 ≤ i ≤ n)
Generate random matrix Ω ∈ N (0, 1)d×(l+1)(d� l)

Compute g2 = |α|
∥∥∥R̂−T∥∥∥

1,2
≈ |α|√

d

∥∥∥ΩR̂−T
∥∥∥

1,2

end while

CHAPTER 2. SPECTRUM-REVEALING QR 41

the ıth column out of the upper-triangular form in R. A round-robin rotation is applied to
the columns of A and R, followed by a quick sequence of Givens rotations left multiplied to
R to restore its upper-triangular form. The while loop in Algorithm 7 will stop, after a finite
number of swaps, leading to a permutation that ensures g2 ≤ g with high probability.

The cost of estimating g2 is O(d l2), and the cost for one extra swap is O(n l). Matrix
R can be SVD-compressed into a rank-k matrix optionally, at cost of O(n l2). There is no
practical need for extra swaps for real data matrices, making Algorithm 7 only slightly more
expensive than RQRCP in general. At most a few swaps are enough, adding an insignificant
amount of computation to the cost of RQRCP, for pathological matrices like the Kahan
matrix [65].

2.5 Experimental Performance

Experiments in sections 2.5.1, 2.5.2, and 2.5.4 were performed on a laptop with 2.7 GHz Intel
Core i5 CPU and 8GB of RAM. Experiments in section 2.5.3 were performed on multiple
nodes of the NERSC machine Edison, where each node has two 12-core Intel processors.
Codes in sections 2.5.1, 2.5.2 were in Fortran and based on LAPACK. Codes in section 2.5.3
were in Fortran and C and based on ScaLAPACK. Codes in section 2.5.4 were in Matlab.

Codes are available at https://math.berkeley.edu/∼jwxiao/.

2.5.1 Approximation Quality Comparison on Datasets

In this section, we compare the approximation quality of the low-rank approximations com-
puted by SRQR, QRCP, and QR on practical datasets. We only list the results on two of
them: Human Activities and Postural Transitions (HAPT) [92] and the MNIST database
(MNIST) [73], while similar performance can be observed in others. We choose block size
b = 64, oversampling size p = 10, tolerance g = 5.0 and set l = k in our SRQR implementa-
tion. We compare the residual errors in figures 2.1 and 2.3, where QR is not doing a great
job, while QRCP and SRQR are doing equally well. We compare the run time in figures 2.2
and 2.4, where SRQR is much faster than QRCP and close to QR.

In other words, SRQR computes low-rank approximations comparable to those computed
by QRCP in quality, yet at a performance near that of QR.

2.5.2 Comparison on a Pathological Matrix: the Kahan Matrix

In this section we compare SRQR and QRCP on the Kahan matrix [65]. For the Kahan
matrix, QRCP won’t do any columns interchanges so it’s equivalent to QR. We choose
c = 0.285, s =

√
0.9999− c2, n = 96, 192, 384 and k = n − 1. We choose block size b = 64,

oversampling size p = 10, tolerance g = 5.0 and set l = k in our SRQR implementation.
From the relative residual errors summarized in table 2.1, we can see that SRQR is able to
compute a much better low-rank approximation.

CHAPTER 2. SPECTRUM-REVEALING QR 42

50 100 150 200 250 300 350 400 450 500

Target rank k

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
e

s
id

u
a

l
e

rr
o

r:
 |
|R

2
2
|| F

 /
 |
|A

|| F

HAPT Data. m=7767, n=561, b=64, p=10.

SRQR

QRCP

QR

Figure 2.1: Approximation quality comparison on HAPT.

50 100 150 200 250 300 350 400 450 500

Target rank k

10
-2

10
-1

10
0

10
1

R
u
n
 t
im

e
 (

s
e
c
)

HAPT Data. m=7767, n=561, b=64, p=10.

SRQR

QRCP

QR

Figure 2.2: Run time comparison on HAPT.

CHAPTER 2. SPECTRUM-REVEALING QR 43

0 100 200 300 400 500 600

Target rank k

10
-2

10
-1

10
0

R
e

s
id

u
a

l
e

rr
o

r:
 |
|R

2
2
|| F

 /
 |
|A

|| F

MNIST Data. m=60000, n=784, b=64, p=10.

SRQR

QRCP

QR

Figure 2.3: Approximation quality comparison on MNIST.

0 100 200 300 400 500 600

Target rank k

10
0

10
1

10
2

R
u

n
 t

im
e

 (
s
e

c
)

MNIST Data. m=60000, n=784, b=64, p=10.

SRQR

QRCP

QR

Figure 2.4: Run time comparison on MNIST.

CHAPTER 2. SPECTRUM-REVEALING QR 44

n k SRQR
(
‖R22‖F
‖A‖F

)
QRCP

(
‖R22‖F
‖A‖F

)
96 95 2.449E-13 1.808E-03
192 191 1.031E-25 2.169E-05
384 383 2.585E-50 4.414E-09

Table 2.1: Residual ‖R22‖F
‖A‖F

comparison on the Kahan matrix.

index SRQR
(
σj(R11)

σj(A)

)
QRCP

(
σj(R11)

σj(A)

)
187 1.000 0.9942
188 1.000 0.9932
189 1.000 0.9916
190 1.000 0.9883
191 1.000 0.2806E-17

Table 2.2: Singular value approximation ratio
σj(R11)

σj(A)
.

The singular value ratios
σj(R11)

σj(A)
never exceeds 1 for any approximation, but we would

like them to be close to 1 for a reliable spectrum-revealing QR factorization. For the Kahan
matrix where n = 192 and k = 191, table 2.2 demonstrates that QRCP failed to do so for
the index 191 singular value, whereas SRQR succeeded for all singular values.

The additional run time required to compute g2 is negligible. In our extensive compu-
tations with practical data in machine learning and other applications, g2 always remains
modest and never triggers subsequent SRQR column swaps. Nonetheless, computing g2

serves as an insurance policy against potential SRQR mistakes by QRCP or RQRCP.

2.5.3 Run Time Comparison in Distributed Memory Machines

In this section, we compare run time and strong scaling of RQRCP against ScaLAPACK
QRCP routines (PDGEQPF and PDGEQP3), ScaLAPACK QR routine PDGEQRF on dis-
tributed memory machines. PDGEQP3 [89] is not yet incorporated into ScaLAPACK, but
it’s usually more efficient than PDGEQPF, so is also included in the comparison.

The way the data is distributed over the memory hierarchy of a computer is of funda-
mental importance to load balancing and software reuse. ScaLAPACK uses a block cyclic
data distribution in order to reduce overhead due to load imbalance and data movement.
Block-partitioned algorithms are used to maximize local processor performance and ensure
high levels of data reuse.

Now we discuss how we parallelize RQRCP on a distributed memory machine based on
ScaLAPACK. After we distribute A to all processors, we use PDGEMM to compute B = ΩA.
In each loop, we use our version of PDGEQPF to compute a partial QRCP factorization
of B, meanwhile, we swap the columns of A according to the pivots found on B. In our

CHAPTER 2. SPECTRUM-REVEALING QR 45

implementation, A and B share the same column blocking factor NB, therefore we don’t
introduce much extra communication costs since the same column processors are sending
and receiving messages while doing the swaps on both A and B. After we swap the pivoted
columns to the leading position of the trailing matrix of A, we use PDGEQRF to perform a
panel QR. Next, we use PDLARFT and PDLARFB to apply the transpose of an orthogonal
matrix in a block form to the trailing matrix of A. At the end of each loop, we update the
remaining columns of B using updating formula (2.4). See algorithm 8.

Algorithm 8 Parallel RQRCP
Inputs:
A is m× n matrix, k is approximate rank, 1 ≤ k ≤ min (m,n)
Outputs:
Q is m×m orthogonal matrix
R is m× n upper trapezoidal matrix
Π is n× n permutation matrix such that AΠ = QR
Algorithm:
Determine block size b and oversampling size p ≥ 0
Distribute A to processors using block-cyclic layout
Generate i.i.d Gaussian matrix Ω ∈ N (0, 1)(b+p)×m

Compute B = ΩA using PDGEMM, initialize Π = In
for i = 1 : b : k do

b = min (b, k − i+ 1)
Run partial version of PDGEQPF (QRCP) on B(:, i : n), meanwhile apply the swaps

to A(:, i : n) and Π

PDGEQRF (QR) on A (i : m, i : i+ b− 1) = Q̃R̃

Use PDLARFT and PDLARFB to apply Q̃T in a blocked form to A(i : m, i+ b : n)
Update B(1 : b, i + b : n) = B(1 : b, i + b : n)− B(1 : b, i : j + b− 1)(A(i : i + b− 1.i :

i+ b− 1))−1A(i : i+ b− 1, i+ b : n)
end for
Q is the product of Q̃, R = upper trapezoidal part of A

We choose block size b = 64 and oversampling size p = 10 in our RQRCP implementation.
For all routines, we use an efficient data distribution by setting distribution block size MB =
NB = 64 and using a square processor grid, i.e., Pr = Pc, as recommended in [11]. Since the
run time is only dependent on the matrix size but not the actual magnitude of the entries,
we do the comparison on random matrices with different sizes, with n = 20000, 50000 and
200000. See figures 2.5 through 2.10.

The run time of RQRCP is always much better than that of ScaLAPACK QRCP routines
and relatively close to that of ScaLAPACK QR routine. For very large scale low-rank
approximations with a limited number of processors, distributed RQRCP is likely the method
of choice.

CHAPTER 2. SPECTRUM-REVEALING QR 46

0 50 100 150

of processors

10
0

10
1

10
2

10
3

10
4

R
u
n

 t
im

e
 (

s
e

c
)

m=n=k=20000, Pr=Pc=2->12, b=64, p=10

PDGEQRF(QR)

RQRCP

PDGEQP3(QRCP)

PDGEQPF(QRCP)

Figure 2.5: Run time comparison on distributed memory machines, n=20000.

However, RQRCP remains less than ideally strong scaled. There are two possible ways
to improve our parallel RQRCP algorithm and implementation in our future work.

• One bottleneck of our RQRCP parallel implementation is communication cost incurred
by partial QRCP on the compressed matrix B. These communication costs are negli-
gible on share memory machines or in distributed memory machines with a relatively
small number of nodes. On distributed memory machines with a large number of
nodes, many of them will be idle during partial QRCP computations on B, causing
the gap between RQRCP and PDGEQRF (QR) run time lines in figures 2.7 and 2.9.
The communication costs on B can be possibly reduced by using QR with tournament
pivoting [26] in place of partial QRCP.

• Another possible improvement of our RQRCP parallel implementation is to replace
PDGEQRF (QR) with Tall Skinny QR (TSQR) [27] in the panel QR factorization.

The parallelization of SRQR in ScaLAPACK is also in our future work.

2.5.4 SRQR Based CUR and CX Matrix Decomposition

The CUR and CX matrix decompositions are two important low-rank matrix approximation
and data analysis techniques, and have been widely discussed in [115, 44, 12]. A CUR
matrix decomposition algorithm seeks to find c columns of A to form C ∈ Rm×c, r rows

CHAPTER 2. SPECTRUM-REVEALING QR 47

0 50 100 150

of processors

0

5

10

15

20

25

30

35

40

S
p
e
e
d
u
p

m=n=k=20000, Pr=Pc=2->12, b=64, p=10

IDEAL SCALING

PDGEQRF(QR)

RQRCP

PDGEQP3(QRCP)

PDGEQPF(QRCP)

Figure 2.6: Strong scaling comparison on distributed memory machines, n=20000.

0 500 1000 1500 2000 2500

of processors

10
1

10
2

10
3

10
4

R
u
n
 t
im

e
 (

s
e
c
)

m=n=k=50000, Pr=Pc=10->50, b=64, p=10

PDGEQRF(QR)

RQRCP

PDGEQP3(QRCP)

PDGEQPF(QRCP)

Figure 2.7: Run time comparison on distributed memory machines, n=50000.

CHAPTER 2. SPECTRUM-REVEALING QR 48

0 500 1000 1500 2000 2500

of processors

0

5

10

15

20

25

S
p

e
e

d
u

p

m=n=k=50000, Pr=Pc=10->50, b=64, p=10

IDEAL SCALING

PDGEQRF(QR)

RQRCP

PDGEQP3(QRCP)

PDGEQPF(QRCP)

Figure 2.8: Strong scaling comparison on distributed memory machines, n=50000.

2000 3000 4000 5000 6000 7000 8000 9000 10000

of processors

10
2

10
3

10
4

R
u
n
 t
im

e
 (

s
e
c
)

m=n=k=200000, Pr=Pc=50->100, b=64, p=10

PDGEQRF(QR)

RQRCP

PDGEQP3(QRCP)

PDGEQPF(QRCP)

Figure 2.9: Run time comparison on distributed memory machines, n=200000.

CHAPTER 2. SPECTRUM-REVEALING QR 49

2000 3000 4000 5000 6000 7000 8000 9000 10000

of processors

1

1.5

2

2.5

3

3.5

4

S
p
e
e
d
u
p

m=n=k=200000, Pr=Pc=50->100, b=64, p=10

IDEAL SCALING

PDGEQRF(QR)

RQRCP

PDGEQP3(QRCP)

PDGEQPF(QRCP)

Figure 2.10: Strong scaling comparison on distributed memory machines, n=200000.

of A to form R ∈ Rr×n, and an intersection matrix U ∈ Rc×r such that ‖A− CUR‖F is
small. One particular choice of U is C†AR†, which is the solution to minX ‖CXR− A‖2

F . A
CX decomposition algorithm seeks to find c columns of A to form C ∈ Rm×c and a matrix
X ∈ Rc×n such that ‖A− CX‖F is small. One particular choice of X is C†A, which is the
solution to minX ‖CX − A‖2

F .
GitHub repository [99] provides a Matlab library for CUR matrix decomposition. These

CUR matrix decomposition algorithms can be modified to compute a CX matrix decompo-
sition. Since the crucial component of CUR and CX matrix decompositions is column/row
selection, we can use SRQR to find the pivots and hence compute these decompositions.
In this experiment, we compare SRQR against the state-of-the-art CUR and CX matrix
decomposition algorithms.

We compare the approximation quality and run time on a kernel matrix A of size 4177×
4177 computed on Abalone Data Set [7], for approximate rank k = 200 = l with different
numbers of columns and rows used. In Figures 2.11, 2.12, 2.13, and 2.14, the x-axis stands
for the number of columns and rows we choose for the CUR or CX matrix decomposition.
The most efficient and effective method in the Matlab library is the near optimal method
[115]. The near-optimal algorithm consists of three steps: the approximate SVD via random
projection [12, 52], the dual set sparsification algorithm [12], and the adaptive sampling
algorithm [28]. We can see that SRQR and the near optimal method are obtaining much
better low-rank approximations than the other three methods, while SRQR is much faster
than the near optimal method. The other three methods are not competitive, where DetUCS

CHAPTER 2. SPECTRUM-REVEALING QR 50

220 240 260 280 300 320

value of c and r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k
(C

U
R

)/
k
(A

)

kth Singular Value Ratio

DetUCS

RandLeverage

NearOptimal

SRQR

RandUniform

Figure 2.11: Approximation quality comparison, CUR based algorithms.

stands for deterministic unweighted column selection based algorithm; RandLeverage stands
for subspace sampling algorithm; RandUniform stands for naive uniform sampling algorithm.
For more details about these algorithms, please refer to [44, 115].

CHAPTER 2. SPECTRUM-REVEALING QR 51

220 240 260 280 300 320

value of c and r

10
-2

10
-1

10
0

10
1

10
2

10
3

R
u

n
 t

im
e

 (
s
e

c
)

Run Time

DetUCS

RandLeverage

NearOptimal

SRQR

RandUniform

Figure 2.12: Run time comparison, CUR based algorithms.

220 240 260 280 300 320

value of c

0.5

0.6

0.7

0.8

0.9

k
(C

X
)/

k
(A

)

kth Singular Value Ratio

DetUCS

RandLeverage

NearOptimal

SRQR

RandUniform

Figure 2.13: Approximation quality comparison, CX based algorithms.

CHAPTER 2. SPECTRUM-REVEALING QR 52

220 240 260 280 300 320

value of c

10
-4

10
-2

10
0

10
2

10
4

R
u

n
 t

im
e

 (
s
e

c
)

Run Time

DetUCS

RandLeverage

NearOptimal

SRQR

RandUniform

Figure 2.14: Run time comparison, CX based algorithms.

53

Chapter 3

Flip-Flop SRQR

3.1 Introduction

The singular value decomposition (SVD) of a matrix A ∈ Rm×n is the factorization of A
into the product of three matrices A = UΣV T where U = (u1, · · · , um) ∈ Rm×m and V =
(v1, · · · , vn) ∈ Rn×n are orthogonal singular vector matrices and Σ ∈ Rm×n is a rectangular
diagonal matrix with non-increasing non-negative singular values σi (1 ≤ i ≤ min (m,n)) on
the diagonal. The SVD has become a critical analytic tool in large data analysis and machine
learning [1, 36, 86]. 1

Let Diag (x) denote the diagonal matrix with vector x ∈ Rn on its diagonal. For any
1 ≤ k ≤ min (m,n), the rank-k truncated SVD of A is defined by

Ak
def
= (u1, · · · , uk) Diag (σ1, · · · , σk) (v1, · · · , vk)T .

The rank-k truncated SVD turns out to be the best rank-k approximation to A, as explained
by Therorem 6.

Theorem 6. (Eckart–Young–Mirsky Theorem [35, 47]).

min
rank(C)≤k

‖A− C‖2 = ‖A− Ak‖2 = σk+1,

min
rank(C)≤k

‖A− C‖F = ‖A− Ak‖F =

√√√√min(m,n)∑
j=k+1

σ2
j ,

where ‖ · ‖2 and ‖ · ‖F denote the l2 operator norm and the Frobenius norm respectively.

However, due to the prohibitive costs in computing the rank-k truncated SVD, in practical
applications one typically computes a rank-k approximate SVD which satisfies some tolerance

1Materials in this chapter are mainly from the paper titled Low-Rank Matrix Approximations with
Flip-Flop Spectrum-Revealing QR Factorization [39], which is posted on arXiv.

CHAPTER 3. FLIP-FLOP SRQR 54

requirements [29, 48, 52, 71, 102]. Rank-k approximate SVD has been applied to many
research areas including principal component analysis (PCA) [64, 93], web search models
[67], information retrieval [8, 43], and face recognition [85, 108].

Among assorted SVD approximation algorithms, the pivoted QLP decomposition pro-
posed by Stewart [102] is an effective and efficient one. The pivoted QLP decomposition
is obtained by computing a QR factorization with column pivoting [13, 46] on A to get an
upper triangular factor R and then computing an LQ factorization on R to get a lower trian-
gular factor L. Stewart’s key numerical observation is that the diagonal elements of L track
the singular values of A with “considerable fidelity” no matter the matrix A. The pivoted
QLP decomposition is extensively analyzed in Huckaby and Chan [61, 62]. More recently,
Duersch and Gu developed a much more efficient variant of the pivoted QLP decomposition,
TUXV, and demonstrated its remarkable quality as a low-rank approximation empirically
without a rigid justification of TUXV’s success theoretically [33].

In this paper, we present Flip-Flop SRQR, a slightly different variant of TUXV of Duer-
sch and Gu [33]. Like TUXV, Flip-Flop SRQR performs most of its work in computing a
partial QR factorization using truncated randomized QRCP (TRQRCP) and a partial LQ
factorization. Unlike TUXV, however, Flip-Flop SRQR also performs additional computa-
tions to ensure a spectrum-revealing QR factorization (SRQR) [121] before the partial LQ
factorization.

We demonstrate the remarkable theoretical quality of this variant as a low-rank approxi-
mation, and its high competitiveness with state-of-the-art low-rank approximation methods
in real world applications in both low-rank tensor compression [23, 69, 95, 109] and nuclear
norm minimization [14, 75, 80, 87, 104].

The rest of this chapter is organized as follows: In Section 3.2 we introduce the TRQRCP
algorithm, the spectrum-revealing QR factorization, low-rank tensor compression, and nu-
clear norm minimization. In Section 3.3, we introduce Flip-Flop SRQR and analyze its
computational costs and low-rank approximation properties. In Section 3.4, we present
numerical experimental results comparing Flip-Flop SRQR with state-of-the-art low-rank
approximation methods. In Section 3.5, we briefly introduce approximate SVD with ran-
domized subspace iteration method and also analyze its complexity.

3.2 Preliminaries and Background

3.2.1 Partial QRCP

The QR factorization of a matrix A ∈ Rm×n is A = QR with orthogonal matrix Q ∈ Rm×m

and upper trapezoidal matrix R ∈ Rm×n, which can be computed by LAPACK [2] routine
xGEQRF, where x stands for the matrix data type. The standard QR factorization is not
suitable for some practical situations where either the matrix A is rank deficient or only
representative columns of A are of interest. Usually the QR factorization with column
pivoting (QRCP) is adequate for the aforementioned situations except a few rare examples

CHAPTER 3. FLIP-FLOP SRQR 55

such as the Kahan matrix [47]. Given a matrix A ∈ Rm×n, the QRCP of matrix A has the
form

AΠ = QR,

where Π ∈ Rn×n is a permutation matrix, Q ∈ Rm×m is an orthogonal matrix, and R ∈ Rm×n

is an upper trapezoidal matrix. QRCP can be computed by LAPACK [2] routines xGEQPF
and xGEQP3, where xGEQP3 is a more efficient blocked implementation of xGEQPF. For
given target rank k (1 ≤ k ≤ min (m,n)), the partial QRCP factorization has a 2× 2 block
form

AΠ = Q

(
R11 R12

R22

)
=
(
Q1 Q2

)(R11 R12

R22

)
, (3.1)

where R11 ∈ Rk×k is upper triangular. The details of partial QRCP are covered in Algorithm
5. The partial QRCP computes an approximate column subspace of A spanned by the
leading k columns in AΠ, up to the error term in R22. Equivalently, (3.1) yields a low rank
approximation

A ≈ Q1

(
R11 R12

)
ΠT , (3.2)

with approximation quality closely related to the error term in R22.

Algorithm 9 Truncated Randomized QRCP (TRQRCP)

Inputs:
Matrix A ∈ Rm×n. Target rank k. Block size b. Oversampling size p ≥ 0.
Outputs:
Orthogonal matrix Q ∈ Rm×m.
Upper trapezoidal matrix R ∈ Rk×n.
Permutation matrix Π ∈ Rn×n such that AΠ ≈ Q (:, 1 : k)R.
Algorithm:
Generate i.i.d. Gaussian random matrix Ω ∈ N (0, 1)(b+p)×m.
Form the initial sample matrix B = ΩA and initialize Π = In.
for j = 1 : b : k do

b = min (k − j + 1, b).
Do partial QRCP on B (:, j : n) to obtain b pivots.
Exchange corresponding columns in A, B, Π and W T .
Do QR on A (j : m, j : j + b− 1) using WY formula without updating the trailing

matrix.
Update B (:, j + b : n).

end for
Q = Q1Q2 · · ·Qdk/be. R = upper trapezoidal part of the submatrix A (1 : k, 1 : n).

The Randomized QRCP (RQRCP) algorithm [33, 121] is a more efficient variant of

Algorithm 5. RQRCP generates a Gaussian random matrix Ω ∈ N (0, 1)(b+p)×m with b+p�
m, where the entries of Ω are independently sampled from normal distribution, to compress

CHAPTER 3. FLIP-FLOP SRQR 56

A into B = ΩA with much smaller row dimension. In practice, b is the block size and p is the
oversampling size. RQRCP repeatedly runs partial QRCP on B to obtain b column pivots,
applies them to the matrix A, and then computes QR without pivoting (QRNP) on A and
updates the remaining columns of B. RQRCP exits this process when it reaches the target
rank k. QRCP and RQRCP choose pivots on A and B respectively. RQRCP is significantly
faster than QRCP as B has much smaller row dimension than A. It is shown in [121] that
RQRCP is as reliable as QRCP up to failure probabilities that decay exponentially with
respect to the oversampling size p.

Since the trailing matrix of A is usually not required for low-rank matrix approximations
(see (3.2)), the TRQRCP (truncated RQRCP) algorithm of [33] re-organizes the computa-
tions in RQRCP to directly compute the approximation (3.2) without explicitly computing
the trailing matrix R22. For more details, both RQRCP and TRQRCP are based on the WY
representation of the Householder transformations [9, 89, 96]:

Q = Q1Q2 · · ·Qk = I − Y TY T ,

where T ∈ Rk×k is an upper triangular matrix and Y ∈ Rm×k is a trapezoidal matrix

consisting of k consecutive Householder vectors. Let W T def
= T TY TA, then the trailing

matrix update formula becomes QTA = A − YW T . The main difference between RQRCP
and TRQRCP is that while RQRCP computes the whole trailing matrix update, TRQRCP
only computes the part of the update that affects the approximation (3.2). More discussions
about RQRCP and TRQRCP can be found in [33]. The main steps of TRQRCP are briefly
described in Algorithm 9.

With TRQRCP, the TUXV algorithm (Algorithm 7 in [33]) computes a low-rank approx-
imation with the QLP factorization at a greatly accelerated speed, by computing a partial
QR factorization with column pivoting, followed with a partial LQ factorization.

3.2.2 Spectrum-revealing QR Factorization

Algorithm 10 TUXV Algorithm
Inputs:
Matrix A ∈ Rm×n. Target rank k. Block size b. Oversampling size p ≥ 0.
Outputs:
Column orthonormal matrices U ∈ Rm×k, V ∈ Rn×k, and upper triangular matrix
R ∈ Rk×k such that A ≈ URV T .
Algorithm:
Do TRQRCP on A to obtain Q ∈ Rm×k, R ∈ Rk×n, and Π ∈ Rn×n.
R = RΠT and do LQ factorization, i.e., [V,R] = qr(RT , 0).
Compute Z = AV and do QR factorization, i.e., [U,R] = qr(Z, 0).

Although both RQRCP and TRQRCP are very effective practical tools for low-rank ma-
trix approximations, they are not known to provide reliable low-rank matrix approximations

CHAPTER 3. FLIP-FLOP SRQR 57

due to their underlying greediness in column l2 norm based pivoting strategy. To solve
this potential problem of column based QR factorization, Gu and Eisenstat [49] proposed
an efficient way to perform additional column interchanges to enhance the quality of the
leading k columns in AΠ as a basis for the approximate column subspace. More recently,
a more efficient and effective method, spectrum-revealing QR factorization (SRQR), was
introduced and analyzed in [121] to compute the low-rank approximation (3.2). The con-
cept of spectrum-revealing, first introduced in [120], emphasizes the utilization of partial QR
factorization (3.2) as a low-rank matrix approximation, as opposed to the more traditional
rank-revealing factorization, which emphasizes the utility of the partial QR factorization
(3.1) as a tool for numerical rank determination. SRQR algorithm is described in Algorithm
7. SRQR initializes a partial QR factorization using RQRCP or TRQRCP and then verifies
an SRQR condition. If the SRQR condition fails, it will perform a pair-wise swap between
a pair of leading column (one of the first k columns of AΠ) and trailing column (one of the
remaining columns). The SRQR algorithm will always run to completion with a high-quality
low-rank matrix approximation (3.2). For real data matrices that usually have fast decaying
singular-value spectrum, this approximation is often as good as the truncated SVD. The
SRQR algorithm of [121] explicitly updates the partial QR factorization (3.1) while swap-
ping columns, but the SRQR algorithm can actually avoid any explicit computations on the
trailing matrix R22 using TRQRCP instead of RQRCP to obtain exactly the same partial
QR initialization. Below we outline the SRQR algorithm.

In (3.1), let

R̃
def
=

(
R11 a

α

)
(3.3)

be the leading (l + 1)× (l + 1) submatrix of R. We define

g1
def
=
‖R22‖1,2

|α|
and g2

def
= |α|

∥∥∥R̃−T∥∥∥
1,2
, (3.4)

where ‖X‖1,2 is the largest column 2-norm of X for any given X. In chapter 2, we proved
approximation quality bounds involving g1, g2 for the low-rank approximation computed by
RQRCP or TRQRCP. RQRCP or TRQRCP will provide a good low-rank matrix approxima-

tion if g1 and g2 are O(1). We also proved that g1 ≤
√

1+ε
1−ε and g2 ≤

√
2(1+ε)

1−ε

(
1 +

√
1+ε
1−ε

)l−1

hold with high probability for both RQRCP and TRQRCP, where 0 < ε < 1 is a user-defined
parameter which guides the choice of the oversampling size p. For reasonably chosen ε like
ε = 1

2
, g1 is a small constant while g2 can potentially be a extremely large number, which

can lead to poor low-rank approximation quality. To avoid the potential large number of g2,
the SRQR algorithm uses a pair-wise swapping strategy to guarantee that g2 is below some
user defined tolerance g > 1 which is usually chosen to be a small number greater than one,
like 2.0. In Algorithm 7, we use an approximate formula instead of directly use the definition

(3.4) to estimate g2, i.e., g2 ≈ |α|√
d

∥∥∥ΩR̃−T
∥∥∥

1,2
, based on the Johnson-Lindenstrauss Theorem

2.

CHAPTER 3. FLIP-FLOP SRQR 58

3.2.3 Tensor Approximation

In this section we review some basic notations and concepts involving tensors. A more
detailed discussion of the properties and applications of tensors can be found in the review
[69]. A tensor is a d-dimensional array of numbers denoted by script notation X ∈ RI1×···×Id

with entries given by
xj1,...,jd , 1 ≤ j1 ≤ I1, . . . , 1 ≤ jd ≤ Id.

We use the matrix X(n) ∈ RIn×(Πj 6=nIj) to denote the nth mode unfolding of the tensor
X . Since this tensor has d dimensions, there are altogether d-possibilities for unfolding. The
n-mode product of a tensor X ∈ RI1×···×Id with a matrix U ∈ Rk×In results in a tensor
Y ∈ RI1×···×In−1×k×In+1×···×Id such that

yj1,...,jn−1,j,jn+1,...,jd = (X ×n U)j1,...,jn−1,j,jn+1,...,jd
=

In∑
jn=1

xj1,...,jduj,jn .

Alternatively it can be expressed conveniently in terms of unfolded tensors:

Y = X ×n U ⇔ Y(n) = UX(n).

Decompositions of higher-order tensors have applications in signal processing [22, 98, 25],
numerical linear algebra [23, 68, 122], computer vision [110, 97, 114], etc. Two particular
tensor decompositions can be considered as higher-order extensions of the matrix SVD:
CANDECOMP/PARAFAC (CP) [17, 55] decomposes a tensor as a sum of rank-one tensors,
and the Tucker decomposition [106] is a higher-order form of principal component analysis.
Given the definitions of mode products and unfolding of tensors, we can define the higher-
order SVD (HOSVD) algorithm for producing a rank (k1, . . . , kd) approximation to the tensor
based on the Tucker decomposition format. The HOSVD algorithm [23, 69] returns a core
tensor G ∈ Rk1×···×kd and a set of unitary matrices Uj ∈ RIj×kj for j = 1, . . . , d such that

X ≈ G ×1 U1 · · · ×d Ud,

where the right-hand side is called a Tucker decomposition. However, a straightforward
generalization to higher-order (d ≥ 3) tensors of the matrix Eckart–Young–Mirsky Theorem
is not possible [24]. The HOSVD algorithm is outlined in Algorithm 11.

Since HOSVD can be prohibitive for large-scale problems, there has been a lot of liter-
ature to improve the efficiency of HOSVD computations without a noticeable deterioration
in quality. One strategy for truncating the HOSVD, sequentially truncated HOSVD (ST-
HOSVD) algorithm, was proposed in [3] and studied by [109]. As was shown by [109], ST-
HOSVD retains several of the favorable properties of HOSVD while significantly reducing
the computational cost and memory consumption. The ST-HOSVD is outlined in Algorithm
12.

Unlike HOSVD, where the number of entries in tensor unfolding X(j) remains the same
after each loop, the number of entries in G(pj) decreases as j increases in ST-HOSVD. In

CHAPTER 3. FLIP-FLOP SRQR 59

Algorithm 11 HOSVD
Inputs:
Tensor X ∈ RI1×···×Id and desired rank (k1, . . . , kd).
Outputs:
Tucker decomposition [G;U1, · · · , Ud].
Algorithm:
for j = 1 : d do

Compute kj left singular vectors Uj ∈ RIj×kj of unfolding X(j).
end for
Compute core tensor G ∈ Rk1×···×kd as

G def
= X ×1 U

T
1 ×2 · · · ×d UT

d .

Algorithm 12 ST-HOSVD
Inputs:
Tensor X ∈ RI1×···×Id , desired rank (k1, . . . , kd), and processing order p = (p1, · · · , pd).
Outputs:
Tucker decomposition [G;U1, · · · , Ud].
Algorithm:
Define tensor G ← X .
for j = 1 : d do

r = pj.

Compute exact or approximate rank kr SVD of the tensor unfolding G(r) ≈ ÛrΣ̂rV̂
T
r .

Ur ← Ûr.
Update G(r) ← Σ̂rV̂

T
r , i.e., applying ÛT

r to G.
end for

ST-HOSVD, one key step is to compute exact or approximate rank-kr SVD of the tensor
unfolding. Well known efficient ways to compute an exact low-rank SVD include Krylov
subspace methods [74]. There are also efficient randomized algorithms to find an approx-
imate low-rank SVD [52]. In Matlab tensorlab toolbox [112], the most efficient method,
MLSVD RSI, is essentially ST-HOSVD with randomized subspace iteration to find approx-
imate SVD of tensor unfolding.

3.2.4 Nuclear Norm Minimization

Matrix rank minimization problem appears ubiquitously in many fields such as Euclidean
embedding [38, 76], control [37, 84, 90], collaborative filtering [15, 91, 101], system identifi-
cation [77, 78], etc. Matrix rank minimization problem has the following form:

min
X∈C

rank (X)

CHAPTER 3. FLIP-FLOP SRQR 60

where X ∈ Rm×n is the decision variable, and C is a convex set. In general, this problem is
NP-hard due to the combinatorial nature of the function rank (·). To obtain a convex and
more computationally tractable problem, rank (X) is replaced by its convex envelope. In
[37], authors proved that the nuclear norm ‖X‖∗ is the convex envelope of rank (X) on the
set {X ∈ Rm×n : ‖X‖2 ≤ 1}. The nuclear norm of a matrix X ∈ Rm×n is defined as

‖X‖∗
def
=

q∑
i=1

σi (X) ,

where q = rank (X) and σi (X)’s are the singular values of X.
In many applications, the regularized form of nuclear norm minimization problem is

considered:
min

X∈Rm×n
f (X) + τ‖X‖∗

where τ > 0 is a regularization parameter. The choice of function f (·) is situational:
f (X) = ‖M − X‖1 in robust principal component analysis (robust PCA) [16], f (X) =
‖πΩ (M)−πΩ (X) ||2F in matrix completion [14], f (X) = 1

2
‖AX−B‖2

F in multi-class learning
and multivariate regression [80], where M is the measured data, ‖ · ‖1 denotes the l1 norm,
and πΩ (·) is an orthogonal projection onto the span of matrices vanishing outside of Ω so
that [πΩ (X)]i,j = Xij if (i, j) ∈ Ω and zero otherwise.

Many researchers have devoted themselves to solving the above nuclear norm minimiza-
tion problem and plenty of algorithms have been proposed, including, singular value thresh-
olding (SVT) [14], fixed point continuous (FPC) [80], accelerated proximal gradient (APG)
[104], augmented Lagrange multiplier (ALM) [75]. The most expensive part of these algo-
rithms is in the computation of the truncated SVD. Inexact augmented Lagrange multiplier
(IALM) [75] has been proved to be one of the most accurate and efficient among them. We
now describe IALM for robust PCA and matrix completion problems.

Robust PCA problem can be formalized as a minimization problem of sum of nuclear
norm and scaled matrix l1-norm (sum of matrix entries in absolute value):

min ‖X‖∗ + λ‖E‖1, subject to M = X + E, (3.5)

where M is measured matrix, X has low-rank, E is an error matrix and sufficiently sparse,
and λ is a positive weighting parameter. Algorithm 13 describes the details of IALM method
to solve robust PCA [75] problem, where ‖ · ‖M denotes the maximum absolute value of the
matrix entries, and Sω (x) = sgn (x)·max (|x| − ω, 0) is the soft shrinkage operator [51] where
x ∈ Rn and ω > 0.

Matrix completion problem [15, 75] can be written in the form:

min
X∈Rm×n

‖X‖∗ subject to X + E = M, πΩ (E) = 0, (3.6)

where πΩ : Rm×n → Rm×n is an orthogonal projection that keeps the entries in Ω unchanged
and sets those outside Ω zeros. In [75], authors applied IALM method on the matrix com-
pletion problem. We describe this method in Algorithm 14, where Ω is the complement of
Ω.

CHAPTER 3. FLIP-FLOP SRQR 61

Algorithm 13 Robust PCA Using IALM
Inputs:
Measured matrix M ∈ Rm×n, positive number λ, µ0, µ, tolerance tol, ρ > 1.
Outputs:
Matrix pair (Xk, Ek).
Algorithm:
k = 0; J (M) = max (‖M‖2, λ

−1‖M‖M) ; Y0 = M/J (M); E0 = 0;
while not converged do

(U,Σ,V) = svd
(
M− Ek + µ−1k Yk

)
;

Xk+1 = USµ−1
k

(Σ)V T ;

Ek+1 = Sλµ−1
k

(
M −Xk+1 + µ−1

k Yk
)
;

Yk+1 = Yk + µk (M −Xk+1 − Ek+1);
Update µk+1 = min (ρµk, µ);
k = k + 1;
if ‖M −Xk − Ek‖F/‖M‖F < tol then

Break;
end if

end while

Algorithm 14 Matrix Completion Using IALM
Inputs:
Sampled set Ω, sampled entries πΩ (M), positive number λ, µ0, µ, tolerance tol, ρ > 1.
Outputs:
Matrix pair (Xk, Ek).
Algorithm:
k = 0; Y0 = 0; E0 = 0;
while not converged do

(U,Σ,V) = svd
(
M− Ek + µ−1k Yk

)
;

Xk+1 = USµ−1
k

(Σ)V T ;

Ek+1 = πΩ

(
M −Xk+1 + µ−1

k Yk
)
;

Yk+1 = Yk + µk (M −Xk+1 − Ek+1);
Update µk+1 = min (ρµk, µ);
k = k + 1;
if ‖M −Xk − Ek‖F/‖M‖F < tol then

Break;
end if

end while

CHAPTER 3. FLIP-FLOP SRQR 62

3.3 Flip-Flop SRQR Factorization

3.3.1 Flip-Flop SRQR Factorization

In this section, we introduce our Flip-Flop SRQR factorization, slightly different from TUXV
(Algorithm 10), to compute SVD approximation based on QLP factorization. Given integer
l ≥ k, we run SRQR (the version without computing the trailing matrix) to l steps on A,

AΠ = QR = Q

(
R11 R12

R22

)
, (3.7)

where R11 ∈ Rl×l is upper triangular; R12 ∈ Rl×(n−l); and R22 ∈ R(m−l)×(n−l). Then we run
partial QRNP to l steps on RT ,

RT =

(
RT

11

RT
12 RT

22

)
= Q̂

(
R̂11 R̂12

R̂22

)
≈ Q̂1

(
R̂11 R̂12

)
, (3.8)

where Q̂ =
(
Q̂1 Q̂2

)
with Q̂1 ∈ Rn×l. Therefore, combing the fact that AΠQ̂1 =

Q
(
R̂11 R̂12

)T
, we can approximate matrix A by

A = QRΠT = Q
(
RT
)T

ΠT ≈ Q

(
R̂T

11

R̂T
12

)
Q̂T

1 ΠT = A
(

ΠQ̂1

)(
ΠQ̂1

)T
. (3.9)

We denote the rank-k truncated SVD of AΠQ̂1 by ŨkΣkṼ
T
k . Let Uk = Ũk, Vk = ΠQ̂1Ṽk,

then using (3.9), a rank-k approximate SVD of A is obtained:

A ≈ UkΣkV
T
k , (3.10)

where Uk ∈ Rm×k, Vk ∈ Rn×k are column orthonormal; and Σk = Diag (σ1, · · · , σk) with σi’s

are the leading k singular values of AΠQ̂1. The Flip-Flop SRQR factorization is outlined in
Algorithm 15.

3.3.2 Complexity Analysis

In this section, we do a complexity analysis of Flip-Flop SRQR. Since approximate SVD only
makes sense when target rank k is small, we assume k ≤ l � min (m,n). The complexity
analysis of Flip-Flop SRQR is as follows:

1. The main cost of doing SRQR with TRQRCP on A is 2mnl+ 2(b+ p)mn+ (m+n)l2.

2. The main cost of QR factorization on (R11, R12)T and forming Q̂1 is 2nl2 − 2
3
l3.

3. The main cost of computing tmp = AΠQ̂1 is 2mnl.

CHAPTER 3. FLIP-FLOP SRQR 63

Algorithm 15 Flip-Flop Spectrum-Revealing QR Factorization
Inputs:
Matrix A ∈ Rm×n. Target rank k. Block size b. Oversampling size p ≥ 0.
Integer l ≥ k. Tolerance g > 1 for g2.
Outputs:
U ∈ Rm×k contains the approximate top k left singular vectors of A.
Σ ∈ Rk×k contains the approximate top k singular values of A.
V ∈ Rn×k contains the approximate top k right singular vectors of A.
Algorithm:
Run SRQR on A to l steps to obtain (R11, R12).

Run QRNP on (R11, R12)T to obtain Q̂1, represented by a sequence of Householder vectors.

tmp = AΠQ̂1.
[Utmp,Σtmp, Vtmp] = svd (tmp).

U = Utmp (:, 1 :, k) ,Σ = Σtmp (1 : k, 1 : k) , V = ΠQ̂1Vtmp (:, 1 : k).

4. The main cost of computing [U,∼,∼] = svd (tmp) is O(ml2).

5. The main cost of forming Vk is 2nlk.

Since k ≤ l � min (m,n), the complexity of Flip-Flop SRQR is (4l + 2(b + p))mn by
omitting the lower-order terms.

On the other hand, the complexity of approximate SVD with randomized subspace it-
eration (RSISVD) [48, 52] is (4 + 4q) (k + p)mn, where p is the oversampling size and q is
the number of subspace iterations (see detailed analysis in the appendix). In practice, p is
chosen to be a small integer like 5 in RSISVD. In Flip-Flop SRQR, l is usually chosen to
be a little bit larger than k, like l = k + 5. We also found that l = k is sufficient in terms
of approximation quality in our numerical experiments. Assume that l = k + s where s is a
small positive integer like 5, and block size b is 32 or 64, and q is 1 or 2, and oversampling
size p is 5, we claim that Flip-Flop SRQR is more efficient than RSISVD. In fact, we notice
that

(4l + 2 (b+ p))mn < (4 + 4q) (k + p)mn

⇔ 4l + 2 (b+ p) < (4 + 4q) (k + p)

⇔ 2l + b+ p < 2k + 2p+ 2qk + 2pq

⇔ 2s+ b < p+ 2qk + 2pq

where the last inequality holds true because the left-hand side is a constant like (2∗5+64) =
74 while the right-hand side is a linear function of the target rank k, which is obviously larger.
Such over-performance can also be validated by our numerous experiments in Section 3.4.

CHAPTER 3. FLIP-FLOP SRQR 64

3.3.3 Quality Analysis of Flip-Flop SRQR

This section is devoted to the quality analysis of Flip-Flop SRQR. We start with Lemma 6.

Lemma 6. Given any matrix X = (X1, X2) with Xi ∈ Rm×ni (i = 1, 2) and n1 + n2 = n,

σj (X)2 ≤ σj (X1)2 + ‖X2‖2
2 (1 ≤ j ≤ min(m,n)) .

Proof. Since XXT = X1X
T
1 +X2X

T
2 , we obtain the above result using [60, Theorem 3.3.16].

We are now ready to derive bounds on the singular values and approximation error of
Flip-Flop SRQR. We need to emphasize that even if the target rank is k, we run Flip-Flop
SRQR with an actual target rank l which is a little bit larger than k. The difference between
k and l can create a gap between singular values of A so that we can obtain a reliable
low-rank approximation.

Theorem 7. Given matrix A ∈ Rm×n, target rank k, oversampling size p, and an actual
target rank l ≥ k, Uk, Σk, Vk computed by (3.10) of Flip-Flop SRQR satisfies

σj(Σk) ≥
σj(A)

4

√
1 +

2‖R22‖42
σ4
j (Σk)

(1 ≤ j ≤ k) , (3.11)

and ∥∥A− UkΣkV
T
k

∥∥
2
≤ σk+1 (A)

4

√
1 + 2

(
‖R22‖2

σk+1 (A)

)4

, (3.12)

where R22 ∈ R(m−l)×(n−l) is the trailing matrix in (3.7). Using the properties of SRQR, we
can further have

σj (Σk) ≥
σj (A)

4

√
1 + min

(
2τ̂ 4, τ 4 (2 + 4τ̂ 4)

(
σl+1(A)

σj(A)

)4
) (1 ≤ j ≤ k) , (3.13)

and ∥∥A− UkΣkV
T
k

∥∥
2
≤ σk+1 (A)

4

√
1 + 2τ 4

(
σl+1 (A)

σk+1 (A)

)4

, (3.14)

where τ and τ̂ defined in (3.18) have matrix dimensional dependent upper bounds:

τ ≤ g1g2

√
(l + 1) (n− l), and τ̂ ≤ g1g2

√
l (n− l),

where g1 ≤
√

1+ε
1−ε and g2 ≤ g with high probability. ε > 0 and g > 1 are user defined

parameters.

CHAPTER 3. FLIP-FLOP SRQR 65

Proof. In terms of the singular value bounds, observe that(
R̂11 R̂12

R̂22

)(
R̂11 R̂12

R̂22

)T

=

(
R̂11R̂

T
11 + R̂12R̂

T
12 R̂12R̂

T
22

R̂22R̂
T
12 R̂22R̂

T
22

)
,

we apply Lemma 6 twice for any 1 ≤ j ≤ k,

σ2
j

(R̂11 R̂12

R̂22

)(
R̂11 R̂12

R̂22

)T


≤σ2
j

((
R̂11R̂

T
11 + R̂12R̂

T
12 R̂12R̂

T
22

))
+
∥∥∥(R̂22R̂

T
12 R̂22R̂

T
22

)∥∥∥2

2

≤σ2
j

(
R̂11R̂

T
11 + R̂12R̂

T
12

)
+
∥∥∥R̂12R̂

T
22

∥∥∥2

2
+
∥∥∥(R̂22R̂

T
12 R̂22R̂

T
22

)∥∥∥2

2

≤σ2
j

(
R̂11R̂

T
11 + R̂12R̂

T
12

)
+ 2

∥∥∥∥∥
(
R̂12

R̂22

)∥∥∥∥∥
4

2

=σ2
j

(
R̂11R̂

T
11 + R̂12R̂

T
12

)
+ 2 ‖R22‖4

2 . (3.15)

The relation (3.15) can be further rewritten as

σ4
j (A) ≤ σ4

j

((
R̂11 R̂12

))
+ 2 ‖R22‖4

2 = σ4
j (Σk) + 2 ‖R22‖4

2 (1 ≤ j ≤ k) ,

which is equivalent to

σj(Σk) ≥
σj(A)

4

√
1 +

2‖R22‖42
σ4
j (Σk)

.

For the residual matrix bound, we let(
R̂11 R̂12

)
def
=
(
R11 R12

)
+
(
δR11 δR12

)
,

where
(
R11 R12

)
is the rank-k truncated SVD of

(
R̂11 R̂12

)
. Notice that

∥∥A− UkΣkV
T
k

∥∥
2

=

∥∥∥∥∥AΠ−Q
(
R11 R12

0

)T
Q̂T

∥∥∥∥∥
2

, (3.16)

it follows from the orthogonality of singular vectors that(
R11 R12

)T (
δR11 δR12

)
= 0,

CHAPTER 3. FLIP-FLOP SRQR 66

and therefore (
R̂11 R̂12

)T (
R̂11 R̂12

)
=

(
R11 R12

)T (
R11 R12

)
+
(
δR11 δR12

)T (
δR11 δR12

)
,

which implies

R̂T
12R̂12 = R

T

12R12 +
(
δR12

)T (
δR12

)
. (3.17)

Similar to the deduction of (3.15), from (3.17) we can derive∥∥∥∥(δR11 δR12

R̂22

)∥∥∥∥4

2

≤
∥∥(δR11 δR12

)∥∥4

2
+ 2

∥∥∥∥(δR12

R̂22

)∥∥∥∥4

2

≤ σ4
k+1 (A) + 2

∥∥∥∥∥
(
R̂12

R̂22

)∥∥∥∥∥
4

2

= σ4
k+1 (A) + 2 ‖R22‖4

2 .

Combining with (3.16), it now follows that

∥∥A− UkΣkV
T
k

∥∥
2

=

∥∥∥∥∥AΠ−Q
(
R11 R12

0

)T
Q̂T

∥∥∥∥∥
2

=

∥∥∥∥(δR11 δR12

R̂22

)∥∥∥∥
2

≤ σk+1 (A)
4

√
1 + 2

(
‖R22‖2

σk+1 (A)

)4

.

To obtain an upper bound of ‖R22‖2 in (3.11) and (3.12), we follow the analysis of SRQR
in [121].

From the analysis of [121, Section IV], Algorithm 7 ensures that g1 ≤
√

1+ε
1−ε and g2 ≤ g

with high probability (the actual probability guarantee formula can be found in [121, Section
IV]), where g1 and g2 are defined by (3.4). Here 0 < ε < 1 is a user defined parameter to
adjust the choice of oversampling size p used in the TRQRCP initialization part in SRQR.
g > 1 is a user defined parameter in the extra swapping part in SRQR. Let

τ
def
= g1g2

‖R22‖2

‖R22‖1,2

∥∥∥R̃−T∥∥∥−1

1,2

σl+1 (A)
and τ̂

def
= g1g2

‖R22‖2

‖R22‖1,2

∥∥R−T11

∥∥−1

1,2

σk (Σk)
, (3.18)

where R̃ is defined by (3.3). Since 1√
n
‖X‖1,2 ≤ ‖X‖2 ≤

√
n‖X‖1,2 and σi (X1) ≤ σi (X)

(1 ≤ i ≤ min (s, t)) for any matrix X ∈ Rm×n and submatrix X1 ∈ Rs×t of X,

τ = g1g2
‖R22‖2

‖R22‖1,2

∥∥∥R̃−T∥∥∥−1

1,2

σl+1

(
R̃
) σl+1

(
R̃
)

σl+1 (A)
≤ g1g2

√
(l + 1) (n− l).

CHAPTER 3. FLIP-FLOP SRQR 67

Using the fact that σl
((
R11 R12

))
= σl

(
R̂11

)
and σk (Σk) = σk

((
R̂11 R̂12

))
by (3.8)

and (3.10),

τ̂ = g1g2
‖R22‖2

‖R22‖1,2

∥∥R−T11

∥∥−1

1,2

σl (R11)

σl (R11)

σl
((
R11 R12

)) σl ((R11 R12

))
σk (Σk)

≤ g1g2

√
l (n− l),

By definition of τ ,
‖R22‖2 = τ σl+1 (A) . (3.19)

Plugging this into (3.12) yields (3.14).
By definition of τ̂ , we observe that

‖R22‖2 ≤ τ̂σk (Σk) . (3.20)

By (3.11) and (3.20),

σj (Σk) ≥
σj (A)

4

√
1 + 2

(
‖R22‖2
σj(Σk)

)4
≥ σj (A)

4

√
1 + 2

(
‖R22‖2
σk(Σk)

)4
≥ σj (A)

4
√

1 + 2τ̂ 4
, (1 ≤ j ≤ k) . (3.21)

On the other hand, using (3.11),

σ4
j (A) ≤ σ4

j (Σk)

(
1 + 2

σ4
j (A)

σ4
j (Σk)

‖R22‖4
2

σ4
j (A)

)

≤ σ4
j (Σk)

(
1 + 2

(
σ4
j (Σk) + 2 ‖R22‖4

2

)
σ4
j (Σk)

‖R22‖4
2

σ4
j (A)

)

≤ σ4
j (Σk)

(
1 + 2

(
1 + 2

‖R22‖4
2

σ4
k (Σk)

)
‖R22‖4

2

σ4
j (A)

)
,

that is,

σj (Σk) ≥
σj (A)

4

√
1 +

(
2 + 4

‖R22‖42
σ4
k(Σk)

)
‖R22‖42
σ4
j (A)

.

Plugging (3.19) and (3.20) into this above equation,

σj (Σk) ≥
σj (A)

4

√
1 + τ 4 (2 + 4τ̂ 4)

(
σl+1(A)

σj(A)

)4
, (1 ≤ j ≤ k) . (3.22)

Combing (3.21) and (3.22), we arrive at (3.14).

CHAPTER 3. FLIP-FLOP SRQR 68

We note that (3.11) and (3.12) still hold true if we replace k by l.
Inequality (3.13) shows that under definitions (3.18) of τ and τ̂ , Flip-Flop SRQR can

reveal at least a dimension dependent fraction of all the leading singular values of A and
indeed approximate them very accurately in case they decay relatively quickly. Moreover,
(3.14) shows that Flip-Flop SRQR can compute a rank-k approximation that is up to a

factor of 4

√
1 + 2τ 4

(
σl+1(A)

σk+1(A)

)4

from optimal. In situations where singular values of A decay

relatively quickly, our rank-k approximation is about as accurate as the truncated SVD with
a choice of l such that

σl+1 (A)

σk+1 (A)
= o (1) .

3.4 Numerical Experiments

In this section, we demonstrate the effectiveness and efficiency of Flip-Flop SRQR (FFSRQR)
algorithm in several numerical experiments. Firstly, we compare FFSRQR with other ap-
proximate SVD algorithms on matrix approximation. Secondly, we compare FFSRQR with
other methods on tensor approximation problem using tensorlab toolbox [112]. Thirdly, we
compare FFSRQR with other methods on the robust PCA problem and matrix completion
problem. All experiments are implemented in Matlab R2016b on a MacBook Pro with a 2.9
GHz i5 processor and 8 GB memory. The underlying routines used in FFSRQR are written
in Fortran. For a fair comparison, we turn off multi-threading in Matlab.

3.4.1 Approximate Truncated SVD

In this section, we compare FFSRQR with other four approximate SVD algorithms on low-
rank matrices approximation. All tested methods are listed in Table 3.1. The test matrices
are:

Type 1: A ∈ Rm×n [102] is defined by A = U DV T + 0.1 ∗D(s, s) ∗ E, where U ∈ Rm×s, V ∈
Rn×s are column-orthonormal matrices, and D ∈ Rs×s is a diagonal matrix with s
geometrically decreasing diagonal entries from 1 to 10−3. E ∈ Rm×n is a random matrix
where the entries are independently sampled from a normal distribution N (0, 1). In
our numerical experiment, we test on three different random matrices. The square
matrix has a size of 15000× 15000; the short-fat matrix has a size of 1000× 15000; the
tall-skinny matrix has a size of 15000× 1000.

Type 2: A ∈ R4929×4929 is a real data matrix from the University of Florida sparse matrix
collection [21]. Its corresponding file name is HB/GEMAT11.

For a given matrix A ∈ Rm×n, the relative SVD approximation error is measured by∥∥A− UkΣkV
T
k

∥∥
F
/‖A‖F where Σk contains approximate top k singular values, and Uk, Vk

CHAPTER 3. FLIP-FLOP SRQR 69

Method Description
LANSVD Approximate SVD using Lanczos bidiagonalization with partial

reorthogonalization [71]. We use its Matlab implementation in
PROPACK [70].

FFSRQR Flip-Flop Spectrum-revealing QR factorization.
We write its implementation using Mex functions that wrapped
BLAS and LAPACK routines [2].

RSISVD Approximate SVD with randomized subspace iteration [52, 48].
We use its Matlab implementation in tensorlab toolbox [112].

LTSVD Linear Time SVD [29].
We use its Matlab implementation by Ma et al. [80].

Table 3.1: Methods for approximate SVD.

Method Parameter
FFSRQR oversampling size p = 5, block size b = min{32, k}, l = k, d = 10, g = 2.0
RSISVD oversampling size p = 5, subspace iteration q = 1
LTSVD probabilities pi = 1/n

Table 3.2: Parameters used in RSISVD, FFSRQR, and LTSVD.

are corresponding approximate top k singular vectors. The parameters used in FFSRQR,
RSISVD, and LTSVD are listed in Table 3.2.

Figure 3.5 through Figure 3.15 show run time, relative approximation error, and top 20
singular values comparison respectively on four different matrices. While LTSVD is faster
than the other methods in most cases, the approximation error of LTSVD is significantly
larger than all the other methods. In terms of accuracy, FFSRQR is comparable to LANSVD
and RSISVD. In terms of speed, FFSRQR is faster than LANSVD. When target rank k is
small, FFSRQR is comparable to RSISVD, but FFSRQR is better when k is larger.

3.4.2 Tensor Approximation

This section illustrates the effectiveness and efficiency of FFSRQR for computing approxi-
mate tensor decompositions. ST-HOSVD [3, 109] is one of the most efficient algorithms to
compute Tucker decomposition of tensors, and the most costly part of this algorithm is to
compute SVD or approximate SVD of the tensor unfoldings. Truncated SVD and RSISVD
are used in routines MLSVD and MLSVD RSI respectively in Matlab tensorlab toolbox
[112]. Based on this Matlab toolbox, we implement ST-HOSVD using FFSRQR or LTSVD
to do the SVD approximation. We name these two new routines MLSVD FFSRQR and
MLSVD LTSVD respectively. We compare these four routines in this numerical experiment.

CHAPTER 3. FLIP-FLOP SRQR 70

100 200 300 400 500

target rank k

10
-1

10
0

10
1

10
2

10
3

ru
n

 t
im

e
 (

s
e

c
)

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.1: Type 1: Random square matrix

100 200 300 400 500

target rank k

10
-2

10
-1

10
0

10
1

10
2

ru
n

 t
im

e
 (

s
e

c
)

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.2: Type 1: Random short-fat matrix

100 200 300 400 500

target rank k

10
-1

10
0

10
1

10
2

ru
n

 t
im

e
 (

s
e

c
)

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.3: Type 1: Random tall-skinny ma-
trix

100 200 300 400 500

target rank k

10
-1

10
0

10
1

10
2

ru
n

 t
im

e
 (

s
e

c
)

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.4: Type 2: GEMAT11

Figure 3.5: Run time comparison for approximate SVD algorithms.

CHAPTER 3. FLIP-FLOP SRQR 71

100 200 300 400 500

target rank k

0.2

0.3

0.4

0.5

0.6

0.7

re
la

ti
v
e

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.6: Type 1: Random square matrix

100 200 300 400 500

target rank k

10
-2

10
-1

10
0

re
la

ti
v
e
 a

p
p
ro

x
im

a
ti
o
n
 e

rr
o
r

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.7: Type 1: Random short-fat matrix

100 200 300 400 500

target rank k

10
-2

10
-1

10
0

re
la

ti
v
e
 a

p
p
ro

x
im

a
ti
o
n
 e

rr
o
r

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.8: Type 1: Random tall-skinny ma-
trix

100 200 300 400 500

target rank k

0.2

0.4

0.6

0.8

1

re
la

ti
v
e

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.9: Type 2: GEMAT11

Figure 3.10: Relative approximation error comparison for approximate SVD algorithms.

CHAPTER 3. FLIP-FLOP SRQR 72

5 10 15 20

index

0.75

0.8

0.85

0.9

0.95

1

1.05

to
p

 2
0

 s
in

g
u

la
r

v
a

lu
e

s

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.11: Type 1: Random square matrix

5 10 15 20

index

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

to
p

 2
0

 s
in

g
u

la
r

v
a

lu
e

s

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.12: Type 1: Random short-fat matrix

5 10 15 20

index

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

to
p

 2
0

 s
in

g
u

la
r

v
a

lu
e

s

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.13: Type 1: Random tall-skinny ma-
trix

5 10 15 20

index

10
1

10
2

10
3

to
p
 2

0
 s

in
g
u
la

r
v
a
lu

e
s

LANSVD

FFSRQR

RSISVD

LTSVD

Figure 3.14: Type 2: GEMAT11

Figure 3.15: Top 20 singular values comparison for approximate SVD algorithms.

CHAPTER 3. FLIP-FLOP SRQR 73

We also have Python codes for this tensor approximation numerical experiment. We don’t
list the results of Python here but they are similar to those of Matlab.

3.4.2.1 A Sparse Tensor Example

We test on a sparse tensor X ∈ Rn×n×n of the following format [100, 94],

X =
10∑
j=1

1000

j
xj ◦ yj ◦ zj +

n∑
j=11

1

j
xj ◦ yj ◦ zj,

where xj, yj, zj ∈ Rn are sparse vectors with nonnegative entries. The symbol “◦” represents
the vector outer product. We compute a rank-(k, k, k) Tucker decomposition [G;U1, U2, U3]
using MLSVD, MLSVD FFSRQR, MLSVD RSI, and MLSVD LTSVD respectively. The
relative approximation error is measured by ‖X − Xk‖F/‖X‖F where Xk = G×1U1×2U2×3

U3.
Figure 3.16 compares efficiency and accuracy of different methods on a 400× 400× 400

sparse tensor approximation problem. MLSVD LTSVD is the fastest but the least accurate
one. The other three methods have similar accuracy while MLSVD FFSRQR is faster when
target rank k is larger.

3.4.2.2 Handwritten Digits Classification

MNIST is a handwritten digits image data set created by Yann LeCun [73]. Every digit
is represented by a 28 × 28 pixel image. Handwritten digits classification is to train a
classification model to classify new unlabeled images. A HOSVD algorithm is proposed by
Savas and Eldén [95] to classify handwritten digits. To reduce the training time, a more
efficient ST-HOSVD algorithm is introduced in [109].

We do handwritten digits classification using MNIST which consists of 60, 000 training
images and 10, 000 test images. The number of training images in each class is restricted
to 5421 so that the training set are equally distributed over all classes. The training set is
represented by a tensor X of size 786×5421×10. The classification relies on Algorithm 2 in
[95]. We use various algorithms to obtain an approximation X ≈ G ×1 U1×2 U2×3 U3 where
the core tensor G has size 65× 142× 10.

The results are summarized in Table 3.3. In terms of run time, our method MLSVD
FFSRQR is comparable to MLSVD RSI while MLSVD is the most expensive one and
MLSVD LTSVD is the fastest one. In terms of classification quality, MLSVD, MLSVD
FFSRQR, and MLSVD RSI are comparable while MLSVD LTSVD is the least accurate one.

3.4.3 Solving Nuclear Norm Minimization Problem

To show the effectiveness of FFSRQR algorithm in nuclear norm minimization problems, we
investigate two scenarios: robust PCA (3.5) and matrix completion (3.6). The test matrix

CHAPTER 3. FLIP-FLOP SRQR 74

50 100 150 200

target rank k

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e
 a

p
p
ro

x
im

a
ti
o
n
 e

rr
o
r

MLSVD

MLSVD_FFSRQR

MLSVD_RSI

MLSVD_LTSVD

50 100 150 200

target rank k

10
-2

10
-1

10
0

10
1

10
2

ru
n

 t
im

e
 (

s
e

c
)

MLSVD

MLSVD_FFSRQR

MLSVD_RSI

MLSVD_LTSVD

Figure 3.16: Run time and relative approximation error comparison on a sparse tensor.

MLSVD MLSVD FFSRQR MLSVD RSI MLSVD LTSVD
Training Time [sec] 27.2121 1.5455 1.9343 0.4266

Relative Model Error 0.4099 0.4273 0.4247 0.5162
Classification Accuracy 95.19% 94.98% 95.05% 92.59%

Table 3.3: Comparison on handwritten digits classification.

CHAPTER 3. FLIP-FLOP SRQR 75

used in robust PCA is introduced in [75] and the test matrices used in matrix completion
are two real data sets. We use IALM method [75] to solve both problems and IALM’s code
can be downloaded from IALM.

3.4.3.1 Robust PCA

To solve the robust PCA problem, we replace the approximate SVD part in IALM method
[75] by various methods. We denote the actual solution to the robust PCA problem by a
matrix pair (X∗, E∗) ∈ Rm×n × Rm×n. Matrix X∗ = XLX

T
R where XL ∈ Rm×k, XR ∈ Rn×k

are random matrices where the entries are independently sampled from normal distribution.
Sparse matrix E∗ is a random matrix where its non-zero entries are independently sampled
from a uniform distribution over the interval [−500, 500]. The input to the IALM algorithm

has the form M = X∗ + E∗ and the output is denoted by
(
X̂, Ê

)
. In this numerical

experiment, we use the same parameter settings as the IALM code for robust PCA: rank k
is 0.1m and number of non-zero entries in E is 0.05m2. We choose the trade-off parameter
λ = 1/

√
max (m,n) as suggested by Candès et al. [16]. The solution quality is measured by

the normalized root mean square error ‖X̂ −X∗‖F/‖X∗‖F .

Table 3.4 includes relative error, run time, the number of non-zero entries in Ê (‖Ê‖0),

iteration count, and the number of non-zero singular values (#sv) in X̂ of IALM algo-
rithm using different approximate SVD methods. We observe that IALM FFSRQR is faster
than all the other three methods, while its error is comparable to IALM LANSVD and
IALM RSISVD. IALM LTSVD is relatively slow and not effective.

3.4.3.2 Matrix Completion

We solve matrix completion problems on two real data sets used in [104]: the Jester joke
data set [45] and the MovieLens data set [56]. The Jester joke data set consists of 4.1 million
ratings for 100 jokes from 73, 421 users and can be downloaded from the website Jester. We
test on the following data matrices:

• jester-1: Data from 24, 983 users who have rated 36 or more jokes;

• jester-2: Data from 23, 500 users who have rated 36 or more jokes;

• jester-3: Data from 24, 938 users who have rated between 15 and 35 jokes;

• jester-all: The combination of jester-1, jester-2, and jester-3.

The MovieLens data set can be downloaded from MovieLens. We test on the following
data matrices:

• movie-100K: 100, 000 ratings of 943 users for 1682 movies;

• movie-1M: 1 million ratings of 6040 users for 3900 movies;

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://goldberg.berkeley.edu/jester-data/
https://grouplens.org/datasets/movielens/

CHAPTER 3. FLIP-FLOP SRQR 76

Size Method Error Time (sec) ‖Ê‖0 Iter #sv

1000× 1000

IALM LANSVD 3.33e− 07 5.79e+ 00 50000 22 100
IALM FFSRQR 2.79e− 07 1.02e+ 00 50000 25 100
IALM RSISVD 3.36e− 07 1.09e+ 00 49999 22 100
IALM LTSVD 9.92e− 02 3.11e+ 00 999715 100 100

2000× 2000

IALM LANSVD 2.61e− 07 5.91e+ 01 199999 22 200
IALM FFSRQR 1.82e− 07 6.93e+ 00 199998 25 200
IALM RSISVD 2.63e− 07 7.38e+ 00 199996 22 200
IALM LTSVD 8.42e− 02 2.20e+ 01 3998937 100 200

4000× 4000

IALM LANSVD 1.38e− 07 4.65e+ 02 799991 23 400
IALM FFSRQR 1.39e− 07 4.43e+ 01 800006 26 400
IALM RSISVD 1.51e− 07 5.04e+ 01 799990 23 400
IALM LTSVD 8.94e− 02 1.54e+ 02 15996623 100 400

6000× 6000

IALM LANSVD 1.30e− 07 1.66e+ 03 1799982 23 600
IALM FFSRQR 1.02e− 07 1.42e+ 02 1799993 26 600
IALM RSISVD 1.44e− 07 1.62e+ 02 1799985 23 600
IALM LTSVD 8.58e− 02 5.55e+ 02 35992605 100 600

Table 3.4: Comparison on robust PCA.

• movie-latest-small: 100, 000 ratings of 700 users for 9000 movies.

For each data set, we let M be the original data matrix where Mij stands for the rating
of joke (movie) j by user i and Γ be the set of indices where Mij is known. The matrix
completion algorithm quality is measured by the Normalized Mean Absolute Error (NMAE)
which is defined by

NMAE
def
=

1
|Γ|
∑

(i,j)∈Γ |Mij −Xij|
rmax − rmin

,

where Xij is the prediction of the rating of joke (movie) j given by user i, and rmin, rmax

are lower and upper bounds of the ratings respectively. For the Jester joke data sets we set
rmin = −10 and rmax = 10. For the MovieLens data sets we set rmin = 1 and rmax = 5.

Since |Γ| is large, we randomly select a subset Ω from Γ and then use Algorithm 14 to
solve the problem (3.6). We randomly select 10 ratings for each user in the Jester joke data
sets, while we randomly choose about 50% of the ratings for each user in the MovieLens
data sets. Table 3.5 includes parameter settings in the algorithms. The maximum iteration
number is 100 in IALM, and all other parameters are the same as those used in [75].

The numerical results are included in Table 3.6. We observe that IALM FFSRQR
achieves almost the same recoverability as other methods except for IALM LTSVD, and
is slightly faster than IALM RSISVD for these two data sets.

CHAPTER 3. FLIP-FLOP SRQR 77

Data set m n |Γ| |Ω|
jester-1 24983 100 1.81e+ 06 249830
jester-2 23500 100 1.71e+ 06 235000
jester-3 24938 100 6.17e+ 05 249384

jester-all 73421 100 4.14e+ 06 734210
moive-100K 943 1682 1.00e+ 05 49918
moive-1M 6040 3706 1.00e+ 06 498742

moive-latest-small 671 9066 1.00e+ 05 52551

Table 3.5: Parameters used in the IALM method on matrix completion.

Data set Method Iter Time NMAE #sv σmax σmin

jester-1

IALM-LANSVD 12 7.06e+ 00 1.84e− 01 100 2.14e+ 03 1.00e+ 00
IALM-FFSRQR 12 3.44e+ 00 1.69e− 01 100 2.28e+ 03 1.00e+ 00
IALM-RSISVD 12 3.75e+ 00 1.89e− 01 100 2.12e+ 03 1.00e+ 00
IALM-LTSVD 100 2.11e+ 01 1.74e− 01 62 3.00e+ 03 1.00e+ 00

jester-2

IALM-LANSVD 12 6.80e+ 00 1.85e− 01 100 2.13e+ 03 1.00e+ 00
IALM-FFSRQR 12 2.79e+ 00 1.70e− 01 100 2.29e+ 03 1.00e+ 00
IALM-RSISVD 12 3.59e+ 00 1.91e− 01 100 2.12e+ 03 1.00e+ 00
IALM-LTSVD 100 2.03e+ 01 1.75e− 01 58 2.96e+ 03 1.00e+ 00

jester-3

IALM-LANSVD 12 7.05e+ 00 1.26e− 01 99 1.79e+ 03 1.00e+ 00
IALM-FFSRQR 12 3.03e+ 00 1.22e− 01 100 1.71e+ 03 1.00e+ 00
IALM-RSISVD 12 3.85e+ 00 1.31e− 01 100 1.78e+ 03 1.00e+ 00
IALM-LTSVD 100 2.12e+ 01 1.33e− 01 55 2.50e+ 03 1.00e+ 00

jester-all

IALM-LANSVD 12 2.39e+ 01 1.72e− 01 100 3.56e+ 03 1.00e+ 00
IALM-FFSRQR 12 1.12e+ 01 1.62e− 01 100 3.63e+ 03 1.00e+ 00
IALM-RSISVD 12 1.34e+ 01 1.82e− 01 100 3.47e+ 03 1.00e+ 00
IALM-LTSVD 100 6.99e+ 01 1.68e− 01 52 4.92e+ 03 1.00e+ 00

moive-100K

IALM-LANSVD 29 2.86e+ 01 1.83e− 01 285 1.21e+ 03 1.00e+ 00
IALM-FFSRQR 30 4.55e+ 00 1.67e− 01 295 1.53e+ 03 1.00e+ 00
IALM-RSISVD 29 4.82e+ 00 1.82e− 01 285 1.29e+ 03 1.00e+ 00
IALM-LTSVD 48 1.42e+ 01 1.47e− 01 475 1.91e+ 03 1.00e+ 00

moive-1M

IALM-LANSVD 50 7.40e+ 02 1.58e− 01 495 4.99e+ 03 1.00e+ 00
IALM-FFSRQR 53 2.07e+ 02 1.37e− 01 525 6.63e+ 03 1.00e+ 00
IALM-RSISVD 50 2.23e+ 02 1.57e− 01 495 5.35e+ 03 1.00e+ 00
IALM-LTSVD 100 8.50e+ 02 1.17e− 01 995 8.97e+ 03 1.00e+ 00

moive-latest
-small

IALM-LANSVD 31 1.66e+ 02 1.85e− 01 305 1.13e+ 03 1.00e+ 00
IALM-FFSRQR 31 1.96e+ 01 2.00e− 01 305 1.42e+ 03 1.00e+ 00
IALM-RSISVD 31 2.85e+ 01 1.91e− 01 305 1.20e+ 03 1.00e+ 00
IALM-LTSVD 63 4.02e+ 01 2.08e− 01 298 1.79e+ 03 1.00e+ 00

Table 3.6: Comparison on matrix completion.

CHAPTER 3. FLIP-FLOP SRQR 78

3.5 Appendix

3.5.1 Approximate SVD with Randomized Subspace Iteration

Randomized subspace iteration was proposed in [52, Algorithm 4.4] to compute an orthonor-
mal matrix whose range approximates the range of A. An approximate SVD can be computed
using the aforementioned orthonormal matrix [52, Algorithm 5.1]. Randomized subspace it-
eration is used in routine MLSVD RSI in Matlab toolbox tensorlab [112], and MLSVD RSI
is by far the most efficient function to compute ST-HOSVD we can find in Matlab. We
summarize approximate SVD with randomized subspace iteration pseudocode in Algorithm
16.

Algorithm 16 Approximate SVD with Randomized Subspace Iteration
Inputs:
Matrix A ∈ Rm×n. Target rank k. Oversampling size p ≥ 0. Number of iterations q ≥ 1.
Outputs:
U ∈ Rm×k contains the approximate top k left singular vectors of A.
Σ ∈ Rk×k contains the approximate top k singular values of A.
V ∈ Rn×k contains the approximate top k right singular vectors of A.
Algorithm:
Generate i.i.d Gaussian matrix Ω ∈ N (0, 1)n×(k+p).
Compute B = AΩ.
[Q,∼] = qr (B, 0)
for i = 1 : q do

B = AT ∗Q
[Q,∼] = qr (B, 0)
B = A ∗Q
[Q,∼] = qr (B, 0)

end for
B = QT ∗ A
[U,Σ, V] = svd (B)
U = Q ∗ U
U = U (:, 1 : k)
Σ = Σ (1 : k, 1 : k)
V = V (:, 1 : k)

Now we perform a complexity analysis on approximate SVD with randomized subspace
iteration. We first note that

1. The cost of generating a random matrix is negligible.

2. The cost of computing B = AΩ is 2mn (k + p).

CHAPTER 3. FLIP-FLOP SRQR 79

3. In each QR step [Q,∼] = qr (B, 0), the cost of computing the QR factorization of B is
2m (k + p)2 − 2

3
(k + p)3 (c.f. [105]), and the cost of forming the first (k + p) columns

in the full Q matrix is m (k + p)2 + 1
3

(k + p)3.

Now we count the flops for each i in the for loop:

1. The cost of computing B = AT ∗Q is 2mn (k + p);

2. The cost of computing [Q,∼] = qr (B, 0) is 2n (k + p)2 − 2
3

(k + p)3, and the cost of

forming the first (k + p) columns in the full Q matrix is n (k + p)2 + 1
3

(k + p)3;

3. The cost of computing B = A ∗Q is 2mn (k + p);

4. The cost of computing [Q,∼] = qr (B, 0) is 2m (k + p)2 − 2
3

(k + p)3, and the cost of

forming the first (k + p) columns in the full Q matrix is m (k + p)2 + 1
3

(k + p)3.

Putting together, the cost of running the for loop q times is

q

(
4mn (k + p) + 3 (m+ n) (k + p)2 − 2

3
(k + p)3

)
.

Additionally, the cost of computing B = QT ∗ A is 2mn (k + p); the cost of doing SVD
of B is O(n (k + p)2); and the cost of computing U = Q ∗ U is 2m (k + p)2.

Now assume k + p � min (m,n) and omit the lower-order terms, then we arrive at
(4q + 4)mn (k + p) as the complexity of approximate SVD with randomized subspace iter-
ation. In practice, q is usually chosen to be 1 or 2.

80

Bibliography

[1] Orly Alter, Patrick O Brown, and David Botstein. “Singular value decomposition
for genome-wide expression data processing and modeling”. In: Proceedings of the
National Academy of Sciences 97.18 (2000), pp. 10101–10106.

[2] Edward Anderson et al. LAPACK Users’ guide. Vol. 9. Siam, 1999.

[3] Claus A Andersson and Rasmus Bro. “Improving the speed of multi-way algorithms:
Part I. Tucker3”. In: Chemometrics and Intelligent Laboratory Systems 42.1 (1998),
pp. 93–103.

[4] Haim Avron, Petar Maymounkov, and Sivan Toledo. “Blendenpik: Supercharging
LAPACK’s least-squares solver”. In: SIAM Journal on Scientific Computing 32.3
(2010), pp. 1217–1236.

[5] Francis R Bach and Michael I Jordan. “Kernel independent component analysis”. In:
The Journal of Machine Learning Research 3 (2003), pp. 1–48.

[6] Francis R Bach and Michael I Jordan. “Predictive low-rank decomposition for kernel
methods”. In: Proceedings of the 22nd international conference on Machine learning.
ACM. 2005, pp. 33–40.

[7] K Bache and M Lichman. “UCI Machine Learning Repository [http://archive. ics.
uci. edu/ml]. Irvine, CA: University of California, School of Information and Com-
puter Science. Begleiter, H. Neurodynamics Laboratory. State University of New York
Health Center at Brooklyn. Ingber, L.(1997). Statistical mechanics of neocortical in-
teractions: Canonical momenta indicatros of electroencephalography”. In: Physical
Review E 55 (2013), pp. 4578–4593.

[8] Michael W Berry, Susan T Dumais, and Gavin W OfffdfffdfffdBrien. “Using linear
algebra for intelligent information retrieval”. In: SIAM Review 37.4 (1995), pp. 573–
595.

[9] Christian Bischof and Charles Van Loan. “The WY representation for products of
Householder matrices”. In: SIAM Journal on Scientific and Statistical Computing 8.1
(1987), s2–s13.

[10] L Susan Blackford et al. “An updated set of basic linear algebra subprograms (BLAS)”.
In: ACM Transactions on Mathematical Software 28.2 (2002), pp. 135–151.

BIBLIOGRAPHY 81

[11] L Susan Blackford et al. ScaLAPACK users’ guide. Vol. 4. siam, 1997.

[12] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. “Near-optimal column-
based matrix reconstruction”. In: SIAM Journal on Computing 43.2 (2014), pp. 687–
717.

[13] Peter Businger and Gene H Golub. “Linear least squares solutions by Householder
transformations”. In: Numerische Mathematik 7.3 (1965), pp. 269–276.

[14] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. “A singular value thresholding
algorithm for matrix completion”. In: SIAM Journal on Optimization 20.4 (2010),
pp. 1956–1982.

[15] Emmanuel J Candès and Benjamin Recht. “Exact matrix completion via convex op-
timization”. In: Foundations of Computational Mathematics 9.6 (2009), pp. 717–772.

[16] Emmanuel J Candès et al. “Robust principal component analysis?” In: Journal of the
ACM (JACM) 58.3 (2011), 11:1–11:37.

[17] J Douglas Carroll and Jih-Jie Chang. “Analysis of individual differences in multidi-
mensional scaling via an N-way generalization of ”Eckart-Young” decomposition”. In:
Psychometrika 35.3 (1970), pp. 283–319.

[18] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: a library for support vector ma-
chines”. In: ACM Transactions on Intelligent Systems and Technology (TIST) 2.3
(2011), p. 27.

[19] Kenneth L Clarkson and David P Woodruff. “Low rank approximation and regression
in input sparsity time”. In: Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. ACM. 2013, pp. 81–90.

[20] Sanjoy Dasgupta and Anupam Gupta. “An elementary proof of a theorem of Johnson
and Lindenstrauss”. In: Random structures and algorithms 22.1 (2003), pp. 60–65.

[21] Timothy A Davis and Yifan Hu. “The University of Florida sparse matrix collection”.
In: ACM Transactions on Mathematical Software (TOMS) 38.1 (2011), 1:1–1:25.

[22] Lieven De Lathauwer and Bart De Moor. “From matrix to tensor: Multilinear algebra
and signal processing”. In: Mathematics in Signal Processing IV, J. McWhirter and
E. I. Proudler, eds. Clarendon Press, Oxford, UK. 1998, pp. 1–15.

[23] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “A multilinear singular
value decomposition”. In: SIAM journal on Matrix Analysis and Applications 21.4
(2000), pp. 1253–1278.

[24] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “On the best rank-1 and
rank-(R1, R2, · · · , RN) approximation of higher-order tensors”. In: SIAM journal on
Matrix Analysis and Applications 21.4 (2000), pp. 1324–1342.

[25] Lieven De Lathauwer and Joos Vandewalle. “Dimensionality reduction in higher-
order signal processing and rank-(R1, R2, · · · , RN) reduction in multilinear algebra”.
In: Linear Algebra and its Applications 391 (2004), pp. 31–55.

BIBLIOGRAPHY 82

[26] James W Demmel et al. “Communication avoiding rank revealing QR factorization
with column pivoting”. In: SIAM Journal on Matrix Analysis and Applications 36.1
(2015), pp. 55–89.

[27] James Demmel et al. “Communication-optimal parallel and sequential QR and LU
factorizations”. In: SIAM Journal on Scientific Computing 34.1 (2012), A206–A239.

[28] Amit Deshpande et al. “Matrix approximation and projective clustering via volume
sampling”. In: Proceedings of the seventeenth annual ACM-SIAM symposium on Dis-
crete algorithm. Society for Industrial and Applied Mathematics. 2006, pp. 1117–
1126.

[29] Petros Drineas, Ravi Kannan, and Michael W Mahoney. “Fast Monte Carlo algo-
rithms for matrices II: Computing a low-rank approximation to a matrix”. In: SIAM
Journal on computing 36.1 (2006), pp. 158–183.

[30] Petros Drineas, Michael W Mahoney, and S Muthukrishnan. “Relative-error CUR
matrix decompositions”. In: SIAM Journal on Matrix Analysis and Applications 30.2
(2008), pp. 844–881.

[31] Petros Drineas et al. “Faster least squares approximation”. In: Numerische Mathe-
matik 117.2 (2011), pp. 219–249.

[32] Zlatko Drmač and Zvonimir Bujanović. “On the Failure of Rank-Revealing QR Fac-
torization Software–A Case Study”. In: ACM Transactions on Mathematical Software
(TOMS) 35.2 (2008), p. 12.

[33] Jed A Duersch and Ming Gu. “Randomized QR with Column Pivoting”. In: SIAM
Journal on Scientific Computing 39.4 (2017), pp. C263–C291.

[34] Jed A Duersch and Ming Gu. “True BLAS-3 Performance QRCP using Random
Sampling”. In: arXiv preprint arXiv:1509.06820 (2015).

[35] Carl Eckart and Gale Young. “The approximation of one matrix by another of lower
rank”. In: Psychometrika 1.3 (1936), pp. 211–218.

[36] Lars Eldén. Matrix Methods in Data Mining and Pattern Recognition. SIAM, Philadel-
phia, 2007.

[37] Maryam Fazel. “Matrix Rank Minimization with Applications”. PhD thesis. Stanford
University, Stanford, CA, 2002.

[38] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. “Log-det heuristic for matrix
rank minimization with applications to Hankel and Euclidean distance matrices”. In:
Proceedings of the 2003 American Control Conference. Vol. 3. 2003, pp. 2156–2162.

[39] Yuehua Feng, Jianwei Xiao, and Ming Gu. “Low-Rank Matrix Approximations with
Flip-Flop Spectrum-Revealing QR Factorization.” In: arXiv preprint arXiv:1803.01982
(2018).

[40] Shai Fine and Katya Scheinberg. “Efficient SVM training using low-rank kernel rep-
resentations”. In: The Journal of Machine Learning Research 2 (2002), pp. 243–264.

BIBLIOGRAPHY 83

[41] Leslie Foster et al. “Stable and efficient gaussian process calculations”. In: The Journal
of Machine Learning Research 10 (2009), pp. 857–882.

[42] Alan Frieze, Ravi Kannan, and Santosh Vempala. “Fast Monte-Carlo algorithms for
finding low-rank approximations”. In: Journal of the ACM (JACM) 51.6 (2004),
pp. 1025–1041.

[43] George W Furnas et al. “Information retrieval using a singular value decomposition
model of latent semantic structure”. In: Proceedings of the 11th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval. ACM. 1988, pp. 465–480.

[44] Alex Gittens and Michael W Mahoney. “Revisiting the Nyström method for improved
large-scale machine learning”. In: J. Mach. Learn. Res 28.3 (2013), pp. 567–575.

[45] Ken Goldberg et al. “Eigentaste: A constant time collaborative filtering algorithm”.
In: Information Retrieval 4.2 (2001), pp. 133–151.

[46] Gene Golub. “Numerical methods for solving linear least squares problems”. In: Nu-
merische Mathematik 7.3 (1965), pp. 206–216.

[47] Gene H Golub and Charles F Van Loan. Matrix Computations. 3rd. Johns Hopkins
University Press, 2012.

[48] Ming Gu. “Subspace Iteration Randomization and Singular Value Problems”. In:
SIAM Journal on Scientific Computing 37.3 (2015), A1139–A1173.

[49] Ming Gu and Stanley C Eisenstat. “Efficient algorithms for computing a strong rank-
revealing QR factorization”. In: SIAM Journal on Scientific Computing 17.4 (1996),
pp. 848–869.

[50] Ming Gu and Luiza Miranian. “Strong rank revealing Cholesky factorization”. In:
Electronic Transactions on Numerical Analysis 17 (2004), pp. 76–92.

[51] Elaine T Hale, Wotao Yin, and Yin Zhang. “Fixed-point continuation for `1-minimiz-
ation: Methodology and convergence”. In: SIAM Journal on Optimization 19.3 (2008),
pp. 1107–1130.

[52] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. “Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompo-
sitions”. In: SIAM review 53.2 (2011), pp. 217–288.

[53] Per Christian Hansen. Rank-deficient and discrete ill-posed problems: numerical as-
pects of linear inversion. Vol. 4. Siam, 1998.

[54] Helmut Harbrecht, Michael Peters, and Reinhold Schneider. “On the low-rank approx-
imation by the pivoted Cholesky decomposition”. In: Applied numerical mathematics
62.4 (2012), pp. 428–440.

BIBLIOGRAPHY 84

[55] Richard A Harshman. “Foundations of the PARAFAC procedure: Models and condi-
tions for an ”explanatory” multimodal factor analysis”. In: UCLA Working Papers
in Phonetics 16 (1970), pp. 1–84. url: http://www.psychology.uwo.ca/faculty/
harshman/wpppfac0.pdf.

[56] Jonathan L Herlocker et al. “An algorithmic framework for performing collaborative
filtering”. In: Proceedings of the 22nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM. 1999, pp. 230–237.

[57] Nicholas J Higham. “A survey of condition number estimation for triangular matri-
ces”. In: Siam Review 29.4 (1987), pp. 575–596.

[58] Nicholas J Higham. Accuracy and stability of numerical algorithms. Siam, 2002.

[59] Nicholas J. Higham, Mims Eprint, and Nicholas J. Higham. “Analysis of the Cholesky
decomposition of a semi-definite matrix”. In: Reliable Numerical Computation. Uni-
versity Press, 1990, pp. 161–185.

[60] Roger A Horn and Charles R Johnson. Topics in Matrix Analysis. Cambridge Uni-
versity Press, 1991.

[61] D. Huckaby and T. F. Chan. “On the Convergence of Stewart’s QLP Algorithm for
Approximating the SVD”. In: Numerical Algorithms 32 (2003), pp. 287–316.

[62] D. Huckaby and T. F. Chan. “Stewart’s pivoted QLP decomposition for low-rank
matrices”. In: Numerical Linear Algebra with Applications 12 (2005), pp. 153–159.

[63] William B Johnson and Joram Lindenstrauss. “Extensions of Lipschitz mappings into
a Hilbert space”. In: Contemporary Mathematics 26 (1984), pp. 189–206.

[64] Ian T Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

[65] William Kahan. “Numerical linear algebra”. In: Canadian Math. Bull 9.6 (1966),
pp. 757–801.

[66] Heysem Kaya, Pmar Tüfekci, and Fikret S Gürgen. “Local and global learning meth-
ods for predicting power of a combined gas & steam turbine”. In: Proceedings of the
International Conference on Emerging Trends in Computer and Electronics Engineer-
ing. 2012, pp. 13–18.

[67] Jon M Kleinberg. “Authoritative sources in a hyperlinked environment”. In: Journal
of the ACM (JACM) 46.5 (1999), pp. 604–632.

[68] Tamara G Kolda. “Orthogonal tensor decompositions”. In: SIAM Journal on Matrix
Analysis and Applications 23.1 (2001), pp. 243–255.

[69] Tamara G Kolda and Brett W Bader. “Tensor decompositions and applications”. In:
SIAM Review 51.3 (2009), pp. 455–500.

[70] R. M. Larsen. PROPACK - Software for large and sparse SVD calculations. 1998.
url: http://sun.stanford.edu/~%20rmunk/PROPACK/.

http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://sun.stanford.edu/~%20rmunk/PROPACK/

BIBLIOGRAPHY 85

[71] Rasmus Munk Larsen. “Lanczos bidiagonalization with partial reorthogonalization”.
In: DAIMI Report Series 27.537 (1998).

[72] Chuck L Lawson et al. “Basic linear algebra subprograms for Fortran usage”. In:
ACM Transactions on Mathematical Software (TOMS) 5.3 (1979), pp. 308–323.

[73] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[74] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK Users’ Guide: So-
lution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
SIAM, Philadelphia, 1998.

[75] Zhouchen Lin, Minming Chen, and Yi Ma. The augmented Lagrange multiplier method
for exact recovery of corrupted low-rank matrices. Sept. 2010. eprint: 1009 . 5055

(math.NA).

[76] Nathan Linial, Eran London, and Yuri Rabinovich. “The geometry of graphs and
some of its algorithmic applications”. In: Combinatorica 15.2 (1995), pp. 215–245.

[77] Zhang Liu, Anders Hansson, and Lieven Vandenberghe. “Nuclear norm system identi-
fication with missing inputs and outputs”. In: Systems & Control Letters 62.8 (2013),
pp. 605–612.

[78] Zhang Liu and Lieven Vandenberghe. “Interior-point method for nuclear norm ap-
proximation with application to system identification”. In: SIAM Journal on Matrix
Analysis and Applications 31.3 (2009), pp. 1235–1256.

[79] Craig Lucas. “LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations”.
In: LAPACK Working (2004).

[80] Shiqian Ma, Donald Goldfarb, and Lifeng Chen. “Fixed point and Bregman iterative
methods for matrix rank minimization”. In: Mathematical Programming 128.1 (2011),
pp. 321–353.

[81] Michael W Mahoney. “Randomized algorithms for matrices and data”. In: Founda-
tions and Trends R© in Machine Learning 3.2 (2011), pp. 123–224.

[82] Per-Gunnar Martinsson et al. “Householder QR Factorization With Randomization
for Column Pivoting (HQRRP)”. In: SIAM Journal on Scientific Computing 39.2
(2017), pp. C96–C115.

[83] Xiangrui Meng et al. “Mllib: Machine learning in apache spark”. In: arXiv preprint
arXiv:1505.06807 (2015).

[84] Mehran Mesbahi and George P Papavassilopoulos. “On the rank minimization prob-
lem over a positive semidefinite linear matrix inequality”. In: IEEE Transactions on
Automatic Control 42.2 (1997), pp. 239–243.

[85] Neil Muller, Lourenço Magaia, and Ben M Herbst. “Singular value decomposition,
eigenfaces, and 3D reconstructions”. In: SIAM Review 46.3 (2004), pp. 518–545.

1009.5055

BIBLIOGRAPHY 86

[86] Manish Narwaria and Weisi Lin. “SVD-based quality metric for image and video using
machine learning”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 42.2 (2012), pp. 347–364.

[87] Tae-Hyun Oh et al. “Fast randomized singular value thresholding for nuclear norm
minimization”. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2015, pp. 4484–4493.

[88] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: The Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[89] Gregorio Quintana-Ort́ı, Xiaobai Sun, and Christian H Bischof. “A BLAS-3 version
of the QR factorization with column pivoting”. In: SIAM Journal on Scientific Com-
puting 19.5 (1998), pp. 1486–1494.

[90] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization”. In: SIAM Review
52.3 (2010), pp. 471–501.

[91] Jasson DM Rennie and Nathan Srebro. “Fast maximum margin matrix factorization
for collaborative prediction”. In: Proceedings of the 22nd International Conference on
Machine Learning. ACM. 2005, pp. 713–719.

[92] Jorge-L Reyes-Ortiz et al. “Transition-aware human activity recognition using smart-
phones”. In: Neurocomputing 171 (2016), pp. 754–767.

[93] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. “A randomized algorithm for
principal component analysis”. In: SIAM Journal on Matrix Analysis and Applica-
tions 31.3 (2009), pp. 1100–1124.

[94] Arvind K Saibaba. “HOID: Higher Order Interpolatory Decomposition for tensors
based on Tucker representation”. In: SIAM Journal on Matrix Analysis and Applica-
tions 37.3 (2016), pp. 1223–1249.

[95] Berkant Savas and Lars Eldén. “Handwritten digit classification using higher order
singular value decomposition”. In: Pattern recognition 40.3 (2007), pp. 993–1003.

[96] Robert Schreiber and Charles Van Loan. “A storage-efficient WY representation for
products of Householder transformations”. In: SIAM Journal on Scientific and Sta-
tistical Computing 10.1 (1989), pp. 53–57.

[97] Amnon Shashua and Tamir Hazan. “Non-negative tensor factorization with applica-
tions to statistics and computer vision”. In: Proceedings of the 22nd International
Conference on Machine Learning. ACM. 2005, pp. 792–799.

[98] Nicholas D Sidiropoulos, Rasmus Bro, and Georgios B Giannakis. “Parallel factor
analysis in sensor array processing”. In: IEEE transactions on Signal Processing 48.8
(2000), pp. 2377–2388.

[99] SimonDu. CUR-matrix-decomposition. https://github.com/SimonDu/CUR-matrix-
decomposition. 2014.

https://github.com/SimonDu/CUR-matrix-decomposition
https://github.com/SimonDu/CUR-matrix-decomposition

BIBLIOGRAPHY 87

[100] Danny C Sorensen and Mark Embree. “A DEIM induced CUR factorization”. In:
SIAM Journal on Scientific Computing 38.3 (2016), A1454–A1482.

[101] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. “Maximum-margin matrix
factorization”. In: Advances in neural information processing systems. 2005, pp. 1329–
1336.

[102] GW Stewart. “The QLP approximation to the singular value decomposition”. In:
SIAM Journal on Scientific Computing 20.4 (1999), pp. 1336–1348.

[103] Qingtang Su et al. “Color image blind watermarking scheme based on QR decompo-
sition”. In: Signal Processing 94 (2014), pp. 219–235.

[104] Kim-Chuan Toh and Sangwoon Yun. “An accelerated proximal gradient algorithm
for nuclear norm regularized linear least squares problems”. In: Pacific Journal of
Optimization 6.15 (2010), pp. 615–640.

[105] Lloyd N Trefethen and David Bau III. Numerical Linear Algebra. Vol. 50. SIAM,
Philadelphia, 1997.

[106] Ledyard R Tucker. “Some mathematical notes on three-mode factor analysis”. In:
Psychometrika 31.3 (1966), pp. 279–311.

[107] Pınar Tüfekci. “Prediction of full load electrical power output of a base load oper-
ated combined cycle power plant using machine learning methods”. In: International
Journal of Electrical Power & Energy Systems 60 (2014), pp. 126–140.

[108] Matthew Turk and Alex Pentland. “Eigenfaces for recognition”. In: Journal of Cog-
nitive Neuroscience 3.1 (1991), pp. 71–86.

[109] Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. “A new truncation
strategy for the higher-order singular value decomposition”. In: SIAM Journal on
Scientific Computing 34.2 (2012), A1027–A1052.

[110] M Alex O Vasilescu and Demetri Terzopoulos. “Multilinear analysis of image en-
sembles: Tensorfaces”. In: European Conference on Computer Vision. Springer. 2002,
pp. 447–460.

[111] Santosh S Vempala. The random projection method. Vol. 65. American Mathematical
Soc., 2005.

[112] Nico Vervliet et al. Tensorlab 3.0. 2016. url: http://www.tensorlab.net.

[113] Endong Wang et al. “Intel math kernel library”. In: High-Performance Computing on
the Intel Xeon Phifffdfffdfffd. Springer, 2014, pp. 167–188.

[114] Hongcheng Wang and Narendra Ahuja. “Facial expression decomposition”. In: Pro-
ceedings of the 9th IEEE International Conference on Computer Vision (ICCV). 2003,
pp. 958–965.

[115] Shusen Wang and Zhihua Zhang. “Improving CUR matrix decomposition and the
Nyström approximation via adaptive sampling”. In: The Journal of Machine Learning
Research 14.1 (2013), pp. 2729–2769.

http://www.tensorlab.net

BIBLIOGRAPHY 88

[116] Christopher KI Williams and Carl Edward Rasmussen. “Gaussian processes for ma-
chine learning”. In: the MIT Press 2.3 (2006), p. 4.

[117] Christopher Williams and Matthias Seeger. “The effect of the input density distribu-
tion on kernel-based classifiers”. In: Proceedings of the 17th international conference
on machine learning. EPFL-CONF-161323. 2000, pp. 1159–1166.

[118] Svante Wold et al. “The collinearity problem in linear regression. The partial least
squares (PLS) approach to generalized inverses”. In: SIAM Journal on Scientific and
Statistical Computing 5.3 (1984), pp. 735–743.

[119] David P Woodruff. “Sketching as a tool for numerical linear algebra”. In: arXiv
preprint arXiv:1411.4357 (2014).

[120] Jianwei Xiao and Ming Gu. “Spectrum-Revealing Cholesky Factorization for Kernel
Methods”. In: Proceedings of the 16th IEEE International Conference on Data Mining
(ICDM). 2016, pp. 1293–1298.

[121] Jianwei Xiao, Ming Gu, and Julien Langou. “Fast Parallel Randomized QR with Col-
umn Pivoting Algorithms for Reliable Low-rank Matrix Approximations”. In: Pro-
ceedings of the 24th IEEE International Conference on High Performance Computing
(HiPC). 2017, pp. 233–242.

[122] Tong Zhang and Gene H Golub. “Rank-one approximation to high order tensors”. In:
SIAM Journal on Matrix Analysis and Applications 23.2 (2001), pp. 534–550.

	Contents
	List of Figures
	List of Tables
	Spectrum-Revealing Cholesky Factorization
	Introduction
	The Setup and Background
	New Algorithms and Main Results
	Numerical Experiments
	Incomplete Randomized Cholesky

	Spectrum-Revealing QR
	Introduction
	Introduction to QRCP
	Randomized QRCP
	Spectrum-Revealing QR Factorization
	Experimental Performance

	Flip-Flop SRQR
	Introduction
	Preliminaries and Background
	Flip-Flop SRQR Factorization
	Numerical Experiments
	Appendix

	Bibliography

