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ABSTRACT OF THE DISSERTATION

Modern Applications of Scattering Amplitudes and Topological Phases

by

Julio Parra Martinez

Doctor of Philosophy in Physics

University of California, Los Angeles, 2020

Professor Zvi Bern, Chair

In this dissertation we discuss some novel applications of the methods of scattering ampli-

tudes and topological phases. First, we describe on-shell tools to calculate anomalous dimen-

sions in effective field theories with higer-dimension operators. Using such tools we prove and

apply a new perturbative non-renormalization theorem, and we explore the structure of the

two-loop anomalous dimension matrix of dimension-six operators in the Standard Model Ef-

fective Theory (SMEFT). Second, we introduce new methods to calculate the classical limit

of gravitational scattering amplitudes. Using these methods, in conjunction with eikonal

techniques, we calculate the classical gravitational deflection angle of massive and massles

particles in a variety of theories, which reveal graviton dominance beyond ’t Hooft’s. Finally,

we point out that different choices of Gliozzi-Scherk-Olive (GSO) projections in superstring

theory can be conveniently understood by the inclusion of fermionic invertible topological

phases, or equivalently topological superconductors, on the worldsheet. We explain how

the classification of fermionic topological phases, recently achieved by the condensed matter

community, provides a complete and systematic classification of ten-dimensional superstrings

and gives a new perspective on the K-theoretic classification of D-branes.
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Simon Caron-Huot, Lance Dixon, Juanjo Gómez Cadenas, Matt Heydeman, Callum Jones,

Ricardo Monteiro, Isobel Nicholson, Donal O’Connel, Shruti Parajanpe, David Skinner,

Mikhail Solon and many others that I do not have space to mention here.

My time in graduate school would have been so much worse without my fellow students.

I am most grateful to Alex Edison and Michael Enciso for their friendship (and for getting

me out of the office), to Allic Sivaranakrishnan for letting me borrow his brains, and to

Justin Kaidi for letting be borrow his branes.

Finally, I need to thank my family for their love and everything they have done for me,

even from far away; specially Young, who always was there, and here and everywhere.

xii



My work has been supported by the US Deparment of State through a Fulbright Schol-

arship and by the Mani L. Bhaumik Institute for Theoretical physics.

Contribution of authors

Chapter 1, which serves as an introduction, draws from Refs. [1–6] in collaboration with

the authors detailed below. Chapter 2 is adapted from Refs. [1, 2] in collaboration with

Zvi Bern and Eric Sawyer. Chapter 3 is adapted from Ref. [3] with Zvi Bern, Harald Ita

and Michael Ruf, and Ref. [4] with Michael Ruf and Mao Zeng. Chapter 4 is adapted from

Refs. [5, 6] with Justin Kaidi and Yuji Tachikawa. Appendix 4.D, included in Ref. [6], is

based on conversations with Edward Witten. Appendix 4.F, also included in Ref. [6], is

kindly contributed by Arun Debray. Other works, in collaboration with various authors,

completed during the course of my doctoral candidacy (Refs. [7–14]), are not included in

this thesis.

xiii



Vita

Institution Position Year
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Chapter 1

Introduction

Through the last century, Quantum Field Theory (QFT) has emerged as the mathematical

framework that accurately describes most aspects of fundamental physics. QFT has enabled

our understanding of all kinds of phenomena: from the interactions of fundamental particles

probed at immense colliders, and the large scale structure of the universe we observe in the

sky, to the physics of phase transitions in condensed matter systems measured in tabletop

experiments. Even our incomplete grasp of string theory and quantum gravity is deeply

rooted in worldsheet conformal field theory and low energy effective field theory (EFT) de-

scriptions. Despite many successes and continued progress over the years, the mathematical

structure of QFT remains poorly understood. Still a multitude of tools have been developed

which have multiple applications and connect different branches of physics and mathematics.

Scattering Amplitudes and Topological Phases are two prominent examples of such tools.

Scattering amplitudes describe the probabilities of particle collisions at colliders. Tra-

ditionally computed perturbatively using Feyman diagrams, they nowadays are commonly

calculated using on-shell methods, which recycle physical information from lower-point pro-

cesses and lower orders in perturbation theory via recursion and unitarity, thus avoiding

gauge redundancies and combinatorial explosion. The on-shell mindset for computing phys-

ical quantities has found application beyond collision events to other parts of fundamental
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physics, as well as unveiled beatiful mathematical structures that point toward a new un-

derstanding of QFT.

The study of topological phases has its roots in the low energy descriptions of lattice

models commonly used to model condense matter systems. Such low energy descriptions

take the form of topological quantum field theories (TQFT), whose mathematical foundation

is in firmer ground compared to general QFTs. Among many kinds of TQFTs, Symmetry

Protected Topological (SPT) phases have played a prominent role over the last decade, in

part because of their connection to anomalies (i.e. obstructions to gauging a symmetry) of

interest for high-energy physicists. Anomalies are one of the few available tools for attacking

strongly coupled QFTs. ’t Hooft anomaly matching has been a general tool succesfully used

to investigate phases of QFT and dualities even at strong coupling. Famously, this technique

was used to understand the low energy effective field theory of mesons in QCD, and also

contributed to the discovery of dualities in QFT. Renewed insight coming both from the

high energy and condensed matter communities, has unveiled a widely larger landscape of

symmetries, phases and anomalies than was previously known.

This thesis is devoted to several novel applications of the methods of Scattering Ampli-

tudes and Topological Phases. Herein I will describe how on-shell methods can be used to

explore the structure of the renormalization group in the Standard Model Effective Field

Theory (SMEFT), as well as to compute classical gravitational observables relevant for the

study of gravitational waves at LIGO. Furthermore, I will explain how recent insights from

condensed matter physics clarify the structure of string worldsheet theories and provide

a complete classification of ten-dimensional superstring theories, including new previously

unnoticed examples.
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On-shell methods for the Standard Model Effective Field

Theory

The discovery of the Higgs boson has established the Standard Model of particle physics as

the fundamental theory that describes our universe (with the notable exceptions of gravity,

dark matter and dark energy). A key challenge in particle physics is to identify physics

beyond the Standard Model. Because current experimental data at colliders is well described

by the Standard Model, it is unclear which theoretical direction will ultimately prove to be

the one chosen by Nature. It is therefore important to quantify new physics beyond the

Standard Model in a systematic, model-independent manner. The theoretical framework for

doing so is via effective field theories that extend the Standard Model. Such effective theories

augment the Standard Model Lagrangian by adding higher-dimension operators [15, 16]:

∆L =
∑
i

ciOi , (1.1)

with Wilson coefficients ci suppressed by powers of the unknown high-energy scale of new

physics, Λ, as dictated by the dimension of Oi. The resulting theory, known as the Standard

Model Effective Field Theory (SMEFT), is reviewed in Ref. [17].

As for all quantum field theories, renormalization induces mixing of these operators which

is parameterized by the renormalization group equation,

∂ci
∂ log µ

= γUV
ij cj , (1.2)

where γUV
ij is the anomalous-dimension matrix and µ is the renormalization scale. The

knowledge of such renormalization effects is key to translate measurements at low energy to

bounds on the Wilson coefficients, ci, and the scale of new physics, Λ.

Usually, γUV
ij is calculated perturbatively in the Standard Model couplings by analyzing
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ultraviolet divergences in matrix elements of the higher-dimension operators. The complete

one-loop anomalous-dimension matrix for operators up to dimension six has been computed

in Refs. [18–21]. These calculations reveal a number of vanishing entries related to super-

symmetry [22, 23], which seem surprising at first because there are valid Feynman diagrams

that can be written down. These zeros have been elegantly explained [24] using tree-level

helicity selection rules [25], which set certain classes of tree-level amplitudes to zero. The

tree-level vanishings imply through unitarity that certain logarithms and their associated

anomalous dimensions are not present. Although these selection rules are reminiscent of su-

persymmetric ones, they hold for generic massless quantum field theories in four dimensions.

At first sight, it seems rather unlikely that there are new nontrivial zeros beyond one loop

because the helicity selection rules fail to hold at loop level.

In Chapter 2 of this thesis, based on Refs. [1, 2], we will describe new on-shell methods

to extract anomalous dimension from unitarity cuts. Such methods, instead of relying on

ultraviolet divergences in matrix elements, directly target the renormalization group depen-

dence in physical logarithms. This approach will allow us to unveil further structure in

the anomalous dimensions beyond one loop. Using on-shell methods we will prove a multi-

loop perturbative non-renormalization, theorem which predicts new zeros in the anomalous

dimension matrix of dimension-six operators up to four loops. Furthermore, we will cal-

culate full one-loop matrix elements and explain how judicious choices of renormalization

schemes at one loop can generate even further zeros in the anomalous dimensions at two

loops. Our results make precise predictions about the two-loop anomalous dimension matrix

of the SMEFT, which simplify the structure of the renormalization group at this order.
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Inspiral Merger Ringdown 

Post Newtonian 
Theory 

Perturbation 
Theory 

Numerical 
Relativity Figure 1.1: Phases of a binary merger. Reproduced from Ref. [28] with permission from the

authors.

Scattering Amplitudes and Classical Gravitational Ob-

servables

The spectacular observation of gravitational waves by the LIGO/Virgo Collaboration [26, 27]

has opened a new window into the universe. It is hard to overstate the discovery prospects

of gravitational wave astronomy, from studying the properties and population of black holes,

neutron stars to test of General Relativity. The binary merger events observed at LIGO

consist of several phases illustrated in Fig. 1.1.

Amongst the different phases of a binary merger, the inspiral phase is amenable to pertur-

bative methods such as the Post-Newtonian (PN) and Post-Minkowskian (PM) expansions

(expansions in powers of the velocity in units of the speed of light, v/c, and Newton’s grav-

itational constant, G, respectively). Scattering amplitudes in gravity are also calculated in

perturbation theory in G. While scattering processes may seem rather different from the

bound-state problem of gravitational-wave generation, the underlying physics is the same.

In particular, classical two-body potentials can be extracted from scattering processes [29–

40], including new state-of-the-art calculations [41, 42]. This approach leverages the huge

5



Figure 1.2: Geodesic motion (red line) in shockwave background generated by boosted par-
ticle (blue line).

advances in computing quantum scattering amplitudes that stem from the modern unitarity

method [43–47] and from double-copy relations [48–52] between gauge and gravity theories.

Beyond its interest for gravitational wave physics, the high-energy behavior of gravitational-

scattering processes has a long and interesting history as a fundamental probe of gravita-

tional theories at the classical and quantum level (see e.g. Refs. [53–61]). The simplicity of

scattering in the high-energy limit makes it a natural regime to extract information about

high-orders in perturbation theory. A famous result by ’t Hooft shows that the leading

high-energy behaviour or four-point gravitational amplitudes dominated by the exchange of

gravitons and takes the form

M∼ Γ(1− iGE2)

Γ(1 + iGE2)

GE2

q2

(
1

q2

)iGE2

, (1.3)

where q is the momentum transfer, and the exponent is known as the eikonal phase. This

result implies that both the amplitude and classical deflection angle are universal and do not

depend on the particle content of the theory. The proof of this result relies on two key facts:

First, the gravitational coupling grows with two powers of the energy, GE2, which is faster
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than other forces. Second, the gravitational field of a highly boosted particle is described

the Aixelburg-Sexl shockwave metric1

ds2 = −dx+dx− +Gp+ log(x2
⊥)(dx+)2 + dx2

⊥ (1.4)

which is an exact solution to Einstein’s equations. Thus, at this order any high-energy

gravitational proces is described by the semiclassical motion of a geodesic in the shockwave

background geometry as illustrated in Fig. 1.2.

Beyond the leading order, such semiclassical description is not valid. Furthermore, by

naive power-counting the coupling to other force mediators is comparable to gravity. Because

of these reasons, the description of high-energy scattering is more complicated, and one

does not expect a universal behavior. Still, using insight from string amplitudes and the

analyticity of scattering amplitudes, Amati, Ciafaloni and Veneziano (ACV) [61] worked out

the high-energy limit of massless graviton scattering through O(G3) in General Relativity

long before it became technically feasible to compute two-loop scattering amplitudes in

quantum field theory directly. Using this they calculated the corresponding correction to

the gravitational deflection angle of massless particles in General Relativity.

The possibility of using quantum scattering amplitudes to obtain the classical deflection

angle was also recently promoted by Damour [62], who used the ACV result for the con-

servative scattering angle to impose constraints on classical two-body Hamiltonians of the

type used for gravitational-wave template construction [63, 64]. In a very recent paper [65],

however, Damour has cast doubt on the program of using quantum scattering amplitudes

to extract information on classical dynamics. His central claim is that both the classical

scattering angle derived by ACV and the O(G3) two-body Hamiltonian derived by Bern et

al. in Refs. [41, 42] are not correct. His claims, based on information obtained from the

self-force (small mass ratio) expansion [66, 67] of the bound-state dynamics as well as struc-

1This metric is given in lightcone coordinates x± = x0 ± x1, and x⊥ denotes the transverse directions.
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tural properties in the results of Ref. [42], provide results with a smooth transition between

massive and massless classical scattering. This property is not satisfied by the results of

ACV and Bern et al., which are not smoothly connected by the high-energy limit. This

has led Damour to criticize the methods of Refs. [39, 41, 42], with particular focus on the

velocity resummation and treatment of infrared divergences.

In Chapter 3 of this thesis, based on Refs. [3, 4], we show how the recent computation of

two-loop four-graviton scattering amplitudes in General Relativity in conjunction with tra-

ditional eikonal resummation methods allows for a first-principles computation of the O(G3)

massless gravitational scattering angle, which agrees with the result of ACV. The same tech-

niques allow a calculation of the deflection angle for N ≥ 4 Supergravity. Furthermore we

develop alternative methods to perform the classical expansion of massive amplitudes and to

calculate their full velocity dependence via the modern method of differential equations for

Feynman integrals. We apply these new methods to study the scattering of extremal black

holes in N = 8 Supergravity [68–70]. By comparing both massive and massless results in

Supergravity and General Relativity, we find that the high-energy behavior of the classical

amplitudes and scattering angle remains universal at O(G3). While lacking a proof, this

provides overwhelming evidence that, counter to all expectations, ’t Hooft’s graviton domi-

nance extends to subleading orders. Furthermore it supports the conclusion that both the

ACV result and the results of Bern et al. are correct.

Topological Phases in String theory

Superstring theory is the only known example of a consistent framework for a theory of

quantum gravity. Despite the inherent difficulty in measuring quantum gravitational effects,

which put any measurable consequences of any such theory beyond the realm of current

experimental verification, the study of string theory has brought many general lessons which

have advanced our understanding of fundamental physics and mathematics.
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Figure 1.3: Pictorial representation of open and closed string worldsheets.

The most traditional method for studying superstring theory is via superstring pertur-

bation theory. In this setting, the string is described by a worlsheet CFT with bosonic

scalar fields Xµ, which describe the motion of the string in a target spacetime, as depicted

in Fig. 1.3. In the Neveu-Schwarz-Ramond (NSR) formalism, in addition to the bosonic

fields, the worldsheet theory contains fermionic worldsheet spinors, ψµ, which are spacetime

vectors. Consistency requires that the theory is subjected to a process known as the Gliozzi-

Scherk-Olive (GSO) projection [71, 72]. It is well-known that there are various possible

choices of consistent GSO projections, which yield different superstring theories such as type

IIA and IIB, among others. In the standard textbook presentation e.g. in [73], allowed GSO

projections are determined by imposing various consistency conditions, such as the modular

invariance of torus amplitudes. That the GSO projections gives consistent results in higher

genus amplitudes is not immediately clear in this presentation.

A formulation which works equally well for higher genera was found by Seiberg and

Witten in [74]. There, it was pointed out that the GSO projection is a summation over the
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spin structures of the worldsheet, and that different GSO projections correspond to different

possible phases assigned to spin structures in a way compatible with the cutting and the

gluing of the worldsheet. In particular, it was found that the different signs appearing in

type IIA and type IIB GSO projections are given by an invariant of the spin structure known

as the Arf invariant. The Arf invariant is of order 2, which is closely related to the fact that

there are only two type II theories.

Thanks to the developments initiated in condensed matter physics in the last decade, we

now have a more physical understanding of this Arf invariant. Namely, it is the partition

function of the low-energy limit of the 1+1d symmetry-protected topological (SPT) phase

known as the Kitaev chain [75]. In general, the low-energy limit of an SPT phase is known

as an invertible phase [76, 77]. An invertible phase is a topological quantum field theory

(TQFT) with a unique ground state on any spatial manifold, and whose partition function on

a closed manifold is a phase (in the sense of a complex number of absolute value one) which

behaves consistently under the cutting and gluing of the spacetime manifold. Conversely, it

is now known that any such consistently-assigned phase is given by the partition function of

an invertible theory. Furthermore, there is now a general classification of possible invertible

phases, or equivalently SPT phases, in terms of bordism groups [77–79]. This means that,

with the technology currently available to us, we can now not only understand the consistency

of a given GSO projection, but also enumerate all possible GSO projections.

In Chapter 4 of this thesis, based on Refs. [5, 6], we revisit known GSO projections from

this modern viewpoint, and also find new ones. We will restrict ourselves to projections which

treat all fermions in the same manner – more general projections, which necessarily break

spacetime Lorentz invariance, would be interesting to study. We review how the Arf invariant

distinguishes the type IIA and IIB theories, and we explain how the same invariant allows

for a classification of type 0 superstrings (which do not have spacetime supersymmetry).

The same approach also allows us to clarify the structure of unoriented worldsheet theo-

ries. For example, the Kitaev chain is known to be compatible with a parity transformation
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Ω such that Ω2 = (−1)F , where F is the fermion number operator. Also, it is known that

eight copies of the Kitaev chain protected by this symmetry are continuously connected to

a completely trivial theory [80]. In this case, the partition function of the low-energy limit

of the Kitaev chain is known as the Arf-Brown-Kervaire (ABK) invariant, and is of order 8.

If one considers an unoriented NSR wordsheet theory with Ω2 = (−1)F , such a worldsheet is

said to have a pin− structure, which is a generalization of the concept of a spin structure to

unoriented manifolds (see e.g. Appendix A of [81] for an introduction). The ABK invariant

generates the group of invertible phases with pin− structure. This means that when we

perform the GSO projection, or equivalently when we sum over the pin− structures, we can

now include n copies of the ABK invariant. This leads to a series of unoriented type 0 string

theories, labeled by n mod 8, some of which have been discussed in the existing literature

[82–91]. A similar approach lets us identify worldsheets with Ω2 = 1 as carrying a pin+ struc-

ture, and allows a complete classification. We can also ask whether it is possible to modify

the GSO projection of the type I theory. In the type II theory, the left- and right-moving

fermions couple to independent spin structures. This means that the worldsheet fermions

of the type I theory have neither pin+ nor pin− structure; rather, one needs to consider the

spin structure on the orientation double cover of the worldsheet [90, 91]. We will see below

that there are nontrivial invertible phases for this structure, but that they will not lead to

any genuinely new type I theory.

We also point out that our viewpoint provides a complementary way to understand

the dependence of the K-theoretic classification of D-branes [92] on the choice of the GSO

projection. For example, two type II theories differ by the presence of the Arf invariant, or

equivalently the Kitaev chain on the worldsheet. Famously, the Kitaev chain has an unpaired

fermionic zero mode on its boundary. This explains the fact that the boundary condition for

the type IIA non-BPS D9-brane has an unpaired boundary fermion as originally observed

in [93]. Mathematically, the presence of n boundary fermions corresponds to the existence

of the action of the Clifford algebra Cl(n), and the K-group Kn(X) is defined in terms of
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unitary bundles with a specified action of Cl(n) [94]. With this observation, we see that the

type IIB and type IIA theories have D-branes classified by K0(X) and K1(X), respectively.

Similarly, when we have n copies of the ABK invariant, we have n boundary fermions, leading

to the existence of the action of the Clifford algebra Cl(±n). This means that the unoriented

pin− type 0 theory labeled by n mod 8 has D-branes classified by KO+n(X)⊕KO−n(X).
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Chapter 2

On-shell methods for the Standard

Model Effective Theory

2.1 Introduction

Effective Field Theory (EFT) approaches have risen to prominence in recent years as a

systematic means for quantifying new physics beyond the Standard Model. The Standard

Model Effective Field Theory (SMEFT) incorporates the effects of new physics via higher-

dimension operators built from Standard Model fields [15, 17]. The operators are organized

according to their dimension, which gives a measure of their importance at low-energy scales.

The SMEFT allows exploration of the effects of new physics without requiring a complete

understanding of the more fundamental high-energy theory. While systematic, the SMEFT

involves a large number of operators and free coefficients [16], making it useful to develop im-

proved techniques for computing quantities of physical interest and for understanding their

structure. One such quantity is the anomalous dimension matrix of the higher-dimension

operators. The appearance of anomalous dimensions implies that the Wilson coefficients of

operators at scales accessible by collider experiments differ from those at the high-energy

matching scale to the more fundamental unknown theory. These also control operator mix-
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ing, providing important information on how experimental constraints from one operator

affect the coefficients of other operators. This makes evaluating the anomalous dimension

matrix a crucial aspect of interpreting results within the SMEFT. Towards this goal, here we

apply on-shell methods that greatly streamline the computation of anomalous dimensions at

one and two loops and expose hidden structure.

A systematic and complete computation of the one-loop anomalous dimension matrix for

dimension-six operators in the SMEFT is found in the landmark calculations of Refs. [19–

21]. Besides their importance for interpreting experimental data, these calculations reveal

a remarkable structure with the appearance of nontrivial zeros in the anomalous dimension

matrix [22]. These one-loop zeros have been understood as stemming from selection rules that

arise from supersymmetry embeddings [23], helicity [24], operator lengths [1], and angular

momentum [95]. Perhaps even more surprisingly, nontrivial zeros in the anomalous dimension

matrix of the SMEFT appear at any loop order and for operators of any dimension [1]. In

addition, a surprising number of the associated one-loop scattering amplitudes vanish as

well [95, 96], suggesting additional zeros may appear in the anomalous dimensions at two

loops. Here we apply on-shell methods to identify a new set of vanishing terms in the two-

loop anomalous dimension matrix of the SMEFT. As a by product of our two-loop study, we

also confirm many one-loop anomalous dimensions computed in Refs. [19–21], via both the

generalized unitarity method [43, 44, 97] and an elegant new unitarity-based method due to

Caron-Huot and Wilhelm for directly extracting anomalous dimensions from cuts [98], which

builds on insight developed in earlier work on N = 4 super-Yang-Mills theory [99, 100].

On-shell methods have proven to be quite useful in a variety of other settings, includ-

ing collider physics (see e.g. Refs. [101–103]), ultraviolet properties of (super)gravity (see

e.g. Refs. [10, 104–106]), theoretical explorations of supersymmetric gauge and gravity the-

ories (see e.g. Refs. [8, 12, 13, 107–111]), cosmological observables (see e.g. Refs. [112–118]),

and gravitational-wave physics (see e.g. Refs. [3, 40–42, 119] as well as Refs. [4, 120], which

are included in Chapter 3 of this thesis). They have also been used as a convenient means for
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classifying interactions in EFTs such as the SMEFT [121–125]. In addition, general proper-

ties of the S-matrix, such as unitarity, causality and analyticity have been used to constrain

Wilson coefficients of EFTs [126], including the SMEFT [127, 128].

In the context of anomalous dimensions and renormalization-group analyses, unitarity

cuts give us direct access to renormalization-scale dependence. After subtracting infrared

singularities, the renormalization-scale dependence can be read off from remaining dimen-

sional imbalances in the arguments of logarithms [105]. The direct link between anomalous

dimensions at any loop order and unitarity cuts is made explicit in the formulation of Caron-

Huot and Wilhelm [98]. In carrying out our two-loop analysis we make extensive use of their

formulation. Very recently the same formalism and general set of ideas was applied in

Refs. [129–131] to compute certain SMEFT anomalous dimensions.

In general, two-loop unitarity cuts include both three-particle cuts between two tree-level

objects, as well as two-particle cuts between tree-level and one-loop objects. Consequently,

our exploration of two-loop anomalous dimensions will require computing one-loop matrix

elements first. On-shell methods, in particular generalized unitary [43–46, 97, 132, 133], are

especially well suited for this task. Because we feed one-loop matrix elements into higher-loop

calculations, we find it convenient to use D-dimensional techniques which account for ratio-

nal terms. To carry out the integration, we decompose the integrands into gauge-invariant

tensors along the lines of Refs. [9, 134, 135]. In this form, the integrands can be straight-

forwardly reduced to a basis of scalar integrals using integration by parts technology (as

implemented, e.g., in FIRE [136–138]). These one-loop amplitudes are among the building

blocks that feed into the two-loop anomalous dimension calculation.

Using the unitarity-based formalism, we indeed find that many potential contributions

to the two-loop anomalous dimension matrix vanish for a variety of reasons, including the

appearance of only scaleless integrals [1], color selection rules, vanishing rational terms at

one loop, as well as appropriate renormalization scheme choices at one loop. Of the new

vanishings, perhaps the most surprising is the finding that additional zeros can be induced
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at two loops by slightly adjusting the MS renormalization scheme at one loop. This is tied

to the fact that two-loop anomalous dimensions and local rational contributions to one-loop

amplitudes are scheme dependent, and can therefore be set to zero by appropriate finite

shifts of operator coefficients, or, equivalently, by a finite renormalization of the operators,

or the addition of finite local counterterms.

For simplicity, we use a non-chiral version of the Standard Model, with zero quark and

Higgs masses and zero Yukawa couplings and without an Abelian sector, but point out

overlap with the SMEFT. In particular, our focus is on the mixing between dimension six

operators, which by dimensional analysis cannot depend on masses or other dimensionful

parameters. In the presence of masses there can be additional mixing between operators of

different dimensions, including modifications to the running of the Standard Model couplings,

but these correspond to different entries of the anomalous dimension matrix. In summary,

our model is a close enough cousin of the SMEFT that we can directly verify a variety of

one-loop SMEFT anomalous dimensions calculated in Refs. [19–21], finding full agreement,

and make some predictions about the structure of the two-loop anomalous dimension matrix.

(See Section 2.6 and in particular Table 2.9.) We note that although we only utilize Dirac

fermions here, on-shell methods are well suited for dealing with chiral fermions as well (see

e.g. Refs. [45, 101–103]).

This chapter is organized as follows. In Section 2.2, we explain our conventions, list the

higher-dimensional operators in our simplified version of the SMEFT, and summarize the

on-shell methods that we use to obtain anomalous dimensions. In Section 2.3 we present a

new nonrenormalization theorem and its proof using the on-shell formalism, as well as some

examples and its application to operators of dimensions six through eight. In Section 2.4

we explain the use of generalized unitarity in constructing full one-loop amplitudes, and

we discuss the appearance of numerous zeros in the rational terms of the amplitudes. We

also explain how finite counterterms can produce additional zeros in the rational terms of

many of the one-loop amplitudes. Examples of additional vanishing contributions to the
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two-loop anomalous dimension matrix are presented in Section 2.5, including those that

arise from finite counterterms at one-loop. In Section 2.6 we discuss the overlap between

our simplified model and the full SMEFT in the basis of operators used in Refs. [19–21],

and discus the implications of our results for the latter theory. We give our conclusions in

Section 2.7. Appendix 2.A explains the projection method used for integration in detail and

lists the gauge invariant basis tensors. The explicit D-dimensional forms of the full one-loop

amplitudes, as well as their four-dimensional finite remainders, are relegated to the ancillary

files attached to the ArXiV submission of Ref. [2] and Appendix 2.B, respectively.

2.2 Setup and formalism

We now present our conventions and explain the on-shell formalisms that we use for obtaining

the anomalous dimensions. One procedure for doing so is to extract them from ultraviolet

divergences in amplitudes. This procedure follows the generalized unitarity method for

assembling scattering amplitudes from their unitarity cuts [43–45, 97, 101–103]. While we

describe the procedure for obtaining the anomalous dimensions in the current section, we

leave a more detailed discussion of the generalized unitarity method for Section 2.4, where

it will be used to construct full amplitudes.

As a second method, we apply the recent formalism of Caron-Huot and Wilhelm [98],

which directly expresses the anomalous dimensions in terms of unitarity cuts. This method

is particularly effective for computing anomalous dimensions, and is our preferred method

beyond one loop. We show how this method helps clarify the structure of the anomalous

dimension matrix at two loops and exposes new nontrivial zeros.
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2.2.1 Conventions and basic setup

To illustrate our methods we will consider a model with dimension-four Lagrangian given by

L(4) = −1

4
F a
µνF

aµν +DµϕD
µϕ− λ (ϕϕ)2 + i

Nf∑
m=1

ψ̄m /Dψm , (2.1)

where the gauge field strength, F a
µν , is in the adjoint representation of SU(N), while ψm

and ϕ are fundamental representation Dirac fermions and scalars, respectively. The index

m on the fermions denotes the flavor; for simplicity we take a single flavor of scalars. The

covariant derivative is given by

(Dµψm)i =
(
δij∂µ + ig

1√
2
T aijA

a
µ

)
(ψm)j , (2.2)

where T aij is the SU(N) generator. We normalize the generator in the standard amplitudes

convention by Tr[T aT b] = δab which differs from the usual textbook one, and we define

fabc = −iTr[[T a, T b]T c] and dabc = Tr[{T a, T b}T c] for later use.1

This model theory has the general structure of the Standard Model, but with all masses

and Yukawa couplings set to zero, and with only one gauge group. Here we also use Dirac

instead of chiral fermions; the basic methods apply just as well to cases which include chiral

fermions in the context of Standard Model calculations, as in Ref. [45].

To mimic the SMEFT we modify this Lagrangian by adding dimension-six operators

supressed by a high-energy scale Λ:

L = L(4) +
1

Λ2

∑
k

c
(6)
i O(6)

i , (2.3)

where the list of the operators that we consider here is given in Table 2.12. Note that our

1Note that our structure constants, fabc, carry an extra factor of
√

2 relative to standard textbook
conventions [139].

2We note that Oϕ6 has no nonzero four-point amplitudes through two-loops, and therefore cannot renor-
malize any of the other operators [1]. We still include it here for completeness.
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simplified model contains representatives from all of the operator classes of the basis used

in Refs. [19–21], other than the classes ψ2Fϕ and ψ2ϕ3 (ψ2XH and ψ2H3 in the notation

of Refs. [19–21]), since operators in these classes must always have one uncharged fermion.

We defer a comparison to the full SMEFT to Section 2.6.

At first order in ci/Λ
2, renormalization induces mixing of the dimension-six operators, as

parametrized by

ċi ≡
∂ci

∂ log µ
= cjγji . (2.4)

If the coefficient of operator Oj appears on the right-hand side of the RG equation for the

coefficient of operator Oi, as above, we say that Oj renormalizes Oi, or that they mix under

renormalization. Sometimes we write the corresponding anomalous dimension as γi←j. In all

tables which describe anomalous dimensions we will display γ′ij = γT
ij to facilitate comparison

with Refs. [19–21]. The anomalous dimension matrix γij depends on the dimension-four

couplings g and λ, in the combinations

g̃2 =
g2

(4π)2
, λ̃ =

λ

(4π)2
, (2.5)

which we sometimes refer to collectively as g(4).

We extract anomalous dimensions from both amplitudes and form factors. We define a

form factor with an operator insertion as

Fi(1
h1 , ..., nhn ; q) = 〈kh1

1 , ..., k
hn
n |Oi(q)|0〉 , (2.6)

which are matrix elements between an on-shell state 〈k1, ..., kn|, with particles of momenta

{k1...kn} and helicities {h1...hn}, and an operator Oi that injects additional off-shell mo-

mentum q. The states might also be dependent on the color and flavor of the particles, but

we leave this dependence implicit for the moment. Form factors are especially useful when

dealing with on-shell states with fewer than four particles, where kinematics would otherwise
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Label Operator

OF 3
1
3
fabcF a

µνF
a
νρF

a
ρµ

O(ϕ2F 2)1
(ϕ†ϕ)F a

µνF
a
µν

O(ϕ2F 2)2
dabc(ϕ†T aϕ)F b

µνF
c
µν

O(D2ϕ4)1
(ϕ†Dµϕ)∗(ϕ†Dµϕ)

O(D2ϕ4)2
(ϕ†ϕ)�(ϕ†ϕ)

Oϕ6 (ϕ†ϕ)3

Opr(Dϕ2ψ2)1
i(ϕ†(Dµ −

←−
Dµ)ϕ)(ψ̄pγ

µψr)

Opr(Dϕ2ψ2)2
i(ϕ†(T aDµ −

←−
DµT

a)ϕ)(ψ̄pT
aγµψr)

Omnpr(ψ4)1
(ψ̄mγ

µψn)(ψ̄pγµψr)

Omnpr(ψ4)2
(ψ̄mγ

µT aψn)(ψ̄pγµT
aψr)

Table 2.1: List of dimension-six operators considered here. For simplicity, we take the
fermions to be Dirac. The labels mnpr are flavor indices and abc color indices. Note the
operator OF 3 is normalized slightly differently than in Refs. [19–21], as are the color matrices
T a in the operatorsO(Dϕ2ψ2)2

andO(ψ4)2
. We will occasionally drop the ( )1 and ( )2 subscripts

to refer to pairs of operators collectively.

require the amplitude (with real momenta) to be zero. From the perspective of form factors,

we can think of an amplitude with an operator insertion as a form factor, but where the

higher-dimension operator injects zero momentum, q = 0,

Ai(1
h1 , ..., nhn) = 〈kh1

1 , ..., k
hn
n |Oi(0)|0〉 . (2.7)

When the inserted operator is the identity, we recover the usual scattering amplitude, which

depends only on the dimension-four couplings. We denote such an amplitude as

A(1h1 , ..., nhn) = 〈kh1
1 , ..., k

hn
n |0〉 = 〈kh1

1 , ..., k
hi
i |M| − k−hi+1

i+1 , . . . ,−k−hnn 〉 . (2.8)

Unless otherwise stated, we use an all outgoing convention where all the particles are crossed

to the final state. When crossing fermions there are additional signs on the right-hand side
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of Eq. (2.8) that we leave implicit here. In general we can write the form factors (and

amplitudes) as color-space vectors,

Fi(1, . . . , n) =
∑
j

C[j]Fi [j](1, . . . , n) , (2.9)

where the C[i] are a set of independent color factors. In the context of amplitudes, these

correspond to color-ordered [52, 140, 141] or, more generally, primitive [142] amplitudes.

The color factors C[i] depend on which particles of the amplitude are in the adjoint or

fundamental representation of SU(N). Here, we only need the decomposition into a basis

of color factors without using special properties of the coefficients. For the various processes

we consider, the tree and one-loop amplitudes are listed in Appendix 2.B.

We use the conventional dimensional regularization and MS-like schemes throughout, in

which the amplitudes and form factors, Fi satisfy the renormalization-group equations

[
(µ∂µ + β ∂) δij +

(
γUV − γIR

)
ij

]
Fj = 0, (2.10)

where ∂µ := ∂/∂µ, ∂ := ∂/∂g(4), β := β(g(4)) is the β-function of the collection of marginal

couplings, γUV
ij are the anomalous dimensions of the higher-dimension operators, and γIR

ij

are the IR anomalous dimensions, arising from soft and/or collinear divergences3. For later

convenience, we introduce the shorthand

∆γ = γUV − γIR . (2.11)

The appearance of both kinds of anomalous dimensions stems from the fact that there is a

single dimensional-regularization parameter, ε = εUV = εIR, and single scale, µ = µUV = µIR,

for both the UV and IR divergences. As usual we take ε = (4−D)/2.

3The relative sign between UV and IR anomalous dimensions is merely a convention.
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The perturbative expansion of the different quantities we consider is denoted by

Fi = F
(0)
i + F

(1)
i + F

(2)
i + · · · ,

Ai = A
(0)
i + A

(1)
i + A

(2)
i + · · · ,

γij = γ
(1)
ij + γ

(2)
ij + · · · ,

β = β(1) + β(2) + · · · , (2.12)

where each order in the expansion includes an additional power of the dimension-four cou-

plings, g(4), as defined in Eq. (2.5), compared to the previous order. Since the operators we

consider here have a least four fields, except for the F 3 case, any of the generated four-point

tree amplitudes are local, and directly correspond to the operator. The amplitudes generated

by the F 3 operator also contain a vertex obtained from the dimension-four operators. Thus,

the four-point tree amplitudes have no powers of g(4), with the exception of the four-point

amplitudes generated from the F 3 operator.

2.2.2 Anomalous dimensions from UV divergences

Anomalous dimensions are traditionally extracted from countertems associated to UV di-

vergences. For instance, in Refs. [19–21] the full one-loop anomalous dimension matrix of

the SMEFT was calculated by extracting the 1/ε divergences of the one-particle irreducible

(1PI) diagrams that generate the one-loop effective action in the background field method.

Alternatively, one might extract the anomalous dimensions from on-shell amplitudes. Here,

we use the full one-loop amplitudes to calculate the one-loop anomalous dimension matrix

of our model, and thereby verify a representative set of the anomalous dimensions calculated

in Refs. [19–21].

An efficient way of determining UV divergences at one loop was presented for the β-

function in Ref. [143, 144]. Here we adopt this method to calculate one-loop anomalous
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dimensions. In general, the renormalization of Oi by Oj at one loop is determined by

calculating the matrix element with external particles corresponding to Oi, but with an

insertion of Oj. In general, one-loop matrix elements can be expressed in terms of a basis of

scalar integrals

A
(1)
i =

∑
s

as4, i I4,s +
∑
s

as3, iI3,s +
∑
s

as2, iI2,s , (2.13)

comprised of boxes I4,s, triangles, I3,s, and bubbles, I2,s, where the corresponding coefficients,

asi , b
s
i and ci are gauge invariant and generically depend on color and the dimensional regu-

larization parameter ε. The integrals can then be expanded in ε, producing both UV and IR

poles in ε. Only the scalar bubble integrals contain UV divergences, so we write a formula

for the anomalous dimensions in terms of the bubble coefficients as2, i, whose ε dependence

can be ignored for this purpose. However, some care is required because of cancellations

between UV and IR divergences. We delay a detailed discussion of the infrared structure

of the amplitudes to Section 2.4. For the moment, we just recall that the 1/ε pole in the

bubble integrals in Eq. (2.13) does not contain the full UV divergence of the amplitude. The

reason for this is that there is an additional 1/ε pole which originates in bubble-on-external-

leg diagrams, which are scaleless and set to zero in dimensional regularization because of a

cancellation of UV and IR poles,

∣∣∣∣
p2=0

∝ 1

εUV
− 1

εIR
+ log

µ2
UV

µ2
IR

. (2.14)

Hence the bubbles on external legs give an additional UV contribution,

− 1

2ε
γIR (1)

c A
(0)
i := − 1

2ε

∑
p

γIR
c, pA

(0)
i , (2.15)

where γcp is the so-called collinear anomalous dimension of particle p, and the sum is over

all external states of the tree amplitude. For the vectors, fermions and scalars in our theory
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the collinear anomalous dimensions are given by [145, 146]

γIR (1)
c, v = −g̃2b0 , γ

IR (1)
c, f = −g̃23CF , γIR (1)

c, s = −g̃24CF , (2.16)

where b0 = (11N − 2Nf − Ns/2)/3 is the coefficient in the one-loop β-function of g, and

CF = (N2−1)/2N is the Casimir of the fundamental representation. While we only consider

one flavor of scalar in our model, we include the parameter Ns in the β-function and elsewhere

to track contributions from scalar loops.

In addition, there are contributions to the 1/ε UV pole proportional to the one-loop

β-function of the dimension-four couplings, related to the renormalization of such couplings

1

2ε
(n− Li)β̃(1)A

(0)
i , (2.17)

where β̃(1) = β(1)/g(4), n is the number of external states and Li is the length of the operator

Oi, i.e., the number of fields it contains. We therefore conclude that the sum over bubble

coefficients is related to the UV anomalous dimensions by

1

(4π)2

∑
s

as2 ,i = −1

2

[
γUVij − γIR

c δij + (n− Li)β̃(1)δij
]
A

(0)
j . (2.18)

Similar formulas have recently been used in Ref. [130, 131]. There are multiple methods by

which one might calculate these coefficients. We do so by using generalized unitarity. For

the purposes of extracting the UV divergences, it suffices to evaluate four-dimensional cuts

[24, 143, 144]. However, we are interested in obtaining the full amplitudes, including rational

terms, as a stepping stone towards calculating two-loop anomalous dimensions, so we use

D-dimensional unitarity cuts as described in Section 2.4.

The approach we outlined is very powerful at one loop, but at higher loops becomes

more difficult to use, because it requires two-loop integration. In particular, at higher loops

simple decompositions of integrals along the lines of Eq. (2.13) do not exist. One might still
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construct the amplitudes using unitarity methods, and then extract their UV divergences by

carrying out the loop integration, but one would like a simpler technique that avoids much of

the technical complexity. Furthermore, to calculate two-loop divergences, one must also keep

track of evanescent one-loop subdivergences, which contaminate the result. By an evanes-

cent subdivergence we mean a subdivergence whose corresponding counterterm vanishes in

strictly four dimensions, but which cannot be ignored in dimensional regularization (see

e.g. Ref. [147–151]). While not physical, these evanescent subdivergences greatly complicate

higher-loop calculations, and it is better to use a method that avoids them, whenever possi-

ble. Ref. [105] gives a nontrivial two-loop example for Einstein gravity showing how on-shell

methods can efficiently bypass evanescent effects [104] to determine renormalization-scale

dependence.

2.2.3 Anomalous dimensions directly from unitarity cuts

A much more direct way to obtain anomalous dimensions is to focus on the renormalization-

scale dependence encoded in the logarithms, and not on the divergences. The logarithms are

detectable in four-dimensional unitarity cuts. Any dimensional imbalance in the kinematic

arguments of the logarithms must be balanced by renormalization-scale dependence, so one

can directly determine the renormalization-scale dependence and any anomalous dimensions

by collecting the contributions from unitarity cuts. For example, this strategy has been

used to greatly simplify the extraction of the two-loop renormalization-scale dependence in

Einstein gravity [105].

The formalism of Caron-Huot and Wilhelm [98] gives a rather neat way to carry out this

strategy , allowing us to extract the anomalous dimension at L-loops directly from phase-

space integrals of lower-loop on-shell form factors and amplitudes. Among other useful fea-

tures, this makes potential zeros in the anomalous dimension matrix much more transparent

than with conventional methods [1].
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By considering the analyticity of the form factors with respect to complex shifts in mo-

menta, along with unitarity, Caron-Huot and Wilhelm derived the following compact equa-

tion:

e−iπDF ∗i = S F ∗i , (2.19)

which relates the phase of the S-matrix, S, to the dilatation operator, D (ignoring trivial

overall engineering dimensions). The dilation operator acts on the conjugate form factor F ∗i .

Writing S = 1 + iM, Eq. (2.19) can be rewritten more practically as

(e−iπD − 1)F ∗i = iMF ∗i , (2.20)

where the scattering amplitude, M, acts as a matrix on the form-factor, yielding its imagi-

nary part via the optical theorem4. The right-hand side of this equation is defined to be a

unitarity cut. As we discuss below, this equation precisely captures the notion that the scale

dependence of Fi is encoded in the coefficients of its logarithms. We note that the use of the

complex conjugate form factor, F ∗, only affects the imaginary part, which do not affect our

calculations through two loops. Therefore, we drop the complex conjugation henceforth.

In dimensional regularization, the dilatation operator is related to the single renormal-

ization scale, µ, as D = −µ∂µ, reflecting the fact that Fi can only depend on dimensionless

ratios sij/µ (ignoring the overall engineering dimensions), and that logarithms in sij kine-

matic variables must be balanced either by µ or by each other. The dilatation operator then

acts on the form factors as

DFi = −µ∂µFi = [∆γij + δijβ ∂]Fj, (2.21)

where we have used the renormalization-group equation (2.10). This, together with equation

4In our notation the optical theorem states, 2ImF ∗i = MF ∗i for form factors or 2ImM = MM for
amplitudes.
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Figure 2.1: Unitarity cut relevant for the extraction of anomalous dimensions from one-loop
form factors. The darker blobs indicate a higher-dimension operator insertion. The double-
lined arrow indicates the insertion of additional off-shell momentum from the operator. The
dashed line indicates the integral over phase space of the particles crossing the cut.

(2.19), gives us a powerful means to extract anomalous dimensions.

While Eqs. (2.19) and (2.21) are valid non-perturbatively, we can expand in perturbation

theory to obtain order-by-order expressions for the anomalous dimensions. At one loop the

expansion yields [
∆γ

(1)
ij + δijβ

(1)∂
]
F

(0)
j = − 1

π
(MFi)

(1) , (2.22)

where the superscript denotes the order in perturbation theory. On the right-hand side

(MFi)
(1) indicates

(MFi)
(1) =

n∑
k=2

∑
c

(Mc
k→2)(0) ⊗ F (0)

n−k+2 ,i , (2.23)

where the sums are over all kinematic channels and the ⊗ denotes a sum over intermediate

two-particle states in the product. For a given kinematic channel this is given by the Lorentz-

invariant phase-space integral

(M1···k
k→2)(0) ⊗ F (0)

n−k+2 ,i =
∑∫

dLIPS2

∑
h1,h2

〈1 · · · k|M|`h1
1 `

h2
2 〉(0)〈`h1

1 `
h2
2 · · ·n|Oi|0〉(0)

=
∑∫

dLIPS2

∑
h1,h2

A(0)(1, · · · , k,−`−h1
1 ,−`−h2

2 )F
(0)
i (`h1

1 , `
h2
2 , · · · , n) , (2.24)

where the sum over helicities also includes a sum over different states crossing the cut. In

summary, (MFi)
(1) corresponds to a sum over all one-loop two-particle unitarity cuts, as

depicted schematically in Figure 2.1.
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(a) (b) (c)

Figure 2.2: Unitarity cuts relevant for the extraction of anomalous dimensions from two-
loop form factors, using the same notation as in Figure 2.1. The darker blobs indicate a
higher-dimension operator insertion. The blobs with a hole indicate a one-loop form factor
or amplitude.

After rewriting the expression in terms of four-dimensional spinors, the two-particle

phase-space integrals can be easily evaluated following the discussion of Ref. [98],

 λ′1

λ′2

 =

 cos θ − sin θ eiφ

sin θ e−iφ cos θ


 λ1

λ2

 , (2.25)

where the λi and λ̃i = λ∗i spinors depend on the momenta of the external legs and the λ′i and

λ̃′i = λ′i
∗ spinors on the momenta of the cut legs. With this parametrization the integration

measure is simply, ∫
dLIPS2 ≡

1

16π

∫ 2π

0

dφ

2π

∫ π
2

0

2 cos θ sin θdθ . (2.26)

In the definition of the phase-space measure, here we have included an additional symmetry

factor of 1/2, relative to the usual volume of two-particle phase space, i.e., 8π. This is

generally convenient but requires some care when non-identical particles cross the cut, where

we will need to multiply by two to cancel the symmetry factor.

Next consider two loops. Expanding Eq. (2.20) through this order, we obtain

[
∆γ

(1)
ij + δijβ

(1)∂
]
F

(1)
j +

[
∆γ

(2)
ij + δijβ

(2)∂
]
F

(0)
j

− iπ 1

2

[
∆γ

(1)
ik + δikβ

(1)∂
] [

∆γ
(1)
kj + δkjβ

(1)∂
]
F

(0)
j = − 1

π
(MFi)

(2) .

(2.27)

On the right-hand side of this equation, (MFi)
(2) denotes collectively the three two-loop
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unitarity cuts displayed in Figure 2.2,

(MFi)
(2) =

n∑
k=2

∑
c

[
(Mc

k→2)(1) ⊗ F (0)
n−k+2 ,i + (Mc

k→2)(0) ⊗ F (1)
n−k+2 ,i

+(Mc
k→3)(0) ⊗ F (0)

n−k+3 ,i

]
. (2.28)

In the first term we find two-particle cuts composed of the one-loop amplitude and the

tree-level higher-dimension form factor depicted in Figure 2.2(a). These are

(M1···k
k→2)(1) ⊗ F (0)

n−k+2 ,i =

∫
dLIPS2

∑
h1,h2

〈1 · · · k|M|`h1
1 `

h2
2 〉(1) 〈`h1

1 `
h2
2 · · ·n|Oi|0〉(0)

=

∫
dLIPS2

∑
h1,h2

A(1)(1, · · · , k,−`−h1
1 ,−`−h2

2 )F
(0)
i (`h1

1 , `
h2
2 , · · · , n) . (2.29)

Similarly, the second term, shown in Figure 2.2(b), is a combination of cuts composed by

the tree-level amplitude and the one-loop higher-dimension operator, which are

(M1···k
k→2)(0) ⊗ F (1)

n−k+2 ,i =

∫
dLIPS2

∑
h1,h2

〈1 · · · k|M|`h1
1 `

h2
2 〉(1) 〈`h1

1 `
h2
2 · · ·n|Oi|0〉(0)

=

∫
dLIPS2

∑
h1,h2

A(0)(1, · · · , k,−`−h1
1 ,−`−h2

2 )F
(1)
i (`h1

1 , `
h2
2 , · · · , n) . (2.30)

Finally, the third term is composed of three-particle cuts involving two tree-level objects, as

in Figure 2.2(c)

(M1···k
k→3)(0) ⊗ F (1)

n−k+3 ,i =

∫
dLIPS3

∑
h1,h2,h3

〈1 · · · k|M|`h1
1 `

h2
2 `

h3
3 〉(0)〈`h1

1 `
h2
2 `

h3
3 · · ·n|Oi|0〉(0)

=

∫
dLIPS3

∑
h1,h2,h3

A(0)(1, · · · , k,−`−h1
1 ,−`−h2

2 ,−`−h3
3 )F

(0)
i (`h1

1 , `
h2
2 , `

h3
3 , · · · , n) . (2.31)

A parameterization analogous to (2.25) for the three-particle cut is given in Ref. [98]. We

will not evaluate any three-particle cuts in the present work, so we refer the reader to the

29



aformentioned paper for more details.

We can rearrange Eq. (2.27) to put it into a more convenient form for extracting two-loop

anomalous dimensions. First, note that the imaginary part of Eq. (2.27)

−iπ 1

2

[
∆γ

(1)
ik + δikβ

(1)∂
] [

∆γ
(1)
kj + δkjβ

(1)∂
]
F

(0)
j = − 1

π
Im(MFi)

(2) , (2.32)

does not feature the two-loop anomalous dimensions. Using the optical theorem again, we

write its right-hand side in terms of unitarity cuts

Im(MFi)
(2) = (MMFi)

(2) , (2.33)

where the relevant cuts are the iterated two-particle cuts in Fig. 2.3. For instance (MMFi)
(2)

contains terms of the form

∫
dLIPS2dLIPS′2

∑
h1,h2

∑
h′1,h

′
2

〈· · · |`h1
1 `

h2
2 〉(0)〈`h1

1 `
h2
2 · · · |`

h′1
1′ `

h′2
2′ 〉(0)〈`h

′
1

1′ `
h′2
2′ · · · |Oi|0〉(0) , (2.34)

which correspond to cuts of the type in Fig. 2.3(a). Note that Eq. (2.33) does not include

a factor of 1/2 from the optical theorem because the imaginary part can arise from cutting

either the one-loop amplitude or form factor, which give identical contributions.

Eq. (2.32) does not contain the two-loop anomalous dimensions but instead captures the

exponentiation of one-loop anomalous dimensions and the associated logarithms. Nonethe-

less (2.33) can be used to simplify the real part of Eq. (2.27), which yields

[
∆γ

(1)
ij + δijβ

(1)∂
]

ReF
(1)
j +

[
∆γ

(2)
ij + δijβ

(2)∂
]
F

(0)
j (2.35)

= − 1

π
Re(MFi)

(2) = − 1

π
(MFi −MMFi)

(2) .
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(a) (b)

Figure 2.3: Iterated two-particle cuts that appear on the right-hand side of Eq. (2.33).

Note that the right-hand side can be rewritten using

(MFi −MMFi)
(2) =

[(
M− 1

2
MM

)(
Fi −

1

2
MFi

)](2)

= [Re(M)Re(Fi)]
(2) ,

(2.36)

and with this we arrive at

[
∆γ

(1)
ij + δijβ

(1)∂
]

ReF
(1)
j +

[
∆γ

(2)
ij + δijβ

(2)∂
]
F

(0)
j = − 1

π
[Re(M)Re(Fi)]

(2) . (2.37)

We use this equation to extract two-loop anomalous dimensions. In practice Eq. (2.37) simply

instructs us to drop the imaginary parts of the one-loop matrix elements when calculating

the cuts in Figs. 2.2(a) and 2.2(b). On the left-hand side, we now see the appearance of

one-loop anomalous dimensions and the β-function, as well as the one-loop form factor F
(1)
i .

The two-loop UV anomalous dimension γ
UV(2)
ij contained in ∆γ

(2)
ij is the object of interest,

but to extract it we first need to remove γ
IR(2)
ij , which requires an understanding of the IR

singularities, which we discuss below.

2.2.4 Simplifying strategies

A strategy that greatly simplifies the analysis is to choose an external state with the minimal

number of external legs that is sensitive to the operator of interest, i.e. select the operator’s

minimal form factor. In this way we can avoid terms of the form β(n)∂F
(0)
i in Eqs. (2.27) and

(2.37), since, under this choice, F
(0)
i is local, and thus does not depend on the dimension-four
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couplings, g(4).

More generally, the β-function can no longer be eliminated by using minimal form factors

whenever the one-loop form factor with an Oi insertion, F
(1)
i , produces a nonzero result with

the chosen external states. In addition, the β-function acting on the one-loop anomalous-

dimension matrix is nonzero if the matrix elements themselves are nonzero. For example, to

determine the renormalization of OF 3 by itself at two loops, we would evaluate Eq. (2.37)

with the external state 〈1+2+3+|. In this case the term β(2)∂F
(0)

F 3 would vanish, though the

term β(1)∂F
(1)

F 3 would remain.

Unlike the β-function, the IR anomalous dimensions are non-trivial to eliminate. Ref. [98]

removes them by subtracting, at the integrand level, form factors of global symmetry cur-

rents, such as the stress-tensor, which are UV finite but contain the same IR divergences.

Alternatively, one can use the same on-shell methods to calculate them and subtract them

after integration. At one loop, the structure of infrared divergences is well understood [152–

157], and it is straightforward to subtract them after integration. We explain how to carry

this out at the level of the amplitudes in the next section. Furthermore, whenever we

are interested in a leading off-diagonal element of the anomalous dimension matrix, the IR

anomalous dimensions does not appear, since the infrared divergences are diagonal in the

operators (excluding color).

Finally, form factors are useful for operators with only two or three external fields, since

they allow nonzero results when kinematics would otherwise set amplitudes with fewer than

four external particles to zero. Here we generally set the operator momentum insertion q = 0

and work in terms of amplitudes whenever possible, i.e. whenever there are four or more

external states.
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2.2.5 Comments on evanescent operators

When extracting anomalous dimensions from UV divergences in dimensional regularization

one must carefully keep track of evanescent operators [147–151]. These operators are non-

trivial in D-dimensions, but whose matrix elements vanish for any choice of external four-

dimensional states. In the context of the SMEFT an example of an evanescent operator

would be the Lorentz–Fierz identities

OFierz,L = (ψ̄mL γ
µψnL)(ψ̄pLγµψ

r
L) + (ψ̄pLγ

µψnL)(ψ̄mL γµψ
r
L) ,

OFierz,R = (ψ̄mRγ
µψnR)(ψ̄pRγµψ

r
R) + (ψ̄pRγ

µψnR)(ψ̄mRγµψ
r
R) , (2.38)

(where we raised the flavor indices for convenience) which are identically zero in four but

not in arbitrary dimensions. More generally one can easily construct such operators by

antisymmetrizing over five or more Lorentz indices. In the context of our model, an example

of such an evanescent operator is

(ψ̄γ[αγµγνγσγρ]ψ)(ψ̄γ[αγµγνγσγρ]ψ) . (2.39)

One-loop diagrams might contain a 1/ε divergence proportional to the matrix element of

an evanescent operator. While this does not affect one-loop anomalous dimensions because

we can take the external states to be four-dimensional, when inserted in a higher-loop di-

agram in the context of dimensional regularization such evanescent operators are activated

and can generate both UV divergent and finite contributions. In fact, they are needed to

properly subtract subdivergences. These effects must be taken into account in order to

correctly extract two-loop UV divergences and their associated anomalous dimension. In

practice we can deal with the effects of evanescent operators [147–151], but the number of

them grows with dimension and loop order (especially in the presence of fermions). For

this reason it would be desirable to avoid them when possible, since they are a technical
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complication due to the use of dimensional regularization, and ultimately we would expect

that they do not affect the physics [104].

We expect the on-shell methods presented above to completely sidestep the issue of

evanescent operators when obtaining anomalous dimension, at least through two loops.

Ref. [105] provides a nontrivial demonstration that complications from evanescent operators

can be completely sidestepped using on-shell methods and by focusing on renormalization-

scale dependence instead of divergences. In the two-loop formulas used here, anomalous

dimensions and associated logarithms are given directly in terms of four-dimensional unitar-

ity cuts of tree and one-loop objects. This automatically eliminates most of the evanescent

dependence, except for finite shifts in one-loop matrix elements with evanescent operator

insertions. We expect that any remaining evanescent dependence in the one-loop amplitudes

or form factors to be eliminated by finite renormalizations [151]. Given the usual subtleties

of dealing with evanescent operators, it would, of course, be important to explicitly verify

that including or not including evanescent operators in the one- and two-loop anomalous

dimension matrix amounts to a scheme choice.

2.2.6 Anomalous dimensions and non-interference

As noted in Ref. [158–160] helicity selection rules imply the non-interference of SMEFT tree-

level matrix elements when constructing cross sections. This has important consequences

in the context of the SMEFT, where the possibility of measuring the coefficient of higher-

dimension operators at colliders can be impacted by the vanishings in the interference of the

Standard-Model tree amplitudes and those of higher-dimension operators, when computing

cross sections. A connection between one-loop anomalous dimension and interference terms

can be seen in Eq. (2.22), where, upon setting q = 0, the form factors become amplitudes

and the right-hand side directly captures the interference of tree-level dimension-four and

dimension-six amplitudes. Note that this holds even when the anomalous dimension is not
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zero, in which case this equation relates the interference terms to simpler objects, namely the

one-loop anomalous dimensions and tree-level matrix elements. Of course, in a realistic cross-

section calculation one would not integrate over the full phase space, due to experimental

cuts.

At two loops the connection between zeros in the anomalous dimensions and non-interference

is not as direct, since it requires cancellations between both sides of Eq. (2.27). Eq. (2.32)

shows that, in general, the imaginary part of the interference term is given by the square of

one-loop anomalous dimensions times tree-level matrix elements. Instead of non-interference,

Eq. (2.35) shows that a vanishing two-loop anomalous dimension would imply that the real

part of interference term is simply is related to the product of one-loop anomalous dimensions

and one-loop matrix elements. It would be interesting to further investigate the consequences

stemming from these observations, even in the presence of experimental cuts.

2.3 Non-renormalization theorem for operator mixing

Having explained the on-shell tools to calculate anomalous dimension we are ready to discuss

and prove a new nonrenomalization theorem. To state the theorem we define the length of

an operator, l(O), as the number of fundamental field insertions in O. Then the statement

of theorem is as follows:

Consider operators Os and Ol such that l(Ol) > l(Os). Ol can renormalize Os at L loops

only if L > l(Ol)− l(Os).

At fixed loop order, sufficiently long operators cannot renormalize short operators because

there would be too many legs to form a diagram with the right structure. Such zeros in the

anomalous-dimension matrix are trivial. As written above the theorem applies non-trivially

at (l(Ol) − l(Os))-loops, i.e., the first loop order at which there could be renormalization

because diagrams exist. However, in a general theory with multiple types of fields, the first
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renormalization can be delayed even further, depending on the precise field content of the

two operators. We encapsulate this into the more general rule:

If at any given loop order, the only diagrams for a matrix element with the external par-

ticle content of Os but an insertion of Ol involve scaleless bubble integrals, there is no

renormalization of Os by Ol.

What makes them nontrivial is that Feynman diagrams exist that seem as if they should

contribute to an anomalous dimension, but fail to do so because the diagrams do not gener-

ate the appropriate logarithms. The Feynman-diagram language can obscure this, because

individual diagrams are not gauge invariant. While not difficult to disentangle at one loop,

at higher loops it becomes more advantageous to work in an on-shell formalism, which only

takes gauge-invariant quantities as input. Indeed, modern unitarity methods [43–46, 97]

have clarified the structure of loop amplitudes resulting in significant computational advan-

tages for a variety of problems, including the computation of form factors and associated

anomalous dimensions [161–164].

2.3.1 Proof of the non-renormalization theorem

We would like to consider the renormalization of a shorter operator Os by a longer operator

Ol. This could be, for example, the renormalization of φ2F 2 by φ6, where φ is a scalar and

F is a vector field strength. For simplicity we will take Os and Ol to be single operators,

though in general they represent collections of operators with the same field content, but

differing Lorentz contractions or color factors. Because our arguments rely only on the field

content and basic structure of the unitarity cuts, our conclusions will apply just as well to

the more general case.

The formalism reviewed above allows us to connect the anomalous dimensions to unitarity

cuts of form factors, given knowledge of the β function of the leading couplings and the

infrared anomalous dimensions. We now show that for the leading contributions, there is
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an even more direct connection between the ultraviolet anomalous dimensions and unitarity

cuts.

The appearance of the β function in Eq. (2.22) is avoided simply by extracting the

anomalous dimensions from the minimal form factor of Os, which is defined as the one with

the minimum number of legs needed to match the operator. Because of its defining property,

the minimal tree-level form factor is local and does not depend on the couplings, g. Therefore

the dependence of the higher-loop analog of Eq. (2.22) on the β function drops out.

Next, we would need knowledge of the infrared anomalous dimension γIR. Infrared singu-

larities are very well understood [146, 152–157, 165]. Our case is special, with a rather simple

infrared structure. We are interested in the first loop order at which the higher-dimension

operator could be renormalized. This would be the first loop order for which it is possible

to write down valid diagrams. The lack of diagrams at lower-loop order means there cannot

be any log(µIR) terms or corresponding γIR at the given loop order under consideration. In

addition, infrared singularities are diagonal for the operators with distinct fields, mixing only

via color. Therefore at this order γIR = 0. Various examples will be given in later sections.

Thus, application of Eq. (2.19) is particularly simple for our case so that the relation

between the first potentially nonvanishing anomalous dimension and unitarity cuts is direct:

(γUV
sl )(L) 〈p1, ..., pn|Os|0〉(0) = − 1

π
s〈p1, ..., pn|M⊗Ol|0〉 . (2.40)

With this relation at hand, it is now straightforward to argue for new non-renormalization

zeros by analyzing the allowed unitarity cuts. Eq. (2.40) gives (γUV
sl )(L) in terms of a sum

over cuts of the form illustrated in Figs. 2.1 and 2.2 which in general include multiloop

amplitudes and form factors. The left-hand side of any such k-particle cut is a nM-point

amplitude, with the number of particles external to the cut equal to nM − k. Similarly the

right-hand side is an nF -point form factor, with nF − k particles external to the cut. Now,

for the minimal form factor, the total number of external particles must match the length
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of Os, so we must have the relation,

nM + nF − 2k = l(Os) . (2.41)

The number of legs nM and nF are both bounded from below. For the unitarity cut to be

non-zero, the scattering amplitude on the left must have at least two external particles, that

is, nM ≥ k + 2. On the other side, nF is restricted by the requirement that the form factor

not include any scaleless bubbles. Since all legs of the form factor, including those crossing

the cut, are on shell, any such scaleless bubbles would evaluate to zero. At one loop, for

example, this implies nF ≥ l(Ol), which is the same as the tree level relation. At higher

loops the particle count can be reduced depending on the number of loops in the form factor,

which produces the relation

nF ≥ l(Ol)− (LF − 1)− δLF ,0 . (2.42)

Here LF is the number of loops contained in the form factor. δLF ,0 is unity if the form factor

is at tree level and zero otherwise, which accounts for the fact that there is no reduction

in particle number between tree level and one loop. By considering the possible placings

of the loops in the cut or on either side of the cut, we have LF ≤ L − (k − 1), implying

nF ≥ l(Ol) − L + k − δLF ,0. Combining this with the condition on nM and plugging in to

equation (2.41), we obtain

l(Ol)− L+ 2− δLF ,0 ≤ l(Os) . (2.43)

This inequality shows that the difference in length of the operators can preclude the renor-

malization unless

L > l(Ol)− l(Os) , (2.44)
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and thus completes the proof of the first form of our theorem. In summary, we have shown

that at loop orders less than or equal to l(Ol)− l(Os) there are no allowed unitarity cuts that

can capture the coefficient of log(µ2), which in turn implies that γUV
sl = 0. Eq. (2.43) also

shows that the contributions to the anomalous dimension at loop order L = l(Ol)− l(Os)+1

are captured by cuts of the type in Figs. 2.1 and 2.2(c), that are given purely in terms of

tree-level matrix elements. Cuts of the type in Fig. 2.2(b) are directly ruled out by Eq. (2.43)

and cuts of the type in Fig. 2.2(a) are ruled out because l(Ol) − l(Os) + 2 legs need to be

sewn across the cut to have a total of l(Os) external legs, so that all l(Ol)− l(Os) + 1 loops

are accounted for in the cut. This observation should help in their computation, for instance

by allowing the use of four-dimensional helicity methods to evaluate the cut. It also implies

that helicity selection rules can be active beyond one loop, contrary to expectations.

Depending on the particle contents of the two operators, it might happen that there

are no allowed unitarity cuts even at a higher loop order than the one predicted by the

first form of the theorem. Instead of analyzing the unitarity cuts, this can be explained in

the more familiar diagrammatic language. Clearly, if the only diagrams that can be drawn

involve scaleless bubbles, there will be no available cut where all loops are included in the

cut. Thus, diagrams with fewer cut legs will force the form factor to include the scaleless

bubble, and thus to evaluate to zero. Then the corresponding anomalous dimension must

also be zero. This explains the more general rule presented in the introduction. As noted

above this relies on the absence of infrared singularities whenever corresponding lower-loop

form factors vanish.

2.3.2 Examples

Examples of zeros in the SMEFT at one loop are the renormalization of F 3 by φ2F 2, and of

D2φ4, Fφψ2, and Dφ2ψ2 by φ3ψ2, which were already explained using the helicity selection

rules [24], but also follow from the principles described here. In contrast to the helicity
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Table 2.2: Application of the non-renormalization theorem to dimension-five operators. The
operators labeling the rows are renormalized by the operators labeling the columns. ×L
indicates the theorem applies at L-loop order. (L) denotes that there are no diagrams
before L-loops, but renormalization is possible at that order, since the required cuts can
exist. Light-gray shading indicates a zero at one loop due to helicity selection rules, while
dark-gray shading indicates the entry is a new zero predicted by our non-renormalization
theorem.

F 2φ Fψ2 φ2ψ2 φ5

F 2φ (2) ×2

Fψ2 ×1 ×3

φ2ψ2 (2)

φ5

Table 2.3: Application of the non-renormalization theorem to dimension six. The notation
is explained in Table I.

F 3 φ2F 2 Fφψ2 D2φ4 Dφ2ψ2 ψ4 φ3ψ2 φ6

F 3 ×1 (2) ×2 ×2 ×2 ×3 ×3

φ2F 2 (2) ×2

Fφψ2 ×1 ×3

D2φ4 ×1 ×2

Dφ2ψ2 ×1 (3)

ψ4 (2) (4)

φ3ψ2 (2)

φ6

selection rules, however, our theorem can also apply at higher loops. The full set of zeros

predicted by our rules for operators of dimensions five, six and seven includes examples at

one through four loops and is described in Tables 2.2, 2.3, and 2.4 respectively. The tables

also indicate the overlap between our theorem and the one-loop helicity selection rules of

[24]. Note we have combined some of the categories of operators of [24], since our theorem

does not need to distinguish operators based on their chirality.

Consider now two calculations that show explicit examples, from Table 2.3, of the non-

trivial zeros in the anomalous-dimension matrix at two loops. The examples will also demon-

strate the vanishing of γIR. The first example is the renormalization of Oφ2F 2 by Oφ6 , which
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Table 2.4: Application of the non-renormalization theorem to dimension seven. The notation
is explained in Table I. The shortest and longest operators have been dropped from the list
of columns and rows, respectively, since our theorem requires a reduction in length of the
operators.

φ3F 2 D2φ5 Dφ3ψ2 φψ4 Fφ2ψ2 φ4ψ2 φ7

F 3φ ×1 ×2 ×2 ×2 (2) ×3 ×3

D2Fφ3 ×1 ×1 ×1 ×2 ×1 ×2 ×3

DFφψ2 (2) ×2 ×1 ×1 ×1 ×2 ×4

F 2ψ2 (2) (3) (2) (2) ×1 ×2 ×4

D2φ2ψ2 (2) (2) ×1 ×1 ×1 ×2 (4)

Dψ4 (3) (3) (2) ×1 (2) (3) (5)

φ3F 2 (2) ×2

D2φ5 ×1 ×2

Dφ3ψ2 ×1 (3)

φψ4 (2) (4)

Fφ2ψ2 ×1 ×3

φ4ψ2 (2)

is the entry (2,8) of Table 2.3.

The minimal two-loop form factor forOφ2F 2 includes two external scalars and two external

gauge bosons. The productMF ∗ in Eq. (2.19) at two loops requires either a cut between a

five-point amplitude and the tree-level form factor or a four-point amplitude and a one-loop

form factor with an insertion of Oφ6 . However, the cut between the five-point amplitude and

the tree-level form factor leaves five total external legs, and thus cannot match the minimal

form factor for Oφ2F 2 . For the cut between the four-point amplitude and the one-loop form

factor to match the minimal form factor for Oφ2F 2 , the one-loop form factor would have to

involve a massless tadpole, which would evaluate to zero.

We can also directly check that the (single) diagram—Fig. 2.4(a)—for the Oφ6 → Oφ2F 2

renormalization evaluates to zero. By incorporating an IR regulator λIR, we can evaluate the

integral while keeping the UV and IR dependences separate and determine the behavior of

the form factor in the limit λIR → 0. The integral for this diagram immediately factorizes,
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and each of the two loop integrals is of the form

∫
dD`1

(2π)D
(2`1 − k1) · ε1

(`2
1 − λIR)((`1 − k1)2 − λIR)

. (2.45)

This integral vanishes by the on-shell condition k1 · ε1 = 0 and Lorentz invariance, since k1

is the only available momentum. Therefore Oφ6 cannot renormalize Oφ2F 2 at two loops.

For a slightly more complex example, consider the renormalization of OF 3 by Oψ4 at two

loops, corresponding to entry (1,6) of Table 2.3. Again, for this process the three-particle

cut between the five-point amplitude and the tree-level form factor does not produce the

correct external-particle state corresponding to the field content of OF 3 . The two-particle

cut between the four-point amplitude and the one-loop form factor with an insertion of Oψ4

is shown in Figure 2.4(b). By again adding an IR regulator, the result can be written as

∫
dLIPS`1

dD`2

(2π)D
Tr[X(`1)/̀2/ε3(/̀2 − /k3)]

(`2
2 − λIR)((`2 − k3)2 − λIR)

, (2.46)

where X receives contributions from the multiple possible diagrams of the four-point am-

plitude and includes the remaining propagators. LIPS indicates that the integration is over

the Lorentz-invariant phase space of the particles crossing the cuts.

One can reduce the `2 tensor integrals using standard techniques to obtain the following

result

∫
dD`2

(2π)D
`µ2`

ν
2

(`2
2 − λIR)2

∫
dLIPS`1 Yµν(`1) (2.47)

=− iΓ(−1 + ε)

2(4π)2−ε (λIR)1−ε
∫
dLIPS`1 Y

µ
µ(`1) ,

where ε = (4 − D)/2, Y contains the rest of the trace in Eq. (2.46), and terms linear in

`2 cancel. Since the phase-space integral can at worst result in a log(λIR) divergence, the

factor (λIR)1−ε ensures that the expression goes smoothly to zero as λIR approaches zero for
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(a) (b)

Figure 2.4: (a) Diagram showing the only possible two loop contribution to the renormal-
ization of Oφ2F 2 by Oφ6 . (b) Cut of a form factor showing that Oψ4 cannot renormalize OF 3

at two loops. The solid square indicates the insertion of the φ6 or ψ4 operator, respectively.

all orders in ε. Therefore the cut vanishes, along with the UV anomalous dimension.

2.4 One-loop amplitudes and anomalous dimensions

In this section we describe our generalized unitarity calculation of the one-loop amplitudes

with an insertion of a higher-dimensional operator in our simplified model. We then extract

the one-loop anomalous dimension matrix of this theory. Finally, we comment on the struc-

ture of rational terms in the amplitudes and on the ability to set some of them to zero with

a judicious scheme choice. The results in this section are building blocks needed for the two-

loop analysis in the next section. In addition, they provide one-loop anomalous dimensions

that can be cross-checked against those in Refs. [19–21].

2.4.1 One-loop amplitudes from generalized unitarity

The generalized unitarity method [43–46, 97, 132, 133] for constructing one-loop amplitudes

can be found in various reviews, for example see Ref. [166–169], but here we briefly review

the procedure for the one-loop case. To construct the full one-loop amplitudes to all orders in

the dimensional-regularization parameter ε, we begin with the D-dimensional four-point tree-

level amplitudes with or without insertions of the dimension-6 operators (given in Appendix

43



2.B). By using D-dimensional tree amplitudes, we ensure that the cuts appropriately capture

the coefficients of the D-dimensional box, triangle, and bubble scalar integrals that form a

basis for the full one-loop amplitudes, as in Eq. (2.13). In general, the coefficients have ε

dependence, and expanding in ε produces rational terms that would not automatically be

included if a purely four-dimensional approach to the cuts were used [43, 44, 97]. Besides ε,

the coefficients only depend on the Mandelstam invariants s = (k1 + k2)2, t = (k2 + k3)2 and

u = (k1 + k3)2.

We construct the cuts in the standard way. For example, the integrand-level s-channel

cut with an On operator insertion is given by

∑
i

C[i]
([
ast4,n[i]I4,st + asu4,n[i]I4,su + as3,n[i]I3,s + as2,n[i]I2,s

] ∣∣∣
`2=0

)
=
∑

states

∑
j

C[j]A(0)
n (1, 2, `h1

1 , `
h2
2 )[j]

∑
k

C[k]A(0)(−`h2
2 ,−`h1

1 , 3, 4)[k]

+
∑

states

∑
j

C[j]A(0)(1, 2, `h1
1 , `

h2
2 )[j]

∑
k

C[k]A(0)
n (−`h2

2 ,−`h1
1 , 3, 4)[k] ,

(2.48)

where the sum over states includes the helicity and the color, and, for this case, `2 =

−(`1 + k1 + k2). The C[i] are the appropriate color factors for the associated amplitudes.

Since the cut legs are on-shell, where `2
1 = `2

2 = 0. Often, the external particles will restrict

A
(0)
n to be nonzero only for certain cuts or placements within the cuts, depending on the

field content of the operator inserted.

As an example, the cuts of the amplitude A
(1)

F 3(1ψ2ψ̄3 4), are shown in Figure 2.5, where

the operator OF 3 should be inserted on either side of the cuts, when the tree amplitudes

exist. Other amplitudes with four-point operators require only the cuts corresponding to

their correct external particles. The color factors C[j]C[k] can be reduced to the appropriate

color basis of the full amplitude, C[i], based on the external particles. Doing so determines

the contribution from each color-decomposed cut.

We evaluate the cuts using the D-dimensional state sum completeness relations,
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(a)

(b) (c)

(d) (e)

Figure 2.5: The necessary cut for constructing a two-fermion, two-vector amplitude. For an
amplitude with an insertion of a higher-dimension operator, one should insert the operator
into either side of the diagrams when possible. The wavy lines are vector bosons, the lines
with arrows fermions and the dashed lines scalars.

ε∗µi � ενi =
∑

states h

ε
∗(h)µ
i ε

(h)ν
i = −gµν +

qµkνi + kµi q
ν

q · ki
,

ūi � ui =
∑

states h

ū
(h)
i u

(h)
i = /ki ,

(2.49)

where q is an arbitrary reference vector with q2 = 0.

The next task is to merge the cuts and to integrate. One can merge the cuts at the level

of the integrand to find a single integrand that has the correct cuts in all channels. However,

is it is generally simpler to merge the integrated results from each cut, treating each cut as

an off-shell object, but dropping contributions that do not have a cut in the given channel.

Integration is done by projecting each cut for a given process onto a basis of gauge-invariant

tensors, as described in more detail in Appendix 2.A. Although the methods we use to extract

anomalous dimensions do not require us to keep track of evanescent divergences, because

the projection technique is fully D dimensional, we track them and confirm that they do not

enter our calculations of various entries in the two-loop anomalous-dimension matrix. An
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alternative is to use spinor-helicity methods [170–172] which are much more powerful when

the number of external legs increases. These have been successfully used for both chiral [45]

and higher-loop calculations [173], but then additional care is needed to deal with subtleties

that arise from using dimensional regularization.

After projection, the cut integrand is rewritten in terms of inverse propagators. We

reduce the remaining integrals to the basis of scalar integrals in Eq. (2.13) using integration

by parts relations as implemented in FIRE [136–138]. Cut merging is then straightforward,

as the coefficients of integrals in the merged amplitude can be read directly off the results

from each cut, summed over the possible particles crossing the cut. For example, the s-

channel cut in Eq. (2.48) yields the coefficients of the s-channel bubble and triangle, as well

as those of the (s, t) and (s, u) boxes in Eq. (2.13).

The full set of D-dimensional four-point one-loop amplitudes for the dimension-six op-

erators in our model are given in the ancillary files attached to the ArXiV submission of

Ref. [2]. These expressions are valid to all orders in ε, but to obtain the finite, renormalized

expressions needed to feed into our calculation of two-loop anomalous dimensions, we need

to subtract the UV poles.

The one-loop amplitudes are IR divergent. The IR singularities of gauge theories are

well understood [145, 146, 152–157], and can be expressed in terms of lower-loop amplitudes

involving the same operator insertion and external particles. The explicit form of the one-

loop infrared singularity, for example, is given by

A
(1)
i = I(1)A

(0)
i , (2.50)

where the IR operator I(1) is given by [145, 146, 152–157]5

I(1) =
eεγE

Γ(1− ε)
n∑
p=1

∑
q 6=p

Tp · Tq
2

[
γ

IR (1)
cusp

ε2
− γ

IR (1)
c, p

T 2
p

1

ε

]( −µ2

2kp·kq

)ε
, (2.51)

5The difference with the formulas in those references is due to our normalization of the SU(N) generators.
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where the sums are over external particles. The color charge Tp = {T ap } is a vector with

respect to the generator label a and a SU(N) matrix with respect to the outgoing particle p.

The infrared divergence includes a 1/ε2 pole, with coefficient given by the cusp anomalous

dimension γ
IR (1)
cusp = 4g̃2, and 1/ε poles, with coefficient given by the collinear anomalous

dimension of particle p given in Eq. (2.16). By obtaining the IR dependence of the one-loop

amplitudes from Eq. (2.50), we can subtract it from the full one-loop amplitudes. As always,

the definition of the IR-divergent parts carries with it some arbitrariness as to which finite

pieces are included.6

The remaining poles in ε are UV poles, which we then match to the appropriate tree-

level counterterm amplitude containing an insertion of the operator Oj. A complication is

that there can be multiple operators corresponding to the same external particle content,

but with different color structures. Therefore, in these cases the coefficient of a single color

factor in the loop amplitude is insufficient for the purpose of determining the anomalous

dimensions, and in principle all the color factors for the given process and operator insertion

must be considered simultaneously. For example, the one-loop amplitude with an insertion

of the O(Dϕ2ψ2)2
operator and four external scalars determines the renormalization of both

the O(D2ϕ4)1
and the O(D2ϕ4)2

operators, where the operators are given in Table 2.1.

In some cases the IR structure is trivial, e.g. when the IR anomalous dimensions are zero

simply because there are no lower-loop amplitudes for a given operator and given external

state. Our examples in Section 2.5 follow this pattern. For instance, in the example of

O(D2ϕ4)1
renormalizing O(ψ4)1

at two loops, there is no tree level or one-loop amplitude with

an insertion of O(D2ϕ4)1
which has an external state of four fermions, simply due to the lack

of Feynman diagrams. Since the full IR dependence is proportional to lower-loop amplitudes,

this implies there cannot be an IR divergence at two loops. This same reasoning underpinned

the non-renormalization theorem proved in the previous section. More generally, one needs

to account for the infrared singularities.

6In physical quantities this arbitrariness cancels between real emission and virtual contributions.
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2.4.2 One-loop UV anomalous dimensions

After subtracting the IR singularities, the only remaining 1/ε poles in the amplitudes corre-

spond to the desired one-loop anomalous dimensions,

ċF 3 = g̃2(12N − 3b0)cF 3 ,

ċ(ϕ2F 2)1
= g̃2

(
−5cF3 −

(3N2 − 7) + 2Nb0

N
c(ϕ2F 2)1

+
N2 − 4

N2
c(ϕ2F 2)2

)
+ λ̃ 4(1 +N)c(ϕ2F 2)1

,

ċ(ϕ2F 2)2
= g̃2

(
−NcF 3 + 2c(ϕ2F 2)1

+
2N2 − 5− 2Nb0

N
c(ϕ2F 2)2

)
+ λ̃ 4c(ϕ2F 2)2

,

ċ(D2ϕ4)1
= g̃2

(
3(N + 1)

N
c(D2ϕ4)1

+
2(N − 2)(Ns + 9)

3N
c(D2ϕ4)2

+
4

3

N − 2

N
cww(Dϕ2ψ2)2

)
+ λ 12c(D2ϕ4)1

,

ċ(D2ϕ4)2
= g̃2

(
36NCF − (2N − 1)(Ns + 9)

3N
c(D2ϕ4)2

+
3(N − 2)(N + 1)

2N
c(D2ϕ4)1

+
2(2N − 1)

3N
cww(Dϕ2ψ2)2

)
+ λ̃

(
2(N − 2)c(D2ϕ4)1

+ 8(N + 1)c(D2ϕ4)2

)
,

ċpr(Dϕ2ψ2)1
= 0 ,

ċpr(Dϕ2ψ2)2
= g̃2

(
1

3
Nsc(D2ϕ4)2

δpr +
1

3
(−9N +Ns)c

pr
(Dϕ2ψ2)2

+
4

3
Nfc

ww
(Dϕ2ψ2)2

δpr

− 2

3
Nfc

pwwr
(ψ4)1

− 2

3
Nf

(
2cprww(ψ4)2

− 1

N
cpwwr(ψ4)2

))
,

ċmnpr(ψ4)1
= g̃2 6 (N2 − 1)

N2
cmnpr(ψ4)2

,

ċmnpr(ψ4)2
= g̃2

(
−Ns

3
(cmn(Dϕ2ψ2)2

δpr + cpr(Dϕ2ψ2)2
δmn)

+
2

3
Nf (δmnc

pwwr
(ψ4)1

+ δprc
mwwn
(ψ4)1

) + 6cmnpr(ψ4)1
− 3

N
cmnpr(ψ4)2

+
2Nf

3N
(2N(δprc

mnww
(ψ4)2

+ δmnc
prww
(ψ4)2

)− (δprc
mwwn
(ψ4)2

+ δmnc
pwwr
(ψ4)2

))

)
. (2.52)

Here Ns is left as a parameter to track contributions from scalar loops. In our model it

should be set to unity. These anomalous dimensions have been extracted directly from the
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F 3 (ϕ2F 2)1 (ϕ2F 2)2 (D2ϕ4)1 (D2ϕ4)2 (Dϕ2ψ2)1 (Dϕ2ψ2)2 (ψ4)1 (ψ4)2

F 3 0 0 /0 /0 /0 /0 /0 /0

(ϕ2F 2)1 0 0 0 0 /0 /0

(ϕ2F 2)2 0 0 0 0 /0 /0

(D2ϕ4)1 0 0 0 0 /0 /0

(D2ϕ4)2 0 0 0 0 /0 /0

(Dϕ2ψ2)1 0 0 0 0 0 0 0 0 0

(Dϕ2ψ2)2 0 0 0 0 0

(ψ4)1 0 /0 /0 /0 /0 0 0 0

(ψ4)2 0 /0 /0 /0 /0 0

Table 2.5: Structure of the zeros in the one-loop anomalous dimension matrix. The /0 entries
indicate there are no contributing one-loop diagrams, whereas a 0 alone indicates that there
are one-loop diagrams that could contribute, but actually give a vanishing result. The
operators labeling the rows are renormalized by the operators labeling the columns.

scattering amplitudes, and, as a cross-check, we also used the unitarity cut method explained

in the previous section [98] for computing directly the anomalous dimensions. The structure

of the anomalous dimension matrix is summarized in Table 2.5. It is worth pointing out

the simplicity in the renormalization and mixing of (Dϕ2ψ2)1 and (ψ4)1, which is due to

these operators being a product of global symmetry currents, which heavily constrains the

kind of states they can overlap with. This is special in our model, which does not contain

an Abelian gauge field. In the presence of the latter, the operators would be a product of

gauge symmetry currents (just like (Dϕ2ψ2)2 and (ψ4)2) which are renormalized [174], so

the anomalous dimension matrix will receive contributions proportional to the Abelian gauge

coupling.

We use these results to verify a representative set of the one-loop anomalous dimension

calculated in Ref. [19–21], including entries from nearly all classes of operators. Additional

details about this verification is given in Section 2.6. This provides a nontrivial check on our

one-loop results, which we then feed into the two-loop anomalous dimension calculations.
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2.4.3 Structure of one-loop amplitudes and rational terms

V
+
V

+
V

+
V

+

V
+
V

+
V

+
V
−

V
+
V

+
V
−
V
−

ϕ
ϕ
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+

ϕ
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−

ϕ
ϕ
ϕ
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ψ
−
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V

+
V

+

ψ
−
ψ

+
V

+
V
−

ψ
−
ψ

+
V
−
V

+

ψ
+
ψ
−
V
−
V
−

ψ
+
ψ
−
ϕ
ϕ

ψ
+
ψ
−
ψ

+
ψ
−

ψ
+
ψ
−
ψ
−
ψ

+

ψ
+
ψ

+
ψ
−
ψ
−

F 3 L L R L R 0 L R R L 0 0 0 0

(ϕ2F 2)1 R 0 R L R 0 0 0 0 0 0 /0 /0 /0

(ϕ2F 2)2 R 0 R L L 0 0 0 0 0 0 /0 /0 /0

(D2ϕ4)1 /0 /0 /0 0 0 L0 /0 /0 /0 /0 0 /0 /0 /0

(D2ϕ4)2 /0 /0 /0 R 0 L0 /0 /0 /0 /0 L0 /0 /0 /0

(Dϕ2ψ2)1 /0 /0 /0 0 0 0 0 0 0 0 L0 0 0 0

(Dϕ2ψ2)2 /0 /0 /0 R 0 L0 R 0 0 R L0 L0 L0 L0

(ψ4)1 /0 /0 /0 /0 /0 /0 R 0 0 R L0 L L L

(ψ4)2 /0 /0 /0 /0 /0 /0 R 0 0 R L0 L L L

R: rational amplitude

L: amplitude with both logarithms and rational terms

/0: trivial zero, no contributing one-loop diagrams

0: zero explained by angular momentum selection rules [95]

0: zeros “accidental” to our model

0: zero from an appropriate local counterterm

L0 zero rational term from an appropriate local counterterm, logarithmic terms remain.

Table 2.6: Structure of the zeros, rational terms, and logarithms in the full one-loop helicity
amplitudes. In this table each entry indicates whether the operator of its row produces the
amplitude with external state corresponding to its column. V denotes a vector boson, ψ a
fermion and ϕ a scalar.

After subtracting the infrared singularities and renormalization, the amplitudes are finite.

The full set of results for our renormalized and IR-subtracted amplitudes is given in Appendix

2.B. The renormalized helicity amplitudes include a large number of zeros, including those

which would otherwise be rational contributions. A number of these zeros were pointed

out in Ref. [96], and explained using angular-momentum selection rules in Ref. [95]. These
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selection rules explain most of the observed zeros, leaving some “accidental” zeros, displayed

as a blue 0 in Table 2.6. These zeros can be considered an accident of the simplicity of our

model, and in a more general theory with an Abelian gauge field, one would expect that

such zeros would not occur. In each case, the entry directly below the blue zero shows that

while the accident holds for that particular operator, another operator with identical particle

content, but different color structure, produces a nonzero result in M̄S. Intuitively this is

because only the first of each pair of operators is a product of global symmetry currents in

our model (c.f. our discussion in Section 2.4.2). Alternatively, these “accidental” examples

can be shown to follow from angular momentum selection rules combined with selection rules

for gauge charges (i.e. color selection rules), as described in [95].

Perhaps more interesting is the surprisingly large number of amplitudes—with shaded

(red) rectangles around 0 entries in Table 2.6—which do not evaluate to zero in the standard

M̄S renormalization scheme, but which are proportional to a linear combination of the tree-

level amplitudes of the dimension-six operators. These amplitudes can therefore be set to

zero by an appropriate choice of finite counterterms. This corresponds to a scheme change,

showing that these amplitudes are scheme dependent. Explicit examples of how these rational

shifts are related to the scheme dependence of the two-loop anomalous dimensions is discussed

at length in the next section.

Similarly, for a number of amplitudes (marked L0 and in a shaded ref rectangle in Ta-

ble 2.6), all rational terms in the amplitude can be removed with an appropriate choice of

finite counterterms, leaving behind logarithmic terms which cannot be subtracted in this

way. These logarithmic terms do not appear to be of the right form to produce local results,

so we may expect that they also do not produce contributions to the two-loop anomalous

dimensions via Eq. (2.37). It would be interesting to investigate this, but we refrain from

doing so here. Remarkably, only a small number of the one-loop amplitudes contain rational

terms that cannot be removed via finite counterterms.

As expected, however, some amplitudes do contain non-local rational amplitudes, pro-
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hibiting such a simple subtraction by a local counterterm. It is interesting to note that all

the nonzero rational amplitudes of (D2ϕ4)2, (Dϕ
2ψ2)2, (ψ

4)1 and (ψ4)2 are non-local but can

be individually set to zero by the introduction of an F 3ffinite counterterm. This procedure,

however, will always introduce new diagrams which make other /0 entries in the same row

nonzero. For example, since the F 3 tree contains nonzero four-vector tree amplitudes, en-

tries in these columns will no longer be zero. Another interesting observation is that the

UV divergence in the only nonzero amplitude of (Dϕ2ψ2)1 cancels between terms, but the

logarithms remain.

The vanishing one-loop amplitudes strongly suggests that many contributions to the two-

loop anomalous dimension matrix should vanish, beyond those identified in Section 2.3. For

many of the two-loop anomalous dimensions, these zeros imply that the only contribution to

the final result comes from the three-particle cut, making their evaluation much simpler than

expected, since only four-dimensional tree-level objects are involved. In a number of cases,

including multiple examples in Section 2.5, the three-particle cut also vanishes, thereby

immediately implying that the corresponding two-loop anomalous dimension is zero. Of

course, the amplitudes corresponding to the entries of Table 2.6 with shaded (red) rectangles

are not zero when working strictly in M̄S, so one would need to evaluate the two-particle

cuts in order to determine the corresponding anomalous dimensions in this scheme.

Finally, the appearance of many zeros in Table 2.6 suggests that even more zeros in

the two-loop anomalous dimension might be found by using the helicity selection rules of

Ref. [24] or the angular momentum conservation rules of Ref. [95], given that the remaining

three-particle cut only involves four-dimensional tree amplitudes, which are often restricted

by these selection rules.
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2.5 Two-loop zeros in the anomalous dimension matrix

In this section we use the results of the previous section and the tools in Section 2.2.3 to

obtain two-loop anomalous dimensions in our simplified theory. These calculations will unveil

a number of mechanisms that give rise to a wealth of new zeros in the two-loop anomalous

dimension matrix. As mentioned in the previous section, two-loop anomalous dimensions

are scheme dependent7 This makes the question of whether a two-loop anomalous dimension

is zero somewhat ill-defined. We will show explicit examples of anomalous dimensions that

are nonzero in the M̄S scheme, but for which we can find a scheme in which they are zero. In

addition, we demonstrate the cancellation of logarithms in the evaluation of Eq. (2.37) when

they appear. For simplicitly, throughout this section, we assume the case of a single flavor of

fermion, drop the flavor indices, and set Nf = Ns = 1. In all the cases we consider here, the

one-loop amplitudes required for the two-loop computation are infrared finite, simplifying

the discussion.

2.5.1 Zeros from length selection rules

First we summarize the results of a previous section, which points out a set of nontrivial

zeros in the two-loop anomalous dimension matrix of generic EFTs: operators with longer

length—those with more field insertions—are often restricted from renormalizing operators

with shorter length, even if Feynman diagrams exist. Specifically, for operators Ol and

Os, with lengths l(Ol) and l(Os), Ol can renormalize Os at L loops only if the inequality

L > l(Ol) − l(Os) is satisfied. This implies, for example, that the operator Oϕ6 cannot

renormalize any of the other operators in our model (Table 2.1) at two loops. This is due

to the fact that any two-loop diagram with an insertion of Oϕ6 and four external particles

must contain a scaleless integral, which evaluates to zero in dimensional regularization. This

implies that the anomalous dimensions vanish, if there are no IR divergences. In this case

7This is in contrast to the β-function, which is scheme dependent starting at three loops [175].
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the lack of infrared singularities follows from the fact that they are proportional to the

corresponding lower-loop amplitudes, which vanish due to the lack of diagrams when the

bound is not satisfied.

In addition, as shown in Section 2.3, in a theory with multiple types of fields, such as

the SMEFT, additional vanishing can occur at loop orders higher than indicated by the

above bound. In general, whenever the only diagrams one can draw with an insertion of

Ol and the external particles of Os always involve scaleless integrals, then there will be no

renormalization of Os by Ol. In the language of Section 2.2.3, this happens because there

are no nonzero cuts on the right-hand side of Eq. (2.37) or the higher loop analog. Iteration

pieces on the left-hand-side of Eq. (2.37)—terms other than γ
(L)
s←lF

(0)
s —are also set to zero

by the presence of scaleless integrals. Examples of this form of the rule in effect include the

lack of two-loop renormalization of OF 3 by ODϕ2ψ2 ,OD2ϕ4 , or Oψ4 .

Another important consequence of the length selection rule is that, at loop order L =

l(Ol) − l(Os) + 1, only the (L + 1)-particle cut can contribute [1]. For example, the three-

particle cut depicted in Figure 2.9(a) is the only cut that can contribute to γ
UV(2)

F 3←(ϕ2F 2)1
. The

(L + 1)-particle cut can then be evaluated using a four-dimensional tree-level amplitudes,

making the calculation much simpler than that of a generic L-loop anomalous dimension

matrix element. This observation, noted in Section 2.3, makes it straightforward to evaluate

certain two-loop SMEFT anomalous dimensions solely from three-particle cuts [129].

2.5.2 Zeros from vanishing one-loop rational terms

Next, we show that the vanishing of many one-loop amplitudes and rational terms found in

Section 2.4 yields additional zeros in the two-loop anomalous-dimension matrix of our theory.

Somewhat surprisingly, this sometimes involves a cancelation between different contributions

to the logarithms from one-loop terms in the cut. We will explain how this relates to the

scheme dependence of two-loop anomalous dimensions.
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Oψ4 ← OD2ϕ4

We begin by determining the renormalization of O(ψ4)1
and O(ψ4)2

by O(D2ϕ4)1
, which we

denote by O(ψ4)1
← O(D2ϕ4)1

and O(ψ4)2
← O(D2ϕ4)1

. To extract the anomalous dimensions,

we examine cuts of amplitudes with four external quarks. We can readily prove that these

anomalous dimension matrix elements are zero at two loops in our model. The contributing

cuts would be

1. the three-particle cut between the five-point dimension-four tree amplitude and the

five-point (D2ϕ4)1 amplitude,

2. the two-particle cut between the four-point dimension-four one-loop amplitude and the

four-point (D2ϕ4)1 tree, and

3. the two-particle cut between the four-point dimension-four tree and the four-point

(D2ϕ4)1 one-loop amplitude.

In all cases the external particles must be four fermions to match the desired operator.

In case (1), the five point amplitude containing the operator (D2ϕ4)1 must have two

external fermions, but since the Yukawa couplings are set to zero in our simplified model,

the (D2ϕ4)1 tree must have at least four scalars, prohibiting the required three-scalar two-

fermion amplitude. For case (2), the (D2ϕ4)1 tree must again have two fermions, so that

there are no valid diagram and the cut vanishes.

The vanishing of case (3) relies on our knowledge of the one-loop amplitudes with an

operator insertion(D2ϕ4)1, given in Appendix 2.B. In this case, the only O(D2ϕ4)1
one-loop

amplitude that can be inserted into the cut is the two-scalar two-fermion amplitude—as in

Figure 2.6—which is zero for this operator. Therefore, all possible contributing cuts evaluate

to zero. Since O(D2ϕ4)1
does not renormalize Oϕ2ψ2D or Oψ4 at one loop, which otherwise

produce terms on the left-hand-side of Eq. (2.37), the vanishing of the three types of cuts

implies that the two-loop anomalous-dimension matrix element is also zero.
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(a) (b)

Figure 2.6: The (12)-channel (a) and (34)-channel (b) unitary cuts which determine the
renormalization of O(ψ4)1

by O(D2ϕ4)1
or O(D2ϕ4)2

. The (23)- and (14)-channel cuts are given
by the exchange of legs 2 and 4. In each, the darker blobs indicate a higher-dimension
operator insertion, and the vertical (blue) dashed line indicates the integral over phase space
of the particles crossing the cut.

Next, consider the case O(ψ4)1
← O(D2ϕ4)2

, which we also show has a zero entry in the

anomalous dimension matrix of our simplified model. We organize the calculation into the

three types of cuts as in the previous case, with the only difference being that, in case (3),

the one-loop amplitude with an insertion of O(D2ϕ4)2
, and with two scalars and two fermions

as external particles is nonzero, and in fact has a UV divergence. While the presence of

nonzero cuts, shown diagrammatically in Figure 2.6, might seem to imply that the two-loop

anomalous dimension must be nonzero, we will show that it actually evaluates to zero as

well.

Using the external state 〈1+

ψ
2−
ψ

3+

ψ
4−
ψ
| and setting Oi = O(D2ϕ4)2

, Eq. (2.37) reduces to

γ
UV(2)

ψ4←(D2ϕ4)2
F

(0)

ψ4 + γ
UV(1)

(Dϕ2ψ2)2←(D2ϕ4)2
F

(1)

(Dϕ2ψ2)2
(2.53)

= − 1

π
(M12

2→2 +M14
2→2 +M23

2→2 +M34
2→2)(0) ⊗ ReF

(1)

(D2ϕ4)2
,

where on the right-hand side we only find cuts of the form in Figure 2.6 with an O(D2ϕ4)2

insertion, and the (13) and (24) channels are not allowed. For instance the (12)-channel cut

56



is

(M12
2→2)(0) ⊗ ReF

(1)

(D2ϕ4)2
(2.54)

= 2

∫
dLIPS2 〈1+

ψ
2−
ψ
|M|`1ϕ

`2 ϕ
〉(0) Re〈`1ϕ

`2 ϕ
3+

ψ
4−
ψ
|O(D2ϕ4)2

|0〉(1) .

The factor of 2 is required to cancel the symmetry factor of 1/2 in our definition of the

phase-space measure. Other terms in Eq. (2.37) drop out because O(D2ϕ4)2
does not have

either a one-loop or tree-level form factor with a four-fermion external state, and does not

renormalize O(Dϕ2ψ2)1
or the Oψ4 operators at one loop. In particular, the β-function also

does not appear.

For simplicity, we set the off-shell momentum q to zero, and Eq. (2.53) then reduces to

γ
UV(2)

ψ4←(D2ϕ4)2
A

(0)

ψ4 (1+

ψ
2−
ψ

3+

ψ
4−
ψ

) + γ
UV(1)

(Dϕ2ψ2)2←(D2ϕ4)2
A

(1)

(Dϕ2ψ2)2
(1+

ψ
2−
ψ

3+

ψ
4−
ψ

) (2.55)

= − 2

π

∑∫
dLIPS2A

(0)(1+

ψ
2−
ψ
−`2ϕ

−`1 ϕ
)ReA

(1)

(D2ϕ4)2
(`1ϕ

`2 ϕ
3+

ψ
4−
ψ

) ,

where the sum is over the available channels. The relevant tree and renormalized one-loop

amplitudes needed to construct the cut are (including the color factors):

A(0)(1+

ψ
2−
ψ

3
ϕ
4
ϕ

) = T ai2i1T
a
i4i3

g2 〈23〉[13]

s
, (2.56)

A
(1)

(D2ϕ4)2
(1+

ψ
2−
ψ

3
ϕ
4
ϕ

) = T ai2i1T
a
i4i3

g̃2

9
〈23〉[13](3 log(−s/µ2) + 8) , (2.57)

where again the flavor indices have been dropped for simplicity. Note the form of Eq. (2.55)

provides a nontrivial check on the phase space integral on the right-hand side: A
(1)

(D2ϕ4)2

contains terms proportional to log(−s/µ2), which, after the phase-space integral, must cancel

against terms in A
(1)

(Dϕ2ψ2)2
.

We can readily evaluate the cut by relabeling the amplitudes (2.56)–(2.57) and applying

the spinor parametrization (2.25) to the scalars crossing the cut. This yields an integral
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with no poles in z = eiφ, other than the pole at zero. This can be seen by the fact that all

spinor products in A(0) are either proportional to e±iφ or else have no φ dependence under

our parametrization, whereas A
(1)

(D2ϕ4)2
only has a pole in s. This makes the φ integral trivial

to evaluate, resulting in:

∫ π
2

0

dθ
g̃4

18
〈24〉[13] sin3(2θ)(3 log(−s/µ2) + 8)T ai2i1T

a
i4i3

=
g̃4

27
〈24〉[13](3 log(−s/µ2) + 8)T ai2i1T

a
i4i3

, (2.58)

for the (12)-channel cut. The (34)-channel cut gives the same result, while the other cuts yield

the same result with legs two and four exchanged. Summing over the three other channels, we

exactly match the second term on the left-hand side of Eq. (2.53), since γ
UV(1)

(Dϕ2ψ2)2←(D2ϕ4)2
=

g̃2/3 and

A
(1)

(Dϕ2ψ2)2
=

2g̃2

9
〈24〉[13](3 log(−s/µ2) + 8)T ai2i1T

a
i4i3
− (2↔ 4) . (2.59)

Therefore the cuts exactly cancel all terms on the left-hand side of Eq. (2.53) involving the

one-loop anomalous dimensions and form-factors, leaving γ
UV(2)

ψ4←(D2ϕ4)2
F

(0)

ψ4 = 0. Thus the

two-loop anomalous dimension γ
UV(2)

ψ4←(D2ϕ4)2
is zero.

In fact, we could have come to this conclusion simply by examining the form of the one-

loop amplitudes in Eqs. (2.57) and (2.59). First, note the two-loop anomalous dimension

must be g̃4 times a number (i.e., it does not have any kinematic dependence). Logarithmic

terms resulting from the cut on the right-hand side of (2.53) must therefore cancel against

logarithmic terms in A
(1)

(Dϕ2ψ2)2
. Since both one-loop form factors are proportional to the

factor (3 log(−s/µ2) + 8), and since this term can be pulled out of the phase-space integral

on the right-hand side of Eq. (2.53), the cancellation of the logarithmic terms implies can-

cellation of the rational term as well. Thus, even though there are nonzero cuts, there can

be no remaining rational term that leads to a nonzero two-loop anomalous dimension.
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(a) (b)

Figure 2.7: The (a) (12)-channel and (b) (34)-channel unitary cuts which determine the
renormalization of O(D2ϕ4)1

and O(D2ϕ4)2
by O(ψ4)1

or O(ψ4)2
. The (23)- and (14)-channel

cuts are given by exchanging legs 2 and 4. In each, the darker blobs indicate a higher-
dimension operator insertion, and the vertical (blue) dashed line indicates the integral over
phase space of the particles crossing the cut.

At this point, the vanishing of the two-loop anomalous dimensions due to the cancella-

tion of one-loop rational terms might seem accidental. However, one must remember that

such local rational pieces are scheme dependent and can be adjusted by adding finite local

counter-terms. As described in Section 2.4, the rational terms of both one-loop amplitudes

in (2.57) and (2.59) can be set to zero by such finite counterterms, which would also result in

γ
UV(2)

ψ4←(D2ϕ4)2
= 0. For this particular example, it just so happened that the naive M̄S scheme

has zero anomalous dimension, but next we will see that this is not always the case.

As a cross-check, we have verified that the Eq. (2.32) is also satisfied. The crucial sub-

stitution log(−s/µ2)→ log(−s/µ2)− iπ, is required in the right-hand side of that equation,

coming from the analytic continuation of the amplitude from the Euclidean region to the

correct physical region, which must be carried out for use in Eqs. (2.29)–(2.31).

OD2ϕ4 ← O(ψ4)1

This section will provide our first example of nonzero two-loop anomalous dimension matrix

elements in M̄S, while demonstrating how an appropriate choice of scheme, i.e. choice of

finite local counterterms, can eliminate the two-loop anomalous dimensions of this example.

We will begin with the calculation in M̄S. Again, there is no three-particle cut, due

to the particle content of the two types of operators in question. Using the external state
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〈1
ϕ
2
ϕ

3
ϕ
4
ϕ
| and setting Oi → O(ψ4)1

, Eq. (2.37) becomes

γ
UV(2)

(D2ϕ4)1←(ψ4)1
F

(0)

(D2ϕ4)1
+ γ

UV(2)

(D2ϕ4)2←(ψ4)1
F

(0)

(D2ϕ4)2
+ γ

UV(1)

(Dϕ2ψ2)2←(ψ4)1
F

(1)

(Dϕ2ψ2)2
(2.60)

= − 1

π
(M12

2→2 +M14
2→2 +M23

2→2 +M34
2→2)(0) ⊗ ReF

(1)

(ψ4)1
.

As for the previous example, the logarithmic terms in the cuts must cancel against terms

in the amplitude F
(1)

(Dϕ2ψ2)2
on the left-hand side of the equation. Since we are dealing with

four-point matrix elements we will again set q = 0. Then the one-loop amplitudes required

for this example are

A
(1)

(ψ4)1
(1+

ψ
2−
ψ

3
ϕ
4
ϕ

) =
2g̃2

9
〈23〉[13](3 log(−s/µ2)− 2)T ai2i1T

a
i4i3

, (2.61)

A
(1)

(Dϕ2ψ2)2
(1
ϕ
2
ϕ

3
ϕ
4
ϕ

) =
2g̃2

9
(t− u)(3 log(−s/µ2)− 5)T ai2i1T

a
i4i3

+ (2↔ 4) , (2.62)

and the tree-level amplitudes needed are in Eq. (2.56) along with

A
(0)

(D2ϕ4)1
(1
ϕ
2
ϕ

3
ϕ
4
ϕ

) = tδi2i1δi4i3 + sδi4i1δi2i3 , (2.63)

A
(0)

(D2ϕ4)2
(1
ϕ
2
ϕ

3
ϕ
4
ϕ

) = 2sδi2i1δi4i3 + 2tδi4i1δi2i3 , (2.64)

which are shown in a slightly different basis of color factors than those shown in the appendix.

The phase-space integral is evaluated in the same manner as the previous examples, with

the result of the (12)-channel cut being

− 1

π

∫
dLIPS2

∑
h1,h2

A(0)(1
ϕ
2
ϕ
−`1

h1

ψ
−`2

h2

ψ
)A

(1)

(ψ4)1
(`2

h2

ψ
`1
h1

ψ
3
ϕ
4
ϕ

)

= − 2

27
g̃4(t− u)(3 log(−s/µ2)− 2)T ai2i1T

a
i4i3

. (2.65)

After summing over all channels and subtracting the contribution of γ
UV(1)

(Dϕ2ψ2)2←(ψ4)1
F

(1)

(Dϕ2ψ2)2

in Eq. (2.60)—thus canceling the logarithmic terms—the two-loop anomalous dimensions
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are given by

γ
UV(2)

(D2ϕ4)1←(ψ4)1
(tδi2i1δi4i3 + sδ41δ23) + γ

UV(2)

(D2ϕ4)2←(ψ4)1
(2sδi2i1δi4i3 + 2tδi4i1δi2i3) (2.66)

=− 4

9
g̃4(t− u)T ai2i1T

a
i4i3

+ (2↔ 4) .

Applying the color Fierz identity,

T aijT
a
kl = δilδkj −

1

N
δijδkl , (2.67)

and solving for the two-loop anomalous dimensions, we find

γ
UV(2)

(D2ϕ4)1←(ψ4)1
=− 4g̃4(N − 2)

9N
,

γ
UV(2)

(D2ϕ4)2←(ψ4)1
=

2g̃4(2N − 1)

9N
, (2.68)

in the M̄S scheme. Although these anomalous dimension matrix elements are nonzero in the

M̄S scheme, a simple rational shift of the coefficients c(D2ϕ4)1
, c(D2ϕ4)2

, and c(Dϕ2ψ2)2
can set

them to zero. This is accomplished by the following shifts in the coefficients:

c(D2ϕ4)1
−→ c̃(D2ϕ4)1

= c(D2ϕ4)1
+

10g̃2(N − 2)

9N
c(Dϕ2ψ2)2

,

c(D2ϕ4)2
−→ c̃(D2ϕ4)2

= c(D2ϕ4)2
+

5g̃2(2N − 1)

9N
c(Dϕ2ψ2)2

,

c(Dϕ2ψ2)2
−→ c̃(Dϕ2ψ2)2

= c(Dϕ2ψ2)2
− 2g̃2

9
c(ψ4)1

,

(2.69)

which yields

γ̃
UV(2)

(D2ϕ4)1←(ψ4)1
= 0 , γ̃

UV(2)

(D2ϕ4)2←(ψ4)1
= 0 , (2.70)

where the tilde indicates the modified scheme. The shifts above are equivalent to a finite

renormalization of the operator at one loop. Generally this can be achieved by choosing
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the rational terms in γ
UV(1)

(Dϕ2ψ2)2←(ψ4)1
F

(1)

(Dϕ2ψ2)2
to match those of the cuts. In our particular

example we set the rational terms of both (2.61) and (2.62) to zero. We briefly comment

below on the consequences of this redefinition for the two-loop RG running of the operators

involved.

While we do not present the analogous calculation forO(ψ4)2
here, by inspecting Table 2.6,

we can deduce that the two-loop anomalous dimensions γ
UV(2)

(D2ϕ4)1←(ψ4)2
and γ

UV(2)

(D2ϕ4)2←(ψ4)2
can

also be set to zero with the appropriate choice of finite counterterms.

2.5.3 General comments about scheme redefinition

As mentioned above, the scheme choice that sets some two-loop anomalous dimensions to

zero is equivalent to a finite renormalization of the operators

Õi = Zfin
ij Oj , where Zfin

ij = δij + fij(g
(4)) , (2.71)

and the quantity fij is finite and has a perturbative expansion starting at one loop, fij(g
(4)) =

f
(1)
ij + · · · . As usual, the redefinition of the coefficients, c̃i = Z

fin (c)
ij cj is given by the inverse,

Z
fin (c)
ij = (Zfin

ij )−1. The effect of such a scheme redefinition can be easily analyzed using the

unitarity-based formalism employed in this work. Since the coupling dependence of fij starts

at one loop we have that

F̃
(0)
i = F

(0)
i , (2.72)

F̃
(1)
i = F

(1)
i + f

(1)
ij F

(0)
j , (2.73)

where the tilde indicates a form factor of the redefined operator Õi. From Eqs. (2.72)

and (2.22) we conclude the one-loop anomalous dimensions are unaffected by the finite
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renormalization, i.e., ∆γ̃
(1)
ij = ∆γ

(1)
ij . Similarly, writing Eq. (2.37) for the redefined operator

[
∆γ̃

(1)
ij + δijβ

(1)∂
]

ReF̃
(1)
j +

[
∆γ̃

(2)
ij + δijβ

(2)∂
]
F̃

(0)
j = − 1

π

[
Re(M)Re(F̃i)

](2)

. (2.74)

and using Eqs. (2.72) and (2.73) together with Eqs. (2.22) and (2.37), while keeping in mind

that the infrared anomalous dimensions are not changed by redefining the scheme, we find

the relation between the two-loop anomalous dimensions in the two schemes,

γ̃
UV(2)
ij = γ

UV(2)
ij + f

(1)
ik γ

UV(1)
kj − γUV(1)

ik f
(1)
kj − β(1)∂f

(1)
ij . (2.75)

In general, one would like to solve this equation for f
(1)
ik to get as many vanishing entries as

possible in γ̃
UV(2)
ij .

We have explicitly verified Eq. (2.75) in the examples above, where we set the anoma-

lous dimensions of the form γ̃
UV(2)

D2ϕ4←ψ4 to zero by appropriately choosing f
(1)

Dϕ2ψ2←ψ4 and

f
(1)

D2ϕ4←Dϕ2ψ4 . In addition, f
(1)

D2ϕ4←ψ4 vanished, which from Eq. (2.75) implies the the absence

of a term induced by the β-function in the new two-loop anomalous dimension. On the other

hand, it is clear from Eq. (2.75) that the finite renormalizations will induce some additional

running in the two-loop anomalous dimensions γ̃
UV(2)

Dϕ2ψ2←ψ4 and γ̃
UV(2)

D2ϕ4←Dϕ2ψ4 , proportional to

the one-loop beta function and ∂f (1). However, this additional running is harmless, since

those operators already mix at one loop. Furthermore, the corresponding entries in the two-

loop anomalous-dimension matrix receive contributions from both two- and three-particle

cuts that have no a priori reason to vanish, so we expect them in any case to run. In sum-

mary, our scheme choice prevents certain operators from mixing at two loops at the expense

of modifying the running of operators that, in any case, mix at one loop in the original

scheme.
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(a) (b)

Figure 2.8: (12)-channel (a) and (34)-channel (b) unitary cuts which determine the renor-
malization of O(ϕ2F 2)1

and O(ϕ2F 2)2
by O(ψ4)1

or O(ψ4)2
. There are no t-channel cuts for this

process. In each diagram, the darker blobs indicate a higher-dimension operator insertion,
and the dashed line indicates the integral over phase space of the particles crossing the cut.

2.5.4 Zeros from color selection rules

This section will provide an example of another type of selection rule, wherein a mismatch

between the color of the cuts and the color of the target operators prevents renormalization

at two loops.

2.5.5 Oϕ2F 2 ← Oψ4

For this example we choose the external state to be 〈1
ϕ
2
ϕ

3+4+|, under which both O(ϕ2F 2)1

and O(ϕ2F 2)2
are nonzero. Using this state and setting Oi → O(ψ4)1

, Eq. (2.37) reduces to

γ
UV(2)

(ϕ2F 2)1←(ψ4)1
F

(0)

(ϕ2F 2)1
+ γ

UV(2)

(ϕ2F 2)2←(ψ4)1
F

(0)

(ϕ2F 2)2
+ γ

UV(1)

(Dϕ2ψ2)2←(ψ4)1
F

(1)

(Dϕ2ψ2)2
(2.76)

= − 1

π

(
(M12

2→2)(0) ⊗ ReF
(1)

(ψ4)1
+ (M34

2→2)(0) ⊗ ReF
(1)

(ψ4)1

)
.

Naively there would be the additional term γ
UV(2)

F 3←(ψ4)1
F

(0)

F 3 on the left-hand-side of the equa-

tion, since OF 3 produces a nonzero tree amplitude with the state 〈1
ϕ
2
ϕ

3+4+|. How-

ever, as was discussed in Section 2.5.1, the length and particle content of O(ψ4)1
requires
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γ
UV(2)

F 3←(ψ4)1
= 0. Setting q = 0, the (12)-channel cut of the above equation is

(M12
2→2)(0) ⊗ ReF

(1)

(ψ4)1
=

∫
dLIPS2

∑
h1,h2

A(0)(1
ϕ
2
ϕ
−`1

h1

ψ
−`2

−h2

ψ
)A

(1)

(ψ4)1
(`2

h2

ψ
`1
h1

ψ
3+4+) ,

(2.77)

and the (34)-channel cut is

(M34
2→2)(0) ⊗ ReF

(1)

(ψ4)1
=

∫
dLIPS2

∑
h1,h2

A(0)(3+4+−`1
h1

ψ
−`2

h2

ψ
)A

(1)

(ψ4)1
(`2

h2

ψ
`1
h1

ψ
1
ϕ
2
ϕ

) .

(2.78)

The (34)-channel cut vanishes, because the amplitude A(0)(3+4+−`1ψ
−`2 ψ

) is zero for all

helicities of the fermions crossing the cut. This vanishing is required for the consistency

of the logarithmic terms: A
(1)

(ψ4)1
(`2

h2

ψ
`1
h1

ψ
1
ϕ
2
ϕ

) includes a term proportional to log(−s/µ2),

but there is no term on the left-hand side that can cancel it, since F
(1)

(Dϕ2ψ2)2
(1
ϕ
2
ϕ

3+4+) is

purely rational. The one-loop amplitudes needed for this calculation are

A
(1)

(ψ4)1
(1+

ψ
2−
ψ

3+4+) = − g̃
2s[14]〈24〉 [T a3 , T a4 ]i2i1

3〈34〉2 , (2.79)

A
(1)

(ψ4)1
(1−
ψ

2+

ψ
3+4+) = − g̃

2〈12〉[23][24] [T a3 , T a4 ]i2i1
3〈34〉 , (2.80)

A
(1)

(Dϕ2ψ2)2
(1
ϕ
2
ϕ

3+4+) =
g̃2s(t− u) [T a3 , T a4 ]i2i1

3〈34〉2 , (2.81)

while the tree-level amplitudes needed for the cut calculation are (2.56) and its conjugate.

The phase-space integrals are carried out in the same manner as the previous example, with

the simplification that the functions are now entirely rational. The result of the phase-space
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integral is

− 1

π

∫
dLIPS2

∑
h1,h2

A(0)(1
ϕ
2
ϕ
−`1

−h1

ψ
−`2

−h2

ψ
)A

(1)

(ψ4)1
(`2

h2

ψ
`1
h1

ψ
3+4+)

= −2g̃4s(t− u) [T a3 , T a4 ]i2i1
9(〈34〉)2

= γ
UV(1)

(Dϕ2ψ2)2←(ψ4)1
A

(1)

(Dϕ2ψ2)2
. (2.82)

Thus the phase-space integral exactly cancels against this term from the left-hand-side of

Eq. (2.76), meaning the two-loop anomalous dimension is again zero.

Interestingly, this can also be seen without looking at the kinematic content of the cuts on

the right-hand side of Eq. (2.76). Since the color of both O(ϕ2F 2)1
and O(ϕ2F 2)2

are symmetric

in T 3 and T 4, no combination of the two can produce the color factor [T 3, T 4]i2i1 . Since this is

the color of A
(1)

(Dϕ2ψ2)2
(1
ϕ
2
ϕ

3+4+), and the color of A
(1)

(ψ4)1
(1±
ψ

2∓
ψ

3+4+) is also anti-symmetric

under the exchange of 3 and 4, we can see directly from the color that neither of these terms

can contribute to the two-loop anomalous dimension, and therefore must cancel. As in the

previous example, we can extend this argument trivially to the operator O(ψ4)2
, since its two-

fermion two-vector-boson amplitude is proportional to that of O(ψ4)1
. In this case, the only

difference on the left-hand side would being the value of γ
UV(1)

(Dϕ2ψ2)2←(ψ4)2
versus γ

UV(1)

(Dϕ2ψ2)2←(ψ4)1
,

but the color again ensures all terms must cancel, leaving

γ
UV(2)

(ϕ2F 2)1←(ψ4)1
= γ

UV(2)

(ϕ2F 2)2←(ψ4)1
= 0 ,

γ
UV(2)

(ϕ2F 2)1←(ψ4)2
= γ

UV(2)

(ϕ2F 2)2←(ψ4)2
= 0 . (2.83)

Here we focused on a simple example in which the color can preclude renormalization.

In more general cases, one can directly inspect the color of the amplitudes that compose the

cuts contributing to a given anomalous dimension and determine whether a given operator

can yield a nonzero contribution. Note that this is more efficient than studying the color

of individual Feynman diagrams, since the color decomposed amplitudes have fewer color

structures.
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(a) (b)

Figure 2.9: (a) Unitary cut which determines the renormalization of OF 3 by O(ϕ2F 2)1
or

O(ϕ2F 2)2
. Note this form factor requires q 6= 0, and the double-lined arrow indicates this

insertion of additional off-shell momentum from the operator. (b) Unitarity cut which de-
termines the renormalization of O(ψ4)1

and O(ψ4)2
by O(ϕ2F 2)1

or O(ϕ2F 2)2
. In each, the

darker blobs indicate a higher-dimension operator insertion, and the dashed line indicates
the integral over phase space of the particles crossing the cut.

It is worth noting that, as mentioned in Section 2.4, the nonzero rational amplitudes

(2.79)–(2.81) can be set to zero by introducing finite counterterms proportional to c(ψ4)1
OF 3

and c(Dϕ2ψ2)2
OF 3 , respectively. However, since these are non-local amplitudes, doing so intro-

duces nonzero terms for other amplitudes, in particular any amplitudes where OF 3 produces

a nonzero tree-level amplitude. This would introduce a great deal of confusion—for example,

if we were to introduce a counterterm to cancel (2.79), we would then need to include addi-

tional cuts on the right-hand side of Eq. (2.76), including three-particle cuts and cuts with

nontrivial IR dependence. Canceling either Eq. (2.79) or Eq. (2.81) with such a countert-

erm would also spoil the argument of Section 2.5.1, as the OF 3 self-renormalization would

contribute in a nontrivial way. Therefore we would have to include the term γ
UV(2)

F 3←(ψ4)1
F

(0)

F 3

on the left-hand side of Eq. (2.76) as well. For all of the above reasons, we choose not to

implement these finite shifts. It is interesting however, that even though the rational terms

remain in this example, the structure of the color precludes renormalization at two loops.

2.5.6 Outlook on additional zeros

The previous sections have demonstrated numerous zeros in the two-loop anomalous dimen-

sion matrix, summarized in Table 2.7. However, the previous examples are by no means
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F 3 (ϕ2F 2)1 (ϕ2F 2)2 (D2ϕ4)1 (D2ϕ4)2 (Dϕ2ψ2)1 (Dϕ2ψ2)2 (ψ4)1 (ψ4)2 ϕ6

F 3 0 0 0 0 0 0 /0

(ϕ2F 2)1 0 0 0

(ϕ2F 2)2 0 0 0

(D2ϕ4)1 0∗ 0∗ 0

(D2ϕ4)2 0∗ 0∗ 0

(Dϕ2ψ2)1 /0

(Dϕ2ψ2)2 /0

(ψ4)1 0 0 /0

(ψ4)2 0 0 /0

ϕ6

/0 : trivial zero, no contributing two-loop diagrams

0 : zero predicted by the selection rules of Section 2.5

: only a three-particle cut is needed to evaluate γ
UV(2)
ij

Table 2.7: Structure of the two-loop anomalous dimension matrix γ
(2)
ij due to the collected

rules outlined in this section. A /0 indicates there are no contributing two-loop diagrams,
whereas 0 alone indicates that there are one-loop diagrams that could contribute, but the
anomalous dimension evaluates to zero. A 0∗ indicates the result is nonzero in M̄S, but set to
zero by introducing the appropriate finite counterterms. Shading indicates the entry depends
only on the three-particle cut, due to either the length selection rules of Section 2.5.1 or the
vanishing of the relevant one-loop amplitudes. As for Table 2.5, the operators labeling the
rows are renormalized by the operators labeling the columns.

exhaustive, and more zeros may exist. The large number of zeros in the one-loop amplitudes

(Table 2.6) implies that when calculating two-loop anomalous dimensions, the two-particle

cut formed from the dimension-four tree and the dimension-six one-loop amplitude will not

contribute. In some cases, the only contribution will come from the three-particle cut.

Examples of this include the renormalization of OF 3 by O(ϕ2F 2)1
or O(ϕ2F 2)2

, and the renor-

malization of O(ψ4)1
and O(ψ4)2

by O(ϕ2F 2)1
or O(ϕ2F 2)2

. The cuts for these examples are

depicted in Figure 2.9. While is may seem that there no reason to expect any given three-

particle cut to evaluate to zero, it is possible that a detailed inspection may find that helicity
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selection rules [24] or angular momentum selection rules [95] set certain cuts to zero. For a

generic entry, the collection of these rules and the rules laid out in the sections above greatly

simplify the calculation of the two-loop anomalous dimensions by eliminating one or more

required unitary cuts, and one might expect that overlapping rules will conspire to eliminate

all possible cuts and set additional entries in Table 2.7 to zero.

2.6 Implications for the SMEFT

The full SMEFT is more intricate than the simplified model adopted in this work, as it

includes masses, multiple gauge groups and a number of additional operators. Still many

of the results of our calculations provide nontrivial information about the structure of the

anomalous dimension matrix of the SMEFT. In this section we describe the overlap of our

theory with the SMEFT, and we explain how our results directly confirm a large number of

the one-loop anomalous dimensions computed in Refs. [19–21]. We also comment on two-

loop zeros and the coupling dependence of a subset of the two-loop anomalous-dimension

matrix of the SMEFT.

2.6.1 Mapping our theory to the SMEFT

Let us describe how the differences between our simplified model and SMEFT can be taken

into account to import the conclusions of our analysis to the SMEFT.

First, the Standard Model spectrum contains massive particles, notably the Higgs, whose

masses can affect the structure of the renomalization group running of both the Standard

Model couplings and Wilson coefficients of the SMEFT. However, in this work we have fo-

cused on the mixing between dimension six operators, which by dimensional analysis cannot

depend on masses or other dimensionful parameters. In the presence of masses there can be

additional mixing between operators of different dimensions, including modifications to the

running of the Standard Model couplings, but these correspond to entries of the anomalous
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dimension matrix different to those studied in this paper. The same holds for the finite

renormalizations that were used to cancel certain one-loop matrix elements. Namely, in the

presence of masses one might need to introduce finite renormalization of the Standard Model

couplings to remove new local contributions to the one-loop matrix elements. Dimensional

analysis ensures that this will not affect the structure of the two-loop dimension-six anoma-

lous dimensions. In summary, the structure of the anomalous dimensions in our simplified

model directly translates to the the SMEFT, and our comparison and conclusions are not

be affected by ignoring masses.

Compared to our simplified model the SMEFT also includes several gauge groups and

additional higher-dimension operators. By keeping the gauge group to be a general SU(N),

and by leaving the identity of the fermions unspecified, we can still access many of the

entries of the anomalous-dimension matrix in the full SMEFT basis of operators used by

Refs. [Manohar123]. In particular, since the Higgs transforms under SU(2), setting N = 2

and the number of scalars Ns = 1 allows us to map to anomalous dimensions or four-point

amplitudes from representatives of any of the classes of operators in Ref. [Manohar123]

other than the ψ2Fϕ class (ψ2XH in the notation of Ref. [Manohar123]). Since the scalar is

in the fundamental representation that class necessarily involves both a left-handed fermion

charged under SU(2), as well as an uncharged right-handed fermion, which does not fit

into our framework. By taking N = 3, parts of the anomalous dimensions in the SMEFT

containing gluons can also be obtained. In principle, one can also compare anomalous

dimensions for additional operators using more sophisticated embeddings of the Standard

Model into SU(N), including U(1) charges (see e.g, Appendix IV of Ref. [ConvertToU1]),

but we do not do so here.

By specifying the flavor of the fermions, we can map to a number of operators of the full

basis used by Ref. [19–21] via different choices of gauge group and helicity. For example,

by taking N = 2 and and left-handed helicity on the external states, we access the SU(2)

portions of the amplitudes involving the q and q̄ quark doublets, and map onto the operators
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(q̄γµq)(q̄γ
µq) and (q̄γµτ

Iq)(q̄γµτ Iq). One remaining difference in our approach compared to

the full SMEFT is that we treat the fermions as Dirac instead of Weyl. This causes factor

of 2 differences in the Nf terms of the renormalization of O(Dϕ2ψ2)2
and O(ψ4)2

compared to

Ref. [19–21], which need to be taken into account when comparing. While our simplified

model avoids having to deal with γ5, the generalized unitarity method has been applied to

such cases as well [45]. At one loop, the issue of Weyl versus Dirac fermions is reduced to a

question of which helicities to take in the state sum in Eq. (2.24).

Setting aside the issue of Weyl versus Dirac fermions, mapping onto the four-fermion

operators of Ref. [19–21], (l̄γµl)(l̄γ
µl), (ūγµu)(ūγµu), and (d̄γµd)(d̄γµd) is possible as well,

but requires some care, due to the presence of evanescent effects. In particular, for these

cases the operator O(ψ4)2
is related to the operator O(ψ4)1

due to the SU(N) Fierz identity

(2.67)

(ψ̄mγ
µT aψn)(ψ̄pγµT

aψr) = (ψ̄mγ
µψn)(ψ̄pγµψr)

(
δipinδimir −

δiminδipir
N

)
. (2.84)

which, together with the Lorentz–Fierz relations for all left- or right-handed spinors

(ψ̄mL γ
µψnL)(ψ̄pLγµψ

r
L) = −(ψ̄pLγ

µψnL)(ψ̄mL γµψ
r
L) ,

(ψ̄mRγ
µψnR)(ψ̄pRγµψ

r
R) = −(ψ̄pRγ

µψnR)(ψ̄mRγµψ
r
R) , (2.85)

(where we raised the flavor indices for convenience) can be applied to eliminate the need for

the O(ψ4)2
operator in Table 2.1:

Omnpr(ψ4)2
= (ψ̄mγ

µT aψn)(ψ̄pγµT
aψr) = Omrpn(ψ4)1

− 1

N
Omnpr(ψ4)1

, (2.86)

when there are no additional group indices preventing the particle exchange (for example,

the additional SU(3) index prevents the reduction of (q̄γµτ Iq)(q̄γµτ
Iq) operator based on

the SU(2) Fierz identity). By choosing to implement Eq. (2.85) or not, we can map onto
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either the operators (l̄γµl)(l̄γµl), (ūγµu)(ūγµu), or (d̄γµd)(d̄γµd), or onto the set of operators

(q̄γµτ Iq)(q̄γµτ
Iq) and (q̄γµτ Iq)(q̄γµτ

Iq), respectively. Since we take all the fermions in our

operators to be charged under the same gauge group, here we do not map onto the (L̄R)(L̄R)

or (L̄R)(R̄L) subsets of the four-fermion operators, which require the presence of multiple

gauge groups.

It is worth noting, that there are some simplifications in the SMEFT relative to our model

with general gauge group. The symmetric color tensor dabc is zero in SU(2), meaning that

the operator O(ϕ2F 2)2
is identically zero. In addition, this implies the color factors for the

two-vector, two-scalar or two-vector, two-fermion processes are related by N{T a1 , T a2}i4i3 =

2δa1a2δi4i3 , meaning the number of color-ordered amplitudes is reduced for those processes

in the case of SU(2).

2.6.2 Verification of one-loop anomalous dimensions

From our one-loop calculations and the relations described above we have verified entries

from numerous classes of operators in the SMEFT, as summarized in Table 2.8, following

the notation of Ref. [19–21]. This includes examples proportional to g2
3, g2

2, and λ. In this

sense our operators are a representative sample of the full SMEFT, despite the simplified

nature of our dimension-four Lagrangian. The direct agreement with results of Ref. [19–21]

displayed in Table 2.8 provides a highly non-trivial check of the validity and the effectiveness

of the approach used here.

2.6.3 Two-loop implications

Next we briefly discuss the implications of the zeros in the two-loop anomalous dimensions

of our simplifies model for the SMEFT. The selection rules of Section 2.5 set a number

of entries strictly to zero, and restrict the coupling dependence of others. Our findings

are summarized in Table 2.9. The full SMEFT anomalous dimensions include dependence
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OG OW OHW
OH�
OHD

O(1)
Hl

O(3)
Hl

O(1)
Hq

O(3)
Hq

Oll
O(1)
qq

O(3)
qq

Ouu
Odd

OG X3 /0 /0 /0 /0 /0 /0 /0 /0

OW /0 X2 X2 /0 /0 /0 /0 /0 /0

OHW /0 X2 X2,λ X2 X2 X2 /0 /0 /0

OH�, OHD /0 X2 X2 X2,λ X2 X2 /0 /0 /0

O(1)
Hl , O

(3)
Hl

/0 X2 X2 X2 X2,λ X2 X2 /0 /0

O(1)
Hq, O

(3)
Hq

/0 X2 X2 X2 X2 X2,λ /0 X2 /0

Oll /0 X2 /0 /0 X2 /0 X2 /0 /0

O(1)
qq , O(3)

qq X3 X2 /0 /0 /0 X2 /0 X2 /0

Ouu, Odd X3 /0 /0 /0 /0 /0 /0 /0 X3

Table 2.8: Checks on the one-loop anomalous dimensions calculated in Ref. [19–21] obtained
from our calculations. The /0 entries correspond to trivial cases were there are no contributing
diagrams. The entries X3 and X2 are checked by setting the SU(N) group to SU(3) or SU(2),
respectively. In both cases, only the pieces of the anomalous dimensions proportional to g2

3

or g2
2 are accessed by our amplitudes. The X2,λ cases indicates that both terms proportional

to g2
2 and λ are verified. Operators have been grouped according to whether the gauge

dependence of the particle content is the same. As for the other tables, the operators
labeling the rows are renormalized by the operators labeling the columns.

on the Yukawa couplings, which are absent in our simplified theory, so some of the zeros

uncovered above may be replaced by anomalous dimensions that depend on such couplings.

Nevertheless, our results show that the coupling dependence of the anomalous dimensions

is simpler than one might have expected, and that some of the entries are zero or do not

have pure dependence on the gauge couplings. Though most of the strictly zero examples

rely on the length selection rule, which does not depend on the gauge group or the presence

of Yukawa couplings, the anomalous-dimension matrix element γ
(2)
HW←qq relies solely on the

color selection rules. In this case, including Yukawa and U(1) couplings will not affect this

zero, as the cuts still cannot match the color of the target operator.

In addition to the zeros, we find that many of the entries only receive contributions from

either three- or two-particle cuts, which should greatly simplify their computation. One
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interesting example is the element γ
(2)
qq←HW , which only has a three-particle cut due to the

vanishing of the one-loop amplitudes that would contribute to the two-particle cut. For this

example, we have also checked the one-loop amplitudes with Yukawa and U(1) couplings

do not contribute. As can also be seen in Table 2.9, many entries vanish when the Yukawa

couplings are set to zero. Many of these zeros are trivial due to the particle content of the

operators involved, but in some cases a closer examination of the diagrams is required to see

that only diagrams with Yukawa couplings will produce nonvanishing results.

Note that the operators in Table 2.9 are merely a representative set, in that all of the

operators of the SMEFT are restricted by one or more of our selection rules, either in terms

of which operators they can renormalize, or vice versa. In particular, the length selection

rules apply independently of the gauge group or the presence of Yukawa couplings, which

allows us to include operators of the classes ψ2Fϕ and ψ2ϕ3 in Table 2.9. We would also

like to stress that our analysis of the structure of the two-loop anomalous dimensions is

not an exhaustive study of the SMEFT anomalous dimensions. For this reason, we expect

that there could be additional vanishings or structures that can be uncovered under closer

scrutiny.

2.7 Conclusions

In this chapter we have applied on-shell methods to investigate the structure of the anomalous

dimension matrix in both a simplified model and in the SMEFT. We have derived a new

non-renormalization theorem that applies to higher-dimensional operators in quantum field

theory. Since the theorem is dependent on only the number and type of fields in each

operator, it applies to generic massless theories with no relevant operators. Besides being

helpful to find zeros of the anomalous-dimension matrix, the on-shell formalism of Ref. [98]

is a good way to compute nonzero entries as well. Whenever an entry is excluded by our

theorem, it should be much simpler to compute the entry at the next loop order compared
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to computing a generic entry at that loop order, because only tree-level quantities enter

the cuts. At one loop, we used both the standard generalized unitarity method [43, 44, 97]

and the recently developed approach for extracting non-zero anomalous dimensions directly

from unitarity cuts [98]. At two loops, we find the latter method to be especially effective,

with the former method providing one-loop amplitudes as inputs. As an initial step, we

reorganized the basic equation for the two-loop anomalous dimension in the latter approach

so as to simplify one-loop iterations. Using this equation, we revealed a number of vanishing

contributions in the two-loop anomalous dimension matrix of the SMEFT. Our analysis

was based on a simplified model without U(1) or Yukawa interactions. Nevertheless, as

summarized in Table 2.9, by analyzing the overlap of our simplified model with the SMEFT

we found that a remarkable number of SMEFT two-loop anomalous dimensions either vanish

or have a simpler dependence on the Standard Model couplings than naively expected.

The structure we uncovered has a number of origins, including length selection rules, color

selection rules, and zeros in the one-loop amplitudes with dimension-six operator insertions.

Additional zeros arise from the choice of an M̄S-like scheme which includes additional finite

renormalizations designed to set various rational terms in one-loop amplitudes to zero. This

suggests that there exist interesting schemes that make the structure of the renormalization-

group running beyond one loop more transparent. The full implications of choosing such

schemes clearly deserve further study.

Since one-loop amplitudes are used as input for the two-loop calculation, we have com-

puted the full set of four-point amplitudes with dimension-six operator insertions in our

simplified version of the SMEFT. As a byproduct, these amplitudes have allowed us to

verify a large subset of the one-loop anomalous dimensions calculated in Refs. [19–21].

The zeros that we found in the two-loop anomalous dimension matrix relied on choosing

examples with trivial infrared dependence, as well as a lack of a three-particle cut. However,

the methods can be applied just as well to any generic anomalous dimension matrix element

at two or higher loops. It would be interesting to investigate whether there are additional

75



zeros at two loops beyond those we identified. The large number of zeros in the one-loop am-

plitudes restrict the number of cuts that can contribute, suggesting that other mechanisms,

such as helicity or angular-momentum selection rules, may set the remaining cuts to zero in

some cases.

The conclusions of the present work are unchanged by the presence of masses, as these

only affect different entries in the anomalous dimension matrix, which relate operators of

different dimension. Studying such entries will require revisiting the proof of the length

selection rules, since formerly scaleless integrals can have a UV divergence proportional to a

mass, which generates running for operators of lower dimension. Additionally, masses allow

additional logarithms of the form log(µ/m), whose coefficient is not captured by traditional

unitarity cuts. It would be interesting to study the possibility of extending our formalism

to capture these effects and explore the structure of that sector of the anomalous dimension

matrix.

In summary, we have demonstrated that the on-shell methods applied here are well suited

for computing anomalous dimensions and associated scattering amplitudes at one and two

loops. We used these methods to expose new structures in the guise of vanishing terms in the

anomalous matrix of the SMEFT beyond one loop. Our analysis here was not exhaustive,

so it is likely that further vanishing contributions and new structures exist at two loops and

beyond. Our results also suggest that a judicious choice of renormalization scheme can help

expose such structures.

The presented methods are quite general, and should be applicable to general EFTs.

In addition, while we have focused on ultraviolet anomalous dimensions here, this method

could equally be applied to the evaluation of infrared anomalous dimensions, such as the soft

anomalous dimension, by the use of ultraviolet protected operators such as the stress-tensor

or global symmetry currents. It would also be interesting to understand the implications,

if any, of the vanishing of two-loop anomalous dimensions for the interference of Standard

Model and higher-dimension operator matrix elements beyond tree level, in the presence of
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experimental cuts. Another obvious direction would be to include dimension seven and eight

operators into the analysis [Dim78].

2.A Integral reduction via gauge-invariant tensors

In this appendix we summarize the projection technique that we use to perform tensor

reduction of loop integrals in Section 2.4. The same technique has been previously used in

Refs. [9, 134, 135] and is a convenient method for decomposing D-dimensional tensor loop

integrands (or cuts) into a basis of scalar master integrals, in a way that makes dimensional

regularization, and any associated chiral and evanescent issues relatively straightforward.

In particular this technique is well suited to deal with integrals with high-rank numerators,

which naturally arise in loop amplitudes with insertions of higher-dimension operators.

We start by noting that scattering amplitudes amplitudes are gauge invariant and can

therefore be decomposed into a basis of gauge-invariant tensors, Tm. For a given amplitude

labeled by i we have,

A
(L)
i =

∑
m

A(L)
i,m(kj)Tm(kj, εj, uj, ūj) , (2.87)

where the coefficients, A(L)
i,m, only depend on the external momenta, and all dependence on

the polarization vectors or spinors is contained entirely within the basis tensors, Tm. The

basis tensors for the various processes we consider in this work are given below and in the

supplementary material to the ArXiV submission of Ref. [2]. They are found by writing down

the most general polynomials built from Lorentz invariant products of external polarizations,

spinor and momenta and then demanding gauge invariance.

The desired coefficient of tensor Tj can be extracted using a projector

Pn = cnmT
∗
m , (2.88)
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where cnm is the inverse of the matrix

mnm = T ∗n � Tm . (2.89)

Here the product � corresponds to the state sum in Eq. (2.49), taken over all particles. The

coefficient of the tensor is then simply given by

A(L)
i,m = Pm � A(L)

i . (2.90)

The projectors for all processes consider in this work are given explicitly in an ancillary file

attached to the ArXiV submission of Ref. [2].

Once projected, any gauge invariant quantity can be summarized as a list of the coef-

ficients corresponding to each basis tensor. In the case of a loop integrand or cut thereof,

each coefficient is a rational function of scalar propagators and inverse propagators (and

irreducible numerators beyond one loop). The integrals corresponding to each term in the

projected quantity are then in a form that can be reduced to a basis of master integrals using

by integration by parts (IBP) relations. This can be done using by using IBP programs such

as FIRE [136–138].

As described in Section 2.4, we can apply this procedure cut by cut to determine the

coefficients of each gauge invariant tensor in the full amplitude.

Basis tensors

Basis tensors for the four-vector amplitudes are taken from [9], which we reproduce here.

Beginning with the linearized field strength for each external particle:

Fi µν ≡ ki µεi ν − ki νεi µ , (2.91)
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one can construct the following combinations,

F 4
st ≡ (F1F2F3F4) , F 4

tu ≡ (F1F4F2F3) , F 4
us ≡ (F1F3F4F2) ,

(F 2
s )2 ≡ (F1F2)(F3F4) , (F 2

t )2 ≡ (F1F4)(F2F3) , (F 2
u )2 ≡ (F1F3)(F4F2) ,

(2.92)

where parentheses one the right-hand side of the above equations indicate taking the trace

over adjacent Lorentz indices. The four-vector basis tensors are then given by

T tree
vvvv = −1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2) + 2 (F 4
st + F 4

tu + F 4
us) ,

T++++
vvvv = −2F 4

st +
1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2) ,

T−+++
vvvv = −TF 3 − (F 4

tu − F 4
us) (s− t) + (F 4

st −
1

4
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s+ t) ,

T−−++
vvvv = (F 2

s )2 − (F 2
t )2 + 2 (F 4

tu − F 4
us) , (2.93)

T−+−+
vvvv = 2F 4

st −
1

2
((F 2

s )2 + (F 2
t )2 − (F 2

u )2) ,

T ev1
vvvv = −(2F 4

st +
3

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s+ t) + 2 (F 4
us (3 s+ t) + F 4

tu (s+ 3 t)) ,

T ev2
vvvv = −(2F 4

st −
1

2
((F 2

s )2 + (F 2
t )2 + (F 2

u )2)) (s− t) + 2 (F 4
tu − F 4

us) (s+ t) ,

where the v labels signifies that a leg is a vector boson, and TF 3 is proportional to the F 3

amplitude [176]:

TF 3 = −istA(0)

F 3 = −istu
(

(F 2
s )2

4s2
+

(F 2
t )2

4t2
+

(F 2
u )2

4u2
− g1g2g3g4

(stu)2

)
, (2.94)

where gi ≡ (ki+1Fiki−1). We note that we have written this expression in an explicitly gauge-

invariant form at the expense of manifest locality. These tensors are nonzero only under the

indicated (and parity conjugate) helicity configurations, along with cyclic permutations.

T tree
vvvv is nonzero for helicities (1−2+3−4+), (1−2−3+4+), and cyclic permutations. T ev1

vvvv and

T ev2
vvvv are evanescent, i.e. zero for all helicity configurations in four dimensions. This can be
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made manifest by rewriting them as

T ev1
vvvv =

1

2
k

[α
4 F

µν
1 F

σρ]
2 k2αF4µνF3σρ +

1

2
k

[α
4 F

µν
3 F

σρ]
2 k2αF4µνF1σρ ,

T ev2
vvvv =

1

2
k

[α
2 F

µν
1 F

σρ]
3 k1αF2µνF4σρ ,

(2.95)

where the anti-symmetrization does not include a symmetry factor.

The two-vector, two-scalar tensors are also nonzero under specific helicity combinations,

and are given by

T+−
vvss = 2(k3F1F2k4) + 2(k4F1F2k3)− (k3 · k4)(F1F2) , T++

vvss = −(F1F2) , (2.96)

where the v and s labels specify the corresponding legs are vectors or scalars.

Similarly, the two-vector, two-fermion tensors are linear combinations of those in Ref. [134,

135], chosen to again be nonzero only under specific helicities:

T−+++
ffvv = − 1

24
(ū2 /F 4 /F 3/k2u1) , T−+−+

ffvv = − 1

24
(ū2 /F 4/k2

/F 3u1) ,

T−++−
ffvv = − 1

24
(ū2 /F 3/k1

/F 4u1) , T−+−−
ffvv = − 1

24
(ū2/k1

/F 4 /F 3u1) ,

T ev
ffvv =

1

2
k

[α
1 F

µν
3 F

ρσ]
4 (ū2γαγµγνγργσu1) , (2.97)

where f now indicates a leg as a fermion, /F i = Fi µνγ
µγν , and the antisymmetrization in T ev

includes a symmetry factor of 1/5!. As for the four-vector case, we encounter an evanescent

tensor, T ev
ffvv which vanishes for all four-dimensional helicities. For the two-fermion two-

scalar case there is only a single basis tensor:

Tffss = ū2/k3u1 . (2.98)
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Finally, the four-fermion tensors are,

T 1
ffff = (ū2γ

µu1)(ū4γµu3) ,

T 2
ffff = (ū2/k4u1)(ū4/k2u3) ,

T 3
ffff = (ū2γ

µγνγρu1)(ū4γµγνγρu3)− 16(ū2γ
µu1)(ū4γµu3) ,

T 4
ffff = t (ū2γ

µ/k4γ
ρu1)(ū4γµ/k2γρu3)− 4u(ū2/k4u1)(ū4/k2u3) , (2.99)

plus those given by the exchange of legs 2 and 4. It should be noted, however, that in

practice it is unnecessary to calculate the coefficients of the exchanged tensors, since they

are fixed by the symmetry of the contributing diagrams. T 3
ffff and T 4

ffff are chosen to be

zero for the helicity configuration 1+

ψ
2−
ψ

3+

ψ
4−
ψ

and its conjugate, so that these tensors are

evanescent if the spinors are Weyl of the same handedness.

2.B Tree-level and one-loop amplitudes

In this appendix we collect tree- and one-loop amplitudes. In addition to the spinor-helicity

amplitudes given below, expressions that are valid to all orders in the dimensional regular-

ization parameter ε are provided in a supplementary file to the ArXiV submission of Ref. [2].

While we do not require one-loop amplitudes without higher-dimension operators for our

specific examples in Section 2.5, they would be required for the calculation of a generic two-

loop anomalous dimension matrix element. These one-loop dimension-4 amplitudes can be

found in various references; e.g. Refs. [177, 178] gives the relevant amplitudes which exclude

scalars.

The amplitudes and form factors can be written as vectors in color space,

A(L)(λ1λ2λ3λ4) = Sλ1λ2λ3λ4

∑
i

C[i]
λ1λ2λ3λ4

A(L)(λ1λ2λ3λ4)[i] , (2.100)
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where Sλ1λ2λ3λ4 is a helicity-dependent factor which which depending on spinors when evalu-

ated using four-dimensional spinor helicity. These factors are pure phases for the amplitudes

with an even number of pairs of external fermions, and for the amplitudes with an odd

number of fermions their square is a dimensionless ratio of s, t, or u and powers thereof. The

full list of Sλ1λ2λ3λ4 for each process is listed below.

The IR dependence has been stripped from the amplitudes below, but can be recon-

structed, if desired, using the basic IR formulas given in the text, which we reproduce here:

A
(1)
i = I(1)A

(0)
i + A

(1)fin
i , (2.101)

where the IR operator I(1) is given by

I(1) =
eεγE

Γ(1− ε)
n∑
p=1

∑
q 6=p

Tp · Tq
2

[
γ

IR (1)
cusp

ε2
− γ

IR (1)
c, p

T 2
p

1

ε

]( −µ2

2kp·kq

)ε
, (2.102)

with

γIR (1)
cusp = g̃24 , γIR (1)

c, v = −g̃2b0 , γ
IR (1)
c, f = −g̃23CF , γIR (1)

c, s = −g̃24CF . (2.103)

Explicit evaluations of I(1) for various processes can be found, for example, in Refs. [134,

135, 173]. All results below are reported in the Euclidean region and the M̄S scheme. As a

shorthand, logarithms are given by:

X2 = log
(s
t

)2

+ π2, Y 2 = log
( s
u

)2

+ π2, Z2 = log
(u
t

)2

+ π2,

Xs = log

(
µ2

−s

)
, Xt = log

(
µ2

−t

)
, Xu = log

(
µ2

−u

)
.

(2.104)

In general we drop the Wilson coefficients, for example cF 3 for amplitudes with an OF 3

insertion, since it is in this form that the amplitudes are used in Eq. (2.37). However

we have contracted the Wilson coefficients with the amplitudes for operators which include
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fermions, since doing so simplifies the flavor information for these cases.

2.B.1 Four-vector amplitudes

The color factors for the four-vector amplitudes are

C[1]
vvvv = Tr[T 1T 2T 3T 4] , C[2]

vvvv = Tr[T 1T 3T 2T 4] ,

C[3]
vvvv = Tr[T 1T 2T 4T 3] , C[4]

vvvv = Tr[T 1T 4T 2T 3] , (2.105)

C[5]
vvvv = Tr[T 1T 3T 4T 2] , C[6]

vvvv = Tr[T 1T 4T 3T 2] ,

C[7]
vvvv = Tr[T 1T 2] Tr[T 3T 4] , C[8]

vvvv = Tr[T 1T 3] Tr[T 2T 4] , C[9]
vvvv = Tr[T 1T 4] Tr[T 2T 3] ,

where only two partial amplitudes—one single-trace and one double-trace—are independent

in general, and the rest are given by relabelings.

We remove dimensionless prefactors from the helicity amplitudes. These are all phases

except for the amplitudes involving only one pair of fermions. For the four-vector amplitudes,

the spinor prefactors are are given by

S(1+2+3+4+) =
[12][34]

〈12〉〈34〉 , S(1−2+3+4+) =
〈12〉〈14〉[24]

〈23〉〈24〉〈34〉 ,

S(1−2−3+4+) =
〈12〉[34]

〈34〉[12]
, S(1−2+3−4+) =

〈13〉[24]

〈24〉[13]
. (2.106)

The tree-level D-dimensional amplitudes are given by

A(0)(1234)[1] =
−g2

st
T tree
vvvv ,

A(0)(1234)[7] = 0 ,

A
(0)

F 3(1234)[1] =
g

2stu

(
4stT++++

vvvv − 2uT−+++
vvvv + (s− t)T ev2

vvvv

)
,

A
(0)

F 3(1234)[7] = 0 , (2.107)
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which have four-dimensional helicity values

A(0)(1−2+3+4+)[1] = A(0)(1=2+3+4+)[1] = 0 ,

A(0)(1−2−3+4+)[1] = −g
2s

t
,

A(0)(1−2+3−4+)[1] = −g
2u2

st
,

A(0)(1±2±3±4±)[7] = 0 , (2.108)

A
(0)

F 3(1+2+3+4+)[1] = 2gs ,

A
(0)

F 3(1−2+3+4+)[1] = −gu ,

A
(0)

F 3(1−2−3+4+)[1] = A
(0)

F 3(1−2+3−4+)[1] = 0 ,

A
(0)

F 3(1±2±3±4±)[7] = 0 . (2.109)

The one-loop amplitudes with one insertion of the F 3 operator are

A
(1)fin

F 3 (1+2+3+4+)[1] = gg̃2
(
(4N(t− u) + 2ub0)Xs + (4N(s− u) + 2ub0)Xt

− 1

2
(44N + 2Nf −Ns)u

)
,

A
(1)fin

F 3 (1−2+3+4+)[1] = gg̃2
(
N
u2 − st
u

X2

+ (2N(t− u) + b0u)Xs + (2N(s− u) + b0u)Xt − 12u
)
,

A
(1)

F 3(1−2+3−4+)[1] = 0 ,

A
(1)

F 3(1−2−3+4+)[1] =
gg̃2

6
(4N(u− s)− (2Nf −Ns)(u− t)) , (2.110)

where g̃2 = g2/(4π) as defined in Eq.(2.5), and b0 = (11N−2Nf−Ns/2)/3. The double-trace

amplitudes with an OF 3 insertion are given by the U(1) decoupling identity

A
(1)

F 3(1234)[7] =
1

N

(
A

(1)

F 3(1234)[1] + A
(1)

F 3(1243)[1] + A
(1)

F 3(1423)[1]

)
. (2.111)
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The amplitudes with one insertion of a ϕ2F 2 operators are

A
(1)

(ϕ2F 2)1
(1±2±3±4±)[1] = 0 ,

A
(1)

(ϕ2F 2)1
(1+2+3+4+)[7] = 4g̃2Nss ,

A
(1)

(ϕ2F 2)1
(1−2+3+4+)[7] = A

(1)

(ϕ2F 2)1
(1−2+3−4+)[7] = 0 ,

A
(1)

(ϕ2F 2)1
(1−2−3+4+)[7] = 4g̃2Nss ,

A
(1)

(ϕ2F 2)2
(1+2+3+4+)[1] = −2g̃2Nsu ,

A
(1)

(ϕ2F 2)2
(1−2+3+4+)[1] = A

(1)

(ϕ2F 2)2
(1−2+3−4+)[1] = 0 ,

A
(1)

(ϕ2F 2)2
(1−2−3+4+)[1] = 2g̃2Nss ,

A
(1)

(ϕ2F 2)2
(1+2+3+4+)[7] = A

(1)

(ϕ2F 2)2
(1−2−3+4+)[7] = −4g̃2Nss

N
,

A
(1)

(ϕ2F 2)2
(1−2+3+4+)[7] = A

(1)

(ϕ2F 2)2
(1−2+3−4+)[7] = 0 . (2.112)

2.B.2 Four-fermion amplitudes

The color structures for the four-fermion amplitudes are

C[1]
ffff = T ai2i1T

a
i4i3

, C[2]
ffff = T ai4i1T

a
i2i3

. (2.113)

Note for any operator, due to the anti-symmetry of the amplitudes under exchange of (anti-

)fermions:

A
(L)
O (1+

ψm
2−
ψ̄n

3+
ψp

4−
ψ̄r

)[2] = −A(L)
O (1+

ψm
2−
ψ̄r

3+
ψp

4−
ψ̄n

)[1] (s↔ t) ,

A
(L)
O (1+

ψm
2−
ψ̄n

3−
ψp

4+
ψ̄r

)[2] = −A(L)
O (1+

ψm
2+
ψ̄r

3−
ψp

4−
ψ̄n

)[1] (s↔ t) ,

A
(L)
O (1+

ψm
2+
ψ̄n

3−
ψp

4−
ψ̄r

)[2] = −A(L)
O (1+

ψm
2−
ψ̄r

3−
ψp

4+
ψ̄n

)[1] (s↔ t) . (2.114)
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The overall spinor phases are

S(1+

ψ
2−
ψ

3+

ψ
4−
ψ

) =
〈24〉[12]

〈34〉[24]
, S(1+

ψ
2−
ψ

3−
ψ

4+

ψ
) =
〈23〉[12]

〈34〉[23]
,

S(1+

ψ
2+

ψ
3−
ψ

4−
ψ

) =
[12]

[34]
. (2.115)

The tree-level D-dimensional amplitudes are given by

A(0)(1ψm2 ψ̄n3ψp4 ψ̄r)[1] = g2u2γ
µu1 ū4γµu3

2s
δmnδpr ,

A
(0)

(ψ4)1
(1ψm2 ψ̄n3ψp4 ψ̄r)[1] =

N

N2 − 1
(cnmrp(ψ4)1

u2γ
µu1 ū4γµu3 − crmnp(ψ4)1

Nu4γ
µu1 ū2γµu3) ,

A
(0)

(ψ4)2
(1ψm2 ψ̄n3ψp4 ψ̄r)[1] = cnmrp(ψ4)2

u2γ
µu1 ū4γµu3 , (2.116)

which have four-dimensional values

A(0)(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] =
g2u

s
δmnδpr ,

A(0)(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = −g
2t

s
δmnδpr ,

A(0)(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 0 ,

A
(0)

(ψ4)1
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] = −
2Nu(Ncrmnp(ψ4)1

+ cnmrp(ψ4)1
)

N2 − 1
,

A
(0)

(ψ4)1
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] =
2Ntcnmrp(ψ4)1

N2 − 1
,

A
(0)

(ψ4)1
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] =
2N2scnmrp(ψ4)1

N2 − 1
,

A
(0)

(ψ4)2
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] = −2ucnmrp(ψ4)2
,

A
(0)

(ψ4)2
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = 2tcnmrp(ψ4)2
,

A
(0)

(ψ4)2
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 0 . (2.117)
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The amplitudes with one insertion of the F 3 operator are

A
(1)

F 3(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] =
1

3
gg̃2uδmnδpr ,

A
(1)

F 3(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = −1

3
gg̃2tδmnδpr ,

A
(1)

F 3(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 0 . (2.118)

The amplitudes with one insertion of a Dϕ2ψ2 operator are

A
(1)

(Dϕ2ψ2)1
(1±
ψm

2±
ψ̄n

3±
ψp

4±
ψ̄r

)[1] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] = −1

9
g̃2Ns(3Xs + 8)u(crp(Dϕ2ψ2)2

δmn + cnm(Dϕ2ψ2)2
δpr) ,

A
(1)

(Dϕ2ψ2)2
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] =
1

9
g̃2Ns(3Xs + 8)t(crp(Dϕ2ψ2)2

δmn + cnm(Dϕ2ψ2)2
δpr) ,

A
(1)

(Dϕ2ψ2)2
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 0 . (2.119)
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The amplitudes with one insertion of a ψ4 operator are

A
(1)fin

(ψ4)1
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] =
2g̃2u

9t

(
t
(
72Ncrmnp(ψ4)1

+Nf (3Xs + 2)(δmnc
rwwp
(ψ4)1

+ δprc
nwwm
(ψ4)1

)
)

+ 9(2s+ t(3Xu + 25))cnmrp(ψ4)1

)
,

A
(1)fin

(ψ4)1
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = −2

9
g̃2(Nf t(3Xs + 2)(δmnc

rwwp
(ψ4)1

+ δprc
nwwm
(ψ4)1

)

+ 9(2s+ t(5− 3Xt))c
nmrp
(ψ4)1

) ,

A
(1)fin

(ψ4)1
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = −16g̃2Nscrmnp(ψ4)1
,

A
(1)fin

(ψ4)2
(1+
ψm

2−
ψ̄n

3+
ψp

4−
ψ̄r

)[1] =
2g̃2u

9Nst

(
9s
(
2
(
N2 − 1

)
s+ t

(
13N2 − 3Xu − 25

))
cnmrp(ψ4)2

+ t(Nfs(2N(3Xs + 5)(δmnc
rpww
(ψ4)2

+ δprc
nmww
(ψ4)2

)

− (3Xs + 2)(δmnc
rwwp
(ψ4)2

+ δprc
nwwm
(ψ4)2

))

+ 9N(s(3Xu + 17) + 2t)crmnp(ψ4)2
)
)
,

A
(1)fin

(ψ4)2
(1+
ψm

2−
ψ̄n

3−
ψp

4+
ψ̄r

)[1] = −2g̃2

9N

(
9
(
2
(
N2 − 1

)
s− t

(
3(N2 − 1)Xt − 3N2 + 5

))
cnmrp(ψ4)2

+Nf t(2N(3Xs + 5)(δmnc
rpww
(ψ4)2

+ δprc
nmww
(ψ4)2

)

− (3Xs + 2)(δmnc
rwwp
(ψ4)2

+ δprc
nwwm
(ψ4)2

))
)
,

A
(1)fin

(ψ4)2
(1+
ψm

2+
ψ̄n

3−
ψp

4−
ψ̄r

)[1] = 2g̃2(3s(Xs + 1)− 2t)crmnp(ψ4)2
. (2.120)

2.B.3 Four-scalar amplitudes

The color structures for this process are identical to those of the four fermion case:

C[1]
ssss = T ai2i1T

a
i4i3

, C[2]
ssss = T ai4i1T

a
i2i3

. (2.121)
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There is no spinor phase in this case, as the scalars do not carry helicity weight. The tree-level

amplitudes are

A(0)(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = −g
2(t− u)

2s
− 2λN

N − 1
,

A
(0)

(D2ϕ4)1
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

N(Ns+ t)

N2 − 1
,

A
(0)

(D2ϕ4)2
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

2N(Nt+ s)

N2 − 1
. (2.122)

The one-loop amplitudes with an insertion of the F 3 operator are

A
(1)

F 3(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = −1

6
gg̃2N(t− u) . (2.123)

The one-loop amplitudes with an insertion of a ϕ2F 2 operator are

A
(1)

(ϕ2F 2)1
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = 2g̃2(Nt+ s) ,

A
(1)

(ϕ2F 2)2
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

2g̃2 (N2 − 4) s

N
. (2.124)

The one-loop amplitudes with an insertion of a D2ϕ4 operator are

A
(1)fin

(D2ϕ4)1
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

g̃2

2

(
− 4(4N + 3)s− 2(3N + 5)t

− 3(N − 2)tXt − 3sXs + 3uXu

)
+

2λ̃

N − 1

(
2N((N − 3)t− 2s)−NsXs

+ (N − 2)NtXt +NuXu

)
,

A
(1)fin

(D2ϕ4)2
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] =

g̃2

9

(
− 2(2t(9N + 4Ns + 27) + (4Ns + 45)s)

+ 27(2N − 1)tXt − 3Xs((Ns − 18)s+ 2Nst) + 27uXu)

+
4λ̃N

N − 1
(−4(Nt+ s) + (1− 2N)tXt − sXs + uXu) . (2.125)
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The one-loop amplitudes with an insertion of a Dϕ2ψ2 operator are

A
(1)

(Dϕ2ψ2)1
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1ϕ2ϕ̄3ϕ4ϕ̄)[1] = −2

9
cww(Dϕ2ψ2)2

g̃2(3Xs + 5)(t− u) . (2.126)

2.B.4 Two-fermion, two-vector amplitudes

The color factors for the two-fermion, two-vector amplitudes are

C[1]
ffvv = (T 3T 4)i2i1 , C[2]

ffvv = (T 4T 3)i2i1 , C[3]
ffvv = Tr[T 3T 4]δi2i1 . (2.127)

In this case the spinor prefactors are not pure phases, but have magnitudes equal to ratios

of s, t, and u:

S(1−
ψp

2+
ψ̄r

3+4+) =
〈13〉[34]

〈23〉〈34〉 , S(1−
ψp

2+
ψ̄r

3−4+) =
〈13〉3

〈12〉〈34〉〈41〉 ,

S(1−
ψp

2+
ψ̄r

3+4−) =
〈14〉3

〈12〉〈31〉〈43〉 , S(1−
ψp

2+
ψ̄r

3−4−) =
〈34〉3

〈23〉〈24〉[12]
. (2.128)

The tree-level amplitudes for this process are

A(0)(1ψp2 ψ̄r34)[1] = −g
2

st
(2T−+−+

ffvv − 2T−++−
ffvv + T ev

ffvv)δpr ,

A
(0)

F 3(1ψp2 ψ̄r34)[1] = −2g

s
(T−+++

ffvv + T−+−−
ffvv )δpr , (2.129)
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which evaluate in four dimensions as

A(0)(1−
ψp

2+
ψ̄r

3+4+)[1] = 0 ,

A(0)(1−
ψp

2+
ψ̄r

3+4−)[1] = g2δpr ,

A(0)(1−
ψp

2+
ψ̄r

3−4+)[1] =
g2t

u
δpr ,

A(0)(1−
ψp

2+
ψ̄r

3−4−)[1] = 0 ,

A
(0)

F 3(1−
ψp

2+
ψ̄r

3+4+)[1] = −gtδpr ,

A
(0)

F 3(1−
ψp

2+
ψ̄r

3+4−)[1] = 0 ,

A
(0)

F 3(1−
ψp

2+
ψ̄r

3−4+)[1] = 0 ,

A
(0)

F 3(1−
ψp

2+
ψ̄r

3−4−)[1] =
gtu

s
δpr . (2.130)

The one-loop amplitudes with an insertion of a F 3 operator are

A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3+4+)[1] =
gg̃2δpr
36Nu

(
2tu
(
34N2 +N(5Nf + 2Ns)− 18

)
+ 9Ntu((4Nf +Ns)Xs + 2(N − b0)Xt)

+ 18N2(t− u)tX2
)
,

A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3−4+)[1] = 0 ,

A
(1)

F 3(1−
ψp

2+
ψ̄r

3+4−)[1] = gg̃2δprN
su

t
,

A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3−4−)[1] = −u
s
A

(1)fin

F 3 (1−
ψp

2+
ψ̄r

3+4+)[1] , (2.131)
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A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3+4+)[3] = gg̃2δpr

(
(3N + b0)

2N
t(Xu −Xt)

+
(t− u)

2su
(stX2 + suY 2 + utZ2)

)
,

A
(1)

F 3(1−
ψp

2+
ψ̄r

3−4+)[3] = gg̃2δpr2
st

u
,

A
(1)

F 3(1−
ψp

2+
ψ̄r

3+4−)[3] = gg̃2δpr2
su

t
,

A
(1)fin

F 3 (1−
ψp

2+
ψ̄r

3−4−)[3] = −u
s
A

(1)fin

F 3 (1−
ψp

2+
ψ̄r

3+4+)[3] . (2.132)

The one-loop amplitudes with an insertion of a ϕ2F 2 operator all evaluate to zero:

A
(1)

(ϕ2F 2)1
(1±
ψp

2±
ψ̄r

3±4±)[1] = A
(1)

(ϕ2F 2)1
(1±
ψp

2±
ψ̄r

3±4±)[3] = 0 ,

A
(1)

(ϕ2F 2)2
(1±
ψp

2±
ψ̄r

3±4±)[1] = A
(1)

(ϕ2F 2)2
(1±
ψp

2±
ψ̄r

3±4±)[3] = 0 . (2.133)

The one-loop amplitudes with an insertion of a Dϕ2ψ2 operator are

A
(1)

(Dϕ2ψ2)1
(1±
ψp

2±
ψ̄r

3±4±)[1] = A
(1)

(Dϕ2ψ2)1
(1±
ψp

2±
ψ̄r

3±4±)[3] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1−
ψp

2+
ψ̄r

3+4+)[1] =
1

3
g̃2crp(Dϕ2ψ2)2

Nst ,

A
(1)

(Dϕ2ψ2)2
(1−
ψp

2+
ψ̄r

3+4−)[1] = A
(1)

(Dϕ2ψ2)2
(1−
ψp

2+
ψ̄r

3−4+)[1] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1−
ψp

2+
ψ̄r

3−4−)[1] = − 1

3s
g̃2crp(Dϕ2ψ2)2

Nstu ,

A
(1)

(Dϕ2ψ2)2
(1±
ψp

2±
ψ̄r

3±4±)[3] = 0 . (2.134)

The one-loop amplitudes with an insertion of a ψ4 operator are

A
(1)

(ψ4)1
(1±
ψp

2±
ψ̄r

3±4±)[1],[3] =
Nf

Ns

crwwp(ψ4)1

crp(Dϕ2ψ2)2

A
(1)

(Dϕ2ψ2)2
(1±
ψp

2±
ψ̄r

3±4±)[1],[3] ,

A
(1)

(ψ4)2
(1±
ψp

2±
ψ̄r

3±4±)[1],[3] =
2Ncrpww(ψ4)2

− crwwp(ψ4)2

crwwp(ψ4)1

A
(1)

(ψ4)1
(1±
ψp

2±
ψ̄r

3±4±)[1],[3] . (2.135)
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2.B.5 Two-scalar, two-vector amplitudes

The color basis for this process is analogous to the that of the previous:

C[1]
vvss = (T 1T 2)i4i3 , C[2]

vvss = (T 2T 1)i4i3 , C[3]
vvss = Tr[T 1T 2]δi4i3 . (2.136)

The spinor factors are again pure phases:

S(1+2+3ϕ4ϕ̄) =
[12]

〈12〉 , S(1+2−3ϕ4ϕ̄) =
〈23〉〈24〉[12][34]

〈12〉〈34〉[23][24]
. (2.137)

The D-dimensional tree-level expressions are given by

A(1)(123ϕ4ϕ̄)[1] = −g
2

st
T+−
vvss ,

A(1)(123ϕ4ϕ̄)[3] = 0 ,

A
(1)

F 3(123ϕ4ϕ̄)[1] =
g(t− u)

2s
T++
vvss ,

A
(1)

F 3(123ϕ4ϕ̄)[3] = 0 ,

A
(1)

(ϕ2F 2)1
(123ϕ4ϕ̄)[1] = 0 ,

A
(1)

(ϕ2F 2)1
(123ϕ4ϕ̄)[3] = −2T++

vvss ,

A
(1)

(ϕ2F 2)2
(123ϕ4ϕ̄)[1] = −2T++

vvss ,

A
(1)

(ϕ2F 2)2
(123ϕ4ϕ̄)[3] = − 4

N
T++
vvss , (2.138)
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with four-dimensional helicity values

A(1)(1+2+3ϕ4ϕ̄)[1] = 0 ,

A(1)(1+2−3ϕ4ϕ̄)[1] =
g2u

s
,

A(1)(1±2±3ϕ4ϕ̄)[3] = 0 ,

A
(1)

F 3(1+2+3ϕ4ϕ̄)[1] =
1

2
g(t− u) ,

A
(1)

F 3(1+2−3ϕ4ϕ̄)[1] = 0 ,

A
(1)

F 3(1±2±3ϕ4ϕ̄)[3] = 0 ,

A
(1)

(ϕ2F 2)1
(1±2±3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(ϕ2F 2)1
(1+2+3ϕ4ϕ̄)[3] = −2s ,

A
(1)

(ϕ2F 2)1
(1+2−3ϕ4ϕ̄)[3] = 0 ,

A
(1)

(ϕ2F 2)2
(1+2+3ϕ4ϕ̄)[1] = −2s ,

A
(1)

(ϕ2F 2)2
(1+2−3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(ϕ2F 2)2
(1+2+3ϕ4ϕ̄)[3] = −4s

N
,

A
(1)

(ϕ2F 2)2
(1+2−3ϕ4ϕ̄)[3] = 0 . (2.139)
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The one-loop amplitudes with an insertion of the F 3 operator are

A
(1)fin

F 3 (1+2+3ϕ4ϕ̄)[1] = − gg̃2

72N

(
8((52N2 − 18)s+ (77N2 − 36)t+N(t− u)(5Nf + 2Ns))

+ 18N((2N(5t− 7u)− 3b0(t− u))Xt +Xs(2Ns+ b0(u− t)))

− 72N2tX2
)
,

A
(1)
F3

(1+2−3ϕ4ϕ̄)[1] =
1

2
gg̃2Nu ,

A
(1)fin

F 3 (1+2+3ϕ4ϕ̄)[3] =
gg̃2

4N

(
(8Nt+ b0(t− u))Xt + (8Nu+ b0(u− t))Xu − 4NsXs

+
1

6s
(stX2 + suY 2 + tuZ2)

)
,

A
(1)
F3

(1+2−3ϕ4ϕ̄)[3] = −gg̃2s . (2.140)

The one-loop amplitudes with an insertion of a ϕ2F 2 operator are

A
(1)fin

(ϕ2F 2)1
(1+2+3ϕ4ϕ̄)[1] = − g̃

2s

N
((b0 − 2N)Xt + b0Xu) + 4g̃2s , (2.141)

A
(1)

(ϕ2F 2)1
(1+2−3ϕ4ϕ̄)[1] = 2g̃2(s+ 3t) ,

A
(1)fin

(ϕ2F 2)1
(1+2+3ϕ4ϕ̄)[3] = g̃2s (4CF − 2(b0 + 3CF )Xs)

+ 4λ̃(N + 1)s(Xs + 2) ,

A
(1)

(ϕ2F 2)1
(1+2−3ϕ4ϕ̄)[3] = 0 ,

A
(1)fin

(ϕ2F 2)2
(1+2+3ϕ4ϕ̄)[1] =

g̃2s

N2

(
6N
(
2N2 − 3

)
+N (3−Nb0)Xs + 2b0Xu

+
(
2N(N2 − 4)− b0(N2 − 2)

)
Xt

)
+ 4λ̃s(Xs + 2) ,

A
(1)

(ϕ2F 2)2
(1+2−3ϕ4ϕ̄)[1] = −2g̃2

N

(
N2u+ 4t

)
,

A
(1)fin

(ϕ2F 2)2
(1+2+3ϕ4ϕ̄)[3] =

g̃2s

N2

(
2 (b0N − 3)Xs + b0N(Xt +Xu)− 3

(
4N2 − 1

) )
− 8

N
λ̃s(Xs + 2) ,

A
(1)

(ϕ2F 2)2
(1+2−3ϕ4ϕ̄)[3] = −4g̃2s . (2.142)
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The one-loop amplitudes with an insertion of a D2ϕ4 operator are

A
(1)

(D2ϕ4)1
(1+2+3ϕ4ϕ̄)[1] = −1

2
g̃2Nss ,

A
(1)

(D2ϕ4)1
(1+2−3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(D2ϕ4)1
(1±2±3ϕ4ϕ̄)[3] = −A(1)

(D2ϕ4)1
(1±2±3ϕ4ϕ̄)[1] ,

A
(1)

(D2ϕ4)2
(1+2+3ϕ4ϕ̄)[1] =

1

3
g̃2Ns(s− t) ,

A
(1)

(D2ϕ4)2
(1+2−3ϕ4ϕ̄)[1] = 0 ,

A
(1)

(D2ϕ4)2
(1±2±3ϕ4ϕ̄)[3] = 4A

(1)

(D2ϕ4)1
(1±2±3ϕ4ϕ̄)[1] . (2.143)

The one-loop amplitudes with an insertion of a Dϕ2ψ2 operator are

A
(1)

(Dϕ2ψ2)1
(1±2±3ϕ4ϕ̄)[1] = A

(1)

(Dϕ2ψ2)1
(1±2±3ϕ4ϕ̄)[3] = 0 ,

A
(1)

(Dϕ2ψ2)2
(1+2+3ϕ4ϕ̄)[1] =

1

3
g̃2cww(Dϕ2ψ2)2

Nf (t− u) ,

A
(1)

(Dϕ2ψ2)2
(1+2−3ϕ4ϕ̄)[1] = A

(1)

(Dϕ2ψ2)2
(1±2±3ϕ4ϕ̄)[3] = 0 . (2.144)

2.B.6 Two-fermion, two-scalar amplitudes

The color structures for this process are identical to those of the four fermion case:

C[1]
ffss = T ai2i1T

a
i4i3

, C[2]
ffss = T ai4i1T

a
i2i3

. (2.145)

There is only one independent spinor prefactor (which again is not a pure phase for this

case):

S(1ψ2 ψ̄3ϕ4ϕ̄) =
〈23〉[13]

s
. (2.146)
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The tree-level amplitudes for this process are given by

A(0)(1ψp2 ψ̄r3ϕ4ϕ̄)[1] = g2 ū2/k3u1

s
δpr ,

A(0)(1ψp2 ψ̄r3ϕ4ϕ̄)[2] = 0 ,

A
(0)

(Dϕ2ψ2)1
(1ψp2 ψ̄r3ϕ4ϕ̄)[1] = −

2crp(Dϕ2ψ2)1
N(ū2/k3u1)

N2 − 1
,

A
(0)

(Dϕ2ψ2)1
(1ψp2 ψ̄r3ϕ4ϕ̄)[2] = −

2crp(Dϕ2ψ2)1
N2(ū2/k3u1)

N2 − 1
,

A
(0)

(Dϕ2ψ2)2
(1ψp2 ψ̄r3ϕ4ϕ̄)[1] = −2crp(Dϕ2ψ2)2

(ū2/k3u1) ,

A
(0)

(Dϕ2ψ2)2
(1ψp2 ψ̄r3ϕ4ϕ̄)[2] = 0 , (2.147)

with four-dimensional helicity values

A(0)(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = g2δpr ,

A(0)(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 ,

A
(0)

(Dϕ2ψ2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = −
4crp(Dϕ2ψ2)1

Ns

N2 − 1
,

A
(0)

(Dϕ2ψ2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = −
4crp(Dϕ2ψ2)1

N2s

N2 − 1
,

A
(0)

(Dϕ2ψ2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = −4crp(Dϕ2ψ2)2
s ,

A
(0)

(Dϕ2ψ2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (2.148)

The one-loop amplitudes with an insertion of the F 3 operator are

A
(1)

F 3(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] =
1

6
gg̃2Nsδpr ,

A
(1)

F 3(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (2.149)
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The one-loop amplitudes with an insertion of a ϕ2F 2 operator all evaluate to zero:

A
(1)

(ϕ2F 2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = A
(1)

(ϕ2F 2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 ,

A
(1)

(ϕ2F 2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = A
(1)

(ϕ2F 2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (2.150)

The one-loop amplitudes with an insertion of a D2ϕ4 operator are

A
(1)

(D2ϕ4)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = A
(1)

(D2ϕ4)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 ,

A
(1)

(D2ϕ4)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] =
1

9
g̃2Nss(3Xs + 8)δpr ,

A
(1)

(D2ϕ4)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (2.151)

The one-loop amplitudes with an insertion of a Dψ2ϕ2 operator are

A
(1)fin

(Dϕ2ψ2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = −g̃2s(3Xt − 3Xu − 16)crp(Dϕ2ψ2)1
,

A
(1)fin

(Dϕ2ψ2)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 16g̃2Nscrp(Dϕ2ψ2)1
,

A
(1)fin

(Dϕ2ψ2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] =
g̃2s

9N
crp(Dϕ2ψ2)2

(
8
(
9N2 +NNs − 18

)
− 27

(
N2 − 1

)
Xt + 3NNsXs − 27Xu

)
+

4

9
g̃2Nfs(3Xs + 5)cww(Dϕ2ψ2)2

δpr ,

A
(1)fin

(Dϕ2ψ2)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = −3g̃2s(Xt −Xu)c
rp
(Dϕ2ψ2)2

. (2.152)
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The one-loop amplitudes with an insertion of a ψ4 operator are

A
(1)

(ψ4)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] = −2

9
g̃2Nfs(3Xs + 2)crwwp(ψ4)1

,

A
(1)

(ψ4)1
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 ,

A
(1)

(ψ4)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[1] =
2g̃2Nfs

9N
((3Xs + 2)crwwp(ψ4)2

− 2N(3Xs + 5)crpww(ψ4)2
) ,

A
(1)

(ψ4)2
(1+
ψp

2−
ψ̄r

3ϕ4ϕ̄)[2] = 0 . (2.153)
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OG OW OHW OuW
OH�
OHD

O(1)
Hq

O(3)
Hq

O(1)
qq

O(3)
qq

Ouu OuH OH

OG /0 /0 /0 /0 /0 0 0 /0 /0

OW /0 0y 0 0 0 /0 /0 /0

OHW /0 0y 0 /0 0y 0

OuW 0y 0y 0y 0y 0y 0y 0y /0

OH�, OHD /0 0y 0y(SSg
4
2
∗) 0y 0y 0

O(1)
Hq, O

(3)
Hq 0y 0y 0y(@@yλ) /0

O(1)
qq , O(3)

qq 0y 0y(SSg
4
2) /0 /0

Ouu /0 /0 0y 0y 0y /0 /0

OuH 0y 0y 0y 0y 0y 0y 0y 0y

OH /0 0y 0y

/0 : trivial zero, no contributing two-loop diagrams

0 : zero predicted by the selection rules of Section 2.5

: only a three-particle cut is needed to evaluate γ
UV(2)
ij

: only two-particle cuts available for the relevant diagrams

0(@@yλ), etc. : the selection rules of Section 2.5 forbid the stated coupling dependence

0y : γ
UV(2)
ij vanishes if Yukawa couplings are set to zero

Table 2.9: Predictions for the zeros and coupling dependences of a representative selection
of the SMEFT two-loop anomalous-dimension matrix, γ

UV(2)
ij . The notation for the operator

labels follows that of [19–21]. The g4
2 dependence of the entry labeled 0y(SSg

4
2
∗) vanishes using

the appropriate counterterms at one loop. The operators labeling the rows are renormalized
by the operators labeling the columns.
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Chapter 3

Scattering Amplitudes and Classical

Gravitational Observables

3.1 Introduction

The direct detection of gravitational waves at LIGO/VIRGO [26, 27] has started an exciting

new age of gravitational wave astronomy. Scattering amplitudes have emerged as the latest

tool in computing the gravitational dynamics of binary systems in the perturbative regime.

In contrast to the traditional post-Newtonian expansion, which is a simultaneous expansion

in the Newton constant, G, and a relative velocity, v, relativistic scattering amplitudes can

naturally lead to results up to a fixed order in G but to all orders in velocity, known as the

post-Minkowskian (PM) expansion [37–42, 62, 179–192]. A recent highlight is the result of

Bern et al. [41, 42] for the conservative dynamics of black hole binary systems at O(G3), i.e.

the third-post-Minkowskian (3PM) order. The result points to many interesting questions,

some of which are explored in the present work.

1. The scattering angle for massive particles in Refs. [41, 42] contains a term that diverges

in the high-energy limit. Does the aforementioned term in the massive scattering angle

appear in the presence of supersymmetry? And, can we learn something by studying
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the high-energy limit of both massive and massless scattering?

2. The computation of the scattering angle in Ref. [41, 42] proceeds by first extracting a

classical potential using a non-relativistic effective field theory (EFT) [39], then calcu-

lating the scattering trajectory by solving the classical equations of motion. However,

there is a well-known alternative method: the eikonal approximation [3, 56–59, 61,

106, 120, 192–204], which calculates the classical scattering angle from suitable Fourier

transforms of quantum scattering amplitudes. Do the two methods give equivalent

results at O(G3) for the scattering of massive scalar particles?

3. Refs. [41, 42] resums the velocity dependence of the O(G3) result by first calculating

the velocity expansion to the 7th-post-Newtonian order, i.e.O(G3v10) around the static

limit, then fitting the series to an ansatz, which is shown to be unique. Can we instead

directly obtain exact velocity dependence, as is common in the calculation of relativistic

scattering amplitudes?

The answers to the above three questions are all yes, as we will show using several calculation

of two-loop, i.e. O(G3), scattering in General Relativity and supergravity. The last question

about exact velocity dependence is especially of current interest due to two reasons. First,

a direct calculation without a series expansion to high orders can be computationally more

efficient. Second, Ref. [65] raised questions about the velocity resummation of Refs. [41,

42] in the case of Einstein gravity. Since then, the correctness of the latter result has

been verified at high orders in the velocity expansion [205, 206], an alternative method

for resummation of the velocity series has been used with identical results [207], and the

unitarity cut construction of the loop integrand has been checked against direct Feynman

diagram computations [208]. Still, a direct relativistic calculation that bypasses velocity

resummation will be a valuable additional confirmation of the result, and will provide a way

to streamline future calculations at O(G3) and beyond.

Ref. [65] also raised doubts about the validity of the massless conservative scattering
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angle computed long ago by Amati, Ciafaloni and Veneziano (ACV) [61]. In this chapter

we also confirm from first principles that the conservative scattering angle as determined by

ACV [61] is indeed correct. Our confirmation follows as a by-product of studying universality

of the classical scattering angle in massless theories. Our study of massless scattering relies

on having on hand the explicit expressions for massless two-loop four-point amplitudes for

N ≥ 4 supergravity [209–212] and pure Einstein gravity [106]. The latter result makes

use of the latest advances in evaluating multiloop amplitudes based on numerical unitarity

followed by analytic reconstructions [213, 214]. Armed with the fully-evaluated amplitudes

we then follow the standard [193] and widely used (see e.g. Refs. [198–204, 215]) extractions

of the scattering angle, using both impact parameter space and partial-wave analyses.

For the case of N = 8 supergravity a recent paper [202] analyzes the eikonal phase

through O(G4) using the two- and three-loop amplitudes from Refs. [212, 216]. The same

work [202] observes that the N = 8 scattering angle matches the angle found by ACV

through O(G3) [61], despite having different matter content. Indeed, as we show here, this

is not an accident, but part of a general pattern. Our explicit calculations for the O(G3)

contributions to the classical scattering angle in N ≥ 4 and pure gravity give the identical

result as the angle found by ACV, demonstrating its universality.

Remarkably, we find that the massless scattering angle through O(G3) is independent of

the matter content for a variety of theories, implying graviton dominance in the high-energy

limit. This dominance is well known at leading eikonal order [56–60]. Ref. [217] revealed

early hints of such dominance via analysis of gravitino contributions at the next nonvanishing

order.

The study of classical gravitational scattering for massive particles in N = 8 supergrav-

ity was initiated in a beautiful paper by Caron-Huot and Zahraee [119], which we build

upon. The large set of symmetries of this theory provides important simplifications, which

make it the perfect theoretical laboratory to study various conceptual questions and test the

technology to be applied at higher orders in perturbation theory. This is familiar to how
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precision QCD practitioners have often sharpened their axes with simpler calculations in

N = 4 super-Yang–Mills theory before honing in on the beast. A lot is known about N = 8

supergravity, in particular the complete loop integrands for the quantum four-point ampli-

tude are available through five loops [10, 13, 111, 209, 218–222]. These were constructed

using the unitarity method [43–46, 223] and the different incarnations of the double copy

[48, 50, 51, 224]. These results, being valid in D-dimensions, can be used to easily obtain

massive integrands via Kaluza-Klein reduction, as we will do in this work.1

Moving on to integration, we will obtain the part of the amplitude relevant for classical

conservative dynamics using the method of regions [225]. In particular, integration in the

“soft region” produces the correct small momentum transfer expansion of the amplitude [35,

192], up to contact terms that are irrelevant for long-range classical physics at any order

in G. However, conservative classical dynamics actually arises from the “potential region”

which is a sub-region contained in the soft region [39]. Strictly speaking, the potential region

is defined in the near-static limit and produces an expansion of the Feynman integrals as

a series in small velocity. But since the velocity series can be resummed to all orders, the

resummed result will be also referred to as the amplitude evaluated in the potential region.

In addition to isolating conservative effects, evaluating in the potential region also simplifies

the integrals considerably.

Refs. [41, 42] exploits the fact that infrared (IR) divergences cancel when matching the

EFT against full theory, and circumvents the evaluation of IR divergent integrals. In this

work, all IR divergent integrals will be evaluated explicitly in dimensional regularization

(which serves as both UV and IR regulators). This will allows us to check against the

predictions from eikonal exponentiation, which expresses the divergent amplitude in an ex-

ponentiated form. Additionally, we will evaluate all integrals relativistically with full de-

pendence on velocity, without constructing and resumming a velocity series. This is made

possible by employing the method of differential equations for Feynman integrals [226–229],

1See also [191] for a recent application of KK reduction in the context of the eikonal approximation.
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with a crucial new ingredient being the use of modified boundary conditions that isolate the

contributions from the potential region. While Ref. [42] already presented a precursor of our

differential equations method as an alternative to the “expansion-resummation method”, it

was only successfully applied to a subset of the needed integrals that do not involve infrared

divergences due to “iteration” of graviton exchanges. This work will use a finer control

of boundary conditions to evaluate all integrals using differential equations. We also per-

form soft expansions prior to the construction of differential equations, resulting in dramatic

speedups in computation. Another improvement is that we transform the differential equa-

tions into Henn’s canonical form [230, 231]. In this form, the differential equations have a

simple analytic structure, and can be easily solved to higher orders in the ε expansion. (See

also [232] for advances in automated solution of generic univariate differential equations that

are solvable by iterated integrals.)

In the context of N = 8 supergravity, Ref. [119] put forward a tantalizing conjecture:

that the energy levels of a pair of black holes in such theory retain hydrogen-like degeneracies

to all orders in perturbation theory. This is tantamount to the classical black hole binary

orbits being integrable and showing no precession. Two pieces of evidence were provided

in support of this conjecture: first, the absence of precession for the full O(G2) dynamics,

which directly follows from an analog of the “no-triangle” hypothesis [233–238] for massive

scattering; and second, various all-orders-in-G calculations in the probe limit for different

charge configurations. It is known that O(G3) (or any odd power of G) corrections to the

conservative dynamics cannot yield precession [239, 240]. Instead we will use the scattering

angle at O(G3) to test this conjecture, and see that it deviates from the integrable Newtonian

result at this order. We will extract the scattering angle both from appropriate derivatives of

the “eikonal phase” and via the EFT techniques of Refs. [41, 42], finding agreement between

both methods.

Although we perform our calculations in N = 8 supergravity, we expect the techniques

here developed to be directly applicable to Einstein gravity as well. Such application is
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beyond the scope of the present work and we leave it for the future.

The rest of this chapter is organized as follows: In section 3.2 we discuss the computation

of the classical massless deflection angle using scattering amplitudes in a variety of theories

and the implications of our result to universality and graviton dominance. In section 3.3 we

discuss the computation of the massive deflection angle using the scattering of extremal black

in N = 8 supergravity as a toy model. We present new methods to calculate the classical

limit of the scattering amplitude with full velocity dependence using the modern method of

differential equations, and compare the results from the eikonal calculation to the effective

field theory methods used by Bern et al. In section 3.4 we present our conclusions. We

include two appendices: Appendix 3.A contains some technical details about the computation

of integrals in the near-static limit and Appendix 3.B collects the solution to our two-

loop differential equations. The results are provided in computer-readable format in several

ancillary files to the ArXiv submission of this work (see comments at the beginning of each

file for detailed descriptions).

3.2 Universality in the classical limit of massless grav-

itational scattering

In this section we study the scattering of massless particles at O(G3) in General Relativity

and N ≥ 4 supergravity, and calculate the classical deflection angle using eikonal methods.

In subsection 3.2.1 we discuss the classical limit of the quantum scattering amplitude. In

subsection 3.2.2 we discuss how to compute the classical deflection angle via eikonal methods

in impact parameter space. In subsection 3.2.3 we use partial wave methods to extract the

deflection angle from the scattering phase shifts.
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3.2.1 The classical limit of the amplitude

We are interested in extracting the contributions to the conservative classical scattering

angle from the two-loop four-point scattering amplitudes of Refs. [106, 209–212]. Four-point

scattering amplitudes depend on the kinematic invariants s and t = −q2, which in the center

of mass frame correspond to the squared total energy and squared four-momentum transfer,

respectively. We consider the amplitude in the physical region s > 0, t < 0, u = −s− t < 0

(using a mostly-minus sign convention for the metric), commonly known as the s-channel.

The contributions in the amplitude relevant for the classical angle corresponds to the large

angular momentum limit, which for massless particles is J ∼ √s b � 1, where b denotes

the usual impact parameter. In the absence of any other kinematic scales such as masses in

the momentum-space scattering amplitude, the classical limit is equivalent to the Regge or

high-energy small-angle limit, s/q2 � 1. It is straightforward to argue that the singularity

structure of massless scattering amplitudes implies that only even loop orders can give rise

to classical contributions (see e.g. Refs. [61, 202] for a detailed argument). At one loop,

in particular, this is directly tied to the fact that no term behaves as 1/q which would be

required to contribute to the classical deflection angle.

Following Ref. [61], we consider external graviton states. For simplicity we focus on

the configuration where the incoming and outgoing gravitons in the s-channel have identical

helicity; the situation where the incoming and outgoing gravitons have opposite helicity gives

the same final classical scattering angle. We extract the classical scattering angle from the
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Regge limit of the renormalized scattering amplitudes, which take the following form,

M(0)(s, q2) = = K8πGs

[
s

q2
+ 1

]
,

M(1)(s, q2) = = 4KG2s2rΓ

(
µ̄2

q2

)ε [
−2πi

ε

s

q2
+

1

ε
(2L+ 2− 2πi) + F (1)

]
, (3.1)

M(2)(s, q2) = = 2KG3s3 r
2
Γ

π

(
µ̄2

q2

)2ε [
−2π2

ε2
s

q2
− 2πi

ε2
(2L+ 2− iπ)− 2πi

ε
F (1) + F (2)

]
,

where we dropped subdominant terms ofO(q2/s) in the loop amplitudes, and where K is a lo-

cal factor depending on the external states, µ̄2 ≡ 4πe−γEµ2 is a rescaled renormalization scale

and rΓ ≡ eεγEΓ(1 + ε)Γ(1− ε)2/Γ(1− 2ε). For convenience we introduced L = log(s/q2), and

the finite remainders F (i), which depend on the theory and are implicitly defined in Eq. (3.1).

This result is given in the conventional dimensional regularization scheme, where all internal

states and momenta are analytically continued into D = 4−2ε dimensions. For the purposes

of this work we only need F (1) to O(ε) and F (2) to O(ε0). The two-loop infrared singular

part is related to the square of the one-loop amplitude via [M(1)]2/2M(0) which follows from

the fact that to all loop orders the infrared singularity is given by an exponential of the ratio

of the one-loop and tree amplitudes [210, 211, 241, 242].

The pure gravity one-loop amplitudes were originally computed in Ref. [243]. These were

recomputed in an intermediate step [244] of the two-loop analysis of Ref. [104, 105]. This

is matched by the expressions in Ref. [106] that include the O(ε) contributions. The latter

contributions are needed when extracting the two-loop finite remainders in the presence of
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infrared singularities, with the result,

F
(1)
GR = 2L2 + 2iπL+ 4π2 − 87

10
L+

841

90

+ ε

[
−2

3
L3 − π2L+ 6ζ3 +

47

20
L2 − 3π2 − 6913

225
L

+
35597

1200
+ iπ

(
−L2 +

π2

3
+ 10L+

1957

360

)]
, (3.2)

where F
(1)
GR is the pure gravity result for F (1) in Eq. (3.1). TheN ≥ 4 supergravity amplitudes

can be found in Ref. [212, 243, 245] in a scheme that preserves supersymmetry. For these

cases, the Regge limit of the O(ε0) contributions to the finite remainders can be read off

from Eq. (4.6) of Ref. [199].

Ref. [106] provides the complete Einstein-gravity amplitude needed for our analysis, in-

cluding subdivergence subtractions [104, 105, 246]. We note that these results pass highly

nontrivial checks. The amplitude yields the expected IR pole structure [241, 242] and the

net ultraviolet poles cancel against the known counterterms [104, 105, 247, 248]. Further-

more the amplitude only has the poles in the Mandelstam variables s, t and u dictated by

factorization. The amplitudes have also been validated against results in the literature and

independent computations. While not directly relevant for the classical scattering angle, the

results of Ref. [106] also match the previously computed [244] identical-helicity amplitude

(in an all outgoing momentum convention), corresponding to the case that both incoming

gravitons flip helicity.

Starting from the full four-graviton two-loop amplitude in pure Einstein gravity [106],

we extract the finite remainder in the Regge limit giving the result,

F
(2)
GR =− 2π2L2 + 4π2L− π4

90
+

13403π2

675
− 13049

2160

+ iπ

[
4

3
L3 − 47

10
L2 +

26159

450
L− 20ζ3 +

2621π2

210
− 11221

375

]
. (3.3)
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The constant parts are scheme dependent and in any case they do not affect the scattering

angle. A detailed discussion of scheme dependence and its effects on the final angle, in the

context of IR regulators in N = 8 supergravity is found in Section 6 of Ref. [202].

The two-loop amplitudes for N ≥ 4 supergravity are given in Ref. [212]. The N = 8

supergravity result is the simplest of these and was first given in Ref. [210, 211] by combining

the integrand of Ref. [209] with the integrals of Ref. [249, 250]. Explicit results for the finite

remainders in the Regge limit are found in Eqs. (4.13)–(4.16) of Ref. [199]. Note that the

remainders in Ref. [199] are normalized with an extra factor of q2s relative to ours.

So far we have presented the classical scattering amplitudes in perturbation theory, which

assumes Gs � 1. Ultimately, we are interested in the limit Gs � 1, with Gs/J � 1

corresponding to the classical post-Minkowskian expansion used in classical general relativ-

ity [182–185, 187, 188]. Implicitly this assumes that the relevant parts of the perturbative

series have been resummed. Standard ways to do so use eikonal or partial wave methods

which we utilize in the following.

3.2.2 Scattering angle from eikonal phase

The basic observation that allows eikonal resummation is that, in the classical limit, certain

classes of multiloop Feynman diagrams at all orders in perturbation theory are given by

momentum space convolutions of lower order diagrams. A Fourier transform to impact

parameter space can be used to diagonalize the convolutions, and the result is such the

amplitude exponentiates. For the moment let us just direct the reader to the many reviews

and references [61, 193, 198, 200–203], where this is described in detail, and delay a detailed

discussion of this procedure to the next section. Following such procedure, we obtain the

eikonal phase by taking the transverse Fourier transform of the amplitude in the classical

limit,

− i
(
ei2δ(s,be) − 1

)
=

∫
µ2εd2−2εq

(2π)2−2ε
ei~q·

~be
M(s, q2)

2sK , (3.4)
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Figure 3.1: The scattering configuration showing the impact parameter, b, eikonal impact
parameter, be, and the scattering angle, χ.

where δ(s, be) is the eikonal phase, which we expand perturbatively in Newton’s constant

(δ = δ(0) + δ(1) + δ(2) + · · · ), ~q is the (2− 2ε)-dimensional vector in the scattering plane such

that ~q 2 = q2 and be ≡ |~be| is the eikonal impact parameter shown in Fig. 3.1. The basic

formula needed for calculating the Fourier transform is given in Eq. (2.11) of Ref. [204].

The full phase shift is generically complex, and be readily obtained from Eqs. (3.1), (3.2)

and (3.3). Its imaginary part at a given order captures inelastic (e.g., radiation) effects.

Here we are only interested in the conservative part, as in Ref. [61] so we do not display

it in the following and focus only on the elastic phase. However, these imaginary parts are

needed to extract the elastic contributions at higher orders because of the exponentiation.

The Fourier transform of polynomial terms corresponds to short-range contact interactions,

which are not relevant for the problem of long-range scattering.

The universal O(G) result for the eikonal phase extracted from the tree amplitude is

δ(0) =
Gs

2

(
µ̄2b̃e

2
)ε [
−1

ε
− επ

2

12
− 1

3
ε2ζ3 +O(ε3)

]
, (3.5)

where we introduced b̃e = eγEbe/2 for convenience.

As explained above, the pieces relevant for the one-loop scattering angle are given by the
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real part of the nonanalytic part,

ReF (1) = −N − 4

2
L2 + cL+ · · · , (3.6)

where N denotes the amount of supersymmetry and c is a constant that takes on the values

0,−1,−87/10 for N > 4, N = 4 and pure gravity respectively. The leading logarithms

(L2) arise from backward-scattering diagrams [199] and the subleading logarithm (L) from

bubble integrals. We conclude that they are nonuniversal and depend on the specific theory.

As mentioned above, the O(G2) one-loop phase can contribute to the angle only at the

quantum level, so this nonuniversality does not affect the classical scattering angle. These

contributions, including the O(ε) parts, are however crucial for extracting the O(G3) classical

pieces because of cross terms with infrared singularities.

The O(G2) phase extracted from the one-loop amplitude is

Re δ(1) =
2G2s

πb2
e

(
µ̄2b̃e

2
)2ε
[

1

ε
− (N − 6)

2
log(sb̃e

2
) +

c+ 2

2
+O(ε)

]
, (3.7)

where c is the same theory-dependent constant appearing in Eq. (3.6). Additionally, there

is an imaginary part at O(ε), needed to obtain the real part of δ(2), which is not displayed

here but is readily obtained from the Fourier transform of the full amplitudes in Eqs. (3.1)

and (3.2) as well from Refs. [104, 105, 243, 244].

The relevant terms at two loops arise from the nonanalytic terms in the imaginary part

of the remainder at one loop and from the real part at two loops

ImF (1) = 2πL− επL2 + · · · ,

ReF (2) = −2π2L2 + 4π2L+ · · · . (3.8)

where the dots indicate non-universal terms which do not contribute to the phase at O(ε0).

This includes non-universal εL terms in ImF (1) that could naively contribute but ultimately
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cancels against the iteration −2iδ(0)δ(1) coming from expanding the exponential.

The O(G3) terms in the phase can thus be extracted from the two-loop amplitude after

subtracting the iteration from the leading and subleading phases in the exponential (3.4).

The leading eikonal exponentiation also predicts a universal O(ε) contribution to the two-

loop amplitude which needs to be taken into account. (See the discussion in Ref. [202] near

Eq. (3.7)). We obtain the universal result,

Re δ(2) =
2G3s2

b2
e

(
µ̄2b̃2

e

)3ε

+O(ε) , (3.9)

valid forN ≥ 4 supergravity as well as pure Einstein gravity. We are not displaying the imag-

inary parts since they are not universal and do not contribute to the conservative dynamics

at this order.

The classical scattering angle is given in terms of the eikonal phase via the usual stationary-

phase argument (see e.g. [56–60]),

sin
1

2
χ(s, be) = − 2√

s

∂

∂be

δ(s, be) . (3.10)

Applying this formula to Eq. (3.9), which holds for all theories evaluated here, we obtain the

universal result

sin
1

2
χ(s, be) =

2G
√
s

be

+
(2G
√
s)3

b3
e

, (3.11)

matching the ACV pure gravity angle given in Eq. (5.28) in Ref. [61], as well as the recently

obtained angle in N = 8 supergravity [202]. The scheme dependence cancels, as expected.

The result above is written in terms of the symmetric impact parameter, ~be which appears

naturally in the eikonal formula. This points in the direction of the momentum transfer

~q, while the more familiar impact parameter ~b is perpendicular to the incoming momenta,

as shown in Fig. 3.1. (See also Ref. [215].) The relation between their magnitudes is b =

be cos(χ/2). Rewriting the universal scattering angle in terms of the usual impact parameter
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b gives,

sin
1

2
χ(s, b) =

2G
√
s

b
+

1

2

(2G
√
s)3

b3
. (3.12)

We note that the quantum corrections to the scattering angle do not display a corresponding

universality, analogous to previously observed nonuniversal spin dependence in quantum

corrections [251–254].

3.2.3 Scattering angle from partial-wave expansion

Alternatively, we can extract the scattering angle from the partial-wave expansion of the

amplitude (see e.g. Ref. [65])

M =
2dπ

d−2
2

s
d−4

2 Γ
(
d−2

2

)∑
`

(`+ 1)d−4(2`+ d− 3) a`(s) C̃`(x) (3.13)

where x = cosχ = 1 + 2t/s and the C
1−2ε

2
` (x) are Gegenbauer polynomials (normalized to

take unit value at x = 1), which reduce to the more familiar Legendre polynomials when

ε→ 0. Using the orthogonality properties of the Gegenbauer polynomials

∫ 1

−1

(1− x2)
d−4

2 C̃`(x) C̃`′(x) = δ``′
2d−3Γ

(
d−2

2

)2

(`+ 1)d−4(2`+ d− 3)
(3.14)

the partial waves are given by

a`(s) =
(16πµ2/s)ε

Γ(1− ε)

∫ 1

−1

dx (1− x2)−εC
1−2ε

2
` (x)

M(s, x)

16πK . (3.15)

If we ignore inelastic contributions, unitarity dictates that the partial waves satisfy the

relation Im(a`) = |a`|2, so they can be parametrized in terms of phase shifts as

a`(s) = −i
(
ei2δ`(s) − 1

)
, (3.16)
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Once again a stationary-phase argument [193] gives the scattering angle as

1

2
χ(s, `) = −∂δ`(s)

∂`
. (3.17)

Using this approach we find the phase shifts,

δ
(0)
` (s) =

Gs

2

(
µ̄2J̃2

s

)ε[
−1

ε
− 1

3J2
+O(ε, J−4)

]
,

Re δ
(1)
` (s) =

G2s2

2πJ2

(
µ̄2J̃2

s

)2ε [
1

ε
− (N − 6)

2
log(J̃2) +

c+ 2

2
+O(ε, J−2)

]
,

Re δ
(2)
` (s) =

G3s3

3J2

(
µ̄2J̃2

s

)3ε

+O(ε, J−4) , (3.18)

where J̃2 = e2γEJ2 and J2 denotes the Casimir of the rotation group, i.e., J2 :≡ `(`+1−2ε),

which has a well defined classical limit. The classical deflection angle is then

1

2
χ(s, J) =

Gs

J
+

2

3

G3s3

J3
, (3.19)

written in terms of the classical variables, or, equivalently,

sin
1

2
χ(s, J) =

Gs

J
+

1

2

G3s3

J3
. (3.20)

Using the relation between the angular momentum and the impact parameters

J =

√
s

2
b =

√
s

2
be cos

1

2
χ , (3.21)

we find that Eq. (3.20) reproduces Eqs. (3.11) and (3.12).

We can directly compare our results to Damour’s conjectured angle given in Eq. (5.37)

of Ref. [65],

sin
1

2
χD(s, J) =

Gs

J
− 3

4

G3s3

J3
. (3.22)
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As noted in Ref. [65], this disagrees with the angle obtained by ACV, which is matched by

Eq. (3.20). As emphasized by Damour [65], because the sign of the G3 term in Eq. (3.22) is

opposite to that of Eq. (3.20) the disagreement between the two formulas is robust.

Here we focused on the scattering of identical-helicity gravitons in the initial state. We

have repeated the calculation for the case of opposite-helicity gravitons with the same re-

sults for the classical scattering angle. Furthermore, we expect the result to be identical

for any massless external states. Indeed, for the supersymmetric cases that we analyzed,

supersymmetry identities [255, 256] relate graviton scattering to scattering of other massless

states.

3.3 Extremal black hole scattering at O(G3): graviton

dominance, eikonal exponentiation, and differen-

tial equations

In this section we move on to study massive scattering of extremal black holes in N = 8

supergravity. In subsection 3.3.1 we setup our conventions, we review some basic features

of extremal black holes in N = 8 supergravity, and discuss the different limits that will

be used in this work. In subsection 3.3.2 we construct the tree-level four-point amplitude,

as well as the one- and two-loop massive integrands from the known massless integrands

via Kaluza-Klein reduction and truncation to the appropriate sector. In subsection 3.3.3

we briefly discuss the integration regions involved in our problem, and introduce our new

integration method based on differential equations, which is applied to calculate the full

one- and two-loop amplitudes in the potential region. In subsection 3.3.4 we assemble the

scattering amplitudes. In subsection 3.3.5 we review the eikonal method, and use it to

calculate the order Gn≤3 eikonal phase, while checking exponentiation. Then we use the

eikonal phase to calculate the gravitational scattering angle and we compare its high-energy
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limit with the result of Refs. [41, 42] in Einstein gravity. In subsection 3.3.6 we cross check

our results via the EFT method of Ref. [39], and we comment on the advantages of this

approach. We calculate the conservative Hamiltonian by matching, and find the scattering

angle by solving the classical equations of motion.

3.3.1 Kinematics and setup

We model the dynamics of two half-BPS black holes in N = 8 supergravity [257, 258]

by considering the scattering of two massive point particles in half-BPS multiplets, which

interact via the massless supergravity multiplet. We use an all-outgoing convention for the

momenta, and the masses of the particles are

p2
1 = p2

4 = m2
1 , p2

2 = p2
3 = m2

2 . (3.23)

We will parametrize the scattering amplitudes in terms of the usual invariants s = (p1 +p2)2,

t = (p1 + p4)2 = q2 and u = (p1 + p3)2, where we introduced the four-momentum transfer

q = p1 + p4 for later convenience. As is common in the study of scattering amplitudes we

will cross the incoming particles to the final state, so that all particles are outgoing. The

physical scattering configuration corresponds to the region s > (m1 + m2)2, t = q2 < 0 and

u < 0.2

The half-BPS multiplet in N = 8 supergravity contains massive states with spin 0 ≤

S ≤ 2. In this work we will focus on particular scalar components, φ and φ̄, with S = 0

and leave the study of spinning states for later work. The interactions between different

half-BPS particles are mediated by the massless supergraviton multiplet. In addition to

gravitons the N = 8 supergraviton multiplet contains 28 (vector) graviphotons, AIJ , and 70

scalars φIJKL, as well as fermions which will not be important for our discussion. Black holes

in N = 8 supergravity interact with the graviphotons and scalars with charges CIJ given by

2We use a mostly minus metric.
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an 8×8 matrix. Here I, J, . . . are SU(8) R-symmetry indices and the vectors a scalars are in

SU(8) representations of the appropriate dimension. We will not print the Lagrangian here,

because it is lengthy. For our purposes, however, all scattering amplitudes could be built

from the three-particle amplitudes:

M tree
3 (1φ, 2φ̄, 3h) = 16πG (ε3 · p1)2 , (3.24)

M tree
3 (1φ, 2φ̄, 3AIJ ) = 8πG

√
2 (ε3 · p1)CIJ , (3.25)

M tree
3 (1φ, 2φ̄, 3φIJKL) = 16πG (CIJ CKL − CIK CJL + CILCJK) , (3.26)

using factorization and unitarity, as done in Ref. [119]. Here ε are polarization vectors.

In general the charges, CIJ are complex and the black holes are dyonic. The charges

are also central charges of the supersymmetry algebra, and the BPS condition requires their

magnitude to be equal to the mass

CIKCKJ = m2 δIJ . (3.27)

When studying a pair of black holes we need only consider the relative phases in their

BPS charges. These are parameterized by three angles along which the charges might be

misaligned

C1 = m1

 0 14×4

−14×4 0

 , C1 = m2

 0 Φ

−Φ 0

 , (3.28)

with Φ = diag(eiφ1 , eiφ2 , eiφ3 , eiφ4) and
∑

i φi = 0. For the two- and one-angle cases, however,

there always exist a duality frame where the magnetic charges are zero. We point the reader

to Ref. [119] for a more detailed discussion of the charges.

Although we will construct the full (quantum) loop integrands for the scattering am-

plitudes of these black holes, we are ultimately interested in their classical conservative

dynamics. In the classical limit of hyperbolic scattering, the orbital angular momentum of
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the black hole binary system is much larger than ~. Thus, the classical limit of the scatter-

ing amplitudes simply corresponds to the large angular momentum limit J � 1 (in natural

units), which establishes a hierarchy of scales

s, |u|,m2
1,m

2
2 ∼ J2|t| � |t| = |q|2 . (3.29)

As a result, we are interested in calculating scattering amplitudes in the limit of small q, or

more precisely as an expansion in small q. From a heuristic calculation in the Newtonian

limit, the leading-order scattering angle θ is of the order Gm/(vr) ∼ Gmq/v, where m and

r are the total mass and relative transverse distance of the system. So for generic values of

v, the quantity Gmq is of order θ, and for each additional order of G, we need to expand

the amplitude up to one additional power of q to obtain corrections to the scattering angle

of order θL, where L is the loop order. Terms that are more subleading in q at the same

power of G are quantum corrections that vanish classically. In summary, at O(Gn), we only

need to expand the scattering amplitude of massive particles up to O(|q|n−2) in the small-q

expansion [35], in order to extract the classical dynamics. In practice this will imply, among

other things, that when we calculate an amplitude some loop integrals can be discarded

before any calculation, if they are beyond the classical order.

Furthermore, we will only be interested in the conservative dynamics, so we will restrict

the components of the momentum transfer q = (q0, q) to scale as

|q| � q0 , (3.30)

so that the graviton multiplet mediates instantaneous long-range interactions. Note that the

latter expansion involves an additional small parameter, a velocity |v| = q0/|q| � 1, on top

of the classical limit J � 1. We will refer to this expansion as the near-static limit, and we

delay a more detailed discussion to subsection 3.3.3.
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Finally, in comparing our results to Einstein gravity, it will be useful to take the high-

energy or ultra-relativistic limit in which the black holes are highly boosted. This simply

makes the hierarchy of scales in Eq. (3.29) more strict

s, |u| � m2
1,m

2
2 ∼ J2|t| � |t| . (3.31)

In this context, it will be useful to introduce the variable

σ = cosh η =
s−m2

1 −m2
2

2m1m2

=
p1 · p2

m1m2

, (3.32)

which is simply the relativistic factor of particle 1 in the rest-frame of particle 2 (or vice

versa). In terms of this variable the high-energy limit simply corresponds to taking σ � 1.

Note that in our setup it is important that we take the classical limit first, before taking

the high-energy limit, so that J � σ. This is equivalent to having the hierarchy of scales

in Eq. (3.31). The opposite limit, J � σ, is closely connected to the regime of massless

high-energy scattering considered in Ref. [3].

In summary, we will be interested in the three limits

Generic classical limit: J � 1 , (3.33)

near-static classical limit: J � 1, |v| � 1 , (3.34)

high-energy classical limit: J � 1 then σ � 1 , (3.35)

expressed here in terms of their corresponding dimensionless expansion parameters.

3.3.2 Integrands from Kaluza-Klein reduction

In this subsection we construct the tree amplitude and loop integrands for the scattering of

the two black holes via Kaluza-Klein (KK) reduction. Ref. [119] studied the case of three-

120



angle misalignment in the BPS charges. While such case is the most rich and interesting,

we will focus on the single-angle misalignment case, which is the one we can access via KK

reduction from the existing integrands. Let us explain this in more detail: we consider Type

IIA supergravity in D = 10 and perform KK reduction on a six-torus of radius R. When

dimensionally reducing the massless integrand we will identify the massive black holes with

KK gravitons, with ten-dimensional momenta ki and masses arising from the components

of momenta outside of D = 4. The supersymmetry algebra in higher dimensions, upon

reduction, identifies the extra-dimensional momenta as BPS charges (see e.g. Appendix B

of Ref. [119]). There is only one relative angle between the extra dimensional momenta, so

the dimensional reduction only provides the result for one-angle misalignment. Because of

this, one might perform a rotation to set the momenta along all but two directions to zero

and effectively reduce from D = 6. Henceforth, for simplicity, we shall then pretend we are

reducing from six dimensions. Then we can write the momenta of the four particles as

k1 =


p1

0

m1

 , k2 =


p2

m2 sinφ

m2 cosφ

 , k3 =


p3

−m2 sinφ

−m2 cosφ

 , k4 =


p4

0

−m1

 .

(3.36)

The compactness of the extra dimensions requires the extra dimensional momenta to be

discrete and of order ∼ R−1. We will choose the masses m1 and m2 to correspond to the

two lightest KK modes, φ1, φ2. Depending on the momentum in the extra dimensions the

massless six-dimensional scalar, φ, will reduce to either of these.

We will see momentarily that the massless integrands for maximal supergravity, have

two simplifying features which imply that we just need a few basic rules to perform the KK

reduction. First, the loop integrands are proportional to the tree amplitude to all orders.

This follows from the supersymmetry Ward identity [209], and implies that the polarization

dependence is trivial and factors out of the integrand. Second, through two loops, the
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34

(a)
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34

(b)
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34

(c)

Figure 3.2: Example of KK reduction with massless exchange. The diagram in (a) reduces
to the pair of diagrams in (b) and (c). The thin and thick lines denote massless and massive
momenta respectively.

integrands are composed only of scalar loop integrals, so we only need to understand how to

KK reduce propagators.

Let us first discuss the rules for reducing the massless loop integrand. The integration

over loop momentum reduces as

d6` −→ 1

(2πR)2

∑
`4,`5∈2πRZ

d4` , (3.37)

where the factors of (2πR)2 simply relate the D = 6 and D = 4 Newton’s constant G =

G6D(2πR)−2, and the sum is over all possible ways to assign a KK momentum to each

leg in a given diagram, subject to the constraint of momentum conservation in the extra

dimensions. Since we are choosing our external legs to be two particular KK modes, this

means in practice that we should sum over all the ways the external massive particles could

route inside the diagram. We are interested in the diagrams that feature the exchange of

massless particle in the graviton multiplet, so we will truncate the full massive integrand to

this sector. We delay a discussion about the consistency of this truncation to the end of this

subsection. The truncation to massless exchange, together with momentum conservation

imposes an additional rule when routing the external particles through the diagram, namely

that lines corresponding to different KK modes cannot cross at a three-point vertex.

As an example, consider the massless non-planar double-box integral in Fig. 3.2(a). It is

easy to see that there are two alternative ways to route the mass/extra-dimensional momenta

through the diagram, shown in Fig. 3.2(b) and (c). So this massless integral will yield two
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contributions to the massive integrand. In contrast, there are also examples in which there

there is no way to route the masses. We will find several of these when constructing the two

loop integrand.

Finally, using the identifications in Eq. (3.36) we find that the reduction of the external

invariants is given by the following simple replacement rules

s→ s− |m1 +m2e
iφ|2 , t→ t , u→ u− |m1 −m2e

iφ|2 , (3.38)

and similarly for loop momenta

(`+ ki)
2 → (`+ pi)

2 −m2
i , (3.39)

which follows from the orthogonality of the four-dimensional loop momentum and the extra-

dimensional components of the external momentum.

Tree level amplitude

As a warmup let’s start with the tree level amplitude. We will write it as

M tree
4 (1, 2, 3, 4) = 8πG6D K

stu
, (3.40)

where K is the four point matrix element of the supersymmetric t8t8R
4 operator (see e.g.

Ref. [259], Eq. (9.A.18)). In four dimensions K = [3 4]4 / 〈1 2〉4 δ(16)(Q), where Q is the on-

shell super-momentum [260]. For simplicity we choose the incoming and outgoing states to be

complex conjugate scalars φ and φ̄ in the graviton multiplet. The corresponding component

of K is simply s4 and the D-dimensional scalar amplitude is

M tree
4 (1φ, 2φ, 3φ̄, 4φ̄) = 8πG6D s3

tu
. (3.41)
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1 4

32

(a) Box: III

1 4

32

(b) Non-planar box: IX

Figure 3.3: One-loop topologies.

Using our rules for dimensional reduction we find the result

M tree
4 (1φ1

, 2φ2
, 3φ̄2

, 4φ̄1
) = 8πG

(s− |m1 +m2e
iφ|2)3

t(u− |m1 −m2eiφ|2)
. (3.42)

Although this is the full amplitude we want to restrict to the massless exchange sector. We

can partial fraction (3.42) as

M tree
4 (1φ1

, 2φ2
, 3φ̄2

, 4φ̄1
) = 8πG

(s− |m1 +m2e
iφ|2)2

−t + massive exchange , (3.43)

which using s − |m1 + m2e
iφ|2 = 2m1m2(cosh η − cosφ), where η is the relative rapidity,

η = arcosh(σ), agrees with Eq. (3.18) of Ref. [119], restricted to the one-angle case.

One-loop integrand

The one-loop massless integrand was constructed long ago in Refs. [209, 218]

M1-loop
4 (1, 2, 3, 4) = −i8πG6DstuM tree

4 (1, 2, 3, 4)
(
I

(1)
1234 + I

(1)
1342 + I

(1)
1423 ) , (3.44)

where all the integrals are one-loop boxes with the specified ordering of the external legs.

Using the reduction rules described above

stuM tree
4 (1φ, 2φ, 3φ̄, 4φ̄)→ 8πG(s− |m1 +m2e

iφ|2)4 , (3.45)
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1 4

32

(a) Double box: I
(2) P
1234

1 4

32

(b) Non-planar double-box: I
(2) NP
1234

Figure 3.4: Massless two-loop topologies.

and KK reduction maps the massless integrals to massive integrals as follows

I
(1)
1234 → III , I

(1)
1342 → 0 , I

(1)
1423 → IX , (3.46)

where the integrals are shown in Fig. 3.3, and 0 indicates that there is no way to route the

momenta so the reduction yields zero. Putting all together we find the one-loop integrand

M1-loop
4 (1φ1

, 2φ2
, 3φ̄2

, 4φ̄1
) = −i(8πG)2 (s− |m1 +m2e

iφ|2)4
(
III + IX ) , (3.47)

where we have truncated to the massless exchange sector. This matches the result in

Eqs. (3.33) and (3.34) of Ref. [119].

Two-loop integrand

The massless two loop integrand was constructed in Ref. [209] using the unitarity method.

It takes the remarkably simple form

M2-loop
4 (1, 2, 3, 4) = −(8πG6D)2stuM tree

4 (1, 2, 3, 4)

×
(
s2 I

(2) P
1234 + s2 I

(2) P
3421 + s2 I

(2) NP
1234 + s2 I

(2) NP
3421 + cyclic

)
,

(3.48)

where “ + cyclic” means adding the two other cyclic permutations of (2, 3, 4) and the inte-

grals, which are all scalar, are shown in Fig. 3.4. It is easy to find how the integrals map
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under the dimensional reduction. The planar integrals reduce as follows

I
(2) P
1234 → IIII , I

(2) P
1342 → 0 , I

(2) P
1423 → IH + I + I ,

I
(2) P
3421 → 0 , I

(2) P
4231 → IIII , I

(2) P
2341 → IH + I + I ,

(3.49)

where IIII is the ladder or double-box integral in Fig. 3.5(a), IH is the H integral in Fig. 3.6(a),

I , I are the self-energy diagrams in Fig. 3.7(a-b), and the integrals with a bar denote their

crossed versions, obtained by exchanging p2 ↔ −p3, which are also shown in the same figures.

It is interesting to note that the H and self-energy diagrams come from the dimensional

reduction of the same massless diagrams. The non-planar integrals reduce as follows

I
(2) NP
1234 → IXI , I

(2) NP
1342 → IXI , I

(2) NP
1423 → II

Y+ II

Y,

I
(2) NP
3421 → IIX , I

(2) NP
4231 → IIX , I

(2) NP
2341 → IIY + IIY ,

(3.50)

where we will refer to IIX and IXI as non-planar double-boxes, and the rest of the integrals

are shown in Figs. 3.5 and 3.6. The KK reduced two-loop integrand is then given by

M2-loop
4 (1φ1

, 2φ2
, 3φ̄2

, 4φ̄1
) = (8πG)3(s− |m1 +m2e

iφ|2)4

×
[
(s− |m1 +m2e

iφ|2)2(IIII + IXI + IIX) + (u− |m1 −m2e
iφ|2)2(IIII + IXI + IIX)

+ t2(IH + I + I + IIY + II

Y+ IH + I + I + IIY + II

Y)

]
. (3.51)

Comments on the consistency of the integrands

Finally, let us make some brief comments about the consistency of the integrands we have

constructed in this subsection. We have focused on the sector of the theory where KK

modes with masses m1,m2 of order R−1 exchange massless particles. This is not a consistent

truncation, however, since there is no parametric separation between the masses of the KK
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Figure 3.5: Two loop integrals that are of the “ladder” type.
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Figure 3.6: Two loop integrals that are not of the “ladder“ type.
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Figure 3.7: Two loop integrals that include a self interaction.
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modes which are all of order R−1.3 This manifests itself in various ways. For instance, the

tree amplitude in Eq. 3.42, features the exchange of massive particle of mass ∼ m1 − m2,

which is required by crossing symmetry. Similarly, at loop-level, it is known that the sum of

the box and crossed-box integrals contains a mass singularity (see e.g. [261]). Consequently,

the amplitude in Eq. (3.47) has collinear divergences in violation of the theorem of Ref. [262]

which precludes them in quantum gravity.4 All of these issues are manifestations of the

well known fact that there is no consistent quantum theory of a finite number of massive

particles coupled to maximal supergravity. In attempting to fix these problems, one is bound

to discover the tower of KK modes, which arise from a consistent massless theory in higher

dimensions. In spite of these comments, our truncated theory has a well-defined classical

Lagrangian and is a useful toy model to explore the questions we are interested in in this

work, so we will ignore all of these issues henceforth.

3.3.3 Integration via velocity differential equations

In the previous subsection we have constructed the full quantum integrand for the four-

point amplitude through two loops. In this subsection we will calculate the integrals using

the method of regions [225, 263] to extract the contributions which are relevant for the

conservative dynamics. After briefly reviewing the various regions involved the problem, we

introduce a new method to calculate the integrals in the potential region, using single-scale

fully relativistic differential equations with modified boundary conditions. We illustrate the

method using several examples at one and two loops.

3We thank Chia-Hsien Shen for discussions related to this point.
4This stands in contrast to Einstein gravity, whose quantum one-loop amplitude was shown in Ref. [42]

to lack collinear divergences
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Regions and power counting

Following the discussion in Ref. [42], we consider an internal graviton line with four-momentum

` = (ω, `), whose components can scale as

hard : (ω, `) ∼ (m,m) , (3.52)

soft : (ω, `) ∼ (|q|, |q|) ∼ J−1 (m|v|,m|v|) , (3.53)

potential : (ω, `) ∼ (|q||v|, |q|) ∼ J−1 (m|v|2,m|v|) , (3.54)

radiation : (ω, `) ∼ (|q||v|, |q||v|) ∼ J−1 (m|v|2,m|v|2) , (3.55)

where we take as reference scale m = m1 + m2, and each scaling defines a region. Note

that the four different regions are defined using two small parameters |q| (or J−1) and the

velocity |v|, which define the classical and non-relativistic limit respectively. Of the four

regions, only the potential region contains off-shell modes, which can be integrated out and

yield the conservative part of the dynamics. Their contributions can be captured by a non-

relativistic EFT which was introduced and put to use in Refs. [39, 41, 42], and we will utilize

in subsection 3.3.6.

The method of regions [225, 263] instructs us to expand the integrand using the scaling

corresponding to a given region, and then integrate over the whole space of loop momenta

in dimensional regularization. Our goal is to calculate the contributions from the potential

region.

Outline of the new method

Ref. [41] introduced a “non-relativistic integration” method by which one must first expand

in velocity before expanding in |q|. This produces simple integrals akin to those appearing in

NRGR [264, 265] at the cost of breaking manifest relativistic invariance in the first step. As

explained above the potential region is defined by a double expansion, and we might chose to
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expand in the opposite order, first in small |q|, and then in velocity. The expansion in small

|q| is just the expansion in the soft region where all graviton momentum components are

uniformly small (of order |q|). The result of this expansion is a power series in |q| truncated

at an appropriate order, with each term in the expansion given by fully relativistic soft

integrals with linearized matter propagators. To simplify the expressions, we will apply

the well-known method of integration-by-parts reduction [266] to these soft integrals to

rewrite them as a linear combination of master integrals. Then we will construct differential

equations [226–229] in the canonical form [230, 231] for these master integrals. The choice

of a basis of the master integrals will be an important technical point to be discussed later.

The selection of pure basis integrals is also facilitated by automated tools [267, 268].

The upside of the soft expansion is that it keeps the integrals fully relativistic, but here

we are only interested in the contributions from the potential region. Thus, in a second

step we should re-expand the integrals in the potential region where graviton momenta are

dominated by spatial components, since the potential region isolates conservative classical

effects [39, 41, 42]. After the expansion in the potential region, each term in the previous

small-q expansion would be rewritten as a Taylor series in the velocity (ratio of spatial to

time components) of external momenta. Unlike the first step, which gives the expansion in

small |q| to some finite order, in the second step the velocity expansion can be performed

to all orders by using method of differential equations for the soft master integrals. A key

observation is that we can construct differential equations for the soft integrals directly before

re-expanding in the potential region, as the re-expansion does not change the differential

equations, but changes the boundary conditions near the static limit. Thus, it suffices to

expand the soft master integrals to leading order in velocity in the potential region, to

obtain the boundary conditions that allow us to uniquely solve the differential equations and

determine the integrals to all orders in velocity.5

5The true values of the soft integrals, which will be useful for future calculations beyond conservative
classical dynamics, can be obtained by solving differential equations subject to the boundary conditions of
the “full” soft integrals near the static limit or another suitable kinematic limit.
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p̄1 − q/2 p̄1 + q/2

p̄2 + q/2 p̄2 − q/2

Figure 3.8: Kinematic setup with special variables.

Let us now explain each of these steps in more detail.

Soft expansion using special variables In order to carry out the procedure outline

above, it will be useful to parametrize the external kinematics as6

p1 = −(p̄1 − q/2) , p4 = p̄1 + q/2 , (3.56)

p2 = −(p̄2 + q/2) , p3 = p̄2 − q/2 , (3.57)

as displayed in Fig. 3.8. Note that s = (p1 + p2)2 = (p̄1 + p̄2)2 so the physical region is still

given by s > (m1 +m2)2. By construction the p̄i’s are orthogonal to the momentum transfer

q = (p1 + p4),

p2
1 − p2

4 = −2 p̄1 · q = 0 , (3.58)

p2
2 − p2

3 = 2 p̄2 · q = 0 . (3.59)

We would like expand the full topologies in the soft region, which in these variables is

characterized by the following hierarchy of scales

|`| ∼ |q| � |p̄i|,mi,
√
s , (3.60)

6To our knowledge this parameterization was introduced in [269]. Notice that in our convention all
external pµi are outgoing, but p̄i can be either incoming or outgoing.
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where ` stands for any combination of graviton momenta (`1, `2, `1± `2, · · · ), or equivalently

(p̄0
i , p̄i) ∼ m(1, 1), (3.61)

(q0 , q) ∼ (|q|, |q|), (3.62)

(`0 , `) ∼ (|q|, |q|). (3.63)

The massless graviton propagators typically take the form

1

`2
,

1

(`− q)2
, (3.64)

so they have uniform power counting |q|−2 in the small-|q| limit, without further expansion

terms. Meanwhile, the momentum of each matter propagator is the sum of an external

matter momentum p̄i ± 1
2
q and the momentum ` injected by gravitons (here ` is generally

some linear combination of one or more graviton momenta). We have to expand these matter

propagators in the soft region,

1(
`+ p̄i ± 1

2
q
)2 −m2

i

=
1

2p̄i · `
− `2 ± ` · q

(2p̄i · `)2
+ · · · . (3.65)

That is all massive propagators are replaced by “eikonal” propagators that are linear in loop

momenta. We can further define normalized external momenta,

uµ1 =
p̄µ1
m̄1

, uµ2 =
p̄µ2
m̄2

, (3.66)

with

m̄2
1 = p̄2

1 = m2
1 −

q2

4
, m̄2

2 = p̄2
2 = m2

2 −
q2

4
. (3.67)
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We can then rewrite the denominators of Eq. (3.65) by following Eq. (3.66) and factoring

out the scale associated to p̄i from the propagators,

1

2p̄i · `
=

1

(2ui · `)
√
m2
i − q2/4

=
1

2ui · `

(
1

mi

+
q2

8m3
i

+
3q4

128m5
i

+ . . .

)
, (3.68)

where the relevant kinematic factor is again expanded in small |q|. This choice of variables,

has the advantage that each order in the expansion is homogeneous in |q|, due to the absence

of products between external and graviton momenta in the numerators.

In summary, in the soft region the graviton propagators remain unexpanded, while the

matter propagators have the form 1/(2ui · `), generally raised to higher powers when we look

at terms beyond the leading order in the expansion. Thus, we can write down the following

power counting rules applicable at any loop order, before we actually carry out the expansion

in the soft region,

Graviton propagator: ∼ 1

|q|2 ,

Matter propagator: ∼ 1

|q| ,

Integration measure per loop: d4` ∼ |q|4.

(3.69)

At successively higher orders in the expansion Eq. (3.65), we encounter integrals with

propagators raised to higher powers as well as higher-degree polynomials in the numerators.

Fortunately, all such integrals can be reduced to a finite number of master integrals via

integration by parts [266] automated by the Laporta algorithm [270, 271], and we use the

FIRE6 software package [138] to perform the calculation. This allows the soft expansion

result to be expressed in terms of a small number of master integrals, whose values will be

calculated by the method of differential equations.
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Velocity differential equations for soft integrals Next we want to integrate the master

integrals, which we will do by the method of differential equations. Importantly, by virtue

of the normalization (3.66) we have

u2
1 = u2

2 = 1, u1 · q = u2 · q = 0. (3.70)

Hence, after the soft expansion, the only dimensionful scale of the integrals is q2. The

dependence on q2 of each integral can be easily fixed by dimensional analysis, and the

integrals only depend non-trivially on the following dimensionless parameter,

y = u1 · u2. (3.71)

Hence our differential equations will depend on this single variable, y, which is related to

the relativistic Lorentz factor in Eq. (3.32),

y = σ +
σ(m2

1 +m2
2) + 2m1m2

8m2
1m

2
2

q2 +O(q4). (3.72)

We give this relation to the next-to-leading order in q2 since it will be used later to convert

amplitude results in y to results in σ.

We will construct the differential equations by taking derivatives of the master integrals.

The choice of a basis master integrals is not unique; we choose a pure basis in which each

master integral has an ε expansion where each term is a generalized polylogarithm [272–274]

of uniform transcendentality. This is largely just a technical point, because at the order of ε

expansion needed, the integrals in this work do not contain any functions more complicated

than logarithms (which are a special case of generalized polylogarithms). However, this will

yield simple differential equations. A possible form of the differential operator ∂y, rewritten
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as derivatives against normalized external momenta uµi , is

d

dy
=

1

y2 − 1
(yuµ1 − uµ2)

∂

∂uµ1
. (3.73)

The original form d/dy is fine for differentiating the explicit y-dependent factors in the

normalization of the master integrals, but the RHS of Eq. (3.73) is needed to differentiate

the propagators and numerators expressed in terms of external and internal momenta. After

differentiating any of the pure integrals with respect to y, the result can be IBP-reduced

back to the basis of master integrals. We will rationalize the square root
√
y2 − 1 using the

change of variable

y =
1 + x2

2x
,
√
y2 − 1 =

1− x2

2x
, y ≥ 1, 0 < x ≤ 1, (3.74)

under which

d

dy
=

2x2

x2 − 1

d

dx
. (3.75)

In terms of these variables, the physical region in our scattering processes is given by 1 <

y <∞, i.e. 0 < x < 1.

Our differential equations will take the canonical form [230, 231]

d~f = ε
∑
i

Ai dlogαi(x)~f , (3.76)

where Ai are numerical matrices and each αi(x), called a symbol letter, is a rational functions

in x, and ε = (4 −D)/2 is the dimensional regularization parameter.7 The set of the αi is

called the symbol alphabet, in the formalism of Ref. [273] which uses “symbols” to elucidate

functional identities between generalized polylogarithms.

These differential equations can be easily solved, given appropriate boundary conditions.

7Henn’s canonical form can also be used for finite integrals without a dimensional regulator, see [14, 275].
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While we could use them to calculate the full soft integrals, we will use them to directly

extract the values of the integrals evaluated in the potential region. By expanding in the

potential region and summing the expansion to all orders, we have localized the loop in-

tegration on the poles of matter propagators. We are essentially dealing with a version of

cut integrals (see e.g. Refs. [276–281]), which satisfy the same IBP relation and differential

equations as original uncut integrals. This is the reason why the only changes are in the

boundary conditions, obtained in the near-static limit y → 1 by re-expanding the master

integrals in the potential region.

Static boundary conditions from re-expansion in the potential region We are

ready to write down the power counting of momentum components in the potential region,

in terms of a small velocity parameter v. Since we have first expanded in the soft region and

transitioned to normalized external momenta in Eq. (3.68), we will write down the power

counting for uµi instead of pµi , and for graviton momenta `µ,

uµi = (u0
i ,ui) ∼ (1, |v|), (3.77)

`µ = (ω, `) ∼ |q|(|v|, 1). (3.78)

The factor of |q| is unimportant in our two-step expansion procedure, where the integrals

are already homogeneous in q2 (i.e. proportional to a definite power of q2 without further

corrections) after the soft expansion is carried out.

Now we can expand graviton and matter propagators. Recall that graviton propagators

∼ 1/`2 are unchanged in the soft expansion. Their expansion in the potential region is

1

`2
=

1

ω2 − `2
= −

(
1

`2
+

ω2

(`2)2
+

ω4

(`2)3
+ . . .

)
. (3.79)

On the other hand, matter propagators of the form (3.68) are homogeneous in v and the
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expansion consists of a single term,

1

2ui · `
=

1

2 (u0
i ω − ui` )

. (3.80)

The power counting rules for propagators and integration measure in the potential region

are

Graviton propagator: ∼ 1, (3.81)

Matter propagator: ∼ 1

|v| , (3.82)

Integration measure: d4` ∼ |v|. (3.83)

We will only need to expand to leading order in |v|, since we only wish to obtain the value

of the integrals at one point, to supply a boundary condition.

The expanded integrals can be evaluated by residues by performing contour integration

over the graviton energies ω. Such energy integrals can be ambiguous until one applies a

proper prescription [39, 42]. Such a prescription is effectively part of the definition of the

potential region which separates it from the larger soft region. Refs. [39, 42] presented the

prescription in the absence of double poles, i.e. squared matter propagators, but we will show

in our examples that when the energy integral prescription is formulated in terms of residues,

double poles can be treated in a natural manner and cause no difficulty. As explained in

Ref. [42], this prescription generally implies that an integral in the potential region with

less than one massive propagators per loop is necessarily zero. Finally, the resulting D − 1-

dimensional integrals can be easily evaluated using traditional methods, and provide the

desired boundary conditions to solve our soft integrals in the potential region.
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One-loop integrals

Next we will illustrate the method above with some simple one-loop examples. We will eval-

uate all the box-type integrals, which appear in the one-loop N = 8 integrand in Eq. (3.47)

with scalar numerator. Adopting the convention of Ref. [282], we remove from our integrals

an overall factor of

i

(4π)2
(µ̄2)ε :=

i

(4π)2

(
eγE

4πµ2

)−ε
(3.84)

per loop, where µ is the dimensional regularization scale, which is to be restored at the end.

In other words, we will write the integration measure for each loop as dD`/(iπD/2), where

D ≡ 4− 2ε, and multiplying by a factor of Eq. (3.84) per loop in the end to recover results

defined with the more common normalization dD`/(2π)D.

Box integral The box integral with two opposite masses has been evaluated in Ref. [261]

in dimensional regularization up to order ε0. It has also been discussed in detail in Ref. [42].

As show in Fig. 3.9, a generic integral in the box topology is of the form

1

2

3 4

Figure 3.9: Top level topology at one-loop. Indices correspond to the propagators listed in
eq. (3.86).

G̃i1,i2,i3,i4 =

∫
dD` eγEε

iπD/2
1

ρ̃i11 ρ̃
i2
2 ρ̃

i3
3 ρ̃

i4
4

. (3.85)
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Where the propagator denominators are explicitly

ρ̃1 = (`− p1)2 −m2
1 , ρ̃2 = (`+ p2)2 −m2

2 , ρ̃3 = `2 , ρ̃4 = (`− q)2 . (3.86)

The crossed box integral topologies are related to the box integral by the replacement u1 →

u1, u2 → −u2.

Integration-by-parts reduction of soft integrals Using the soft power counting rules

explained in the previous subsection we see that the box integrals are O(|q|−2). Thus,

classical power counting requires expanding the integral to subleading powers. The box

propagators reduce in the soft expansion to

ρ1 = 2u1 · ` , ρ2 = −2u2 · ` , ρ3 = `2 , ρ4 = (`− q)2 , (3.87)

which upon expansion of the integral will generally appear raised to integer powers. The

numerators appearing in the expansion are polynomials in ρi, so each order in the soft

expansion is a sum of integrals of the form

Gi1,i2,i3,i4 =

∫
dD` eγEε

iπD/2
1

ρi11 ρ
i2
2 ρ

i3
3 ρ

i4
4

, (3.88)

with each such integral multiplied by a rational function of the external kinematic variables

m2
i , q

2, and y. As we already mentioned, q2 is the only dimensionful scale in such integrals.

Whenever i1 or i2 is non-positive, the integral will become scaleless and vanish in dimensional

regularization.8

Using integration-by-parts reduction, all such integrals are rewritten as linear combina-

8Physically speaking, this is because the soft expansion only captures the part of the amplitude that is
non-analytic in q2 and relevant for long-range classical physics.
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Figure 3.10: Topologies for the box master integrals.

tions of the following three master integrals9

f1 = ε(−q2)G0,0,2,1 , f2 = ε2
√
−q2G1,0,1,1 , f3 = ε2

√
y2 − 1 (−q2)G1,1,1,1 , (3.89)

whose corresponding topologies are depicted in Fig. 3.10. So all integrals given by Eq. (3.88)

span not an infinite-dimensional, but a three-dimensional vector space. The above integrals

are all proportional to (−q2)−ε times a q-independent function of the dimensionless parameter

y. The basis does not involve the other triangle integral G0,1,1,1 with a (linearized) matter

propagator on the bottom – this is because with the linearized propagator denominators

2ui · ` the two triangle integrals are identical and we may freely choose either one as part of

the basis of master integrals.

Starting from the original box integral Eq. (3.85) with ak = 1, we expand the propagators

as in Eqs. (3.65) and (3.68), and perform integration-by-parts reduction to obtain the small-q

expansion of the box integral in terms of the three master integrals in Eq. (3.89),

III =
i

4π
(µ̄2)ε

[
1

ε2m̄1m̄2

√
y2 − 1

1

(−q2)
f3

+
(m̄1 + m̄2)

εm̄2
1m̄

2
2(y − 1)

1√
−q2

f2

− (1 + 2ε) (2m̄2m̄1y + m̄2
1 + m̄2

2)

8ε2m̄3
1m̄

3
2 (y2 − 1)3/2

f3 +
(1 + 2ε) [(m̄2

1 + m̄2
2) y + 2m̄1m̄2]

8εm̄3
1m̄

3
2(y2 − 1)

f1

]
,

(3.90)

9In contrast the full box system has 10 master integrals, see e.g. Ref. [42].
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where the 1st, 2nd, and 3rd lines are of order |q|−2, |q|−1, and |q|0, respectively10. The

bubble integral f1 will be eventually set to zero because we will evaluate the integrals in the

potential region.

Differential equations for soft integrals Now we will construct differential equations

for the three pure master integrals in Eq. (3.89). The original form of the differential oper-

ator d/dy is used for differentiating the explicit y-dependent factors in Eq. (3.89), such as√
y2 − 1, and the RHS of Eq. (3.73) is used to differentiate the propagators in Eqs. (3.87)

and (3.88). After differentiating any of the three pure integrals with respect to y, the re-

sult is a sum of integrals of the form Eq. (3.88), and can be IBP-reduced back to the basis

Eq. (3.89). After IBP-reduction we use the change of variables from y to x in Eq. (3.74), to

rationalize the square roots. The resulting differential equation is

d~f

dx
= ε

A

x
~f, (3.91)

where the matrix A is explicitly given by

A =


0 0 0

0 0 0

1 0 0

 . (3.92)

This can be written in the form (3.76)

d~f = εA1 dlog(x)~f , (3.93)

so we recognize x as the only symbol letter for the integrals relevant at one loop.

10This is true up to the factors of |q| hidden in the definition of y and m̄i.
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Static boundary conditions from re-expansion in the potential region Finally, we

need to obtain the appropriate boundary conditions to solve the differential equation (3.93) in

the potential region. As explained above, we proceed by expanding the pure basis of master

integrals Eq. (3.89) in the near-static limit |v| � 1, using the rules in subsection 3.3.3. After

expanding in |v|, each order in the series consists of a sum of integrals of the form

∫
dD−1`

∫ ∞
−∞

dω
N (ω, `, u0

i ,ui)

(`2 − i0)i1
[
(`− q)2 − i0

]i2
(2u1`− 2u0

1 ω − i0)
i3 (−2u2` + 2u0

2 ω − i0)
i4
,

(3.94)

with some polynomial numerator N .

These integrals can be evaluated by performing integration over energy ω by residues. We

work in a frame where the momentum transfer qµ has no energy component, so the energy

of the two graviton lines are ω and −ω, respectively. For convenience, we can further boost

our frame so that particle 1 is at rest11 and u2 moves in z-direction

u1 = (1, 0, 0, 0) , u2 = (
√

1 + v2, 0, 0, v ) . (3.95)

The y variable defined in Eq. (3.71) is related to the above parametrization by v =
√
y2 − 1.

We symmetrize over the energy components of the two graviton lines, and rewrite Eq. (3.94)

using the transformation

∫ ∞
−∞

dω I(ω)→
∫ ∞
−∞

dω
1

2
[I(ω) + I(−ω)] . (3.96)

Then we perform the ω integral by closing the contour either in the upper half plane or

the lower half plane, and pick up contributions from poles at finite values of ω, discarding

poles at infinity, i.e. neglecting possible non-zero contributions from the arc of a semi-circle

contour whose radius tends to infinity. After the ω integral in Eq. (3.94) is carried out in this

11To be precise, particle 1 is only at rest up to O(q2), as u1 only coincides with the four-velocity of particle
1 at leading order in q.
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way, we are left with the spatial integral dD−1`, and the only denominators left are massless

quadratic propagators in three dimensions and linear propagators

1

`2 − i0 ,
1

(`− q)2 − i0 ,
1

−2`z − i0 . (3.97)

The resulting spatial integrals only depend on a single scale q 2, and are related to standard

propagator integrals.

The bubble integral f1 in Eq. (3.89) trivially vanishes in the potential region, because

there are no poles at finite values of ω and poles at infinity are discarded in our integration

prescription. Using the power counting rules in the potential region, Eqs. (3.81) to (3.83), we

can see that f2 and f3, i.e. triangle and box integrals with appropriate prefactors that ensure

a canonical form of differential equations, both start at O(v0) in the velocity expansion. For

example, f3 has a prefactor
√
y2 − 1 = v, two matter propagators giving O(1/v2), and an

integration measure of O(v), so overall f3 is of O(v0). This is not surprising, since it is well

known that integrals of unit leading singularity can have at most logarithmic singularities

in any kinematic limit. To obtain f2 and f3 evaluated in the potential region at the leading

order in v, we keep only the leading term in Eq. (3.79) for each graviton propagator, and

then use Eq. (3.96) to perform the energy integral, leaving spatial integrals

f
(p)
1

∣∣
y=1
≡ 0 , (3.98)

f
(p)
2

∣∣
y=1

= −
√
π

2
ε2
√
−q2

∫
dD−1` eγEε

π(D−1)/2

1

(`2 − i0) [(`− q)2 − i0]
, (3.99)

f
(p)
3

∣∣
y=1

=
√
πε2(−q2)

∫
dD−1` eγEε

π(D−1)/2

1

(`2 − i0)[(`− q)2 − i0]

1

(−2`z − i0)
. (3.100)

The bubble integral vanishes as the propagator does not have any energy dependence in the

potential limit. The (D−1)-dimensional integrals are calculated in Appendix 3.A and given
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in Eqs. (3.288) and (3.289). The result for the static limit is then

f
(p)
1

∣∣
y=1

= 0, (3.101)

f
(p)
2

∣∣
y=1

= −ε2(−q2)−εeγEε

√
π Γ
(

1
2
− ε
)2

Γ
(
ε+ 1

2

)
2Γ(1− 2ε)

, (3.102)

f
(p)
3

∣∣
y=1

= ε2(−q2)−εeγEε
iπ

2

Γ(−ε)2Γ(1 + ε)

Γ(−2ε)
. (3.103)

Solving the differential equation (3.93) shows that Eqs. (3.101)–(3.103) in fact are correct

to all orders in v, i.e. for any values of y ≥ 1, so they are the final expressions for the pure

basis Eq. (3.89) as evaluated in the potential regions to all orders in velocity,

f
(p)
1 = f

(p)
1

∣∣
y=1

, f
(p)
2 = f

(p)
2

∣∣
y=1

, f
(p)
3 = f

(p)
3

∣∣
y=1

. (3.104)

Looking forward to the next subsections, we will find the solutions to differential equations

to be more non-trivial for two-loop integrals.

Result Substituting the results Eqs. (3.101)–(3.103) into Eq. (3.90) and taking into account

Eqs. (3.67) and (3.72), we obtain the box integral evaluated in the potential region to all

order in velocity, given as a small-|q| expansion,

I
(p)
II =

i

(4π)2

(−q2

µ̄2

)−ε{
1

(−q2)

iπ

2m1m2

√
σ2 − 1

Γ(−ε)2Γ(1 + ε)

Γ(−2ε)

− 1√
−q2

ε(m1 +m2)

m2
1m

2
2(σ − 1)

√
π Γ
(

1
2
− ε
)2

Γ
(
ε+ 1

2

)
2Γ(1− 2ε)

− iπε (m2
1 +m2

2 + 2m1m2σ)

8m3
1m

3
2 (σ2 − 1)3/2

Γ(−ε)2Γ(1 + ε)

Γ(−2ε)

+O
(√
−q2

)}
, σ > 1 . (3.105)

Crossed box integral We end with a discussion of the crossed box integrals. As men-

tioned above, the unexpanded crossed integral is related to the box integral by the crossing
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replacement u1 → u1, u2 → −u2. Therefore, the same soft differential equations (3.93) are

satisfied by these integrals, and one only needs to be careful about the boundary conditions.

The specific choice of reference frame Eq. (3.95) is changed by crossing into

u1 = (1, 0, 0, 0) , u2 = (−
√

1 + v2, 0, 0,−v ) . (3.106)

In terms of Lorentz invariants, this is y → −y. However, our results for the box integral at

y > 1 cannot be analytically continued to negative values of y, because the energy integration

prescription produces non-analytic behavior in y. For example, when performing the energy

integration for f3 in Eq. (3.89) in the potential region, the two poles lie on the same side

of the contour when y < 0, and the contour integration gives zero. The correct result for

crossed integrals in the static limit (analogous to Eqs. (3.101)–(3.103) for the box) is

f
(p)
1

∣∣
y=−1

= 0, (3.107)

f
(p)
2

∣∣
y=−1

= −ε2(−q2)−εeγEε

√
π Γ
(

1
2
− ε
)2

Γ
(
ε+ 1

2

)
2Γ(1− 2ε)

, (3.108)

f
(p)
3

∣∣
y=−1

= 0 . (3.109)

Again, the above equations are derived from the static limit but are actually valid to all

orders in velocity, because the velocity differential equations have trivial solutions at one

loop.

Result To obtain the small-|q| expansion of the crossed box, we also need to make the

y → −y replacement in the coefficients of fi master integrals in Eq. (3.90). The end result
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Figure 3.11: III topology. Indices correspond to the propagators listed in eq. (3.112).

for the small-|q| expansion of the crossed box integral is

I
(p)
X =

i

(4π)2

(−q2

µ̄2

)−ε{
1√
−q2

ε(m1 +m2)

m2
1m

2
2(σ + 1)

√
π Γ
(

1
2
− ε
)2

Γ
(
ε+ 1

2

)
2Γ(1− 2ε)

+O
(√
−q2

)}
, σ > 1 . (3.110)

Two-loop integrals

Next we will evaluate the two-loop integrals needed for the two-loop integrand in Eq. (3.51).

A simple application of the soft power-counting rules in Eq. (3.69) reveals that all the ladder-

type integrals in the second line of Eq. (3.51) contribute in the classical limit with leading

power O(q−2) so they need to be expanded to subleading powers. On the other hand, of the

integrals in the third line of Eq. (3.51), only the H and H integrals at leading power survive

the (q2)2 suppression of the numerator, and the rest do not contribute in the classical limit.12

We will describe in detail the computation of the double-box (III) and H-type integrals,

and present results for the rest of the integrals. As usual we will strip from our integrals a

factor of (3.84) per loop in intermediate steps, to be restored at the end.

12The “mushroom” integrals I and I vanish identically when evaluated in the potential region [41, 42],
so cannot contribute even without the (q2)2 suppression from the integrand numerator.
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Double-box (III) We first consider generic integrals of the form

G̃i1,i2,...,i9 =

∫
dD`1 e

γEε

iπD/2

∫
dD`2 e

γEε

iπD/2
1

ρ̃i11 ρ̃
i2
2 · · · ρ̃i99

. (3.111)

Where the propagators are

ρ̃1 = (`1 − p1)2 −m2
1 , ρ̃2 = (`1 + p2)2 −m2

2 , ρ̃3 = (`2 − p4)2 −m2
1 ,

ρ̃4 = (`2 + p3)2 −m2
2 , ρ̃5 = `2

1 , ρ̃6 = `2
2 ,

ρ̃7 = (`1 + `2 − q)2 , ρ̃8 = (`1 − q)2 , ρ̃9 = (`2 − q)2 . (3.112)

The double-box (III) topology can be embedded in this family of integrals, as shown in

Fig. 3.11. Later we will see that the H topology can also be embedded in the same family.

We note that the equal-mass double-box integral has been evaluated in Refs. [283, 284]

without expansion in the soft or potential region, but the case of generic masses has not

been discussed in the literature.

Soft expansion and differential equations In the soft region, we construct an expansion

of the integrand around small |`i| ∼ |q|. In the expansion, only the leading order parts of ρ̃i,

denoted by ρi and given by

ρ1 = 2 `1 · u1 , ρ2 = −2 `1 · u2 , ρ3 = −2 `2 · u1 ,

ρ4 = 2 `2 · u2 , ρ5 = `2
1 , ρ6 = `2

2 ,

ρ7 = (`1 + `2 − q)2 , ρ8 = (`1 − q)2 , ρ9 = (`2 − q)2 , (3.113)

appear in the denominators (possibly with raised powers), and subleading corrections all

appear in numerators. Such numerators are in turn written as linear combinations ρi. The
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small-|q| expansion consists of integrals of the form

Gi1, i2,...,i9 =

∫
dD`1 e

γEε

iπD/2

∫
dD`2 e

γEε

iπD/2
1

ρi11 ρ
i2
2 . . . ρ

i9
9

, (3.114)

where negative indices represent numerators rather than denominators. There are a total of

10 master integrals for the III topology13 as shown in Figs. 3.12, 3.13. A pure basis is given

by

fIII,1 = ε2(−q2)G0,0,0,0,0,0,1,2,2 , (3.115)

fIII,2 = ε4
√
y2 − 1G0,1,1,0,0,0,1,1,1 , (3.116)

fIII,3 = ε3(−q2)
√
y2 − 1G0,1,1,0,0,0,2,1,1 , (3.117)

fIII,4 = − ε2(−q2)G0,2,2,0,0,0,1,1,1 + ε3y (−q2)G0,1,1,0,0,0,2,1,1 , (3.118)

fIII,5 = ε3
√
y2 − 1 (−q2)G1,1,0,0,1,1,2,0,0 , (3.119)

fIII,6 = ε3(1− 6ε)G1,0,1,0,1,1,1,0,0 , (3.120)

fIII,7 = ε4
(
y2 − 1

)
(−q2)G1,1,1,1,1,1,1,0,0 , (3.121)

fIII,8 = ε3
√
−q2G1,0,0,0,1,1,2,0,0 , (3.122)

fIII,9 = ε3
√
−q2G0,2,1,0,1,1,1,0,0 , (3.123)

fIII,10 = ε4
√
y2 − 1

√
−q2G1,1,1,0,1,1,1,0,0 , (3.124)

where all the master integrals are normalized to be proportional to (−q2)−2ε. The cor-

responding topologies are depicted in Figs. 3.12 and 3.13, where we have separated the

integrals which are even and odd in |q|.

We perform soft expansion and use IBP-reduction to write the results in terms of the

13For reference, in the full equal-mass problem there are 23 master integrals [284].
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32
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Figure 3.12: Even-|q| topologies relevant for the double-box master integrals.
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32

(a) fIII,8

1 4

32

(b) fIII,9

1 4

32

(c) fIII,10

Figure 3.13: Odd-|q| topologies relevant for the double-box master integrals.

master integrals. The double-box integral is given as the following small-|q| expansion,

IIII = −(µ̄2)2ε

(4π)2

{
1

(−q2)

1

m̄2
1m̄

2
2 (y2 − 1) ε4

fIII,7

+
1√
−q2

16m̄3
1m̄

3
2(m̄1 + m̄2) (2y2 − 1)

3

(y − 1)
√
y2 − 1 ε3

fIII,10

− m̄2
1 (3 (y2 + 1) ε+ 1) + m̄2

2 (3 (y2 + 1) ε+ 1) + 2m̄2m̄1y(6ε+ 1)

24m̄4
1m̄

4
2 (y2 − 1)2 ε3

fIII,1

+
(2ε+ 3) ((m̄2

1 + m̄2
2) y + 2m̄1m̄2)

12m̄4
1m̄

4
2 (y2 − 1)3/2 ε3

fIII,3

+
− (m̄2

1 + m̄2
2) y − 2m̄1m̄2

m̄4
1m̄

4
2 (y2 − 1)3/2 ε2

fIII,4

+
− (m̄2

1 + m̄2
2) y − 2m̄1m̄2

8m̄4
1m̄

4
2 (y2 − 1)3/2 ε3

fIII,5

− m̄2
1 (3 (y2 + 1) ε+ 1) + m̄2

2 (3 (y2 + 1) ε+ 1) + 2m̄2m̄1y(6ε+ 1)

12m̄4
1m̄

4
2 (y2 − 1)2 ε3

fIII,2

− m̄2
1 (3 (y2 + 1) ε+ 1) + m̄2

2 (3 (y2 + 1) ε+ 1) + 2m̄2m̄1y(6ε+ 1)

12m̄4
1m̄

4
2 (y2 − 1)2 ε3

fIII,6

− (4ε+ 3) (2m̄2m̄1y + m̄2
1 + m̄2

2)

12m̄4
1m̄

4
2 (y2 − 1)2 ε4

fIII,7

}
, (3.125)
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where the first line is of order 1/q2, the second line is of order 1/|q|, and the remaining lines

are of order |q|0, Since integration-by-parts will only produce analytic coefficients for master

integrals, e.g. polynomials in q2 but not
√
−q2, the master integrals fIII,1 to fIII,7 appear in

terms that are even in |q| in the small-|q| expansion of the amplitude, while fIII,8 to fIII,10

appear in expansion terms that are odd in |q|.

The differential equations for the master integrals are

d~fIII = ε [AIII,0 dlog(x) + AIII,+1 dlog(x− 1) + AIII,−1 dlog(x+ 1)] ~fIII . (3.126)

The even- and odd-|q| systems decouple and we can write

AIII,i =

 A
(e)
III,i 0

0 A
(o)
III,i

 , (3.127)

where the matrices are given by

A
(e)
III,0 =



0 0 0 0 0 0 0

−1
2
−6 0 −1 0 0 0

−3
2

0 2 −2 0 0 0

0 12 2 0 0 0 0

−3
4

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 −2 0 0



, A
(e)
III,±1 =



0 0 0 0 0 0 0

0 6 0 0 0 0 0

0 0 −2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,

(3.128)
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A
(o)
III,0 =


0 0 0

0 −2 0

0 1 0

 , A
(o)
III,+1 =


0 0 0

3 6 0

0 0 0

 , A
(o)
III,−1 =


0 0 0

−3 −2 0

0 0 0

 .

(3.129)

We make a technical observation here. Previously we found that at one loop x, is the only

symbol letter. As a consequence only powers of log x will appear in the solutions to the

differential equations. In contrast, at two loops, there are multiple symbol letters appearing

in the differential equations in Eq. (3.126): {x, 1±x}, so the symbol alphabet is larger. This

generically results in the solution of the differential equations being (harmonic [285, 286])

polylogarithms, but we will see that at leading order in ε all two-loop integrals only contain

logarithms.

Re-expansion in the potential region As described in subsection 3.3.3, we obtain

boundary conditions for the pure basis of soft integrals by re-expanding the integrals in the

potential region following Eqs. (3.79) and (3.80), and then integrate over energy components

of loop momenta using an appropriate prescription [42]. The energy components of `1 and

`2 are written as ω1 and ω2, while the spatial components are written as `1 and `2.

For the Roman III integral and non-planar variants with exactly three graviton propa-

gators, we follow the prescription of Ref. [42], but with slight modifications to simplify the

presentation. First, we symmetrize over 3! permutations of the energy components of the

three gravitons, in a way that directly extends the one-loop prescription Eq. (3.96),

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 I(ω1, ω2)→
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2
1

3!

∑
η∈S3

I(ωη(1), ωη(2)) , (3.130)

with the definition ω3 = −(ω1 + ω2), and then proceed as usual, i.e. perform the ω1 and

ω2 contour integrals one by one, closing the contour either above or below the real axis
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and always neglecting poles at infinity. As an example, we calculate the static limit of

G1,0,1,0,1,1,1,0,0, which appears in fIII,6 in Eq. (3.120) and is shown in Fig. 3.12(d). In the y = 1

i.e. static limit, the graviton propagators are turned into (D − 1)-dimensional propagators,

G1,0,1,0,1,1,1,0,0

∣∣
y=1

= −
∫

dD−1`1 e
γEε

iπD/2

∫
dD−1`2 e

γEε

iπD/2
1

`2
1 − i0

1

`2
2 − i0

1

(`1 + `2 + `3)2 − i0

×
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2
1

(2`1 · u1 − 2ω1u0
1 − i0)

1

(−2`2 · u1 + 2ω2u0
1 − i0)

.

(3.131)

Again adopting the frame choice Eq. (3.95) with u1 = (ω1,u1) = (1,0), the second line of

the above equation becomes

1

4

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2
1

−ω1 − i0
1

ω2 − i0
. (3.132)

By the prescription Eq. (3.130), this divergent integral is turned into

1

4
· 1

3!

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2

(
1

−ω1 − i0
1

ω2 − i0
+

1

−ω1 − i0
1

−ω1 − ω2 − i0

+
1

−ω2 − i0
1

−ω1 − ω2 − i0
+

1

−ω2 − i0
1

ω1 − i0
+

1

ω1 + ω2 − i0
1

ω1 − i0
+

1

ω1 + ω2 − i0
1

ω2 − i0

)
. (3.133)

Now let us perform the ω1 integral by picking up residues in the upper half plane. Only the

4th, 5th, and 6th terms in the bracket of Eq. (3.133) have ω1 poles in the upper half plane,

and in fact the 5th term contributes two poles whose residues add to zero. The result of ω1

integration is

1

4
· 1

3!
(2πi)

∫ ∞
−∞

dω2

(
1

−ω2 − i0
+

1

ω2 − i0

)
. (3.134)

Now we integrate over ω2 by picking up residues in either the upper or lower half plane,
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obtaining the same result

1

4
· 1

3!
(2πi)2 = −π

2

6
. (3.135)

Putting it back into Eq. (3.131), we obtain

G1,0,1,0,1,1,1,0,0

∣∣
y=1

=
π

6

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2

1

`2
1 − i0

1

`2
2 − i0

1

(`1 + `2 + `3)2 − i0 . (3.136)

Now we check that the final result is also independent of the contour choice for ω1. If instead

we perform the ω1 integral in Eq. (3.133) by picking up residues in the lower half plane,

we obtain a result identical to Eq. (3.134), so the subsequent ω2 integration also gives the

same result as Eq. (3.135). In conclusion, we have verified in this example that once the S3

symmetrization over graviton energies are performed, the subsequent energy integration has

no dependence on contour choice (in the sense of closing above or below the real axis).

Adopting the frame choice Eq. (3.95), and following this prescription, we find that in

the static limit, the only non-vanishing master integrals are equal f
(p)
III,4, f

(p)
III,6, f

(p)
III,7 and f

(p)
III,10.

The computation of these integrals can be carried out by ordinary methods and is explained

in Appendix 3.A. By expanding up to O(ε4) they yield the following vector of boundary

conditions

~f
(p)

III

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,

1

3
− 7π2ε2

18
, 0,−1

6
+

7π2ε2

36
,
1

2
− π2ε2

12
,

0, 0,
iπε

4
− iπ log(2)ε2

2

)T
+O(ε5) . (3.137)

Result The solution of the differential equations (3.126) with the boundary conditions

(3.137) and (3.162) is presented in Eqs. (3.313)–(3.318) in Appendix 3.B. Here we just note

that all functions have an overall factor of π2ε2 and therefore the transcendental weight of

the solutions is effectively reduced by two. Consequently at the order considered, the only

polylogarithmic function relevant is log(x) related to the arcsinh function characteristic of
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3PM scattering [41, 42] by the change of variable Eq. (3.74),

log(x) = − log
(
y +

√
y2 − 1

)
= −2 arcsinh

(√
y − 1

2

)
= −2 arcsinh

(√
σ − 1

2

)
+O(q2) .

(3.138)

Going to O(ε4) we find an additional weight-two function

Li2(1− x2) , (3.139)

which has no singularity in the entire range 0 < x < 1, so has no singularity in either the

static limit y → 1 or the high-energy limit y → ∞. Barring cancellations, it is natural to

expect that this function will be relevant at O(G4) (i.e. at the 4PM order).

Finally, inserting in Eq. (3.125) the values of the master integrals evaluated in the poten-

tial region, Eqs. (3.313)–(3.318), and changing variables according to Eqs. (3.67) and (3.72),

the end result for the double-box integrals is

I
(p)
III = − 1

(4π)4

(−q2

µ̄2

)−2ε
{

1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
1

ε2
− π2

6
+

2

3
log2(x) +O(ε)

]
+

1√
−q2

[
iπ3 (m1 +m2)

2m3
1m

3
2(σ − 1)

√
σ2 − 1

+O(ε)

]
+

[
− π2 (2m2m1σ +m2

1 +m2
2)

8m4
1m

4
2 (σ2 − 1)2

1

ε
+O(ε0)

]}
. (3.140)

H and crossed H (H) Next we will consider the H integral, which can also be embedded

in the family of indices in Eqs. (3.112) and (3.113) as shown in Fig. 3.14. We note that the

case of equal masses has been evaluated in [287] without expansion in the soft or potential

region. For this topology we only need the leading contribution in |q|, which is even in |q|.

Therefore we only give the pure basis of ten master integrals needed to express the even-|q|
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Figure 3.14: H topology. Indices correspond to the propagators listed in eq. (3.112).

terms14,

fH,1 = ε2(−q2)G0,0,0,0,0,0,1,2,2 , (3.141)

fH,2 = ε2(1− 4ε)G0,0,2,0,1,0,1,1,0 , (3.142)

fH,3 = ε2(−q2)2G0,0,0,0,2,1,0,1,2 , (3.143)

fH,4 = ε4(−q2)G0,1,1,0,1,1,0,1,1 , (3.144)

fH,5 = ε4
√
y2 − 1G0,1,1,0,0,0,1,1,1 , (3.145)

fH,6 = ε3
√
y2 − 1 (−q2)G0,1,1,0,0,0,2,1,1 , (3.146)

fH,7 = − ε2(−q2)G0,2,2,0,0,0,1,1,1 + ε3y (−q2)G0,1,1,0,0,0,2,1,1 , (3.147)

fH,8 =
ε2(4ε− 1)√
y2 − 1

[(2ε− 1)G0,1,1,0,0,1,1,0,1 + y G0,2,0,0,0,1,1,0,1] , (3.148)

fH,9 = ε4
√
y2 − 1 (−q2)2G0,1,1,0,1,1,1,1,1 , (3.149)

fH,10 = − ε4(−q2)G−1,1,1,−1,1,1,1,1,1 +
1

2
ε2(2ε− 1)G0,0,0,0,1,1,0,1,1

+ 2ε4y (−q2)G0,1,1,0,1,1,0,1,1 + ε(3ε− 2)(3ε− 1) (−q2)−1G0,0,0,0,1,1,1,0,0 . (3.150)

14For reference, in the full equal-mass problem there are 25 master integrals [287].
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32

(a) fH,1

1 4

32

(b) fH,2

1 4

32

(c) fH,3

1 4

32

(d) fH,4

1 4

32

(e) fH,5, fH,6, fH,7

1 4

32

(f) fH,8

1 4

32

(g) fH,9, fH,10

Figure 3.15: Topologies relevant for the H master integrals.

The corresponding topologies are shown in Fig. 3.15. In terms of these the soft expansion of

the H integral is simply given by

IH = − 1

(4π)4

(
1

µ̄2

)−2ε
{

1

(−q2)2

1

ε4m̄1m̄2

√
y2 − 1

fH,9 +O
(
(−q2)−3/2−2ε

)}
. (3.151)

The differential equations for these master integrals are

d~fH = ε
[
A

(e)
H,0 dlog(x) + A

(e)
H,+1 dlog(x− 1) + A

(e)
H,−1 dlog(x+ 1)

]
~fH , (3.152)
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where we have only kept the even-|q| sector and the matrices are given by

A
(e)
H,0 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−1
2

0 0 0 −6 0 −1 0 0 0

−3
2

0 0 0 0 2 −2 0 0 0

0 0 0 0 12 2 0 0 0 0

0 2 0 0 0 0 0 2 0 0

2 −4 0 0 0 4 2 4 2 −2

−1 0 −1 0 12 8 0 8 2 −2



, (3.153)

A
(e)
H,±1 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 6 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −2 0 0

0 0 0 0 0 −4 0 −4 −2 0

1 0 1 ±4 0 0 0 0 0 2



. (3.154)

We also need to consider the crossed H, or H, integral, in Fig. 3.6(b), which is just a

crossing of the H integral by p2 ↔ −p3. We note, however, that the H and H integrals appear

together in the amplitude, with the same coefficient15. Thus we can directly evaluate their

15This is even true for the pure gravity amplitude [41, 42] with an appropriate alignment of loop momentum
labels across the two different diagrams, up to differences that only give quantum corrections.
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sum. Since the crossing p1 ↔ −p4 is equivalent to p2 ↔ −p3, this can be written in the

symmetrized form

IH + IH =
1

2

(
IH + IH

∣∣
p2↔−p3

+ IH

∣∣
p1↔−p4

+ IH

∣∣
p2↔−p3, p1↔−p4

)
. (3.155)

As mentioned above, we only need to perform the soft expansion of H and H to the leading

order, due to the suppression by t2 = q4 factor in the numerator, and subleading corrections

are not relevant classically. The leading soft expansion of Eq. (3.155) can be obtained from

that of the H integral itself by the replacements

1

ρ1 + i0
→ 1

ρ1 + i0
+

1

−ρ1 + i0
= (−2πi)δ(ρ1), (3.156)

1

ρ2 + i0
→ 1

ρ2 + i0
+

1

−ρ2 + i0
= (−2πi)δ(ρ2), (3.157)

followed by multiplying the resulting expression by 1/2. Effectively we have “cut” the matter

propagators and turned them into delta functions. However, we still need to define how to

“cut” matter propagators raised to higher powers, because integrals with squared matter

propagators appear when we construct differential equations, and also appear in our choice

of a pure basis of master integrals Eqs. (3.141)–(3.150). An appropriate prescription is

Gi1,i2,...,i9 → Ĝi1,i2,...,i9 , (3.158)

with the definition

Ĝi1, i2,...,i9 =
1

2

∫
dD`1

∫
dD`2

1

ρi33 ρ
i4
4 · · · ρi99

×
[

1

(−ρ1 + i0)i1
− 1

(−ρ1 − i0)i1

] [
1

(−ρ2 + i0)i2
− 1

(−ρ2 − i0)i2

]
. (3.159)

Here Ĝi1, i2,...,i9 vanishes whenever the integer i1 or i2 is non-positive, because the i0 pre-
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scription is of no relevance in the numerator, and the terms in one of the square brackets of

Eq. (3.159) add to zero. The advantage of this prescription is that it preserves IBP relations

and the differential equations Eq. (3.152). In particular, the pure basis of master integrals

for the H topology, Eqs. (3.141)–(3.150) can be mapped to the “cut” version

fH,n → fcH,n, 1 ≤ n ≤ 10, (3.160)

using Eqs. (3.158) and (3.159), and the resulting integrals satisfy differential equations

d~fcH = ε [AcH,0 dlog(x) + AcH,+1 dlog(x− 1) + AcH,−1 dlog(x+ 1)] ~fcH , (3.161)

where the matrices, Ai,cH, are identical to the ones in Eqs. (3.152) and (3.153) for the

differential equations of the original uncut H topology. Hence the solution of the “cut H”

differential equations will only differ from the full H in the boundary conditions.

In order to obtain the boundary conditions for the “cut H” integrals, we follow a prescrip-

tion for performing the energy integrals similar to that in the previous subsection. In this

case, the prescription is simply to carry out the ω1 integral by residues, and then performing

the ω2 integral by residues too. Each of the two integration steps is done by closing the

contour either above or below the real axis, picking up residues from poles at finite values

and discarding poles at infinity. We find that the only non-vanishing master integrals in

the static limit are f
(p)
cH,4, f

(p)
cH,7 and f

(p)
cH,10. The computation of these integrals is explained

in Appendix 3.A. By expanding up to O(ε4) they yield the following vector of boundary

condition

~f
(p)

cH

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,

π2ε2

2
, 0, 0,−1

2
+

7π2ε2

12
, 0, 0, π2ε2

)T
+O(ε5) . (3.162)

The result of solving the differential equation in Eq. (3.161) with the boundary conditions

in Eq. (3.162) is given in Eqs. (3.319)–(3.324) in Appendix 3.B. The sum of H and H is given
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by Eq. (3.151) with the replacement fH,9 → fcH,9, which using the solution of the differential

equation yields

IH + IH = − 1

(4π)4

(−q2

µ̄2

)−2ε

 1

(−q2)2

2π2

ε

arcsinh
√

σ−1
2

m1m2

√
σ2 − 1

+O(ε0)

+O((−q)−3/2)

 .

(3.163)

The part of Eq. (3.163), proportional to log(−q2), which due to the q4 suppression in the

numerator is the only piece relevant for the classical dynamics, agrees with the result in

Refs. [41, 42].

Non-planar double-box (IX) Next we discuss the non-planar ladder integral. We only

consider the IX topology, noting that the integral XI is identical. The full integral has been

discussed in the equal mass case in Ref. [288]. We first consider generic integrals of the form

G̃i1,i2,...,i9 =

∫
dD`1 e

γEε

iπD/2

∫
dD`2 e

γEε

iπD/2
1

ρi11 ρ
i2
2 · · · ρi99

. (3.164)

Where the propagators are, as depicted in Fig. 3.16

ρ̃1 = (`1 − p1)2 −m2
1 , ρ̃2 = (`1 + p2)2 −m2

2 , ρ̃3 = (`2 − p4)2 −m2
1 ,

ρ̃4 = (`1 + `2 − q − p3)2 −m2
2 , ρ̃5 = `2

1 , ρ̃6 = `2
2 ,

ρ̃7 = (`1 + `2 − q)2 , ρ̃8 = (`1 − q)2 , ρ̃9 = (`2 − q)2 . (3.165)

The small-|q| expansion consists of integrals of the form

Gi1, i2,...,i9 =

∫
dD`1 e

γEε

iπD/2

∫
dD`2 e

γEε

iπD/2
1

ρi11 ρ
i2
2 . . . ρ

i9
9

, (3.166)
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2 4
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7

6

(a) Non-planar double-box topology.

Figure 3.16: Top-level topologies at two-loops. Indices correspond to the propagators listed
in eq. (3.165).

where the leading order parts of the propagators are

ρ1 = 2 `1 · u1 , ρ2 = −2 `1 · u2 , ρ3 = −2 `2 · u1 ,

ρ4 = −2 (`1 + `2) · u2 , ρ5 = `2
1 , ρ6 = `2

2 ,

ρ7 = (`1 + `2 − q)2 , ρ8 = (`1 − q)2 , ρ9 = (`2 − q)2 . (3.167)
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A pure basis of master integrals is given by

fIX,1 = ε2(−q2)G0,0,0,0,2,2,1,0,0 , (3.168)

fIX,2 = ε4
√
y2 − 1G0,0,1,1,1,1,1,0,0 , (3.169)

fIX,3 = ε3(−q2)
√
y2 − 1G0,0,1,1,2,1,1,0,0 , (3.170)

fIX,4 = ε2(−q2)G0,0,2,2,1,1,1,0,0 + ε3(−q2)yG0,0,1,1,2,1,1,0,0 , (3.171)

fIX,5 = ε4
√
y2 − 1G0,1,1,0,1,1,1,0,0 , (3.172)

fIX,6 = ε3(−q2)
√
y2 − 1G0,1,1,0,1,1,2,0,0 , (3.173)

fIX,7 = ε2(−q2)G0,2,2,0,1,1,1,0,0 − ε3(−q2)y G0,1,1,0,1,1,2,0,0 , (3.174)

fIX,8 = ε3(1− 6ε)G1,0,1,0,1,1,1,0,0 , (3.175)

fIX,9 = ε3(−q2)
√
y2 − 1G1,1,0,0,1,1,2,0,0 , (3.176)

fIX,10 = ε4(−q2)(y2 − 1)G1,1,1,1,1,1,1,0,0 , (3.177)

fIX,11 = ε3
√
−q2G1,0,0,0,1,1,2,0,0 , (3.178)

fIX,12 = ε3
√
−q2G0,2,1,0,1,1,1,0,0 , (3.179)

fIX,13 = ε3
√
−q2G0,0,2,1,1,1,1,0,0 , (3.180)

fIX,14 = ε4
√
−q2

√
y2 − 1G1,0,1,1,1,1,1,0,0 , (3.181)

fIX,15 = ε4
√
−q2

√
y2 − 1G1,1,1,0,1,1,1,0,0 , (3.182)

where the corresponding topologies are shown in Fig. 3.17 and Fig. 3.18. The functions

fIX,1 to fIX,10 are even in |q|, while fIX,11 to fIX,15 are odd. In addition some of the functions

are related by y → −y due to symmetry

{fIX,2, fIX,3, fIX,4, fIX,12} y→−y−→ {fIX,5, fIX,6, fIX,7, fIX,13} . (3.183)
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(b) fIX,2, fIX,3, fIX,4
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(c) fIX,5, fIX,6, fIX,7
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(d) fIX,8
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(e) fIX,9

1 4
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(f) fIX,10

Figure 3.17: Even |q| master integrals relevant for the crossed ladder topology.

1 4
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(a) fIX,11

1 4

32

(b) fIX,12

1 4

32

(c) fIX,13

1 4

32

(d) fIX,14

1 4

32

(e) fIX,15

Figure 3.18: Odd |q| master integrals relevant for the crossed ladder topology.

The differential equations are

d~fIX = ε [AIX,0 dlog(x) + AIX,+1 dlog(x− 1) + AIX,−1 dlog(x+ 1)] ~fIX. (3.184)

The even- and odd-|q| systems decouple and we can write

AIX,i =

 A
(e)
IX,i 0

0 A
(o)
IX,i

 , (3.185)
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where the matrices are given by

A
(o)
IX,0 =



0 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 −1 1 0 0

0 1 0 0 0


, A

(o)
IX,+1 =



0 0 0 0 0

3 6 0 0 0

−3 0 −2 0 0

0 0 0 0 0

0 0 0 0 0


, (3.186)

A
(o)
IX,−1 =



0 0 0 0 0

−3 −2 0 0 0

3 0 6 0 0

0 0 0 0 0

0 0 0 0 0


, (3.187)
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A
(e)
IX,0 =



0 0 0 0 0 0 0 0 0 0

1
2
−6 0 −1 0 0 0 0 0 0

3
2

0 2 −2 0 0 0 0 0 0

0 12 2 0 0 0 0 0 0 0

−1
2

0 0 0 −6 0 1 0 0 0

−3
2

0 0 0 0 2 2 0 0 0

0 0 0 0 −12 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−3
4

0 0 0 0 0 0 0 0 0

0 0 −1
2

0 0 −1 0 0 1 0



, (3.188)

A
(e)
IX,±1 =



0 0 0 0 0 0 0 0 0 0

0 6 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 6 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



. (3.189)

We proceed by computing the boundary condition in the static limit analogously to the

planar ladder discussed above. As before the integrals in this limit are evaluated using the

residue method, yielding three-dimensional integrals tabulated in Appendix 3.A. Only the
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functions f4, f7, f8 and f15 are non-vanishing on the boundary and we have

~f
(p)

IX

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,−1

6
+

7π2ε2

36
, 0, 0,

1

3
− 7π2ε2

18
,−1

6
+

7π2ε2

36
, 0, 0, (3.190)

0, 0, 0, 0,
iπε

4
− iπ log(2)ε2

2

)T
+O(ε5) . (3.191)

Solving the differential equation (3.184) with the boundary conditions (3.191) up to O(ε4)

gives the result in Eqs. (3.325)–(3.333) in Appendix 3.B. These can be used in the soft

expansion of the IX integral to yield the following result for the non-planar double-box

integral IIX

I
(p)
IX = I

(p)
XI = − 1

(4π)2

(−q2

µ̄2

)−2ε
{

1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
−5

6
log2(x) +O(ε)

]
+

1√
−q2

[
− iπ3 (m1 +m2)

4m3
1m

3
2(σ + 1)

√
σ2 − 1

+O(ε)

]
+ (−q2)0

[
0 +O(ε0)

]}
. (3.192)

Crossed integrals In order to evaluate the integrand (3.51) we also need the integrals

that that are obtained from III and IX by p2 → p3 crossing (denoted III and IX). Since the

energy integration step produces non-analytic behavior, these integrals cannot be directly

obtained from analytic continuation, and we have to solve the differential equations again.

From Eq. (3.74), we can see that x → −x corresponds to the change y → −y,
√
y2 − 1 →

−
√
y2 − 1. The differential equations for the crossed integrals are thus obtained from the

differential equations for the original integrals, Eqs. (3.126) and (3.184), when we change the

LHS by

~fT → ~fT̄, uµ1 → uµ1 , u
µ
2 → −uµ2 , y → −y,

√
y2 − 1→ −

√
y2 − 1, (3.193)
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where T ∈ III, IX denotes the topology, and change the RHS by

log(x)→ log(x) , log(1− x)→ log(1 + x) , log(1 + x)→ log(1− x) . (3.194)

The static boundary conditions for III and IX integrals are obtained by the same energy

integration method covered before, and are explicitly given by

~f
(p)

III

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,−1

6
+

7π2ε2

36
, 0,−1

6
+

7π2ε2

36
, 0, 0, 0, 0

)T
+O(ε5) , (3.195)

~f
(p)

IX

∣∣∣
y=1

= (−q2)−2εε2π2

(
0, 0, 0,

1

3
− 7π2ε2

18
, 0, 0,−1

6
+

7π2ε2

36
,−1

6
+

7π2ε2

36
, 0, 0,

0, 0, 0, 0, 0

)T
+O(ε5) . (3.196)

Solving the differential equations obtained by crossing of Eqs. (3.126) and (3.184) with the

boundary conditions (3.195) and (3.196) gives the result in Eqs. (3.334)–(3.338) and (3.334)–

(3.338) in Appendix 3.B. These can be used in the soft expansion of the crossed double-box

and non-planar double-box integrals which gives especially simple final results,

I
(p)

III
= − 1

(4π)2

(−q2

µ̄2

)−2ε
{

1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
−1

3
log2(x) +O(ε)

]
+

1√
−q2

[0 +O(ε)]

+ (−q2)0

[
0 +O(ε0)

]}
, (3.197)
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and

I
(p)

IX
= I

(p)

XI
= − 1

(4π)2

(−q2

µ̄2

)−2ε
{

1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
2

3
log2(x) +O(ε)

]
+

1√
−q2

[0 +O(ε)]

+ (−q2)0

[
0 +O(ε0)

]}
. (3.198)

3.3.4 Scattering amplitudes in the potential region

In the previous subsection we calculated the integrals necessary to evaluate the one- and

two-loop conservative amplitudes in the potential region, which we will denote by M4,(p). In

this subsection we will put together the integrals to construct such scattering amplitudes.

Tree-level amplitude

For completeness, let us start by considering the tree-level amplitude in Eq. (3.43). In this

case the restriction to the potential region is trivial and we simply have

M tree
4,(p) = 32πGm2

1m
2
2(σ − cosφ)2 1

−q2
, (3.199)

which we have written in a form which will be convenient later.

One-loop amplitude

The one-loop integrand for the conservative black-hole amplitude in N = 8 supergravity is

given in terms of the sum of the box and crossed box integrals in the potential region,

M1-loop
4,(p) = −i(8πG)2 (s− |m1 +m2e

iφ|2)4
(
I

(p)
II + I

(p)
X ) . (3.200)
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From the results in Eqs. (3.105) and (3.110) we find

I
(p)
II + I

(p)
X =

i

(4π)2

(−q2

µ̄2

)−ε{
1

(−q2)

iπ

2m1m2

√
σ2 − 1

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)

− ε 1√
−q2

√
π(m1 +m2)

m2
1m

2
2(σ2 − 1)

eεγEΓ
(

1
2
− ε
)2

Γ
(
ε+ 1

2

)
Γ(1− 2ε)

− εiπ (m2
1 +m2

2 + 2m1m2σ)

8m3
1m

3
2 (σ2 − 1)3/2

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)

+O
(√
−q2

)}
. (3.201)

Note that this formula is valid in arbitrary dimension. In particular it agrees with the

soft-integrals in Eqs. (B.36) and (B.40) of Ref. [192]. This reference also calculated the

contribution in the potential region at leading order in velocity, which, as expected, did

not match the full soft integrals away from the static limit. It is well known that the

contributions of soft and potential region coincide at one loop in D = 4, up to differences

that are suppressed in the classical limit. Our result shows that this is also true in arbitrary

dimensions. As a cross-check we have also calculated the result directly in the soft region,

by solving the differential equations for the soft integrals subject to their full boundary

conditions without restricting to the potential region, and found agreement to O(ε0) for

both the 1/(−q2) coefficient and the 1/
√
−q2 coefficient. Details will be given elsewhere.

With the sum of the boxes at hand we can evaluate the one-loop amplitude (3.47) with

the result

M1-loop
4,(p) = 64G2m3

1m
3
2(σ − cosφ)4

(−q2

µ̄2

)−ε{
1

(−q2)

iπ

2
√
σ2 − 1

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)

− ε 1√
−q2

√
π(m1 +m2)

m1m2(σ2 − 1)

eεγEΓ
(

1
2
− ε
)2

Γ
(
ε+ 1

2

)
Γ(1− 2ε)

− εiπ (m2
1 +m2

2 + 2m1m2σ)

8m2
1m

2
2 (σ2 − 1)3/2

eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)
+O

(√
−q2

)}
.

(3.202)
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Two-loop amplitude

Next we use the integrals in subsection 3.3.3 to assemble the two-loop amplitude. The

two-loop amplitude in the potential region is given by

M2-loop
4,(p) = (8πG)3(s− |m1 +m2e

iφ|2)4 (3.203)

×
[
(s− |m1 +m2e

iφ|2)2(I
(p)
III + I

(p)
XI + I

(p)
IX + I

(p)

III
+ I

(p)

XI
+ I

(p)

IX
) + (−q2)2(I

(p)
H + I

(p)

H
)

]
.

where the remaining integrals are suppressed in the classical limit. Naively, the ladders and

crossed ladders appear with different prefactor in (3.51). We have

u− |m1 −m2e
iφ|2 = −s+ |m1 +m2e

iφ|2 − q2 , (3.204)

so the O(|q|2) mismatch could in principle combine with the leading order of the crossed

ladders which are of O(|q|−2). The explicit results for this integrals in Eqs. (3.197) and

(3.198) shows however that these do not contribute to the classical part of the amplitude

and all the ladders contribute with the same coefficient. Using Eqs. (3.140), (3.192), (3.197),

and (3.198) the relevant combination of ladders is then

I
(p)
III + I

(p)
XI + I

(p)
IX + I

(p)

III
+ I

(p)

XI
+ I

(p)

IX

= − 1

(4π)4

(−q2

µ̄2

)−2ε{
1

(−q2)

π2

2m2
1m

2
2(σ2 − 1)

[
1

ε2
− π2

6
+O(ε1)

]
+

1√
−q2

iπ3(m1 +m2)

m3
1m

3
2(σ2 − 1)3/2

[
1 +O(ε1)

]
− π2(m2

1 +m2
2 + 2σm1m2)

8m4
1m

4
2(σ2 − 1)2

[
1

ε
+O(ε0)

]
+O

(√
−q2

)}
+ analytic terms , (3.205)

where “analytic terms” stand for terms with polynomial (including constant) dependence on

q2, with or without poles in ε. Such analytic terms give contact terms after Fourier transform
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to impact parameter space, and are irrelevant for long-range classical physics. Note that the

classical log(−q2) arises from the Taylor expansion of (−q2)−2ε. With these, together with

the H-type integrals in Eq. (3.163), we can evaluate the conservative two-loop amplitude

M2-loop
4,(p) = − 32πG3m4

1m
4
2(σ − cosφ)4

(−q2

µ̄2

)−2ε{
1

(−q2)

2(σ − cosφ)2

(σ2 − 1)

[
1

ε2
− π2

6

]
+

1√
−q2

4iπ(m1 +m2)(σ − cosφ)2

m1m2(σ2 − 1)3/2

− 1

ε

(m2
1 +m2

2 + 2σm1m2)(σ − cosφ)2

2m2
1m

2
2(σ2 − 1)2

− 2
arcsinh

(√
σ−1

2

)
m1m2

√
σ2 − 1


+O

(√
−q2

)}
+ analytic terms . (3.206)

3.3.5 Eikonal phase, scattering angle and graviton dominance

In this subsection we will study eikonal exponentiation of the conservative amplitudes directly

in momentum space. We will check the exponentiation of the leading and subleading eikonal

in the two-loop amplitude. Then we will use the eikonal phase to evaluate the scattering

angle in N = 8 supergravity. Finally we will compare the high-energy limit of our result to

that of Einstein gravity.

The eikonal phase in N = 8 supergravity

In traditional treatments of eikonal exponentiation, it is customary to Fourier transform

the scattering amplitudes to impact parameter space in order to extract the eikonal phase.

Here we will take a slightly different approach and study eikonal exponentiation directly

in momentum space. There is a simple reason why we prefer this approach: First, in the

presence of a Coulomb-like tree-level interaction, such as graviton exchange, the Fourier

transform has the side effect of introducing an additional infrared divergence, which in

dimensional regularization gives the appearance that one needs to carefully analyze the
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scattering amplitude at O(ε) and keep track of ε/ε contributions to extract the eikonal phase

at a fixed order. The momentum space approach has the advantage that the Coulomb-like

singularities directly cancel, making clear that the O(ε) pieces of the L-loop amplitude

cannot contribute to the L-loop phase.16 Working in momentum space comes at a cost

nevertheless: simple products in impact parameter space become convolutions in momentum

space. However, all convolutions can be easily evaluated as they are equivalent to iterated

bubble integrals.

As usual in the eikonal approach, we will consider the amplitude as a function of a D−2-

dimensional vector, q⊥, transverse to the scattering plane, which has the same magnitude

as the four-momentum exchange, i.e., q2
⊥ = −q2 (see e.g. Ref. [61]). The conservative

amplitude only depends on powers of q, so this poses no problem. The statement of eikonal

exponentiation is that one can write the scattering amplitude in the potential region as a

convolutional exponential of the eikonal phase

iM(p)(σ, q⊥) = cexp (iδ(σ, q⊥))− 1 (3.207)

:= iδ(σ, q⊥)− 1

2!
δ(σ, q⊥)⊗ δ(σ, q⊥)− i 1

3!
δ(σ, q⊥)⊗ δ(s, q⊥)⊗ δ(σ, q⊥) + · · · ,

where we defined the convolution as integral over the D − 2 dimensional transverse space

f1(q⊥)⊗ f2(q⊥) =
1

N

∫
dD−2`⊥
(2π)D−2

f1(`⊥) f2(q⊥ − `⊥) , (3.208)

with a normalization factor N = 4m1m2

√
σ2 − 1. Equivalently, one can write the inverse

16Unfortunately, one still needs to calculate O(ε) parts of the lower loop amplitudes to extract the phase
at a given order.
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relation,

δ(σ, q⊥) = −i clog(1 + iM(p)(σ, q⊥))

:= M(p)(σ, q⊥)− i

2
M(p)(σ, q⊥)⊗M(p)(σ, q⊥) (3.209)

− 1

3
M(p)(σ, q⊥)⊗M(p)(σ, q⊥)⊗M(p)(σ, q⊥) + · · · .

We expand δ perturbatively

δ = δ(0) + δ(1) + δ(2) + · · · , (3.210)

where δ(L) is O(GL+1). Then, from the discussion above we can write the phase in terms of

the amplitudes

δ(0) = M tree
4,(p) , (3.211)

δ(1) = M1-loop
4,(p) −

i

2
M tree

4,(p) ⊗M tree
4,(p) , (3.212)

δ(2) = M2-loop
4,(p) − iM tree

4,(p) ⊗M1-loop
4,(p) −

1

3
M tree

4,(p) ⊗M tree
4,(p) ⊗M tree

4,(p) . (3.213)

Looking at Eqs. (3.199)-(3.206), we see that to calculate the right-hand side of these equations

we need the following convolutions

1

q2
⊥
⊗ 1

q2
⊥

=
1

N

1

4πq2
⊥

(
q2
⊥
µ̄2

)−ε
eεγEΓ(−ε)2Γ(1 + ε)

Γ(−2ε)
, (3.214)

1

q2
⊥
⊗ 1

(q2
⊥)1+ε

=
1

N

(
q2
⊥
µ̄2

)−2ε(
eγE

4π

)ε [
−1

ε

3

8πq2
⊥

+O(ε)

]
, (3.215)

1

q2
⊥
⊗ 1

q2
⊥
⊗ 1

q2
⊥

=
1

N2

(
q2
⊥
µ̄2

)−2ε [
1

ε2
3

16π2q2
⊥
− 1

32q2
⊥

+O(ε)

]
, (3.216)

1

q2
⊥
⊗ 1

(q2
⊥)

1
2

+ε
=

1

N

(
q2
⊥
µ̄2

)−2ε(
eγE

4π

)ε [
−1

ε

1

4π|q⊥|
+

log(2)

π|q⊥|
+O(ε)

]
, (3.217)

1

q2
⊥
⊗ 1

(q2
⊥)ε

=
1

N

(
q2
⊥
µ̄2

)−2ε(
eγE

4π

)ε [
−1

ε

1

8π
+O(ε)

]
, (3.218)
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which can all be evaluated by using Eq. (3.286) in Appendix 3.A with c = 0 and ε→ ε−1/2.

Using the first convolution, Eq. (3.214), we find

− i

2
M tree

4,(p) ⊗M tree
4,(p) = −i32πG2m3

1m
3
2

(
q2
⊥
µ̄2

)−ε
1

q2
⊥

(σ − cosφ)4

√
σ2 − 1

Γ(−ε)2Γ(1 + ε)

Γ(−2ε)
, (3.219)

which exactly cancels the O(|q|−2) of the one-loop amplitude in Eq. (3.202) to all orders in

ε. Similarly, using Eqs. (3.215) and (3.216) we find17

− iM tree
4,(p) ⊗M1-loop

4,(p)

∣∣∣
O(|q|−2)

− 1

3
M tree

4,(p) ⊗M tree
4,(p) ⊗M tree

4,(p) (3.220)

= 64πG3m4
1m

4
2

(σ − cosφ)4

σ2 − 1

(
q2
⊥
µ̄2

)−ε
1

q2
⊥

[
1

ε2
− π2

6
+O(ε)

]
,

using Eq. (3.217)

−iM tree
4,(p) ⊗M1-loop

4,(p)

∣∣∣
O(|q|−1)

= −128iπ2G3m3
1m

3
2(m1 +m2) (3.221)

× (σ − cosφ)6

(σ2 − 1)3/2

(
q2
⊥
µ̄2

)−ε
1

|q⊥|

[
1 +O(ε)

]
,

and using Eq. (3.218)

−iM tree
4,(p) ⊗M1-loop

4,(p)

∣∣∣
O(|q|0)

= −16πG3m2
1m

2
2(2m1m2σ +m2

1 +m2
2) (3.222)

× (σ − cosφ)6

(σ2 − 1)2

(
q2
⊥
µ̄2

)−ε [
1

ε
+O(ε)

]
.

These expressions respectively cancel theO(|q|−2), theO(|q|−1) and theO(|q|0) contributions

to the two-loop amplitude Eq. (3.206), which arise from the ladder-type diagrams. Therefore,

the ladder-type diagrams at two loops give exactly zero contribution to the eikonal exponent,

up to the order of q relevant for classical dynamics at O(G3). This cancellation is a check of

17Note that exponentiation at one loop implies M1-loop
4,(p)

∣∣∣
O(|q|−2)

= i
2M

tree
4,(p) ⊗M tree

4,(p), so the first line can

also be written as 1
3!M

tree
4,(p) ⊗M tree

4,(p) ⊗M tree
4,(p).
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the exponentiation of the leading and subleading eikonal phase in the two-loop amplitude.

Henceforth we will assume exponentiation of the two-loop phase and leave a proof for further

work. We note that this zero result relies on delicate cancellations between all six ladder

diagrams which leave only the contributions of the H-type diagrams to the two-loop eikonal

phase.

In summary, putting together Eqs. (3.199)–(3.206) and (3.219)–(3.222) in (3.211)–(3.213)

the result of calculation our of the eikonal phase is

δ(0)(σ, q⊥) = 32πGm2
1m

2
2(σ − cosφ)2 1

q2
⊥
, (3.223)

δ(1)(σ, q⊥) = 0 +O(ε|q⊥|0) , (3.224)

δ(2)(σ, q⊥) = −64π(Gm1m2)3 (σ − cosφ)4

√
σ2 − 1

arcsinh

√
σ − 1

2

1

ε

(
q2
⊥
µ̄2

)−2ε

+O(ε0|q⊥|) . (3.225)

Note that δ(2) includes an O(ε0|q⊥|) which we have not calculated. This however goes beyond

the classical power counting and so is a quantum correction to the phase. Finally, we can

readily perform the Fourier transform to obtain the more familiar eikonal phase in impact

parameter space

δ(σ, be) =
1

N

∫
dD−2q⊥
(2π)D−2

eibe·q⊥ δ(σ, q⊥) , (3.226)

with the result

δ(0)(σ, be) = −2Gm1m2
(σ − cosφ)2

√
σ2 − 1

(
1

ε
+ log b2

e

)
, (3.227)

δ(1)(σ, be) = 0 , (3.228)

δ(2)(σ, be) = −32G3m2
1m

2
2

(σ − cosφ)4

σ2 − 1
arcsinh

√
σ − 1

2

1

b2
e

, (3.229)

where we have dropped O(ε) and quantum parts. As a cross-check we have verified that the

same result is obtained by using the more common approach in which one directly transforms

the amplitudes to impact parameter space.
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Soft vs. potential and exponentiation Let us stress that it was very important that

we evaluated the amplitude in the potential region to extract the conservative piece. For

the one-loop amplitude, the expansion in the soft region differs from that of the potential

region at O(ε |q|0), which, in addition to the ε suppression, is a quantum correction since

the classical dynamics arises from O(1/|q|) terms. For the two-loop amplitude, however,

the two expansions still differ from each other at O(|q|0), which is at the same order as the

terms responsible for the classical dynamics at two loops, and the difference is also no longer

suppressed by ε. In fact, when we directly evaluate the integrals in the soft region at two loops

we find non-exponentiating effects which cause infrared divergences that are not canceled

by either matching to non-relativistic EFT or by extracting the eikonal exponent, signaling

the appearance of contributions that cannot be interpreted as arising from a conservative

potential.18 The evaluation of the soft integrals using the differential equations above and a

detailed discussion of this point will be presented elsewhere.

Scattering angle from eikonal phase

Let us now calculate the gravitational scattering angle from the eikonal phase. The formula

relating the two can be derived from the stationary phase approximation of the Fourier

transform of the exponentiated impact-parameter amplitude back to momentum space [58],

which yields the relation

q = − ∂

∂be

δ(σ, be) . (3.230)

The magnitude of q is related to the scattering angle χ and the magnitude of the three-

momentum p in the center of mass by

|q| = 2|p| sin χ
2
, (3.231)

18This is reminiscent of the situation in the EFT formulation of the Regge limit of massless scattering
[289], where contributions from the Glauber region exponentiate while the full soft regions contain non-
exponentiating effects.
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where in terms of the center of mass energy E =
√
s and/or σ

|p| = m1m2

√
σ2 − 1

E
=

m1m2

√
σ2 − 1√

m2
1 +m2

2 + 2m1m2σ
. (3.232)

From Eqs. (3.230) and (3.231) we can derive the formula for the scattering angle

sin
χ

2
= − 1

2|p|
∂

∂|be|
δ(σ, be) . (3.233)

Using this formula we find the following result for the scattering angle

sin
χ

2
=
Gm1m2

|p||be|
2(σ − cosφ)2

√
σ2 − 1

− G3m3
1m

3
2

|p|3|be|3
32m1m2(σ − cosφ)4

m2
1 +m2

2 + 2m1m2σ
arcsinh

√
σ − 1

2
. (3.234)

or separating the different orders

χ1PM
eik =

Gm1m2

|p||be|
4(σ − cosφ)2

√
σ2 − 1

, (3.235)

χ2PM
eik = 0 , (3.236)

χ3PM
eik = −G

3m3
1m

3
2

|p|3|be|3
16

[
−(σ − cosφ)6

6(σ2 − 1)3/2
+

4m1m2(σ − cosφ)4

m2
1 +m2

2 + 2m1m2σ
arcsinh

√
σ − 1

2

]
. (3.237)

Looking ahead, in order to more easily to compare with the results from EFT in the next

subsection, we will write the formula in terms of the angular momentum, J . The angular

momentum is defined as

J = |b× p| = |b||p| , (3.238)

where b is an impact parameter perpendicular the incoming center of mass momentum p.

This is however not the impact parameter, be, which arises naturally from the eikonal phase.

Eq. (3.230) shows that be points in the direction of the momentum transfer. The magnitude

of b and be are then related by

|b| = |be| cos
χ

2
, (3.239)
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so that the angular momentum is

J = |be||p| cos
χ

2
. (3.240)

For small angle scattering |b| ∼ |be|, and the difference is unimportant at leading order. Our

results, however, go beyond the leading order and the difference matters. Using the relation

(3.240) we find the scattering angle in terms of the angular momentum

χ1PM
eik =

Gm1m2

J

4(σ − cosφ)2

√
σ2 − 1

, (3.241)

χ2PM
eik = 0 , (3.242)

χ3PM
eik = −G

3m3
1m

3
2

J3
16

[
(σ − cosφ)6

3(σ2 − 1)3/2
+

4m1m2(σ − cosφ)4

m2
1 +m2

2 + 2m1m2σ
arcsinh

√
σ − 1

2

]
. (3.243)

For later convenience we can rewrite this in terms of the total mass, m, and symmetric mass

ratio, ν,

m = m1 +m2 , ν =
m1m2

(m1 +m2)2
, (3.244)

as follows

χ1PM
eik =

Gm2ν

J

4(σ − cosφ)2

√
σ2 − 1

, (3.245)

χ2PM
eik = 0 , (3.246)

χ3PM
eik = −G

3m6ν3

J3
16

[
(σ − cosφ)6

3(σ2 − 1)3/2
+ ν

4(σ − cosφ)4

2(σ − 1)ν + 1
arcsinh

√
σ − 1

2

]
, (3.247)

Probe limit As a cross-check we can compare the probe limit ν → 0 of our result with

the scattering angle of a particle of mass µ moving along geodesics in the background of the

half-BPS black hole of mass M [257, 258]. Ref. [119] studied the precession of the periastron,

178



which is given by

1

2
∆Φ =

∫ rmax

rmin

dr
dχ

dr
= J

∫ rmax

rmin

dr

r2
√
pr(r)2

, (3.248)

where pr is the radial momentum of the probe particle, related to its three-momentum by

p2
p = p2

r + J2/r2. The scattering angle is given by the same integral with different limits

1

2
(χ+ π) = J

∫ ∞
rmin

dr

r2
√
pr(r)2

, (3.249)

so their calculation can be easily adapted to obtain this quantity. Let us spare the details

to the reader and just give the result

1

2
χp = arctan

[
GM2νp

J

2(σp − cosφp)2

(σ2
p − 1)1/2

]
(3.250)

=
GM2νp

J

4(σp − cosφp)2

(σ2
p − 1)1/2

− G3M6ν3
p

J3

16(σp − cosφp)6

3(σ2
p − 1)3/2

,

where σp and φp are the relativistic factor and charge misalignment of the probe particle

respectively, and νp = µ/M . Interestingly the structure of the result is the same of that for

a Newtonian potential (see e.g Ref. [239], Eq. (4.34)), which could be expected from the fact

that Ref. [119] found no precession. Finally, it is easy to check that with the identifications

σ ↔ σp , φ↔ φp , M ↔ m, ν ↔ νp , (3.251)

this matches Eqs. (3.245)–(3.247) in the limit ν → 0, in which the term with the arcsinh is

suppressed by its coefficient, thus providing a check of our result.

High-energy limit and graviton dominance

At this point we would like to compare our result for the scattering angle with that of Einstein

gravity obtained in Refs. [41, 42]. Famously, the high-energy limit of scattering amplitudes

in a theory with gravity is dominated by the exchange of gravitons [57]. This is proven at
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leading order in Gm1m2/J but not beyond that. Recently, in Ref. [3], a similar result was

found by explicit calculation at order G3 for the case of massless scattering. Although a

general proof of graviton dominance at this order is lacking, this reference calculated from

first principles the scattering angle for N ≤ 4 supergravity and Einstein gravity using eikonal

and partial wave techniques, and found that it coincides in all such theories.19 In addition,

the result for Einstein gravity was found to agree with an earlier result by Amati, Ciafaloni

and Veneziano [61] and contradicts a modified proposal by Damour [65].

Motivated by the universality in the massless case, we will study the high-energy limit of

our result by taking σ →∞ in our result for the scattering angle at order G3, which yields

χ3PM
N=8

σ→∞
= −16G3m6ν3σ3 log(σ)

J3
+ · · · . (3.252)

This can be compared with the high-energy limit of the Einstein gravity result in Ref. [42]

Eq. (11.32)

χ3PM
EG

σ→∞
= −16G3m6ν3σ3 log(σ)

J3
+ · · · , (3.253)

finding perfect agreement. This strongly suggests that the coefficient of the arcsinh term

features graviton dominance, and universality also holds in the case of massive scattering.

Note that this result does not trivially follow from the massless one since here we impose

the limits J � 1 and then σ � 1 in this order (or equivalently |q| � m). The limits do

not commute, so the high energy limit of classical massive scattering is distinct from the

Regge limit of massless scattering. Admittedly, our calculation provides is only one point

of comparison with Einstein gravity, so the question of graviton dominance merits further

investigation, either by calculating the scattering angle in other supergravity theories or by

directly proving universality. We leave this for future work.

19In massless theories the classical limit and the high-energy limit are not distinct, so the full classical
angle agrees.
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3.3.6 Consistency check from effective field theory

In this subsection we will calculate the conservative amplitudes using the non-relativistic

integration method of Refs. [39, 41, 42], which is optimized for EFT matching. This method

avoids explicit computation of infrared divergent integrals in dimensional regularization,

by canceling such integrals between the full theory and the effective field theory using a

four-dimensional matching procedure. We will use the EFT Hamiltonian to calculate the

scattering angle solving the classical dynamics. Finally, we will compare to our predictions

for the amplitude and the angle from the previous subsection.

The EFT is defined in the center of mass frame

p1 = (−E1,p) , p2 = (−E2,−p) , p3 = (E2,p
′) , p4 = (E1,−p′) , (3.254)

where the magnitude of the three-momenta, |p| = |p′|, is unchanged in the scattering and

the energies are Ei =
√
m2
i + p2. In this frame the momentum transfer is purely spatial and

given by q = p− p′, and the usual Mandelstam invariants are

s = (p1 + p2)2 = (E1 + E2)2 = E2 , (3.255)

t = (p1 + p4)2 = −(p− p′)2 = −q2 = −4p2 1− cosχ

2
= −4p2 sin2 χ

2
, (3.256)

u = (p1 + p3)2 = (E1 − E2)2 − (p + p′)2 = E2(1− 4ξ)− 4p2 cos2 χ

2
, (3.257)

where χ is the scattering angle and we introduced the total center of mass energy, E, and

the symmetric energy ratio, ξ, defined as

E = E1 + E2, ξ =
E1E2

(E1 + E2)2
. (3.258)

We will use these variables throughout this subsection.
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Scattering amplitude with IR subtractions optimized for EFT matching

Here we will use the method of Refs. [41, 42], which first expand in the small-velocity limit in

the potential region to produce three-dimensional integrals, and then expand in the limit of

small q. Divergent integrals will be kept unevaluated, to be canceled against EFT amplitudes

in the matching procedure.

First let us calculate the scattering amplitudes optimized for EFT matching. At tree

level the relevant piece comes from the 1/t pole

M1 =
8πGm2

1m
2
2

E1E2

(σ − cosφ)2

q2
, (3.259)

where we have divided by the non-relativistic normalization 4E1E2. We will use the notation

in Refs. [41, 42] and denote the conservative amplitudes in this subsection with calligraphic

M to distinguish them from those evaluated in dimensional regularization in previous sub-

sections. The one-loop amplitude can be easily obtained from the one-loop integrand in

Eq. (3.47). As explained in Ref. [42], Sec. 7.2.2 and 7.3.3, the scalar crossed box gives a van-

ishing contribution in the potential region (in strictly four dimensions), and the box yields

the following three dimensional integral

I
(p)
II =

∫
dD−1`

(2π)D−1

1

2E`2(` + q)2(`2 + 2p`)
+ evanescent terms. (3.260)

Here evanescent terms refer to two classes of terms: (1) terms that are suppressed in ε or

|q| after loop integration, (2) terms that arise from EFT diagrams with insertions of EFT

operators suppressed by ε or |q| omitted from Eq. (3.270). Due to divergences associated

with loop integration, terms of class (2) may be naively of the same order of ε and |q| as

terms that directly correspond to four-dimensional classical dynamics, but nevertheless such

evanescent terms cancel in the EFT matching procedure and do not contribute to the final
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results. The one-loop amplitude optimized for EFT matching is then

M2 =
(16πG)2m4

1m
4
2

2E1E2(E1 + E2)
(σ − cosφ)4

∫
dD−1`

(2π)D−1

1

`2(` + q)2(`2 + 2p`)
+ evanescent terms.

(3.261)

Finally, we extract the two-loop conservative amplitude optimized for EFT matching

from the two-loop integrand in Eq. (3.51). Let us first consider the integrals in the first line

of such an equation. As explained in Ref. [42], when using the non-relativistic integration

method all the non-planar scalar ladders vanish. Intuitively this is because the energy flow

would require the propagation of an antiparticle, which is not allowed, so only the planar

double-box contributes in the potential region as [42]

I
(p)
III =

1

4E2

∫
dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

+ evanescent terms . (3.262)

We must note that the vanishing of the non-planar integrals is a consequence of the loop-by-

loop integration procedure used in Ref. [42], which at every stage drops evanescent contribu-

tions. In a two-loop integral these can hit at 1/ε or 1/|q| pole coming from a different loop

and generate finite contributions with classical power-counting such as those calculated in

subsection 3.3.3. These contributions arising from evanescent terms are scheme dependent,

and, as mentioned above, their ultimate fate is to cancel in the EFT matching procedure. In

particular, they will not affect any physical quantity. Thus, as long as the integration in full

theory and EFT is done consistently one might drop such evanescent terms. This effectively

gives us a four-dimensional regularization method which, in contrast to our eikonal calcula-

tion based on dimensional regularization, does not need quantum corrections of O(|q|0), and

O(ε) contributions at one-loop in order to extract the classical dynamics at two loops.

Next we consider the integrals in the second line of Eq. (3.51). As explained in previous
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subsections only IH and IH contribute with value given by Eq. (3.163), which we reprint here

I
(p)

H
+ I

(p)

H
=

log q2

64π2m1m2q4

arcsinh
√

σ−1
2√

σ2 − 1
+ evanescent terms , (3.263)

where we dropped 1/ε pole terms that do not generate non-analytic dependence on q2.

Putting the pieces together we find the full two-loop amplitude optimized for EFT matching

M3 =
32πG3m3

1m
3
2 (σ − cosφ)4

E1E2

log q2
arcsinh

√
σ−1

2√
σ2 − 1

+
64π2m3

1m
3
2(σ − cosφ)2

(E1 + E2)2

×
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

]
+ evanescent terms. (3.264)

For later convenience we rewrite the conservative amplitudes in terms of the total energy,

mass and cross ratios as

M1 =
8πGν2m4

E2ξ

(σ − cosφ)2

q2
, (3.265)

M2 =
(16πG)2ν4m8

2E3ξ
(σ − cosφ)4

∫
dD−1`

(2π)D−1

1

`2(` + q)2(`2 + 2p`)
+ evanescent terms ,

(3.266)

M3 =
32πG3ν3m6 (σ − cosφ)4

ξE2

log q2
arcsinh

√
σ−1

2√
σ2 − 1

+
64π2ν3m6(σ − cosφ)2

E2

×
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

1

`2
1(`2 − `1)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

]
+ evanescent terms. (3.267)

EFT matching and classical Hamiltonian

Following Ref. [39], we want to match the amplitudes above to an EFT with an ordinary

Hamiltonian with a potential, which we later will use to solve for the classical dynamics.
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The EFT describes two massive scalars interacting with momentum space Lagrangian given

by

L =

∫
dD−1p

(2π)D−1
φ†1(−p)

(
i∂t −

√
p2 +m2

1

)
φ1(p)

+

∫
dD−1p

(2π)D−1
φ†2(−p)

(
i∂t −

√
p2 +m2

2

)
φ2(p)

−
∫

dD−1p

(2π)D−1

dD−1p′

(2π)D−1
V (p,p′)φ†1(p′)φ1(p)φ†2(−p′)φ2(−p) , (3.268)

where the form of the kinetic term manifests the absence of anti-particles. The potential is

given by

V (p,p + q) =
∞∑
n=1

(G/2)n(4π)(D−1)/2

|q|D−1−n
Γ [(D − 1− n)/2]

Γ [n/2]
cn
(
p2
)

(3.269)

=
4πG

q2
c1

(
p2
)

+
2π2G2

|q| c2

(
p2
)
− 2πG3 log q2 c3

(
p2
)

+ · · · , (3.270)

where for conciseness we have put the external legs on-shell. As in the full theory, here we

have also dropped evanescent terms suppressed by ε or q2 at each order in G, which can

affect the scattering amplitudes but do not have physical effects. If we Fourier transform q

back to position space this yields the more familiar potential with an expansion in G/|r|.

The EFT amplitudes calculated with the Lagrangian above are very simple. Due to the

absence of anti-particles they are given by iterated bubble diagrams. The results up to order
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G3 are given by Ref. [42],

MEFT
1 = −4πGc1

q2
,

MEFT
2 = −2π2G2c2

|q| +
π2G2

Eξ|q|

[
(1− 3ξ)c2

1 + 4ξ2E2c1c
′
1

]
+

∫
dD−1`

(2π)D−1

32Eξπ2G2c2
1

`2(` + q)2(`2 + 2p`)
,

MEFT
3 = 2πG3 log q2c3 −

πG3 log q2

E2ξ

[
(1− 4ξ)c3

1 − 8ξ3E4c1c
′
1

2 − 4ξ3E4c2
1c
′′
1 + 4ξ2E3c2c

′
1

+ 4ξ2E3c1c
′
2 − 2(3− 9ξ)ξE2c2

1c
′
1 + 2E(1− 3ξ)c1c2

]
+

∫
dD−1`

(2π)D−1

16π3G3c1 [2Eξc2 − (1− 3ξ)c2
1 − 4ξ2E2c1c

′
1]

`2|` + q|(`2 + 2p`)

−
∫

dD−1`1

(2π)D−1

dD−1`2

(2π)D−1

256E2ξ2π3G3c3
1

`2
1(`1 + `2)2(`2 + q)2(`2

1 + 2p`1)(`2
2 + 2p`2)

, (3.271)

where ci = ci(p
2) and the primes denote derivatives. The EFT matching is performed by

requiring Mn =MEFT
n , which yields the following coefficients for the potential

c1(p2) = −m
4ν2

E2ξ
2(σ − cosφ)2 , (3.272)

c2(p2) =
m6ν3

E3ξ2

[
−8(σ − cosφ)3 +

2ν(σ − cosφ)4

E2ξ

]
, (3.273)

c3(p2) =
m6ν3

E2ξ

16(σ − cosφ)4arcsinh
√

σ−1
2√

σ2 − 1
− 40m2ν(σ − cosφ)4

E2ξ2

+
8m4ν2(3− 4ξ)(σ − cosφ)5

E4ξ3
− 4m6ν3(1− 2ξ)(σ − cosφ)6

E6ξ4

]
. (3.274)

A simple check is that for φ = 0 the potential should vanish in the static limit, σ → 1

because the black holes are extremal. At higher loops this will continue to hold because the

amplitude is proportional stuM tree, which vanishes as (1 − cosφ)4. Note that at one loop

there are no triangles so the result is pure iteration

c2(p2) =

[
(1− 3ξ)

2Eξ
+ Eξ∂p2

]
c1(p2)2 . (3.275)
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We note that in the high-energy limit σ → ∞, the potential also matches the result from

Einstein gravity in Refs. [41, 42].

Scattering angle from the classical Hamiltonian

The scattering angle can be calculated from the Hamiltonian

H(p, r) =
√

p2 +m2
1 +

√
p2 +m2

2 + V (p, r) , (3.276)

by solving the classical equations of motion. As shown in Ref. [41], this yields a formula that

expresses the scattering angle directly in terms the IR finite part of the PM amplitudes,M′
i,

which are defined by dropping the unevaluated integrals in the expressions above

2πχ =
d1

J
+
d2

J2
+

1

J3

(
−4d3 +

d1d2

π2
− d3

1

48π2

)
, (3.277)

where di are defined in terms of M′
i as

d1 = Eξq2M′
1/|p| , d2 = Eξ|q|M′

2 , d3 = Eξ|p|M′
3/ log q2 . (3.278)

Using our results for N = 8 supergravity we find

d1 = 8πGm2ν
(σ − cosφ)2

√
σ2 − 1

, d2 = 0 , (3.279)

d3 =
32πG3m6ν4(σ − cosφ)4

2(σ − 1)ν + 1
arcsinh

√
σ − 1

2
, (3.280)
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so the scattering angle calculated from the EFT is

χ1PM =
Gm2ν

J

4(σ − cosφ)2

√
σ2 − 1

, (3.281)

χ2PM = 0 , (3.282)

χ3PM = −G
3m6ν3

J3
16

[
(σ − cosφ)6

3(σ2 − 1)3/2
+ ν

4(σ − cosφ)4

2(σ − 1)ν + 1
arcsinh

√
σ − 1

2

]
, (3.283)

which precisely matches our results in Eqs. (3.245)–(3.247) from the eikonal analysis.

One might be tempted to use the Hamiltonian to also calculate the precession of the

periastron, ∆Φ, but as explained in Refs. [239, 240], there is a simple relation between this

quantity and the scattering angle

∆Φ = χ(J) + χ(−J) , (3.284)

which implies that odd orders in G (i.e. odd PM orders), which are also odd in J , do not

produce a precession, which can be confirmed by explicit calculation using the Hamiltonian.

This means that the absence of precession observed in Ref. [119] extends to O(G3), although

for trivial reasons, and a calculation at the next order will be needed to test their conjecture

of no precession to all orders. The precise statement of the conjecture of in Ref. [119] is

that the quantum energy levels of the bound system, which we have not explored in this

work, remain exactly degenerate. However, the fact that there is a correction to the classical

scattering angle at O(G3), although suppressed in the probe limit, makes us less optimistic

about the possibility of the orbits remaining integrable at this and higher orders.

3.4 Conclusions

In this chapter, by studying massless gravitational scattering amplitudes through O(G3) in a

variety of theories, we found the classical scattering angle to be independent of their matter
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content, thus demonstrating graviton dominance at a higher order than had been previously

understood [56–60]. In addition, we confirmed that the classical scattering angle found by

ACV [61] is indeed correct. The results of our calculation are, however, in conflict with

Damour’s recent conjecture [65].

In the context of massive scattering, we computed the conservative classical dynamics

for the scattering of two spinless extremal black holes in N = 8 supergravity at O(G3).

In Refs. [41, 42] the O(G3) (or 3rd-post-Minkowskian) conservative potential in Einstein

gravity was calculated using an EFT matching procedure that avoids evaluation of infrared

divergent integrals and provides a velocity expansion to high orders. Here, in contrast, we

have directly calculated the IR-divergent scattering amplitude in dimensional regularization,

and have directly obtained exact velocity dependence using differential equations, without

the need to resum a series expansion.

This has allowed us to probe the delicate IR structure of eikonal exponentiation, where

terms that vanish in four dimensions or vanish in the classical limit have to be evaluated

explicitly at one loop, in order to construct IR subtraction terms at two loops to isolate

genuine classical contributions at O(G3). Our novel integration method paves the way to a

rigorous verification of the velocity resummation of Refs. [41, 42], and to streamline further

calculations. The ability to evaluate the divergent two-loop amplitudes in dimensional reg-

ularization also opens the door to applying the method of Refs. [40, 189] which computes

classical observables directly from appropriate phase space integrations of the S-matrix. Our

differential equations method is highly flexible as the only difference between the soft region

and the potential region is in the boundary conditions. The evaluation of the amplitude in

the soft region at two loops and the emergence of non-exponentiating terms will be discussed

elsewhere.

By computing the classical gravitational scattering angle in both the eikonal approxi-

mation and EFT formalism, we have explicitly established their equivalence at O(G3) for

the scattering of massive particles for the first time. While the EFT formalism gives a
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more direct connection to the classical Hamiltonian, the eikonal approximation provides a

more direct relation between two gauge-invariant quantities, the scattering amplitude and

the scattering angle. It would be interesting to prove the all-order eikonal exponentiation

structure for massive scattering from first principles beyond the one-loop case [38], perhaps

by generalizing the partially massive case studied at two loops in Ref. [262], and to prove

the validity of the eikonal angle formula beyond two loops.

Remarkably, we found that the classical scattering angle of two extremal black holes in

N = 8 supergravity coincides in the limit of high energy with that of two Schwarzschild

black holes in Einstein gravity [41, 42]. Since the classical limit satisfies |q| � M and

does not commute with the massless limit M → 0, our result is reminiscent of, but not a

direct consequence of, the universality of massless gravitational scattering in the Regge limit

recently unveiled in Ref. [3], and strongly suggests graviton dominance, whose mechanism

still needs to be understood, is generic at this order.

There are a number of interesting directions to pursue. First and foremost, it would be

desirable to systematically complete a proof of universality through O(G3) for any gravi-

tational theory. An obvious, if nontrivial, next step would be to check whether some form

of universality remains at higher orders as well. It would also be important to understand

the constraints that the high-energy behavior of scattering amplitudes imposes on classical

binary black hole interactions [62]. The recent advances [213, 214, 290, 291] that make it pos-

sible to obtain the complete four-graviton two-loop amplitude of pure Einstein gravity [106]

can be expected to lead to further insight.

Beyond universality, several aspects of the scattering of black holes in N = 8 super-

gravity deserve further study. For instance, it would be very interesting to re-analyze the

two-loop calculation for dyonic black holes with generic charge misalignments. This might

require an improved understanding of the structure of the S-matrix for mutually non-local

particles. Furthermore, it would be interesting to calculate the exact quantum energy levels

of the bound system and their decay rates to explore the precise integrability conjecture of
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Ref. [119]. More generally, this conjecture should be investigated at the next order, where

precession can arise. Given the simplicity of loop integrands in N = 8 supergravity, we

expect this highly symmetric theory to be an excellent theoretical laboratory for other as-

pects of black hole binary dynamics, such as spin-dependent scattering at O(G3) and spinless

scattering at O(G4), both of which are unexplored frontiers in post-Minkowskian expansion

of black hole binary dynamics, but are amenable to treatment by our techniques.20 We hope

to explore some of these questions in the near future.

3.A Dimensionally regularized integrals for the poten-

tial region

In this appendix we present results for dimensionally regularized Feynman integrals in D −

1 = 3− 2ε spatial dimensions, needed for re-expanding the “soft integrals” in the potential

region. All of these integrals are the result of evaluating the energy integrals using the residue

prescriptions explained in the main text.

Following widely used conventions in the literature on Feynman integrals, the integrals

are presented with the following normalization,

dD−1`

π(D−1)/2
= 8π3/2 (4π)−ε

dD−1`

(2π)(D−1)
. (3.285)

In the frame chosen the external three-momentum transfer q is in the transverse (x, y)

direction, while some integrals have linear propagators of the form 1/`z = 1/(` · nz), where

nz is the unit vector in the z-direction. The final results are fully relativistic and functions

of q2 = −q2. Unless otherwise shown, we will consider the −i0 prescription to be implicitly

present in every propagator.

20See Refs. [206, 292, 293] for some related recent results in the post-Newtonian expansion. Also see
Refs. [120, 189, 294–302] for spin-dependence in the post-Minkowskian expansion up to O(G2).
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3.A.1 One-loop integrals

At one loop we need to evaluate the linearized triangle and bubble integrals in Eqs. (3.100)

and (3.99). These can evaluated using traditional methods. Concrete the general linearized

triangle integral is given by [282]

∫
dD−1`

π(D−1)/2

1

(`2 − i0)a[(`− q)2 − i0]b(2`z − i0)c
(3.286)

= e
iπc
2 (q2)

3
2
−a−b− c

2
−εΓ

(
c
2

)
Γ
(

3
2
− a− c

2
− ε
)

Γ
(

3
2
− b− c

2
− ε
)

Γ
(
a+ b+ c

2
+ ε− 3

2

)
2Γ(a)Γ(b)Γ(c)Γ(3− a− b− c− 2ε)

.

The usual bubble integrals with c = 0 can be recovered by

lim
c→0

Γ(c/2)

2Γ(c)
= 1 . (3.287)

In particular, for a = b = 1, c→ 0, Eq. (3.286) gives

∫
dD−1`

π(D−1)/2

1

`2(`− q)2
=
(
−q2

)−ε 1√
−q2

Γ
(

1
2
− ε
)2

Γ
(

1
2

+ ε
)

Γ(1− 2ε)
. (3.288)

Setting a = b = c = 1 in Eq. (3.286) gives

∫
dD−1`

π(D−1)/2

1

`2(`− q)2(2`z)
=
(
−q2

)−ε 1

−q2

i
√
π Γ(−ε)2Γ(1 + ε)

2Γ(−2ε)
. (3.289)

Another way to evaluate this integral is by using symmetrization over the possible assign-

ments of loop momenta

∫
dD−1`

π(D−1)/2

1

`2(`− q)2(2`z1 − i0)
(3.290)

=

∫
dD−1`1

π(D−1)/2
dD−1`2

1

(2`z1 − i0)
∏

i `
2
i

δ(
∑

`zi )δ
(D−2)(

∑
`⊥i − q⊥) .
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Where the `⊥i and q⊥ are the components of `i and q in the plane orthogonal to nz, respec-

tively. Now we symmetrize over the two loop momenta, using

1

2!

[
1

2`z1 − i0
+

1

2`z2 − i0

]
δ(
∑

`zi ) =
iπ

2
δ(`z1)δ(`z2) . (3.291)

Using qz = 0, we can trivially preform the z-integration to obtain a (D − 2)-dimensional

bubble integral

∫
dD−1`

π(D−1)/2

1

`2(`− q)2(2`z1 − i0)
=
i
√
π

2

∫
dD−2`1

π(D−2)/2

1

`2(`− q)2

=
(
−q2

)−ε 1

−q2

i
√
πΓ(−ε)2Γ(ε+ 1)

2Γ(−2ε)
, (3.292)

in agreement with Eq. (3.289).

3.A.2 Two-loop integrals

Double box (III) Adopting the frame choice Eq. (3.95), and after energy integration, we

find that in the static limit, the pure basis of master integrals, Eqs. (3.115)–(3.124), for the

Roman III family are equal to

f
(p)
III,4

∣∣
y=1

=
π

6
ε2(1 + 2ε)(−q2)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2 (` 2
1 )2` 2

2 (`1 + `2 − q)2
, (3.293)

f
(p)
III,6

∣∣
y=1

=
π

6
ε3(1− 6ε)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2 ` 2
1 `

2
2 (`1 + `2 − q)2

, (3.294)

f
(p)
III,7

∣∣
y=1

= πε4(−q2)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2 ` 2
1 `

2
2 (`1 + `2 − q)2(2`z1)(−2`z2)

, (3.295)

f
(p)
III,10

∣∣
y=1

= − ε4

8

√
−q2

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2 ` 2
1 `

2
2 (`1 + `2 − q)2(2`z1)

, (3.296)

where we have omitted the other integrals in the basis which vanish in the static limit. The

first, second and fourth of these integrals can be evaluated by first performing a sub-loop

integral over `2 using Eq. (3.286), and then evaluating the resulting `1 integral again using
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Eq. (3.286) with non-integer propagator powers,

∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

(` 2
1 )2` 2

2 (`1 + `2 − q)2

=
(
−q2

)−2ε 1

(−q2)

Γ
(
−ε− 1

2

)
Γ
(

1
2
− ε
)2

Γ(2ε+ 1)

Γ
(

1
2
− 3ε

) , (3.297)∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2

=
(
−q2

)−2ε Γ
(

1
2
− ε
)3

Γ(2ε)

Γ
(

3
2
− 3ε

) , (3.298)∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2(2`z1)

=
(
−q2

)−2ε 1√
−q2

i
√
πΓ
(

1
2
− 2ε

)
Γ
(

1
2
− ε
)2

Γ(−ε)Γ
(
2ε+ 1

2

)
2Γ
(

1
2
− 3ε

)
Γ(1− 2ε)

. (3.299)

The evaluation of the remaining integral follows closely the evaluation of the one-loop triangle

integral by symmetrization. We first rewrite

∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2(2`z1 − i0)(−2`z2 − i0)

(3.300)

=

∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2
dD−1`3

1

(2`z1 − i0)(−2`z2 − i0)
∏

i `
2
i

δ(
∑

`zi )δ
(D−2)(

∑
`⊥i − q⊥) .

Symmetrizing over all loop momenta, results in the identity similar to Eq. (3.291),

1

3!

[
1

(2`z1 − i0)(−2`z2 − i0)
+ perms.

]
δ
(∑

`zi

)
= −π

2

6
δ(`z1)δ(`z2)δ(`z3) . (3.301)

Using qz = 0, we can trivially preform the z-integration to obtain a (D − 2)-dimensional

integral

∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2(2`z1 − i0)(−2`z2 − i0)

(3.302)

= − π

6

∫
dD−2`1

π(D−2)/2

dD−2`2

π(D−2)/2

1

` 2
1 `

2
2 (`1 + `2 − q)2

= − π

6

(
−q2

)−2ε 1

(−q2)

Γ(−ε)3Γ(2ε+ 1)

Γ(−3ε)
.
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Therefore, the integrals with nonzero values in the static limit are

f
(p)
III,4

∣∣
y=1

= − 2f
(p)
III,6

∣∣
y=1

=
2π

3
ε3(−q2)−2εe2γEε

Γ
(

1
2
− ε
)3

Γ(2ε)

Γ
(

1
2
− 3ε

) , (3.303)

f
(p)
III,7

∣∣
y=1

=
π2

6
ε4(−q2)−2εe2γEε

Γ(−ε)3Γ(2ε+ 1)

Γ(−3ε)
, (3.304)

f
(p)
III,10

∣∣
y=1

= − iε4π3/2

4
(−q2)−2εe2γEε

Γ
(

1
2
− 2ε

)
Γ
(

1
2
− ε
)2

Γ(−ε)Γ
(

1
2

+ 2ε
)

Γ
(

1
2
− 3ε

)
Γ(1− 2ε)

. (3.305)

By expanding in ε one can check that such boundary conditions (3.311)–(3.304) are of uniform

transcendental weight, and yield the boundary vector (3.137) used in the text.

H and H The integrals for the sum of H and H topologies with non-vanishing static limits

are

f
(p)
cH,4

∣∣
y=1

= − π

2
ε4(−q2)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2` 2
1 `

2
2 (`1 − q)2(`2 − q)2

, (3.306)

f
(p)
cH,7

∣∣
y=1

= − π

4
ε2(1 + 2ε)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2(` 2
1 )2` 2

2 (`1 + `2 − q)2
, (3.307)

f
(p)
cH,10

∣∣
y=1

= − πε4(−q2)

∫
dD−1`1dD−1`2 (eγEε)2

(iπ(D−1)/2)2`2
1`

2
2(`1 − q)2(`2 − q)2

. (3.308)

The second integral has already been evaluated, and equals to

f
(p)
cH,7

∣∣
y=1

= − 3

2
f

(p)
III,4

∣∣
y=1

. (3.309)

The remaining integrals are proportional to a two-loop double-bubble integral which factor-

izes and is trivially the square of the one-loop bubble integral (3.288)

∫
dD−1`1

π(D−1)/2

dD−1`2

π(D−1)/2

1

`2
1`

2
2(`1 − q)2(`2 − q)2

=
(
−q2

)−2ε 1

(−q2)

Γ
(

1
2
− ε
)4

Γ
(

1
2

+ ε
)2

Γ(1− 2ε)2
. (3.310)
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In summary we find the following result for the static integrals

f
(p)
cH,4

∣∣
y=1

=
1

2
f

(p)
cH,10

∣∣
y=1

=
π

2
ε4(−q2)−2εe2γEε

[
Γ
(

1
2
− ε
)2

Γ
(
ε+ 1

2

)
Γ(1− 2ε)

]2

, (3.311)

f
(p)
cH,7

∣∣
y=1

=− πε3(−q2)−2εe2γEε
Γ
(

1
2
− ε
)3

Γ(2ε)

Γ
(

1
2
− 3ε

) , (3.312)

which yields the boundary vector in Eq. (3.162).

IX and crossed integrals The evaluation of the boundary vector for the IX and crossed

integrals proceeds analogously to the computations in the previous subsubsections. In par-

ticular all three-dimensional integrals necessary have already been computed therein. The

values for the boundary conditions can be extracted from the full results provided in the

ancillary files accompanying the ArXiv submission of this work.

3.B Solution of the differential equations

Having the canonical form of the differential equations at hand the systems can be straight-

forwardly solved order-by-order in ε, yielding harmonic polylogarithms. In this appendix we

present the solution of the differential equations for two-loop master integrals in the potential

region up to O(ε4). All the functions not shown vanish. The solution of the differential equa-

tions in Eq. (3.126) with the matrices in Eqs. (3.128) and (3.129) and boundary conditions
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in Eq. (3.137) is

f
(p)
III,2 = (−q2)−2εε2π2

[
−1

3
ε log(x) + ε2

(
Li2(1− x2) + log2(x)

)]
, (3.313)

f
(p)
III,3 = (−q2)−2εε2π2

[
−2

3
ε log(x)− 2

3
ε2
(
Li2(1− x2) + log2(x)

)]
, (3.314)

f
(p)
III,4 = (−q2)−2εε2π2

[
1

3
+

1

18
ε2
(
−7π2 − 48 log2(x)

)]
, (3.315)

f
(p)
III,6 = (−q2)−2εε2π2

[
−1

6
+

7ε2π2

36

]
, (3.316)

f
(p)
III,7 = (−q2)−2εε2π2

[
1

2
− 1

12

(
4 log2(x) + π2

)]
, (3.317)

f
(p)
III,10 = (−q2)−2εε2π2

[
iπε

4
− iπ log(2)ε2

2

]
. (3.318)

The solution of the differential equations in Eq. (3.152) with the matrices in Eq. (3.153) and

boundary conditions in Eq. (3.162) is

f
(p)
cH,4 = (−q2)−2εε2π2

[
ε2π2

2

]
, (3.319)

f
(p)
cH,5 = (−q2)−2εε2π2

[
1

2
ε log(x)− 3

2
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(
Li2(1− x2) + log2(x)

)]
, (3.320)

f
(p)
cH,6 = (−q2)−2εε2π2

[
ε log(x) + ε2

(
Li2(1− x2) + log2(x)

)]
, (3.321)

f
(p)
cH,7 = (−q2)−2εε2π2

[
−1

2
+ ε2

(
7π2

12
+ 4 log2(x)

)]
, (3.322)

f
(p)
cH,9 = (−q2)−2εε2π2

[
−ε log(x) + ε2

(
Li2(1− x2) + log2(x)

)]
, (3.323)

f
(p)
cH,10 = (−q2)−2εε2π2

[
ε2
(
π2 + 6 log2(x)

)]
. (3.324)
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The solution of the differential equations in Eq. (3.184) with the matrices in Eqs. (3.188)

and (3.186) boundary conditions in Eq. (3.191) is

f
(p)
IX,2 = (−q2)−2εε2π2

[
−1

6
ε log(x)− 1

2
ε2
(
Li2(1− x2) + log2(x)

)]
, (3.325)

f
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[
1

3
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, (3.326)
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, (3.327)
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(p)
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, (3.328)
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ε log(x) +
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, (3.329)

f
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(
7π2 + 48 log2(x)
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, (3.330)

f
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IX,8 = (−q2)−2εε2π2
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6
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7π2ε2

36

]
, (3.331)

f
(p)
IX,10 = (−q2)−2εε2π2

[
− 5

12
ε2 log2(x)

]
, (3.332)

f
(p)
IX,15 = (−q2)−2εε2π2

[
iπε

4
− iπ log(2)ε2

2

]
. (3.333)

The differential equation for the III topology is obtained by crossing from the differential

equation for the III topology in Eq. (3.126) with the matrices in Eqs. (3.128) and (3.129).

Using the boundary conditions in Eq. (3.195), we find the solutions

f
(p)
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= (−q2)−2εε2π2

[
1

6
ε log(x)− 1

2
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f
(p)
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= (−q2)−2εε2π2

[
−1

6
ε2 log2(x)

]
. (3.338)
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The differential equation for the IX topology is obtained by crossing from the differential

equation for the IX topology in Eq. (3.126) with the matrices in Eqs. (3.188) and (3.186).

Using the boundary conditions in Eq. (3.196), we find the solutions

f
(p)

IX,2
= (−q2)−2εε2π2

[
1

3
ε log(x)− ε2

(
Li2(1− x2) + log2(x)

)]
, (3.339)
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3
ε log(x) +

2
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, (3.340)
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[
1

3
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1

18
ε2
(
7π2 + 48 log2(x)

)]
, (3.341)
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= (−q2)−2εε2π2

[
1

6
ε log(x)− 1

2
ε2
(
Li2(1− x2) + log2(x)

)]
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f
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= (−q2)−2εε2π2
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1

3
ε log(x)− 1

3
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6
+

1

36
ε2
(
7π2 + 48 log2(x)
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, (3.344)

f
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[
−1

6
+

7π2ε2

36

]
, (3.345)
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(p)
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[
1

3
ε2 log2(x)

]
. (3.346)

199



Chapter 4

Topological Phases in String Theory

4.1 Introduction and summary

4.1.1 Generalities

In perturbative formulations of superstring theories, one treats the 2d worldsheets of strings

as 2d quantum field theories with fermions. The most common treatment is the one due to

Neveu-Schwarz [303] and Ramond [304], often called the NSR formalism. There, one starts

with ten bosonic fields Xµ=0,...,9 and ten left- and right-moving fermionic fields ψµ=0,...,9 and

ψ̃µ=0,...,9. To remove the closed-string tachyon and at the same time obtain spacetime spinors,

one must perform a crucial step called the Gliozzi-Scherk-Olive (GSO) projection [71, 72].

The two Type II superstring theories, Type IIA and Type IIB, arise due to a difference in

the specifics of this projection.

It was pointed out in [74, 305] that the GSO projection can be interpreted as a sum over

the possible spin structures on the worldsheet, with different consistent GSO projections

corresponding to different ways of assigning complex phases to spin structures, in a manner

consistent with cutting and gluing of the worldsheet. This point of view makes manifest

the all-genus consistency of known GSO projections, which is not evident in the one-loop
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analysis often presented to beginners of string theory e.g. in [73]. It does not, however, tell

us whether we have found all possible GSO projections. Indeed, possible consistent GSO

projections for unoriented superstring theories have not been studied systematically in the

past.

One approach to the enumeration of all consistent GSO projections comes from a rather

unexpected place, namely from the study of symmetry-protected topological (SPT) and

invertible phases of matter in condensed matter physics.1 For the purposes of this work, an

invertible phase for a symmetry G can be defined as a system which has a one-dimensional

gapped vacuum on any closed spatial manifold with a background field for G. By taking the

infrared limit, one can then isolate a quantum system whose entire Hilbert space on any closed

spatial manifold with any background field is one-dimensional and contains the vacuum only,

with its partition function simply a complex phase. We note that for an internal symmetry,

the background field is simply a non-dynamical gauge field for the symmetry. On the other

hand, for fermion number symmetry the background field is the spin structure, while for

time-reversal symmetry the background field is the “un-oriented-ness” of the spacetime.

An invertible phase provides a method for assigning complex phases to spin and other

structures on a manifold, in a manner consistent with cutting and gluing. Conversely, any

such assignment corresponds to an invertible phase. Therefore, if one can classify invert-

ible phases, one can classify all consistent GSO projections. Invertible phases with fermion

number symmetry and some additional discrete symmetries are usually called topological

superconductors in the condensed matter literature. Therefore, the classification of GSO

projections is equivalent to the classification of topological superconductors in (1 + 1) di-

mensions.

The classification of invertible phases has been an important topic of recent research in

theoretical condensed matter physics. As will be reviewed below, a general answer in terms

1In the literature of high-energy physics, the terms SPT and invertible phase are often used interchange-
ably. In condensed matter physics they have subtly different connotations. In this work we stick to the
terminology of invertible phases, which are more directly relevant for our purposes.
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of bordism groups has been obtained, see e.g. [77–79]. The upshot is that with this result,

we can now carry out the classification of possible GSO projections on a given worldsheet,

once the structure on said worldsheet is specified.

One important feature of a nontrivial invertible phase in d dimensions for a symmetry

G is that, if it is put on a spacetime with boundary, the (d − 1)-dimensional boundary

theory necessarily hosts nontrivial degrees of freedom. In particular, if G is unbroken on

the boundary, the G-symmetric boundary theory carries a corresponding G-anomaly. One

familiar case is that of the chiral anomaly of a fermion in spacetime dimension 2n, which is

captured by a Chern-Simons term in 2n + 1 dimensions. This is known as anomaly inflow

[306, 307]. The current understanding is that all anomalies2 in (d−1) dimensions, both local

and global, can be characterized in terms of invertible phases in d dimensions.

Applying this observation to the worldsheets of superstrings, we conclude that different

invertible phases, i.e. different GSO projections, will require different boundary conditions

on the edges of worldsheets. Since the boundaries of worldsheets describe the D-branes to

which strings attach, this means that the properties of D-branes reflect the choice of GSO

projection. The discussions up to this point can be summarized schematically as follows:

boundary anomaly : bulk invertible phase

∼ properties of D-branes : choice of GSO projection.
(4.1)

2Some qualifications need to be added to this blanket statement. First, this framework is mostly about the
anomalies of partition functions, and therefore does not immediately describe the conformal anomaly. Second,
anomalies of supersymmetry are less well understood, and it is not clear whether they can be described by
bulk invertible phases. That said, neither is conclusively outside of this framework. As for the first, the
anomaly described by the Kitaev chain is about the impossibility of quantizing a single Majorana fermion,
which is also not directly about the phase of the partition function. As for the second, the supersymmetry
anomaly recently found in [308, 309], which is a superpartner of the anomaly in R-symmetry, was first found
in the context of AdS/CFT [310]. We also note that the shortening anomaly of [311] is related to the fact
that the scalar target space of the holographic supergravity dual is often not Kähler. All this suggests that
these anomalies might also be described in a suitable generalization of the current framework. It would be
interesting to work this out.
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4.1.2 GSO projections and K-theory classification of D-branes

Let us now be more concrete. First, we recall the classification of invertible phases in terms

of bordism groups.3 Let X denote collectively the structure on the spacetime, appropriate

for the systems we would like to classify. For example, X consists of a spin structure and a

G gauge field for systems with fermion number symmetry and an internal symmetry G. We

define the X-bordism group ΩX
d in dimension d to be

ΩX
d := {d-dimensional manifolds with X structure}/ ∼, (4.2)

where the equivalence relation is introduced so that Md ∼ M ′
d if and only if there exists

Nd+1 with the structure X such that ∂Nd+1 has Md as the incoming boundary and M ′
d

as the outgoing boundary. The group structure is given by the disjoint union. Then, the

topological invertible phases in spacetime dimension d are classified by [77–79]

fd
X := Hom(ΩX

d , U(1)). (4.3)

This simply means that the topological invertible phase for an element α ∈ fd
X assigns the

partition function α(Md) ∈ U(1) in such a way that it only depends on the bordism class

[Md] ∈ ΩX
d .4

In this work we will encounter the following structures on the worldsheet: spin structure

3For other recent applications of bordism groups to high-energy theory, see [312–320].
4More precisely, fdX as defined here classifies invertible phases whose partition functions do not depend

continuously on the background fields. Therefore it includes e.g. the 2d theta term
∫
θF/(2π), which only

depends on topological data, but it does not include e.g. the 3d gravitational Chern-Simons term, which
does depend continuously on the metric. The latter is accounted for by considering (DΩX)d+1 instead,
where D denotes the Anderson dual. This group classifies the deformation classes of invertible phases which
can depend continuously on the background fields. Since we take the deformation classes, (DΩX)d+1 does
not include the theta term, which can be continuously varied. The torsion parts of both groups coincide:
Tors Hom(ΩXd , U(1)) = Tors(DΩX)d+1, since torsion invertible phases are discrete and cannot depend contin-
uously on the background data. Both Hom(ΩXd , U(1)) and (DΩX)d+1 are generalized cohomology theories,
but their common torsion part is not. This unfortunately makes the torsion part less mathematically natural.
For all the cases of interest to us in this work, all bordism groups are finite, so these subtle differences can
and will be ignored.
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d fd
Spin(pt) fd

Spin(BZ2) fd
Pin−

(pt) fd
Pin+(pt) fd

DPin(pt)

2 Z2 Z2
2 Z8 Z2 Z2

2

3 0 Z8 0 Z2 Z8

Table 4.1: Dual bordism groups relevant to our analysis. The first four columns are classic
[78, 321]. The last column is new.

for oriented Type 0 strings, Spin×Z2 structure for oriented Type II strings, Pin± structure

for two types of unoriented Type 0 strings, and “double pin” or DPin structure for Type

I strings. We remark here that originally the II, I, 0 in Type II, I, 0 strings referred to the

number of supersymmetries in ten dimensions. Contrary to this usage, in this work we

refer to any NSR strings with independent GSO projections on left- and right-moving spin

structures as Type II, and to any NSR strings with diagonal GSO projections as Type 0.

Type I strings will then be defined as Type II NSR strings on unoriented worldsheets.

The relevant dual bordism groups are listed in Table 4.1. There we have used a slightly

more general notation, with ΩX
d (Y ) representing the bordism group of d-dimensional man-

ifolds with X structure equipped with a map to Y . Then for example a structure X ′ con-

sisting of spin structure and a Z2 gauge field can equivalently be thought of as having

(X, Y ) = (spin structure, BZ2), where BZ2 is the classifying space of Z2 gauge fields, and

therefore ΩX′

d = ΩSpin
d (BZ2). Similarly, letting pt stands for a point, we have ΩX

d = ΩX
d (pt).

Let us begin by discussing the group f2
Spin(pt) = Z2. The nontrivial element is mathemat-

ically known as the Arf invariant, and assigns to a surface Σ with a choice of spin structure

σ a sign (−1)Arf(Σ, σ). A spin structure is called even or odd depending on whether this sign

is +1 or −1. There are many mathematical and physical definitions of the Arf invariant, one

of which is as the number modulo two of zero modes of the Dirac operator on the surface

Σ with spin structure σ [322]. From this definition, we see easily that (−1)Arf(T 2, σ) is −1 if

and only if the spin structure σ is periodic along both cycles of the torus T 2. There is also

a combinatorial definition [323, 324], which we will recall below.

In the continuum quantum field theory language, the Arf invariant may be written in
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terms of the partition function of a mass m Majorana fermion on (Σ, σ) as Zferm(m �

0; Σ, σ)/Zferm(m� 0; Σ, σ). In general, the infinite-mass limit of a fermion partition function

is known as an η-invariant in the mathematics literature, meaning that the Arf invariant is

an example of an η-invariant. There is also a discretized Hamiltonian version of this massive

Majorana fermion defined on a spin chain — this is known as the Kitaev chain [75]. In both

of these descriptions, it is easy to argue that one needs a single Majorana fermion on the

(0 + 1)d boundary of the (1 + 1)d system hosting the Arf invariant theory.

A single Majorana fermion cannot be consistently quantized, since two Majorana fermions

act on a two-dimensional Hilbert space irreducibly. This means that, assuming that this

Hilbert space is the tensor product of two copies of the Hilbert space for a single fermion,

the single-fermion Hilbert space would need to have dimension
√

2. This is one manifestation

of the anomaly of the boundary theory, and will turn out to explain the difference by a factor

of
√

2 between the tensions of D9-branes in Type IIA and Type IIB theories, originally found

in [325].

Without the Arf invariant on the worldsheet, as will be the case for Type IIB strings, the

endpoints of open strings will naturally couple to unitary bundles. Consideration of tachyon

condensation motivates one to introduce an equivalence relation on unitary bundles, leading

to the statement that stable D-branes on X are classified by complex K-theory K0(X) [92].

On the other hand, in the presence of the Arf invariant the boundary of the worldsheet needs

unitary bundles together with an additional Majorana fermion, or equivalently with an action

of the complex Clifford algebra Cl(1,C). Unitary bundles with an action of Cl(1,C), under

a suitable equivalence relation implementing tachyon condensation, are classified by K1(X),

thus reproducing the known classification of the D-branes in the Type IIA theory [92, 93].

We next discuss the effects of including the topological superconductor corresponding to

the group f2
Pin−

(pt) = Z8 on worldsheets. The worldsheets can now be nonorientable and are

equipped with a Pin− structure. This structure will be seen to be compatible with the Type

0 string, but not with the Type I string. The generator of the group Z8 of time-reversal
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invariant topological superconductors is again the Kitaev chain, but now with the added

assumption of time-reversal invariance. The invertible phase corresponding to n modulo 8 is

simply n copies of the Kitaev chain, and has n time-reversal symmetric Majorana fermions

on the boundary. Physically, the reason that we need only consider n modulo 8 is that one

can introduce a four-fermi interaction to the n = 8 theory which gives rise to a theory with

unique ground state [80]. In continuum field theory language, the effective action describing

the basic non-trivial phase is the Arf-Brown-Kervaire (ABK) invariant, to be discussed below.

Roughly speaking, with n copies of the time-reversal-symmetric Kitaev chain on the

worldsheet, open string endpoints can now couple to orthogonal bundles with an action

of n time-reversal invariant Majorana fermions, or equivalently with an action of the real

Clifford algebra Cl(n,R). Tachyon condensation then leads to the classification of D-branes

by KOn(X). As we will see, a more careful analysis reveals that the classification is in fact

by KOn(X)⊕KO−n(X).

In the case of Type I strings, the natural way to specify the worldsheet fermions is to

consider chiral fermions on the orientation double cover of the worldsheet. This leads to

a structure which we call “double pin” structure, since it will be shown to contain both

Pin± as subgroups. We will find by a standard algebraic topology computation that any

invertible phase one can add on the worldsheet is either the Arf invariant associated to the

orientation double cover, or a continuum version of the Haldane chain. We will find that

the Arf invariant on the double cover can be removed by performing a spacetime parity

transformation along one direction, meaning that it does not give rise to physically distinct

theories. On the other hand, the invertible phase corresponding to the low energy limit of the

S = 1 Haldane chain[326, 327], whose partition function counts the number of RP2 modulo

2, gives rise to the difference between O9±-orientifold planes, thus differentiating between

Type I and Ĩ worldsheet theories.

We note in passing that Ryu and Takayanagi have pointed out in [328, 329] that the

periodic table [330, 331] of free topological superconductors and topological insulators, based
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on K-theory and KO-theory, can be naturally realized by considering D-branes in string

theory. In those works the topological superconductors were realized on brane worldvolumes,

whereas here we consider the topological superconductors on string worldsheets.

Organization

The aim of the rest of this chapter is to give details on the results presented thus far in this

introduction. It is organized as follows: In Sec. 4.2, we begin by reviewing the necessary

preliminary material concerning topological superconductors with several variants of spin

structure. In Sec. 4.3, we study the effects of worldsheet invertible phases on massless closed

string and D-brane spectra. In the next two sections, we give a more detailed analysis of the

classification of D-branes. This is done from two different perspectives: in Sec. 4.4 we study

D-branes via boundary fermions and tachyon condensation, while in Sec. 4.5 we utilize the

boundary state formalism. The final section Sec. 4.6 is devoted to the algebraic-topological

study of the possible invertible phases on the Type I worldsheet.

Additional background information and details of calculations are given in the appen-

dices. In Appendix 4.A, we briefly review the NSR formulation of superstring theory. In

Appendix 4.B, we provide a short review of the boundary state formalism necessary for cal-

culations in Sec. 4.5. The results of this appendix are also utilized in Appendix 4.C, in which

we discuss the issue of tadpole cancellation for some of the Type 0 theories discussed in this

work. The final three appendices are more mathematical. In Appendix 4.D we reobtain

many of our results for Arf and ABK invariants by means of index theory. Much of this

appendix is due to Edward Witten [332]. In Appendix 4.E we provide the technical details

of the algebraic-topological computation used in Sec. 4.6, which uses the Atiyah-Hirzebruch

spectral sequence. In Appendix 4.F, written by Arun Debray, we explain another computa-

tion of the same bordism group via the Adams spectral sequence.
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4.2 The (1+1)d topological superconductors

The main topic of this chapter is the addition of fermionic invertible phases to oriented and

unoriented string worldsheets. In this section we begin by reviewing some basic facts about

fermions and (s)pin structures (see [74, 81] for more detailed reviews), as well as about

the known invertible phases for Spin, Spin × Z2, Pin−, and Pin+ structures [78]. Also of

importance to us will be “double pin” or DPin structure, though we postpone a discussion

of this to Section 4.6.

Many of the results that we obtain via combinatoric methods in this section can also be

obtained via index theory, i.e. by studying the properties of free fermions. For completeness,

we discuss this approach in Appendix 4.D.

4.2.1 Oriented invertible phases

On an oriented d-manifold M the structure group of the tangent bundle TM is SO(d). In

order to consider fermions on M , we need to lift SO(d) to its double cover Spin(d) as specified

by the short exact sequence

0→ Z2 → Spin(d)→ SO(d)→ 0 . (4.4)

There might be an obstruction to doing so, which is captured by the second Stiefel-Whitney

class of TM , i.e. w2(TM) ∈ H2(M,Z2). If this class is trivial, we say that the manifold

admits a spin structure. Such a spin structure is generically not unique. Given a spin

structure, we can obtain another one by twisting by an element of H1(M,Z2).

In this work, we focus on two-dimensional manifolds Σ, which we take to be the worldsheet

of a string. Any orientable two-manifold admits a spin structure since w2(TΣ) = w2
1(TΣ)

mod 2. For notational simplicity, from now on we write wi := wi(TΣ).
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Invertible phase for Spin

Our primary interest is in fermionic invertible phases, i.e. phases which depend on a choice

of spin structure σ on Σ. In the absence of any symmetry besides fermion number (−1)f , the

group capturing such phases is f2
Spin(pt) = Z2. The effective action for the corresponding

fermionic invertible phase can be written in terms of the Arf invariant [78],

e2iπSeff(Σ, σ) = (−1)Arf(Σ, σ) (4.5)

where Arf(Σ, σ) is defined modulo 2. For simplicity, we will often leave the dependence on

σ implicit.

As discussed in the Introduction, this phase is a continuum version of the Kitaev chain

[75]. In the continuum field theory language, this corresponds to the definition [81]

(−1)Arf(Σ, σ) :=
Zferm(m� 0; Σ, σ)

Zferm(m� 0; Σ, σ)
, (4.6)

where Zferm(m; Σ, σ) is the partition function of a free massive Majorana fermion of mass m.

To see that the right-hand side is ±1, we note that the non-zero eigenvalues E of the Dirac

operator D comes in pairs ±E, since Γ := γ1γ2 is globally well-defined on an oriented spin

surface and DΓ = −ΓD. Therefore,

Zferm(+m)

Zferm(−m)
=
∏
E=0

(
iE +m

iE −m

)∏
E>0

(iE +m)(−iE +m)

(iE −m)(−iE −m)
= (−1)indexD. (4.7)

The Arf invariant can also be defined combinatorially. To do so, given a spin structure σ

on Σ, we define q̃(a) ∈ Z2 for each Z2-valued 1-cocycle a on Σ by taking a non-self-intersecting
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1-cycle A Poincaré dual to it and declaring

q̃(a) =


0 if the spin structure around A is NS,

1 if the spin structure around A is R .

(4.8)

This function q̃(a) is known as a quadratic form and satisfies

q̃(a+ b)− q̃(a)− q̃(b) =

∫
Σ

a ∪ b. (4.9)

There is a one-to-one correspondence between such quadratic forms and spin structures [324].

The Arf invariant can be defined in terms of this quadratic form as follows,

(−1)Arf(Σ, σ) :=
1√

|H1(Σ,Z2)|
∑

a∈H1(Σ,Z2)

(−1)q̃(a). (4.10)

To see that the right-hand side is ±1, we consider its square:

RHS2 =
1

|H1(Σ,Z2)|
∑

a,b∈H1(Σ,Z2)

(−1)q̃(a)+q̃(b)

=
1

|H1(Σ,Z2)|
∑

a,b∈H1(Σ,Z2)

(−1)q̃(a+b)+
∫
Σ a∪b

=
1

|H1(Σ,Z2)|
∑

a,c∈H1(Σ,Z2)

(−1)q̃(c)+
∫
Σ a∪c (4.11)

where we have defined c = a + b ∈ H1(Σ,Z2) and used that
∫

Σ
a ∪ a = 0 for an orientable

manifold. When c = 0, the summand is 1 and the sum contributes a factor of |H1(Σ,Z2)|.

When c 6= 0 there are equally many
∫

Σ
a ∪ c = 0, 1 contributions by assumption of a non-

degenerate intersection pairing, and hence these contributions cancel out. Thus we find that

RHS2 = 1.

We now focus on the torus T 2, which admits four spin structures. We begin by listing all

elements of H1(T 2,Z2), which is an order four group containing {0, a, b, a + b}. Here a and
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b are mod 2 Poincaré duals of the A- and B-cycles of the torus, respectively. Then using

formula (4.10), we have

(−1)Arf(T 2) =
1√
4

(
1 + eiπq̃(a) + eiπq̃(b) + eiπq̃(a+b)

)
=

1

2

(
1 + eiπq̃(a) + eiπq̃(b) − eiπq̃(a)eiπq̃(b)

)
, (4.12)

where we have made use of (4.9) and noted that
∫
a∪ b = 1 for the two 1-cycles of the torus.

Depending on the spin structure, one has (q̃(a), q̃(b)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, for which

we find that (−1)Arf(T 2) assigns

(0, 0) : 7→ +1, (0, 1) : 7→ +1,

(1, 0) : 7→ +1, (1, 1) : 7→ −1.

(4.13)

Here, we have represented the spin structure by lines on the torus — a grey dashed line

means that fermions are anti-periodic i.e. NS in the normal direction, whereas solid red

lines means that fermions are periodic i.e. R in the normal direction. From the perspective

of canonical quantization the red lines can be interpreted as insertions of (−1)f symmetry

defects/operators.

On a manifold with boundary, the bulk invertible phase requires the presence of an odd

number of Majorana fermions on each boundary. As reviewed in Section 4.4.1, there is no

canonical way to quantize an odd-dimensional Clifford algebra. This can be thought of as an

anomaly of the boundary system, which is compensated by the presence of the bulk invertible

phase.
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Invertible phase for Spin× Z2

We will also need to consider Spin × Z2-structures on Σ. These are given by a choice of

spin structure σ and a Z2 bundle with background gauge field a ∈ H1(Σ,Z2). As mentioned

above, H1(Σ,Z2) acts on the space of spin structures, so the choice of (σ, a) is equivalent

to a choice of two separate spin structures (σL, σR) := (σ, σ + a), where we take σL and σR

to be the left- and right-moving spin structures. The corresponding invertible phases are

classified by f2
Spin(BZ2) = Z2

2, which is generated by the separate Arf invariants for σL and

σR:

(−1)Arf(Σ, σL) , (−1)Arf(Σ, σR) . (4.14)

The discussion of each of these phases is identical to that in the previous section.

4.2.2 Unoriented invertible phases

We would now like to discuss invertible phases which can be formulated on unoriented

manifolds. They can be thought of as phases protected by the action of time-reversal T.

Invertible phase for orientation

Before considering fermionic phases protected by T, let us discuss bosonic phases protected

by T. The structure group of the tangent bundle of an unoriented d-manifold M is O(d),

which cannot be reduced to SO(d). The obstruction to doing so is given by the first Stiefel-

Whitney class of the tangent bundle w1 ∈ H1(M,Z2). For a 1-cycle C, we have

∮
C

w1 =


0 if going around C preserves orientation,

1 if going around C reverses orientation.

(4.15)

Bosonic unoriented phases on the worldsheet are classified by f2
O(pt) = Z2, the generator
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of which is the low-energy limit of the S = 1 Haldane chain [326, 327]. In the continuum

field theory language, the effective action for this phase is5

e2πiSeff(Σ) = (−1)
∫
Σ w

2
1 . (4.16)

The generator of the bordism group ΩO
2 (pt) is the projective plane RP2, i.e. e2πiSeff(RP2) = −1.

One can easily calculate the value of the action on any other manifold by counting the number

of constituent RP2 appearing in its connected sum decomposition (mod 2). For instance, the

Möbius strip M2 is a connected sum of the disc and the projective plane, i.e. M2
∼= D2#RP2.

Hence

e2πiSeff(M2) = −1. (4.17)

On the other hand the Klein Bottle K2 is a connected sum of two copies of the projective

plane, i.e. K2
∼= RP2#RP2, and

e2πiSeff(K2) = 1. (4.18)

When considered on a manifold with boundary, this phase captures the time-reversal

anomaly of the (0+1)d boundary theory. This anomaly can be carried by a bosonic Kramers

doublet on the boundary, i.e. we have T2 = −1 instead of T2 = +1.

Pin structures

In order to describe fermionic invertible phases protected by T, we need to briefly review

how to put fermions on an unoriented manifold. There exist two different lifts of the O(d)

bundle, known as Pin±(d), which fit into the short exact sequence

0→ Z2 → Pin±(d)→ O(d)→ 0 . (4.19)

5This is also occasionally written as (−1)χ(Σ), where χ(Σ) is the Euler characteristic of Σ. The reason
for this is that w2

1 is equal to the mod-two reduction of the Euler class e, which satisfies
∫

Σ
e = χ(Σ). We

prefer writing this phase in terms of Stiefel-Whitney classes in order to make bordism invariance manifest.
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Both Pin±(d) contain Spin(d) as their component connected to the identity, and their dif-

ference lies in how time-reversal T and spatial reflection R lift,

Pin+ : T2 = (−1)f , R2 = 1 .

Pin− : T2 = 1 , R2 = (−1)f .

(4.20)

The corresponding obstruction classes are

Pin+ : w2 , Pin− : w2 + w2
1 . (4.21)

Every two-manifold Σ has w2+w2
1 = 0 mod 2, and hence admits a Pin− structure. However,

the same is not true for Pin+. For instance, the real projective plane RP2 has w2 6= 0, and

so it does not admit a Pin+ structure.

The action of Pin± on fermions Ψ can be given in terms of gamma matrices. In particular,

reflection of the i-th coordinate acts on Ψ by the gamma matrix γi. The reflection squared

is trivial in O(d), and therefore its lift when applied to a fermion is ±1. Then we have

{γi, γj} = ±2ηij, (4.22)

for Pin± structure, respectively, where we temporarily use the Lorentzian signature and the

metric ηij is mostly plus. This explains why T squares to (−1)f when R squares to 1 and vice

versa, as written in (4.20). The fermion fields Ψ transforming in this manner are sometimes

called “pinors.”

In our study of unoriented string amplitudes, the behavior of pinors on the boundary of

the Möbius strip with Pin± structure will be particularly important. Recall that on a circle,

one can consistently define both anti-periodic and periodic fermions, i.e. fermions in the NS

and R sectors. In contrast, the choice of NS or R on the boundary of the Möbius strip is

fixed by the choice of Pin±. We may see this as follows. Note that the Möbius strip can be
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∼=

Figure 4.1: Möbius strip with an orientation-reversing line (in green).

constructed by taking a strip and gluing its ends together along an orientation-reversing line

(Fig. 4.1) — upon crossing this line, we pick up an action of γi on fermions. Traversing the

boundary of the Möbius strip involves crossing this line twice, and this picks up an action of

γ2
i = ±1 on fermions. Thus we conclude that boundary fermions on the Pin+ Möbius strip

are in the R sector, while those on the Pin− Möbius strip are in the NS sector.

Invertible phase for Pin− structure

We now study fermionic invertible phases protected by T such that T2 = +1. Such phases are

classified by f2
Pin−

(pt) = Z8, which is generated by the Arf-Brown-Kervaire (ABK) invariant

[333]. For recent work on this invertible phase, see e.g. [334–336]. The ABK invariant can

be thought of as the effective action of the Kitaev chain protected by time-reversal. In the

continuum version, we have:

e2πiSeff(Σ, σ) = eπiABK(Σ, σ)/4 =
Zferm(m� 0; Σ, σ)

Zferm(m� 0; Σ, σ)
. (4.23)

Here σ represents a choice of Pin− structure, which we will often omit from the argument of

ABK for brevity. Alternatively, the ABK invariant can be defined combinatorially as

eπiABK(Σ)/4 =
1√

|H1(Σ,Z2)|
∑

a∈H1(Σ,Z2)

eπiq(a)/2 , (4.24)
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∼=

Figure 4.2: Projective plane with the single generator Z of its first homology class (in blue).
To the right this is drawn as a sphere with a crosscap.

where q is a quadratic enhancement q : H1(Σ,Z2)→ Z4 satisfying

q(a+ b)− q(a)− q(b) = 2

∫
Σ

a ∪ b . (4.25)

One may think of this q as a sort of doubling of the spin structure quadratic form q̃ :

H1(Σ,Z2) → Z2 introduced earlier. Indeed, if the worldsheet is orientable then q =

2 q̃ (mod 4). In that case one finds ABK(Σ) = 4 Arf(Σ) (mod 8), and (4.23) reduces to

(4.5) as expected.

To see that the right-hand side of (4.24) is an eighth root of unity, again we consider its

square:

RHS2 =
1

|H1(Σ,Z2)|
∑

a,b∈H1(Σ,Z2)

iq(a)+q(b)

=
1

|H1(Σ,Z2)|
∑

a,b∈H1(Σ,Z2)

iq(a+b)(−1)
∫
Σ a∪b

=
1

|H1(Σ,Z2)|
∑

a,c∈H1(Σ,Z2)

iq(c)(−1)
∫
Σ(a∪c+a∪a)

=
1

|H1(Σ,Z2)|
∑

a,c∈H1(Σ,Z2)

iq(c)(−1)
∫
Σ(a∪c+a∪w1)

= iq(w1), (4.26)

where we used
∫
a ∪ a =

∫
a ∪ w1.

We will need some basic values for the ABK invariant. We begin by reviewing the case
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of RP2, for which there is a single generator Z of H1(RP2,Z2), as depicted in Fig. 4.2. Its

Poincaré dual, z, is an unoriented cocycle with
∫
RP2 z∪z = 1. Then using (4.25) and q(0) = 0,

we conclude that 2q(z)+ 2 = 0 mod 4 and hence q(z) = 1 or 3. These label the two distinct

Pin− structures on RP2. The corresponding ABK invariants are easily calculated,

1 : eπiABK(RP2)/4 =
1√
2

(
1 + eiπ/2

)
= eiπ/4,

3 : eπiABK(RP2)/4 =
1√
2

(
1 + ei3π/2

)
= e−iπ/4. (4.27)

We will also need the value of the ABK invariant on the Klein bottle. Because K2

is a connected sum of two copies of RP2, it admits four choices of quadratic enhancement.

Taking z1 and z2 to be the basis naturally adapted to the connected sum gives (q(z1), q(z2)) ∈

{(1, 1), (1, 3), (3, 1), (3, 3)}. However, it will behoove us to switch to the more familiar basis

of H1(K2,Z2), for which a := z1 + z2 is Poincaré dual to the orientation-preserving A-cycle

while b := z2 is dual to the orientation-reversing B-cycle. The quadratic enhancements are

then (q(a), q(b)) ∈ {(0, 1), (0, 3), (2, 1), (2, 3)}. For each of these Pin− structures we compute

the following values for the ABK invariant,

(0, 1) : eπiABK(K2)/4 =
1

2
(1 + 1 + i− i) = 1,

(0, 3) : eπiABK(K2)/4 =
1

2
(1 + 1− i+ i) = 1,

(2, 1) : eπiABK(K2)/4 =
1

2
(1− 1 + i+ i) = i,

(2, 3) : eπiABK(K2)/4 =
1

2
(1− 1− i− i) = −i.

(4.28)

It is useful to note that

eπi(4ABK(Σ))/4 = (−1)
∫
w2

1 , (4.29)

namely that four copies of the ABK theory is the same as the nontrivial bosonic unoriented

phase discussed in Section 4.2.2.
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The boundary theory of n copies of the ABK theory is detailed in Section 4.4.1. When

n = 4, we have a system of four Majorana fermions χi. We can then introduce a T-invariant

interaction term χ1χ2χ3χ4. The ground state with this interaction is bosonic, two-fold

degenerate, and has the projective anomaly T2 = −1, thus manifesting the equality (4.29)

on the boundary. Similarly, when n = 8, we can consider a suitable quartic interaction under

which the ground state is unique [80].

Invertible phase for Pin+ structure

We now study fermionic invertible phases protected by T such that T2 = (−1)f . Such

phases are classified by f2
Pin+(pt) = Z2, which is generated by the Arf invariant (4.10) on the

orientation double cover Σ̂ of the worldsheet, i.e. (−1)Arf(Σ̂) [78]. This gives ±1 on the Klein

bottle, depending on the spin structure of its double cover torus. Concretely, the Klein bottle

admits four Pin+ structures, two of which have NS sector fermions along the oriented A-cycle

of K2, and two of which have R sector fermions along the A-cycle. For each of these Pin+

structures, we must determine the corresponding spin structure on the orientation double

cover, i.e. the torus. To do so, let us consider for simplicity a rectangular torus with real

coordinates x, y satisfying x ∼ x + 2π, y ∼ y + 2L for some L. The original Klein bottle is

obtained by imposing the identification (x, y) ∼ (−x, y + L). The cycle in the x-direction is

the oriented A-cycle on K2, while the cycle in the y-direction is twice the unoriented B-cycle.

From this we learn that the choice of Pin+ structure along the B-cycle is irrelevant on the

double cover — the fermion is always periodic along the cycle in the y-direction. Thus we

conclude that the four Pin+ structures are assigned phases (−1)Arf(Σ̂) = 1, 1,−1,−1.

4.3 GSO projections

In this section, we consider the addition of fermionic invertible phases to the worldsheet

theories of various superstrings. This will allow us to enumerate all possible GSO projections.
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We will focus on oriented Type II and Type 0 theories, as well as unoriented Type 0 theories.

The case of unoriented Type II (i.e. Type I) strings will be treated in Section 4.6. In our

discussion we will work in the NSR formalism, which is briefly reviewed in Appendix 4.A.

The properties of the low-lying states in this formalism are summarized in Table 4.2 for

convenience.

State (−1)f (−1)fL (−1)fR Little group rep.

(NS−, NS−) +1 −1 −1 1

(NS+, NS+) +1 +1 +1 8v ⊗ 8v = 1⊕ 28⊕ 35

(R+, R+) +1 +1 +1 8s ⊗ 8s = 1⊕ 28⊕ 35−

(R−, R−) +1 −1 −1 8c ⊗ 8c = 1⊕ 28⊕ 35+

(R+, R−) −1 +1 −1 8s ⊗ 8c = 8v ⊕ 56

(R−, R+) −1 −1 +1 8c ⊗ 8s = 8v ⊕ 56

(NS+, R+) +1 +1 +1 8v ⊗ 8s = 8c ⊕ 56s

(NS+, R−) −1 +1 −1 8v ⊗ 8c = 8s ⊕ 56c

Table 4.2: Fermion parity and representations of the low-lying states of the closed NSR
superstring.

4.3.1 Oriented strings

Type 0

Let us begin by studying oriented Type 0 superstrings, which differ from Type II strings in

that there is a single spin structure for both left- and right-movers [74, 337]. The SPT phases

which can be consistently realized on the Type 0 worldsheets are classified by f2
Spin(pt) = Z2.

As we have seen above, the effective action for the non-trivial phase can be written in terms

of the Arf invariant (4.5). Depending on whether or not one allows for this non-trivial phase

on the worldsheet, one expects to arrive at two different Type 0 theories, with torus partition
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functions

Z(n) =
1

2

∑
σ

(−1)nArf(T 2, σ)Z[σ]Z[σ] , n = 0, 1 , (4.30)

where Z[σ], Z[σ] are the standard left- and right-moving worldsheet torus partition functions

with spin structure σ. The two theories obtained in this way are Type 0B (n = 0) and Type

0A (n = 1),

0A : Z(1) =
1

2

(
|Z[σ00]|2 + |Z[σ01]|2 + |Z[σ10]|2 − |Z[σ11]|2

)
,

0B : Z(0) =
1

2

(
|Z[σ00]|2 + |Z[σ01]|2 + |Z[σ10]|2 + |Z[σ11]|2

)
,

(4.31)

and their massless RR states are found to be

0A : |0〉aḃRR, |0〉ȧbRR ∈ (8s ⊗ 8c)⊕ (8c ⊗ 8s) = (2 · 8v)⊕ (2 · 56) ,

0B : |0〉abRR, |0〉ȧḃRR ∈ (8s ⊗ 8s)⊕ (8c ⊗ 8c) = (2 · 1)⊕ (2 · 28)⊕ 70 .

(4.32)

The massless RR sector for Type 0A contains two 1-forms and two 3-form fields, while

that of Type 0B contains two scalars, two 2-forms, and a 4-form with no self-duality con-

straint. This is exactly double the RR content of the corresponding Type II theories. This

leads one to expect a doubled brane spectrum, where for each p we have both Dp and Dp′

branes. This will be discussed further in Section 4.3.3.

Type II

We now proceed to discuss the more familiar Type II superstrings. A characteristic feature of

these strings is that they have separate spin structures for left- and right-movers, which means

that the worldsheet is endowed with a Spin × Z2 structure. The anomalies and invertible

phases on such worldsheets are captured by f3
Spin(BZ2) and f2

Spin(BZ2), respectively. These

groups are listed in Table 4.1. As discussed in [338, 339], the fact that f3
Spin(BZ2) = Z8
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implies that the number of physical pairs of left- and right-movers needs to be a multiple of

eight to have a non-anomalous GSO projection. This is indeed the case if the physical string

lives in ten dimensions.

On the other hand, the SPT phases on the worldsheet are classified by f2
Spin(BZ2) =

(Z2)2. The two Z2 can be interpreted as separate left- and right-moving fermionic invertible

phases, as discussed in Section 4.2.1. In other words, the partition functions for these phases

are given by

(−1)nL Arf(Σ, σL)+nR Arf(Σ ,σR) , nL,R = 0, 1 , (4.33)

where σL(R) is the left(right)-moving spin structure on the worldsheet Σ. The corresponding

torus partition functions for these theories are given by

Z(nL,nR) =
1

4

(∑
σL

(−1)nL Arf(T 2, σL)Z[σL]

)
×
(∑

σR

(−1)nR Arf(T 2, σR)Z[σR]

)
, (4.34)

For instance, two cases are

Z(0,0) =
1

4
(Z[σ00] + Z[σ01] + Z[σ10] + Z[σ11])

(
Z[σ00] + Z[σ01] + Z[σ10] + Z[σ11]

)
,

Z(0,1) =
1

4
(Z[σ00] + Z[σ01] + Z[σ10] + Z[σ11])

(
Z[σ00] + Z[σ01] + Z[σ10]− Z[σ11]

)
.

(4.35)

While there are seemingly four distinct SPT phases, there are in fact only two physically

distinct Type II theories. To see this, recall the continuum definition of the Arf invariant:

(−1)Arf(Σ, σ) =
Zferm(m� 0; Σ, σ)

Zferm(m� 0; Σ, σ)
, (4.36)

where Zferm(m; Σ, σ) is the partition function of a free massive Majorana fermion of mass m.
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We note this formula holds at finite mass as well,

(−1)Arf(Σ, σ) =
Zferm(+m; Σ, σ)

Zferm(−m; Σ, σ)
, (4.37)

which was already used in (4.7). In other words, upon flipping the sign of a mass term, m→

−m, one generates a factor of (−1)Arf(Σ, σ) in the partition function. Note that such a flip of

the mass term can be performed by (ψ, ψ̃)→ (ψ,−ψ̃). Taking the limit m→ 0, we find that

a Majorana-Weyl fermion ψ̃ has an anomaly under ψ̃ → −ψ̃, and generates (−1)Arf(Σ, σR).

This in particular means that the parity transformation along a single spacetime direction,

say (ψµ=9, ψ̃µ=9)→ (−ψ9,−ψ̃9), produces (−1)Arf(Σ, σL)+Arf(Σ, σR), i.e. nL = nR = 1 in (4.33).

Therefore, there are only essentially two distinct Type II GSO projections, with the others

being related by spacetime parity transformation. The cases (nL, nR) = (0, 0), (1, 1) are

traditionally called Type IIB while the cases (nL, nR) = (0, 1), (1, 0) are called Type IIA.

The reasoning above also explains why T-duality exchanges Type IIA/B. Recall that T-

duality along a spacetime direction keeps (∂X, ψ) fixed and implements (∂̄X, ψ̃)→ (−∂̄X,−ψ̃).

Then by the previous paragraph, this generates (−1)Arf(Σ, σR), exchanging Type IIA/B. By

the same arguments, the two Type 0 theories are also exchanged by T-duality.

Comments on the two points of view on the effect of invertible phases

There are two ways of understanding the gauging of a global symmetry in the presence of

a non-trivial invertible phase. The point of view which we have taken so far is to take the

tensor product of the original theory and the invertible phase, and to then gauge the relevant

symmetry. The Hilbert space of the invertible phase is one-dimensional, and therefore this

changes the way the global symmetry acts on the states of the original theory. For example,

in the case of Type 0 strings, we used the projectors

P0A =
1

2
(1 + (−1)f |0A), P0B =

1

2
(1 + (−1)f |0B) (4.38)
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and what produced the difference between the two was that on the RR sector, we had

(−1)f |0A = −(−1)f |0B (4.39)

due to the presence of the Arf theory.

More traditionally, the action of (−1)f was fixed once and for all, for example to be equal

to (−1)f |0B, and different GSO projections were said to correspond to different projectors.

For example, in the RR sector, one would have written

PRR
0A =

1

2
(1− (−1)f), PRR

0B =
1

2
(1 + (−1)f). (4.40)

These two points of view clearly lead to the same results, and similar statements will be

seen to hold for unoriented strings. Though we will briefly discuss this traditional viewpoint

when we compare to the existing literature, we will mostly use the first point of view.

4.3.2 Unoriented strings

Orientation reversal on fermions and ground states

We now consider unoriented string theories. One way to obtain such theories is to gauge

time-reversal symmetry T on the worldsheet. T is an antiunitary symmetry that acts on

worldsheet fermions as

Tψ(t, σ)T−1 = ψ̃(−t, σ) , Tψ̃(t, σ)T−1 = ψ(−t, σ) (4.41)

with T2 = 1. In string theory, it is often more common to describe this in terms of worldsheet

parity Ω, which is a unitary symmetry whose action is given by

Ωψ(t, σ)Ω−1 = −ψ̃(t, 2π − σ) , Ωψ̃(t, σ)Ω−1 = ψ(t, 2π − σ) . (4.42)
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From this definition it is clear that Ω2 = (−1)f . The ability to choose between T or Ω is a

consequence of the CPT theorem. The fact that T2 = 1, or equivalently that Ω2 = (−1)f ,

means that we are working with a Pin− structure on the worldsheet. In this case the action

of Ω on the ground states in the NSNS and RR sectors can be taken to be

Ω |0〉NSNS = |0〉NSNS , Ω |0〉R ⊗ |0̃〉R =


− |0̃〉R ⊗ |0〉R for (R±,R±),

−i|0̃〉R ⊗ |0〉R for (R±,R∓).

(4.43)

One can also consider gauging Ω twisted by some Z2 symmetry. Here we consider Ωf :=

Ω(−1)fL . We find

(Ωf)
2 = Ω(−1)fLΩ(−1)fL = Ω(−1)fL+fRΩ = (−1)fΩ2 = 1 (4.44)

and hence gauging this operator gives Pin+ structure on worldsheets. In this case parity acts

on the NSNS and RR ground states as

Ωf |0〉NSNS = −|0〉NSNS , Ωf |0〉R ⊗ |0̃〉R =


∓ |0̃〉R ⊗ |0〉R for (R±,R±),

∓i|0̃〉R ⊗ |0〉R for (R±,R∓).

(4.45)

Unlike for Type II strings where Ω is a symmetry of only Type IIB, for Type 0 strings Ω is

a symmetry of both Type 0A and 0B. Hence we can obtain Pin− Type 0 theories by starting

from either Type 0A or 0B and gauging Ω. Likewise, one might expect that we can obtain

Pin+ Type 0 theories by starting from either Type 0A or 0B and gauging Ωf . However, it

turns out that Ωf cannot be consistently gauged in Type 0A, since it is incompatible with

the Type 0A spin structure projection [82–84].

In the rest of this section we study the consistent unoriented Type 0 strings in more

detail. We begin by analyzing the Pin− strings in Section 4.3.2, and then proceed to a

discussion of the Pin+ strings in Section 4.3.2. To the best of our knowledge, many of these
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theories have not been discussed in the literature — some preliminary works include [82–91].

For a condensed matter perspective, see e.g. [340, 341].

Pin− Type 0 Strings

Let us begin by discussing Pin− Type 0 strings. The group classifying the relevant invertible

phases is f2
Pin−

(pt) = Z8, which is generated by the ABK invariant. We are thus led to predict

the existence of eight Pin− theories, each distinguished by the presence of n = 0, . . . , 7 copies

of ABK on the worldsheet.

In unoriented theories, the presence of a non-trivial invertible phase manifests itself in the

action of Ω on the different closed string ground states. In order to understand this action,

we make use of the values of the ABK invariant on the Klein bottle K2 obtained in Section

4.2.2. In particular, it was found there that the Klein bottle admits four Pin− structures

labelled by quadratic enhancements (q(a), q(b)) ∈ {(0, 1), (0, 3), (2, 1), (2, 3)} with respective

values eiπABK(K2)/4 = 1, 1, i,−i. Recall that the first entry a corresponds to the orientation-

preserving cycle on K2, while the second entry b corresponds to the orientation-reversing

cycle.

We now want to interpret these results as the action of Ω and (−1)f on the closed string

Hilbert space. This can be done as follows. We begin by cutting K2 along the orientation-

preserving cycle A to obtain a cylinder with an insertion of an Ω symmetry line. Since A is

orientation-preserving, we know that q = 2 q̃ mod 4, where q̃(a) is the spin structure along

A. Consequently, the first and second Pin− structures correspond to NS structure along the

A-cycle, while the third and fourth correspond to R structure along the A-cycle. We may

then interpret the partition function for each Pin− structure as the following traces on the
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torus. We have:

(0, 1) : ↔ 1

4
TrNSNS

[
Ω e−2πlHcl

]

(0, 3) : ↔ 1

4
TrNSNS

[
Ω (−1)f e−2πlHcl

]

(2, 1) : ↔ 1

4
TrRR

[
Ω e−2πlHcl

]

(2, 3) : ↔ 1

4
TrRR

[
Ω (−1)f e−2πlHcl

]

(4.46)

where green lines represent orientation-reversal lines and red lines represent spin lines. In

this way, the value of the ABK invariant on K2 with Pin− structure labeled by (q(a), q(b))

can be assigned to the action of Ω on the ground states with the appropriate cylinder spin

structures. In particular, we conclude that Ω acts trivially on NS ground states, whereas it

acts with an extra factor of i on R ground states. This implies that the presence of n copies

of ABK changes the action of Ω on the RR sector ground states by a factor of in relative to

(4.43), giving

Ω|0〉NSNS = |0〉NSNS , Ω|0〉R ⊗ |0̃〉R =


−in |0̃〉R ⊗ |0〉R for (R±,R±),

−in+1|0̃〉R ⊗ |0〉R for (R±,R∓).

(4.47)

Note that upon shifting n → n + 1, the additional factor of i changes the fermion-

parity of the RR ground state, since Ω2 = (−1)f . Since the Type 0A/B theories differ by

a projection onto states of worldsheet fermion number (−1)f = ±1, we see that theories

with even n correspond to orientifolds of Type 0B, while theories with odd n correspond to

orientifolds of Type 0A. This is also supported by recalling that on oriented manifolds Σ, the
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ABK invariant reduces to ABK(Σ) = 4 Arf(Σ) (mod 8), and hence the partition function

becomes einπABK(Σ)/4 = (−1)nArf(Σ), which is precisely what distinguished the oriented Type

0A/B theories.

As far as the action of Ω on the vacuum (4.47) is concerned, theories differing by four

copies of ABK are indistinguishable. The reason for this is that only data about the Klein

bottle K2 was used to obtain (4.47). However, the manifold that generates the bordism group

ΩPin−

2 (pt) is the projective plane RP2, while K2 is a connected sum of two copies thereof, i.e.

K2
∼= RP2#RP2. Consequently, the partition function on K2 is insensitive to an additional

sign that can arise on manifolds whose decompositions contain an odd number of copies

of RP2. Indeed, four copies of the ABK theory is not trivial and gives partition function

e4πiABK(Σ)/4 = (−1)
∫
Σ w

2
1 , as discussed in Section 4.2.2. As described in Section 4.2.2, unlike

for the Klein bottle the Möbius strip amplitude is sensitive to this sign. This sign turns out

to give precisely the difference between O9± orientifolds. More detail on this will be given

in Section 4.5.1.

We may now study the closed string spectra of these theories. The action of Ω proposed

in (4.47) does not project out the closed string tachyon in the NSNS sector, but has the

following implications for the spectra of RR fields. For n even, Ω projects out all (R±,R∓)

states. The cases n = 0 mod 4 and n = 2 mod 4 differ by a sign in the action of Ω, which

projects out the symmetric or antisymmetric combinations of (R±,R±) states. Then upon

gauging Ω we obtain the following RR spectra,

n = 0, 4 : |0〉[ab]RR ∈ 28 ⊂ 8s ⊗ 8s, |0〉[ȧḃ]RR ∈ 28 ⊂ 8c ⊗ 8c ,

n = 2, 6 : |0〉(ab)RR ∈ 1⊕ 35− ⊂ 8s ⊗ 8s, |0〉(ȧḃ)RR ∈ 1⊕ 35+ ⊂ 8c ⊗ 8c . (4.48)

In the n = 0 mod 4 cases, only the two 2-forms survive the projection, while for n = 2

mod 4 only the two scalars and the 4-form survive. These spectra of RR fields are indeed

a projection of the Type 0B ones. For n odd, the extra factor of i in (4.47) projects out all
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the (R±,R±) states, while the (R±,R∓) combinations

n = 1, 5 :
1√
2

(|0〉aḃRR + |0〉ḃaRR) ∈ 8v ⊕ 56 ⊂ (8s ⊗ 8c)⊕ (8c ⊗ 8s) ,

n = 3, 7 :
1√
2

(|0〉aḃRR − |0〉ḃaRR) ∈ 8v ⊕ 56 ⊂ (8s ⊗ 8c)⊕ (8c ⊗ 8s) , (4.49)

survive the projection. This leaves a single set of 1- and 3-form fields. These states are part

of the Type 0A spectrum.

It is worth mentioning that because these theories possess neither spacetime fermions nor

(anti-)self-dual form fields, they are all free of perturbative gravitational anomalies.

Finally, let us give a more traditional orientifold interpretation to the theories studied

in this section. In perturbative string theory we often refer not only to left/right-moving

worldsheet fermion number (−1)fL,fR but also to left/right-moving spacetime fermion number

(−1)FL,FR . We recall that (−1)F acts by +1 on the NS sector and by −1 on the R sector.

We now consider ΩF := Ω(−1)FL , which acts with an extra minus sign on the left-moving R

sector. Above, we saw that gauging Ω with two copies of the ABK theory gives the same

minus sign. This suggests the following identifications,

n = 0, 4 : (0B,Ω) n = 1, 5 : (0A,Ω)

n = 2, 6 : (0B,ΩF) n = 3, 7 : (0A,ΩF) (4.50)

where the first element in parenthesis denotes the starting theory, and the second element

denotes the operator being gauged. The difference between theories differing by 4 copies

of ABK is the action of Ω or ΩF on Chan-Paton factors. This correspondence between the

ABK viewpoint and the orientifold viewpoint will be discussed further in Section 4.5.1.
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Pin+ Type 0 Strings

We finally proceed to the case of Pin+ Type 0 strings, which were studied in [342, 343]. The

group capturing potential invertible phases on the Pin+ worldsheet is f2
Pin+(pt) = Z2. As

reviewed in Section 4.2.2, the effective action for this invertible phase is given by the Arf

invariant of the oriented double cover Σ̂ of the worldsheet, i.e. (−1)Arf(Σ̂), whose generating

manifold is the Klein bottle. The Klein bottle was seen to admit four Pin+ structures, which

we now label as (0, 1), (0, 3), (2, 1), (2, 3) in analogy to the Pin− notation.6 By examining the

spin structure on the double cover torus, these were assigned respective phases (−1)Arf(Σ̂) =

1, 1,−1,−1.

We now proceed as in the Pin− case above. First, we recast the Klein bottle partition

functions for the four Pin+ structures in terms of traces on the torus. This gives

(0, 1) ↔ 1

4
TrNSNS

[
Ωf e

−2πlHcl
]
, (0, 3) ↔ 1

4
TrNSNS

[
Ωf (−1)f e−2πlHcl

]
,

(2, 1) ↔ 1

4
TrRR

[
Ωf e

−2πlHcl
]
, (2, 3) ↔ 1

4
TrRR

[
Ωf (−1)f e−2πlHcl

]
. (4.51)

The Arf(Σ̂) invertible phase assigns −1 to the Klein bottle with Pin+ structure (2, 1) and

(2, 3), and +1 to the other Pin+ structures. This means that the presence of the non-trivial

invertible phase changes the action of Ωf on R sector ground states by a sign relative to

(4.45), but does not change the action of (−1)f .

With this information, we may turn towards the analysis of the massless closed string

spectra of the theories. For the trivial phase, the orientifold projection keeps the symmet-

ric combinations of (R−,R−) and antisymmetric contributions of (R+,R+) in the Type

0B spectra. In the non-trivial phase, one instead keeps the antisymmetric combinations of

6We do this for notational convenience only. There is no correspondence between quadratic enhancements
and Pin+ structures in general.
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(R−,R−) and symmetric contributions of (R+,R+),

n = 0 : |0〉[ab]RR ∈ 28 ⊂ 8s ⊗ 8s , |0〉(ȧḃ)RR ∈ 1⊕ 35+ ⊂ 8c ⊗ 8c ,

n = 1 : |0〉(ab)RR ∈ 1⊕ 35− ⊂ 8s ⊗ 8s , |0〉[ȧḃ]RR ∈ 28 ⊂ 8c ⊗ 8c . (4.52)

We note that these spectra are the same up to a spacetime parity transformation which

exchanges the self-dual and anti-self-dual 4-forms. This observation can also be explained

from the fact that the spacetime parity transformation generates (−1)Arf(Σ̂) on the world-

sheet. Indeed, in the Type II case, the same operation generated (−1)Arf(Σ,σL)+Arf(Σ,σR) as

we saw before, which is equal to (−1)Arf(Σ̂) when Σ is oriented.

We note that the RR spectra are equivalent to that of Type IIB, and the theory has a

gravitational anomaly from the anti-self-dual 4-form, with no fermions to cancel it. As we

discuss briefly in Appendix 4.C, consistency requires the theory to be coupled to fermionic

open strings, giving a U(32) gauge group [85, 89].

4.3.3 Branes and K-theory

In the above analysis we identified two oriented Type II strings, two oriented Type 0 strings,

and a number of unoriented Type 0 strings. In this subsection we discuss their spectra of

stable branes. To do so, we begin by briefly reviewing the well-known K-theory classification

of stable branes for oriented theories.

Recall that oriented Type IIB on a spacetime X has stable D-branes which are classified

by the K-group K(X) [92, 93]. This is the group of pairs of vector bundles (E,F ) over X

subject to an equivalence relation (E ⊕ H,F ⊕ H) ∼ (E,F ). More precisely, one should

consider the reduced K-group K̃(X), for which the bundles E and F are required to have

the same rank. Physically, the idea is to begin with a stack of equal numbers of D9- and

D9-branes, and then to consider annihilation amongst these stacks. When the vector bundles

over these stacks are unequal this annihilation is not complete, and a residual brane of lower

230



dimension is left over [92, 325, 344]. It is expected that all branes can be obtained in this

way.

For Type IIA, stable branes are classified by the higher K-group K1(X) = K̃(X × S1).

One might entertain the possibility of allowing for even higher K-groups K̃n(X) for n > 1.

However, Bott periodicity states that for complex K-groups,

K̃n(X) = K̃n+2(X) . (4.53)

Thus the only distinct complex K-groups are those mentioned above, and both are realized

by string theories. The stable Dp-branes are captured by the groups K̃n(S9−p), as listed in

the first two rows of Table 4.3.

As discussed in Section 4.3.1, the spectrum of massless RR fields in oriented Type 0A/B

theories is precisely double that of Type IIA/B. As such, one expects the spectrum of branes

in Type 0A/B to be doubled as well; the two branes of given worldvolume dimension (p+ 1)

are typically denoted as Dp- and Dp′-branes. It follows that the classification of stable

branes is via two copies of the complex K-groups just described. In other words, because

there now exist both D9- and D9′-branes, we must consider two separate pairs of vector

bundles corresponding to D9-D9 and D9′-D9′ stacks. So the branes in the Type 0 theories

are classified by

K̃n(X)⊕ K̃n(X) ∼= K̃n(X)⊕ K̃−n(X) . (4.54)

The equality above follows from the mod 2 periodicity of complex K-theory. As we now

discuss, it is the latter form which generalizes to the unoriented case.

It has long been known that stable branes in unoriented Type I string theory are classified

by real K-theory K̃O(X) [92, 345]. Crucially, the reduced real K-groups have a mod 8
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periodicity [346],

K̃On(X) ∼= K̃On+8(X) . (4.55)

It is thus natural to guess that the eight Pin− Type 0 strings labeled by n mod 8 have stable

branes captured by K̃On(X). More precisely, because one again expects a doubled spectrum

from these Type 0 theories, the relevant group will be found to be

K̃On(X)⊕ K̃O−n(X) . (4.56)

In Sections 4.4 and 4.5, this group will be confirmed to classify the stable p-brane spectrum

of the Pin− Type 0 theory with n copies of ABK. Concretely, this spectrum is obtained by

evaluating KO±n(X) on X = S9−p, with the results listed in Table 4.3. The entries in this

table can be obtained by noting that K̃On(Sk) = KOn−k(pt), and then using the following

values for real K-groups of points:

KO0(pt) = Z, KO−1(pt) = Z2, KO−2(pt) = Z2, KO−3(pt) = 0,

KO−4(pt) = Z, KO−5(pt) = 0, KO−6(pt) = 0, KO−7(pt) = 0.

(4.57)

At this point we can check that the RR spectra we determined above agree with the non-

torsion part of K̃On(S9−p)⊕ K̃O−n(S9−p). The aim of the next two sections is to establish

the agreement including the torsion parts.

For Pin+ Type 0 strings, we saw in Section 4.3.2 that these theories have the same RR

spectra as oriented Type IIB. As such, we expect to have the same classification via complex

K-theory as in that case. Since the Pin+ strings have less features not found previously than

their Pin− counterparts, we will be very brief about them in what follows.

It is worth noting that whenever tadpole cancellation requires the addition of D9-branes,

the question of stability of Dp-branes must be revisited to account for the possibility of
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tachyonic modes of the strings stretched between the Dp- and D9-branes. In this case, the

K-theory classification outlined above may be modified, though we will not address these

modifications.

−1 0 1 2 3 4 5 6 7 8 9

K̃ Z 0 Z 0 Z 0 Z 0 Z 0 Z
K̃1 0 Z 0 Z 0 Z 0 Z 0 Z 0

K̃O0⊕K̃O−0 2Z2 2Z2 2Z 0 0 0 2Z 0 2Z2 2Z2 2Z
K̃O1⊕K̃O−1 Z2 Z⊕Z2 Z2 Z 0 Z 0 Z⊕Z2 Z2 Z⊕Z2 Z2

K̃O2⊕K̃O−2 2Z 0 Z2 Z2 2Z 0 Z2 Z2 2Z 0 Z2

K̃O3⊕K̃O−3 0 Z 0 Z⊕Z2 Z2 Z⊕Z2 Z2 Z 0 Z 0

K̃O4⊕K̃O−4 0 0 2Z 0 2Z2 2Z2 2Z 0 0 0 2Z
K̃O5⊕K̃O−5 0 Z 0 Z⊕Z2 Z2 Z⊕Z2 Z2 Z 0 Z 0

K̃O6⊕K̃O−6 2Z 0 Z2 Z2 2Z 0 Z2 Z2 2Z 0 Z2

K̃O7⊕K̃O−7 Z2 Z⊕Z2 Z2 Z 0 Z 0 Z⊕Z2 Z2 Z⊕Z2 Z2

Table 4.3: The ten K-groups capturing stable branes in the oriented Type II and (un)oriented
Type 0 theories discussed above.

4.4 D-brane spectra via boundary fermions

In this section, we demonstrate the KOn ⊕ KO−n classification of stable branes for the

Pin− Type 0 theory with n copies of ABK. This is done by analyzing the Clifford modules

carried by open string endpoints. After doing so, we also study the spectra of non-stable

branes in these theories, including the gauge groups supported on their worldvolumes and

the representations of their open string tachyons.

4.4.1 (0+1)d Majorana fermions and their anomalies

Fermions and Clifford algebras

We begin by considering systems of (0+1)d Majorana fermions, which appear on the bound-

ary of n copies of the ABK theory. Let us say we have r + s hermitian fermion operators
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ξa = (ξa)
†, a = 1, . . . , r + s, satisfying

ξ2
a = +1 a = 1, . . . , r + s (4.58)

and

TξaT
−1 =


+ξa a = 1, . . . , r,

−ξa a = r + 1, . . . , r + s.

(4.59)

In the mathematics literature it is more common to consider operators invariant under T.

This can be achieved by defining


γa = ξa i = 1, . . . , r,

γa = iξa i = r + 1, . . . , r + s.

(4.60)

The γa are no longer hermitian in general, but satisfy TγaT
−1 = γa. They generate the real

Clifford algebra Cl(r, s). We often use the abbreviations Cl(+n) := Cl(n, 0) and Cl(−n) :=

Cl(0, n).7

The system of r+ s fermions giving rise to Cl(r, s) can have anomalies in the realization

of T and (−1)f , which will be the topic of the next subsection. Before proceeding, we now

give a rough argument for why these anomalies depend only on r − s modulo 8. First we

argue that only r− s is relevant for the anomaly. The reason is that a pair of fermions with

opposite T transformations allow a T-invariant mass term, so they cannot be anomalous.

For example, when (r, s) = (1, 1), we can simply add a T-invariant mass term iξ1ξ2, which

would trivialize the vacuum, precluding any anomaly.

We next argue that only r− s mod 8 matters. This can be understood in two steps. As

the first step, we consider Cl(4). For this we can introduce a T-invariant quartic hermitian

7Our convention is that Cl(−n) = Cn and Cl(+n) = C ′n in the notation of Atiyah-Bott-Shapiro [347].
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interaction term

H = ξ1ξ2ξ3ξ4 (4.61)

to the system, for which the vacuum is two-dimensional, purely bosonic, and T2 = −1. This

realizes a Kramers doublet, on which

σx := iξ1ξ2, σy := iξ1ξ3, σz := iξ1ξ4 (4.62)

act as Pauli matrices.

As the second step, we combine two such Kramers doublets obtained from two copies of

Cl(4), and make a single bosonic system with T2 = +1 and a unique vacuum. This can be

done by introducing a T-invariant term

H ′ := σx ⊗ σx + σy ⊗ σy + σz ⊗ σz, (4.63)

which we note can be realized as a four-fermi operator using (4.62).

In other words, we can introduce to Cl(8) a four-fermion term cijk`ξ
iξjξkξ` which is

hermitian and T-invariant, such that its addition leads to a non-degenerate vacuum [80].

Therefore, eight Majorana fermions with the same time-reversal properties can be removed

without affecting the anomaly.

More general (0+1)d systems and anomalies

We do not necessarily have to couple n boundary Majorana fermions to n copies of the

ABK theory. We only have to couple a boundary system which has the same anomaly as

n Majorana fermions. We thus need to understand the possible anomalies concerning the

realizations of T and (−1)f . In the mathematical literature this analysis was first done in

[348], in which the following eight-fold classification in terms of three signs was given.

The first sign is the most subtle to define. We ask whether (−1)f can be realized in an
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irreducible ungraded representation of the algebra. If this is possible, the representation is of

type +, and if not, it is of type −. As an example, consider Cl(+1). There are two ungraded

irreducible representations, which are real one-dimensional such that ξ1 = ±1. Clearly there

is no (−1)f operator that anticommutes with ξ1, meaning that Cl(+1) is of type −.

In the following, for representations of type−, we adjoin (−1)f to the algebra and consider

the resulting irreducible graded representations. Again take Cl(+1) as an example. Then

we consider a representation given by

ξ1 =

0 1

1 0

 , (−1)f =

1 0

0 −1

 . (4.64)

This is not irreducible as an ungraded representation but is irreducible as a graded repre-

sentation.

The other two signs specifying the anomaly type are easier to define. The second sign is

the one appearing in

T(−1)f = ±(−1)fT, (4.65)

while the third sign is the one appearing in

(T)2 = ±1. (4.66)

The eight types, labeled by n = 0, . . . , 7, are summarized in the left portion of Table 4.4.

There, we showed T2 = ±1 in terms of the corresponding division algebras R and H. In [348]

it was shown that the tensor product of a representation of type n and another of type n′

has the type n+n′ modulo 8. A very explicit analysis of Cl(+n) was given in Sec. 2.5.1 and

2.5.2 of [349], from which one can find that Cl(+n) is indeed of type n. Similarly, Cl(−n) is

of type −n.

In [348] it was also shown that any graded irreducible representation of type n automati-
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n type T and (−1)f T2

0 + commute R
1 − anticommute R
2 + anticommute R
3 − commute H
4 + commute H
5 − anticommute H
6 + anticommute H
7 − commute R

n A A0 A+
1 A−1

√
dimR

0 Cl(+0) = R R 1

1 Cl(+1) = R⊕ R R R
√

2
2 Cl(+2) = R[2] C C 2

3 Cl(+3) = C[2] H R3 R1 2
√

2
4 H H 2

5 Cl(−3) = H⊕H H R1 R3 2
√

2
6 Cl(−2) = H C C 2

7 Cl(−1) = C R R
√

2

Table 4.4: The properties of T and (−1)f for the eight anomaly types n = 0, . . . , 7. The
corresponding graded division algebras A = A0 ⊕A1, A1 = A+

1 ⊕A−1 are also given.

cally contains an action of the minimal algebra A for that type. This information is shown in

the right portion of Table 4.4. There, F[n] stands for the n× n matrix algebra over the field

F, A0 and A1 are the bosonic and fermionic parts of the algebra, and A±1 are the subspaces

of A1 which are hermitian and anti-hermitian, respectively.8 These eight graded algebras

are known to exhaust the graded division algebras over R, i.e. graded algebras such that any

homogeneous element has an inverse.

On the boundary Hilbert space

Consider n copies of the Kitaev chain on a segment σ ∈ [0, π]. We call σ = 0 the left

boundary and σ = π the right boundary. The Majoranas ξ on the left and ξ′ on the right

must have opposite transformation properties under time-reversal [80, 81]. This can be seen

by imagining a process in which the endpoints of the segment join to give a closed circle.

Once the endpoints come together, the T-invariant mass term involving ξ and ξ′ should be

able to gap the system, so ξ and ξ′ needs to have opposite T-transformation properties.

We work in the convention9 that we have n fermions ξi with TξiT
−1 = +ξi on the left and

n fermions ξ′i with Tξ′iT
−1 = −ξ′i on the right. They form Cl(n) and Cl(−n), respectively. The

8Note that the hermitian conjugate on a real algebra is simply an involution satisfying (ab)∗ = b∗a∗.
9In Section 4.5, the choice of the convention here will correspond to a choice of definition of the O9-plane

state.
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Hilbert space associated to the open string segment, including the bulk and two boundaries,

can be identified with Cl(n) itself, on which Cl(n) acts from the left and Cl(−n) acts from

the right. That the Hilbert space on the segment should naturally be equal to the boundary

algebra Cl(n) itself is clear from the state-operator correspondence. If we have other degrees

of freedom on the worldsheet, the Hilbert space on the segment is of the form

Hphys = Cl(n)⊗Hother dof. (4.67)

Naively, one would like to say that this Hilbert space is the tensor product of the Hilbert

spaces on the two boundaries. The square root
√

dimRA, listed in Table 4.4, is then what

would be taken as the dimension of the boundary Hilbert spaces. Note that this is not

always an integer. It is sometimes useful to have a well-defined, non-anomalous boundary

Hilbert space with integer dimension. This can be done by introducing n auxiliary boundary

fermions Ξi with TΞiT
−1 = −Ξi on the left and n auxiliary boundary fermions Ξ′i with

TΞ′iT
−1 = +Ξ′i on the right; this technique was used in e.g. [350] in the Type II setting. We

note that auxiliary boundary fermions have opposite T-transformation rules as compared to

the physical boundary fermions. The fermions on the left boundary now form Cl(n, n) and

can be quantized without anomaly. This can be represented on a space V , thus providing

Chan-Paton indices to the boundary. We can do the same on the right. The Hilbert space

on the segment, including both the physical and auxiliary boundary fermions, is then of the

form

V ⊗ V ∗ ⊗Hother dof = Haux ⊗Hphys (4.68)

where Haux = Cl(−n) and Hphys was defined in (4.67). Note that the elements of Hphys can

be found by finding operators (anti)commuting with all the auxiliary boundary fermions Ξ.

Below, when we say that “a boundary carries a representation of Cl(n),” we mean that

there are physical boundary fermions forming Cl(n), where n is taken modulo 8. If we use

the auxiliary boundary fermions, they form Cl(−n).
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4.4.2 D-branes and boundary fermions

Let us now study the boundary fermions in the context of the worldsheet theory of Pin−

Type 0 strings, with n copies of the ABK theory. We first consider open strings ending on

9-branes. We then have n boundary fermions on the left forming Cl(n) and n boundary

fermions on the right forming Cl(−n), as discussed above. The open-string Hilbert space,

before GSO projection, is of the form

Cl(n)⊗H0 (4.69)

where H0 is the open string Hilbert space of the massless worldsheet fields. Also as discussed

above, we can replace Cl(n) with any graded algebra having the same anomaly.

The restriction to 9-branes above meant that the only boundary fermions required were

those needed to cancel the anomaly of n copies of ABK. However, for branes of higher

codimension there will be additional anomalies from bulk fermion zero-modes, which should

be accompanied by additional boundary fermions ζi. Let us set n = 0 mod 8 for the moment,

since the ABK boundary fermions can be easily reinstated later. In order to understand the

additional boundary Majoranas ζi, we must first understand when zero-modes can appear

in the bulk of the string. As reviewed in Appendix 4.A, this depends on whether the ends

of the string have Dirichlet (D) or Neumann (N) boundary conditions. The NN, DD, and

ND strings satisfy the following boundary conditions,

NN : ψµ(t, 0) = −η1 ψ̃
µ(t, 0), ψµ(t, π) = +η2 ψ̃

µ(t, π),

DD : ψµ(t, 0) = +η1 ψ̃
µ(t, 0), ψµ(t, π) = −η2 ψ̃

µ(t, π),

ND : ψµ(t, 0) = −η1 ψ̃
µ(t, 0), ψµ(t, π) = −η2 ψ̃

µ(t, π), (4.70)

where ψ, ψ̃ are left- and right-moving bulk fermions and η1,2 = ±1 specifies the boundary

conditions at σ = 0, π. Though only the relative sign in these conditions is ultimately
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Figure 4.3: (a) A pair of Dp-branes with an NS sector string stretched between them; (b) an
NS sector string stretched between a D(9−k)- and D9-brane; (c) an R sector string stretched
between a Dp- and Dp′-brane; (d) an R sector string stretched between a D(9− k)′- and D9-
brane, which can be thought of as an NS sector string stretched between a D(k + 1)- and
D9-brane, as far as the behavior of the fermion zero modes is concerned.

important, our current conventions are such that η1,2 = +1 represents a Dp-brane at σ = 0, π,

while η1,2 = −1 represents a Dp′-brane at σ = 0, π. This is described in more detail in

Appendices 4.A and 4.B.

The presence of zero-modes depends on the relative choice of η1,2. This choice is in turn

related to the choice of NS or R sectors on the open string; we declare that the string is in

the NS sector for η1 = η2 and in the R sector for η1 = −η2; see Appendix 4.A. From (4.70)

we then conclude that NS sector fermions can have zero-modes along ND and DN directions,

whereas R sector fermions can have zero-modes along NN and DD directions.

Consider now a coincident pair of 9-branes of type η (Fig. 4.3(a)). In light-cone gauge,

there are zero ND directions and a total of 8 NN + DD directions. Since open strings

stretching between branes of the same type are in the NS sector, any potential zero-modes

would be in ND directions, of which there are none. Hence there are no bulk zero-modes, and

thus no boundary fermions. The same holds more generally for coincident pairs of p-branes

of type η.
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We now consider a 9-brane coincident with a (9− k)-brane, both of type η (Fig. 4.3(b)).

We consider an open string between them, which is again in the NS sector since the branes

are still of the same type. However, there are now k DN directions, and hence k zero-modes.

We denote the restriction of these zero modes to the boundary at the (9 − k)-brane by ψi0.

As in (4.41), the boundary time-reversal operator T acts on these by Tψi0T
−1 = ψ̃i0. By

(4.70), if the (9− k)-brane is at σ = 0 then we have ψi0 = ηψ̃i0, whereas if it is at σ = π we

have ψi0 = −ηψ̃i0. Together we conclude that

Tψi0T
−1 =


+ηψi0 σ = 0,

−ηψi0 σ = π.

(4.71)

When k 6= 0 mod 8, these zero-modes will lead to anomalies in T and (−1)f , and in

order to cancel them we must add extra boundary fermions. At σ = 0 there are two options:

we may add k boundary fermions ζi satisfying TζiT
−1 = −ηζi, or 8 − k boundary fermions

satisfying TζiT
−1 = +ηζi. These two choices are effectively identical, as they both behave

as Cl(−ηk). On the boundary at σ = π, one likewise requires a representation of Cl(+ηk).

For full consistency, we must check that the same additional boundary fermions also

cancel tentative anomalies in mixed strings stretching between Dp- and Dq′-branes. To begin,

consider coincident Dp- and Dp′-branes (Fig. 4.3(c)). There are then zero ND directions and

a total of 8 NN+DD directions. Since the branes are now of opposite types, the open strings

stretched between them are in the R sector. Recall that in the R sector, there are zero-modes

not from ND directions, but rather from NN and DD directions. Hence in this case there are

a total of 8 bulk zero-modes. But because there are eight of them, there is no time-reversal

anomaly, and no boundary fermions are necessary. This is consistent with the fact that the

strings stretching from the Dp-branes to themselves, or from the Dp′-branes to themselves,

were shown to not require any boundary fermions.

Another way to analyze this setup is to note that, insofar as counting zero-modes is
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concerned, switching η → −η is equivalent to switching Neumann and Dirichlet boundary

conditions in all directions, as is evident from (4.70). Then the Dp′-brane can be replaced

by a D(10 − p)-brane, and we now have a setup with 8 ND directions and zero NN and

DD directions (in light-cone gauge). Since the branes are of the same type now, the open

string stretched between them is in the NS sector, and we can again conclude that we have

8 zero-modes. This method of replacing the Dp′-brane with a D(10 − p)-brane is useful in

analyzing e.g. the case of a D(9− k)′- and D9-brane, which can be replaced by a D(k + 1)-

and D9-brane (Fig. 4.3(d)). By our above analysis, this then has 8 − k bulk zero-modes

which satisfy Tψ0T
−1 = −(−1)ψ0 = +ψ0 at σ = 0. These can be cancelled by adding

8 − k boundary fermions ζi satisfying TζiT
−1 = −ζi, or k boundary fermions satisfying

TζiT
−1 = ζi, both of which give a representation of Cl(k). This matches the results found

before for a D(9 − k)′-brane. Using these techniques, one can easily check that the more

general mixed strings between Dp- and Dq′-branes have vanishing anomaly when one makes

the above assignments of boundary fermions.

Finally, we may reintroduce non-zero n. As discussed above, this gives a representation

of Cl(n) on the boundary at σ = 0 and of Cl(−n) on the boundary at σ = π. Let us

now consider an open string stretched between a (9 − k)-brane of type η at σ = 0 and a

D(9 − k)-brane at σ = π. In the theory with n copies of ABK, the endpoint at σ = 0

carries a representation of Cl(n− ηk), while the endpoint at σ = π carries a representation

of Cl(−n+ ηk).

4.4.3 K-theory classification of branes

We can now study the stability of D-branes in these theories. The analogous results in Type

I were obtained in [350–352]. We first note that the tachyon vertex operator ζ is a fermionic,
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hermitian boundary operator such that the boundary interaction

∫
dt iψµ0 ζDµT (X). (4.72)

is T-invariant. Here ψµ0 is the restriction of the bulk fermion field to the boundary and

T (X) is the spacetime tachyon profile. In particular, the ψµ0 appearing here should be

those associated to the Neumann directions, which have opposite T transformations as those

given in (4.71). Thus for the coupling to be T-invariant, we need ζ to have the same T

transformations as those given in (4.71),

TζT−1 =

+ηζ σ = 0,

−ηζ σ = π.
(4.73)

Stable branes are those for which such ζ does not exist.

It is cumbersome to carry out the analysis below for the two cases η = ±1 separately.

This can be circumvented by analyzing the σ = 0 end when η = +1 and the σ = π end

when η = −1. This means that we work with the Clifford algebra Cl(n − ηk) for η = +1

and Cl(−n + ηk) for η = −1, or in other words just Cl(ηn − k) for both cases. Therefore,

below we simply analyze Cl(ηn− k) and look for a tachyon vertex operator satisfying

TζT−1 = ζ, (4.74)

for both cases η = ±1. This means that the results to be obtained depend only on

ν := ηn− k. (4.75)

When ν = 0 mod 8, the minimal choice of Chan-Paton algebra is simply R, as can be

seen from Table 4.4. We can enlarge the Chan-Paton algebra by introducing N bosonic
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indices and N ′ fermionic indices. Then the Chan-Paton algebra has the bosonic part R[N ]⊕

R[N ′] and the fermionic part RN ⊗ RN ′ ⊕ RN ′ ⊗ RN , where we recall that the algebra F[N ]

stands for the N × N matrix algebra with entries in F. The T-invariant fermionic part is

then RN ⊗RN ′ . This means that the gauge group is O(N)×O(N ′) and the tachyon field is

in the bifundamental. The stable branes are those such that the tachyon representation is

empty, which occurs for N ≥ 0 and N ′ = 0 or N = 0 and N ′ ≥ 0. These can be labeled by

Z. The case ν = 4 is similar; one simply replaces R by H and O by Sp.

In the other six cases, the minimal choice of Chan-Paton algebra A already contains

both the bosonic and the fermionic part. We can introduce additional Chan-Paton indices

i = 1, . . . , N , thus enlarging the Chan-Paton algebra to A[N ] := A⊗R[N ]. From Table 4.4,

we see that A[N ] has the following structure:

ν A[N ]0 A[N ]+1 A[N ]−1

1 R[N ] R[N ]symm. R[N ]anti.

2 C[N ] C[N ]symm. C[N ]anti.

3 H[N ] H[N ]symm. H[N ]anti.

5 H[N ] H[N ]anti. H[N ]symm.

6 C[N ] C[N ]anti. C[N ]symm.

7 R[N ] R[N ]anti. R[N ]symm.

(4.76)

where A[N ]0,1 denotes the bosonic and fermionic parts and A[N ]±1 denotes the hermitian

and anti-hermitian parts. The symmetrization and antisymmetrization are defined as usual

for R and C, and as the symmetric and antisymmetric tensor square for the fundamental

representation of Sp(N) for H. It is instructive to check that the table above reduces to

Table 4.4 when N = 1. From this it is easy to read off the gauge group and the representation

of the tachyons for the D-branes, which is given in Table 4.5. One may check that by setting

n = 0 in Table 4.5 we get back the results of [350–352] for Type I.
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The stable branes are those for which the tachyons are absent. For ν = 0, 4 we already

discussed that they are classified by Z. For ν = 1, 2, 3, 5 the tachyon field is always present.

Finally, for ν = 6, 7 the tachyon field is absent when N = 1 but appears when N = 2, and

hence the classification is by Z2. These results match with KOν(pt).

Let us reanalyze this setup using the auxiliary boundary fermions discussed in Section

4.4.1. Our physical boundary fermions form an algebra A whose anomaly is of type ν. We

introduce auxiliary boundary fermions Cl(−ν) to cancel the anomaly, so Cl(−ν)⊗A is non-

anomalous, acting on the Chan-Paton vector space V . The tachyon field corresponds to a

hermitian fermionic element ζ in A. This means that if such a tachyon field is present, the

Cl(−ν) action on V is extended to a Cl(1− ν) action on V . In other words, on the D-brane

characterized by ν, a Chan-Paton space V with an action of Cl(−ν) is necessary, and it is

unstable if and only if this Cl(−ν) action can be extended to an action of Cl(1− ν). Using

the result in [347], this can be directly connected to KOν(pt). To see this, recall that in

[347] Atiyah, Bott, and Shapiro considered

M−n := free Z-modules generated by graded irreducible representations of Cl(−n) (4.77)

and considered the natural map i∗ : M−n−1 →M−n induced by i : Cl(−n)→ Cl(−n− 1). It

was then shown that

KO−n(pt) = M−n/i
∗(M−n−1). (4.78)

We note that by replacing Ξ by Ξ̂ = Ξ(−1)f , a graded representation of Cl(n) can be

converted to a graded representation of Cl(−n) and vice versa. Therefore we also have

KO−n(pt) = Mn/j
∗(Mn+1) (4.79)

where j∗ : Mn+1 →Mn is now induced by j : Cl(n)→ Cl(n+ 1). Then, Chan-Paton spaces

with Cl(−ν) action modulo those with Cl(−ν + 1) action are clearly classified by KOν(pt).
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ν 0 1 2 3 4 5 6 7

Gν O(N)×O(N ′) O(N) U(N) Sp
(
N
2

)
Sp
(
N
2

)
× Sp

(
N ′

2

)
Sp
(
N
2

)
U(N) O(N)

ρζ bifund. symm. symm. symm. bifund. anti. anti. anti.

λν 1
√

2 2 2
√

2 2 2
√

2 2
√

2

KOν(pt) Z 0 0 0 Z 0 Z2 Z2

Table 4.5: Gauge groups Gν and tachyon representations ρζ on the worldvolume of N (9−k)-
branes of type η in the theory with n copies of ABK. Note that ν = ηn−k = ηn+p−1 mod
8. “Bifund.” refers to the bifundamental representation, whereas “symm.” (“anti.”) refer
to the symmetric (anti-symmetric) rank 2 tensor representations. We also listed the tensions
of these branes, as well as their K-theory classifications, which can be found by considering
when the tachyon field is empty.

We note that this restatement also shows that the brane of type ν can naturally host an

orthogonal bundle with an additional action of Cl(−ν). It would be interesting to connect

this observation to the definition of KO-theories in terms of Clifford bundles, which can be

found e.g. in [94].

Brane tension from boundary fermions

Finally, let us comment on the tensions of the various branes, both stable and unstable,

identified thus far. In order to obtain the tension one computes a disc path integral, with

the boundary of the disc anchored on the brane — this may be interpreted as the one-point

function of the brane with a graviton in the closed string picture. If there are Majorana

fermions present on the boundary of the disc, these will give a contribution to the path

integral. In particular, as mentioned in the Introduction the contribution of a (0 + 1)d

Majorana fermion to the path integral is an overall factor of
√

2. This holds in all cases,

including Type II and Type 0 strings.

We begin by discussing the more familiar case of Type II, for which there are branes

of only a single type η = 1. As we have discussed, the Type IIB and IIA theories are

distinguished by the presence of respectively n = 0, 1 Majorana fermions on the boundary.

For this reason, the non-BPS D9-branes in Type IIA have a tension which is
√

2 times
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that of their BPS counterparts in Type IIB. However, it is not the case that all branes in

Type IIA have tensions which are larger by this factor. Indeed, let us consider branes of

codimension k. By considering open strings stretched between such branes and D9-branes,

we may conclude that strings ending on such branes must have k bulk zero modes — this is

argued for as above, by noting that a change in codimension leads to a change in the number

of DN or ND directions for the open string endpoints. It is then possible for the anomalies

of the invertible phase and bulk zero modes to cancel. In fact, since in this case the anomaly

is only Z2 we can conclude that the number of boundary fermions is only |n − k| mod 2.

As such, we conclude that Dp branes in Type IIA/B have tensions (
√

2)|n−k|mod 2 T II
p , where

T II
p is the tension of the corresponding stable non-torsion p-brane. In particular, this tells

us that for Type IIB, branes with p odd have tensions T II
p (essentially by definition) while

for p even the branes have tensions
√

2T II
p . Likewise for Type IIA, branes with p even have

tensions T II
p , while branes with p odd have tensions

√
2T II

p .

We now generalize this to the case of Type 0 strings. As explained above, in this case

the bulk theory carries the same anomaly as ν boundary Majorana fermions. It is natural

to choose the minimal realization of the anomaly in the boundary system, which is a system

of Majorana fermions in a representation of Cl(+ν) if ν < 4 and of Cl(−ν) if ν > 4. Then

the tension of the corresponding branes is weighted by the path integral over the system of

fermions, yielding the result λνT
0
p where λν :=

√
dimRA as given in Table 4.4. For example,

in the case of a D9- or D9′-brane in the theory with 1 or 7 copies of ABK, we find that the

tension is
√

2 times that in the theory with no copies of ABK. The values λν are tabulated

in Table 4.5, and will be reproduced for stable branes via the boundary state formalism in

Section 4.5.
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4.4.4 Vacuum manifolds of tachyons as classifying spaces

We now reinterpret the results of this section in terms of tachyon condensation on the

worldvolume of 9-branes. In the string theory literature, this is referred to as the Atiyah-

Bott-Shapiro (ABS) construction [92, 93, 347].

We start from the 9-brane of type η. As before we use the trick of analyzing the σ = 0

boundary when η = +1 and the σ = π boundary when η = −1. The boundary then carries

an action of Cl(ηn). To construct a (9−k)-brane located at X1 = · · · = Xk = 0, we choose a

set of time-reversal invariant Majorana fermion operators ζi=1,...,k in Cl(ηn) (for this purpose

one might need to replace ηn by ηn+ 8m for some integer m) and use them to assemble the

tachyon field

T (X) = f(|X|)
k∑
i=1

X iζi , (4.80)

with f(|X|) some convergence factor chosen such that T (X) obtains its vacuum value as

|X| → ∞ and such that f(|X|)2
∑k

i=1(X i)2 = 1. Upon condensation this tachyon gives rise

to the desired (9 − k)-brane. As we used up k out of ηn Majorana fermions we originally

had on the 9-brane, we end up with the residual action of Cl(ηn− k), as argued before in a

different manner.

We now discuss the connection between tachyon profiles and KO-theory. Consider the

usual 9-9 stack, supporting an O(N) × O(N) gauge group for n = 0 mod 8. We now

follow Sen’s construction and consider a domain wall configuration of the tachyon such that

it condenses to produce a D8-brane [325]. This involves assignment of a vacuum value of

ζ(X) to each point on the “sphere” S0 at infinity. Thus such domain wall configurations

are classified by π0(V9), where V9 is the vacuum manifold for the tachyon on D9-brane. The

tachyon potential should be such that it breaks O(N) × O(N) to the O(N) supported on
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the resulting D8. A minimal assumption is then

V9 =
O(∞)×O(∞)

O(∞)
∼= O(∞) (4.81)

where we took the formal limit in which the number of original D9-branes is infinite. We can

repeat the argument for lower Dp-branes, and find that they would similarly be classified by

π8−p(V9).

The Dp-brane can also be obtained from tachyon condensation on Dq-branes with p <

q < 9. The vacuum manifold Vq for the tachyon field on the Dq-brane can be determined

from Table 4.5:

V2 =
O(∞)

O(∞)×O(∞)
× Z , V3 =

U(∞)

O(∞)
, V4 =

Sp(∞)

U(∞)
, V5 =

Sp(∞)× Sp(∞)

Sp(∞)
,

V6 =
Sp(∞)

Sp(∞)× Sp(∞)
× Z , V7 =

U(∞)

Sp(∞)
, V8 =

O(∞)

U(∞)
, V9 =

O(∞)×O(∞)

O(∞)
(4.82)

where the subscript is defined modulo 8. One then expects that Dp-branes can be classified

by πq−p−1(Vq).

All of this is compatible with the statement that the Dp-branes are classified by K̃O0(S9−p)

thanks to the mathematical fact [94] that KOn := Vn+2 is the classifying space of KO-theory,

in the sense that

K̃On(X) = [X,KOn]. (4.83)

The KOn form an Ω-spectrum, which entails the relation KOn ' ΩKOn+1. We then have

πq−p−1(Vq) = [Sq−p−1, KOq−2] = [pt,Ωq−p−1KOq−2] = [pt,KOp−1] = K̃O0(S9−p). (4.84)
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4.5 D-brane spectra via boundary states

In the previous section, we were able to verify the K-theory classification of Pin− Type

0 strings from the open string perspective. In this section, we rederive these results from

a closed string perspective. In addition to gaining more intuition about the behavior of

invertible phases on worldsheets, we will use the closed string perspective to verify our

earlier results on the tensions of stable branes appearing in each theory. These tools will

also be used to address the issue of tadpole cancellation in Appendix 4.C.

From the closed string point of view, D-branes correspond to states in the closed string

Hilbert space. The basic idea is to define these states by imposing the open string boundary

conditions (4.70) as gluing conditions. Upon appropriate rotation of the Euclidean world-

sheet, one finds that the correct conditions to impose on boundary states |Bp, η〉 are

N : (αµn − α̃µ−n)|Bp, η〉 = (ψµr − iηψ̃µ−r)|Bp, η〉 = 0 ,

D : (αµn + α̃µ−n)|Bp, η〉 = (ψµr + iηψ̃µ−r)|Bp, η〉 = 0 , (4.85)

as reviewed in Appendix 4.B. Here r is integer/half-integer for the R/NS sector. The solution

to these equations ends up being the coherent state defined in (4.136). Furthermore, in

Appendix 4.B it is shown that the physical D-brane states in Type 0 theories are in fact

linear combinations of these |Bp, η〉, of the form

|Dp, η〉 =
1

NBp

1√
2

(η|Bp, η〉NSNS + |Bp, η〉RR) , η = ±1 (4.86)

where |Dp,+〉 represents a Dp-brane, |Dp,−〉 represents a Dp′-brane, andNBp = 2
5
2 (4π2α′)

p−4
2

is a normalization factor obtained in Appendix 4.B.3. This result will be the starting point

for our analysis in this section.
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4.5.1 Matching non-torsion brane spectra

In this subsection we begin by rederiving the stable non-torsion brane spectra of the eight

Pin− Type 0 theories via the boundary state formalism. The analysis of the torsion brane

spectra will be carried out in Section 4.5.2.

To understand the spectrum of branes in the theory with n copies of ABK, we need to

understand the action of the worldsheet parity operator Ω on D-brane states in the presence

of the invertible phase. We begin by understanding the action of Ω on the constituent

boundary states |Bp, η〉. In Section 4.3.2, we described the action of Ω on the ground states

in the theory with n copies of ABK. From this and (4.141) it easily follows that the action

of Ω on the boundary states is given by

Ω|Bp, η〉NSNS = |Bp, η〉NSNS , Ω|Bp, η〉RR = iην |Bp, η〉RR , (4.87)

with the parameter ν = ηn− k defined in Section 4.4.

The branes which survive the orientifolding are those which are left invariant by Ω;

i.e. those for which ν is zero modulo 4. Therefore, the non-torsion Dp-branes are in one-to-

one correspondence with non-torsion elements of K̃On(Sk), while the non-torsion Dp′-branes

are in one-to-one correspondence with non-torsion elements of K̃O−n(Sk), as listed in Table

4.3.

Although ν is a mod 8 parameter, the presence of non-torsion branes depends on ν only

mod 4. Indeed, this is to be expected since (4.87) was obtained by considering only the

values of ABK on the Klein bottle K2. However, as discussed in Section 4.3.2, K2 is not the

generating manifold for f2
Pin−

(pt) = Z8. Rather, the generating manifold is RP2, and since

K2
∼= RP2#RP2 we currently have access to only a Z4 of the full Z8.

In contrast, the open string states do depend on ν mod 8. This is because the action of

Ω on open string ground states comes from the Möbius strip amplitude. The Möbius strip

M2 contains a single RP2, whose amplitude is eiπABK(RP2)/4 = e±iπ/4, as we saw in Section
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4.2.2. Then we have the schematic action

Ω|0; ij〉 ∼ e±inπ/4|0; ji〉 (4.88)

where i, j are Chan-Paton indices. Therefore shifting n→ n+ 4 changes the action of Ω on

the Chan-Paton factors by a minus sign, between symmetric and anti-symmetric. This is

precisely as expected when going between O9−- and O9+-planes, and in agreement with the

fact that K̃On+4(X) ∼= K̃Spn(X).

4.5.2 Matching torsion brane spectra

We now use the boundary state formalism to check that the torsion brane spectra predicted

by K̃On(X)⊕ K̃O−n(X) are reproduced by the theory with n copies of ABK. The study of

torsion branes [325, 353, 354] in the boundary state formalism for unoriented theories was

first done in [355–357]. Here we will adapt these methods to the Pin− Type 0 theories.

In contrast to the generic Type 0 non-torsion brane (4.86), the generic torsion branes of

Type 0 consists of only the NSNS portion,

|D̃p, η〉 =
λν
NBp

η√
2
|Bp, η〉NSNS , η = ±1 (4.89)

where λν > 0 is a normalization factor related to the tension of the torsion brane, which

will be shown to depend only on ν. This state, though GSO invariant, is not stable in the

oriented Type 0 theory since the tachyon is not projected out. This can be detected by

computing the overlap of two boundary states in the closed string tree-channel, and then

doing a modular transformation to the open string loop-channel, where a tachyon appears.

However, in the unoriented theory the gauging of Ω can project out the tachyon. This is seen

at the level of the amplitude by cancellation of the tachyon piece of the cylinder amplitude

with the analogous piece of the Möbius strip amplitude.
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To determine the spectrum of stable torsion branes, we begin by computing the closed

string cylinder diagram in tree-channel. Using the results of (4.154), we have

AC2 =

∫ ∞
0

dl 〈D̃p, η|e−2πlHcl |D̃p, η〉 =
λ2
ν

26
vp+1

∫ ∞
0

d`

`
9−p

2

f 8
3 (2i`)

f 8
1 (2i`)

. (4.90)

The functions fi(τ) are defined in (4.143) in terms of Jacobi theta functions and the Dedekind

eta function. We can translate the tree-channel amplitude to loop-channel using the trans-

formation l = 1/2t and the modular S transformations in (4.144), which yields

AC2 =
1

2
λ2
ν vp+1

∫ ∞
0

dt

(2t)
p+3

2

f 8
3 (it)

f 8
1 (it)

, (4.91)

with the answer independent of η and n. Using the q-expansions of the fi(τ) given in (4.143),

we may isolate the tachyon contribution,

AC2

∣∣
tachyon

=
1

2
λ2
ν vp+1

∫ ∞
0

dt

(2t)
p+3

2

eπt . (4.92)

We must now check under which circumstances this can be cancelled by a contribu-

tion from the Möbius strip. In order to calculate the Möbius strip amplitude, we use the

orientifold state |Op〉 introduced in (4.173) and calculate in the loop-channel

AM2 =

∫ ∞
0

dl
(
〈O9|e−2π`Hcl |D̃p, η〉+ 〈D̃p, η|e−2π`Hcl |O9〉

)
= −λνvp+1

∫ ∞
0

d`

[
ei
πnη

4

(
f 8

3 f
2(9−p)
4

fp−1
1

)(
2i`+

1

2

)

−e−iπnη4

(
f 8

4 f
2(9−p)
3

fp−1
1

)(
2i`+

1

2

)]

= −λν
2
vp+1

∫ ∞
0

dt

(2t)
p+3

2

[
ei
π
4

(9−p−nη)

(
f 8

3 f
2(9−p)
4

fp−1
1

)(
it+

1

2

)

−e−iπ4 (9−p−nη)

(
f 8

4 f
2(9−p)
3

fp−1
1

)(
it+

1

2

)]
. (4.93)
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Isolating the tachyon contribution yields

AM2

∣∣
tachyon

= λν sin
[π

4
ν
]
vp+1

∫ ∞
0

dt

(2t)
p+3

2

eπt . (4.94)

Combining (4.92) and (4.94), we have

(AC2 +AM2)
∣∣
tachyon

=
1

2
λν

(
λν + 2 sin

[π
4
ν
])

vp+1

∫ ∞
0

dt

(2t)
p+3

2

eπt . (4.95)

Since λν is positive, the values of p for which the tachyon can be cancelled are those such

that sin
[
π
4
ν
]
< 0. The tension of the corresponding torsion brane is then λνT

0
p , where λν =

−2 sin
[
π
4
ν
]

and T 0
p is the tension of a stable non-torsion p-brane in Type 0. For example,

when n = 0 we conclude that cancellation is possible if p ∈ {−1, 0, 7, 8}, regardless of η = ±1.

The corresponding branes have tension 2T 0
p for p = −1, 7 and tension

√
2T 0

p for p = 0, 8.

These are in one-to-one correspondence with the torsion classes in K̃On(Sk) ⊕ K̃O−n(Sk).

The tensions determined here also match exactly with the ones listed in Table 4.5.

Note that in this example, it would naively seem that p = 6 yields an acceptable torsion

brane as well. However, this is not the case. To understand this, recall that before orien-

tifolding these branes are unstable due to a tachyon in the p-p strings — these in particular

are in the (−1)f odd part of the spectrum, and are built out of a certain vacuum |0〉oddpp . One

then notes that, without the presence of Chan-Paton factors [356],

Ω|0〉oddpp = e−i
π
4
p|0〉oddpp . (4.96)

Hence for p = 2, 6 we see that Ω2 = −1 on the vacuum. To compensate, we need to introduce

at least a two-dimensional Chan-Paton index i = 1, 2, in the doublet representation of Sp(1).

Then the Ω projection keeps the antisymmetric combination [ij] of the tachyon, and thus

there is no stable torsion D6-brane. Indeed this class is absent from K̃On(Sk)⊕ K̃O−n(Sk).

The generalization of this condition for non-zero n is as follows. The goal is to check that
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Ω2 6= −1 on the relevant ground state, lest 1
2
(1 + Ω) not be a valid projector for removing

the tachyon. We know that non-zero n modifies the open string ground states such that the

action of Ω is modified by (4.88). The cases with n even descend from Type 0B, in which

case we have p even, whereas the cases with n odd descend from Type 0A, in which case we

have p odd. Thus we conclude that Ω2 on the |0;n〉oddpp ground state is given by e−i
π
2
ηne−i

π
2
p,

and hence we must exclude cases for which p+ η n = ±2, 6, 10, 14, . . . .

To summarize, the conditions that must be satisfied by torsion (9− k)-branes of type η

in the theory with n copies of ABK are the following,

sin
[π

4
ν
]
< 0 , 9 + ν 6= ±2 mod 8 . (4.97)

Note that the combination of n, k appearing here, namely ν = ηn−k mod 8, is the same one

appearing in Section 4.4 and Section 4.5.1. We have already checked above that the analysis

via boundary states is in agreement with the previous analysis via boundary fermions when

n = 0. Since the results (4.97) only depend on ν, this agreement is simply extended to the

general case.

4.5.3 Pin+ Type 0 theories

We may now briefly turn to the analysis of the brane spectra in Pin+ Type 0 theories. Using

the action of Ω given in (4.87) (with ν → −k) and the action of (−1)fL given in (4.140), one

finds

Ωf |Bp, η〉NSNS = −|Bp,−η〉NSNS , Ωf |Bp, η〉RR = i−ηk|Bp,−η〉RR . (4.98)
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in the trivial phase. In the non-trivial phase, one gets an extra sign in the action of Ωf on

RR ground states, so more generally

Ωf |Bp, η〉NSNS = −|Bp,−η〉NSNS , Ωf |Bp, η〉RR = i2n−ηk|Bp,−η〉RR . (4.99)

with n = 0, 1 labelling the trivial or non-trivial phase. The stable D-brane states which are

invariant under Ωf then take the form

|Dp〉 =
1

NBp

1

2
(|Bp,+〉NSNS − |Bp,−〉NSNS + |Bp,+〉RR + i2n−k|Bp,−〉RR) , (4.100)

reminiscent of the Type II states obtained in (4.158). In fact, these states are invariant under

Ωf for any value of k = 9 − p, both odd and even. On the other hand, the fully physical

D-brane states must also be invariant under (−1)f . It is easy to see that this requires 2n− k

to be even. Thus for both n = 0, 1, we keep all states with p odd, reproducing the full

spectrum of non-torsion branes in Type IIB.

We may now ask about torsion branes. These would take the same form as in Type I,

given by

|D̃p〉 =
λ

NBp

1

2
(|Bp,+〉NSNS − |Bp,−〉NSNS) (4.101)

with λ > 0 a normalization factor. In order for such a brane to be stable, we require the

open string tachyon contributions from the cylinder and Möbius strip amplitudes to cancel.

In order to calculate the Möbius strip amplitude, one must make use of the appropriate

orientifold plane state, which is obtained in Section 4.B.4 and shown in (4.178). Importantly,

note that the Pin+ structure forces this state to be entirely in the RR sector. This means

that the Möbius strip amplitude consists only of terms of the form NSNS〈Bp| . . . |Bp〉RR,

which vanish. There is thus no Möbius strip contribution at all, and hence we cannot expect

any cancellation of tachyons, and so no stable torsion branes. In conclusion, the spectrum of
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stable branes in these theories is precisely the same as for oriented Type IIB, and is classified

by the complex K-group K(X).

4.6 No new Type I theories

In this final section we classify unoriented Type II (i.e. Type I) strings. Unlike Type 0 strings

for which one may consider Pin± theories separately, the unoriented Type II strings possess

a more complicated spin extension of O(d), which contains both Pin±(d) as subgroups. We

refer to this as DPin structure, since it is a “doubled” Pin structure, and we define it precisely

in Section 4.6.1. That such a thing is necessary is to be expected: as explained in Section

4.2.2, for Pin− structure the boundary circle of the Möbius strip is automatically in the NS

sector, whereas for Pin+ structure the boundary circle is automatically in the R sector. In

contrast, we know that Type I strings allow both NS and R boundary conditions on the

Möbius strip, so it is clear that these worldsheets must incorporate both Pin±.

In order to understand possible anomalies and invertible phases on the worlsheet of

unoriented Type II theories, it is necessary to calculate the groups fd
DPin(pt) for d = 2, 3.

This may be done using the Atiyah-Hirzebruch spectral sequence for twisted spin bordism,

as will be recalled in Section 4.6.2. Details of the calculation are relegated to Appendix

4.E. The final result is that f2
DPin(pt) = (Z2)2 and f3

DPin(pt) = Z8. The latter implies that

the unoriented Type II string is anomaly-free in ten dimensions. The former would naively

suggest a quartet of string worldsheet theories, but as we discuss in Section 4.6.3 only two

of these theories are physically distinct. The two distinct options are the traditional Type I

and Ĩ strings, corresponding to orientifoldings by orientifold O9∓-planes.

4.6.1 ‘Spin structure’ on the Type I worldsheet

The oriented Type II worldsheet has separate spin structures for left- and right-movers,

necessitating a Spin × Z2 structure. We would now like to understand the unoriented lift
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of this structure. We note that the Z2 part of the Spin × Z2 structure acts on (ψ, ψ̃) by

diag(+1,−1), and should therefore be mapped to diag(−1,+1) under orientation reversal.

To formalize, we then need an extension of O(d) by Z2 × Z2,

0→ Z2 × Z2 → G→ O(d)→ 0 (4.102)

such that the orientation reversal part of O(d) exchanges the two Z2 factors, and such that

when restricted to SO(d) the extension class is given by (w2, w2). Another way of saying this

is that we would like a spin structure on the orientation double cover of the worldsheet. Note

that for the worldsheet we have d = 2, but we will work more generally for the moment.

We now consider the effect of the homomorphism s : Z2 × Z2 → Z2, (a, b) 7→ ab in the

extension. Over SO(d), the extension class of the image is w2 + w2 = 0. The image is also

invariant under the orientation reversal part of O(d). Therefore the extension

0→ s(Z2 × Z2)→ s(G)→ O(d)→ 0 (4.103)

is trivial and can be split: s(G) ' O(d)× Z2. There are two natural splitting; once there is

a splitting, we can compose it with

O(d)× Z2 → O(d)× Z2

(g, c) 7→ (g, c det g)

(4.104)

to get another. So G can also be put in the following sequence,

0→ Z2 → G→ O(d)× Z2 → 0 . (4.105)

Its extension class is a linear combination of w2, w2
1, aw1, and a2, where a is the generator of

H1(BZ2,Z2). To determine which linear combination, we may argue as follows. First, since
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Z2 is not extended to Z4 within G, the term a2 is not involved. Second, since the entire

group is not Pin± × Z2, we need the term aw1. Finally, since the extension is Spin(d)× Z2

over SO(d) × Z2, the class w2 must be involved. This means that the extension class is

either w2 + w1a or w2 + w2
1 + w1a. These two are exchanged by the change of the splitting,

since (4.104) sends a 7→ a + w1. Let us pick w2 + w2
1 + w1a for definiteness, and write

c : G → Z2 for the projection to the Z2 factor. The kernel of c is Pin−(d). The kernel of

det g : G → O(d) → Z2 is Spin(d) × Z2, and the kernel of c det g is Pin+(d). So G is an

interesting mixture of all three groups — as mentioned before, we refer to it as G = DPin(d).

For d = 2 we can construct the group DPin(2) more directly. We first let Spin(2) act on

(ψ, ψ̃) via diag(eiθ/2, e−iθ/2). Next we supplement this with a chiral Z2 acting via

Z = diag(+1,−1) , (4.106)

and then further include orientation-reversing elements of Pin−(2), which can be chosen to

be elements of the Clifford algebra Cl(−2),

γ0 =

0 i

i 0

 , γ1 =

0 −1

1 0

 . (4.107)

Note that we have

γ0γ1 = diag(i,−i) (4.108)

which is a lift of a 180◦ rotation. This means that γ0γ1Z = i1 is also a lift of a 180◦ rotation.

Then we see that

γ̃0 := iγ1 , γ̃1 := −iγ0 (4.109)

are also in the group DPin(2). Together with Spin(2), these elements of Cl(+2) can be used

to form Pin+(2). In this way, we see explicitly how DPin(2) contains all three of Spin(2)×Z2,

Pin−(2), and Pin+(2).
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Now consider the Möbius strip M2. As discussed above, the boundary circle of M2 is

automatically in the NS sector for Pin− since γ2
i = −1, whereas for Pin+ structure the

boundary circle of M2 is automatically in the NS sector since γ̃2
i = 1. We may now contrast

this with the case of DPin structure. In that case, we can use either γi or γ̃i to construct

M2, and depending on this choice we can have NS or R on the boundary circle. From the

boundary state point of view, this means that the orientifold plane states should have both

NS and R sector contributions, which matches the well-known result (4.180).

4.6.2 The group fd
DPin(pt)

To understand the anomalies and invertible phases present on unoriented Type II worldsheets,

we must calculate fd
DPin(pt) for d = 2, 3. These groups may be calculated by using the

Atiyah-Hirzebruch spectral sequence (AHSS) for twisted spin bordism groups.

We first recall twisted spin structures. We consider a space X with a real vector bundle

V over it. Take a manifold M . A spin structure on M twisted by V is a pair

(f : M → X , spin structure on TM ⊕ f ∗(V )). (4.110)

We can then consider the corresponding bordism group ΩSpin
d (X;V ). Note that we have

w1(TM) = f ∗(w1(V )), w2(TM) = f ∗(w1(V )2 + w2(V )) (4.111)

since we have a spin structure on TM ⊕ f ∗(V ).

For example, when when V is a zero-dimensional trivial bundle this reduces to an ordinary

spin bordism of X. As another set of examples, take L to be the real line bundle over BZ2
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such that w1(L) is the generator of H1(BZ2,Z2) = Z2. Then we have

ΩSpin
d (BZ2;L⊕n) =



ΩSpin
d (BZ2) n = 0,

ΩPin−

d (pt) n = 1,

ΩSpinZ4

d (pt) n = 2,

ΩPin+

d (pt) n = 3

(4.112)

where SpinZ4 = (Spin× Z4)/Z2.

The group DPin described above corresponds to taking X = BZ2 × BZ2 and using

V = (L1 ⊗ L2) ⊕ L⊕3
2 . Here L1 and L2 are real line bundles such that w1(L1) = w and

w1(L2) = a, where we denote the generators of H1(BZ2 × BZ2,Z2) = Z2 × Z2 by w and a.

Then

w1(V ) = w, w2(V ) = wa. (4.113)

Let us now recall the basics of the AHSS. This review will not be comprehensive — for

more thorough introductions to the AHSS, the reader can consult e.g. [312, 315, 319, 358].

The basic ingredients in the AHSS are the E2 page and a set of differentials. For twisted

spin bordism, the E2 page consists of Ep,q
2 = Hp(X,fq

Spin(pt)). The underline in the group

fq
Spin(∗) denotes the fact that the coefficient system is twisted by w1(V ) ∈ H1(X,Z2). The

differentials on the E2 page are as follows:

• d2
2 : Ep,2

2 = Hp(X,Z2)→ Ep+2,1
2 = Hp+2(X,Z2) is given by

d2
2(x) = Sq2 x+ w1(V ) Sq1 x+ w2(V )x (4.114)

• d1
2 : Ep,1

2 = Hp(X,Z2)→ Ep+2,0
2 = Hp+2(X,U(1)) is given by

d1
2(x) = ι

(
Sq2 x+ w1(V ) Sq1 x+ w2(V )x

)
= ι
(
Sq2 x+ w2(V )x

)
(4.115)
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where ι is the inclusion Z2
ι
↪→ U(1).10

These differentials, together with d3
2, were determined in [359]. They were also deduced

previously in [360, 361] when w1(V ) is trivial. Alternatively, they can be deduced using the

identity

ΩSpin
d (X;V ) = Ω̃Spin

d+dimV (Thom(V )) (4.116)

where Thom(V ) is the Thom space of V . Indeed, denoting the Thom class by U , this equality

implies

d2
2(x)U = Sq2(xU), d1

2(x)U = ι(Sq2(xU)). (4.117)

We then simply use the Cartan formula for the action of the Steenrod square, and the

definition of the Stiefel-Whitney classes as Sqd U = wd(V )U .

Details on our calculation will be given in Appendix 4.E, where we demonstrate how

one computes f2,3
X (pt) not only for X = DPin but also for X = Spin × Z2 and Pin± to

illustrate the methods involved. The results of the computation are that f2
DPin(pt) = (Z2)2

and f3
DPin(pt) = Z8, precisely as for the oriented Type II strings.

4.6.3 Invertible phases for DPin structure

As in the case of oriented Type II strings, the fact that f3
DPin(pt) = Z8 means that world-

sheet anomalies conveniently cancel in ten dimensions. Also as for oriented Type II strings,

the result f2
DPin(pt) = (Z2)2 implies four worldsheet theories, though two of these will

be physically indistinct from the others. The generators of f2
DPin(pt) can be taken to be

{(−1)
∫
w2

1 , (−1)Arf(Σ̂)}, where Σ̂ is the orientation double cover of Σ. The generator (−1)
∫
w2

1

is a bosonic invertible phase, which was discussed in detail in Section 4.2.2. The generator

(−1)Arf(Σ̂) was discussed in the context of Pin+ in Section 4.2.2.

10The second term in d1
2(x) can be dropped since the twisted Bockstein associated to 0→ Z2 → U(1)→

U(1)→ 0 is Sq1 +w(V ), which implies that ι◦(Sq1 +w(V )) = 0. Therefore ι(w(V ) Sq1 x) = ι(Sq1 Sq1 x) = 0.
The authors thank R. Thorngren for this point.
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The effects of these phases on the Type I theory are easy to read off. We know that

the presence of the phase (−1)
∫
w2

1 , which has the effect of assigning −1 to Möbius strip

amplitudes and +1 to cylinder and Klein bottle amplitudes, corresponds to the choice of

O9±-planes, i.e. it distinguishes between Type I and Type Ĩ theories. On the other hand,

adding (−1)Arf(Σ̂) leads to physically indistinct theories. To see this, note that on an oriented

worldsheet Σ, the partition function contribution (−1)Arf(Σ̂, σ) can be interpreted as

(−1)Arf(Σ, σL) × (−1)Arf(Σ, σR) (4.118)

and can thus be absorbed for example by flipping ψ9 and ψ̃9 at the same time, i.e. by a

spacetime parity flip in one direction, as explained in Section 4.3.1. So in fact the theory

obtained from the non-trivial invertible phase Arf(Σ̂) is not physically distinct from the one

with the trivial phase, and the two are instead related in the same way that Type IIA/B

and Type IIA/B′ were related.

4.A NSR formalism

Throughout this chapter we work in the NSR formalism, where the worldsheet fields for

the closed string consist of scalars Xµ and left- and right-moving Majorana-Weyl fermions

ψµ, ψ̃µ, all of which are vectors in the ten-dimensional target space [73, 362].

Closed strings:

We choose our conventions such that the worldsheet spatial coordinate σ ∈ [0, 2π). For

simplicity we work in light-cone gauge, with µ = 0, 1 being the light-cone coordinates. In

this gauge the worldsheet action is

1

4π

∫
dt dσ

(
1

α′
(∂tX

µ∂tXµ − ∂σXµ∂σXµ) + iψµ(∂t + ∂σ)ψµ + iψ̃µ(∂t − ∂σ)ψ̃µ

)
(4.119)
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with µ = 2, · · · , 9. The oscillator expansions for these fields are

Xµ (t, σ) = xµ + α′t pµ + i

√
α′

2

∑
n

1

n

(
αµne

−in(t−σ) + α̃µne
−in(t+σ)

)
, (4.120)

ψµ (t, σ) =
∑
r

ψµr e
−ir(t−σ) , ψ̃µ (t, σ) =

∑
r

ψ̃µr e
−ir(t+σ) , (4.121)

where r ∈ Z or Z + 1
2

for R or NS boundary conditions, respectively.

We are mainly interested in the fermionic sector, and in particular in its zero-modes.

There are no zero-modes for NS boundary conditions, and hence the left- and right-moving

ground states, |0〉NS and |0̃〉NS, are unique in this sector. It is easy to write fermion number

operators in terms of the operators that count the number of modes, N =
∑

r,µ r ψ
µ
−rψ

µ
r and

Ñ =
∑

r,µ r ψ̃
µ
−rψ̃

µ
r , as (−1)fL = (−1)N−1 and (−1)fR = (−1)Ñ−1 . The ground states are odd,

i.e.

(−1)fL|0〉NS = −|0〉NS , (−1)fR |0̃〉NS = −|0̃〉NS . (4.122)

On the other hand, fermions with R boundary conditions do allow zero-modes, which

satisfy the anticommutation relations

{ψµ0 , ψν0} = δµν , {ψ̃µ0 , ψ̃ν0} = δµν , {ψµ0 , ψ̃ν0} = 0 . (4.123)

Left- and right-moving zero-modes then separately furnish representations of the Clifford

algebra Cl(8). These representations act on the degenerate ground states, which can be

spinors |0〉aR, |0̃〉aR ∈ 8s or conjugate spinors |0〉ȧR, |0̃〉ȧR ∈ 8c of the little group SO(8). The

two irreducible representations are distinguished by the eigenvalue of the left- and right-

moving fermion numbers

(−1)fL0 =
∏
µ

√
2ψµ0 , (−1)fR0 =

∏
µ

√
2 ψ̃µ0 . (4.124)

The full fermion number operators are obtained by combining these with the operators
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counting the number of massive modes,

(−1)fL = (−1)fL0 (−1)N , (−1)fR = (−1)fR0 (−1)Ñ . (4.125)

Worldsheet parity Ω acts on the worldsheet fields as in (4.42), from which it follows that

the action on the oscillator modes in (4.120) and (4.121) is

ΩαnΩ = α̃n , ΩψrΩ = e2πrψ̃r , Ωψ̃rΩ = −e2πrψr . (4.126)

Next we review the low-lying spectra of the closed superstring. We will use the usual

notation [73] and denote each of the low-lying states by (A±, B±), where A,B can be R or

NS and denote respectively the left- and right-moving sectors, while the signs indicate the

fermion parity. The NSNS sector ground state is

(NS−,NS−) : |0〉NSNS = |0〉NS ⊗ |0̃〉NS , (4.127)

and is a scalar tachyon. The massless NSNS spectrum is given by the level one states,

(NS+,NS+) : ψ̃µ−1/2ψ̃
ν
−1/2|0〉NSNS ∈ 8v ⊗ 8v = 1⊕ 28⊕ 35v (4.128)

and consist of a dilaton, 1, 2-form, 28, and graviton, 35v. The RR sector ground states

transform in the product of spinor representations of the little group SO(8),

(R+,R+) : |0〉abRR = |0〉aR ⊗ |0̃〉bR ∈ 8s ⊗ 8s = 1⊕ 28⊕ 35−,

(R−,R−) : |0〉ȧḃRR = |0〉ȧR ⊗ |0̃〉ḃR ∈ 8c ⊗ 8c = 1⊕ 28⊕ 35+,

(R+,R−) : |0〉aḃRR = |0〉aR ⊗ |0̃〉ḃR ∈ 8s ⊗ 8c = 8v ⊕ 56,

(R−,R+) : |0〉ȧbRR = |0〉ȧR ⊗ |0̃〉bR ∈ 8c ⊗ 8s = 8v ⊕ 56 .

(4.129)
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All of these states are massless and can be identified as the RR scalar 1, vector 8v, two-form

28, three-form 56, and (anti)self-dual four-form 35(−)+. Finally, the NSR states are

(NS+,R+) : ψµ−1/2|0〉NS ⊗ |0̃〉aR ∈ 8v ⊗ 8s = 8c ⊕ 56s ,

(NS+,R−) : ψµ−1/2|0〉NS ⊗ |0̃〉ȧR ∈ 8v ⊗ 8c = 8s ⊕ 56c ,

(4.130)

which include the dilatinos, 8s and 8c, and gravitinos, 56s and 56c. The RNS states are

conjugate to these.

Open strings:

When considering open strings, one can have Dirichlet (D) or Neumann (N) boundary con-

ditions on each end, which relate the left- and right-moving oscillators. We define the NN,

DD, and ND directions of the open string as in (4.70). Though only the relative sign in those

conditions is important, the conventions shown there are such that η1,2 = +1 represents a

Dp-brane at σ = 0, π, while η1,2 = −1 represents a Dp′-brane at σ = 0, π.11 That this is so

will be discussed in the beginning of Appendix 4.B.

Note that the relative choice of η1,2 is related to the choice of NS or R sectors on the

open string. In particular, the string is in the NS sector for η1 = η2 and in the R sector for

η1 = −η2. This may be seen as follows. First, we may replace the left- and right-moving

fermions on σ ∈ [0, π] with a single chiral fermion on σ ∈ [0, 2π] by defining

ψ(t, σ) = η2 ψ̃(t, 2π − σ) , π ≤ σ ≤ 2π . (4.131)

The question of NS vs. R is then a question about the (anti-)periodicity of this extended

fermion. In particular, say that ψ̃(t, 2π) = η3 ψ̃(t, 0) where η3 = +1 for R and −1 for NS.

11Note that the extra sign in (4.70) is needed to encode the same physical boundary condition at σ = π as
at σ = 0, as explained e.g. in footnote 69 of [340]. To summarize, because the boundaries at σ = 0, π have
opposite orientation, imposing the same boundary condition on the two boundaries involves a reflection of
one of them t→ −t, under which ψµ → eiπ/2ψµ and ψ̃µ → e−iπ/2ψ̃µ.
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Then we have

ψ(t, 0) = η2 ψ̃(t, 2π) = η2η3 ψ̃(t, 0) . (4.132)

But from (4.70), we also have ψ(t, 0) = −η1 ψ̃(t, 0) and hence we conclude that η1η2 = −η3.

The anti-periodic NS case then corresponds to η1 = η2, while the periodic R case corresponds

to η1 = −η2. From (4.70) we then conclude that NS sector fermions can have zero modes

along ND and DN directions, whereas R sector fermions can have zero modes along NN and

DD directions. In constructing the open string fermion number operator (−1)f one must

take these zero modes into account, as was done above for the RR sector of the closed string.

As for the open string spectrum, let us just mention that the ground state in the NS

sector, |0〉NS, is an open string tachyon with (−1)f |0〉NS = −|0〉NS. We will not review the

massless spectrum here.

4.B Boundary state formalism

Here we review the boundary state formalism — for more details, the reader may consult

[340, 362, 363].

4.B.1 Basics

From the closed string point of view, D-branes correspond to states in the closed string

Hilbert space. Beginning with the boundary conditions (4.70), one can transition to Eu-

clidean signature t → −itE, and then do a rotation of the worldsheet to interchange the

tE and σ directions, thereby going from the open string to the closed string picture. In

particular, rotation by π
2

takes (tE, σ)→ (σ,−tE). Under this transformation, the fermions
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transform as

ψµ(tE + iσ)→ eiπ/4 ψµ(tE + iσ) , ψ̃µ(tE − iσ)→ e−iπ/4 ψ̃µ(tE − iσ) . (4.133)

The boundary conditions at fixed σ then become conditions at fixed time — for example,

on the slice tE = 0 the initial conditions are

N : ψµ(0, σ) = +iη1 ψ̃
µ(0, σ) ,

D : ψµ(0, σ) = −iη1 ψ̃
µ(0, σ) , σ ∈ [0, 2π) . (4.134)

The conditions at tE = π look the same, but with η1 replaced by η2 — note that we no longer

have the relative minus sign for the same condition on the two boundaries, c.f. footnote 11.

Let us now focus on the slice at tE = 0. We will denote η1 = η for simplicity. We define

the boundary states |Bp, η〉 to be the operator statement of the boundary conditions (4.134)

on the closed string Hilbert space. Writing things in terms of Fourier modes and including

bosonic constraints as well, these boundary states are then defined by

N : (αµn − α̃µ−n)|Bp, η〉 = (ψµr − iηψ̃µ−r)|Bp, η〉 = 0 ,

D : (αµn + α̃µ−n)|Bp, η〉 = (ψµr + iηψ̃µ−r)|Bp, η〉 = 0 , (4.135)

where r is integer/half-integer for the R/NS sector. The general solution to these conditions

can be written as a coherent state,

|Bp, η〉 ∝ exp

{
∞∑
n=1

[
− 1

n

p+2∑
µ=2

αµ−nα̃
µ
−n +

1

n

9∑
µ=p+3

αµ−nα̃
µ
−n

]

+iη
∞∑
r>0

[
−

p+2∑
µ=2

ψµ−rψ̃
µ
−r +

9∑
µ=p+3

ψµ−rψ̃
µ
−r

]}
|Bp, η〉(0) (4.136)
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up to a normalization factor which we discuss in Appendix 4.B.3. Here |Bp, η〉(0) is the

ground state, which depends on the sector. In the NSNS sector the ground state is just the

usual one

|Bp, η〉(0)
NSNS = |0〉NSNS . (4.137)

In the RR sector there is an extra subtlety because we need to solve the gluing conditions for

the zero-modes. This is easily done by noticing that |B7, η〉(0)
RR need only satisfy conditions

of the kind

(ψµ0 − iηψ̃µ0 )|B7, η〉(0)
RR = 0 . (4.138)

We can then build the rest of the boundary ground states as

|Bp, η〉(0)
RR =

9∏
µ=p+3

(ψµ0 + iηψ̃µ0 )|B7, η〉(0)
RR . (4.139)

It is not entirely trivial to see the relation between |B7, η〉(0)
RR and the usual RR vacuum.

This is explained, for instance, in Appendix B of [363]. The key feature is that the relation

involves an even number of RR zero-mode operators. With this in mind it follows that

(−1)fL |Bp, η〉NSNS = −|Bp,−η〉NSNS , (−1)fL |Bp, η〉RR = (−1)7−p|Bp,−η〉RR ,

(−1)fR|Bp, η〉NSNS = −|Bp,−η〉NSNS , (−1)fR |Bp, η〉RR = |Bp,−η〉RR , (4.140)

where (−1)fL and (−1)fR are the left- and right-moving worldsheet fermion numbers. Similarly

using (4.126) and (4.139) one can check that

Ω|Bp, η〉NSNS = |Bp, η〉NSNS , Ω|Bp, η〉RR = −(−iη)7−p|Bp, η〉RR = i−ηk|Bp, η〉RR.(4.141)

where k = 9− p.
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4.B.2 Theta functions, partition functions and boundary state

amplitudes

In the remainder of this appendix, we will be calculating amplitudes for closed strings propa-

gating between boundary states. In order to do so, some preliminary data will be needed. We

now review our conventions for the different theta functions that appear in one-loop string

partition functions, and give a few useful formulas for partition functions and boundary state

amplitudes.

First, note that we will use the usual shorthand for theta functions with characteristic,

ϑ1(z|τ) = ϑ

1
2

1
2

 (z|τ) , ϑ2(z|τ) = ϑ

1
2

0

 (z|τ) ,

ϑ3(z|τ) = ϑ

0

0

 (z|τ) , ϑ4(z|τ) = ϑ

0

1
2

 (z|τ) , (4.142)

and the notation ϑi(τ) = ϑi(0|τ), where τ is the modular parameter of a torus. Recall that

ϑ1 is odd and vanishes at the origin, i.e. ϑ1(τ) = 0. For convenience we define the following

combinations,

f1(τ) = η(τ) = q1/12

∞∏
n=1

(1− q2n) , f2(τ) =

√
ϑ2(τ)

η(τ)
=
√

2q1/12

∞∏
n=1

(1 + q2n) ,

f3(τ) =

√
ϑ3(τ)

η(τ)
= q−1/24

∞∏
n=1

(1 + q2n−1) , f4(τ) =

√
ϑ4(τ)

η(τ)
= q−1/24

∞∏
n=1

(1− q2n−1) ,

(4.143)

where q = eiπτ and η(τ) = (ϑ′1(0|τ)/2π)1/3 is the Dedekind eta function. It will be useful to
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know the modular S transformations,

f1 (i/t) =
√
tf1(it) , f2 (i/t) = f4(it) ,

f3 (i/t) = f3(it) , f4 (i/t) = f2(it) ,

(4.144)

and the T transformations,

f1 (it+ 1) = ei
π
12f1(it) , f2 (it+ 1) = ei

π
12f2(it) ,

f3 (it+ 1) = e−i
π
24f4(it) , f4 (it+ 1) = e−i

π
24f3(it) ,

(4.145)

as well as the more unfamiliar P = T
1
2ST 2ST

1
2 transformation,

f1

(
i

4t
+

1

2

)
=
√

2tf1

(
it+

1

2

)
, f2

(
i

4t
+

1

2

)
= f2

(
it+

1

2

)
,

f3

(
i

4t
+

1

2

)
= ei

π
8 f4

(
it+

1

2

)
, f4

(
i

4t
+

1

2

)
= e−i

π
8 f3

(
it+

1

2

)
,

(4.146)

where t ∈ R. The Jacobi “abstruse” and “triple product” identities

f2(τ)8 − f3(τ)8 + f4(τ)8 = 0 , f2(τ)f3(τ)f4(τ) =
√

2 (4.147)

will be used to simplify results.

The functions fi(τ) introduced above are useful since the open and closed string sector

traces are written naturally in terms of them. Denote the boundary state amplitudes in the

tree-channel in sector S as follows

Z̃LR
S = S,L〈B|e−2πlHcl |B〉S,R (4.148)

where for fermionic sectors |B〉 = |B, η〉 and L,R denote the boundary conditions — either

Neumann (N) or Dirichlet (D) — on each boundary. The amplitudes with opposite η on

either side are given by exchanging N↔ D on one boundary state, as can be seen in (4.135).
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In terms of the fi(τ), the bosonic contributions are found to be [362]

Z̃NN
B =

1

f1(2il)
, Z̃ND

B =

√
2

f2(2il)
, Z̃DD

B =
1√

4π2α′l

1

f1(2il)
, (4.149)

the fermionic contributions in the NSNS sector are

Z̃NN
NSNS = f3(2il) , Z̃ND

NSNS = f4(2il) , Z̃DD
NSNS = f3(2il) , (4.150)

and in the RR sector

Z̃NN
RR = −f2(2il) , Z̃ND

RR = 0 , Z̃DD
RR = −f2(2il) . (4.151)

Consider parallel Bp and Bq boundary states with q > p. Note that there are p − 1

NN, 9− q DD, and q − p ND directions. Also recall that changing η → −η is equivalent to

exchanging the boundary conditions N ↔ D. The amplitudes for exchanging closed strings

between these states then take the simple form

NSNS〈Bp, η|e−2πlHcl |Bq, η〉NSNS =
Vp+1

(4π2α′l)
9−q

2

f3(2il)8f4(2il)2(q−p)

f1(2il)8−q+p ,

NSNS〈Bp, η|e−2πlHcl |Bq,−η〉NSNS =
Vp+1

(4π2α′l)
9−q

2

f4(2il)8f3(2i`)2(q−p)

f1(2il)8−q+p ,

RR〈Bp, η|e−2πlHcl |Bq, η〉RR =− Vp+1

(4π2α′l)
9−q

2

f2(2il)8

f1(2il)8
,

RR〈Bp, η|e−2πlHcl |Bq,−η〉RR = 0 ,

(4.152)

where Vp+1 is the regularized volume of the p-brane, which comes from the zero-modes of

the scalars parallel to its worldvolume. Note that we have used the Jacobi triple product

identity (4.147) to remove some factors of
√

2/f2(2il) from these results. The last amplitude

vanishes because ηL = −ηR corresponds to Ramond boundary conditions in the direction

orthogonal to the boundary, for which there is a fermion zero-mode.
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4.B.3 D-brane boundary states

Boundary state normalization

In order to calculate tensions or tadpole contributions, we will want to find the proper

normalization for the boundary states. The way to do this is to impose matching of the tree-

and loop-channel cylinder amplitudes. That is, we want to impose the following identities

1

N 2
Bp

∫ ∞
0

dl NSNS〈Bp, η|e−2πlHcl |Bp, η〉NSNS =

∫ ∞
0

dt

2t
TrNS

[
e−2πtHop

]
,

1

N 2
Bp

∫ ∞
0

dl NSNS〈Bp, η|e−2πlHcl |Bp,−η〉NSNS =

∫ ∞
0

dt

2t
TrR

[
e−2πtHop

]
,

1

N 2
Bp

∫ ∞
0

dl RR〈Bp, η|e−2πlHcl |Bp, η〉RR =

∫ ∞
0

dt

2t
TrNS

[
e−2πtHop(−1)f

]
,

1

N 2
Bp

∫ ∞
0

dl RR〈Bp, η|e−2πlHcl |Bp,−η〉RR =

∫ ∞
0

dt

2t
TrR

[
e−2πtHop(−1)f

]
= 0 .

We may for instance focus on the first one, which in loop-channel gives the result

∫ ∞
0

dt

2t
TrNS

[
e−2πtHop

]
= vp+1

∫ ∞
0

dt

(2t)
p+3

2

f3(it)8

f1(it)8
(4.153)

where vp+1 = Vp+1/(4π
2α′)

p+1
2 is the regularized volume of the brane, in units of the string

length. On the other hand, in tree-channel we have

1

N 2
Bp

∫ ∞
0

dl NSNS〈Bp, η|e−2πlHcl |Bp, η〉NSNS =
(4π2α′)p−4

N 2
Bp

vp+1

∫ ∞
0

dl

l
9−p

2

f3(2il)8

f1(2il)8
. (4.154)

We can translate the tree-channel amplitude to loop-channel using the transformation l = 1
2t

and the modular S transformations in (4.144), which yields

(4π2α′)p−4

N 2
Bp

vp+1

∫ ∞
0

dt

2t2
1

(2t)
p−9

2

f3(it)8

(t)
8
2f1(it)8

=
25(4π2α′)p−4

N 2
Bp

vp+1

∫ ∞
0

dt

(2t)
p+3

2

f3(it)8

f1(it)8
.(4.155)
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Comparing (4.153) and (4.155), we find that the proper normalization for the boundary state

is

NBp = 2
5
2 (4π2α′)

p−4
2 . (4.156)

One can check that imposing the other identities gives the same result.

Type II and I

The states |Bp, η〉 must be assembled into a D-brane state such that they give the right open

string amplitudes. Let us begin by finding the D-brane state in Type II. Since the open

string sector includes both NS and R strings we must have

∫ ∞
0

dl 〈Dp|e−2πlHcl |Dp〉 (4.157)

=

∫ ∞
0

dt

2t

(
TrNS

[
e−2πtHop

1

2
(1 + (−1)f)

]
− TrR

[
e−2πtHop

1

2
(1 + (−1)f)

])
.

A brief calculation then shows that the proper normalization for the D-brane state is

|Dp〉 =
1

NBp

1

2
(|Bp,+〉NSNS − |Bp,−〉NSNS + |Bp,+〉RR + |Bp,−〉RR) (4.158)

with NBp as defined in (4.156). The choice of relative sign of the NSNS and RR contributions

differentiates branes and anti-branes.

Recall that for Type II theories we wish to gauge both (−1)fL,R , so we should keep only

states invariant under projection by

P II
NSNS =

1

4

(
1 + (−1)fL

) (
1 + (−1)fR

)
, P II

RR =
1

4

(
1 + (−1)fL

) (
1± (−1)fR

)
, (4.159)

with the two choices of sign corresponding to Type IIB (+) and Type IIA (−). Using (4.140)

it is easy to see that the boundary states in Eq. (4.158) are invariant when p is odd for Type
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IIB and when p is even for Type IIA.

In the presence of multiple branes the boundary state acquires an extra overall group

theory factor G that accounts for the trace over the Chan-Paton space,

|Dp〉 → G|Dp〉 where G =


N for U(N) ,

2N for Sp(N), SO(2N)

(4.160)

The latter implies that in Type I the D-brane states for even a single brane are normalized

with an extra factor of 2.

Type 0

We now do the same analysis for D-branes in Type 0. In Type 0 the open strings stretching

between two branes of the same (different) type are in the NS (R) sector, so we must have

∫ ∞
0

dl 〈Dp, η|e−2πlHcl |Dp, η〉 =

∫ ∞
0

dt

2t
TrNS

[
e−2πtHop

1

2
(1 + (−1)f)

]
, (4.161)∫ ∞

0

dl 〈Dp, η|e−2πlHcl |Dp,−η〉 = −
∫ ∞

0

dt

2t
TrR

[
e−2πtHop

1

2
(1 + (−1)f)

]
. (4.162)

From this and the relations above it follows that the properly normalized Type 0 D-brane

state is

|Dp, η〉 =
1

NBp

1√
2

(η|Bp, η〉NSNS + |Bp, η〉RR) , η = ±1 . (4.163)

The factor of η in front of |Bp, η〉NSNS is needed so that the force between the branes is

attractive. To see this, consider the NSNS contribution to the amplitude,

∫ ∞
0

dl NSNS〈Dp, η|e−2πlHcl |Dp,−η〉NSNS = −vp+1

26

∫ ∞
0

dl
dl

l
9−p

2

f4(2il)8

f1(2il)8
. (4.164)
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The contribution from the massless states can be extracted from the constant term in the

expansion

f4(2il)8

f1(2il)8
=

1

q
− 8 +O(q1) (4.165)

where now q = e−2πl. The minus sign cancels with the overall sign in (4.164), yielding a

positive contribution and hence an attractive force.

Recall that for Type 0 strings we gauge only a diagonal spin structure (−1)fL+fR , and

hence we keep only states invariant under projection by

P 0
NSNS =

1

2

(
1 + (−1)fL+fR

)
, P 0

RR =
1

2

(
1± (−1)fL+fR

)
, (4.166)

with the two choices of sign corresponding to Type 0B (+) and Type 0A (−). Using (4.140),

we see that (4.163) are invariant for p odd in Type 0B and p even in Type 0A.

In contrast to (4.158) then, for each such p there are now two boundary states for the

Type 0 strings [363], which we will call Dp and Dp′ for |Dp,+〉 and |Dp,−〉 respectively.

Note that Dp′-branes are not anti Dp-branes.

Finally, note that the normalizations of Type 0 and Type II branes differ by a factor of
√

2. On the other hand, the amplitude for exchanging closed strings in Type II receives an

extra contribution corresponding to R strings in the loop channel. This implies that the

tensions of the Type 0 branes are smaller than those of Type II, in particular T 0
p = T II

p /
√

2

[364, 365]. Finally, as stated before, when there are multiple branes the boundary state

acquires an extra group theory factor (4.160).
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4.B.4 O-plane boundary states

Crosscap state normalization

In analogy to the discussion above, we can find the correct normalization of the crosscap

states that correspond to O-planes by requiring that the tree-channel amplitude for exchang-

ing a closed string between a D-brane and a crosscap state matches the loop-channel Möbius

strip amplitude. We know that the crosscap states are related to the usual boundary state

by a π/2 translation in imaginary time, so we normalize them as

|Cq, η〉 = − nCq

NBq

iHcl|Bq, η〉 (4.167)

where nCq is the normalization relative to the usual boundary state, and the minus sign is

required to get negative tension. Then, the relations we must impose are

1

NBp

∫ ∞
0

dl
(

NSNS〈Cq, η|e−2πlHcl |Bp, η〉NSNS − NSNS〈Bp, η|e−2πlHcl |Cq,−η〉NSNS

)
=

∫ ∞
0

dt

2t
TrNS

[
e−2πtHopΩ

]
,

1

NBp

∫ ∞
0

dl
(

NSNS〈Bp, η|e−2πlHcl |Cq, η〉NSNS − NSNS〈Cq,−η|e−2πlHcl |Bp, η〉NSNS

)
=

∫ ∞
0

dt

2t
TrNS

[
e−2πtHop(−1)fΩ

]
,

1

NBp

∫ ∞
0

dl
(

RR〈Bp, η|e−2πlHcl |Cq, η〉RR − RR〈Cq,−η|e−2πlHcl |Bp, η〉RR

)
=

∫ ∞
0

dt

2t
TrR

[
e−2πtHopΩ

]
,

1

NBp

∫ ∞
0

dl
(

RR〈Cq, η|e−2πlHcl|Bp, η〉RR − RR〈Bp, η|e−2πlHcl |Cq,−η〉RR

)
=

∫ ∞
0

dt

2t
TrR

[
e−2πtHop(−1)fΩ

]
.

As before, we can fix the normalization using any of these relations by first writing the
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loop-channel Möbius strip amplitude

∫ ∞
0

dt

2t
TrNS

[
e−2πtHopΩ

]
= −vp+1

∫ ∞
0

dt

(2t)
p+3

2

ei
π
4

(q−p)

[
f 8

3 f
2(q−p)
4

f 8−q+p
1

](
it+

1

2

)
, (4.168)

and then calculating the corresponding tree-channel amplitude using the boundary states

1

NBp

∫ ∞
0

dl
(

NSNS〈Cq, η|e−2πlHcl |Bp, η〉NSNS − NSNS〈Bp, η|e−2πlHcl |Cq,−η〉NSNS

)
= −nCq

25
vp+1

∫ ∞
0

dl

l
9−q

2

[(
f 8

3 f
2(q−p)
4

f 8−q+p
1

)(
2il − 1

2

)
−
(
f 8

4 f
2(q−p)
3

f 8−q+p
1

)(
2il +

1

2

)]

=
nCq

24
vp+1

∫ ∞
0

dl

l
9−q

2

[
f 8

4 f
2(q−p)
3

f 8−q+p
1

](
2il +

1

2

)
(4.169)

where in the second equality we used the modular T transformations in (4.145). Next, we

translate the tree-channel amplitude to the loop channel using the transformation l = 1/8t

and the modular P transformations in (4.146) to get

nOq

24
vp+1

∫ ∞
0

dt

8t2
1

(8t)
q−9

2

[
−f 8

3 e
iπ

4
(q−p)f

2(q−p)
4

(2t)
8−q+p

2 f 8−q+p
1

](
it+

1

2

)

= − nOq

2q−4
vp+1

∫ ∞
0

dt

(2t)
p+3

2

ei
π
4

(q−p)

[
f 8

3 f
2(q−p)
4

f 8−q+p
1

](
it+

1

2

)
. (4.170)

Comparing with the previous result, we find that the normalization of the |Cq, η〉 crosscap

state relative to the boundary state is

nCq = 2q−4 . (4.171)

Pin− Type 0

Finally, we must assemble the crosscap states into physical orientifold plane states. For the

Pin− theories, the Pin− structure on the worldsheet requires the boundary of the Möbius

strip to have NS boundary conditions. Thus we expect the Oq-plane state to be purely in
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the NSNS sector. In addition, we know that the open strings on the orientifold are in the

NS sector, so the O-plane state must give the following loop channel result

∫ ∞
0

dl (〈Dp, η|e−2πlHcl |Oq〉+ 〈Oq|e−2πlHcl |Dp, η〉)

=

∫ ∞
0

dt

2t
TrNS

[
e−2πtHop

1

2
(1 + (−1)f)Ω

]
. (4.172)

Thus the physical orientifold boundary state is

|Oq〉 =
1√
2

(|Cq,+〉NSNS − |Cq,−〉NSNS) . (4.173)

Importantly, the crosscap state carries crucial information about the presence of n copies

of ABK. To see this, it is easiest to consider the Klein bottle amplitude. Requiring that

the tree-channel amplitudes for exchanging closed strings between two crosscaps match the

loop-channel Klein bottle amplitudes gives for example

∫ ∞
0

dl NSNS〈Cp,−η|e−2πlHcl |Cp, η〉NSNS =

∫ ∞
0

dt

2t
TrRR

[
e−2πtHclΩ

]
, (4.174)∫ ∞

0

dl NSNS〈Cp, η|e−2πlHcl |Cp,−η〉NSNS =

∫ ∞
0

dt

2t
TrRR

[
e−2πtHcl(−1)fΩ

]
. (4.175)

If we use these to calculate the normalization of the crosscap state as was done for the

Möbius strip, then for n = 0 mod 8 both (4.174) and (4.175) yield the same result (4.171).

For generic n, however, (4.174) and (4.175) are unequal complex conjugates and the

result in (4.171) needs to be modified. This may be seen seen as follows. In the presence

of n copies of ABK, we know that the action of Ω on the closed string RR Hilbert space

is modified by a factor of in when the Pin− structure is q(a, b) = (2, 1) or (2, 3), see (4.47).

These Pin− structures are exactly the ones captured by the right-hand sides of (4.174) and

(4.175), and hence for non-zero n the left-hand side must change by in. In other words, we

should redefine |Cp, η〉 by a phase eiθ(n,η) such that e−iθ(n,−η)eiθ(n,η) = in, a solution of which
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is θ(n, η) = π
4
ηn mod 2π. The correct crosscap states for the theory with n 6= 0 mod 8 can

then be taken to be

|Cq, η〉 = −2q−4

NBq

e
iπnη

4 iHcl |Bq, η〉 . (4.176)

This is what we must insert into (4.173) to obtain the physical orientifold plane state.

Pin+ Type 0

Similarly, for unoriented Pin+ Type 0 we know that the Oq-plane state must give the fol-

lowing loop channel results

∫ ∞
0

dl (〈Dp, η|e−2πlHcl |Oq〉+ 〈Oq|e−2πlHcl |Dp, η〉)

=

∫ ∞
0

dt

2t
TrR

[
e−2πtHop

1

2
(1 + (−1)f)Ω

]
. (4.177)

The physical orientifold state is then found to be

|Oq〉 = − 1√
2

(|Cq,+〉RR + |Cq,−〉RR) . (4.178)

The fact that this contains only RR sector contributions is the boundary state formulation

of the fact that fermions on the boundary of the Pin+ Möbius strip are automatically in the

R sector.
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Type I

For completeness, we finally describe the physical orientifold plane states for Type I. These

are obtained by requiring

∫ ∞
0

dl
(
〈Dp|e−2πlHcl |Oq〉+ 〈Oq|e−2πlHcl |Dp〉

)
(4.179)

=

∫ ∞
0

dt

2t

(
TrNS

[
e−2πtHop

1

2
(1 + (−1)f)Ω

]
− TrR

[
e−2πtHop

1

2
(1 + (−1)f)Ω

])
.

The correct combination is found to be

|Oq〉 =
1

2
(|Cq,+1〉NSNS − |Cq,−1〉NSNS + |Cq,+1〉RR + |Cq,−1〉RR) .

The fact that this contains both NSNS and RR contributions means that DPin structure on

the worldsheet must allow the boundary of the Möbius strip to be in the NS or R sectors,

and thus must contain both Pin± as subgroups.

As an aside, let us note that the normalization of the O9 state relative to a Type I D9

state has an extra factor of 32, as expected by the usual Type I tadpole cancellation.

4.C Tadpole Cancellation

In this appendix we discuss the issue of tadpole cancellation in the unoriented Type 0 theories.

We begin by considering the Pin− Type 0 theory with n copies of ABK. Before beginning

any calculations it is important to recall that in this case the orientifold state corresponding to

the O9-plane does not have an RR contribution; see (4.173). This means that the orientifold

does not carry RR charge, and hence we will only be encountering NSNS tadpoles. Such

tadpoles are not fatal since they can be cancelled by the Fischler-Susskind mechanism [366,

367], but this introduces a spacetime dependent coupling. We thus ask in which cases these

NSNS tadpoles can be cancelled without resorting to this mechanism.
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++ 2× = 0

Figure 4.4: The tadpole cancellation condition. The Möbius strip is represented by a cylinder
with one crosscap (the “X” at the end) and we must include separate contributions from
crosscaps on the left and right ends. The Klein bottle is represented by a cylinder with two
crosscaps.

The goal is to calculate the cylinder, Möbius strip, and Klein bottle amplitudes and

check that the tadpole contributions cancel amongst them (Fig. 4.4). Furthermore, since

the putative tadpoles are in the closed string sector we must focus on the amplitudes in the

tree-channel. For the moment we will focus on the cases with n even, which are orientifolds

of Type 0B.

First we will consider the cylinder amplitude. We recall that in Type 0B we have two

different kinds of nine-branes, with corresponding boundary states

|D9, η〉 =
G

NB9

1√
2

(η |B9, η〉NSNS + |B9, η〉RR) , (4.180)

where G is a group theory factor which equals G = N for unitary gauge group and G = 2N

for orthogonal or symplectic gauge group; see (4.160). The corresponding antibranes are

|D9, η〉 =
G

NB9

1√
2

(η |B9, η〉NSNS − |B9, η〉RR) . (4.181)

In order to avoid introducing RR tadpoles, we must only introduce brane-antibrane pairs,

with boundary state

|DD9, η〉 = |D9, η〉+ |D9, η〉 =
G

NB9

√
2 η |B9, η〉NSNS . (4.182)
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In terms of such boundary states the cylinder amplitude is given by

AC2 =

∫ ∞
0

dl 〈DD9, η|e−2πlHcl |DD9, η〉 , (4.183)

which can be evaluated using the results collected in Appendix 4.B to give

AC2 =
G2

16
v10

∫ ∞
0

dl
f 8

3 (2il)

f 8
1 (2il)

. (4.184)

Worldsheet parity does not affect this amplitude so the result does not depend on n. We

can easily extract the massless NSNS tadpole contribution using the q-expansions in (4.143),

giving

AC2

∣∣
tadpole

=
G2

2
v10

∫ ∞
0

dl . (4.185)

Next we calculate the Möbius strip amplitude. The O9-plane state was given in (4.173);

crucially, it was argued to be n-dependent. Using the result obtained there, the Möbius strip

amplitude can be evaluated to give

AM2 =

∫ ∞
0

dl
(
〈DD9, η|e−2πlHcl |O9〉+ 〈O9|e−2πlHcl |DD9, η〉

)
= −2Gv10

∫ ∞
0

dl

[
eiη

π
4
nf 8

3 − e−iη
π
4
nf 8

4

f 8
1

](
2il +

1

2

)
, (4.186)

with the tadpole being

AM2

∣∣
tadpole

= −25G cos
[πηn

4

]
v10

∫ ∞
0

dl . (4.187)
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Finally, the Klein bottle amplitude amplitude is

AK2 =

∫ ∞
0

dl 〈O9|e−2πlHcl |O9〉

= 16 v10

∫ ∞
0

dl

[
2f 8

3 −
(
e−iη

π
2
n + eiη

π
2
n
)
f 8

4

f 8
1

]
(2il) , (4.188)

with tadpole

AK2

∣∣
tadpole

= 162
(

1 + cos
[πηn

2

])
v10

∫ ∞
0

dl

= 29 cos
[πηn

4

]2

v10

∫ ∞
0

dl (4.189)

Putting all the contributions together we find that the total tadpole is

(AC2 +AM2 +AK2)
∣∣
tadpole

=
1

2

(
G− 32 cos

[πηn
4

])2

v10

∫ ∞
0

dl . (4.190)

We may now read off the tadpole cancellation conditions. For n = 0 one can cancel the

NSNS tadpole by adding sixteen 9-9 pairs. If we choose these to consist of m D9-D9 pairs

and 16−m D9′-D9
′
pairs, the resulting gauge group is [SO(2m)×SO(32−2m)]2. The cases

with m = 0, 16 are purely bosonic and have gauge group SO(32) × SO(32). For n = 4, we

have the symplectic version of n = 0 and the tadpole cannot be cancelled. For n = 2, 6 we

have zero tadpole contribution, and would seemingly not require addition of any nine-branes.

Next we discuss cases with n odd, which are orientifolds of Type 0A. In Type 0A there

do not exist any stable 9-branes, but there are unstable ones. These unstable branes do not

couple to RR fields, and are purely in the NSNS sector. Hence the corresponding states may

be written as

|D̃9, η〉 =
G

NB9

η|B9, η〉NSNS (4.191)
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withNB9 the usual normalization factor accompanying |B9, η〉 andG the corresponding group

theory factor. This result differs from (4.182) only by a factor of
√

2. Then by a similar

calculation as above we conclude that tadpole cancellation requires G = 32
√

2 cos
[
πηn

4

]
. The

case of n = 1 allows the tadpole to be cancelled by the addition of sixteen 9-branes. If we

choose these to consist of m D9-branes and 16 −m D9′-branes, the resulting gauge group

is SO(2m) × SO(32 − 2m). Similar statements hold for n = 7. The n = 5, 3 cases are

the corresponding symplectic cases, for which the NSNS tadpole cannot be cancelled by the

addition of branes.

Finally, we discuss the issue of tadpole cancellation for Pin+ strings. In contrast to the

Pin− theories studied above, for these theories the orientifold only has contributions from

the RR sector; see (4.178). Hence one has an RR tadpole which must be cancelled. A

calculation analogous to the one above shows that the tadpole can be cancelled by adding

32 D9 and 32 D9′-branes, giving total gauge group U(32). Though this introduces NSNS

tadpoles [85, 89], these do not render the theory inconsistent and can be removed via the

Fischler-Susskind mechanism [366, 367].

Note that it makes sense to talk about tadpoles in the Pin+ theories despite RP2 not

admitting a Pin+ structure. The reason for this is that the tadpole is given by a one-point

function on RP2, which corresponds to a punctured RP2. The latter manifold is conformally

equivalent to the Möbius strip, which does in fact admit a Pin+ structure.

As a final note, whenever tadpole cancellation requires the addition of D9-branes, the

question of stability of Dp-branes must be revisited to account for the possibility of tachyonic

modes of the strings stretched between the Dp- and D9-branes. In this case, the K-theory

classification outlined in Sections 4.4 and 4.5 will be modified, and branes which were pre-

viously stable may become unstable.
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4.D Arf and ABK from index theory

In this appendix we rephrase many of the results on the Arf and ABK invariants given in

Section 4.2 in terms of index theory. The majority of this appendix is due to E. Witten

[332]. The authors thank him for very kindly allowing them to reproduce the content here.

Four-dimensional analogs of many of these results can be found in Appendix C of [81].

4.D.1 η-invariants: generalities

Our normalization of the eta invariant is

η(Σ, σ) =
∑
E

sgn(E) (4.192)

where E are the eigenvalues of the Dirac operator on Σ with spin structure σ, and the sum is

to be appropriately regularized. We work in the convention that sgn(0) = 1, so that η(Σ, σ)

also counts zero-modes. Often we will omit Σ from the argument of η(Σ, σ).

Because the Arf and ABK invariants can be expressed as ratios of massive fermion path

integrals as in (4.6) and (4.23), they are examples of η-invariants. For example, for the Arf

invariant we have

(−1)Arf(Σ, σ) =
Zferm(m� 0)

Zferm(m� 0)
=
∏
E

iE +m

iE −m = ei
π
2
η(σ). (4.193)

An analogous result holds for the ABK invariant.

The η-invariant is not necessarily a bordism invariant, but in the case of two-dimensional

theories the η-invariant modulo some integer is. This can be seen by appealing to the APS

index theorem, which states that the index of the Dirac operator on a manifold Yd+1 with
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boundary ∂Yd+1 = Xd is given in terms of the η-invariant as12

ind iDYd+1
= −1

2
η(Xd, σ) +

∫
Yd+1

Â(R) ch(F ) . (4.194)

Note that when d is even, the local term on the right-hand side vanishes, and as a result the

η-invariant can be a bordism invariant. Combined with the fact that the left-hand side is

an integer, we see that the η-invariant modulo 2 is a bordism invariant. This can be refined

further.

Assume that the fermion system whose Dirac operator is used in the definition of the

η-invariant admits a mass term. This provides an invariant anti-symmetric bilinear form on

the eigenfunctions, and therefore introduce a quaternionic structure. Therefore the index is

in fact an even number, and η modulo 4 is a bordism invariant.

Let us now consider a spin 2-manifold. Then there exists a globally well-defined chirality

matrix Γ satisfying Γ2 = 1 and {iD,Γ} = 0, and hence for any state of non-zero eigenvalue

E there is also a state with eigenvalue −E. Then the contributions to the η-invariant from

nonzero eigenvalues simply cancel out. Denoting the number of positive chirality zero-modes

with spin structure σ by ζ(σ), we have

η(σ) = 2ζ(σ) mod 4 (4.195)

where the factor of 2 arises because η(σ) counts both chiralities. This means that

(−1)Arf(Σ, σ) = ei
π
2
η(σ) = (−1)ζ(σ) (4.196)

generates at most a Z2, as expected by our previous definitions of the Arf invariant.

We next consider the Pin− case. As argued above, the η-invariant is a mod 4 bordism

invariant. Let us now show that η takes half-integer values, and thus provides us with a mod

12In the original notation of APS [368], what we are calling η is instead called 2ξ.
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8 invariant. The half-integrality is proven as follows. Given a Pin− structure σ ∈ H2(Σ,Z2),

there exists a “complementary” Pin− structure σ′ := σ + w1 which is obtained by twisting

by the orientation bundle. Then note that13

η(σ) + η(σ′) = 0 mod 4 . (4.197)

We also have generally that

4η(σ + a)− 4η(σ) = 0 mod 4 (4.198)

for any a ∈ H1(Σ,Z2).14 In the case that a = w1 we have σ + a = σ′, and thus combining

(4.197) and (4.198) we conclude that η(σ) is generically half-integral. As a result, we have

that eiπABK(Σ, σ) = ei
π
2
η(Σ, σ) generates at most Z8, as expected.

4.D.2 η-invariants: examples

We now offer some explicit calculations of the Arf and ABK invariants in terms of their

definitions in this appendix.

T 2:

A trivial example is that of the Arf invariant on T 2 with spin structure σ. In that case we

know that for the NSNS, RNS, and NSR spin structures we have ζ(σ) = 0, whereas for RR

we have ζ(σ) = 1. This together with (4.196) then reproduces the results of (4.13).

13This equality is true because the left-hand side is the η-invariant of the spin structure on the oriented
double cover Σ̂. Note that Σ̂ is the boundary of the total space X of the unit disk bundle of the orientation
line bundle of Σ. That Σ is Pin− is equivalent to X being spin. These facts together imply that Σ̂ is
null-bordant, and so the right-hand side is 0 modulo 4.

14To see this, note that 4η(σ) is the η-invariant of the Dirac operator with Pin− structure σ acting on a
rank 4 trivial real vector bundle V , whereas 4η(σ + a) is the η-invariant of the Dirac operator with Pin−

structure σ acting on a rank 4 real vector bundle V ′ = A⊕4, where A has the property that w1(A) = a.
Because the Stiefel-Whitney classes of V ′ all vanish, V ′ is trivial and has the same mod 4 η-invariant as V ,
thereby giving (4.198).
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RP2:

A less trivial result is to reproduce the values of ABK on RP2. We compute it in two ways.

The first is to consider an orbifold of the three-torus T 3/Z2 where Z2 acts as xi → −xi for

i = 1, 2, 3. The resulting space has eight fixed points at xi ∈ 1
2
Z. We may remove a small ball

around each of these points to obtain a smooth manifold, with the boundary of this manifold

being eight copies of RP2. Then by the APS index theorem (4.194) for d = 2 we conclude

that η(RP2) = −1
4
indiD, with iD the Dirac operator on the T 3/Z2 with points removed.

Using conformal invariance, it is possible to argue that the index of the Dirac operator on this

manifold is the same as that on the original T 3/Z2, so we need only compute this quantity.

Let us define H± to be the spaces of spinors on T 3 which satisfy ψ(−x) = ±ψ(−x). The

Dirac operator maps H± → H∓, and the index of the Dirac operator on T 3/Z2 is then just

defined to be the number of zero-modes in H+ minus those in H−. These numbers are easily

obtained: depending on the Pin− structure, the zero-modes are the 2-dimensional space of

constant spinors in either H+ or H−, with no zero modes in the remaining space. Hence

we have indiD = ±2, and consequently η(RP2) = ±1
2
. We may finally calculate the ABK

invariant to be eiπABK(RP2) = e±i
π
4 , matching the previous results in (4.27).

The second derivation of this result is a direct computation from the spectrum of the

Dirac operator. Instead of directly studying the Dirac equation on unoriented manifolds Σ

we will consider their orientable double covers Σ̂. These are equipped with an orientation-

reversing involution τ such that Σ = Σ̂/τ . We will make use of the following morphism

Pin− structures on Σ = Σ̂/τ −→ τ -invariant spin structures on Σ̂ . (4.199)

induced by the projection. This map is not injective, but rather two-to-one since given a Pin−

structure σ, both σ and its twist by the orientation bundle σ′ lift to the same spin structure

on the orientable double cover. It is not surjective either, since there are spin structures

on Σ̂ which are not the lift of any Pin− structure. The τ -invariance of the spin structures
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on Σ̂ implies that [τ, iD] = 0. Hence there is a basis of eigenspinors with a well-defined

eigenvalue of τ . The different eigenvalues of τ correspond to different Pin− structures σ and

σ′. In summary, we can extract the spectrum of the Dirac operator iD on Σ from that on

the orientable double cover Σ̂ by considering eigenspinors of iD on the latter with a fixed

eigenvalue of τ .

Let us apply this strategy to RP2. Its orientable double cover is a two-sphere S2, which

has a single spin structure. The spectrum of the Dirac operator on the two-sphere is well

known and is given by15

E = ±(n+ 1) with multiplicity 2(n+ 1) and τ = ∓(−1)n . (4.200)

with n ≥ 0. For convenience we will regularize the sum over eigenvalues (4.192) as follows

η = lim
ε→0+

∑
E

sgn(E) e−ε|E| . (4.201)

From this information we can readily calculate the η-invariant of RP2 for either Pin− struc-

ture,

τ = ±1 : η = lim
ε→0+

(
∓
∑
n∈2N

2(n+ 1) e−ε(n+1) ±
∑

n∈2N+1

2(n+ 1) e−ε(n+1)

)
= ∓1

2
(4.202)

reproducing our previous result.

The Klein bottle:

We now obtain the values for the η-invariant on the Klein bottle K2. A trivial way to do so

is to note that the η-invariant factorizes under connected sums, η(Σ1#Σ2) = η(Σ1) + η(Σ2).

15The eigenspace decomposition is simply the spinor spherical harmonics. One way to quickly derive the
eigenvalues is to use the operator-state correspondence of a free massless Dirac fermion in dimension d+ 1.
There, the (absolute value of the) eigenvalues of the Dirac operator on Sd are the dilatation eigenvalues of
the single-particle operators of the form ∂ · · · ∂ψ, which are therefore given by n+ d/2.
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Then recalling that K2 = RP2#RP2, our previous results imply that η(K2) = 0, 0,±1

depending on the choice of Pin− structure. This reproduces the results of (4.28) for the

ABK invariant.

A more fulfilling derivation of this result is to again consider the explicit Dirac spectrum.

The orientable double cover in this case is the torus T 2, which we take to be rectangular with

side lengths 1 and 2. That is, T 2 = R2/Γ for the lattice Γ = Z⊕ 2Z. Taking xi = (x, y) to

be the coordinates on the torus, we have (x, y) = (x+ 1, y) = (x+ 1, y+ 2). The orientation-

reversing involution is τ(x, y) = (−x, y + 1). As was discussed in Section 4.2.2, of the four

torus spin structures only those which are periodic in the y-direction descend in the quotient.

We first consider the spin structure periodic in x. We begin by finding the eigenspinors

of the square of the Dirac operator, which is just the Laplacian, (iD)2 = −∆. These can be

easily constructed as

up(x
i) = fp(x

i) Ψ, fp(x
i) = e2πi xipi with pi ∈ Γ∗ = Z⊕ 1

2
Z (4.203)

where fp(x
i) are the eigenfunctions of the Laplacian, with momenta taking values in the dual

lattice Γ∗, and Ψ a covariantly constant spinor. We can also construct eigenfunctions for the

spin structure antiperiodic in x by letting the momenta take values in Γ̃∗ = (Z + 1
2
) ⊕ 1

2
Z.

In both cases it is easy to check that

(iD)2u(xi) = 4π2p2 u(xi) . (4.204)

In terms of the u(xi) we can construct the eigenspinors of the Dirac operator as

v±(xi) = ±2π|p|u(xi) + iD u(xi) , with iD v±(xi) = ±2π|p| v±(xi) . (4.205)

This spectrum is clearly symmetric, and hence if there are no zero-modes the η-invariant

vanishes. The only case in which there are zero-modes is the case of periodic spin structure
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in both directions, and then the multiplicity of the zero-mode is two so that η(T 2, σRR) = 2,

as we know.

To get the corresponding results for the Klein bottle, we now keep the portion of the

spectrum with fixed τ eigenvalue. To do so, it is useful to choose an explicit representation

for the gamma-matrices, say as γ1 = σ3 and γ2 = σ1. Then in addition to acting on (x, y)

in the manner shown above, the involution τ acts as σ1 on spinors. With this, it is easy

to show that the eigenspinors with fixed eigenvalue under τ have p1 = 0, and hence require

periodic spin structure in the x-direction. Defining n := 2p2, the remaining spectrum is

E = ±π|n| with multiplicity 1 and τ = ∓(−1)n , (4.206)

with the zero eigenvalue having multiplicity 2.

Two of the Pin− structures of K2 lift to antiperiodic spin structure in the x-direction, and

consequently have vanishing η-invariant. The remaining two Pin− structures lift to periodic

spin structure in the x-direction, and correspond to the two different eigenvalues for τ . The

resulting η-invariants are

τ = ±1 : η(K2) = lim
ε→0+

2

(
∓
∑
n∈2N

e−επ|n| ±
∑

n∈2N+1

e−επ|n|

)
= ∓1 , (4.207)

reproducing earlier results.

4.D.3 Quadratic forms and enhancements

Let us now make contact between index theory and the combinatoric definitions of Arf and

ABK given in (4.10) and (4.24). In order to do so, we first rewrite the quadratic form q̃(a)

and enhancement q(a) in terms of indices.
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We start with the oriented case. We consider

q̃(a) := ζ(σ + a)− ζ(σ) mod 2 (4.208)

for a given spin structure σ, where ζ(σ) is the number of zero modes of the positive-chirality

Dirac operator. We now verify that this is the quadratic refinement of the intersection form,

i.e. the relation (4.9) is satisfied. To do so, we must check that

ζ(σ + a+ b) + ζ(σ + a) + ζ(σ + b) + ζ(σ) =

∫
a ∪ b mod 2 (4.209)

holds. We note that the left-hand side is ζ(V ), the mod 2 index with spin structure σ

for the Dirac operator acting on a positive chirality spinor valued in a rank 4 real vector

bundle V = ε + A + B + AB, where ε is a trivial real line bundle and we have w1(A) = a,

w1(B) = b, and w1(AB) = a + b. From this definition, it also follows that w1(V ) = 0 and

w2(V ) = a ∪ b. Therefore, V is topologically equivalent to H ⊕ L, the direct sum of a rank

2 real trivial bundle H and a complex line bundle L with c1(L) = w2(V ) mod 2. This is

because real vector bundles on a Riemann surface are classified topologically by their rank

and Stiefel-Whitney classes. Clearly ζ(H) = 0 modulo 0, so we have ζ(V ) = ζ(L). Under

the U(1) rotating L, the zero-modes of L have charge ±1, with respective numbers n±. We

then have ζ(L) = n+ + n− mod 2. By complex conjugation, we can replace a charge −1

mode of positive chirality with a charge +1 mode of negative chirality. Let m± denote the

number of positive/negative chirality modes of charge +1. Then we have n± = m±, and

hence ζ(L) = m+ −m− mod 2. The right-hand side is now the index of the Dirac operator

acting on L, which by the index theorem is
∫
c1(L) =

∫
w2(V ) =

∫
a ∪ b mod 2. We then

conclude that ζ(V ) =
∫
a ∪ b mod 2, thereby confirming (4.209).

With the definition (4.208), it is now simply to check that our combinatorial definition
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(4.10) is consistent with the definition (4.196). We have

(−1)Arf(Σ,σ) =
1√

|H1(Σ,Z2)|
∑

a∈H1(Σ,Z2)

(−1)ζ(σ+a)−ζ(σ)

= (−1)ζ(σ)

 1√
|H1(Σ,Z2)|

∑
a∈H1(Σ,Z2)

(−1)ζ(a)

 . (4.210)

The term in parenthesis can be shown to square to 1 using steps analogous to those used for

the combinatorial definition, and one can then fix the result to +1 by checking an explicit

example.

We now move on to the Pin− case. In that case we define the quadratic enhancement

q(a) as

q(a) = ζ(σ + a)− ζ(σ) mod 4 (4.211)

where σ is now a Pin− structure. We must check that (4.25) is satisfied by this definition.

To do so, let us first prove this in the special case of Σ = RP2. There is then only one

non-trivial possibility for a and b, namely w1. The identity (4.25) is trivially satisfied unless

a = b = w1, so we focus on that case. Then noting that q(0) = 0, the identity we wish to

prove is

q(w1) =

∫
w2

1 = 1 mod 2 . (4.212)

We now use the fact that q(w1) = η(σ′) − η(σ) mod 2. As we showed in the previous

subsection, for RP2 one of the two η-invariants is +1
2
, while the other is −1

2
. Either way, we

conclude that q(w1) = 1 mod 2, thereby confirming the identity.

To prove the identity in generality, we now make use of bordism invariance. What we
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RP2

Σ Σ

RP2

Figure 4.5: A bordism between RP2 × Σ and itself, with a real vector bundle V ′ on it. The
blue line represents the Poincaré dual of w2(V ′).

would like to prove is

ζ(σ + a+ b)− ζ(σ + a)− ζ(σ + b) + ζ(σ) = 2

∫
a ∪ b mod 4 . (4.213)

Equivalently, this is

η(V ′)− η(V ) = 2

∫
w2(V ′) mod 4 (4.214)

where V is a rank 8 trivial bundle and V ′ is a rank 8 bundle with w1(V ′) = 0 and w2(V ′) =

a ∪ b. Recall that in two dimensions w2(V ′) is Poincaré dual to a point, while in three

dimensions it is dual to a curve. Then consider a bordism from RP2 × Σ to itself by means

of a connected sum, as shown in Fig. 4.5. In the figure, we have drawn a curve that starts at

RP2 on the top left and goes down to Σ on the bottom right. Consider a real vector bundle

V ′ such that w2(V ′) is Poincaré dual to this curve. This gives a bordism between RP2 × Σ

with w2(V ′) = 1 on RP2 and 0 on Σ, and RP2 × Σ with w2(V ′) = 0 on RP2 and 1 on Σ.

Because (4.214) is unchanged by this change in V ′, it must hold for any Σ, thus proving the

claim.

4.E fd
DPin(pt) via the Atiyah-Hirzebruch spectral sequence

In this appendix we analyze the Atiyah-Hirzebruch spectral sequence (AHSS) for fd=2,3
X (pt)

for X = Spin × Z2, Pin±, and DPin. Except for the last case X = DPin the outcome is
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well-known; we include the computations here just to illustrate the method.

To write down the E2 page, we will need the groups Hp(X,fq
spin(pt)). More concretely,

we need H∗(BZ2 × BZ2,Z2) and H∗(BZ2 × BZ2, U(1)), where the underline signifies that

the first Z2 acts on U(1) by complex conjugation and the second acts trivially. The first is

standard: we have

H∗(BZ2 ×BZ2,Z2) = Z2[w, a] (4.215)

where w and a are the generators of H1(BZ2×BZ2,Z2) = H1(BZ2,Z2)⊕H1(BZ2,Z2). As

for H∗(BZ2×BZ2, U(1)), they are determined as an abstract group in e.g. Appendix J.6 of

[369]; in particular all elements are annihilated by 2. For our purposes we will need more

detailed data. We note that the short exact sequence

0 −→ Z2
ι−→ U(1)

2·−→ U(1)→ 0 (4.216)

leads to the long exact sequence

· · · 2·−→ Hd−1(BZ2 ×BZ2, U(1))
β−→ Hd(BZ2 ×BZ2,Z2)

ι−→ Hd(BZ2 ×BZ2, U(1))
2·−→ Hd(BZ2 ×BZ2, U(1))

β−→ · · · (4.217)

Since 2· annihilates everything, we see that Hd(BZ2×BZ2, U(1)) is a quotient of Hd(BZ2×
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BZ2,Z2) by the image of the twisted Bockstein β = Sq1 +w. Therefore we find

H0(BZ2 ×BZ2, U(1)) = U(1) , (4.218)

H1(BZ2 ×BZ2, U(1)) = Z2 =
〈w, a〉
〈w〉 , (4.219)

H2(BZ2 ×BZ2, U(1)) = Z2
2 =
〈w2, wa, a2〉
〈a(a+ w)〉 , (4.220)

H3(BZ2 ×BZ2, U(1)) = Z2
2 =
〈w3, w2a, wa2, a3〉
〈w3, wa2〉 , (4.221)

H4(BZ2 ×BZ2, U(1)) = Z3
2 =
〈w4, w3a, w2a2, wa3, a4〉
〈w2a(a+ w), a3(a+ w)〉 . (4.222)

This data can be checked e.g. by noticing that in this low degree range Hd(BZ2 ×

BG,U(1)) with T : Z2 ×G→ Z2 given by T = w equals fd
unoriented(BG). The generators of

Ωunoriented
d (BZ2) can be taken to be e.g. S1 with nontrivial Z2 bundle for d = 1, RP2 with

and without nontrivial Z2 bundle for d = 2, (RP2 with and without nontrivial Z2 bundle) ×

(S1 with nontrivial Z2 bundle) for d = 3, and RP4 with and without nontrivial Z2 bundle,

and RP2 × RP2 with nontrivial Z2 on the first factor for d = 4. We can then evaluate all

elements of Z2[w, a] on the generators with the identification that w is w1 of the manifold

and a is w1 of the Z2 bundle.

With this information, we can now proceed to the calculation of the relevant groups.

Before computing fd
DPin(pt), we illustrate the technique in the known examples of fd

Spin(BZ2)

and fd
Pin±

(pt). Below, the image of ι : Z2 ↪→ U(1) is denoted by prefixing by 1
2
, since

{0, 1
2
} ⊂ U(1).
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fSpin(BZ2)

The E2 page needed for obtaining fSpin(BZ2) is

q

3

2 Z2 Z2 Z2 Z2 Z2

1 Z2 Z2 Z2 Z2 Z2

0 U(1) 1
2
Z2

1
2
Z2

0 1 2 3 4 p

(4.223)

This can be found from the data given above by forgetting the pieces involving w. The

differential d2 starting from Ep,q
2 with p+ q ≤ 4 turns out to be zero. The E3 page is then

q

3

2 Z2 Z2 ? ? ?

1 Z2 Z2 Z2 ? ?

0 U(1) 1
2
Z2

1
2
Z2

0 1 2 3 4 p

(4.224)

The only possibly nontrivial d3 is d3 : E0,2
3 → E3,0

3 but a special property of untwisted

bordism says that every dn starting from E0,q is zero. (This fact is explained below Theorem

9.10 of [358].) Then this is also the E4 page, and Ep,q with p + q ≤ 3 cannot change any

further.

From this we read off that fd
Spin(pt) for d = 1, 2, 3 contains 4, 4, and 8 elements, respec-
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tively. This agrees with known results.

fPin−(pt)

The E2 page in this case is

q

3

2 Z2 w w2 w3 w4

1 Z2 w w2 w3 w4

0 U(1) 1
2
w2 1

2
w4

0 1 2 3 4 p

(4.225)

This can be found from the data given above by forgetting the part involving a. For d2

starting from q = 2, one has d2
2 = Sq2 +w1(V ) Sq1 +w2(V ) = Sq2 +w Sq1. Then since

Sq2(w2) = (Sq1w)(Sq1w) = w4 and Sq1(w) = w2, we find

d2
2(1) = d2

2(w3) = 0 , d2
2(w) = w3 , d2

2(w2) = w4 . (4.226)

On the other hand we have d1
2 = 1

2
Sq2, and hence

d1
2(1) = d1

2(w) = d1
2(w3) = 0 , d1

2(w2) =
1

2
w4 . (4.227)
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Then the E3 page is

q

3

2 Z2 ? ?

1 Z2 w ?

0 U(1) 1
2
w2

0 1 2 3 4 p

(4.228)

This predicts |fd
Pin−

(pt)| = 2, 8, 0 for d = 1, 2, 3, in agreement with known results.

fPin+(pt)

The E2 page in this case is

q

3

2 Z2 w w2 w3 w4

1 Z2 w w2 w3 w4

0 U(1) 1
2
w2 1

2
w4

0 1 2 3 4 p

(4.229)

This is obtained from the previous data by setting w = a. We then have d2
2 = Sq2 +w1 Sq1 +w2 =

Sq2 +w Sq1 +w2, and so

d2
2(1) = w2 , d2

2(w) = d2
2(w2) = 0 , d2

2(w3) = w5 . (4.230)
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On the other hand d1
2 = 1

2
Sq2 +1

2
w2 and hence

d1
2(1) =

1

2
w2 , d1

2(w) =
1

2
w3 , d1

2(w2) = 0 , d1
2(w3) =

1

2
w5 . (4.231)

Then the E3 page is

q

3

2 w w2 ? ?

1 w w3 ?

0 U(1) 1
2
w4

0 1 2 3 4 p

(4.232)

This predicts |fd
Pin+(pt)| = 0, 2, 2 for d = 1, 2, 3, in agreement with known results.

fDPin(pt)

We finally arrive at the case of interest. The E2 page is

q

3

2 Z2 w, a w2, wa, a2 w3, w2a, wa2, a3 w4, . . .

1 Z2 w, a w2, wa, a2 w3, w2a, wa2, a3 w4, . . .

0 U(1) 1
2
a 1

2
w2, 1

2
wa = 1

2
a2 1

2
w2a, 1

2
a3 1

2
w4, 1

2
w3a = 1

2
w2a2, 1

2
wa3 = 1

2
a4

0 1 2 3 4 q

(4.233)
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We have d2
2 = Sq2 +w Sq1 +wa and d1

2 = 1
2

Sq2 +1
2
wa. Then the E3 page is

q

3

2 a ? ? ?

1 a a2 ? ?

0 U(1) 1
2
a 1

2
w2 1

2
a3 1

2
w4 = 1

2
w3a = 1

2
w2a2, 1

2
wa3 = 1

2
a4

0 1 2 3 4 q

(4.234)

At this point we see that there can be at most four elements in f2
DPin(pt) and eight elements

in f3
DPin(pt). We already know a subgroup Z2 × Z2 of f2

DPin(pt), generated by (−1)
∫
w2

1 and

(−1)Arf(Σ̂), and thus we conclude that f2
DPin(pt) = (Z2)2. We also know that the anomaly of

Majorana fermion on unoriented surfaces form Z8, so we conclude that f3
DPin(pt) = Z8.

4.F fd
DPin(pt) via the Adams spectral sequence

In this appendix16, we compute fd
DPin(pt) for d ≤ 6 a different way, using the Adams spectral

sequence. Though computations with the Adams spectral sequence are often difficult, the

problem simplifies greatly when computing twisted spin bordism groups ΩX
d , thanks to a

technique that first appears in Davis’ thesis [370] and builds on work of Stong [371] and

Anderson-Brown-Peterson [372].

We highly recommend Beaudry and Campbell’s paper [373] for a detailed introduction

to this method of computation and the ingredients that go into it, as well as several worked

examples. We assume familiarity with the definitions and notation they give.

16This appendix was contributed by Arun Debray.
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Theorem 4.235. The low-degree dpin bordism groups are: ΩDPin
0

∼= Z/2, ΩDPin
1

∼= Z/2,

ΩDPin
2
∼= Z/2⊕ Z/2, ΩDPin

3
∼= Z/8, ΩDPin

4
∼= Z/2⊕ Z/2, ΩDPin

5
∼= 0, and ΩDPin

6
∼= Z/2⊕ Z/2.

For any finite abelian group A, there is a (noncanonical) isomorphism A ∼= Hom(A,U(1)),

so this also computes fd
DPin(pt) for 0 ≤ d ≤ 6, and agrees with the calculations made in

Appendix 4.E. Recall from Sec. 4.6.2 that a dpin structure is equivalent to a choice of two

real line bundles L1, L2 →M and a spin structure on

TM ⊕ (L1 ⊗ L2)⊕ (L2)⊕3. (4.236)

One consequence is that if MTDPin denotes the Thom spectrum for dpin structures, so that

πk(MTDPin) ∼= ΩDPin
k , then

MTDPin ' MTSpin ∧ (BZ/2×BZ/2)L1L2+3L2−4. (4.237)

The second summand, (BZ/2×BZ/2)L1L2+3L2−4, which we denote X to tame the notation,

is the Thom spectrum of the virtual vector bundle

V := (L1 ⊗ L2)⊕ (L2)⊕3 − R4 −→ BZ/2×BZ/2. (4.238)

By (4.237), ΩDPin
k
∼= Ω̃Spin

k (X).

We will compute Ω̃Spin
k (X) for 0 ≤ k ≤ 6 for our X using the Adams spectral se-

quence, employing a standard trick to work over A(1) := 〈Sq1, Sq2〉 rather than the entire

Steenrod algebra. For details on how this works and many worked examples, see Beaudry-

Campbell [373], who carefully explain and summarize how to use the Adams spectral se-

quence for these kinds of computations. The idea is that we must determine H̃∗(X;F2) as

an A(1)-module. Then, the E2-page of this Adams spectral sequence is

Es,t
2 = Exts,tA(1)(H̃

∗(X;F2),F2). (4.239)
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(Definitions and notation are as in [373].) The spectral sequence converges to k̃ot−s(X)⊗ Ẑ2,

where ko denotes connective real K-theory and Ẑ2 denotes the 2-adic integers. Furthermore,

when t − s ≤ 7, k̃ot−s(X) is isomorphic to Ω̃Spin
t−s (X) [372]. We will show, for our particular

choice of X, Ω̃Spin
∗ (X) lacks torsion for odd primes. Therefore tensoring it with Ẑ2 does not

lose any information. (In general, information can be lost when tensoring with Ẑ2, but that

information can be computed by other means.) This allows us to use the spectral sequence

above to compute Ω̃Spin
t−s (X) in the degrees of our interest.

Proof of Theorem 4.235. First we argue Ω̃Spin
∗ (X) has no p-torsion for odd primes p. In fact,

we will show that if p is an odd prime, Ω̃Spin
∗ (X)⊗Fp = 0. For any finitely generated abelian

group A, the p-torsion subgroup of A includes into the p-torsion subgroup of A⊗Fp, so this

suffices.

By definition, Ω̃Spin
k (X) ∼= H̃k(MTSpin ∧X). Tensoring with Fp, the map

H̃k(MTSpin ∧X)⊗ Fp −→ H̃k(MTSpin ∧X;Fp) (4.240)

is injective, by the universal coefficient theorem. The Künneth theorem computes H̃∗(MTSpin∧

X;Fp) as a sum of tensor products of the form H̃i(MTSpin;Fp)⊗ H̃j(X;Fp), so it suffices to

show H̃j(X;Fp) vanishes for all j. The twisted-coefficients Thom isomorphism tells us there

is a (in this case nontrivial) Z[Z/2× Z/2]-module structure F̃p on Fp such that

H̃j(X;Fp) ∼= Hj(Z/2× Z/2; F̃p). (4.241)

Maschke’s theorem implies that since #(Z/2 × Z/2) and p are coprime, and since F̃p is p-

torsion, Hj(Z/2× Z/2; F̃p) vanishes in degrees j > 0. Using that 0th group homology is the

abelian group of coinvariants, one can check directly that H0(Z/2 × Z/2; F̃p) = 0 as well.

Thus Ω̃Spin
∗ (X) has no p-torsion.

On to the Adams spectral sequence. First we determine H̃∗(X;F2). As a graded abelian
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group, this is characterized by the Thom isomorphism: if U ∈ H̃0(X;F2) denotes the Thom

class, cup product with U is an isomorphism

(U ·) : Hk(BZ/2×BZ/2;F2)
∼=−→ H̃k(X;F2). (4.242)

There is no degree shift because the virtual vector bundle V → BZ/2×BZ/2 (from (4.238))

has rank zero. Let w := w1(L1) and a := w1(L2) in H1(BZ/2×BZ/2;F2); then

H∗(BZ/2×BZ/2;F2) ∼= F2[w, a]. (4.243)

The A(1)-module structure on H̃∗(X;F2) is determined by the following rules.

1. Sqi(U) = Uwi(V ), where wi denotes the ith Stiefel-Whitney class. In this case, w1(V ) =

w and w2(V ) = wa.

2. The Cartan formula determines the Steenrod squares of a product. We only need Sq1

and Sq2, for which the Cartan formula specializes to

Sq1(xy) = Sq1(x)y + x Sq1(y) (4.244a)

Sq2(xy) = Sq2(x)y + Sq1(x) Sq1(y) + x Sq2(y). (4.244b)

3. From the axiomatic properties of Steenrod squares, Sq1(w) = w2, Sq1(a) = a2, and

Sq2(w) = Sq2(a) = 0.

Using these three rules one can determine the action of Sq1 and Sq2 on any cohomology

class of X, as it is a sum of products of U , w, and a. This is routine, and indeed we used a

computer program to make these calculations. The answer is displayed in Figure 4.6.

From this figure, we see that, as anA(1)-module, H̃∗(X;F2) splits into several summands.

All summands pictured except the orange summand are isomorphic to shifts of A(1). The

orange summand, i.e. the one that contains Ua, continues above what we draw in Figure 4.6
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0

1

2

3

4

5

6

7

8

9

10

11

12

U

Ua

Uα

Uβ

U(w10a + w8a3 + w2a9 + a11)

Uw2

Uw4 Ua4

Uw3a3 Uw6

Figure 4.6: This A(1)-submodule of H̃∗(X;F2) contains all elements of degree at most 7.
Each dot represents an F2 summand, with its cohomological degree given by its height. The
connecting lines, resp. curves, indicate an action by Sq1, resp. Sq2, carrying the lower dot
to the upper dot. This A(1)-module factors as several different summands; we give each
summand a different color. In the generators of the orange summand, α := w2a + a3 and
β := w6a+ w4a3 + w2a5 + a7.

and is isomorphic to the mod 2 cohomology of the spectrum MO(1), the Thom spectrum

of the tautological line bundle σ → BO(1) (see [373, Figure 4]); therefore we denote that

summand by H̃∗(MO(1)).17 Specifically,

H̃∗(X;F2) ∼= A(1)⊕H̃∗(MO(1))⊕Σ2A(1)⊕Σ4A(1)⊕Σ4A(1)⊕Σ6A(1)⊕Σ6A(1)⊕P, (4.245)

where P has no elements of degree less than 8. Hence, below degree t− s = 8, the E2-page

of the Adams spectral sequence (4.239) is the direct sum of the E2-pages of the summands

other than P , and these have all been calculated. For ΣkA(1), there is a single F2 summand

in bidegree s = 0, t = k; for H̃∗(MO(1)), see [374, Example 6.3]. Putting these together,

the E2-page for this spectral sequence is

17Strictly speaking, we have only calculated this summand up to degree 12, and it could differ from
H̃∗(MO(1)) in larger degrees. This would only affect the E2-page in degrees larger than we use and display
in (4.246), so the calculation is the same in either case.
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0 1 2 3 4 5 6

0

1

2

3

(4.246)

In this diagram, the x-axis is t− s and the y-axis is s. Therefore a differential dr moves one

degree to the left and r degrees upwards. Each dot represents an F2 summand of the E2-

page; the different colors indicate which summands of H̃∗(X;F2) are responsible for which

data on the E2-page. The E2-page carries an action by Ext∗,∗A(1)(F2,F2). The vertical lines

indicate action by an element h0 ∈ Ext1,1
A(1)(F2,F2), and the diagonal lines indicate action

by h1 ∈ Ext2,1
A(1)(F2,F2); see [373, Example 4.1.1] for more on h0 and h1. All differentials

are h0- and h1-linear, i.e. dr(hix) = hidr(x) (i = 0, 1). In this example, the only differential

within the range displayed in (4.246) that could be nonzero is the d2 from bidegree (4, 0) to

bidegree (3, 2). Often, h0- and h1-linearity allow one to deduce that differentials vanish, but

this does not provide any information about this d2, so we have to do something different.

There will also be a question of extension problems: the line t− s = k is the associated

graded of a filtration, possibly nontrivial, on Ω̃Spin
k (X). This in particular introduces an

ambiguity in Ω̃Spin
2 (X): it could either be Z/2⊕Z/2 or Z/4. Fortunately, when we show this

d2 vanishes in Corollary 4.250, we will also be able to resolve this ambiguity.

Recall that a dpin structure on M is data of two line bundles L1, L2 → M and a spin

structure on TM ⊕ (L1 ⊗ L2) ⊕ (L2)⊕3. Computing w1 and w2 of this bundle with the

Whitney sum formula shows that if (M,L1, L2) has a dpin structure, w1(M) = w1(L1) and

w2(M) = w1(M)(w1(M) + w1(L2)).

Lemma 4.247. The assignment from (M,L1, L2) to a smooth representative of the Poincaré

dual of w1(L2) ∈ H1(M ;Z/2) induces a map DL2 : Ω̃Spin
d (X)→ ΩPin−

d−1 .
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Proof. These kinds of arguments are standard in bordism theory (e.g. [318, 319, 321]), so we

will be succinct. Let i : N ↪→M be a smooth representative for the Poincaré dual of w1(L2)

and ν → N be the normal bundle; then w(ν) = 1 + w1(L2). Using the short exact sequence

0→ TN → ν → TM |N → 0 and the Whitney sum formula, we get

w1(N) = i∗(w1(M) + w1(L2)) (4.248a)

w2(N) = i∗(w2(M)) + w1(N)w1(ν) (4.248b)

= i∗(w1(M)2 + w1(M)w1(L2) + (w1(M) + w1(L2))w1(L2)) (4.248c)

= i∗(w1(M)2 + w1(L2)2) (4.248d)

= w1(N)2, (4.248e)

so N admits a pin− structure; a choice of pin− structure amounts to the additional data

of a nullhomotopy of the map w2 + w2
1 : N → K(Z/2, 2). A choice of dpin structure

on (M,L1, L2) includes (up to a contractible choice) data of nullhomotopies of the maps

w1(M) +w1(L1) : M → K(Z/2, 1) and w2(M) +w1(M)(w1(M) +w1(L2)) : M → K(Z/2, 2);

via (4.248a), this induces a nullhomotopy of the map w1(N) + i∗(w1(M) + w1(L2)) : N →

K(Z/2, 1), which then induces a nullhomotopy of w2 + w2
1 : N → K(Z/2, 2) via the rest

of (4.248). The proof of bordism invariance of this construction is as usual.

DL2 is an example of a Smith homomorphism. For a general discussion of Smith homo-

morphisms, see e.g. [319, §4].

Lemma 4.249. The image of DL2 : Ω̃Spin
3 (X)→ ΩPin−

2
∼= Z/8 contains a generator of ΩPin−

2 .

Proof. Let a ∈ H1(RP3;F2) be the generator. Let L1 → RP3 be trivial and L2 → RP3 be the

tautological bundle, so w1(L1) = 0 and w1(L2) = a. Since w(RP3) = (1 + a)4 = 1 + a4 = 0,

w1(RP3) = 0 = w1(L1) and w2(RP3) = 0 = w1(RP3)(w1(RP3)w1(L2)). Hence (RP3, L1, L2)

admits a dpin structure; choose one.
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The standard embedding RP2 ↪→ RP3 represents the homology class Poincaré dual to a,

so DL2(RP3, L1, L2) is the pin− bordism class of RP2 with one of its two pin− structures.

Kirby-Taylor [321, §3] describe how to show that RP2 with either choice of pin− structure

generates ΩPin−

2 .

Corollary 4.250.

1. Ω̃Spin
3 (X) ∼= Z/8, so the d2 noted above vanishes.

2. The extension

0 // Z/2 // Ω̃Spin
2 (X) // Z/2 // 0, (4.251)

which comes from the Adams filtration on Ω̃Spin
2 (X), splits.

Proof. For (1), let x, y be elements on the E∞-page, i.e. elements of the associated graded

of the Adams filtration. It is a general fact about the Adams spectral sequence that if

h0x = y, then there are preimages x, y ∈ Ω̃Spin
∗ (X) of x, resp. y, such that 2x = y. For

example, supposing the d2 of interest were nonzero, the line t− s = 3 on the E∞-page (i.e.

the associated graded of Ω̃Spin
2 (X)) would contain exactly two Z/2 summands linked by an

h0; hence there would be nonzero x1, x2 ∈ Ω̃Spin
3 (X) with x1 = 2x2, so Ω̃Spin

3 (X) ∼= Z/4. On

the other hand, if d2 = 0, there would be three Z/2 summands linked by h0s, so there would

be nonzero x1, x2 ∈ Ω̃Spin
3 (X) with x1 = 4x2, and hence Ω̃Spin

3 (X) would be Z/8. That is,

Ω̃Spin
3 (X) is isomorphic to either Z/8, if the d2 in question vanishes, or Z/4, if that d2 does

not vanish. Lemma 4.249 says Ω̃Spin
3 (X) admits a surjective map to Z/8, so Z/4 does not

work.

On to (2). Like in the above case with h0, it is a general fact about the Adams spectral

sequence that if h1x = y, then one can choose preimages x and y in Ω̃Spin
∗ (X) such that

η · x = y, where η is the generator of π1S ∼= Z/2. (Concretely, if x is the dpin bordism

class of some manifold M , then η · x is the bordism class of S1 ×M , where S1 has the dpin

structure induced from the nonbounding framing.)
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If the extension in (4.251) did not split, then Ω̃Spin
2 (X) would be Z/4 rather than Z/2⊕

Z/2. However, we can rule this out: suppose it were Z/4, and let x be a generator. Then the

image of x in the associated graded of Ω̃Spin
2 (X) (i.e. the t−s = 2 line of the Adams E∞-page)

is the nontrivial element of the yellow Z/2 summand in bidegree (2, 0), and the image of 2x

is the nonzero element of the orange Z/2 summand in bidegree (2, 1). The h1-action carries

this to the nonzero element of the orange Z/2 summand in bidegree (3, 2), so η · 2x 6= 0.

Since 2η = 0, however, this is a contradiction, forcing Ω̃Spin
2 (X) ∼= Z/2⊕ Z/2.

There can be no more nontrivial differentials or hidden extensions in the range shown

in (4.246), so we are done.
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[240] G. Kälin and R. A. Porto, “From boundary data to bound states. Part II. Scattering

angle to dynamical invariants (with twist)”, JHEP 02, 120 (2020), arXiv:1911.09130

[hep-th].

[241] S. Weinberg, “Infrared photons and gravitons”, Phys. Rev. 140, B516 (1965).

[242] S. G. Naculich and H. J. Schnitzer, “Eikonal methods applied to gravitational scat-

tering amplitudes”, JHEP 05, 087 (2011), arXiv:1101.1524 [hep-th].

[243] D. C. Dunbar and P. S. Norridge, “Calculation of graviton scattering amplitudes using

string based methods”, Nucl. Phys. B 433, 181 (1995), arXiv:hep-th/9408014.

[244] Z. Bern, C. Cheung, H.-H. Chi, S. Davies, L. Dixon, and J. Nohle.

334

https://doi.org/10.1016/j.physletb.2005.05.071
https://arxiv.org/abs/hep-th/0503102
https://doi.org/10.1088/1126-6708/2006/12/072
https://arxiv.org/abs/hep-th/0610043
https://arxiv.org/abs/hep-th/0610043
https://doi.org/10.1016/j.physletb.2006.11.030
https://doi.org/10.1016/j.physletb.2006.11.030
https://arxiv.org/abs/hep-th/0611086
https://doi.org/10.1103/PhysRevD.77.025010
https://arxiv.org/abs/0707.1035
https://doi.org/10.1088/1126-6708/2008/04/065
https://arxiv.org/abs/0802.0868
https://doi.org/10.1007/JHEP01(2020)072
https://doi.org/10.1007/JHEP01(2020)072
https://arxiv.org/abs/1910.03008
https://doi.org/10.1007/JHEP02(2020)120
https://arxiv.org/abs/1911.09130
https://arxiv.org/abs/1911.09130
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1007/JHEP05(2011)087
https://arxiv.org/abs/1101.1524
https://doi.org/10.1016/0550-3213(94)00385-R
https://arxiv.org/abs/hep-th/9408014


[245] Z. Bern, C. Boucher-Veronneau, and H. Johansson, “N ¿= 4 Supergravity Amplitudes

from Gauge Theory at One Loop”, Phys. Rev. D 84, 105035 (2011), arXiv:1107.1935

[hep-th].

[246] G. ’t Hooft and M. Veltman, “One loop divergencies in the theory of gravitation”,

Ann. Inst. H. Poincare Phys. Theor. A 20, 69 (1974).

[247] M. H. Goroff and A. Sagnotti, “The Ultraviolet Behavior of Einstein Gravity”, Nucl.

Phys. B 266, 709 (1986).

[248] A. van de Ven, “Two loop quantum gravity”, Nucl. Phys. B 378, 309 (1992).

[249] V. A. Smirnov, “Analytical result for dimensionally regularized massless on shell dou-

ble box”, Phys. Lett. B 460, 397 (1999), arXiv:hep-ph/9905323.

[250] J. Tausk, “Nonplanar massless two loop Feynman diagrams with four on-shell legs”,

Phys. Lett. B 469, 225 (1999), arXiv:hep-ph/9909506.

[251] N. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, L. Planté, and P. Vanhove, “Bend-
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