Systematic Techniques for Finding and Preventing Script Injection
Vulnerabilities

by
Prateek Saxena
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Dawn Song, Chair
Professor David Wagner
Professor Brian Carver

Fall 2012

Systematic Techniques for Finding and Preventing Script Injection
Vulnerabilities

Copyright 2012
by
Prateek Saxena

Abstract

Systematic Techniques for Finding and Preventing Script Injection Vulnerabilities
by
Prateek Saxena
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Dawn Song, Chair

Computer users trust web applications to protect their financial transactions and online
identities from attacks by cyber criminals. However, web applications today are riddled with
security flaws which can compromise the security of their web sessions. In this thesis, we ad-
dress the problem of automatically finding and preventing script injection vulnerabilities, one
of the most prominent classes of web application vulnerabilities at present. Specifically, this
thesis makes three contributions towards addressing script injection vulnerabilities. First, we
propose two techniques that together automatically uncover script injection vulnerabilities
in client-side JavaScript components of web applications without raising false positives. Sec-
ond, we empirically study the use of sanitization, which is the predominant defense technique
to prevent these attacks today. We expose two new classes of errors in the practical use of
sanitization in shipping web applications and demonstrate weaknesses of emerging defenses
employed in widely used web application frameworks. Third, we propose a type-based ap-
proach to automatically perform correct sanitization for applications authored in emerging
web application frameworks. Finally, we propose a conceptual framework for a sanitization-
free defense against script injection vulnerabilities, which can form a robust second line of
defense.

To my parents, Krati and my brother Siddharth.

Contents

Contents

List of Figures

List of Tables

1

Introduction
1.1 Contributions
1.2 Statement of Joint Work

Background & Overview

2.1 Script Injection Vulnerabilities: Definition & Examples
2.2 Techniques for Finding Script Injection Vulnerabilities Automatically

2.3 Techniques for Preventing Script Injection Vulnerabilities

Finding Vulnerabilities using Taint-Enhanced Blackbox Fuzzing

3.1 Approach and Architectural Overview
3.2 Technical Challenges and Design Points
3.3 FLAX: Design and Implementation
3.4 Evaluation
3.5 Related Worko

3.6 Conclusion

Finding Vulnerabilities using Dynamic Symbolic Execution

4.1 Problem Statement and Overview
4.2 End-to-End System Design
4.3 Core Constraint Language 0.
4.4 Core Constraint Solving Approach
4.5 Reducing JavaScript to String Constraints
4.6 Experimental Evaluation
4.7 Related Work
4.8 Conclusion

i

ii

iv

ix

[\

10
12

14
15
16
17
24
31
32

5 Analysis of Existing Defenses

5.1 Challenges in Sanitization 0L
5.2 Support for Auto-Sanitization in Existing Web Application Frameworks . . .
5.3 Failures of Sanitization in Large-Scale Applications
5.4 Conclusion

6 Securing Sanitization-based Defense

6.1 Problem Definition
6.2 Our Approach
6.3 The Context Type System
6.4 CSAS Engine
6.5 Operational Semantics
6.6 Implementation & Evaluation
6.7 Related Work
6.8 Conclusion
7 DSI: A Basis For Sanitization-Free Defense
7.1 XSS Definition and Examples
7.2 Approach Overview
7.3 Enforcement Mechanisms
7.4 Architecture
7.5 Implementationo
7.6 Evaluation
7.7 Comparison with Existing XSS Defenses
7.8 Discussion
7.9 Related Work
7.10 Conclusion

8 Conclusion

Bibliography

iii

61
62
67
74
81

85
38
93
94
102
104
108
112
113

115
116
119
122
127
130
132
135
139
140
141

142

144

List of Figures

2.1

2.2

2.3

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

A snippet of HTML pseudo-code generated by a social networking application
server vulnerable to scripting attack. Untrusted input data, identified by the
$GET[¢...’] variables, to the server is echoed inline in the HTML response and
without any modification or sanitization.
An example of a chat application’s JavaScript code for the main window, which
fetches messages from the backend server at http://example.com/
An example vulnerable chat application’s JavaScript code for a child message dis-
play window, which takes chat messages from the main window via postMessage.
The vulnerable child message window code processes the received message in four
steps, as shown in the receiveMessage function. First, it parses the principal do-
main of the message sender. Next, it tries to check if the origin’s port and domain
are “http” or “https” and “example.com” respectively. If the checks succeed, the
popup parses the JSON [58] string data into an array object and finally, invokes a
function for displaying received messages. In lines 29-31, the child window sends
confirmation of the message reception to a backend server script.

Approach Overview
System Architecture for FLAX o oL
Algorithm for FLAX
Simplified operations supported in JASIL intermediate representation
Type system of JASIL intermediate representation
(Left) Sources of untrusted data. (Right) Critical sinks and corresponding ex-
ploits that may result if untrusted data is used without proper validation.
(Left) Acceptor Slice showing validation and parsing operations on event.origin
field in the running example. (Right) Execution of the Acceptor Slice on a can-
didate attack input, namely http://evilexample.com/
An example of a acceptor slice which uses complex string operations for input
validation, which is not directly expressible to the off-the-shelf string decision
procedures available today. o o

v

3.9

4.1

4.2
4.3

4.4
4.5

4.6

4.7
4.8

4.9
4.10

4.11

4.12

5.1

5.2
5.3

A gadget overwriting attack layered on a client-side script injection vulnerability.
The user clicks on an untrusted link which shows the iGoogle web page with an
overwritten iGoogle gadget. The URL bar continues to point to the iGoogle web

Architecture diagram for Kubpzu. The components drawn in the dashed box
perform functions specific to our application of finding client-side script injection.
The remaining components are application-agnostic. Components shaded in light
gray are the core contribution of this chapter.
Abstract grammar of the core constraint language.
Relations between the unbounded versions of several theories of strings. Theories
higher in the graph are strictly more expressive but are also at least as complex
to decide. KUuDZzU’s core constraint language (shaded) is strictly more expressive
than either the core language of HAMPI [66] or the theory of word equations and
an equal length predicate (the “pure library language” of [17]).
Algorithm for solving the core constraints.
A sample concat graph for a set of concatenation constraints. The relative order-
ing of the strings in the final character array is shown as start and end positions
in parentheses alongside each node.
A set of concat constraints with contradictory ordering requirements. Nodes are
duplicated to resolve the contradiction.
Type system for the full constraint language
Grammar and types for the full constraint language including operations on
strings, integers, and booleans. Lo
Distribution of string operations in our subject applications.
Kudzu code coverage improvements over the testing period. For each experiment,
the right bar shows the increase in the executed code from the initial run to total
code executed. The left bar shows the increase in the code compiled from initial
run to the total code compiled in the entire test period.
Benefits from symbolic execution alone (dark bars) vs. complete Kudzu (light
bars). For each experiment, the right bar shows the increase in the total executed
code when the event-space exploration is also turned on. The left bar shows the
observed increase in the code compiled when the event-space exploration is turned
O, v v o e e e
The constraint solver’s running time (in seconds) as a function of the size of the
input constraints (in terms of the number of symbolic JavaScript operations) . .

Flow of Data in our Browser Model. Certain contexts such as PCDATA and CDATA
directly refer to parser states in the HTML 5 specification. We refer to the
numbered and underlined edges during our discussion in the text.
A real-world vulnerability in PHPBB3.
Example of Django application with wrong sanitization

47

5.4 Example of Auto-sanitization in Google Ctemplate framework
5.5 Sanitizer-to-context mapping for our test applications.
5.6 Running example: C# code fragment illustrating the problem of automatic san-
itizer placement. Underlined values are derived from untrusted data and require
sanitization; function calls are shown with thick black arrows C1-C3 and basic
blocks B1-B4 are shown in gray circles.
5.7 Two different sanitization approaches are shown: Method 1 is shown above and
method 2 below.
5.8 HTML outputs obtained by executing different paths in the running example.
TOENCODE denotes the untrusted string in the output.
5.9 Histogram of sanitizer sequences consisting of 2 or more sanitizers empirically ob-
served in analysis, characterizing sanitization practices resulting from manual san-
itizer placement. EH,U, K,P,S denote sanitizers EcmaScriptStringlLiteralEncode,
HtmlEncode, HtmlAttribEncode, UrlKeyValueEncode, UrlPathEncode, and Sim-
pleHtmlEncode respectively.
5.10 Characterization of the fraction of the paths that were inconsistently sanitized.
The right-most column indicates paths highlighted as errors by our analysis.
5.11 Distribution of lengths of paths that could not be proved safe. Each hop in the
path is a string propagation function. The longer the chain, the more removed
are taint sources from taint sinks.o
5.12 Distribution of the lengths of applied sanitization chains, showing a sizable frac-
tion of the paths have more than one sanitizer applied.

6.1 The syntax of a simple templating language. @ represents the standard integer
and bitvector arithmetic operators, ® represents the standard boolean operations
and - is string concatenation. The San expression syntactically refers to applying
asanitizer. L e e e e

6.2 (A) shows a template used as running example. (B) shows the output buffer after
the running example has executed the path including the true branch of the if
statement. L L 0oL Lo

6.3 Pseudo-code of how external application code, such as client-side Javascript, can
invoke the compiled templates. oL

6.4 Overview of our CSAS engine.

6.5 The final types 7 are obtained by augmenting base types of the language o with
type qualifiers @

6.6 An example template requiring a mixed static-dynamic approach.

6.7 Type Rules for Expressions. oo

6.8 Type Rules for Commands. The output buffer (of base type 1) is denoted by the
symbol p. . . L

6.9 The promotibility relation < between type qualifiers

6.10 Syntax of Values

vi

78

83

6.11

6.12
6.13

6.14

7.1

7.2
7.3

7.4

7.5
7.6
7.7

7.8

7.9

7.10

7.11

vil

Operational Semantics for an abstract machine that evaluates our simple tem-
plating language. 106
A set of contexts C used throughout the chapter. 108

Comparing the runtime overhead for parsing and rendering the output of all the
compiled templates in milliseconds. This data provides comparison between our
approach and alternative existing approaches for server-side Java and client-side
JavaScript code generated from our benchmarks. The percentage in parenthesis
are calculated over the base overhead of no sanitization reported in the second col-
umn. The last line shows the number of sinks auto-protected by each approach—a
measure of security offered by our approach compared to its alternatives. 110
Distribution of inserted sanitizers: inferred contexts and hence the inserted sani-
tizer counts vary largely, therefore showing that context-insenstive sanitization is
insufficient. 111

Example showing a snippet of HT'ML pseudocode generated by a vulnerable social
networking web site server. Untrusted user data is embedded inline, identified by
the $GET[“...?] wvariables. 117
Example attacks for exploiting vulnerabilities in Figure 7.1. 117
Coalesced parse tree for the vulnerable web page in Figure 7.1 showing super-
imposition of parse trees resulting from all attacks simultaneously. White node
show the valid intended nodes whereas the dark nodes show the untrusted nodes
inserted by the attacker. oo 119
Coalesced parse tree (corresponding to parse tree in Figure 7.3) resulting from
DSI enforcement with the terminal confinement policy—untrusted subtrees are

forced into leaf nodes.o 121
Example of minimal serialization using randomized delimiters for lines 3-5 of the

example shown in Figure 7.1. oo 123
Rules for computing mark attributes in minimal deserialization. 125

One possible attack on minimal serialization, if C' were not explicitly sent. The
attacker provides delimiters with the suffix 2222 to produce 2 valid parse trees in
the browser. 126
(a) A sample web forum application running on a vulnerable version of ph-
pBB 2.0.18, victimized by stored XSS attack as it shows with vanilla Konqueror
browser (b) Attack neutralized by our proof-of-concept prototype client-server

DSI enforcement.o 130
Effectiveness of DSI enforcement against both reflected XSS attacks [130] as well
as stored XSS attack vectors [94].o 133

Percentage of responses completed within a certain timeframe. 1000 requests on
a 10 KB document with (a) 10 concurrent requests and (b) 30 concurrent requests.134
Increase in CPU overhead averaged over 5 runs for different page sizes for a
DSI-enabled web server using PHPTaint [117]. 134

7.12 Various XSS Mitigation Techniques Capabilities at a glance. Columns 2 - 6
represent security properties, and columns 7-9 represent other practical issues. A
‘v"7 denotes that the mechanism demonstrates the property.

viii

List of Tables

3.1

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

9.5

Applications for which FLAX observed untrusted data flow into critical sinks. The
top 5 subject applications are websites and the rest are iGoogle gadgets. (Upper)
Columns 2-5, and (Lower) Columns 6-9.

Length constraints implied by core string constraints, where Lg is the length of
a string S, and o ranges over the operators {<, <, =>>}
Our reduction from common JavaScript operations to our full constraint language.
Capitalized variables may be concrete or symbolic, while lowercase variables take
a concrete value. L
The top 5 applications are AJAX applications, while the rest are Google/IG gad-
get applications. Column 2 reports the number of distinct new inputs generated,
and column 3 reports the increase in code coverage from the initial run to and
the final run.
Event space Coverage: Column 2 and 3 show the number of events fired in the
first run and in total. The last column shows the total events discovered during
the testing. L

Transductions applied by the browser for various accesses to the document. These
summarize transductions when traversing edges connected to the “Document”
block in Figure 5.1.
Details regarding the transducers mentioned in Table 5.1. They all involve various
parsers and serializers present in the browser for HTML and its related sub-
GTAMINATS. . . .« . o o o v e et e e e
Extent of automatic sanitization support in the frameworks we study and the
pointcut (set of points in the control flow) where the automatic sanitization is
applied. L
Usage of auto-sanitization in Django applications. The first 2 columns are the
number of sinks in the templates and the percentage of these sinks for which auto-
sanitization has not been disabled. Each remaining column shows the percentage
of sinks that appear in the given context.
Sanitizers provided by languages and/or frameworks. For frameworks, we also
include sanitizers provided by standard packages or modules for the language.

1X

65

73

5.6 The web applications we study and the contexts for which they sanitize.

74

x1

Acknowledgments

This thesis is a result of ideas that were born out of discussions and collaboration with
many people. Without them this work would not be possible. I am responsible for any
shortcomings that remain in this thesis.

First, I thank my adviser and thesis committee chair Prof. Dawn Song. Her insights and
feedback have directly shaped the technical ideas in this thesis. But, more importantly, her
passion for scientific research is contagious and has had an indelible effect on my personality.
My other committee members, Prof. David Wagner and Prof. Brian Carver, have provided
valuable feedback on the thesis. Thanks to Prof. David Wagner for insightful comments on
papers that are part of this thesis; his words of encouragement and guidance have helped
me throughout my PhD. Thanks to Prof. Brian Carver for suggestions on improving this
manuscript. [am also indebted to Prof. R. Sekar who convinced me to pursue a research
career.

My colleagues made research and fun inseparable. Many thanks to Adam Barth, Stephen
McCamant, Pongsin Poosankam, Chia Yuan Cho, Steve Hanna, Joel Weinberger, Noah M.
Johnson, Kevin Zhijie Chen, Adrienne Felt, Matt Finifter, Devdatta Akhawe, Adrian Mettler
and Juan Caballero for discussions and feedback on this work.

I have learned broadly from my mentors and collaborators David Molnar, Ben Livshits,
Patrice Godefroid, Margus Veanes and various team members during the work done at
Microsoft Research. I enjoyed working with Mike Samuel; his perspectives and effort were
instrumental in making some of our ideas practical at Google. Thanks to Vijay Ganesh and
Adam Kiezun for their help on the HAMPI string solver.

I have never had to look far for sources of constant inspiration and encouragement. My
wife, Krati, walked every step of the way sporting a disarming smile; my journey couldn’t
be easier. I am indebted to my Mom for her unconditional love; my Dad for his undying
spirit and for being an aspiring entrepreneur who I can only hope to emulate; and finally, my
brother Siddharth who is a real-life proof of what tenacity can achieve. Finally, thanks to
my friends (you know who you are) for unforgettable support at times when things seemed
low—you have all made contributions to this work.

Chapter 1

Introduction

The web is our primary gateway to many critical services and offers a powerful platform for
emerging applications. As the underlying execution platform for web applications grows in
importance, its security has become a major concern. Web application vulnerabilities have
become pervasive in web applications today, yet techniques for finding and defending against
them are limited. How can we build a secure web application platform for the future? In
this thesis, we answer this research question in part. We tackle the problem of developing
techniques to automatically find and prevent script injection (or scripting) vulnerabilities—a
class of web vulnerabilities permissive in web applications today.

Web languages, such as HTML, have evolved from light-weight mechanisms for static
data markup to full-blown vehicles for supporting dynamic execution of web application
logic. HTML allows inline constructs both to embed untrusted data and to invoke code in
higher-order languages such as JavaScript. Web applications often embed data controlled by
untrusted adversaries inline within the HTML code of the web application. For example, a
blogging application often embeds untrusted user comments inline within the HTML content
of the blog. HTML and other web languages lack principled mechanisms to separate trusted
code from inline data and to further isolate untrusted data (such as user-generated content)
from trusted application data. Script injection vulnerabilities arise when untrusted data
controlled by an adversary is interpreted by the web browser as trusted application (script)
code. This causes an attacker to gain higher privileges than intended by the web application,
typically granting untrusted data the same authority as the web application’s code. Well-
known example categories of such attacks are cross-site scripting (or XSS) [94] and cross-
channel scripting (or XCS) [18] attacks.

Scripting vulnerabilities are highly pervasive and have been recognized as a prominent
category of computer security vulnerabilities. Software errors that result in script injection
attacks are presently rated as the fourth most serious of software errors in the CWE’s Top
25 list for the year 2011 [31]. OWASP’s Top 10 vulnerabilities ranks scripting attacks as
the second most dangerous of web vulnerabilities in 2010 [89]. Web Application Security
Consortium’s XSS vulnerability report shows that over 30% of the web sites analyzed in 2007
were vulnerable to XSS attacks [123]. In addition, there exist publicly available repositories

CHAPTER 1. INTRODUCTION 2

of real-world XSS vulnerabilities, which have 45517 reported XSS vulnerabilities (as of June
10, 2012) with new ones being added constantly [130].

Most prior research on finding scripting vulnerabilities has focused on server-side com-
ponents [8, 132, 16, 62, 85, 75, 107, 121, 72]. In this thesis, we focus on analysis of scripting
vulnerabilities in client-side code written in JavaScript, which has received little attention
prior to our research. In contrast to several concurrent works have investigated static analy-
sis approaches to analyzing JavaScript, our work employs dynamic analysis techniques. Our
aim is to develop techniques which have no false positives and which produce witness exploit
inputs when they uncover a vulnerability.

Several mechanisms have been discussed, both in practice and in research, on preventing
scripting vulnerabilities. In this thesis, we explore two directions towards preventing script
injection vulnerabilities in web applications. First, we investigate the most predominant
prevention technique that developers employ in practice and explain the challenges in getting
it right. We then propose techniques to automate this defense, thereby shifting the burden
of applying correct prevention measures from the developers to the underlying compilation
tools. Second, we investigate alternative architecture for web applications that preserves a
strict separation between untrusted data and application code during the parsing operations
of the browser. This architecture obviates the need for today’s predominant prevention
techniques which are notoriously error-prone.

1.1 Contributions

This thesis makes the following contributions:

Automatic Techniques for Finding Scripting Vulnerabilities. We propose two white-
box analysis techniques for finding scripting vulnerabilities and build the first systems to
apply these techniques to JavaScript applications. Our techniques are based on dynamic
analysis and find vulnerabilities in several real-world applications without raising false posi-
tives. The first of these techniques is called taint-enhanced black-box fuzzing (Chapter 3).
It improves over prior black-box dynamic fuzzing approaches by combining it with a previous
white-box analysis called dynamic taint analysis [86]. Our second technique improves over
white-box-based dynamic testing methods, specifically dynamic symbolic execution [40], by
introducing a more comprehensive symbolic reasoning of strings (Chapter 4).

Analysis of Existing Defenses. In this thesis, we identify implicit assumptions underlying
today’s deployed prevention techniques (Chapter 5). Specifically, we explain the assump-
tions and subtleties underlying sanitization, the predominant defense technique deployed
in practice. Our empirical analysis of large-scale applications uncovers two new classes of
errors in sanitization practices when implemented manually by developers. Furthermore,
we outline several incompleteness in mechanisms implemented by emerging web application
frameworks that try to enforce sanitization defenses automatically.

CHAPTER 1. INTRODUCTION 3

Techniques for Preventing Scripting Vulnerabilities. We propose a type system and
inference engine to address the problem of automatic sanitization (or auto-sanitization),
which eliminates the error-prone practice of manually applying sanitization in web applica-
tions (Chapter 6). Together, with external techniques to identify all untrusted variables [97,
132] and to implement correct sanitizers [51], this work provides a basis to achieve correct
sanitization-based defense in emerging web applications automatically.

We propose a second defense mechanism which eliminates the need for sanitization-based
defense (Chapter 7). In this work, we also develop a sanitization-free architecture for web
applications, relying on a collaboration between the server and the client web browser. We
introduce a fundamental integrity property called document structure integrity and sketch
mechanisms to enforce it during the end-to-end execution of the application. Our work
demonstrates an initial proof-of-concept for implementing these in existing applications with
minimal impact to backwards compatibility.

1.2 Statement of Joint Work

The development of techniques and systems presented in Chapter 3 and Chapter 4 was
led by Prateek Saxena. In addition to Prateek Saxena, contributors to the work presented
in Chapter 3 include Steve Hanna, Pongsin Poosankam and Dawn Song. Contributors in
addition to Prateek Saxena for the work presented in Chapter 4 include Devdatta Akhawe,
Steve Hanna, Feng Mao, Stephen McCamant and Dawn Song.

Analysis of sanitization use large-scale applications presented in Chapter 5 was led by
Prateek Saxena. Contributors in addition to Prateek Saxena to this work include David
Molnar and Ben Livshits. The rest of the work presented in Chapter 5 was joint work
between Prateek Saxena, Joel Weinberger, Devdatta Akhawe, Matthew Finifter, Richard
Shin and Dawn Song.

The development of auto-sanitization technique presented in Chapter 6 was joint work
between Prateek Saxena, Mike Samuel and Dawn Song. Contributors to the sanitization-free
defense technique proposed in Chapter 7 in addition to Prateek Saxena include Yacin Nadji
and Dawn Song.

Chapter 2

Background & Overview

Web applications are distributed applications consisting of components that execute either
on a web server or on a user’s client. The code which executes on the server, which we refer to
as server-side code, is usually written in languages such as Java, C/C++, PHP, ASP.NET.
It is responsible for processing the HT'TP inputs and operates on data stored in the server-
side database or file-system. In response to a HI'TP request, the server-side code sends an
HTTP response which consists of additional client-side code. Client-side code consists of
languages parsed and executed by the browser such as HTML, CSS and JavaScript. Client-
and server-side components communicate with each other over the network, typically over
custom protocols layered on HTTP.

In this thesis, we focus on building techniques to find and prevent script injection vulner-
abilities, one of the most prominent vulnerabilities affecting web applications today. These
vulnerabilities affect both client- and server-side components of web applications. We provide
some examples of these vulnerabilities and define preliminary terminology used throughout
this thesis in Section 2.1.

2.1 Script Injection Vulnerabilities: Definition &
Examples

Scripting vulnerabilities arise when content controlled by an adversary (referred to as un-
trusted data) flows into critical operations of the program (referred to as critical sinks) with-
out sufficient security checks. When untrusted data is parsed or evaluated as trusted code by
the web browser, a scripting attack results. This causes an attacker to gain higher privileges
than intended by the web application, typically granting untrusted data the same privileges
as the web application’s code. Well-known example categories of such code-injection attacks
include cross-site scripting [94] and cross-channel scripting [18] attacks.

The definitions of critical sinks and untrusted data inputs are application-specific. The
intended security policy for certain applications permit data taken from users or third-party
web sites to be evaluated as script code. On the other hand, many other applications do not

CHAPTER 2. BACKGROUND & OVERVIEW 5

1: <body>

2: <div id=’WelcomeMess’> Welcome! </div>

3: <div id=’$GET[‘FriendID-Status’]’ name=’status’> </div>
13: </body>

Figure 2.1: A snippet of HTML pseudo-code generated by a social networking application
server vulnerable to scripting attack. Untrusted input data, identified by the $GET[‘...’]
variables, to the server is echoed inline in the HTML response and without any modification
or sanitization.

intend untrusted data inputs (such as user-generated content) to be executed by the browser
as code. Our techniques assume that such a security specification is externally provided.

Server-side Script Injection Vulnerabilities

Script injection attacks in server-side applications have been investigated in depth by prior
work. We provide an example of a typical scripting attack for exposition.

In this example, all the HT'TP data inputs to the web application server are treated
as untrusted data. In this application, the security policy forbids untrusted data to be
executed as scripts or HI'ML markup when processed by the web browser. A script injection
vulnerability is one that allows injection of untrusted data into a victim web page which is
subsequently interpreted in a malicious way by the browser on behalf of the victim web site.

An Example. We show a hypothetical example of HTML code that a buggy web ap-
plication emits in Figure 2.1. Places where untrusted user data is inlined are denoted by
elements of $GET[‘...’] array (signifying data directly copied from GET/POST request
parameters). In this example, the server expects the value of $GET[‘MainUser’] to contain
the name of the current user logged into the site, and $GET[‘FriendID-Status’] to con-
tain a string with the name of another user and his status message (“online” or “offline”)
separated by a delimiter (“="). If the untrusted input data is a malicious string, such as ’
onmouseover=javascript:bad(), a script injection attack occurs. In this attack, the mali-
cious value of $GET[‘FriendID-Status’] prematurely closes the id attribute of the <div>
tag on line 3 and injects unintended HTML attributes and/or tags. This particular attack
string closes the string delimited by the single quote character, which allows the attacker
to inject a JavaScript attribute called onmouseover. The value of the injected JavaScript
attribute executes as arbitrary JavaScript code which we depict as a function call bad().
This exploit string is one of many possible vectors that is publicly known—over 200 such
vectors are available online [94]. This attack example belongs to a sub-class of script injection
attacks commonly referred to as a reflected cross-site scripting attack.

CHAPTER 2. BACKGROUND & OVERVIEW 6

Client-side Script Injection Vulnerabilities

Much prior vulnerability research has focused primarily on the server-side components of
web applications. Scripting vulnerabilities can arise in client-side components, such as those
written in JavaScript, as well [68]. We present examples of client-side script injection vulner-
abilities, a subclass of scripting vulnerabilities which result from bugs in the client-side code.
In a client-side script injection vulnerability, critical sinks are operations in the client-side
code where data is used with special privilege, such as in a code evaluation construct.

Client-side script injection vulnerabilities are different from server-side scripting vulner-
abilities in a few ways. For example, one type of client-side script injection vulnerability
involves data that enters the application through the browser’s cross-window communica-
tion abstractions and is processed completely by JavaScript code, without ever being sent
back to the web server. Another type of client-side script injection vulnerability is one where
a web application server sanitizes untrusted data sufficiently before embedding it in its ini-
tial HTML response, but does not sanitize the data sufficiently for its use in the JavaScript
component.

Client-side script injection vulnerabilities are becoming increasingly common due to the
growing complexity of JavaScript applications. Increasing demand for interactive perfor-
mance of rich web 2.0 applications has led to rapid deployment of application logic as client-
side scripts. A significant fraction of the data processing in AJAX applications (such as
Gmail, Google Docs, and Facebook) is done by JavaScript components. JavaScript has sev-
eral dynamic features for code evaluation and is highly permissive in allowing code and data
to be inter-mixed. As a result, attacks resulting from client-side script injection vulnerabili-
ties often result in compromise of the web application’s integrity.

In the security policy of many web applications, any data which is controlled by an
external (or third-party) web origin is treated as untrusted data. Additionally, user data
(such as content of GUI form fields or textarea elements) is treated as untrusted. Untrusted
data could enter the client-side code of a web application in three ways. First, data from
an untrusted web attacker could be reflected in the honest web server’s HI'ML response
and subsequently read for processing by the client side code. Second, untrusted data from
other web sites could be injected via the cross-window communication interfaces provided
by the web browser. These interfaces include postMessage, URL fragment identifiers, and
window/frame cross-domain properties. Finally, user data fed in through form fields and
text areas is also marked as untrusted.

The first two untrusted sources are concerned with the threat model where the attacker is
a remote entity that has knowledge of a client-side script injection vulnerability in an honest
(but buggy) web application. The attacker’s goal is to remotely exploit a client-side script
injection vulnerability to execute arbitrary code. The attack typically only involves enticing
the user into clicking a link of the attacker’s choice (such as in a reflected XSS attack).

We also consider the “user-as-an-attacker” threat model where the user data is treated
as untrusted. In general, user data should not be interpreted as web application code. For
instance, if user can inject scripts into the application, such a bug can be used in conjunction

CHAPTER 2. BACKGROUND & OVERVIEW 7

var chatURL = "http://www.example.com/";
chatURL += "chat_child.html";
var popup = window.open(chatURL);

function sendChatData (msg) {
var StrData = "{\"username\": \"joe\", \"message\": \"" + msg + "\"}";
popup.postMessage (StrData, chatURL);

N O WN -

Figure 2.2: An example of a chat application’s JavaScript code for the main window, which
fetches messages from the backend server at http://example.com/

with other vulnerabilities (such as login-CSRF vulnerabilities) in which the victim user is
logged-in as the attacker while the application behavior is under the attacker’s control [12].
In our view, these vulnerabilities can be dangerous as they allow sensitive data exfiltration,
even though the severity of the resulting exploits varies significantly from application to
application.

Running Example. For exposition, we introduce a running example of a hypothetical
AJAX chat application here which we will revisit in Chapter 3. The example application
consists of two windows. The main window, shown in Figure 2.2, asynchronously fetches chat
messages from the backend server. Another window receives these messages from the main
window and displays them, the code for which is shown in Figure 2.3. The communication
between the two windows is layered on postMessage!, which is a string-based message
passing mechanism included in HTML 5. The application code in the display window has
two sources of untrusted data—the data received via postMessage could be sent by any
browser window, and the event.origin property, which is the origin (port, protocol and
domain) of the sender.

We discuss some of the attacks possible from exploiting the errors in this example ap-
plication code next. The script injection attack is discussed first and then we outline three
other related attacks which are less severe but problematic because they cause escalation of
privileges afforded by the remote attacker.

e Script injection. Script injection is possible because JavaScript can dynamically evalu-
ate both HTML and script code using various DOM methods (such as document.write)
as well as JavaScript native constructs (such as eval). This class of attacks is com-
monly referred to as DOM-based XSS [68]. An example of this attack is shown in Figure
2.3 on line 19. In the example, the display child window uses eval to serialize the in-
put string from a JSON format, without validating for its expected structure. Such
attacks are prevalent today because popular data exchange interfaces, such as JSON,
were specifically designed for use with the eval constructs. In Section 3.4, we outline

In the postMessage interface design, the browser is responsible for attributing each message with the
domain, port, and protocol of the sender principal and making it available as the “origin” string property of
the message event [13, 119]

CHAPTER 2. BACKGROUND & OVERVIEW 8

1:function ParseOriginURL (url) {

2: var re=/(.*x7):\/\/(.x?)\.com/;

3: var matches = re.exec(url);

4: return matches;

5:}

6:

7:function ValidateOriginURL (matches)

8:9{

9: if('matches) return false;

10: if(!/https?/.test(matches[1]))

11: return false;

12: var checkDomRegExp = /example/;

13: if (!checkDomRegExp.test (matches[2])) {

14: return false; 1}

15: return true; // All Checks 0Ok

16:}

17:// Parse JSON into an array object

18:function ParseData (DataStr) {

19: eval (DataStr);

20:}

21:function receiveMessage(event) {

22: var 0 = ParseOriginURL(event.origin);

23: if (ValidateOriginURL (0)) {

24: var DataStr = ‘var new_msg =(’ +

25: event.data + ¢);’;

26: ParseData(DataStr) ;

27: display_message(new_msg);

29: var backserv = new XMLHttpRequest(); ...;

30: backserv.open("GET","http://example.com/srv.php?

call=confirmrcv&msg="+new_msg["message"]);

31: backserv.send();} ... } ...

32: window.addEventListener ("message",
receiveMessage,...);

Figure 2.3: An example vulnerable chat application’s JavaScript code for a child message
display window, which takes chat messages from the main window via postMessage. The
vulnerable child message window code processes the received message in four steps, as shown
in the receiveMessage function. First, it parses the principal domain of the message sender.
Next, it tries to check if the origin’s port and domain are “http” or “https” and “exam-
ple.com” respectively. If the checks succeed, the popup parses the JSON [58] string data
into an array object and finally, invokes a function for displaying received messages. In lines
29-31, the child window sends confirmation of the message reception to a backend server
script.

CHAPTER 2. BACKGROUND & OVERVIEW 9

additional phishing attacks in iGoogle gadgets layered on such XSS vulnerabilities, to
illustrate that a wide range of nefarious goals can be achieved once the application
integrity is compromised.

e Origin Mis-attribution. Certain cross-domain communication primitives, such as via
postMessage, are designed to facilitate sender authentication. Applications using
postMessage are responsible for validating the authenticity of the domain sending
the message. The example in Figure 2.3 illustrates such an attack on line 13. The
vulnerability arises because the application checks the domain field of the origin param-
eter insufficiently, though the protocol sub-field is correctly validated. The failed check
allows any domain name containing “example”, including an attacker’s domain hosted
at “evilexample.com”, to send messages. As a result, the vulnerable code naively trusts
the received data even though the data is controlled by an untrusted principal. In the
running example, for instance, an untrusted attacker can send chat messages to victim
users on behalf of benign users.

e HTTP Parameter Polution. Many AJAX applications use untrusted data to con-
struct URL parameters dynamically, which are then used to make HTTP requests
(via XMLHttpRequest) to a backend server. Several of these URL parameters play
the role of application-specific commands in these HT'TP requests. For instance, the
chat application in the example sends a confirmation command to a backend script
on lines 29-31. The backend server script may take other application commands (such
as adding friends, creating a chat room, and deleting history) similarly from HTTP
URL parameters. If the HT'TP request URL is dynamically constructed by the ap-
plication in JavaScript code (as done on line 30) using untrusted data without vali-
dation, the attacker could inject new application commands by inserting extra URL
parameters. These attacks are called HTTP parameter pollution attacks [7]. Since
the victim user is already authenticated, parameter pollution allows the attacker to
perform unintended actions on behalf of the user. For instance, the attacker could
send hi&call=addfriend&name=evil as the message which could result in adding the
attacker to the buddy list of the victim user.

e (Cookie-sink vulnerabilities. Web applications often use cookies to store session data,
user’s history and personal preference settings. These cookies may be updated and
used in the client-side code. If an attacker can control the value written to a cookie,
it may fix the values of the session identifiers (which may result in a session fixation
attack) or corrupt the user’s preferences and history data.

CHAPTER 2. BACKGROUND & OVERVIEW 10

2.2 Techniques for Finding Script Injection
Vulnerabilities Automatically

If we can develop techniques to automatically find script injection vulnerabilities in web
applications, it is possible to eliminate many exploitable vulnerabilities before applications
are used in deployment. Analysis techniques for finding scripting vulnerabilities, especially
in server-side code, have been widely researched [132, 72, 71, 18, 127, 62, 55, 87, 75, 8|.
In this thesis, we focus on techniques for finding these vulnerabilities in JavaScript code,
which have received much lesser attention in research prior to our work. Prior techniques
for finding scripting vulnerabilities in web applications largely fall into 3 categories: manual
analysis, static analysis and dynamic analysis. We discuss these ideas below, outline the new
challenges posed by JavaScript and explain how our techniques are different at a high-level.
Our techniques aim to uncover vulnerabilities without raising false positives by constructing
concrete exploit inputs automatically for vulnerabilities found. To achieve this, our tech-
niques explore the program behavior systematically and reason about transformation (such
as validation or sanitization operations) that the application may perform on the untrusted
data.

Differences from Existing Techniques. Fuzzing or black-box testing is a popular light-
weight mechanism for testing applications. However, black-box fuzzing does not scale well
with a large number of inputs and is often inefficient in exploration of the application’s path
space. A more directed approach used in the past in the context of server-side code analysis is
based on dynamic taint-tracking [132]. Dynamic taint analysis is useful for identifying a flow
of data from an untrusted source to a critical operation. However, dynamic taint-tracking
alone alone can not determine if the application sufficiently validates untrusted data before
using it. Consider a canonical example of an application logic that transforms the dangerous
text <script> to an empty string, if it appears in the input. Dynamic taint will only identify
the characters in the output of this operation that were not replaced by the constant empty
string, and only so if the dynamic values on the given execution contain the text string
<script>. Dynamic taint tracking does not capture the full behavior of the sanitization logic
under different inputs. To overcome this limitation in practice, dynamic taint analysis tools
such as PHPTaint [117] use the strategy of pre-identifying certain operations as validation
or sanitization constructs. However, when parsing operations and validation checks are
syntactically indistinguishable from each other in application code, such pre-specification
is not possible and the alternative approximations are difficult. If an analysis tool treats
all string operations on the input as parsing constructs, it will fail to identify validation
checks and will report false positives even for legitimate uses (as shown by our experiments
in Section 4.6). On the other hand, if the analysis treats any use of untrusted data which
has been passed through a parsing/validation construct as safe, it is likely to miss many
bugs. Static analysis is another approach [47, 26, 9, 48, 74]; however static analysis tools do
not directly provide concrete exploit instances and require additional developer analysis to
prune away false positives.

CHAPTER 2. BACKGROUND & OVERVIEW 11

We aim to bridge the shortcomings of these techniques. We aim to develop techniques
that can explore the program’s functionality systematically and generate concrete witness
inputs that demonstrate an exploit. In this regard, symbolic execution techniques have
been used for discovering and diagnosing vulnerabilities in server-side logic [66, 17, 59, 121].
However, web applications pervasively use complicated operations on string and arrays data
types, both of which raise difficulties for decision procedures involved in symbolic execution
techniques. The power and expressiveness of string decision procedures prior to our work
was limited. Practical implementations of string decision procedures prior to our work did
not deal with the generality of JavaScript string constraints involving common operations
(such as String.replace, regular expression match, concatenation and equality) expressed
together over multi-variable, variable-length inputs [66, 17, 59, 50]. Other symbolic anal-
yses have been limited to a subset of input-transformation operations in PHP [8]. These
limitations of prior symbolic execution tools motivate the need for our solutions.

Challenges in JavaScript Code Analysis. The first challenge of holistic application
analysis is in dealing with the complexity of JavaScript. Many JavaScript programs use
code evaluation constructs to dynamically generate code as well as to de-serialize strings
into complex data structures (such as JSON arrays/objects). In addition, the language sup-
ports myriad high-level operations on complex data types. This makes the task of practical
analysis, especially based on static analysis methods, difficult.

In JavaScript application code, we observe that parsing operations are syntactically in-
distinguishable from validation checks. This makes it infeasible for automated syntactic
analyses to reason about the sufficiency of validation checks in isolation from the rest of the
logic. Due to the convenience of their use in the language, developers tend to treat strings
as a universal type for exchanging both code and data values. Consequently, complex string
operations such as regular expression match and replace are pervasively used both for parsing
input and for performing custom validation checks.

Sub-challenges & Our Approach. The problem of finding vulnerabilities in JavaScript-
heavy applications has two orthogonal sub-challenges— (a) automatically exploring the ex-
ecution space of client-side JavaScript code, and, (b) and finding an input that exposes a
vulnerability in some explored program path. We decouple our analysis into two orthogonal
sub-analyses to address these two sub-challenges:

o Single-path Analysis. First, we develop a single-path analysis technique which focuses
on finding an exploit input that traverses a given path in the program. Specifically,
the input to a single-path analysis is an initial benign test case that executes some
path in the program. The analysis aims to find an exploit instance by systematically
searching the equivalence class of inputs that force the program execution down the
same path as the given benign input. We present this technique and our FLAX tool
that implements it in Chapter 3.

o Multiple Path Analysis. Second, we develop a system called KUuDzU that automatically
explores the execution space of client-side JavaScript code. This technique employed in

CHAPTER 2. BACKGROUND & OVERVIEW 12

Kubpzu takes as input an initial test case and synthesizes a larger harness of test cases
that explore the program execution space in more depth. To explore the application’s
behavior, our techniques utilizes dynamic symbolic execution on JavaScript code with
deeper modeling of string operations. In addition, it combines symbolic execution with
automatic GUI exploration to explore the space of input events to the application. We
present details of our technique and Kubpzu in Chapter 4.

2.3 Techniques for Preventing Script Injection
Vulnerabilities

Can we build web applications that are free from scripting vulnerabilities? Towards this
goal, a majority of prior work on preventing scripting vulnerabilities has focused on fortify-
ing the predominant defense deployed today called sanitization. Sanitization is the process
of applying encoding or filtering primitives, called sanitization primitives or sanitizers, to
render dangerous constructs in untrusted data inert [8, 129, 110, 125]. There are two well-
established problems known about the practice of manually applying sanitizers which make
it is notoriously prone to manual errors [8, 75, 62]. First, developers often implement saniti-
zation primitives incorrectly [51, 8]. Second, developers often fail to apply any sanitization to
untrusted content before embedding it inline in code that is parsed by the browser. We term
this second problem as that of missing sanitization on application code paths. A significant
body of prior research has focused on developing analysis for detecting program paths with
missing sanitization [75, 62, 72, 132, 16, 85, 75, 121].

In this thesis, we identify new problems with sanitization based defenses. Specifically,
we explain the subtleties of getting sanitization right using an abstract model of the web
browser in Chapter 5. Our model is more precise than those used in previous works and
it explains the issues with sanitization beyond those of just identifying program paths with
missing sanitization. We also empirically analyze large-scale applications and emerging web
application frameworks. We report on how often these subtle errors arise in our studied
applications and application frameworks. In chapter 6, we propose a type based approach
to automatically place sanitizers in application code, which is a principled step towards
preventing the classes of errors we describing from arising. Our technique does not require
any annotations to existing code and is designed to be bolted onto existing web frameworks
such as Google Closure [44].

Prior and concurrent work has also investigated techniques to isolate trusted code from
untrusted data in general, which relate to scripting defenses. These can be divided into three
broad categories: server-side techniques [72, 110, 16], purely browser-based techniques [15,
79, 56] and client-server collaborative defenses [61, 49, 107]. We discuss the conceptual ben-
efits and limitations of browser-only and server-only techniques in Section 7.7 of Chapter 7.
We propose a conceptual framework for achieving a fundamental integrity property (called
document structure integrity) in web applications via browser-server collaboration. This

CHAPTER 2. BACKGROUND & OVERVIEW 13

techniques sidesteps the limitations of client- and server-only defenses. We combine and
extend ideas from prior work on isolating inline untrusted content and confining it with
security policies [61, 107, 105, 73]. We also build a proof-of-concept implementation that
demonstrates the feasibility of such defense in practice.

14

Chapter 3

Finding Vulnerabilities using
Taint-Enhanced Blackbox Fuzzing

In this chapter, we propose a single-path analysis technique which aims to generate an exploit
input that traverses a given path in the program. Specifically, the input to a single-path
analysis is an initial benign input that executes some path in the program. The analysis
aims to find an exploit instance by systematically searching the equivalence class of inputs
that forces program execution down the same path as the given benign input. We present
this technique and our FLAX tool that implements it in this chapter.

We propose a dynamic analysis approach which we call taint-enhanced blackbox fuzzing
for this problem. Our technique is a hybrid approach that combines the features of dynamic
taint analysis [86, 132, 98, 118, 117] with those of automated random fuzzing [82]. It remedies
the limitations of purely dynamic taint analysis, by using random fuzz testing to generate test
cases that concretely demonstrate the presence of a client-side script injection vulnerability.
This simple mechanism eliminates false alarms that would result from a purely taint-based
tool.

The number of test cases generated by vanilla blackbox fuzzing increases combinatorially
with the size of the input. In our hybrid approach, we use character-level precise dynamic
taint information to prune the input search space significantly. Dynamic taint information
extracts knowledge of the type of critical sink operation involved in the vulnerability, thereby
making the subsequent blackbox fuzzing specialized for each sink type (or in other words,
sink-aware). Taint-enhanced blackbox fuzzing scales because the results of dynamic taint
analysis are used to create independent abstractions of the original application which are
small and take fewer inputs, and can be tested efficiently with sink-aware fuzzing. From our
experiments (Section 3.4), we see that the values to be fuzzed are on an average 55% smaller
than the size of the original input. This reduction is achieved using character-level precise
dynamic taint tracking.

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED

BLACKBOX FUZZING 15
e |
| 4 |As, |
Test | |
Harness = As
Fainting 7 |7'S; \ Sink-aware | | vl bilit
\ fuzzing |——= Vulnerabiiity
L - N /
App — As, | Report
\
| N\ As, |
|

Figure 3.1: Approach Overview

3.1 Approach and Architectural Overview

Figure 3.1 gives a high-level view of our approach — the boxed, shaded part represents the
primary technical contribution of this chapter. The input to our analysis is an initial benign
input and the target application itself. The technique explores the equivalence class of inputs
that execute the same program path as the initial benign input and finds a flow of untrusted
data into a critical sink without sufficient validation.

Approach. In the first step, we execute the application with the initial input Z and perform
character-level dynamic taint analysis. Dynamic taint analysis identifies all uses of untrusted
data in critical sinks'. This analysis identifies two pieces of information about each poten-
tially dangerous data flow: the type of critical sink, and, the fractional part of the input
that influences the data used in the critical sink. Specifically, we extract the range of input
characters Zg on which data arguments of a sink operation S are directly dependent. All
statements that operate on data that is directly dependent on Zg, including path conditions
involving conditional branches, are extracted into an executable slice of the original appli-
cation which we term as an acceptor slice (denoted as Ag). Ag is termed so because it is a
stand-alone program that accepts inputs in the equivalence class of Z, in the sense that they
execute the same program path as Z up to the sink point §. As the second step, we fuzz
each Ag to find an input that exploits a bug. Our fuzzing is sink-aware because it uses the
details of the sink node exposed by the taint analysis step. Fuzz testing on Ag semantically
simulates fuzzing on the original application program. Using an acceptor slice to link the
two high-level steps has two advantages:

e Program size reduction. Ag can be executed as a program on its own, but is significantly
smaller in size than the original application. From our experiments in Section 4.6,
Ag is typically smaller than the executed instruction sequence by a factor of 1000.
Thus, fuzzing on a concise acceptor slice instead of the original complex application

IThe definition of sinks in given in section 2.1

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 16

is a practical improvement. It avoids application restart, decouples the two high-level
steps, and allows testing of multiple sinks to proceed in parallel.

o [uzzing search space reduction. Sink-aware fuzzing focuses only on Zg for each Ag,
rather than the entire input. Additionally, our sink-aware fuzzer has custom rules for
each type of critical sink because each sink results in different kinds of attacks and
requires a different attack vector. As an example, it distinguishes eval sinks (which
allow injection of JavaScript code) from DOM sinks (which allow HTML injection).
Our sink-aware fuzzing employs input mutation strategies that are based on grammars
such as the HTML syntax, JavaScript syntax, or URL syntax grammars.

3.2 Technical Challenges and Design Points

One of our contributions is to design a framework that simplifies JavaScript analysis and
explicitly models reflected flows and path constraints. We explain each of these design points
in detail below.

Modeling Path Constraints. The example defined in Figure 2.3 shows how validation
checks manifest as conditional checks, affecting the choice of execution path in the program.
Saner, an example of previous work that precisely analyzes server-side code, has consid-
ered only input-transformation functions as sanitization operations in its dynamic analysis,
thereby ignoring branch conditions [8]. Our techniques improve on Saner’s by explicitly mod-
elling path constraints, thereby enabling FLAX to capture the validation checks as branch
conditions, as shown in the running example in the Ag.

Simplifying JavaScript. There are two key problems in designing analyses for JavaScript
code.

e Rich data types and complex operations. JavaScript supports complex data types such
as string and array, with a variety of native operations on them. The ECMA-262
specification defines over 50 operations on string and array data types alone [34].
JavaScript analysis becomes complex because there are several syntactic constructs
that can perform the same semantic operations. As a simple indicative example, there
are several ways to split a string on a given separator (such as by using String.split,
using String.match, and using String.indexOf with String.substring).

In our approach, we canonicalize JavaScript operations and data references into a
simplified intermediate form amenable for analysis, which we call JASIL (JAvascript
Simplified Instruction Language). JASIL has a simpler type system and a smaller set
of instructions which are sufficient to faithfully express the semantics of higher-level
operations relevant to the applications we study. As a result, JASIL serves as a robust
platform for simplified implementation of dynamic taint analysis and other analyses.

e Aliasing. There are numerous ways in which two different syntactic expressions can
refer to the same object at runtime. This arises because of the dynamic features

CHAPTER 3. FINDING VULNERABILITIES USING TAINT-ENHANCED
BLACKBOX FUZZING 17

of JavaScript, such as reflection, prototype-based inheritance, complex scoping rules,
function overloading, as well as due to numerous exposed interfaces to access DOM
elements. Reasoning about such a diverse set of syntactic variations is difficult. Previ-
ous static analysis techniques applied to this problem area required complex points-to
analyses [47, 26]. In our dynamic analysis, we don’t try to solve this static alias analysis
problem; instead we record the concrete operand accessed during the execution of the
program under the given benign input.

Avoiding alias analysis is an intentional choice in designing FLAX. FLAX dynamically
translates JavaScript operations to JASIL, and by design each operand (an object,
variable or data element) in JASIL is identified by its allocated storage address. With
appropriate instrumentation of the JavaScript interpreter, we identify element accesses
regardless of the syntactic complexity of the access pattern used in the references. For
instance, details of whether a value lookup is executed by traversing the scope chain
or the prototype chain is not recorded—only the storage memory address of the value
is captured in JASIL.

Dealing with reflected flows. In this chapter, we consider data flows of two kinds: direct
and reflected. A direct flow is one where there is a direct data dependency between a source
operation and a critical sink operation in script code. Dynamic taint analysis identifies such
flows as potentially dangerous. A reflected flow occurs when data is sent by the JavaScript
application to a backend server for processing and the returned results are used in further
computation on the client. Our dynamic taint analysis identifies untrusted data propagation
across a reflected flow using a common-substring based content matching algorithm? [102].
During a reflected flow, data could be transformed on the server. The exact data transfor-
mation/sanitization on the server is hidden from the client-side analysis. To address this,
we compositionally test the client-side code in two steps. First, we test the client-side code
independently of the server-side code by generating candidate inp