
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Robotic Warehouses for E-Commerce: Evaluation, Operation, and Design

Permalink
https://escholarship.org/uc/item/89n1p0fb

Author
Huang, Yiduo

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89n1p0fb
https://escholarship.org
http://www.cdlib.org/

Robotic Warehouses for E-Commerce: Evaluation, Operation, and Design

By

Yiduo Huang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Civil and Environmental Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Zuo-Jun Shen, Chair
Professor Michael Cassidy

Assistant Professor Zeyu Zheng

Spring 2024

Robotic Warehouses for E-Commerce: Evaluation, Operation, and Design

Copyright 2024
by

Yiduo Huang

1

Abstract

Robotic Warehouses for E-Commerce: Evaluation, Operation, and Design

by

Yiduo Huang

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Zuo-Jun Shen, Chair

As e-commerce expands, warehouse systems face new challenges, leading to the development
of robotic warehouses. These warehouses typically employ part-to-picker systems, where
mobile robots and stationary human workers collaborate. To improve the performance of
these systems, we proposed new performance evaluation models and operational strategies.
We also proposed innovative designs aimed at fully robotic warehouses in the foreseeable
future.

Performance prediction and evaluation are crucial in designing and operating robotic ware-
houses, especially given the highly stochastic and complex nature of robot traffic congestion.
We introduced a new evaluation model that accounts for robot congestion by initially modeling
the system as a closed queueing network (CQN) with blocking. Simulation observations led
us to propose a congestion mechanism and simplify the system to a CQN without blocking.
Demonstrating the asymptotic Poisson properties of robot arrivals enabled us to further
approximate the simplified CQN as a transportation network. This approach allowed us
to estimate congestion delays as closed-form functions of traffic flow. We integrated these
estimated delays with the CQN model and developed an iterative algorithm to estimate the
system throughput. Our numerical experiments confirmed that this method could accurately
predict throughput under transportation congestion when the system was stable.

Effective real-time robotic warehouse operation requires strategic decisions regarding work-
station assignments and collision-free robot path planning. To improve system efficiency,
we developed an integrated method for task assignment and path planning, implemented
in both offline and online phases. In the offline phase, based on our evaluation model, we
estimated an approximated optimal steady-state traffic assignment, while the online phase
guided robots according to offline traffic patterns using a decentralized and computation-
ally efficient algorithm. The simulation results indicated that our method achieved 5-10%
higher throughput and required much less computational time compared to current industrial
implementations.

2

The advent of robotic arms has made fully robotic warehouses feasible. We proposed a
new layout design that positions workstations, called internal workstations, equipped with
robotic arms within the storage area to minimize transportation costs. We introduced a
batching pool mechanism using special pods to collect and transport assembled totes in
batches from internal to external workstations. This system was evaluated using an open
queueing network (OQN), which led to a closed-form queue delay approximation. We found
an upper bound for the relative error in the sojourn time estimation using this approximation
and showed that our approximation is accurate. Using this approximation, we developed a
location-allocation-queuing model, which can be transformed into mixed integer second-order
conic programming (MISOCP) for efficient solving, to find the optimal workstation locations
and pod-to-workstation allocation plans. This model demonstrated a significant reduction in
transportation costs and an improvement in the robot machine time of 10-20% for large or
deep systems in our simulations.

i

To my mother and father.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Background . 1
1.2 System Description . 2
1.3 Motivation and Objectives . 6
1.4 Structure of the Dissertation . 12

2 Literature Review 13
2.1 A Review on Robotic Warehouse Evaluation 13
2.2 A Review on Robotic Warehouse Operation 14
2.3 A Review on Robotic Warehouse Design . 16

3 Evaluation of Robotic Warehouses 20
3.1 Introduction . 20
3.2 System Description and Assumptions . 20
3.3 Approximation of the Steady-State . 21
3.4 Throughput Estimation . 32
3.5 Numerical Results . 35
3.6 Summary . 43

4 Operation of Robotic Warehouses 44
4.1 Introduction . 44
4.2 The Offline Algorithm: Finding an Approximated Optimal Network Flow . . 45
4.3 The Offline-Online Algorithm . 51
4.4 Discussions . 53
4.5 Numerical Results . 55
4.6 Summary . 60

iii

5 New Design for Robotic Warehouses 62
5.1 Introduction . 62
5.2 System Design . 62
5.3 Model . 65
5.4 Solution Method . 70
5.5 Numerical Results . 73
5.6 Summary . 80

6 Conclusions 81

Bibliography 83

A The Asymptotic Poisson Property 90
A.1 Proof of Theorem 1 . 90
A.2 Simulation Study for Conjecture 1 . 90

B Proof of Theorems for Warehouse Design 94
B.1 Proof of Proposition 3 . 94
B.2 Proof of Theorem 2 . 95

iv

List of Figures

1.1 RSS robot and drop-off point . 3
1.2 Drop-off point [64] . 3
1.3 RSS workstation [18] . 4
1.4 RSS . 5
1.5 RMFS robot with a pod [25] . 6
1.6 RMFS grid-cell . 7
1.7 RMFS layout . 8

3.1 System . 22
3.2 Closed queuing network models . 23
3.3 Approximation of the closed queuing system . 25
3.4 Open queuing network models . 30
3.5 A buffer cell example . 31
3.6 CQN embedding the traffic delay . 33
3.7 Simulation setting: congestion mechanism . 36
3.8 Congestion in a grid-based AMR system . 37
3.9 Flow on different cells every 1000 timesteps . 38
3.10 Accuracy of the objective function . 38
3.11 Different layout used in throughput validation experiments 40
3.12 Throughput validation results . 41

4.1 RSS model . 46
4.2 Cell node decomposition . 48
4.3 Flow chart of the offline-online algorithm . 52
4.4 Large system map . 55
4.5 Accuracy of the objective function . 56
4.6 Throughput for different settings . 57

5.1 KIVA-like RMFS systems . 63
5.2 New RMFS design . 64
5.3 OQN for fully robotic RMFS . 66
5.4 Validate the error bound . 74
5.5 Layout of scenario 1 . 76

v

5.6 Layout of scenario 6 . 77
5.7 Workstations location with respect to varying E[S2] 78

A.1 CV of inter-arrival times vs E[G] where G is normally distributed with different
CVX . 91

A.2 CV of inter-arrival times vs E[G] where G is uniformly distributed with different
CVX . 91

A.3 CV of inter-arrival times vs E[G] where G is normally distributed with different ρ 92
A.4 CV of inter-arrival times vs E[G] where G is uniformly distributed with different ρ 92

vi

List of Tables

3.1 Layout of throughput estimation validation experiment 41

4.1 Error, gap and improvement bound . 56
4.2 Performance improvement . 58
4.3 Computation time per simulation step in second 59

5.1 Scenarios of numerical experiments . 75
5.2 Cost comparison between our new design and KIVA system 76
5.3 Operational cost comparison with respect to different demand densities 79

A.1 Simultion estimated CV for different G distributions with ρ = 0.9 93

vii

Acknowledgments

I would also like to extend my deepest gratitude to Professor Zuo-Jun Shen for his invaluable
guidance and support throughout my research and the journey of completing my Ph.D.
dissertation. His expertise and insightful feedback have been pivotal in shaping my academic
endeavor. I am truly grateful for his mentorship and the opportunity to learn from such an
esteemed academic figure. Thank you, Professor Shen.

I wish to thank Professor Bipan Zou at Zhongnan University of Economics and Law, who
helped me with the numerical experiments in the design problems and improved my writing
in this chapter. I also wish to thank Xiguang Wei and Geek Plus International Co., Ltd.
Their industrial experience and data support are essential for completing this work. Thanks
to committee members Professor Michael Cassidy and Assistant Professor Zeyu Zheng for
their guidance and insight.

1

Chapter 1

Introduction

1.1 Background

A warehouse is a large building where goods are stored before they are distributed for
sale or further processing. As a crucial node in the supply chain, a warehouse provides a
central location for receiving, holding, and dispatching products. Warehouses are used by
manufacturers, importers, exporters, wholesalers, transport companies, customs, and other
entities involved in the movement of goods.

E-commerce, or electronic commerce, involves buying and selling goods or services using
the Internet and transferring money and data to execute these transactions. The business-
to-consumer (B2C) segment of e-commerce has seen a rapid increase in sales volume [53]).
In 2023, e-commerce sales were estimated at $ 1118.7 billion, accounting for 15.4% of total
retail sales [56].

E-commerce heavily relies on a vast network of warehouses, especially fulfillment and
sorting facilities. Platform-owned sellers on Amazon use fulfillment centers to manage their
extensive inventory and ensure efficient product delivery to customers. An Amazon fulfillment
center is a large warehouse facility where Amazon stores, picks, packs, and ships products
sold on its platform. Their products are stored in these centers until an order is placed. The
ordered item is then located, retrieved, packed, and shipped to the customer. In addition
to platform operations, individual third-party sellers, which make up more than 60% of
total sales on Amazon [52], often rely on postal and express companies like FedEx [26] and
their sorting facilities. Unlike a fulfillment center, a sorting center does not keep inventory,
but serves as a facility where packages are received, sorted, and dispatched to their final
destinations.

The growth of e-commerce platforms such as Amazon and JD.com has introduced several
challenges to traditional order fulfillment and sorting in warehouses, necessitating significant
adaptations and innovations in warehouse systems. First, these platforms have increased order
processing demands, dealing with various products, often in smaller quantities. Warehouses
now must handle a broader range of items and process more individual orders (an average

CHAPTER 1. INTRODUCTION 2

of 1.6 lines per order [13]) compared to the bulk shipments typical of traditional retail.
Second, with the rise of same-day and next-day delivery options, e-commerce has created
an expectation of rapid order fulfillment. This pressures warehouses to pick, sort, and ship
products much faster. Third, e-commerce often experiences significant demand fluctuations,
especially during holiday seasons or special sales events such as Black Friday, requiring
warehouses to quickly and cost-efficiently scale up throughput capacity to handle these peaks.

Traditional warehouse systems struggle to meet the needs of today’s online shopping
businesses. Typically, workers get a list of items from a depot and then collect them on different
shelves. This method is particularly inefficient for small orders, as workers spend considerable
time walking between the depot and the shelves, which does not directly contribute to order
completion. This inefficiency can lead to fewer orders being processed unless changes are
made, such as hiring more workers or grouping several orders, making it challenging to meet
the fast delivery expectations of online shopping.

To address these challenges in order fulfillment, Amazon developed a robotic mobile fulfill-
ment system (RMFS) called KIVA in 2012 [6]. This technology fundamentally transformed
the operational dynamics of Amazon fulfillment centers. Unlike traditional warehouses where
human workers travel throughout the warehouse to collect items, the KIVA robot system
uses a fleet of mobile robots that bring shelves or “pods” containing necessary items directly
to workers stationed at packing stations. This goods-to-person operation mode drastically
reduces the time and physical strain involved in retrieving goods, thus increasing efficiency
and productivity in order fulfillment. Unlike traditional automated warehouses that use
complex conveyor belts requiring significant investments, the KIVA system is designed to
be scalable, allowing Amazon to handle increasing package volumes, especially during peak
periods like the holiday season, by simply adding more robots.

Inspired by the success of KIVA, mobile robots have also been implemented in sorting
operations, called Robotic Sorting Systems (RSS) [76]. In these systems, robots navigate
a grid-based roadmap, transporting parcels between loading stations and designated drop-
off points. Each robot is loaded with a single parcel at one of the various workstations
and transports it to a drop-off point that matches the parcel’s delivery destination. Upon
delivery, the robot deposits the parcel into a receptacle connected to the drop-off point
and then returns to the queue for the next task. Notable implementations of RSS include
Tompkins Robotics’ tSort [55], Amazon’s Xanthus and Pegasus robots [7], and Deppon
Express [64]. To better understand the functioning of these systems, interested readers may
view video demonstrations at https://www.youtube.com/watch?v=4MH7LSLK8Dk or https:
//www.youtube.com/watch?v=EbLDXsEPHS8.

1.2 System Description

The dissertation analyzes two types of robotic warehouses for e-commerce: RMFS and RSS.
This section introduces how these systems work.

CHAPTER 1. INTRODUCTION 3

RSS

(a) Drop-off point [64] (b) RSS robot [64]

Figure 1.1: RSS robot and drop-off point

Figure 1.2: Drop-off point [64]

RSSs are sorting systems where robots transport parcels from loading workstations to
drop-off points to sort parcels. The layout of the RSS studied in this paper is depicted in
Figure 1.4. This system is designed to handle parcels labeled for various delivery destinations
and transport them to corresponding drop-off points using mobile robots. Amazon [7] and
Deppon Express [64] use systems with similar layouts. The robot moving area comprises
non-overlapping square cells, allowing for two basic movements: transitioning from one cell
to another and making a 90-degree turn. Moving between cells is assumed to take T1 and
turning takes T2, with T2 > T1. In RSSs, as illustrated in Figure 1.1b, robots can carry or
release one parcel at a time using a tilt tray.

Some cells are designated as drop-off points, each featuring a hole leading to a roll
container on the lower floor, as shown in Figure 1.2. Each drop-off point, represented by solid
black or red squares in Figure 1.4, corresponds to a specific delivery destination. Robots can
approach the adjacent cell of a drop-off point to deliver a parcel using the tilt tray, but are
prohibited from entering the drop-off cells. The time to drop a parcel is denoted as Tdrop.

Designated workstation areas are represented by blue dashed rectangles in Figure 1.4,
where human workers load empty robots. The parcel loading time is defined as Tload. Each

CHAPTER 1. INTRODUCTION 4

Figure 1.3: RSS workstation [18]

workstation includes an entrance, an exit, and a buffer area, as shown in Figure 1.3. Robots
follow the yellow arrow depicted to enter the workstation, wait in the queue to load, and exit
after being loaded by a worker.

In addition to the cell grid, a sorter system integrates conveyor belts along the perimeter
of the facility, connecting the workstations to the parcel entrance, as detailed in Figure 1.4.
On arrival, the new packages are transported by the sorter system to an assigned workstation.

The movement trajectory of a robot is outlined in four steps (indicated by dashed arrows
in Figure 1.4):

1. loading at a workstation;

2. transporting the parcel to the designated drop-off point;

3. unloading the parcel at the adjacent cell of the drop-off point;

4. returning to a workstation to await the next parcel.

Cell traffic is unidirectional; for instance, if robots are allowed to move from south to
north on the cell i, then movements from north to south on the same cell are prohibited,
as noted in the ”allowed direction” in Figure 1.4. This unidirectional design, common in
real-world RSSs and described in [7, 55, 64], helps prevent robot gridlocks.

RMFS

An RMFS is a part-to-worker fulfillment system in which robots move pods with items from
the storage area to picking workstations, and human workers at workstations pick ordered
items and assemble totes to be packed and shipped. The layout of the RMFS studied in this
paper is illustrated in Figures 1.6 and 1.7. Similar to RSS, the robot moving area comprises
non-overlapping square cells, as depicted in Figure 1.6. The workstations are strategically
located along the periphery of the facility and the pods are stored in designated storage

CHAPTER 1. INTRODUCTION 5

Figure 1.4: RSS

areas. Upon receiving a new order, robots transport pods containing all requested items to a
workstation. A human worker picks the items from the pods and places them into a tote.
The robots in the RMFS move the pod by lifting the pod, as shown in Figure 1.5.

The pods are organized into blocks within the storage area, each occupying one cell and
allowing enough clearance for the unloaded robots to pass underneath. To load a pod, a
robot approaches it from one side, locks onto it, lifts it using its loading mechanism, and
then transports it to a workstation, as illustrated on the right part of Figure 1.7. The loaded
robots are restricted to aisles between the pod blocks as they cannot travel directly under
other pods.

At workstations, robots with pods queue according to the first-come, first-served (FCFS)
principle. Each human worker at the workstation retrieves items from the nearest loaded
pod corresponding to a fulfillment order and places these items into a tote. These assembled
totes are then transferred to conveyors for rapid shipment to other facilities for packing and
consolidation, as depicted in Figure 1.7. The placement of workstations on the periphery of

CHAPTER 1. INTRODUCTION 6

Figure 1.5: RMFS robot with a pod [25]

the facility facilitates easy access to these conveyors.
The movement trajectory of a robot in the RMFS can be summarized in three steps

(indicated by arrows in Figure 1.7):

1. moving to a pod;

2. lifting the pod and transporting it to a picker at a workstation;

3. waiting at the workstation for item retrieval and then returning the pod to the storage
area.

1.3 Motivation and Objectives

The transition from conventional to robotic sorting and fulfillment systems presents several
distinct advantages. First, robotic systems provide greater layout and operational flexibility.
Workstations, drop-off points, and storage pods can be strategically distributed across the
warehouse, eliminating the need for fixed conveyor systems. This modularity enables rapid
adaptability to fluctuating demand patterns. Second, robotic systems produce substantial
cost savings, with capital investments that are 40 to 50 percent lower than those required for
traditional tilt tray or cross belt systems [55]. In addition, these systems significantly reduce
the need for manual labor, offering further cost savings.

E-commerce companies strive to maximize efficiency in cost, throughput, space utilization,
and service level within their robotic warehouses. Challenges arise on two distinct levels:

CHAPTER 1. INTRODUCTION 7

Figure 1.6: RMFS grid-cell

strategic and operational. At the strategic level, decisions related to system design, such as
determining optimal locations for workstations, storage areas, and drop-off points. These
decisions crucially influence the long-term performance of the system. At the operational
level, the focus shifts to task assignment, route planning, and scheduling for robots and
human workers, which substantially affects system efficiency.

Performance evaluation plays a crucial role in robotic warehouse design and operation. It
involves analyzing the warehouse’s efficiency and provides insights into the effectiveness of
a particular design or operational strategy relative to established benchmarks, identifying
areas for improvement. Furthermore, an accurate performance evaluation framework enables
designers to efficiently assess various design options, facilitating the refinement of the design
space at the preliminary stages of the design process. Mathematically, a performance evaluator
is an objective function in system design and operational problems.

Consequently, constructing and managing a proficient robotic warehouse necessitates:

• A fast and accurate evaluation model: Developing an evaluation model capable of
forecasting the performance of the robotic warehouse system.

• Efficient operation strategy: Formulating operational strategies aimed at improving
robot efficiency.

• New designs: Innovating system designs and the corresponding design algorithms.

CHAPTER 1. INTRODUCTION 8

Figure 1.7: RMFS layout

Evaluation

Despite the widespread deployment of robot-based systems in recent years, a theoretical
evaluation model for general congestion remains elusive. Typically, when order demand
increases, managers can respond by enlarging the robot fleet and adding more workstations.
However, an expanded fleet size could exacerbate congestion and delays, particularly when
the system approaches saturation. This underscores the need for a precise evaluation model
that considers the layout and performance metrics of each workstation and robot.

Numerical simulations are commonly utilized to assess system performance in industrial
applications for robotic warehouses. However, the extensive computation time required for
these simulations presents a challenge when used as an objective function in operational
and design optimization. Therefore, there is a pressing need for a theoretical model that
can estimate the robot machine time and system throughput. A closed-form theoretical
evaluation model would streamline design optimization and provide crucial insights into the
system’s operational dynamics.

A significant challenge in modeling flexible robotic warehouses, especially Robotic Sorting
Systems (RSS), is accounting for congestion and blocking effects. Robotic warehouses
typically feature a grid-based roadmap with hundreds of cells, where vehicle movements are

CHAPTER 1. INTRODUCTION 9

not restricted to specific aisles or corridors. Congestion occurs when multiple robots compete
for the same cell along their routes. Unlike automated guided vehicle (AGV) container
terminals, each cell in an RSS can act as an intersection and is a potential conflict point,
as queues can develop from any direction within the system. Consequently, a mid-sized
system could have hundreds or even thousands of potential conflict points, complicating
the resolution of congestion issues. Due to this complexity, most researchers have omitted
congestion from their theoretical system evaluation models.

This dissertation aims to provide a theoretical performance evaluation for robotic ware-
houses, considering traffic congestion and blocking effects without relying on time-consuming
simulations. This model will also serve as a foundation for addressing operational and design
challenges in the field. Given the system layout and robot parameters, we will build a model
to estimate the robot congestion delay and the system throughput. We will model the system
as closed queuing network (CQN) with blocking and then approximate it using a traffic flow
network. Congestion can be estimated as the link delay function. We will develop an iterative
algorithm that combines CQN and link delay to estimate throughput.

Operation

Controllers must address two key operational challenges in an RSS: assignment and path-
planning. The assignment involves two subproblems: (1) parcel-to-workstation assignment and
(2) robot-to-workstation assignment, commonly referred to as dispatching in the literature [27].
Upon the arrival of a new parcel or order, it must be assigned to an appropriate workstation;
similarly, a robot returning from a drop-off point/ pod storage area requires reassignment
to a workstation. Additionally, the controller must plan a collision-free path for the robot,
consisting of a sequence of grid cells from its current location to its intended destination.

Multi-robot path-finding is a well-explored area with two primary types of algorithms:
centralized and decentralized. In a centralized system, a controller monitors all robots
in real time and assigns spatial-temporal paths to each, ideally preventing any stops if
robot speeds are precisely controlled. However, implementing a centralized algorithm in
large systems is impractical for two reasons. First, finding an optimal solution for general
multi-robot path planning is NP-hard [31], and many heuristics suffer from the curse of
dimensionality. Second, no robot controller is flawless, and control errors tend to accumulate,
which means precalculated optimal plans can easily be disrupted. Therefore, maintaining a
high communication frequency among all robots is essential, a task that becomes unfeasible
in large systems, even with advanced communication technologies.

In contrast, a decentralized controller requires a careful design to prevent increased
congestion. Allowing robots to individually decide their paths without cooperation may lead
to competition for bottleneck areas, resulting in gridlocks. Robots should cooperate, not
compete, to improve performance. In addition, cooperation between robots and other system
components is crucial. Task assignments that disregard path planning can lead to extended
travel distances and weaving traffic patterns between different parts of the system.

CHAPTER 1. INTRODUCTION 10

In this study, our aim is to develop a method that simultaneously plans and assigns
workstations for robots and parcels in a robotic warehouse. The pathfinding algorithm
must be fast, decentralized, and capable of handling a system with hundreds of robots.
Path-planning and task-assignment decisions must be made online and must cooperate with
each other and all other parts of the system. Using the total transportation cost from our
evaluaiton model as the objective, we can minimize the total cost by finding the optimal
steady-state traffic flow assignment offline. Given the optimal flow assignment, we can plan
the paths and assign tasks to robots according to the path-flow split ratio in online operation.

Design

Integrating new technologies into established systems can significantly improve performance.
For instance, incorporating mobile robots into fulfillment systems has led to innovative
designs like Amazon’s KIVA, which has transformed the landscape of e-commerce warehouses.
Current systems use human workers to pick up or load items because robotic arms, which
can accurately identify the desired items and pick them, are too expensive for now. With the
advent of advanced and cheaper robotic arms, it is now feasible to envision robotic warehouses
operating entirely without human labor, using cheaper and more advanced robotic arms,
prompting further innovations in system design.

In KIVA-like systems, workstations are traditionally placed in the periphery to facilitate
access to conveyors and maintain separation between human employees and robots. With the
potential replacement of human labor by robotic arms, there is an opportunity to reposition
workstations into the warehouse’s interior, significantly reducing travel distances. This result
is supported by simulations in [62]. However, internal workstations are isolated within the
storage area and lack access to system input/output conveyors, necessitating a new design to
realize a fully robotic warehouse.

This shift to a new design with interior workstations introduces challenges, such as
determining the optimal placement for these workstations and assessing the possible per-
formance improvement through this new layout. Taking into account the queuing delay in
transportation time, this dissertation aims to develop a location-allocation-queuing model
that identifies optimal workstation locations in a fully automated robotic warehouse and
compares the results with those of KIVA-like systems.

In this study, our objective is to provide a new design for fully automated robotic
warehouses to reduce robot transportation costs and to find the optimal location and type
of workstations inside the warehouse based on our location-allocation-queueing model. Our
idea is to put robotic arm-equipped workstations inside storage areas (interal workstations)
to reduce the transportation cost. We will use special pods as pools for the assembled
totes at the internal workstation. Once a special pod is filled, it will be transported to one
of the external workstations to be shipped. To find the optimal locations of the internal
and external workstations, we model the system as an open-queueing network and build a
mixed-integer programming (MIP) model. The MIP can be approximated as a second-order

CHAPTER 1. INTRODUCTION 11

conic programming (SOCP) and solved efficiently. For large-scale problems, we will develop
Lagrangian Relaxation procedures with SOCP subproblems.

Summary of Objectives

In summary, the primary objectives of this dissertation were:

1. To develop a theoretical performance evaluation model for robotic warehouses that
accounts for traffic congestion and blocking effects. The input is the system layout and
robot parameters, and the output is the estimated traffic delay and system throughput.

2. To develop an integrated path-finding and task-assignment strategy for robotic ware-
houses, optimizing both system performance and computational efficiency. The input is
the system layout. We will first run the offline algorithm to find the optimal steady-state
traffic assignment. Then we can operate the system while assigning paths and tasks to
robots online.

3. To create a new design for robotic warehouses using advanced technologies coupled with
an optimization model to identify the optimal design in this innovative setting. The
new design will deploy internal workstations to pick up items and assemble totes inside
storage areas. The assembled totes are stored in special pods and will be sent to external
workstations once the speical pods are full. The assembled totes will be batched at
internal workstations, so the total transportation cost can be greatly reduced. For the
new design and the KIVA design, we will also develop a location-allocation-queueing
model to find the optimal workstation location design. The input is the system map,
the candidate locations of the workstation, the budget of the workstation, and the robot
parameters. The output can find the optimal workstation locations that can minimize
the total transportation cost.

Additionally, the theoretical contributions of this research to the grid-based robot trans-
portation system can be summarized as follows:

• A closed-form estimator for robot travel and waiting times for robotic warehouses,
considering the system layout, fleet parameters, and traffic flow distribution.

• Proof of the asymptotic Poisson properties of interarrival times in light traffic cells
within a grid-based mobile robot warehouse, with a numerical demonstration of a similar
result for heavy-traffic cells, albeit with a non-strict proof.

• Application of a traffic flow network to approximate a large closed queueing network
with complex blocking scenarios.

• Development of an approximation method for location problems that incorporate
queueing congestion, complete with a proven error bound.

CHAPTER 1. INTRODUCTION 12

• A reformulation of the location-allocation-queue problem using second-order conic
programming.

1.4 Structure of the Dissertation

This dissertation is organized as follows: In Chapter 2, we reviewed the related literature
on the evaluation, operation, and design of robotic warehouses. Chapter 3 introduced our
evaluation model for robotic warehouses. Chapter 4 presented our integrated assignment
and path-finding operation strategy. Chapter 5 described our new warehouse design and the
solution to the location problem within this new design. Chapter 6 summarized the findings.

13

Chapter 2

Literature Review

2.1 A Review on Robotic Warehouse Evaluation

Robotic warehouses, including Robotic Mobile Fulfillment Systems (RMFS) and Robotic
Sorting Systems (RSS), have been extensively studied in recent years. Boysen et al. [12]
and Azadeh et al. [9] have conducted notable reviews on robotized warehouses and similar
systems.

Before the advent of RMFS and RSS, most robotic warehouses operated as autonomous
vehicle storage and retrieval systems (AVS/RS). In these systems, robots functioned as
vehicles within a traditional Automated Storage and Retrieval System (AS/RS). AVS/RS
can be segmented into different tiers, with autonomous vehicles moving within one tier or
transitioning to another via a lift. Compared to RMFS, AVS/RS lacks flexibility, as vehicle
movement is limited to physical aisles. Theoretical evaluation methods for AVS/RS were
based mainly on queueing networks, including open queueing networks (OQN) [30] and
semi-open networks (SOQN) [24] [15]. The straightforward layout of the AVS/RS facilities,
with rule-based routing assumptions, allowed each aisle/rack section to be modeled as a
server with finite capacity. The researchers evaluated the blocking effect using capacitated
queueing networks [9][45].

RMFS features a more flexible parts-to-picker system, where a robot retrieves a pod from
the storage area and transports it to a picker workstation. After the picking process, the robot
returns the pod to the storage area. Theoretical evaluation models for RMFS were typically
based on SOQN or closed queueing network (CQN). SOQN for RMFS was initially developed
by Lamballais, Roy, and De Koster [35]. In their model, a robot was synchronized with
the order and picked up the order at a workstation. The transportation delay was modeled
as an infinite capacity delay node, where travel times were the shortest path travel times
without blocking. This SOQN model was extended to evaluate various operating policies,
including inventory allocation [36], assignment rules [75], battery changing [74], and zone
assignment strategies [47]. In addition to queueing network models, simulation-based studies
such as those of Merschformann and Lamballais et al. [40] also provided design insights for

CHAPTER 2. LITERATURE REVIEW 14

RMFS. However, most theoretical evaluation models of RMFS overlooked the blocking effect
and transportation congestion due to the multitude of potential conflict points, making it
challenging to represent RMFS with a blocking queueing network accurately.

RSS shares a structure similar to that of RMFS. Instead of retrieving items from storage
pods, robots in an RSS pick items at workstations and drop them at designated drop-off
points without the need for an “inventory” or “storage area”. All the RMFS evaluation
models mentioned above can be applied to RSS with minor modifications. Zou et al. [76]
developed a queueing network model for RSS that considers the congestion effect. They
modeled the blocking effect at drop-off points using queue nodes representing blocked vehicles
in their CQN and developed an iterative procedure to estimate the CQN with updated
blocking delays at each iteration. In addition to blocking at drop-off points, congestion delays
elsewhere were calculated using traffic flow delay functions derived from simulation data
based on BPR-like flow-delay relations [42]. The functional form of their delay function, based
on the Underwood model [57], was adopted from [46]. Xu et al. [64] studied the optimization
of parcel-to-workstation assignment using an OQN to evaluate RSS performance.

The article by Zou et al. [76] is the most closely related to our evaluation model, as we also
examined RSS traffic congestion and blocking effects. However, their study focused solely on
developing a theoretical model for blocking during the unloading process, estimating en-route
traffic congestion delays using empirical data-based formulas derived from simulations. In
real-world systems, these two types of congestion (near the drop-off point and on route)
operate under similar mechanisms and should be addressed within the same theoretical
framework. Our research developed a theoretical delay-flow model capable of theoretically
explaining both types of congestion. Our approach can also be readily extended to other
systems with different functions, such as RMFS and AGV-based airport baggage handling
systems [27], while their method is specific to parcel handling processes and is limited to
solving RSS-related problems.

2.2 A Review on Robotic Warehouse Operation

Effective operation of a robotic warehouse system requires addressing two fundamental issues:
robot/order assignment and path planning. Although there are many studies, the prevailing
literature often investigates these problems separately.

Assignment Problem in Robotic Warehouse Systems

There were two main research streams on the assignment problem for robotic warehouses. One
stream focused on steady-state analysis, utilizing queueing networks to evaluate order and
robot assignment strategies or to construct their objective functions. For example, Lamballais
et al. [35] developed a semi-open queueing network and proposed a zone-based rack-to-storage
assignment strategy for an RMFS, which they extended to include order replenishment and
inventory management [36]. They found that spreading stock-keeping units (SKUs) among

CHAPTER 2. LITERATURE REVIEW 15

racks would improve throughput. Roy et al. [47] compared different robot-to-workstation
assignment rules using closed queueing networks. They found that a pooled robot system
outperforms a dedicated robot strategy, and assigning robots to the least congested zone
will improve the performance of multi-zone systems. For RSS, Zou et al. [76] developed a
CQN model to predict system throughput. Xu et al. [64] optimized parcel-to-workstation
assignment as an integer programming problem, with the throughput estimated using an open
queueing network. Queuing network-based approaches provided simple, closed-form solutions
to evaluate system performance, helping to identify optimal assignment strategies. However,
these methodologies often rely on assumptions of steady-state conditions and memoryless
arrival processes, which may not align with the complexities of real-world systems. Our
research follows this stream, using assumptions that may not hold for all system layouts. We
will introduce an indicator to help managers decide on the applicability of our method to
their systems without the need for a preliminary implementation.

Another research stream addressed transient-state systems with finite time horizons,
formulating the assignment problem as mixed-integer programming (MIP) with binary
variables indicating specific assignments. Boysen et al. [11] optimized robot visit sequences
and order fulfillment to minimize total robot visits in an RMFS. Weidinger et al. [60] optimized
rack-to-storage positions to minimize travel distances, proposing “shortest-path storage”
assignment rules comparable to optimal MIP solutions. Wang et al. [59] examined rack-to-
workstation assignment under uncertainties in human picker performance using stochastic
dynamic programming. Unlike queueing-based models, MIP-based models accommodated
dynamic and nonsteady-state systems with fewer assumptions but suffered from the curse of
dimensionality, making them impractical for large-scale industrial applications.

One of the similar problem settings to our RSS assignment problem can be found in
[64]. We share a similar roadmap and model parameters. However, they only considered
the assignment rule of robots to workstations for RSS, while our approach is for integrated
assignment and path-planning, and our model can also be extended to other problems like
RMFS.

Multi-Agent Path Finding (MAPF)

Numerous studies on MAPF for mobile robots or automated guided vehicles (AGVs) have
been conducted (for reviews, see [8, 65, 43, 20]). Cao’s review [16] classified approaches into
centralized and decentralized. Centralized methods control all robots in real time and can find
optimal collision-free solutions in small-scale systems. However, path planning for multiple
robots is NP-hard [69], and even with heuristics, it becomes computationally unfeasible
in real-time for large systems. Decentralized methods, which scale well with system size,
allow each robot to resolve conflicts using local information [see [66, 71, 16]]. While faster
and suitable for real-time large-system use, they may not avoid gridlocks and often yield
suboptimal solutions.

A new method used traffic flow to help avoid congested areas, combining centralized and
decentralized approaches: the upper-level flow problem was centralized to optimize system

CHAPTER 2. LITERATURE REVIEW 16

performance, while path planning was decentralized for fast, real-time computation. Fransen
et al. [27] and Digani et al. [23, 22, 21] have developed hierarchical strategies for multi-AGV
systems, optimizing sector-level paths, and coordinating robots within sectors. Similarly, our
research adopted a flow-based strategy, centralizing the offline flow problem and decentralizing
the online algorithm, but our model formulation differed significantly from these previous
works.

2.3 A Review on Robotic Warehouse Design

The research problem investigated in the new design of the RMFS falls within the scope of the
location allocation queueing problem [1], which involved decisions on the location and capacity
of the facilities and the assignment of customers/demands to these facilities. The objective
was to minimize the total cost, which included the costs of locating facilities, establishing
capacity, and the travel and waiting costs for customers accessing services. This section
reviews two streams of literature: studies on robotic mobile fulfillment systems (RMFS) and
those on the location-allocation-queuing problem.

Studies on RMFS Layout

Introduced by Amazon in 2012 [41], the RMFS has since been rapidly adopted by numerous
e-commerce and logistics companies, attributed to the efficiency and cost benefits of its
innovative parts-to-picker operation mode. The academic community has extensively explored
the design and operational policy analysis of this system. Initial studies, such as the pioneering
work by Lamballais et al. [35], focused on the location of workstations within RMFS. They
constructed a semi-open queueing network (SOQN) to estimate performance and found that
the placement of the workstation significantly affects the system throughput. Workstations
located on the longer side of a nonzoned storage area enhance throughput capacity more
effectively than those on the shorter side. On the contrary, Wu et al. [62] explored various
layout scenarios, including moving the pick station into the storage area, and demonstrated
the superiority of internal over external stations using a similar SOQN approach. Furthermore,
Azadeh et al. [9] addressed the design optimization problem by determining the optimal
system shape and the locations of the workstation. Li et al. [37] utilized a simulation
platform to evaluate RMFS performance and the impact of different task fulfillment processes,
positioning workstations equally spaced or facing the aisles at the bottom of the system. Yang
et al. [67] developed an integer programming model to minimize the total travel distance of
robots, investigating near-optimal workstation location patterns in traditional and flying-V
layouts.

Further studies within RMFS have focused on the assignment of orders, robots, and racks
to workstations. Yuan et al. [70] developed an open queueing network for system performance
estimation using dedicated and shared robot-to-workstation assignment rules. Zou et al.
[75] designed a neighborhood search algorithm to optimize robot workstation assignments.

CHAPTER 2. LITERATURE REVIEW 17

Boysen et al. [11] studied batching and sequencing of orders at picking stations, employing a
simulated annealing-based heuristic to solve these decision problems. Xie et al. [63] optimized
rack and order sequencing in RMFSs, showing that integrating these decisions and allowing
for order splitting can increase system throughput by up to 46%. The joint optimization of
these processes was further explored by Yang et al. [68] and Zhuang et al. [73], the latter
also considered workload balance and rack conflicts among multiple workstations.

Unlike previous studies, Wang et al. [59] and Sheu et al. [50] investigated the impact of
human factors on RMFS operating decisions. Specifically, Wang et al. [59] examined the
fluctuation of the picking state of human workers in the assignment of racks to pickers. They
developed a stochastic dynamic programming model to address this problem and designed an
approximate dynamic programming-based branch-and-price method to solve the model. The
results showed that picking time can be reduced by about 10% compared to solutions that
do not consider schedule-induced fluctuations in the picking states. Sheu et al. [50] studied
the assignment of racks to picking stations, considering the cumulative fatigue of human
workers. They developed a discrete-time nonlinear dynamic stochastic model to address
this problem. A real case study shows that the application of the proposed robot-picker
coordination system can reduce the accumulated fatigue of the picker by 54% at the expense
of reducing the efficiency of the picker by 15%. Zhen et al. [72] considered a combination
optimization problem that involves the batching of orders, the sequencing of orders and
batches to pods (movable racks that store SKUs) and workstations, and the assignment of
robots to jobs. They formulated the model for such a comprehensive problem and designed
a two-layer revolving algorithm for solution. Kumar et al. [34] investigated the effect of
perceived workload of human workers on system performance using an SOQN. Their result
showed that the workload-dependent service rate significantly affected system performance,
suggesting that increasing robots may not always be beneficial. For a comprehensive review
of RMFS studies, we refer to [10].

The above studies on RMFS implicitly assumed workstations located on the perimeter of
the system, except for [62], for two reasons. First, safety regulations prevent human workers
from walking in the middle area of the system, where a collision with a robot is possible.
Second, a conveyor is normally placed adjacent to the workstation to facilitate the transfer
of picked orders outside the system for further packaging and delivery. This constraint can
be relaxed in RMFS using workstations with robotic arms and swarm robots. On the one
hand, the robotic arm can replace the human worker [54], eliminating the risk of accidents
with robots and allowing them to be located in the middle of the system. On the other hand,
different types of robots can jointly perform tasks [49], with one part transporting the pods
to the workstation to pick up orders and the other part transferring the shelves with picked
orders outside the system.

Studies on the Location-Allocation-Queuing Problems

A location-allocation-queuing problem involves allocating several facilities among candidate
locations, determining their service capacity, and assigning customers/demands to these

CHAPTER 2. LITERATURE REVIEW 18

facilities. The objective of this problem is generally to minimize the total costs, including the
costs of setting up the facilities (fixed and capacity-related) and the service costs (travel and
waiting). This problem has numerous applications in various contexts, such as the location
of emergency facilities, public service facilities, and manufacturing facilities.

Early studies focused on the formulation of this problem. For example, Agnihotri et al.
[4] explored the problem of assigning customers to service facilities to minimize the total
cost of accessing facilities and waiting for service. They constructed an optimization model
and developed a Lagrangian relaxation-based heuristic solution procedure to solve the model.
Marianov et al. [38] extended the set covering problems to locate the minimum number of
facilities and servers needed to provide service within a limited waiting time for customers.
They designed a heuristic concentration method to solve the model. The above two studies
considered facility-related costs [38] or customer-related costs [4]. Abolian et al. [1] addressed
both in the location-allocation queuing problem, designing a special-purpose algorithm to
find the optimal solution for minor problems that iteratively optimizes the location-allocation
and assignment decisions, respectively. A simulated annealing heuristic was also developed.

Subsequently, several variations of the location-allocation queuing problem are investigated.
Abolian et al. [2] additionally considered the elastic demand with respect to distance in
the location-allocation queueing problem with no fixed coverage radius of facilities. They
took profit maximization as the objective function. An exact algorithm was designed to
solve small problems that successively improve the upper and lower bounds. An ascending
heuristic was proposed for large-size problems. Castillo et al. [17] studied two scenarios
for the setting of capacity of the location-allocation queuing problem. One used a single
server with varying service rates at each facility, and the other adjusted the number of servers
(with fixed capacity). The optimal service rates in two scenarios were explicitly derived,
resulting in a tractable optimization model. A Lagrangian relaxation approach was used to
solve the models. Rahmati et al. [44] constructed the location-allocation queuing problem
as a multiobjective model, where the first objective was to minimize the total setup cost
and capacity cost of the system, and the second objective minimized the total expected
travel time and waiting time of customers. Multi-objective evolutionary algorithms were
used to solve the model. Abolian et al. [3] considered a public facility location-allocation
queuing problem to maximize the number of people accessing the services. A two-stage
solution method was designed to solve the model, where the first stage optimized the customer
allocation with the given facility location and server capacity, and the second stage optimized
the controlled decisions in the first stage. The nonlinear part of the objective function was
transformed by a piecewise linear approximation with maximum relative error ϵ, the so-called
ϵ-optimal algorithm. [48] studied an idle vehicle repositioning problem, which implements
the location-allocation queuing problem. A Lagrangian relaxation approach was designed to
solve the model and a simulation experiment was conducted to validate the performance of
the proposed algorithm.

Some studies specialized in solving the location-allocation queueing problem model.
Vidyarthi et al. [58] focused on solving the location-allocation queueing problem. They
transformed the non-linear waiting cost expression into a linear form, with the expense of

CHAPTER 2. LITERATURE REVIEW 19

adding additional variables and constraints. The linearized model was solved by an iterative
algorithm that updates the upper and lower bounds of the objective function until the gap
converges. Ahmadi et al. [5] modeled the location-allocation queueing problem as different
mixed-integer second-order cone programs and investigated their performance.

20

Chapter 3

Evaluation of Robotic Warehouses

3.1 Introduction

Our study aimed to provide a theoretical performance evaluation for RSS and RMFS,
considering traffic congestion and blocking effects without running time-consuming simulations.
Given a robotic warehouse layout and the robot fleet parameters, our aim was to estimate
the average robot traffic delay and system throughput (the number of parcels/orders that
can be processed in one hour).

We analyzed the congestion in robotic warehouses and divided them into congested
areas and non-congested cells, then represented the warehouse as a closed queuing system.
Subsequently, we proposed heavy-traffic approximations for congested areas and light-traffic
approximations for non-congested cells. Under our assumptions, we proved that the arrival
at each non-congested cell is asymptotic Poisson and showed that the inter-arrival time
coefficient of variance (CV) at congested areas converges to 1. Using these approximations,
cell delays could be approximated as the waiting time of an M/G/1 queue for congested areas
and as the residual service time of an alternating renewal process for non-congested cells.
To evaluate RSSs’ throughput, we created a closed queueing network (CQN) that embeds
the traffic flow network. We developed an algorithm that solves the CQN and iteratively
estimates the delay in the traffic flow network.

We introduced how we approximated the complicated system and found a closed-form
solution for traffic delay in Section 3.3. We developed an algorithm to predict system
throughput in Section 3.4. These results were numerically validated using simulation in
Section 3.5. We summarized the findings in Section 3.6 and provided some ideas for future
research.

3.2 System Description and Assumptions

We developed our model based on RSS in Section 1.2. This evaluation model can also be
extended to RMFS.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 21

Let {W1, . . . ,WnW
} be the set of workstations, {D1, . . . , DnD

} the set of drop-off points,
and {C1, . . . , CN} the set of cells that are neither workstation cells nor drop-off points. In
the example in Figure 3.1a, we have two workstations nW = 2 and 4 drop-off points nD = 4.
There are R robots circulating in the system. Let the traffic flow from cell Ci to Cj be vi,j.
vi,j is defined as the average number of robots traveling from Ci to Cj in one time step under
the steady state.

Assume that enough parcels are waiting to be sorted so that the system runs at its
maximum capacity. Usually, packages that arrive the previous day will be stored and sorted
the next day. Therefore, the robots will be immediately assigned to a new parcel and a new
workstation after releasing the previous parcel; that is, there will be no idle robot. R robots
circulate in the system to deliver parcels from workstations to drop-off points.

After running for a while, we assume that the system can reach a steady state. We also
assume that cells are first come, first served (FCFS): When two robots from Ci and Cj,
respectively, want to enter Ck, the robots that arrived first will be allowed entry into Ck, and
the other robot will stop and wait until Ck is clear.

A robot can either (1) get loaded at one of the workstations, move to one of the drop-off
points, and drop the parcel or (2) go back to one of the workstations after dropping the parcel.
We define the traffic of loaded robots from workstations to drop-off points as forward flow,
and the traffic of empty robots from the drop-off points to the workstations as backward
flow.

3.3 Approximation of the Steady-State

This section will discuss four models, each of which is an approximated version of the previous
one.

• (M1). Closed queueing network (CQN) with blocking.

• (M2). Closed queueing network (CQN) without blocking.

• (M3). Transportation network without buffer cells.

• (M4). Transportation network with all cells.

Based on our description, we can model the system as a closed queuing network where each
cell is a first-come-first-served (FCFS) server with a buffer capacity of one (M1). This network
is difficult to solve due to robot blocking, so we need further approximations. According
to our observation, under a steady-state operation, some areas were prone to congestion,
and queues from one congested area cannot spill to other congested areas (otherwise, these
two areas should be combined as one). In each congested area, one cell usually served as a
bottleneck, while the others served as buffers. We can model each congested area (several
connected cells) as one FCFS server with an infinite buffer and each non-congested cell as an
infinite server (IS) node. Therefore, the system can be considered a CQN without blocking

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 22

(M2) with some assumptions. Furthermore, we proved that for non-congested cells in a large
system with many robots, the robot arrival process was asymptotic Poisson and numerically
demonstrated similar results for congested areas. Consequently, we can decompose the CQN
into individual queues. Due to the traffic flow conservation, the decomposed system is a
transportation network whose link-delay function is either the waiting time of an M/G/1
queue for congested areas or the residual service time of an alternating renewal process for
non-congested cells (M3). In addition, since the delay caused by buffer cells is trivial, we
can add the buffer cells back to the transportation network as non-congested cells so that we
don’t need to specifically identify congested areas before running the algorithm, which gives
us (M4). Using (M4), we can estimate the total delay in the system as closed-form functions
of traffic flows.

Closed Queuing Network with Blocking (M1)

(a) A snapshot of the system (b) Congested area

Figure 3.1: System

Consider the CQN in Figure 3.1a. Since the system is always busy, each cell is FCFS,
and there is a finite number of robots in the steady state, the RSS can be modeled as a CQN
with blocking shown in Figure 3.2a (M1). Each cell is a server with a service capacity of 1,
that is, at most one robot in the server at one time.

Gj is the service time on Cj . Gj is a mixture of different distributions. Consider the task
set K := {go through,make a turn, drop item, ...}, where each type of task k ∈ K takes Tk

time units to complete. For example, if the travel time is deterministic, Tgo through = 2T1,
Tmake a turn = 2T1 + T2, Tdrop item = 2T1 + Tdrop, and Tpick item = 2T1 + Tload (we add 2T1 since
the robot must enter and leave the cell). Define the task-specific flow as vkj and the total

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 23

incoming flow of one cell vj =
∑

k∈K vkj . Then, the first two moments of Gj are:

E[Gj] =
∑
k∈K

vkj
vj
E[Tk] (3.1)

E[G2
j] =

∑
k∈K

vkj
vj
E[T 2

k]. (3.2)

Note that the blocking type is neither before nor after service: if one robot blocks two cells
and gets service from two cells simultaneously, the problem is difficult to analyze even if we
know the traffic assignment on each link.

Closed Queuing Network without Blocking (M2)

(a) M1 (b) M2

Figure 3.2: Closed queuing network models

Due to the complicated blocking process in (M1), (M1) is difficult to analyze. We will
analyze the blocking mechanism and classify cells into different types and areas. To avoid
spillovers, we merge cells in one area into one node in the queueing network, where some cells
serve as bottleneck servers and others serve as buffers. Therefore, queues that spill from a
bottleneck are contained in one congested area without interfering with other parts of the
system, so we can model the system as a CQN without blocking (M2).

Consider a grid-based robot system. In steady state, for each cell Ci we can define cell
flow vi =

∑
j:Cj is neighbor of Ci

vi,j, and cell occupation ξi = limT→∞
∫ T

0
1(Ci is occupied at time t)

T
dt

as the proportion of time that Ci is occupied. We say Ci is congested if ξi > ξ0 > 0, where
ξ0 is a threshold (we use ξ0 = 0.4 in our simulations), indicating a persistent queue or a
spillover of the queue in cell Ci. We define a random variable Gi as the free-flow service time

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 24

for one robot in the cell Ci. Like a queuing system server, cell utilization ρi can be defined
ρi = viE[Gi], with E[Gi] given in (3.1). Note that ξi can only be estimated by simulation,
while ρi can be estimated based on flow distribution.

Based on industry practice experience with Geekplus [28] and our simulations, we notice
two types of congested cells. The congestion in the first type of cells, bottleneck cells is caused
by flow and large ρi. They are mostly free of spillovers from other cells. The congestion in
the second type of cells, buffer cells is mainly caused by spillover from other cells, and their
own ρi is small. (See Figure 3.1b).

One bottleneck cell will cause congestion in many cells due to its queue spillover. We
call a set of connected congested cells a congested area. In one congested area, at least one
bottleneck cell serves as the exit and the server, while the other congested but non-bottleneck
cells serve as the buffer. In a steady state, each congested area can be modeled as a queueing
node, where the number of servers is the number of bottleneck cells. This system itself is
very complicated, since the service time, the server that a customer uses, and the customer
priority all depend on the trajectory of each customer. We define congested cells, congested
areas, and bottleneck cells as follows:

Definition 1 (A congested cell). Cell Ci is a congested cell if ξi > ξ0, where ξ0 is the threshold
parameter. In our experiment, we use ξ0 = 0.4.

Definition 2 (A bottleneck cell). Let the expected robot number waiting to pass cell Ci be
E[Qi]. If E[Qi] > 1, Ci is a bottleneck cell.

Definition 3 (A congested area). Consider a directed graph

Gc = (Vc,Ac) = ({Ci : Ci is a congested cell}, {(Ci, Cj) ∈ A : Ci is not a bottleneck cell}).

A connected component of the undirected version of Gc is a congested area.

Definition 4 (A non-congested cell). Cells outside congested areas are non-congested cells.

Definition 5 (A buffer cell). Non-bottleneck cells inside congested areas are buffer cells.

Remark 1. The definitions of a congested cell and area rely on ξi. ξi cannot be estimated
without simulation or real-world experiments. The shape of the congestion area is not a priori.

Remark 2. The definitions of a bottleneck cell are based on E[Qi]. According to our
assumptions, conjecture and theorem, E[Qi] can be estimated given the flow assignment. (See
Assumption 1) Therefore, we can identify bottleneck cells based on flow assignment.

We make the following assumptions for the system to simplify (M1) to (M2):

Assumption 1. There is, at most, one bottleneck cell in each congested area.

Assumption 2. There is no blocking in non-congested cells, and the queues in congested
areas will not spill over.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 25

It is difficult to analyze the blocking-unblocking process inside each congested area if there
is more than one bottleneck. In a real-world system, if there is more than one bottleneck
in one congested area, it indicates that the spillover from two cells meets and causes a
very complex cell-blocking process. Such a system is prone to deadlocks, and operators will
reduce the number of robots to avoid such scenarios. Therefore, it is not common for a
well-designed, stable system to have multiple bottlenecks in the same congested area, and
these two assumptions hold for general robotic warehouses.

With Assumptions 1 and 2, if congested areas are known, we can combine all cells in
one congested area as one node to build a closed queueing network without blocking (M2)
(Figure 3.2b). A congested area has enough buffer (Assumption 1) and can be modeled as
an FCFS node. The non-congested cells can be modeled as infinite server (IS) nodes since
we assume no blocking (Assumption 2). The service time is Gi if Ci is the bottleneck of the
congested area. Note that the travel time on the buffer cells is part of the queue waiting time.

(M2) greatly simplifies (M1) but is still a closed queueing system with general service
time. There is no closed-form solution for such systems. We will further approximate (M2).

Transportation Network without Buffer Cells (M3)

(a) M2 as a closed network (b) Finite system (c) Infinite system

Figure 3.3: Approximation of the closed queuing system

To simplify (M2), we want to “open” the CQN and approximate it with a transportation
network with a closed-form link cost function. We will introduce new assumptions and show
asymptotic Poisson properties to make the approximation possible. Since the arrival process
at each node is asymptotic Poisson, we can approximate the waiting time at each node in the
CQN (M2) as a traffic flow network (M3), where the link delay in (M3) is the queue delay in
(M2), as long as the incoming flows at each node are the same and adding a source and a
sink to preserve flow conservation (M3).

New Assumptions and the Re-organized Queuing Network

Since congested areas are separated by non-congested cells (otherwise, we can merge two
congested areas as one), (M2) can be re-organized as the closed queuing network in Figure 3.3a.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 26

Consider one congested area with bottleneck cell Ci and two consecutive arrivals in the
congested area of the same robot. Assume the robot’s path after leaving Ci and entering this
congested area again is {Ci1 , Ci2 , ..., Cij ,The congested area with bottleneck Cij+1

, Cij+2
+...},

where Ci1 , Ci2 , ... are non-congested cells. Let Xi be the time that the robot spent outside
the congested area between two arrivals. Let Yi be the time spent inside a congested area
with bottleneck Ci. We have

Xi = Gi1 +Gi2 + ...+Gij + Yij+1
+Gij+2

+ ...

where Gij is the service time of the non-congested cell Cj, and Yij+1
is the time spent in the

congested area with bottleneck Cji+1
.

Similarly, we can define Xi as the time the robot spent outside Ci between two consecutive
arrivals at the non-congested cell of the same robot. When analyzing one congested area
or one cell, we can re-organize the model in Figure 3.3a to the system in Figure 3.3b for a
congested area, and Figure 3.3c for a non-congested cell. We introduce the following two
assumptions:

Assumption 3. The service time in the congested area in Figure 3.2b (or a non-congested
cell in Figure 3.2b) G and the service time outside the congested area (or a non-congested
cell) X are independent and identically distributed (i.i.d.), respectively. G is much greater
than X with high probability.

The service time G is i.i.d. because the spillover of other cells does not block the bottleneck
cell. Otherwise, these two congested areas should be counted as one larger congested area.
The service time G depends only on the robot’s operation in the bottleneck cell.

After leaving the congested area, the robot trajectories became unpredictable. In a large
system, robots leaving the same cell will quickly split into different areas, so they will likely
not interfere with each other, and the robots are identical. Except for the congested area (or
non-congested cell), the system is big enough to accommodate all the robots. Therefore, we
can assume X is i.i.d., and the node X is an infinite-server node.

In a large system, a robot must go through many other congested areas and complete
different tasks before returning to the same cell. Therefore, a robot will spend much longer
in node X than G.

Assumption 4. All robots in one congested area or non-congested cell go through the
bottleneck cell first-come-first-served (FCFS).

Many robot path conflict and deadlock solving algorithms, like [8], and the algorithm
used by [28], allow robots to reserve cells in advance. If one robot has reserved the bottleneck
cell, the next robot has to wait. Therefore, the bottleneck area is usually FCFS in grid-based
robot systems.

According to Assumptions 1, 3, and 4, the system that focuses on one of the congested
areas can be represented as the CQN in Figure 3.3b where the congested area G is a G/G/1
queue, and the remaining part of the system X is a GI/GI/∞ queue. The system focusing

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 27

on one non-congested cell can be represented in Figure 3.3c where the non-congested cell G
is a GI/GI/∞ queue, and the remaining part of the system X is a GI/GI/∞ queue.

Asymptotic Poisson Arrival

Focusing on one non-congested cell (Figre 3.3c), we can show the arrival is an asymptotic
Poisson for a large system with numerous robots.

Theorem 1. For the CQN in Figure 3.3c with two infinite server nodes G, X, under the
assumption 3, with a fixed desired flow rate v, and robot number R = ⌈v(E[X] + E[G])⌉,
random service time G at the first node and X at the second node, as X →∞ in probability,
the arrival process at the first node is asymptotic Poisson(v).

The proof is given in Appendix Section A.1.
We can anticipate a similar result for congested areas as in Theorem 1. According to

Assumptions 1, 3, and 4, the system that focuses on one of the congested areas can be
represented as the CQN in Figure 3.3b where the congested area G is a G/G/1 queue, and
the remaining part of the system X is a GI/GI/∞ queue.

Conjecture 1. For the CQN in Figure 3.3b. Assume that the service time at the first node
is G, G is bounded, and that the service time at the second node X has finite variance. With
a fixed desired flow rate v at the first node, and robot number R = ⌈v(E[X] + E[G])⌉, as
X →∞ in probability, the coefficient of variance (CV) of inter-arrival times at the first node
→ 1.

A nonstrict proof and numerical evidence supporting the Conjecture 1 are given in
Appendix Section A.2.

From (M2) to (M3)

Based on our analysis on (M2) (Conjecture 1 and Theorem 1), every node in the closed
queuing system has approximate Poisson independent arrival. In addition, flow conservation
holds for all types of robots. Therefore, we can use a transportation network model (M3) to
evaluate the total delay. (M3) includes the same nodes and links as (M2), and also includes
one source node S and a sink node T (Figure 3.4a).

To represent the operation of the system and preserve flow conservation, we introduce
two types of flow: forward flow and backward flow. The forward flow originates from the
source node S and ends at the sink node T , representing the flow of parcels through the
system. The backward flow originates from T and ends at S, representing the flow of empty
robots returning to the workstations. Let the set of acyclic routes from S to T be RF , and
the set of routes from T to S be RB, and R = RF ∪RB. Let the forward flow intensity on
r ∈ R be fF

r and the backward flow intensity be fB
r . For simplicity, let fr = fF

r if r ∈ RF

and fr = fB
r if r ∈ RB.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 28

The path flow can uniquely determine the arc flow. Letting vi,j be the flow on the arc i, j,
we have

vi,j =
∑
r∈RF

fF
r δijr +

∑
r∈RB

fB
r δijr, (3.3)

where δijr = 1 if link (i, j) is in path r.
In the next subsection, we will derive the link delay function from Equations (3.4) and

(3.6). Note that the two-direction arcs do not represent the robot flow. We use them to
make sure forward or backward paths connect source and sink nodes. We will impose high
travel costs for specific flow directions to prevent forward flow from returning to the source
or backward flow from returning to the sink. The actual robot movement path only contains
normal cell nodes and workstation nodes. For special nodes, let cFi,j be the cost for forward
flow and cBi,j be the cost for backward flow. We define cFi,source =∞, cFi,source = 0, cFsource,i = 0,
cBsource,i =∞ if i is a workstation, cFi,j = 0, cBi,j =∞, cFj,i =∞, cBj,i = 0 if j is a drop-off point
and Ci is a cell next to j, and cFi,j =∞, cBj,i =∞ if j is a workstation and Ci is a cell next to
j. Therefore, no forward flow is allowed to enter the source, enter a workstation, or leave a
drop-off point. No backward flow is allowed to leave the source, leave a workstation, or enter
a drop-off point.

If vi,j in (M3) is the same as vi,j in (M2) for all i, j nodes, the total delay calculated from
(M3) is an approximation of the total delay in (M2). (M3) is simple enough with closed-form
delay functions. However, congested areas are difficult to identify without running simulations,
so we must further approximate the system, as shown in (M4).

Heavy Traffic: Delay for Congested Areas

We define cij as the waiting time for robots entering from node i to j in (M3). Using
Conjecture 1, the arrival can be approximated as Poisson for a large system. The FCFS node
representing one congested area can be approximated as an M / G / 1 queueing system in
heavy traffic, with Gj as the service time. Using Kingman’s formula for the G/G/1 queue
under heavy traffic, we have:

cij =
vjE[G2

j]

2(1− vjE[Gj])
, (3.4)

where vj =
∑

i:Ci is Cj ’s neigbor vi,j is the inflow of Cj. We approximate the CV of inter-arrival
times CVj ≈ 1 using Conjecture 1 because the service time in one congested area is bounded,
and the service time in the remaining part of the system is much greater than Gj in a large
system between two arrivals at Cj for one robot. The righthand side of Equation (3.4) is the
expected waiting time in an M/G/1 queue using Kingman’s formula. Gj is the service time
when Cj is free of spillovers from other cells given in (3.1) and (3.2).

The length of the queue in a congested area Qj is an important identifier of a congested
area according to Definition 2. Using Little’s law, the queue length can be estimated as

E[Qj] =
v2jE[G2

j]

2(1− vjE[Gj])
+ vjE[Gj] (3.5)

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 29

Light Traffic: Delay for Non-Congested Cells

For non-congested cells, although we ignore the blocking in (M2) to obtain the Poisson arrival
properties (Theorem 1 and Conjecture 1). There could still be blocking near non-congested
cells. To reduce the approximation error, we need to estimate the delay in non-congested
cells with the following assumption:

Assumption 5. If cell Cj is not a bottleneck, with a probability of 1, queue length ≤ 2. i.e.,
the blocking that occurred in Cj must be one-on-one (one robot blocks another, no spillover).
In addition, the service time outside the cell is much longer than Gj in probability.

Conditioned that the queue length is less than 2, the only collision possible is one-on-one
blocking with no spillovers: for cells with an expected queue length of less than 1, the queue
length is less than 2 with high probability, so this assumption is valid. Using Theorem 1, the
arrival at a non-congested Cj is approximately Poisson. Let Gi,j be the service time in Cj

observed by robots from Ci. The cell is altering between two statuses: blocked and cleared.
The lifetime of blocked status observed by robots entering Cj from Ci is the service time Gi,j ,
and the lifetime of one cycle (blocked and then cleared) is the inter-arrival time of robots at
the cell. The block-clear process is an alternating renewal process, and the waiting time for
Ci is the remaining lifetime of the blocking time when a robot arrives. Using Poisson arrivals
see time averages (PASTA) and renew theorem, the expected link delay is:

ci,j =
vj
2
E[G2

i,j]. (3.6)

Due to the “platooning effect,” Gi,j differs from Gj . Considering two robots arriving from
Ci to Cj next to each other, if the first robot occupied Cj for Tk, the second robot’s waiting
time can be at most Tk − 2T1, where T1 is the time used to move one cell, because these two
robots also need to leave Ci, and the minimum departure interval is 2T1 to avoid collision.
Therefore, conditioned that the previous robot also enters from Ci,

E[G2
i,j|The previous robot also from Ci] = E[(Gj − 2T1)

2]

Therefore, we have

E[G2
i,j] = E[(Gj − 2T1)

2]
vi,j
vj

+ E[(Gj)
2]
vj − vi,j

vj
(3.7)

Transportation Network with All the Cells (M4)

To avoid the necessity of identifying congested areas, we can define a new network from (M3)
by adding the merged buffer cell nodes back. We notice that due to our treatment of robot
platooning and definition of the delay ci,j, the transportation delay on links to buffer cells
is trivial; therefore, adding them back will not cause much error from (M3), and we can
estimate the transportation delay using (M4).

From (M3), we make the following modifications to build (M4):

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 30

(a) M3

(b) M4

Figure 3.4: Open queuing network models

• Decomposing each congested area node into one node representing bottleneck cell and
several nodes representing buffer cells.

• The connection structure among the newly added nodes is the same as the original cell
structure in (M1).

• The link delay function ci,j where Cj is a bottleneck cell is the same as Equation (3.4).

• The link delay function ci,j where Cj is a buffer cell is the same as Equation (3.6).

We define ci,j as the delay incurred by cell Cj when entering form Ci, so the delay in a
congested area is considered as the delay in the bottleneck cell, not the buffer cell. For
example, if a robot travels on the path Ck, Ci, Cj, where Cj is a bottleneck cell, and the

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 31

queue spills to Ck, and the robot gets a delay of Tkij before leaving Cj, then ck,i = 0, and
ci,j = Tkij for this robot.

Figure 3.5: A buffer cell example

The total delay in (M4) is greater than in (M3) because we introduced new links with
positive ci,j at buffer cells Cj compared with (M3). However, we will show that for the buffer
cell Cj, the newly introduced ci,j ≈ 0 in (M4).

If the buffer cell Cj has a large flow input, almost all robots that pass Cj will take the
same path near Cj and make no turns. For example, in Figure 3.5, Cj is a buffer, with
Ci, Ck, Cp, Cq as its neighbor, and almost all robots follow the path Ci, Cj, Ck (red flow in
Figure 3.5). In contrast, almost no robots take other paths like Cq, Cj, Ck (blue flow in
Figure 3.5). Otherwise, the conflict of flow directions or turning operation with large flow
will incur large delays in Ci, making Cj a bottleneck instead of a buffer cell. According to our
treatment of the platoon effect (3.7), in (M4), ci,j = 0 if all robots follow the path Ci, Cj, Ck

since the service time Gj = 2T1 because no robots are making turns or doing other tasks on
Cj.

If the buffer cell Cj has a small flow input, ci,j ≈ 0 according to (3.6) since vi,j ≈ 0.
Therefore, for newly added links (Ci, Cj) in (M4), ci,j ≈ 0, so (M4) approximates the total
delay of (M3).

By Definition 2, although we cannot easily identify congested areas or buffer cells, we
can identify bottleneck cells using Equation (3.5). If E[Qj] > 1, we can classify the cells as
bottlenecks. Therefore, combining equations (3.4) and (3.6), we have for all cells Ci, Cj ∈ C,
Cj connected to Ci,

ci,j =

vj
2
E[G2

i,j] if
v2jE[G

2
j]

2(1−vjE[Gj])
+ vjE[Gj] ≤ 1

vjE[G2
j]

2(1−vjE[Gj])
otherwise

(3.8)

Consider the flow routes r from S to T for forward flow or T to S for backward flow. We
can use the delay from (M4) to approximate the total delay in (M3) and thus in (M2) and
(M1). The cost on the route r (machine time spent per hour) is

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 32

ζr(f) =
∑

(i,j) on path r

ci,j(f) +
∑

(i,j),(j,k)∈r

T2δ
turn
ijk +

∑
(i,j)∈r

T1, (3.9)

where f := [fF , fD] = [[fF
r], [f

B
r]] is the vector of all path-flow variables, and ci,j(f) is the

expected delay when entering Ci from Cj, and is a function of flow. δturnijk = 1 if the robot
that goes from cell Ci to Cj then to Ck needs to make a 90 degree turn in cell Cj; otherwise,
δturnijk = 0. The first term in Equation ((3.9)) is the travel delay incurred by waiting when Cj

is blocked. The second term is the turning time because it takes T2 to turn. The third term
is the travel time from one cell to another. The sum of the second and third terms is the
free-flow travel time. The total cost of the system transportation can be estimated as

TC(f) =
∑
r∈RF

fF
r ζr(f) +

∑
r∈RB

fB
r ζr(f). (3.10)

Therefore, using (M4), we can estimate the link and system transportation cost of the
RSS.

3.4 Throughput Estimation

Iteratively Solving CQN and Link Delay

With the previous model (M4), we can estimate the traveling delay for each vehicle at a steady
state if we know the traffic flow and system throughput. However, we cannot estimate link
flow and transportation delay without throughput information, and we cannot estimate CQN
throughput without knowing transportation delay. Therefore, we will develop an iterative
algorithm to estimate throughput and traffic delay, given the number of robots and the
system parameters. In this algorithm, (M4) is used to evaluate the traffic delay, and a new
CQN (a re-organized (M1)) is used to evaluate the throughput with updated traffic delay
information from (M4).

To obtain throughput and evaluate overall performance with a finite number of robots in
the system, we return to the closed queuing network (M1) and re-organize the network to the
CQN in Figure 3.6. In this CQN (Figure 3.6), there are R robots in total. The server node
W1, ...,WnW

represents the nW workstations and are FCFS nodes. The first two moments of
the processing time distribution Tload are known. Dj nodes represent the dropping process.
Since the waiting time for drop-off points is already considered a traveling delay, these servers
are infinite servers with service time Tdrop.

After picking up a parcel from the workstations, the robots will follow their assigned
route, traveling from the workstation Wi to the drop-off point Dj. The infinite server (IS)
node WiDj represents the travel time from Wi to Dj. Let the set of paths from Wi to Dj be

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 33

Figure 3.6: CQN embedding the traffic delay

R(Wi, Dj), the expected travel time from Wi to Dj is∑
r∈R(Wi,Dj)

fF
r ζr∑

r∈R(Wi,Dj)
fF
r

. The split probabilities pWi,Dj
depend on the assignment strategy used (for random assign-

ment: pWi,Dj
= pWi,Dk

,∀Dj, Dk, for zoning assignment, the probability of using a drop-off
point outside the zone is zero). After dropping the parcel, the vehicle returns to the worksta-
tions through the DiWj nodes. These infinite server nodes work as WiDj, representing the
travel time from drop-off points to workstations.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 34

Since the travel delay is given by the traffic flow network (M4), depending on the
throughput, and the throughput is estimated using the CQN, whose service time depends
on the travel delay, we use an iterative algorithm to evaluate the system. We initialize the
network with 0 travel delays. Then repeat the following steps until the throughput converges.
The throughput and network flow assignment given in the last iteration step will be the final
estimated throughput.

Throughput Estimation

• Step 0. Initialize: Set all travel delays to 0, and travel time to free-flow the shortest
path travel time.

• Step 1. Solve the CQN with the current traffic delay to estimate the throughput using
the AMVA Algorithm 1.

• Step 2. Using the throughput from the last step, assign traffic flow according to
assignment and routing rules (for example, assign each origin-destination route using
the shortest path), then update the link delay using (3.8) for each arc between cells,
and calculate ζr for all paths.

• Step 3. Check if the updated flow distribution and delay estimation are converged. If
converged, stop. Otherwise, go back to step 1.

AMVA Algorithm for CQN

To solve the CQN in Step 1, we used the approximate mean value analysis (AMVA) method
in[14]. The basic approximation assumption for the algorithm is that we have a PASTA or
similar property for this CQN. The first moment of the delay distribution can be estimated
using M/G/1 or the renewal process, which approximates the delay function.

Note that the second moment is required for AMVA. Let Yi,j be the delay from Ci to Cj,
E[Yi,j] = ci,j. For M/G/1 approximated cells, we can use the Pollaczek-Khinchine method to
obtain the probability generating functions (PGF). The derivatives of PGF give us E[Y 2

i,j].

For renew-process approximated cells (non-congested cells), the second moment is
E[G3

i,j]vj

3
.

The second moment of the service time on one route is the second moment of the summation
of independent link travel times:

E[(
∑

(i,j) on path r

Yi,j +
∑

(i,j),(j,k)∈r

T2δ
turn
ijk +

∑
(i,j)∈r

T1)
2]

where Yij is the delay from Ci to Cj, E[Yij] = ci,j.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 35

Algorithm 1 AMVA algorithm

Input: The queuing network in Figure 3.6 with M nodes and R robots, with the first two
moments E[Sm],E[S2

m] of service time numerically calculated.
Output: Flow at each node TH(n)νm
Find visit ratio vector ν by solving νP = ν where P is the route matrix, whose entry Pij

is the routing probability that a vehicle from node i that goes to node j,
∑

j Pij = 1.
Initialize: set expected queue length ENi(0) = 0, i = 1, ...,M , and throughput TH(0) = 0
for n← 1 to R do

for i← 1 to M do
if i is FCFS then

ETi(n)← E[S2
i]

2
νiTH(n− 1) + E[Si]{ENi(n− 1) + 1− νiTH(n− 1)E[Si]}

else if i is IS then
ETi(n)← E[Si]

end if
end for
TH(n)← n∑M

i=1 νiETi(n)

for i← 1 to M do
ELi(n)← νiTH(n)ETi(n)

end for
end for

3.5 Numerical Results

Validation of the Congestion Mechanism

In this section, we will validate our congestion mechanism and assumptions.

Simulation Settings

Our experiments were conducted on a small (16*20) RSS with two workstations and 24
drop-off points (see Figure 3.7). One of the project plans of [28] inspired the design of the
system. We set T1 = 1, T2 = 5, Tload = 4, and Tdrop = 2 in time steps. We set constant
pickup and drop-off times to simplify the calculation. We assumed that a parcel’s probability
of going to each drop-off point is equal. We assumed that there were enough parcels to be
sorted and run the system with given robots to complete as many tasks as possible, so idle
robots were immediately assigned new tasks. (It is a common practice to collect parcels on
the first day and sort them on the second day. On the second day, we run at the maximum
capacity until all jobs are complete). Our traffic control and deadlock resolving algorithm
was adapted from that in [32]. Note that this deadlock-resolving algorithm cannot guarantee
a deadlock-free operation. If an unsolvable deadlock exists, we stop the simulation and record
the successful time steps until the unsolvable deadlock.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 36

r
I_

r i r i r i r i r i .-
-

-

■ ■ ■ ■

0 -

�

■ ■ ■ ■

-

-

■ ■ ■ ■

0 �

�

■ ■ ■ ■

■ ■ ■ ■

■ ■ ■ ■

-

Figure 3.7: Simulation setting: congestion mechanism

Congestion Areas

The first set of experiments was to verify our description of the congestion mechanism,
assumptions, and theorem. Using the small system roadmap with the number of 15, 20, 25,
30, and 35 robots for 50,000 time steps each, we recorded cell occupations ξi, utilization ρi,
and interarrival times in each cell.

The cell ξi, ρi distribution is shown in Figures 3.8a and 3.8c; each point corresponds to
one cell in an experiment. Most cells have ρi ≈ ξi, indicating that they are not affected by
queue spillovers. The first group of cells lies near ξi = ρi and has large ρi and ξi. They are
bottleneck cells. The second group of cells lies above ξi = ρi, with small ρi but large ξi. These
cells are buffer cells. The last group is the non-congested cells near ξi = ρi with small ρi and
ξi.

When R = 30, the system is almost saturated and we show the distribution of ξi, ρi of

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 37

(a). Occupation 𝜉𝜉𝑖𝑖 vs utilization 𝜌𝜌𝑖𝑖 for one
simulation (b). Heatmap of 𝜉𝜉𝑖𝑖 on each cell

(c). 𝜉𝜉𝑖𝑖 vs 𝜌𝜌𝑖𝑖 from different 𝑅𝑅 combined (d). Heatmap of 𝜌𝜌𝑖𝑖 on each cell

Not congested

Congested but
not bottleneck

Bottleneck

Figure 3.8: Congestion in a grid-based AMR system

each cell in Figures 3.8a, 3.8b, and 3.8d. Some cells are bottlenecks, such as cells (0,9) and
(4,13), with ξ(0,9) ≈ ρ(0,9) ≈ 1 in Figure 3.8a. Some cells are buffer cells, like cell (1,13):
ρ(1,13) ≈ 0.3 but ξ(1,13) ≈ 0.9, it serves as a buffer for queues from cell (0,13).

Poisson Arrival

First, we verified whether the system can reach a steady state. After simulating for a very
long time (50000 time steps, with T1 = 1 time step), we counted the number of robots
traveling through each cell every 1000 time steps. The results of some cells are shown in
Figure 3.9. After the first 1000 steps, we can see that the flow becomes relatively stable and
the fluctuation is about 10%. Therefore, we can conclude that this system can reach a steady
state.

Then, we numerically verified Theorem 1 and Conjecture 1 in the systems with the
simulation. We calculated the coefficient of variations (CV) of the inter-arrival time in

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 38

Figure 3.9: Flow on different cells every 1000 timesteps

(a) CV vs occupation (b) Category of cells when R = 30

Figure 3.10: Accuracy of the objective function

different cells when R = 30. In Figure 3.10a, each point represents the occupation of one cell
ξi and CV in one experiment, and the density map of the kernel of (ξi, CV) is the blue cloud.
Most non-congested cells have a CV ≈ 1. CV becomes less than 1 if the cell is congested.
From this observation, we can confirm that theorem 1 applies to non-congested cells.

Cells with large ξ seem to have CV < 1. However, this CV is not for the inter-arrival
time at a congested area but is the inter-arrival between cells inside the same area. If Ci is a
bottleneck cell and is always busy, the inter-arrival on Ci is just Gi. In our case, the free flow
service time Gi is a categorical distribution (see Equation (3.1)) with CV < 1. Therefore,
these cells’ interarrival time CVs are less than 1. The actual CV for each congested area
should be calculated for the whole area. In our experiment, the CV of the interarrival time
is 0.971 and 0.940 for the two congested areas in Figure 3.10b. Therefore, our conjecture

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 39

applies to this simulation, since both CVs are approximately 1.
An insight is that warehouses with a certain layout will result in large estimation errors

due to the CV deviating from 1. For example, the corridor entering the workstation with
two turning points (for example, cell (0,13), then (0,9) in our setting) resulted in tandem
bottlenecks. Both cells have a high level of traffic; the second cell’s input is the first cell’s
output. The inter-arrival in the second cell will be approximately the service time G of the
first cell. If G is not exponential, the arrival in the second cell will not be Poisson. However,
we assumed i.i.d. service time outside each congested area (Assumption 3). The assumption
is valid if robot flows split after one server quickly and do not interfere with each other in a
large system. But in this system, the robots all stay on the same path in a tandem bottleneck
system because they must sequentially go through the same bottlenecks. We should merge
these tandem bottlenecks into one congested area (see Figures 3.1a and 3.10b, where one
workstation, including tandem turning points, is merged into one node). In our problem,
since the service time for a given type of robot task is deterministic, robots leave the tandem
queues with an interval of the largest service time among these queues, which can be used as
the service time of the merged queues. For more complicated problems, we can use methods
such as [19] to find the new waiting times distributions for the merged nodes. Therefore,
our model is more suitable for a large system where robots have more freedom and are not
limited to one or a few corridors, such that they split into different paths quickly after each
congested area. Otherwise, these special layout structures must be modeled as special nodes
in the transportation network.

Using the queue length condition in Equation ((3.8)), considering cells with ξ > 0.4 as
congested, we showed the category of cells in Figure 3.10b. Note that we merge cells near each
workstation as one congested area, called a “workstation”, to deal with the tandem-bottleneck
problem. There are bottlenecks near the entrance of each server, and several congested cells
nearby serve as buffer areas. Our Assumption 1 is true for this experiment setting because
there is one bottleneck in each congested area.

Conclusion

Based on the simulation, we conclude:

• The cells can be classified into non-congested cells, bottleneck cells, and buffer cells,
based on the occupation ξ and utilization ρ (See Figure 3.8 and 3.10b).

• The system can reach steady state (see Figure 3.9).

• Our theorem and conjecture are valid for non-congested cells and most congested areas,
since they have inter-arrival times CV ≈ 1. (See Figure 3.10a)

• Layout structures like tandem queues violate our assumptions, so we must merge them
into one congested area to reduce the estimation error. (See Figure 3.10b, where we
merge congested areas near workstations into a “workstation” area.)

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 40

Validation of the Throughput Estimation

Simulation Settings

(a) A: standard system (b) B: half system

(c) C: more workstations

Figure 3.11: Different layout used in throughput validation experiments

We applied our method in Section 3.4 to three different layout designs shown in Table 3.1
and Figure 3.11. We assumed that all robots would follow the shortest path route, and
tasks were assigned randomly among workstations and drop-off points. We assumed that
the demand arrival rate was large enough to have no idle robot, since we were focused on
the maximum throughput analysis. Our traffic control and deadlock resolving algorithm was
adapted from that in [32]. Other parameters were the same as in the previous experiments.
We run 10000 steps for each simulation experiment. We increased the number of robots from
1 to 22 and performed 100 trials for each setting of robot numbers.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 41

Layout Height Width nW nD Roadmap
A 20 19 2 30 Figure 3.11a
B 11 19 1 15 Figure 3.11b
C 20 19 4 30 Figure 3.11c

Table 3.1: Layout of throughput estimation validation experiment

Throughput Results

(a) Throughput-density of the standard
system (A)

(b) Throughput-density of the standard
system (B)

(c) Throughput-density of the standard
system (C)

Figure 3.12: Throughput validation results

We will compare the performance metrics calculated using the following four methods:

• RP-CQN (Renewal process approximated CQN): CQN with the renewal process ap-
proximated the cell delay function. This simplifies our method, assuming that all cells
are non-congested and using Equation (3.6) to estimate the delay.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 42

• MG1-CQN (M/G/1 queue approximated CQN): CQN with M/G/1 approximated cell
delay function. This is our proposed method for evaluation.

• CF-CQN (Congestion-free CQN): Run AMVA without considering congestion. This is
the benchmark method where we use the free-flow travel time and the shortest path
travel time and ignore all congestion with AMVA CQN throughput estimation.

• SIM (Simulation): Simulation result.

The simulation shows that throughput increases as we add more robots in the system.
At certain levels of robot density, the deadlock resolving algorithm can no longer handle
deadlocks, and the system is saturated, resulting in a large decrease in throughput (see
boxplot and scatters in Figure 3.12).

Comparing different layouts, we can see that additional workstations (system C vs. A,
B) can improve the throughput. The processing time at the workstations will not be a
bottleneck, and each workstation will provide an extra buffer area for the system. Decreasing
the drop-off points does not improve the throughput, as the operation area also decreases,
and the system is more likely to saturate with the same number of robots. Our evaluation
method performs equally well on the layout we tested.

The simulation results are usually scattered below the analytical predictions because
deadlocks occur stochastically. If a deadlock is formed, the throughput observed in the
simulation will be greatly reduced. Improving the deadlock-resolving algorithm can improve
the mean of simulation throughput (Deadlock-resolving is beyond the scope of this study).
Our prediction algorithm did not assume deadlocks (Assumption 1). Otherwise, there will be
multiple bottlenecks in one congested area. Therefore, our prediction gives an upper bound
for the simulation throughput.

Our method (considering non-congested cells and bottlenecks) can give accurate predictions
for stable systems. Before the density is so high that the system becomes unstable, the M/G/1
throughput estimation is very close to the simulation results. (See black MG1-CQN curves in
Figure 3.12). If the system is saturated, our M/G/1 approximated estimation is no longer
accurate. We can conclude that the renewal-process approximation (RP-CQN) can give good
predictions in light-traffic conditions. Congestion plays a large role in evaluation. As shown
in Figure 3.12 (MG1-CQN vs. CF-CQN), our method greatly reduced the estimation error
after introducing congestion.

In conclusion, if the robot number and the layout are given, assuming the system is not
saturated and the deadlock deadlock-resolving algorithm is good enough, our evaluation
method can accurately predict throughput. The estimation error is greatly reduced compared
to the prediction given by CQN without congestion.

CHAPTER 3. EVALUATION OF ROBOTIC WAREHOUSES 43

3.6 Summary

We present an evaluation model that can predict the throughput and traffic delay of a robotic
warehouse (RSS in our setting). We approximated the total delay in a closed queueing
network by blocking it with a transportation network. The key idea is to show that in a
large system with many robots, the arrival at one cell is approximately Poisson. The Poisson
property is an intrinsic characteristic of the system. This emerges from the dynamics of
robots in large systems constantly splitting and merging. The arrival pattern approximates a
Poisson distribution for one cell because the time a robot spends outside the cell is a mixture
of travel times on different paths, and all the robots are identical.

We validated our assumptions and the method using simulation experiments. The
simulation validated our congestion mechanism: the system can be divided into non-congested
cells and congested areas inside congested areas. Usually, one cell is the bottleneck in each
congested area while the other cells are buffers. The coefficient of variation observed in the
simulation also validated the Poisson approximation. Compared to the benchmark (without
considering congestion), our method greatly improved the prediction accuracy if the system
is stable and the deadlock-resolving algorithm is powerful enough.

Our method can predict performance if we know the system is stable. However, it cannot
predict whether the system is stable and can only be applied to systems with relatively light
traffic. In future research, we need to analyze the mechanism behind the stability of the
system. The link delay model developed also laid the foundation for optimizing operation
strategies in the next chapter.

44

Chapter 4

Operation of Robotic Warehouses

4.1 Introduction

As mentioned in the Introduction’s motivation section, the robotic warehouse operation is
real-time, and the controller must be decentralized. To have an online method with a near-
optimal solution, we developed an offline-online method to simultaneously do path-planning
and workstation assignments for robots and parcels in a robotic warehouse. We use RSS (in
Section 1.2) as our setting, but this method can be easily extended to RMFS. The main idea
of our method was to find an approximate optimal steady-state operation pattern offline.
Then, we assign parcels/robots to workstations and plan robot paths online in real time to
create a traffic flow as close to the calculated optimal result as possible. Our method has
three major benefits:

1. Decentralized online control with linear complexity: the method can be applied to large
systems.

2. Close to a system-optimal solution: the robots cooperate trying to re-create the optimal
traffic flow assignment.

3. Integrated problem: We solve the path-planning and task assignment simultaneously,
so different parts of the systems work together.

Our numerical analyses validate our model assumptions through simulation data and iden-
tify scenarios where our algorithm performs poorly, notably those involving special layout
structures and high robot densities. Furthermore, we introduce an evaluative indicator
capable of assessing the efficacy of our integrated offline-online method without real-world or
simulation-based testing. Our simulation results demonstrate an appreciable improvement
in throughput, quantified at approximately 10% compared to zone-based assignment with
cooperative shortest path planning.

In Section 4.2, we introduce the offline part of our method: How to find an optimal traffic
assignment for the steady state. In Section 4.3, we show how to use the offline solution to

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 45

operate the system online. In Section 4.4, we discuss the theoretical limits and benefits and
develop an indicator to evaluate our method using historical data for existing systems. We
summarized the findings and provided ideas for future research in Section 4.6

4.2 The Offline Algorithm: Finding an Approximated

Optimal Network Flow

We will develop our method on the basis of RSS settings. Consider the system in Figure 4.1a.
We will use the same notation for the system as in Section 3.3. The system description is
already given in Section 3.3. Given the demand dDk

for each workstation, we want to find
the optimal traffic assignment to minimize the total cost of transportation.

Recap: (M4) and Approximated Delay Estimator

Based on our analysis in Section 3.3, we can approximate the steady-state delay of the RSS
using a transportation network (M4) (Figure 4.1b.)

The operations (path, robot-to-workstation, and parcel-to-workstation assignment) under
the steady states are represented by the path-flow traffic assignment in (M4). Consider the
flow routes r from S to T for forward flow or T to S for backward flow. In a steady state, if
we know all the forward and backward flows fF

r and fB
r , we know how the system assigns

parcels and robots to the workstations and all the robot paths. The meaning of fF
r is that for

a path r = (S,Wi, Cm, . . . , Cn, Dj, T), there are f
F
r parcels loaded onto robots at workstation

Wi and dropped at Dj per hour, while the robot carrying these parcels will follow the path
(Cm, . . . , Cn) ⊂ r. For fB

r , r = (T,Dj, Cn, . . . , Cm,Wi, S), there are f
B
r robots returning from

Dj to Wi following the path (Cn, . . . , Cm) per hour.
Therefore, given all fF

r , in a steady state, the probability of assigning one parcel with

destination Dj will be assigned to the workstation Wi with probability

∑
r:Wi∈r,Dj∈r f

F
r∑

r:Dj∈r f
F
r

. The

probability that the robot will carry this package using path r1 := (Cm, . . . , Cn) from Wi

to Dj is

∑
r:Wi∈r,Dj∈r,r1⊂r f

F
r∑

r:Wi∈r,Dj∈r f
F
r

. Given fB
r , the probability of assigning an empty robot to the

workstation Wi, who just released the parcel at Cn near Dj, is

∑
r:Wi∈r,Dj∈r,Cn∈r f

B
r∑

r:Dj∈r,Cn∈r f
B
r

. The

probability of using the path r2 := (Cn, . . . , Cm) is

∑
r:Wi∈r,Dj∈r,Cn∈r,r2⊂r f

B
r∑

r:Wi∈r,Dj∈r,Cn∈r f
B
r

.

Given fF
r and fB

r , using the link delay from Equation (3.4) and (3.6) for cell-to-cell
links, and imposing cFi,j, c

B
i,j for forward and backward flow on the link connecting the source

and drop-off points (see the description of (M3) in Section 3.3) to avoid unwanted flow
directions. The total transportation cost (in machine time per hour) can be calculated using
Equations (3.8), (3.9), and (3.10). Here, we recap the link delay, path cost, and total cost
functions.

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 46

(a) RSS layout

(b) Transportation network (M4)

Figure 4.1: RSS model

link delay:

ci,j =

vj
2
E[G2

ij] if
v2jE[G

2
j]

2(1−vjE[Gj])
+ vjE[Gj] ≤ 1

vjE[G2
j]

2(1−vjE[Gj])
otherwise

,

transportation cost on path r:

ζr(f) =
∑

(i,j) on path r

ci,j(f) +
∑

(i,j),(j,k)∈r

T2δ
turn
ijk +

∑
(i,j)∈r

T1,

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 47

system total transportation cost:

TC(f) =
∑
r∈RF

fF
r ζr(f) +

∑
r∈RB

fB
r ζr(f).

Note that the total transportation cost is a non-linear function of path flows.

Optimal Traffic Assignment Problem

In steady state, the approximated optimal path-flow-based integrated assignment-routing
problem (PB-IARP) can be formulated as

(PB-IARP) min TC(f)

s.t. Equations (3.1), (3.2), (3.3), (3.7), (3.8), (3.9), and (3.10) hold and

dDk
=

∑
r∈RF :Dk∈r

fF
r ,∀ drop-off point Dk (4.1)

dDk
=

∑
r∈RB :Dk∈r

fB
r ,∀ drop-off point Dk (4.2)∑

r∈RB :Wk∈r

fF
r =

∑
r∈RB :Wk∈r

fB
r ,∀ workstation Wk (4.3)

The constraints (4.1) and (4.2) state that the total forward and backward flow should satisfy
the parcel demand for any drop-off points, where dDk

is the demand rate for drop-off point
Dk. In real-world problems, since we do not know the real throughput capacity of the system,
we need a rough estimate of the demand and search for a demand level that matches the
number of robots, as is discussed in the next sections (Algorithm 2). Constraints (4.3) state
that each workstation’s forward and backward flow must be balanced.

Link-Flow Based Formulation

Since there are exponentially many paths, the problem (PB-IARP) has many variables,
making it difficult to solve. We will re-organize the transportation network in (M4) and use
link-flow as the variables.

Note that the delay function Equation (3.8) has only link-flow variables; the path-flow
variables are introduced in Equation (3.9) to include the turning time T2. The turning flow
information can be retained if we use the re-organized network shown in Figure 4.2.

We can decompose and re-index nodes in (M4). Each cell Cj in (M4) can be decomposed
into four nodes: 4j, 4j − 1, 4j − 2, 4j − 3. Each of the new nodes represents one of the cell’s
four headings.

We add in-cell arcs between 4j − i and 4j − k to represent possible turning from direction
i to k, and set the transportation cost as T2. Note that, at most, two nodes in each cell are

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 48

4j-3

4j-2

in-cell arc between-cell arc

j

j

allowed direction

4j-1

4j

Figure 4.2: Cell node decomposition

connected since one cell only allows two moving directions (see Figure 4.1a). The movement
from cell Ci to Cj is represented by between-cell arcs 4i − k to 4j − k, where k is the
corresponding heading direction for this movement, and the transportation cost on the
between-cell arc is T1.

Using up,q to represent the link flow in the decomposed (M4), the task-specific flow vkj in
Equation (3.1), (3.2), the link flow vi,j are:

vturnj = u4j−k1,4j−k2 + u4j−k2,4j−k1 (4.4)

vthroughj = u4j−k1,4i−k1 + u4j−k2,4m−k2 (4.5)

vdropj = u4j−k1,4n + u4j−k2,4p (4.6)

vpickj = vturnj + vthroughj = vj if Cj is a picking location (4.7)

vj,i = u4j−k1,4i−k1 (4.8)

where k1, k2 be the two allowed direction on Cj , Ci and Cm are the two downstream neighbors
of Cj, Cn and Cp are drop-off points connected to Cj (if exists, otherwise set flow to 0). For
each type of flow (forward and backward), Equations (4.4) to (4.8) hold, so we omitted the
upper index F and B in these equations. up,q = uF

p,q+uB
p,q where u

F
p,q and uF

p,q are forward and
backward flow on the decomposed network. Therefore, the delay ci,j in Equation (3.8) is a
nonlinear function of u, and the (PB-IARP) can be reformulated as the link-based integrated
assignment-routing problem (LB-IARP):

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 49

(LB-IARP) min
u

TC(u) :=
∑

i,j:Ci,Cjare neighbors

(ci,j(u) + T1)vi,j +
∑

i:Ciis a cell

T2v
turn
i (4.9)

s.t. Equations (3.1), (3.2), (3.7), (3.8), and (4.4)–(4.8) hold and

dDk
=

∑
j:Cjare neighbor of Dk

uF
4j−dir(j,Dk),Dk

,∀ Drop-off point Dk (4.10)

dDk
=

∑
j:Cjare neighbor of Dk

uB
Dk,4j−dir(j,Dk)

,∀ Drop-off point Dk (4.11)

0 =
∑

i:∃(i,j)∈Decomposed (M4)

uF
i,j,∀j not in source or sink (4.12)

0 =
∑

i:∃(i,j)∈Decomposed (M4)

uB
i,j,∀j not in source or sink (4.13)

uF
4j−dir(j,Wk),Wk

= uB
Wk,4j−dir(j,Wk)

∀ Workstation Wk (4.14)

where dir(j,Dk) the the direction on Cj which robots are allowed to drop parcel to Dk,
and dir(j,Wk) is the direction allowing robots to be picked by Wk on Cj. Equations (4.10)
and (4.11) state the forward and backward demand-flow balance for each drop-off point.
Equations (4.12) and (4.13) are the flow conservation for each node. Equation (4.14) is the
forward-backward flow balance at each workstation.

(PB-IARP) and (LB-IARP) solves the same problem, but (LB-IARP) has much fewer
variables. (LB-IARP) is a nonlinear programming with linear constraints, which can be
solved by the Frank-Wolfe method.

Frank-Wolfe Method

If we have a feasible solution u(iter), the Frank-Wolfe algorithm can solve the following
linearized subproblem (L-SUB) for (LB-IARP):

(L-SUB) min
u

TC(u(iter)) +
∂TC

∂u(iter)
(u− u(iter)) (4.15)

s.t. Equations (3.1), (3.2), (3.7), (3.8), (4.4)–(4.8), and (4.10)–(4.14) hold

(L-SUB) is a linear programming which can be easily solved. The gradient for the piecewise
function Equation (3.8) is the gradient at the current value. The gradient at a discontinuous
point is defined as the left derivative. Given an error tolerance ϵ, the Frank-Wolfe method
includes the following steps:

Frank-Wolfe Method (FWM):

1. Find the free-flow shortest path for all source-workstation pairs. Assign flow u(0) using
free-flow shortest path assignment. Set iter = 0.

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 50

2. Solve the linear subproblem (L-SUB) to obtain the search direction u
(iter)
linear.

3. Do a line search from u(iter) to u
(iter)
linear to find the optimal objective value TC(iter) and

step size α(iter). Update the flow assignment u(iter+1) = u(iter) + α(iter)(u
(iter)
linear − u(iter)).

iter = iter + 1.

4. Convergence check: if |TC(iter)
linear − TC

(iter−1)
linear | < ϵ stop, otherwise, go back to step 2.

We can solve the (LB-IARP) and find a link-flow traffic assignment result, but we still need
a path-flow assignment for the online algorithm. The path flow can be reconstructed using
the algorithm proposed in [29] or the greedy algorithm mentioned in this study. We do not
need an optimal flow decomposition. One acceptable algorithm is the path-length greedy
algorithm. Each time, the greedy algorithm picks the shortest path from the source to the
sink (or from the sink to the source) and pushes flow until one arc reaches its link flow. It
removes the critical link and recurses. The greedy algorithm has linear time complexity O(N)
in a grid-based system, where N is the number of cells. The greedy algorithm’s number of
paths is also O(N). This means the search space of the online algorithm is O(N) if we use
the path-length greedy algorithm.

Binary Search to Match the Number of Robots

To solve (PB-IAR), demand parameters dDk
in Equation (4.1) and (4.2) must be estimated.

However, dDk
is the actual fulfilled demand in the system, and we don’t know it without

evaluating the system throughput.
Although the actual dDk

is not known, usually, the ratio dDk1
/dDk2

is known. We can
start with a normalized demand vector d̃Dk

with
∑

Dk
d̃Dk

= 1, and try to find γ such that

γd̃Dk
= dKk

If the demand dDk
is given, after finding the optimal flow, R, the number of robots in the

system can be estimated using Little’s law:

R =
∑
r∈R

ζr(f)fr. (4.16)

Therefore, we can search for a proper demand scale γ such that the estimated number of
robots in the queuing system matches the actual robot number R. The number of robots
required is a non-decreasing function in γ: R(γ) =

∑
r∈R ζr(f

∗(γ))f ∗
r (γ), where f∗(γ) is the

optimal flow assignment when the demand is γd̃Dk
, because a greater demand leads to heavier

traffic flow thus higher robot transportation cost. We can pick a small γ0 and a large γ1 such
that R(γ0) < R < R(γ1), and find an approximate demand level γ∗ such that R(γ∗) = R
using binary search between γ0, γ1. The binary search algorithm is given in Algorithm 2.

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 51

Algorithm 2 Binary Search to Solve R(γ) = R

1: procedure BinarySearch(Function R(γ) as Equation (4.2), γlow, γhigh, ϵ)
2: while γhigh − γlow > ϵ do
3: γmid ← (γlow + γhigh)/2
4: Estimate R(γmid)) by solving the (LB-IARP) using the Frank-Wolfe Method.
5: if R(γmid) = R then
6: return γmid

7: else if (R(γmid)−R)× (R(γlow)−R) < 0 then
8: γhigh ← γmid

9: else
10: γlow ← γmid

11: end if
12: end while
13: return (γlow + γhigh)/2
14: end procedure

Summary of the Offline Algorithm

The input of the offline algorithm are:

• The system roadmap and robot parameters

• Number of robots R

• Destination normalized demand d̃Dk

• Searching region γ0, γ1

Based on the input, we can run the binary search Algorithm 2 to find the expected fulfilled
demand dDk

. With the demand dDk
, we can find an approximated optimal steady-state

link-flow assignment on the decomposed (M4), i.e. the (LB-IARP) using the Frank-Wolfe
algorithm. The link flows can be decomposed into path flows using algorithms in [29]. The
output of the offline algorithm is a vector of an optimal path flow f that can minimize total
transportation cost under steady state.

4.3 The Offline-Online Algorithm

Using the offline method in the previous section, we obtain a vector of path flow f = [fr], r ∈ R.
The main idea of the online phase is to select paths according to the optimal flow so that the
system has a similar steady-state flow distribution as the offline solution. The flow chart of
the offline-online algorithm is given in Figure 4.3.

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 52

Figure 4.3: Flow chart of the offline-online algorithm

When operating an online system, we must deal with three problems in real-time: assign
an empty robot to a workstation, assign a parcel to a workstation, and find a path for the
robot. We can define an origin-destination (OD) pair for each task:

• For robot-to-workstation assignment, the origin is the robot’s current location, and the
destination is the “source node”. The path direction is backward.

• For a parcel-to-workstation assignment, the origin is the source node, and the destination
is the node representing its destination drop-off point. The path direction is forward.

• For robot path-finding, the origin and destination are the OD locations of the current
robot. The path direction depends on the status of the robot. If the robot is loaded
with a parcel, the direction is forward. Otherwise, the direction is backward.

Based on the OD pair and the direction, we choose route r for each task. If the task

is forward, then the probability of choosing r is fF
r∑

r′∈RF :O, D on r′ f
F
r′
. For the backward task,

the probability of choosing a path r is fB
r∑

r′∈RB :O, D on r′ f
B
r′
. (See more examples in Section 4.2,

Recap of (M4), paragraph ”Therefore, given...”) If there is no known path between OD,
this method is not suitable, and we use the shortest (in free-flow travel time) path instead.
Fortunately, this is rarely the case in our algorithm since robots only need to decide their

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 53

path near workstations and drop-off points, and most of the workstation-dropoff point paths
have been included in the offline algorithm.

For an assignment task, after randomly assigning a path to each task according to the flow
intensity, the assignment result can be recovered by identifying the workstation node along the
path. Due to our definition of ci,j for special arcs (see the definition below Equation (3.8)), each
path with finite cost can go through workstations at most once. Therefore, the workstation
node on the path is unique, and we can use this workstation as the assignment result. For a
path-finding task, we can use the chosen path as the path plan for the robot.

4.4 Discussions

Limits of the Algorithm: When the Assumptions Fail and a
Diagnostic Indicator

As is shown in the numerical experiments in Section 3.5 when analyzing the congested areas,
there are two causes for large estimation error:

• Tandem bottlenecks: if the departure robots from one bottleneck almost all arrived at
the second bottleneck, then these robots’ arrivals are correlated, and our Assumption 3
failed.

• Congested systems: if the system is saturated, there are multiple bottlenecks in one
congested area, and our Assumption 1 failed.

The solution to the first problem is to manually identify these tandem bottlenecks and merge
them as one congested area, using the bottleneck with the highest utilization ρi as the actual
bottleneck. The second problem is not common because companies tend to avoid putting too
many robots in one system.

Therefore, our offline-online method is limited to certain layouts and robot numbers.
We will introduce a diagnostic indicator to help decide if our algorithm is good for specific
systems without running the offline-online algorithm.

Let the total cost of Equation (3.10) be TC, and the true total cost be TTC. TC and
TTC are functions of the traffic flow distribution f . TC is the approximation of TTC using
our (M4) model.

Without running our offline-online method, a robotic warehouse company can accumulate
historical operational data, including the observed robot flow f and the actual transportation
cost TTC(f). These results are based on their current operational strategies, not our method.

Our offline algorithm can find an optimal f∗ that can minimize TC. Define relative
approximation error as

ERR :=
(TC(f)− TTC(f))

TTC(f)
(4.17)

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 54

and relative optimal gap

GAP :=
(TC(f)− TC(f∗))

TC(f)
(4.18)

ERR comes from the deviation from our assumptions and asymptotic results. GAP is the
power of our offline optimization, which shows how much our offline algorithm can improve
from the benchmark solution. Note:

TTC(f∗) =
TTC(f)(1−GAP (f))(1 + ERR(f))

(1 + ERR(f∗))
. (4.19)

Therefore, if (1−GAP (f))(1 +ERR(f))/(1 +ERR(f∗)) > 1, our offline algorithm’s improve-
ment outperforms the estimation error. Note that our ERR < 0 because we ignore some
robot blockings in our Assumptions 1 and 5, so we underestimate the total travel time. We
have

(1−GAP (f))(1 + ERR(f))

(1 + ERR(f∗))
> (1−GAP)(1 + ERR(f))

. We can define the estimated improvement bound (IB) as

IB := (1 + ERR(f))(1−GAP (f)) (4.20)

If IB > 1, our algorithm can outperform the benchmark even with the estimation error.
Therefore, we can use IB as a diagnostic indicator to evaluate our offline-online method
based on historical data.

Note that, to calculate ERR(f) and GAP (f), we only need TTC(f), which is given
in historical data, TC(f), which can be estimated using historical flow observation and
Equation 3.10, and TC((f)∗), which is solved using the offline algorithm (Algorithm 2). All
these calculations don’t involve doing simulations or deploying our offline-online method in
the real world. Therefore, the diagnostic indicator IB can be estimated based on historical
observations.

Better Performance Compared with Priority Planning

We will explain why our method is better than our benchmark in throughput performance.
One popular method for fast MAPF is prioritized planning (cooperative A* or CA*)[51].
When a new task arrives in the system, it searches for the fastest path without interrupting
existing plans. More specifically, the prioritized planning method maintains a time-expansion
graph. It makes T copies of the network, and every vertex represents a pair (i, t), where i is
the node index and t is the time step. (i, t1) and (j, t2) are connected only if a robot in i at
time t1 can move to its neighbor j in t2 − t1. If one path is assigned to one robot, then all
the nodes that the robot passes on the time-expansion graph will be blocked. When a new
robot with lower priority arrives, it will search for the shortest path on the time-expansion
graph without using blocked nodes. Usually, the newest task has the lowest priority, so the
previously assigned paths will not change for computational simplicity. We can show that
such an algorithm leads to a stochastic user equilibrium at a steady state.

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 55

Proposition 1. CA* leads to a stochastic user equilibrium under a steady state.

Proof. Let R be the set of all paths connecting one origin–destination pair. For path r ∈ R,
the total travel time is

cr := αrT1 + βrT2 +
∑

(i,j):(Ci,Cj)∈r

Sij,

where αr is the number of movements from one cell to another on r, βr is the number of 90
degree turns on path r, and Sij is the random waiting time when entering from Ci to Cj.

When planning a path using CA* for one robot, the other R − 1 robots are already
executing their paths, so the new path always has the lowest priority. This robot will choose
the path with the lowest travel time. In a steady state, Sij is a time-independent random
variable determined by the flow distribution of the other R− 1 robots, and the probability of
choosing path r is

pr = P(cr ≤ cp : ∀p /∈ r; p, r ∈ R).
Therefore, the flow distribution will be a stochastic user equilibrium.

Since our method seeks an approximate system optimum, whereas priority planning can
only achieve stochastic user equilibrium, our method will be better if the approximation is
relatively accurate. As mentioned in the previous section, we only need IB > 1.

4.5 Numerical Results

Figure 4.4: Large system map

The simulation setting is the same as the experiments in Section 3.5. We also introduced
a large system to validate our method in an industrial-level problem. The small system is
the same as in Figure 3.7. The large system is shown in Figuire 4.4.

Validation of the Diagnostic Indicator

We will show that our estimation is accurate enough that the improvement from offline
optimization can outperform the estimation error in our settings. We will also validate the
indicator IB from Equation (4.20) to help decide if our algorithm is good for specific systems
without running the offline-online algorithm.

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 56

(a) Relative error in predicting travel
time

(b) Relative improvement of the optimal
assignment

Figure 4.5: Accuracy of the objective function

R ERR mean ERR min ERR max GAP IB

15 -0.013 -0.022 -0.006 -0.158 1.151
20 -0.066 -0.077 -0.060 -0.160 1.080
25 -0.174 -0.191 -0.157 -0.163 0.980
30 -0.325 -0.416 -0.285 -0.196 0.85
35 -0.482 -0.660 -0.402 -0.183 0.707

Table 4.1: Error, gap and improvement bound

For the small warehouse, we conducted simulations using the random assignment and
the shortest path for each robot. We simulated 50,000 timesteps for each trail and 50 trails
for each setting. We recorded flow vector f based on robot movement in simulations and
calculated the estimated travel cost TC(f) using Equation (3.10).

Let the true total cost TTC be the travel time calculated from the simulation. We
calculated the output from our offline algorithm f∗, using the throughput from each simulation
experiment to minimize TC, and estimated ERR, GAP , and IB from Equations (4.17),
(4.18), and (4.20). The distribution of ERR, GAP , and the estimated IB is shown in
Figure 4.5 and Table 4.1.

Notice that |ERR| increases as we add more robots. A larger R leads to higher density,
more deadlocks, and complex queuing structures, so our assumptions deviate more from the
real world. In addition, as mentioned in the previous section, some layout structures may
lead to large estimation errors, thus poor performance of our offline-online algorithm. IB
can be used as a diagnostic indicator to help evaluate our offline-online method before using
the algorithm. We can also confirm that ERR < 0 because we ignore some robot blockings
in our Assumptions 1 and 5.

The GAP is approximately the same when the density of the robot increases (around

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 57

(a) Throughput for different methods: a
small system

(b) Throughput for different methods: a
large system

Figure 4.6: Throughput for different settings

15%). According to estimated IB, when R < 25, the improvement provided by our offline
algorithm outperforms the estimation error and, therefore, can guarantee a better solution.
When R = 25, IB ≈ 1. Since it is just a lower bound, it’s still highly likely that our
algorithm performs better. But for R ≥ 30, we know without running our offline-online
algorithm that it is likely that our algorithm cannot outperform the benchmark due to the
large estimation error. As shown in the next section, Figure 4.6a, this result agrees with the
actual performance of our algorithm.

Therefore, IB indicates how good our algorithm can be and how it can be calculated
without running our offline-online method. Using IB calculated from historical data, the
manager can choose our method if IB > 1.

Validation of the Offline-Online Method

We will show that our algorithm can improve system throughput. For the small and large
systems (the concatenation of 6 small systems), we set the number of robots to different
values and conducted 50 trials for each setting, with 3,000 steps for the large system and
10,000 steps for the small system. We compared our algorithm with the benchmark (random
assignment + shortest path priority routing)[51] and zoning (divide the systems into zones
and do random assignment + shortest path priority routing in each zone; each zone has one
workstation and several drop-off points).

The throughput (TH) is given in Figure 4.6. We also recorded the average time steps
(TS) that each algorithm can run without unsolvable deadlocks to show the stability of each
method. For each algorithm, the average TH will increase and then decrease. As the density
of the robot increases, the system becomes unstable and prone to deadlocks. Most deadlocks
are solvable, but will increase the delay. In this experiment, we notice that R must be less
than 30 for the small system and 120 for the large system to avoid too many deadlocks.

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 58

ra
n
d
o
m

zo
n
in
g

offl
in
e-
on

li
n
e

offl
in
e-
on

li
n
e
v
s
ra
n
d
om

o
ffl
in
e-
o
n
li
n
e
v
s
zo
n
in
g

R
T
H

T
S

T
H

T
S

T
H

T
S

∆
T
H

∆
T
S

∆
T
H

∆
T
S

60
0.
39

1
3

3,
00

0
0.
85

8
7

3,
00

0
0.
87

86
3,
00

0
12

4.
52

%
0.
00

%
2.
3
2%

0
.0
0
%

80
0.
51

0
7

3,
00

0
1.
08

6
9

3,
00

0
1.
11

76
3,
00

0
11

8.
84

%
0.
00

%
2.
8
2%

0
.0
0
%

1
00

0.
57

7
2

2
56

0
1.
18

4
5

27
1
8

1.
28

85
3,
00

0
12

3.
24

%
17

.2
1%

8.
7
8%

1
0.
3
7%

1
20

0.
52

0
4

1
16

5
1.
25

0
8

27
0
9

1.
26

64
27

09
14

3.
34

%
13

2.
60

%
1.
2
4%

0
.0
0
%

1
40

0.
42

4
3

45
4

1.
02

2
4

18
5
6

0.
89

86
13

11
11

1.
79

%
18

8.
51

%
-1
2.
1
1%

-2
9
.3
8
%

1
6
0

0.
26

4
8

27
0

0.
86

4
6

15
6
1

0.
34

11
13

0
28

.8
3%

-5
1.
85

%
-6
0.
5
5%

-9
1
.6
8
%

15
0.
18

4
1

1
0,
00

0
0.
20

3
9

1
0,
00

0
0.
20

92
10

,0
00

13
.6
6%

0.
00

%
2.
5
9%

0
.0
0
%

20
0.
22

8
0

8
15

9
0.
23

4
2

1
0,
00

0
0.
23

72
10

,0
00

4.
05

%
22

.5
7%

1.
2
9%

0
.0
0
%

25
0.
24

9
2

8
27

0
0.
23

2
2

1
0,
00

0
0.
25

48
10

,0
00

2.
24

%
20

.9
1%

9.
7
2%

0
.0
0
%

30
0.
23

6
5

3
12

8
0.
22

5
0

1
0,
00

0
0.
25

56
10

,0
00

8.
07

%
21

9.
65

%
1
3.
5
9%

0
.0
0
%

35
0.
21

6
6
69

30
2
5
.2

0
.1
95

3
6

1
0
,0
00

0.
09

06
55

29
8

-5
8.
16

%
-9
0.
15

%
-5
3.
6
0%

-9
7
.0
2
%

T
ab

le
4.
2:

P
er
fo
rm

an
ce

im
p
ro
ve
m
en
t

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 59

R simulation time per step

random zoning offline-online

15 2.05E-03 2.59E-03 1.35E-03
20 5.64E-03 3.50E-03 2.04E-03
25 8.90E-03 4.37E-03 2.82E-03
30 4.07E-03 3.29E-03 2.36E-03
60 9.85E-03 8.87E-03 5.57E-03
80 1.45E-02 1.30E-02 8.87E-03
100 6.19E-02 1.90E-02 1.31E-02
120 5.55E-02 2.64E-02 1.99E-02

Table 4.3: Computation time per simulation step in second

Therefore, a managerial insight is that no matter what assignment/path-finding method
we use, we should check if complex congestion is common when the throughput is less than
expected. If there are multiple bottlenecks in congested areas, we should decrease the number
of robots. The marginal utility for each additional robot diminishes in an RSS and becomes
negative if too many robots exist.

Another insight is that even with zoning, a large system cannot outperform many smaller
systems because of the spread of congestion and the risk of deadlocks. The peak for the large
system is about 1.27, and 0.25 for the smaller system 1.27 < 6× 0.25 = 1.5. This is because
the arrival rate of deadlocks in large systems is greater. A deadlock in one zone may spread
congestion to zones, leading to system collapse. Therefore, with a large system, we should
physically divide the system into smaller ones to deal with deadlocks and system collapse
separately; zoning strategy alone is insufficient.

The relative improvement in performance ∆ TH and the time steps before unsolvable
deadlocks ∆TS are shown in Table 4.2. Before reaching the critical density, ∆TH will increase.
After the critical density, we cannot guarantee that our algorithm is better, since the deadlock
resolving contributes more to the delay, and the system becomes unstable when running.

Our discussion with [28] shows that the system usually runs with robot numbers near
the peak throughput to achieve maximum efficiency. At peak throughput, our algorithm
can increase throughput by approximately 10% in the small system (R=30) and the large
system (R=100) compared to the zoning method, and much more than random assignment.
Our algorithm also increases the stability since the time steps before hitting an unsolvable
deadlock increase when using our method.

Finally, the computation time is greatly reduced since the online algorithm picks paths
from O(N) known paths, while the shortest path takes O(N log(N)). We show the calculation
time of one timestep for different algorithms in Table 4.3, using a personal laptop with an
Intel(R) i9-12900HK processor and 16GB RAM with a simulator written in Python 3.8. Our
algorithm is about twice as fast as the benchmark methods, since they need to find the
shortest paths for each robot.

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 60

Conclusion

In conclusion, our experiments showed the following.

• The diagnostic indicator IB can predict if our method outperforms the current system
based on historical data without running simulations with our offline-online method
(See Figure 4.5 and Table 4.1).

• Our offline-online method can improve throughput by about 10% (See Figure 4.6 and
Table 4.2)

• Our method has better computation time performance compared to existing methods
(See Table 4.3), making it suitable for large systems with hundreds of robots.

• The marginal utility for each additional robot is diminishing in an RSS and will be
negative if we have too many robots.

• If using a zoning strategy, instead of only using zoning for assignment, it would be
better to disallow robots from moving from one zone to another to prevent queue
spillover from one zone to another.

4.6 Summary

We present an integrated offline-online assignment and decentralized routing framework for
grid-based robotic warehouse systems. Given the system layout, robot fleet, and estimated
demand, our approach can dynamically and efficiently allocate paths to robots. Our offline
algorithm employs a directed graph representation to approximate the steady-state, system-
optimal flow distribution. Subsequently, this information guides the online component,
achieving a computational complexity of O(N). Thus, our framework is well-suited for large
systems involving hundreds of robots and thousands of cells. Simulations indicate superior
performance compared to zoning or random assignment schemes combined with prioritized
shortest-path routing, yielding a throughput improvement of approximately 5-10%.

Nevertheless, our approach has its limitations. It is best suited for expansive systems
featuring freely navigable robots. Systems characterized by elongated corridors, tandem
bottlenecks, or exceedingly high robot density leading to complex blockages render our
assumptions useless. Before deploying our algorithm, operators can estimate the IB indi-
cator (discussed in Section 4.4)—calculated from historical data—to assess the algorithm’s
applicability to their specific settings.

There are several directions for future studies. Firstly, while our model’s applicability to
RMFS systems, comprehensive empirical validation at the industrial scale remains crucial
to realizing its full potential. Secondly, we have touched upon the influence of battery
consumption on fleet size, yet a more expansive model incorporating battery charging and
swapping mechanisms warrants exploration. Lastly, strict proof of Conjecture 1 remains

CHAPTER 4. OPERATION OF ROBOTIC WAREHOUSES 61

an open question; achieving this will necessitate a deeper comprehension of heavy-traffic
approximations for departure and arrival flows in closed queuing systems.

62

Chapter 5

New Design for Robotic Warehouses

5.1 Introduction

To make fully automated RMFS with internal workstations possible, as mentioned in Sec-
tion 1.3, we need to handle assembled orders at internal workstations. The main idea of our
design is to pick up items and assemble order totes using robotic arms in internal workstations
and temporarily store the totes in some special pods near these interior workstations. Once in
a while, we dispatch a mobile robot to transport these totes from one internal workstation to
one external workstation carrying the filled special pod. Using this design, items are batched
at internal workstations, thus reducing transportation costs and improving the system’s
performance.

To determine the location of these internal and external workstations, we developed a
location-allocation-queuing model to minimize the total transportation cost. This model can
optimize workstation locations for both our and traditional (KIVA) designs. The system
is modeled with assumptions as an open queueing network (OQN) that does not have a
product-form solution. Assuming that the internal workstations have sufficient temporary
storage capacities (i.e., the batch size of assembled totes is large), we approximated the
waiting times of robots at workstations (internal and external) using closed-form functions
of flow intensity, and the total transportation cost can be approximately estimated. We
validated our approximation using numerical simulation and compared our new design with
KIVA-like designs. Our experiments showed that our design can significantly decrease robot
transportation and waiting costs for large and deep systems. Our experiment also suggested
deploying fewer internal workstations if the processing time for special pods is long.

5.2 System Design

In this section, we will describe our design and recap the KIVA system.

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 63

Figure 5.1: KIVA-like RMFS systems

Recap: KIVA RMFS

KIVA RMFS comprises mobile robots, moving pods, and picking workstations. Robots move
pods from storage areas to workstations on the periphery. Human workers pick items from
the pods at the workstations and place them in totes. Each tote is an assembled order and
will exit the system via a conveyor for further packing and consolidating. The robots will
also return the picked pods to the storage area. See Figure 5.1 and for more details, see
Section 1.2.

New RMFS Design

In our fully automated RMFS with a grid-like roadmap, the items are stored in movable
pods called normal pods. When a pick-up order arrives, a robot will move to the pod with
the target item (Step 1 in Figure 5.2). The robot then lifts the pod and carries it to one of
the workstations (step 2), where a picker can pick up the item from the pod (step 3). The
robots will form a line near the workstation to be picked.

After picking, the pod will be returned to the storage area. If the workstation is located
near a conveyor or the exit (external workstations), the totes with the picked items will be

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 64

Figure 5.2: New RMFS design

shipped immediately after pick-up (lower right part of Figure 5.2). If the workstation is
isolated in the storage area (internal workstations), picked totes will be temporarily stored in
a special pod inside the workstation (t = t0 in Figure 5.2). The special pod serves as a pool
for completed totes: the empty totes on the pod will be filled over time (t = t0 to t = t1 in
Figure 5.2). Every once in a while, an empty robot will come to the workstation and carry
this special pod filled with picked totes to an external workstation near the conveyor or exit
(see the robot with special pod (the purple robot) in Figure 5.2).

Our design can reduce transportation costs compared to the conventional KIVA system
because the items from the storage area are batched at internal workstations, reducing the
total travel distance. Using the special pod with totes, we also find a way to connect isolated
internal workstations with external workstations.

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 65

5.3 Model

In this section, we analyze our design and model it as an open queueing network (OQN),
so that we build a location-allocation-queueing model to find the optimal location of the
workstation.

Assumptions

We make the following assumptions:

Assumption 6 (Steady State). The system operates in a steady state. All processes are
stationary.

Our analysis concerns the steady state of the system. In a real-world system, there could
be occasional interruptions and fluctuations. However, in the strategic decision-making phase,
like layout design, we can ignore these interruptions and focus on a stable and smooth-running
state.

Assumption 7 (Poisson Arrival). The picking request for each pod is independently Poisson.
The arrival rate depends only on the storage location of the pod.

Assumption 8 (Enough Robots). There are enough robots in the system. A newly received
order will be processed immediately.

Assumption 7 and 8 are approximations for the warehouse management system (WMS).
A real-world system has two levels of operation: WMS and robot management system (RMS).
WMS will pre-process orders and split and batch orders to reduce the number of picking
operations. RMS does not know order details; it only manages robots picking pods.

In an e-commerce system, most orders are single-line. Even if an order is not single-line,
the WMS usually decomposes it into multiple single-line tasks and assembles them in the
order consolidation process after picking them. The actual order arrival process is not Poisson.
They usually arrive in batches, and the WMS would combine different orders so that they
can be fulfilled by one pod-picking operation. In this process, WMS usually does not know
the pod location (e.g., [33]), so location-wisely, pods containing the requested item have an
equal probability of being chosen. In addition, the WMS’s goal is to stabilize the system’s
operation, so it will not release orders if all robots or workstations are busy or congested,
and it will release more orders if the system is idle.

From the RMS point of view, WMS introduces smoothness in the order arrival process
and randomness in the requested pod location. We will treat this smooth and stable arrival
as Poisson and assume that the WMS stores items randomly. If WMS is smart enough, it
will never assign orders to busy robots, equivalent to, say, enough robots. Therefore, we
approximate robot operation using assumptions 7 and 8.

Assumption 9 (Collision-free Path). The robot travel time is deterministic.

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 66

We ignore robot blocking in most parts of the system. Congestion is modeled as queues
near workstations, and the robot travel time is assumed to be deterministic. In a fully
automated real-world RMFS, a workstation is much more expensive than mobile robots or
moving pods, so we let robots queue near workstations. Consequently, most traffic delays
occur in queues near workstations instead of intersections or aisles.

Open Queuing Network

RMFS as an OQN

T1

Tj

λ

Wi1

Wi|I1|−1

We1

We|I2|

I2: External
workstation for
special pods

I1: Internal
workstation

T|J|

Wk1

Special pods,
batch size ξ

λ1

λj

λ|J|

Qi1 =
∑

j∈J
Yji1

S1

S1

S2

Wk|I3|

Qk1 =
∑

j∈J
Yjk1

Qe1 =
∑

k∈I1
Zk,e1

I3: External
workstation for
normal pods

Normal pods

Normal pods

Wi|I1|

Figure 5.3: OQN for fully robotic RMFS

In an RMFS with internal workstations, let T := {Tj : j ∈ J} be the set of storage slots
for pods, each Tj is represented by a small pod square in Figure 5.2). J is the index set of all
pods. Let the set of workstations be W := {Wi : i ∈ I} with the index set I := {1, 2, 3,}.
I = I1 ∪ I2 ∪ I3 where {Wi : i ∈ I1} is the set of internal workstations, {Wi : i ∈ I2} is the
set of external workstations that process special pods, and {Wi : i ∈ I3} is the set of external
workstations that process normal pods.

Let Yj,i be the flow of normal pods from the storage slot Tj : j ∈ J to the workstation
Wi : i ∈ I1 ∪ I3. Let Zk,i be the flow of special pods from Wk : k ∈ I1 to Wi : i ∈ I2, and let
Qi be the incoming flow to Wi : i ∈ I.

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 67

Let ξ be the tote capacity of a special pod. Let the random service time of a normal pod
and a special pod at the workstation be S1 and S2, respectively. Based on our assumptions,
each internal workstation Wi should only send out one special pod when it is filled.

Proposition 2. Under Assumption 8, sending special pods with ξ filled totes is optimal in
transportation cost.

Proof. If internal workstation Wi sends N special pods with X1, X2, ..., Xn, ..., XN totes, and
∃Xn < ξ. We can set Xi = ξ,XN = XN − (ξ−Xi) for i = 1, 2, ... until XN = 0, which means
the task can be completed using N − 1 special pods travel with less. Repeating this process,
to reduce transportation cost, X1, X2, ... should be ξ.

Based on our Assumptions 6 and 8, the RMFS with internal workstations can be modeled
as the open queueing network (OQN) shown in Figure 5.3. Each Tj node is a pod storage
location in the network, and each Wi node is a workstation. The arrival of order at Tj is a
Poisson flow λj. Tj will dispatch normal pods to Wi : i ∈ I1 ∪ I3 with Poisson flow Yj,i.

If i ∈ I3 (for example, Wk1 in Figure 5.3), Wi is an external workstation that can process
robots that carry normal pods and send completed totes out of the system. Otherwise, if
i ∈ I1 (for example, Wi1 in Figure 5.3) , Wi is an internal workstation. Wi : i ∈ I1 processes
the robots in the queue and stores the totes in a special pod as a batching pool. The service
time for Wi : i ∈ I1 ∪ I3 is S1 per pod and the service rate µi =

1
E[S1]

. The arrival rate of the
pods at Wi : i ∈ I1 ∪ I3 is

Qi =
∑
j∈J

Yj,i : i ∈ I1 ∪ I3 (5.1)

The internal workstations process the robots in the queue and store totes in a special pod
that serves as a batching pool. Wk : k ∈ I1 is assigned to Wi : i ∈ I2, an external workstation
designed for a special pod. The flow of special pods from Wk : k ∈ I1 to Wi : i ∈ I2 is Zk,i.

If i ∈ I2, Wi processes special pods from Wk : k ∈ I1 with random service time S2 and
service rate µi =

1
E[S1]

(for example, Wk1 in Figure 5.3). The arrival rate at Wi : i ∈ I2 is

Qi =
∑

k∈I1 Zk,i. Based on Proposition 2, Zk,i =
Qk

ξ
. The external workstation Wi : i ∈ I2

connected to Wk will process the special pod and send the completed totes out of the system.
The arrival rate at Wi : i ∈ I2 is

Qi =
∑
k∈I1

Zk,i : i ∈ I2 (5.2)

Each Wi : i ∈ I can be modeled as a FCFS G/G/1 queue, with random service time S1 for
Wi : i ∈ I1 ∪ I3 and S2 for Wi : i ∈ I2. We can use Kingman’s formula to estimate queueing
delays. Therefore, we must first estimate the expectation and CV of the inter-arrival times
on each Wi : i ∈ I.

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 68

Estimating CV of Inter-Arrival Times at Workstations

The order arrival of an internal workstation Wi : i ∈ I1 ∪ I3 comes from pods Tj : j ∈ J :
Yj,i > 0, that is a combination of many Poisson flows. Therefore, the arrival process at Wi is
also Poisson, and the CV of inter-arrival times is 1.

The order arrival of an external workstation Wi : i ∈ I2 comes from the flows Zk,i from
internal workstations Wk, k ∈ I1. Using Equation (31) from [61], the arrival process at each
Wi : i ∈ I2 has CV of inter-arrival times:

CV 2
i,Arrival =

∑
k∈I1 Zk,iCV 2

k,i

Qi

(5.3)

For k ∈ I1, using Proposition 3, if the robot arrival rate at Wk is Qk, the flow from
Wk : k ∈ I1 to Wi : i ∈ I2 has a intensity of Zk,i =

Qk

ξ
, and the CV of inter-departure times is

CV 2
k,i =

1

ξ
((QkE[S1]CVS1)

2 + 1− (QkE[S1])
2) (5.4)

Proposition 3. If an internal workstation has random service time S and Poisson arrival λ,
the inter-departure time from it is approximately Normal(ξ

λ
, ξ(Var[S] + 1

λ2 − 1
µ2)) for large ξ

and high work load (ρ = λ
µ
→ 1).

The proof is given in Appendix Section B.1.

Estimation of Transportation Cost with Queue Delay

Using Kingman’s formula for G/G/1 queues, the robot sojourn time Di (sum of service time
and waiting time) in Wi : i ∈ I1 ∪ I3 with Poisson arrival Qi is:

E[Di] = Qi

(
1

µi

+
1 + CV 2

S1

2µi

Qi

µi −Qi

)
(5.5)

The robot queuing delay at Wi : i ∈ I2 with arrival Qi, CVi,Arrival from Equations 5.3 and 5.4
is:

E[Di] = Qi

(
1

µi

+
CV 2

k,Arrival + CV 2
S2

2µi

Qi

µi −Qi

)
(5.6)

If the travel time is dj,i from Tj to Wi, and dk,i from Wk : k ∈ I1 to i ∈ I3, the total
transportation cost is:

∑
i∈I1∪I3

[∑
j∈J

dj,iYj,i +Qi

(
1

µi

+
1 + CV 2

S1

2µi

Qi

µi −Qi

)]

+
∑
i∈I2

[∑
k∈I1

dk,iZk,i +Qi

(
1

µi

+
CV 2

k,Arrival + CV 2
S2

2µi

Qi

µi −Qi

)]

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 69

Location-Allocation-Queue Model (LAQM)

Formulation as Mixed Integer Programming(MIP)

Let Xi ∈ {0, 1} indicate whether we open a workstation at location Wi. Yi,j and Zk,i are
pod-to-workstation and internal-to-external-workstation traffic flows (in robots per unit time).
We introduce the binary variable Vk,i to ensure that one internal workstation is assigned to
one external workstation. The Location-Allocation-Queue Model (LAQM) is:

(LAQM) min
∑

i∈I1∪I3

[∑
j∈J

dj,iYj,i +Qi

(
1

µi

+
1 + CV 2

S1

2µi

Qi

µi −Qi

)]

+
∑
i∈I2

[∑
k∈I1

dk,iZk,i +Qi

(
1

µi

+
CV 2

i,Arrival + CV 2
S2

2µi

Qi

µi −Qi

)]
(5.7)

s.t. Equations (5.1), (5.2), (5.3), and (5.4)hold and∑
i∈I

αiXi ≤ θ (5.8)∑
i∈I1∪I3

Yj,i = λj,∀j ∈ J (5.9)

Qi ≤ Xiµi,∀i ∈ I (5.10)∑
i∈I2

Zk,i =
Qk

ξ
,∀k ∈ I1 (5.11)

Zk,i −MVk,i ≤ 0,∀k ∈ I1, i ∈ I2 (5.12)∑
i∈I2

Vk,i = 1,∀k ∈ I1 (5.13)

Xi ∈ {0, 1},∀i ∈ I (5.14)

Vk,i ∈ {0, 1},∀k ∈ I1, i ∈ I2 (5.15)

Yi,j, Zik, Qi ≥ 0 (5.16)

Constraints Equations (5.8) limit the budget of opened workstations where θ is the total budget.
Constraints Equations (5.1)-(5.4) give definitions of variables Q and CV . Equation (5.9) is
the demand satisfaction condition for pods to workstations, and Equation (5.2) is the demand
satisfaction condition for special pods from Wk : k ∈ I1 to Wi : i ∈ I2. Equation (5.10)
enforces that no flow can use closed workstations. Equations (5.12) and (5.13) ensure that an
internal workstation is connected to at most one external workstation using a binary variable
Vk,i and a large number M .

Approximated LAQM (A-LAQM)

The CV of the inter-arrival times at external workstations makes (LAQM) too complicated
to solve. Here we propose an approximation:

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 70

Approximation 1. For special pods with large capacity ξ:

CV 2
i,k =

1

ξ
((QiE[S1]CVS1)

2 + 1− (QiE[S1])
2) ≈ 0 (5.17)

so that the sojourn time at Wi : i ∈ I2 is approximately:

E[D̃i] = Qi

(
1

µi

+
CV 2

S2

2µi

Qi

µi −Qi

)
(5.18)

The following theorem validates this approximation:

Theorem 2. Assume ∃ϵ : 1 > ϵ > 0, such that the utilization ρi ≤ 1 − ϵ, ∀i ∈ I2. If
∃ε : 1 > ε > 0, such that

ξ ≥ 1− ϵ

2εϵ
(1 + |CV 2

S1
− 1|) (5.19)

then the absolute relative error |E[Di]−E[D̃i]|
E[D̃i]

in the sojourn time compared to Kingman’s Formula

(5.6) is bounded: |E[Di]−E[D̃i]|
E[D̃i]

≤ ε

The proof is given in Appendix Section B.2.

Remark 3. We show in Theorem 2 that the relative error decreases proportionally to 1
ξ
. With

ξ = 100, an exponentially distributed service time S1, and load ρi = 0.8 we can guarantee
that the relative error in the sojourn time using approximation 1 is less than 2%.

Remark 4. Theorem 2 gives a an upper bound for relative error: ρ
2ξ(1−ρ)

(1 + |CV 2
S1
− 1|)

Using Approximation 1, the LAQM can be approximated as the Approximated LAQM
(A-LAQM)

(A-LAQM) min
∑

i∈I1∪I3

[∑
j∈J

dj,iYj,i +Qi

(
1

µi

+
1 + CV 2

S1

2µi

Qi

µi −Qi

)]

+
∑
i∈I2

[∑
k∈I1

dk,iZk,i +Qi

(
1

µi

+
CV 2

S2

2µi

Qi

µi −Qi

)]
(5.20)

s.t. Equations (5.1), (5.2), and (5.8)–(5.16) hold

5.4 Solution Method

Small-to-Medium Scale Problem: Reformulate as SOCP

The (A-LAQM) in Equation 5.20 is a nonlinear mixed integer programming with linear
constraints. Inspired by [5] for the queuing cost, we can reformulate (A-LAQM) as mixed

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 71

integer second order conic programming (MISOCP). Introduce auxiliary variables Gi, Hi :

i ∈ I and new constraints so that Gi ≥ Q2
i

µi−Qi
, and Hi = µiXi −Qi, the (A-LAQM) can be

transformed into:

(SOCP-A-LAQM) min
∑

i∈I1∪I3

[∑
j∈J

dj,iYj,i +
Qi

µi

+
1 + CV 2

S1

2µi

Gi

]

+
∑
i∈I2

[∑
k∈I1

dk,iZk,i +
Qi

µi

+
CV 2

S2

2µi

Gi

]
(5.21)

s.t. Equations (5.1), (5.2), and (5.8)–(5.16) hold, and

Q2
i ≤ GiHi,∀i ∈ I (5.22)

Hi = µiXi −Qi, ∀i ∈ I (5.23)

Gi ≥ 0, Hi ≥ 0, ∀i ∈ I (5.24)

The problem (SOCP-A-LAQM) has a linear objective function. The constraint (5.22)
is hyperbolic, and all the other constraints are linear. Constraints (5.22) and (5.23) are
introduced to include nonnegative continuous variables Gi and Hi to transform the problem
into a MISCOP. (SOCP-A-LAQM) has the same solution as (A-LAQM), and can be solved
using off-the-shelf conic programming solvers.

Large Scale Problem: Lagrangian Relaxation with SOCP
Sub-Problems

For large-scale problems with many candidates in I, the (SOCP-A-LAQM) becomes difficult
to solve directly. We can use Lagrangian Relaxation techniques to solve the (A-LAQM) by
relaxing Equation 5.10. Consider the dual function

L(π) = min
X,Y,Z,V,Q

∑
i∈I1∪I3

[∑
j∈J

dj,iYj,i +Qi

(
1

µi

+
1 + CV 2

S1

2µi

Qi

µi −Qi

)]

+
∑
i∈I2

[∑
k∈I1

dk,iZk,i +Qi

(
1

µi

+
CV 2

S2

2µi

Qi

µi −Qi

)]
+
∑
i∈I

πi(Qi −Xiµi)

=
∑
i∈I

(−µiπi)Xi +
∑

i∈I1∪I3

[∑
j∈J

dj,iYj,i +Qi

(
πi +

1

µi

+
1 + CV 2

S1

2µi

Qi

µi −Qi

)]

+
∑
i∈I2

[∑
k∈I1

dk,iZk,i +Qi

(
πi +

1

µi

+
CV 2

S2

2µi

Qi

µi −Qi

)]
(5.25)

s.t. Equations (5.1), (5.2), (5.8), (5.9), and (5.11) –(5.16) hold

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 72

Note L(π) = L1(π) + L2(π), where we define two sub-problems:
(L1 Problem):

L1(π) = min
X

∑
i∈I

(−µiπi)Xi (5.26)

s.t. Equations (5.8) and(5.14) hold

(L2 Problem):

L2(π) = min
Y,Z,V,Q

∑
i∈I1∪I3

[∑
j∈J

dj,iYj,i +Qi

(
πi +

1

µi

+
1 + CV 2

S1

2µi

Qi

µi −Qi

)]

+
∑
i∈I2

[∑
k∈I1

dk,iZk,i +Qi

(
πi +

1

µi

+
CV 2

S2

2µi

Qi

µi −Qi

)]
(5.27)

s.t. Equations (5.1), (5.2), (5.9), and (5.11)–(5.13), (5.15)–(5.16) hold

Note we can transform (L2 Problem) into a MISOCP by introducing G′
i ≥

Q2
i

µi−Qi

(SOCP L2 Problem)

LSOCP
2 (π) = min

Y,Z,V,Q,G′

∑
i∈I1∪I3

[∑
j∈J

dj,iYj,i +Qi

(
πi +

1

µi

)
+

1 + CV 2
S1

2µi

G′
i

]

+
∑
i∈I2

[∑
k∈I1

dk,iZk,i +Qi

(
πi +

1

µi

)
+

CV 2
S2

2µi

G′
i

]
(5.28)

s.t. Equations (5.1), (5.2), (5.9), and (5.11)–(5.13), (5.15)–(5.16) hold, and

Q2
i ≤ Gi(µi −Qi) (5.29)

Similar to Equation 5.22, Equation 5.29 introduces G′
i and transforms (L2 Problem) into a

MISOCP.
(L1 Problem) is a 0-1 knapsack problem. In our case, assuming the cost of workstations

are the same as long as they have the same type (Assumption 10), if we know nX,1 =
∑

i∈I1 Xi,
nX,2 =

∑
i∈I1 Xi, and nX,3 =

∑
i∈I1 Xi, at optimal, the nX,1 opened workstation in I1 will

be those with the smallest −µiπi. Therefore, with this assumption, we only need to find
nX,1, nX,2, and nX,3 to find the optimal solution. The problem can be solved using Algorithm 3,
with the time complexity of O(|I1||I2||I3|).

Assumption 10. Assume αi = αj if i, j ∈ I1 or i, j ∈ I2, or i, j ∈ I3.

(SOCP L2 Problem) is a MISOCP which can be solved using off-the-shelf solvers. There-
fore, L(π) in Equation 5.25 can be found numerically.

The subgradient ∂L
∂πi

= Qi − Xiµi, and we have πi ≥ 0 since we relaxed inequality
constraints. We can update the dual variable π using the subgradient-projection method
(Algorithm 4).

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 73

Algorithm 3 L1 Knapsack Algorithm

1: Solution =∞
2: for n1 = 1, 2, ..., |I1| do
3: Xi = 0,∀i ∈ I
4: Xi = 1 if −πiµi is one of the n1 smallest in {−πiµi : i ∈ I1}
5: for n2 = 1, 2, ..., |I2| do
6: Xi = 1 if −πiµi is one of the n2 smallest in {−πiµi : i ∈ I2}
7: for n3 = 1, 2, ..., |I3| do
8: Xi = 1 if −πiµi is one of the n3 smallest in {−πiµi : i ∈ I3}
9: if Equation 5.8 is satisfied then
10: Solution = min{Solution,

∑
i∈I(−µiπiXi)}

11: end if
12: end for
13: end for
14: end for

Algorithm 4 Lagrangian Relaxation

1: Initialize: Lagrange multipliers πi ≥ 0, i ∈ I, tolerance ϵ, step size α
2: Set: UB = +∞, LB = −∞
3: while UB − LB > ϵ do
4: Solve the relaxed problem:
5: L(π) = L1(π) + LSOCP

2 (π)
6: Update LB = max(LB,L(π))
7: Update the Lagrange multipliers:
8: πi = max(0, πi + α UB−L(π)∑

i∈I(Qi−Xiµi)2
(Qi −Xiµi)), i ∈ I

9: Update UB = min(UB, Solution to (A-LAQM) with X given by L1)
10: end while
11: Output: Optimal solution and optimal objective value UB

5.5 Numerical Results

Validation of Sojourn Time Approximation and Theorem 2

In this section, we validate our approximation method and the bound (Theorem 2) using
numerical simulation. Consider the simple system with three workstations in Figure 5.4c.
We set I1 = {0, 1} and I2 = {2}. Workstations 0 and 1 process incoming normal pods, batch
the totes in special pods, and send special pods to workstation 2. Assume that the service
times E[S2] = 100, Var[S2] = 16, CVS1 = 1/3, S1, S2 are normally distributed.

From Theorem 2, the relative error of our approximation (5.18) compared to Kingman’s
formula (5.6) is bounded by 1−ϵ

2ξϵ
(1 + |CV 2

S1
− 1|), where we can set ϵ = 1− ρ2. We conducted

two experiments to see how the relative error changed with the utilization of the workstation

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 74

(a) ρ2 vs errors (b) ξ vs errors

0

2

1

(c) System for esti-
mation validation

Figure 5.4: Validate the error bound

ρ2 and the special capacity of the pod ξ.
In the first experiment, we fixed the special pod capacity at ξ = 100 and changed ρ2

from 0.01 to 0.99. For each ρ2, we set E[S1] =
1

ρ2ξE[S2]
so that ρ1 ≈ 0.5 (note that we have

identical I1 workstations). We run each simulation for 1000000 time units and estimate the
average sojourn time and the coefficient of variance of inter-arrival time at workstation 2.
We calculated the average sojourn time, the sojourn time from Kingman’s Formula (5.6)
using simulated CV, and our approximation (5.18). We also calculated the error bound
(1−ϵ
2ξϵ

(1 + |CV 2
S1
− 1|)) with ϵ = ρ2. The result is given in Figure 5.4a.

From Figure 5.4a, we notice that the absolute estimation error increases with ρ2. The
errors are bounded by the error bound from Theorem 2. Note that the error compared with
simulation can be less than the error compared with Kingman’s formula because Kingman’s
formula tends to overestimate the sojourn time while our approximation underestimates
Kingman’s formula.

In the second experiment, we set the service time E[S1] to a proper value so that
ρ2 ≈ 0.2, ρ1 ≈ 0.5, and change the special pod size ξ from 20 to 200. The results are shown
in Figure 5.4b. Since the absolute error is estimated from simulation, this estimation has its
variance, so some scatter dots lie over the error bound, since the error bound only bounds

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 75

the expectation. We notice that the error compared to Kingman’s formula (orange dots in
Figure 5.4b) has a similar trend with our error bound, and the error bound from Theorem 2
is an upper bound for the absolute error compared to Kingman’s formula.

In conclusion, from these experiments, our approximation is accurate for the sojourn time
of the workstation in I2. If ρ < 0.8, the error is less than the approximate error of Kingman’s
formula, resulting in an absolute relative error < 3%. As we increase the size of special pods,
the approximation error further decreases. In addition, the bound given in Theorem 2 is an
upper bound of the relative approximation error. Managers can use this bound to evaluate
our method.

Evaluation of the Design Optimality

In this section, we investigated the optimal workstation location found by (SOCP-A-LAQM)
and the Lagrangian Relaxation Algorithm 4 in both our new design and conventional KIVA
systems and compared their performance in terms of the sum of robot travel time and waiting
time at workstations. We compared different system layouts and the budgets for workstations.
We considered three levels of system storage capacity. We considered a square and rectangle
layout for each level of storage capacity. The budget for workstations increased with the
storage capacity of the system. The scenarios of numerical experiments are presented in
Table 5.1. Using the parameters E[S1] = 10,E[S2] = 200, CVS1 = 4, CVS2 = 16, and setting
the fixed cost αi = 1 for all the workstations, we assumed that the external workstations
were located on two vertical edges. We defined relative depth as Width

Height
in our experiments

due to the position of our external workstations

scenario 1 2 3 4 5 6
Height 15 10 20 15 30 20
Width 15 22 20 27 30 45
Relative depth 1 2.2 1 1.8 1 2.25
budget (# of workstations) 5 5 8 8 12 12

Table 5.1: Scenarios of numerical experiments

Table 5.2 includes the cost comparison result. Transportation cost was estimated using
discrete-even simulations for the open queueing network in Figure 5.3, representing the
total robot machine time per unit time (or the average active robot number in the system).
Compared with the KIVA system, the experiment showed that our new design can lower the
operational cost concerning robot travel time and waiting time at workstations.

The relative improvement is more significant for larger systems because implementing
internal workstations reduces robot travel time. In a larger system, robot travel time plays a
larger role in total machine time, so our new design with internal workstations provides more
benefits.

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 76

A larger relative improvement can be expected in a deeper system, that is, with a larger
relative depth. More reduction in robot travel time can be obtained in a deeper system with
internal workstations due to the batching of robots traveling from internal workstations to
external workstations.

Therefore, our design outperforms KIVA for larger and deeper systems.

scenario 1 2 3 4 5 6
cost of new design 0.77 1.85 3.4 3.45 8.96 8.98
cost of KIVA 0.8 2 3.63 3.8 9.97 11.22
Imp(%) 3.75 7.50 6.34 9.21 10.13 19.96

Note: Imp = 100% ∗ cost of KIVA -cost of new design
cost of KIVA .

Table 5.2: Cost comparison between our new design and KIVA system

(a) new design (b) KIVA

Figure 5.5: Layout of scenario 1

Legend:
Green: internal workstations i ∈ I1.
Blue: external workstation for special pods i ∈ I2.
Red: external workstation for normal pods i ∈ I3

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 77

(a) new design (b) KIVA

Figure 5.6: Layout of scenario 6

Legend:
Green: internal workstations i ∈ I1.
Blue: external workstation for special pods i ∈ I2.
Red: external workstation for normal pods i ∈ I3

Effect of Processing Time of Workstation on The Optimal Design

In this section, we explored the effect of the processing time of internal and external worksta-
tions on the optimal workstation location and the comparison between our new design and
KIVA systems. To this aim, we fixed E[S1] = 10, CVS1 = 4, CVS2 = 16 and vary E[S2] from
50 to 450 with a step size of 50. The system size was W = H = 20, and the fixed cost of
each workstation was set as αi = 1.

The opened workstation location of our new design varied with E[S2], which is depicted in
Fig.5.7. With the increase of E[S2], more budgets will be allocated to external workstations,
and fewer internal workstations will be used. Under the optimal solution given by our location-
allocation-queuing model, the budget assignment will balance the workloads between internal
and external workstations to prevent long queues at certain workstations. A larger E[S2]
means a smaller processing capacity of each external workstation. More budget workstations
will be used for external workstations to balance the workload between internal and external
workstations.

Therefore, managers should deploy more internal workstations if E[S2] is small.

Effect of Demand Density on the Optimal Design

In this section, we investigate the effect of the demand density of the storage pods by
comparing the machine time of our new design with that of the KIVA system. We evenly took
10 values from 0.01 to 0.05 for the demand density and fixed the system size as W = H = 20,
the budget of the workstations as 12, and the fix ed cost of each workstation as α = 1. The
comparison result is included in Table 5.3. It shows that using our new design leads to

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 78

(a) E[S2] = 50 (b) E[S2] = 100 (c) E[S2] = 150

(d) E[S2] = 200 (e) E[S2] = 250 (f) E[S2] = 300

(g) E[S2] = 350 (h) E[S2] = 400 (i) E[S2] = 450

Figure 5.7: Workstations location with respect to varying E[S2]

Legend:
Green: internal workstations i ∈ I1.
Blue: external workstation for special pods i ∈ I2.
Red: external workstation for normal pods i ∈ I3

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 79

a smaller total machine time in a low demand density system, whereas the KIVA system
performs better in the system with a high demand density system.

The trade-off between the robot travel time reduction and the robot waiting time results
in this phenomenon. Our design sacrificed queue waiting time for transportation time. By
introducing internal workstations, the travel distance is greatly reduced. However, orders
fulfilled in internal workstations must go through two queue servers (in I1 and I2 workstations),
while orders in the KIVA-like system only go through one (at I3) in the OQN (Figure 5.3).

In a large system with low-demand density, the robot travel time reduction dominates
the robot waiting time at workstations, so our new design outperforms the KIVA system in
large systems. The internal workstation is less effective for smaller systems with high demand
density, so a conventional KIVA-like design works fine.

Therefore, combined with the result in Table 5.1, one insight is that our design performs
better for larger systems with lower demand density.

Demand density 0.010 0.014 0.019 0.023 0.028 0.032 0.037 0.041 0.046 0.050

NewDesign cost 3.21 4.80 6.59 8.70 11.14 14.29 18.43 24.90 36.37 66.84
KIVA cost 3.42 5.13 7.00 9.09 11.49 14.34 17.91 22.67 29.76 42.27
Imp(%) 5.98 6.36 5.76 4.30 3.07 0.40 -2.95 -9.83 -22.2 -58.1

Table 5.3: Operational cost comparison with respect to different demand densities

Conclusion

Based on our simulation experiments, we conclude that:

• Our approximation is accurate for external workstations that handle special pods, with
small utilization ρ and large special pod capacity ξ. (See Figure 5.4)

• The approximation error bound in Theorem 2 provides an upper bound of the relative
estimation error on sojourn time at each I2 workstation. (See Figure 5.4)

• Compared to KIVA, our design can decrease machine time by 10-20% on large and
deep systems. (See Table 5.2)

• The reduction in machine time of our design compared to KIVA is more significant for
a larger, deeper system with smaller demand density. (See Table 5.2 and 5.3)

• According to our algorithm, fewer internal workstations should be deployed if the
processing time for special pod E[S2] is large. (See Figure 5.7.)

CHAPTER 5. NEW DESIGN FOR ROBOTIC WAREHOUSES 80

5.6 Summary

We introduced a novel design for a fully automated Robotic Mobile Fulfillment System
(RMFS), which features certain workstations with robotic arms located within storage areas.
These designated workstations retrieve items from standard pods and consolidate completed
orders into a special pod. Once filled, this special pod is dispatched to external workstations.
This configuration facilitates the batching of items within the special pod, thereby minimizing
the travel distance for robots.

For both this innovative design and the traditional KIVA system, strategically position-
ing workstations to optimize transportation time and minimize queueing delays is crucial.
To address this, we developed a location-allocation-queuing model to determine optimal
workstation placements. This problem can be formulated as mixed integer second-order
conic programming (MISOCP) and tackled using commercial solvers. We employ Lagrangian
Relaxation methods with MISOCP subproblems for larger-scale problems, analyzing the
approximation errors and establishing an error boundary.

Our numerical simulations confirm the accuracy of our model, demonstrating that if
the external workstation serving special pod has ρ < 0.8, the relative error in sojourn time
remains below 3%. We also validate our error-bound theorem. Furthermore, our approach
can reduce the robot machine time by 10−20% compared to the KIVA system with optimally
located workstations. Our study showed that our design benefits larger and deeper systems
with a lower demand density. In addition, as suggested by our algorithm, managers should
deploy fewer internal workstations when special pods take more time to process.

Our findings pave the way for several future research avenues. The computational efficiency
of our Lagrangian Relaxation algorithm can be improved through improved trimming,
branching, and cutting techniques. Moreover, real-world validation of our design is necessary
to fully realize its potential and applicability.

81

Chapter 6

Conclusions

This study investigated the evaluation, operation, and new designs for robotic warehouses for
e-commerce. The evaluation model can accurately predict throughput and traffic congestion
in a complicated robotic warehouse. The operation strategy is an offline-online method based
on the evaluation model, where the robot assignment and path-finding problems are solved
simultaneously. The new design is a fully robotic warehouse, motivated by the development
of robotic arms and the idea of batch-pooling to reduce transportation costs.

The robotic warehouse can be modeled as a CQN with blocking. We approximated the
system as a transportation network with a closed-form link cost function that represents
transportation and waiting costs. Our simulation experiments provided support for our
proposed congestion mechanism and approximation using the Poisson flow. We proved
asymptotic Poisson properties for light-traffic cells and showed a similar property for heavy-
traffic cells using numerical experiments. We also combined the CQN with the approximated
transportation cost and developed an iterative algorithm to estimate the system throughput.
The simulation showed that our throughput prediction is accurate if the system is stable.

The operation in a robotic warehouse includes robot-to-workstation assignments, parcel-
to-workstation assignments, and multi-robot path-finding. We developed an integrated
assignment and path-finding method that has two parts: online and offline. Based on our
evaluation model, we can find a near-optimal traffic assignment offline and use the offline
traffic assignment to guide the robot’s operation in real time. Since most of the complicated
optimization problems were solved offline, the online algorithm was fast enough for large-
scale problems. Due to the approximation error of the evaluation, our method would not
perform well in certain layouts, and we developed a diagnostic indicator to evaluate our
method using historical operation data before actually running the offline-online method.
The simulation showed that our method can improve throughput by about 10% compared to
zoning assignment, and the diagnostic indicator accurately predicts whether our method is
suitable for certain systems.

With the development of robotic arms, it becomes possible to have a fully robotic
warehouse. We proposed a design for a fully robotic fulfillment facility where some workstations
are located inside the storage area to reduce transportation costs (internal workstations), and

CHAPTER 6. CONCLUSIONS 82

some workstations are on the periphery with access to exits or conveyors. We designed a batch-
pooling process using special pods to transport completed orders from internal workstations
to external workstations. To find the optimal locations and number of workstations, we
developed a location-allocation-queue model with approximation so that the model can
be transformed into a mixed-integer second-order-conic programming (MISOCP). We also
developed Lagrangian relaxation procedures with MISOCP as subproblems to solve large-scale
problems. Our simulation results show that our design can significantly reduce transportation
costs compared to Kiva’s design for large and deep systems.

83

Bibliography

[1] Robert Aboolian, Oded Berman, and Zvi Drezner. “Location and allocation of service
units on a congested network”. In: IIE Transactions 40.4 (2008), pp. 422–433.

[2] Robert Aboolian, Oded Berman, and Dmitry Krass. “Profit maximizing distributed
service system design with congestion and elastic demand”. In: Transportation Science
46.2 (2012), pp. 247–261.

[3] Robert Aboolian, Oded Berman, and Vedat Verter. “Maximal accessibility network
design in the public sector”. In: Transportation Science 50.1 (2016), pp. 336–347.

[4] Saligrama R Agnihothri, Sridhar Narasimhan, and Hasan Pirkul. “An assignment
problem with queueing time cost”. In: Naval Research Logistics (NRL) 37.2 (1990),
pp. 231–244.

[5] Amir Ahmadi-Javid and Pooya Hoseinpour. “Convexification of queueing formulas by
mixed-integer second-order cone programming: An application to a discrete location
problem with congestion”. In: INFORMS Journal on Computing 34.5 (2022), pp. 2621–
2633.

[6] Amazon. 10 years of Amazon robotics: how robots help sort packages, move product,
and improve safety. Web Page. 2022. url: https://www.aboutamazon.com/news/
operations/10-years-of-amazon-robotics-how-robots-help-sort-packages-

move-product-and-improve-safety.

[7] Ben Ames. Amazon unveils Xanthus and Pegasus fulfillment robots. Web Page. 2019.
url: https://www.dcvelocity.com/articles/30765-amazon-unveils-xanthus-
and-pegasus-fulfillment-robots#.XP8tsesSJVs.twitter.

[8] Tuan Le-Anh and M. B. M. De Koster. “A review of design and control of automated
guided vehicle systems”. In: European Journal of Operational Research 171.1 (2006),
pp. 1–23. issn: 0377-2217. doi: 10.1016/j.ejor.2005.01.036. url: https://dx.
doi.org/10.1016/j.ejor.2005.01.036.

[9] Kaveh Azadeh, René De Koster, and Debjit Roy. “Robotized and automated warehouse
systems: Review and recent developments”. In: Transportation Science 53.4 (2019),
pp. 917–945.

[10] Maria Torcoroma Benavides-Robles et al. “Robotic Mobile Fulfillment System: A
Systematic Review”. In: Available at SSRN 4445297 (2023).

BIBLIOGRAPHY 84

[11] Nils Boysen, Dirk Briskorn, and Simon Emde. “Parts-to-picker based order processing
in a rack-moving mobile robots environment”. In: European Journal of Operational
Research 262.2 (2017), pp. 550–562.

[12] Nils Boysen, René de Koster, and Felix Weidinger. “Warehousing in the e-commerce
era: A survey”. In: European Journal of Operational Research 277.2 (2019), pp. 396–411.
issn: 03772217. doi: 10.1016/j.ejor.2018.08.023.

[13] Nils Boysen, Konrad Stephan, and Felix Weidinger. “Manual order consolidation
with put walls: the batched order bin sequencing problem”. In: EURO Journal on
Transportation and Logistics 8 (2019), pp. 169–193.

[14] Ronald Buitenhek, Geert-Jan Van Houtum, and Henk Zijm. “AMVA-based solution
procedures for open queueing networks with population constraints”. In: Annals of
Operations Research 93.1/4 (2000), pp. 15–40. issn: 0254-5330. doi: 10.1023/a:
1018967622069. url: https://dx.doi.org/10.1023/a:1018967622069.

[15] Xiao Cai, Sunderesh S. Heragu, and Yang Liu. “Modeling and evaluating the AVS/RS
with tier-to-tier vehicles using a semi-open queueing network”. In: IIE Transactions
46.9 (2014), pp. 905–927. issn: 0740-817X 1545-8830. doi: 10.1080/0740817x.2013.
849832.

[16] Yongcan Cao et al. “An overview of recent progress in the study of distributed multi-
agent coordination”. In: IEEE Transactions on Industrial Informatics 9.1 (2012),
pp. 427–438.

[17] Ignacio Castillo, Armann Ingolfsson, and Thaddeus Sim. “Social optimal location of
facilities with fixed servers, stochastic demand, and congestion”. In: Production and
Operations Management 18.6 (2009), pp. 721–736.

[18] Meg Coyle. New robots, new jobs. Web Page. 2019. url: https://www.aboutamazon.
com/news/operations/new-robots-new-jobs.

[19] Yves Dallery and Yannick Frein. “On decomposition methods for tandem queueing
networks with blocking”. In: Operations Research 41.2 (1993), pp. 386–399. issn:
0030364X, 15265463. url: http://www.jstor.org/stable/171785 (visited on
10/11/2023).

[20] M. De Ryck, M. Versteyhe, and F. Debrouwere. “Automated guided vehicle systems,
state-of-the-art control algorithms and techniques”. In: Journal of Manufacturing
Systems 54 (2020), pp. 152–173. issn: 0278-6125. doi: 10.1016/j.jmsy.2019.12.002.
url: https://dx.doi.org/10.1016/j.jmsy.2019.12.002.

[21] Valerio Digani, Lorenzo Sabattini, and Cristian Secchi. “A probabilistic Eulerian traffic
model for the coordination of multiple AGVs in automatic warehouses”. In: IEEE
Robotics and Automation Letters 1.1 (2016), pp. 26–32. doi: 10.1109/LRA.2015.
2505646.

BIBLIOGRAPHY 85

[22] Valerio Digani et al. “Ensemble coordination approach in multi-AGV systems applied to
industrial warehouses”. In: IEEE Transactions on Automation Science and Engineering
12.3 (2015), pp. 922–934.

[23] Valerio Digani et al. “Hierarchical traffic control for partially decentralized coordina-
tion of multi AGV systems in industrial environments”. In: 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2014, pp. 6144–6149.

[24] Banu Yetkin Ekren et al. “Matrix-geometric solution for semi-open queuing network
model of autonomous vehicle storage and retrieval system”. In: Computers & Industrial
Engineering 68 (2014), pp. 78–86. issn: 03608352. doi: 10.1016/j.cie.2013.12.002.

[25] John J Enright and Peter R Wurman. “Optimization and coordinated autonomy in
mobile fulfillment systems”. In: Workshops at the twenty-fifth AAAI conference on
artificial intelligence. 2011.

[26] FedEx. FedEx: Manage your shipments and returns. Web Page. 2024. url: https:
//www.fedex.com/en-us/home.html.

[27] K.J.C. Fransen et al. “A dynamic path planning approach for dense, large, grid-
based automated guided vehicle systems”. In: Computers & Operations Research
123 (2020), p. 105046. issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.
2020.105046. url: https://www.sciencedirect.com/science/article/pii/
S0305054820301635.

[28] Geekplus Robotics. GeekPlus Robotics. Web Page. 2023. url: https://www.geekplus.
com/en/.

[29] Tzvika Hartman et al. “How to split a flow?” In: 2012 Proceedings IEEE INFOCOM.
IEEE. 2012, pp. 828–836.

[30] Sunderesh S. Heragu et al. “Analytical models for analysis of automated warehouse
material handling systems”. In: International Journal of Production Research 49.22
(2011), pp. 6833–6861. issn: 0020-7543. doi: 10.1080/00207543.2010.518994. url:
https://doi.org/10.1080/00207543.2010.518994.

[31] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. “On the complexity of motion planning for
multiple independent objects; PSPACE- hardness of the ”warehouseman’s problem””.
In: The International Journal of Robotics Research 3.4 (1984), pp. 76–88. doi: 10.
1177/027836498400300405. url: https://doi.org/10.1177/027836498400300405.

[32] Markus Jager and Bernhard Nebel. “Decentralized collision avoidance, deadlock detec-
tion, and deadlock resolution for multiple mobile robots”. In: Proc. 2001 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems. Expanding the Societal Role of Robotics
in the the Next Millennium. Vol. 3. IEEE. 2001, pp. 1213–1219.

[33] Hyun-Jung Kim, Cristobal Pais, and Zuo-Jun Max Shen. “Item Assignment Problem in
a Robotic Mobile Fulfillment System”. In: IEEE Transactions on Automation Science
and Engineering 17.4 (2020), pp. 1854–1867. issn: 1545-5955. doi: 10.1109/tase.
2020.2979897.

BIBLIOGRAPHY 86

[34] Suryakant Kumar, Jiuh-Biing Sheu, and Tanmoy Kundu. “Planning a parts-to-picker
order picking system with consideration of the impact of perceived workload”. In:
Transportation Research Part E: Logistics and Transportation Review 173 (2023),
p. 103088.

[35] Tim Lamballais, Debjit Roy, and MBM De Koster. “Estimating performance in a
robotic mobile fulfillment system”. In: European Journal of Operational Research 256.3
(2017), pp. 976–990.

[36] Tim Lamballais Tessensohn, Debjit Roy, and René B. M. De Koster. “Inventory
allocation in robotic mobile fulfillment systems”. In: IISE Transactions 52.1 (2019),
pp. 1–17. issn: 2472-5854 2472-5862. doi: 10.1080/24725854.2018.1560517.

[37] Xiaowen Li et al. “A simulation study on the robotic mobile fulfillment system in
high-density storage warehouses”. In: Simulation Modelling Practice and Theory 112
(2021), p. 102366.

[38] Vladimir Marianov and Daniel Serra. “Location–allocation of multiple-server service
centers with constrained queues or waiting times”. In: Annals of Operations Research
111 (2002), pp. 35–50.

[39] K. T. Marshall and Richard V. Evans. “Some inequalities in queuing”. In: Operations
Research 16.3 (1968), pp. 651–668. issn: 0030364X, 15265463. url: http://www.jstor.
org/stable/168590 (visited on 03/31/2024).

[40] M. Merschformann et al. “Decision rules for robotic mobile fulfillment systems”. In:
Operations Research Perspectives 6 (2019). issn: 22147160. doi: 10.1016/j.orp.2019.
100128.

[41] M. Mountz. “Kiva the disrupter”. In: Harvard Business Review 90 (2012), pp. 74–80.

[42] US Bureau of Public Roads. Office of Planning. Urban Planning Division. Traffic
assignment manual for application with a large, high speed computer. US Department
of Commerce, 1964.

[43] Ling Qiu et al. “Scheduling and routing algorithms for AGVs: A survey”. In: Inter-
national Journal of Production Research 40.3 (2002), pp. 745–760. issn: 0020-7543
1366-588X. doi: 10.1080/00207540110091712.

[44] Seyed Habib A Rahmati et al. “A multi-objective model for facility location–allocation
problem with immobile servers within queuing framework”. In: Computers & Industrial
Engineering 74 (2014), pp. 1–10.

[45] Debjit Roy, Akash Gupta, and René B. M. De Koster. “A non-linear traffic flow-based
queuing model to estimate container terminal throughput with AGVs”. In: International
Journal of Production Research 54.2 (2015), pp. 472–493. issn: 0020-7543 1366-588X.
doi: 10.1080/00207543.2015.1056321.

BIBLIOGRAPHY 87

[46] Debjit Roy et al. “Queuing models to analyze dwell-point and cross-aisle location in
autonomous vehicle-based warehouse systems”. In: European Journal of Operational
Research 242.1 (2015), pp. 72–87. issn: 03772217. doi: 10.1016/j.ejor.2014.09.040.

[47] Debjit Roy et al. “Robot-storage zone assignment strategies in mobile fulfillment
systems”. In: Transportation Research Part E: Logistics and Transportation Review 122
(2019), pp. 119–142.

[48] Hamid R Sayarshad and Joseph YJ Chow. “Non-myopic relocation of idle mobility-on-
demand vehicles as a dynamic location-allocation-queueing problem”. In: Transportation
Research Part E: Logistics and Transportation Review 106 (2017), pp. 60–77.

[49] Melanie Schranz et al. “Swarm robotic behaviors and current applications”. In: Frontiers
in Robotics and AI (2020), p. 36.

[50] Jiuh-Biing Sheu and Tsan-Ming Choi. “Can we work more safely and healthily with
robot partners? A human-friendly robot–human-coordinated order fulfillment scheme”.
In: Production and Operations Management 32.3 (2023), pp. 794–812.

[51] David Silver. “Cooperative pathfinding”. In: Proc. AAAI Conf. on Artificial Intelligence
and Interactive Digital Entertainment. Vol. 1. 2005, pp. 117–122.

[52] Statista. Amazon sellers: statistics & facts. Web Page. 2024. url: https://www.
statista.com/topics/8024/third-party-3p-selling-on-amazon.

[53] Statista. Annual retail e-commerce sales growth worldwide from 2014 to 2020. Web
Page. 2017. url: https://www.statista.com/statistics/288487/forecast-of-
global-b2c-e-commerce-growt/.

[54] Gelu-Ovidiu Tirian. “Automation of a warehouse by means of a robotic arm”. In:
Annals of Faculty Engineering Hundeoara–International Journal of Engineering 11
(2013).

[55] Tompkins Robotics. Postal and parcel sortation. Web Page. 2020. url: https://
tompkinsrobotics.com/postal-and-parcel-sortation/..

[56] U.S. Department of Commerce. FOR IMMEDIATE RELEASE: TUESDAY, FEBRU-
ARY 20, 2024: Quarterly Retail E-Commerce Sales. Web Page. 2024. url: https:
//www.census.gov/retail/ecommerce.html#:~:text=Total%20e%2Dcommerce%

20sales%20for,14.7%20percent%20of%20total%20sales..

[57] R T Underwood. “Quality and theory of traffic flow”. In: Speed, Volume, and Density
Relationships. Yale University Bureau of Highway Traffic, 1961, pp. 141–187.

[58] Navneet Vidyarthi and Sachin Jayaswal. “Efficient solution of a class of location–
allocation problems with stochastic demand and congestion”. In: Computers & Opera-
tions Research 48 (2014), pp. 20–30.

[59] Zheng Wang et al. “Robot scheduling for mobile-rack warehouses: Human–robot coordi-
nated order picking systems”. In: Production and Operations Management 31.1 (2022),
pp. 98–116.

BIBLIOGRAPHY 88

[60] Felix Weidinger, Nils Boysen, and Dirk Briskorn. “Storage assignment with rack-moving
mobile robots in KIVA warehouses”. In: Transportation Science 52.6 (2018), pp. 1479–
1495. issn: 0041-1655 1526-5447. doi: 10.1287/trsc.2018.0826.

[61] W. Whitt. “The queueing network analyzer”. In: Bell System Technical Journal 62.9
(1983), pp. 2779–2815. doi: https : / / doi . org / 10 . 1002 / j . 1538 - 7305 . 1983 .
tb03204.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-
7305.1983.tb03204.x. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/j.1538-7305.1983.tb03204.x.

[62] Shasha Wu et al. “Research of the layout optimization in robotic mobile fulfill-
ment systems”. In: International Journal of Advanced Robotic Systems 17.6 (2020),
p. 1729881420978543.

[63] Lin Xie et al. “Introducing split orders and optimizing operational policies in robotic
mobile fulfillment systems”. In: European Journal of Operational Research 288.1 (2021),
pp. 80–97.

[64] Xianhao Xu et al. “Assignment of parcels to loading stations in robotic sorting systems”.
In: Transportation Research, Part E Logistics and Transportation Rev. 164 (2022). issn:
13665545. doi: 10.1016/j.tre.2022.102808.

[65] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. “A Survey and Analysis of Multi-
Robot Coordination”. In: International Journal of Advanced Robotic Systems 10.12
(2013). issn: 1729-8814 1729-8814. doi: 10.5772/57313.

[66] Peng Yang, Randy A Freeman, and Kevin M Lynch. “Multi-agent coordination by
decentralized estimation and control”. In: IEEE Transactions on Automatic Control
53.11 (2008), pp. 2480–2496.

[67] Xiuqing Yang et al. “Non-traditional layout design for robotic mobile fulfillment system
with multiple workstations”. In: Algorithms 14.7 (2021), p. 203.

[68] Xiying Yang et al. “Joint optimization of order sequencing and rack scheduling in the
robotic mobile fulfilment system”. In: Computers & Operations Research 135 (2021),
p. 105467.

[69] Jingjin Yu and Steven M. LaValle. “Structure and Intractability of Optimal Multi-Robot
Path Planning on Graphs”. In: Proc. AAAI Conference on Artificial Intelligence. 2013,
pp. 1443–1449.

[70] Zhe Yuan and Yeming Yale Gong. “Bot-in-time delivery for robotic mobile fulfillment
systems”. In: IEEE Transactions on Engineering Management 64.1 (2017), pp. 83–93.

[71] Youmin Zhang and Hasan Mehrjerdi. “A survey on multiple unmanned vehicles for-
mation control and coordination: Normal and fault situations”. In: 2013 Int. Conf.
on Unmanned Aircraft Systems (ICUAS). 2013, pp. 1087–1096. doi: 10.1109/ICUAS.
2013.6564798.

BIBLIOGRAPHY 89

[72] Lu Zhen et al. “How to deploy robotic mobile fulfillment systems”. In: Transportation
Science (2023).

[73] Yanling Zhuang et al. “Order picking optimization with rack-moving mobile robots and
multiple workstations”. In: European Journal of Operational Research 300.2 (2022),
pp. 527–544.

[74] Bipan Zou, Xianhao Xu, René De Koster, et al. “Evaluating battery charging and
swapping strategies in a robotic mobile fulfillment system”. In: European Journal of
Operational Research 267.2 (2018), pp. 733–753.

[75] Bipan Zou et al. “Assignment rules in robotic mobile fulfilment systems for online
retailers”. In: International Journal of Production Research 55.20 (2017), pp. 6175–6192.

[76] Bipan Zou et al. “Robotic sorting systems: performance estimation and operating
policies analysis”. In: Transportation Science 55.6 (2021), pp. 1430–1455. issn: 0041-
1655 1526-5447. doi: 10.1287/trsc.2021.1053.

90

Appendix A

The Asymptotic Poisson Property

A.1 Proof of Theorem 1

Proof. Proof of Theorem 1 If we have R = v(E[X] + E[G]) robots, let Aik be the time the
i-th agent visits the first server for the kth time, we have

Aik = Ai(k−1) +G+X.

Therefore, Aik is the k-th renewal time for a renewal process with an interarrival time of
G+X. Consider a time period t1 < t2. Let ni be the number of arrivals of customer i from
t1 to t2. As X →∞ in probability, t2 − t1 < X +G with high probability. Conditioned on
t2 − t1 < X +G, we must have ni ∈ {0, 1}. From the renewal theorem

P(ni = 1|t2 − t1 < X +G) =
t2 − t1

E[X] + E[G]
.

Therefore, ni → Bernoulli(t2−t1
E[X]+E[G]

) as X →∞ in probability. Let N(t1, t2) =
∑R

i=1 ni be

the number of arrivals, N(t1, t2)→ Binomial(R, t2−t1
E[X]+E[G]

)→ Poisson(R(t2−t1)
E[X]+E[G]

) =Poisson(v).

A.2 Simulation Study for Conjecture 1

Proof. Non-strict Proof of Conjecture 1 If we have R robots, and the arrival rate is v.
Let Aik be the time that ith agent visits the first server for the kth time; we have

Aik = Ai(k−1) +G+X +Wik.

where Wik is the waiting time for ith agernt visits G for the kth time. Non-strictly, we argue
that Wik and Wim are i.i.d. for k ̸= m if G is large enough. Because the agent i spends a
long time outside the queue G, when it returns, the queue’s status has been updated many
times, and the distribution of queue length at arrival should be i.i.d.

APPENDIX A. THE ASYMPTOTIC POISSON PROPERTY 91

(a) All experiment results (b) Zoom in for CV > 0.9

Figure A.1: CV of inter-arrival times vs E[G] where G is normally distributed with different
CVX

(a) All experiment results (b) Zoom in for CV > 0.9

Figure A.2: CV of inter-arrival times vs E[G] where G is uniformly distributed with different
CVX

Therefore, Aik is the k’th renewal time for a renewal process with an interarrival time of
G+X +Wik. Consider a time period t1 < t2. Let ni be the number of arrivals of customer
i from t1 to t2. As X → ∞ in probability, t2 − t1 < X + G + Wik with high probability.
Conditioned on t2 − t1 < X +G, we must have ni ∈ {0, 1}. From the renewal theorem

P(ni = 1|t2 − t1 < X +G) = lim
K→∞

P(ni = 1|t2 − t1 < X +G, k < K)

= lim
K→∞

K(t2 − t1)∑K
k=1(Xk +Gk +Wik)

=
t2 − t1

W0 + E[X] + E[G]
.

APPENDIX A. THE ASYMPTOTIC POISSON PROPERTY 92

(a) All experiment results (b) Zoom in for CV > 0.9

Figure A.3: CV of inter-arrival times vs E[G] where G is normally distributed with different ρ

(a) All experiment results (b) Zoom in for CV > 0.9

Figure A.4: CV of inter-arrival times vs E[G] where G is uniformly distributed with different
ρ

The last inequality comes from the dominated convergence theorem since it’s upper bounded
by t2−t1

1/K(
∑K

k=1 Xk+Gk)
.

Therefore, ni → Bernoulli(t2−t1
E[X]+E[G]

) as X →∞ in probability. Let N(t1, t2) =
∑R

i=1 ni

be the number of arrivals, N(t1, t2) → Binomial(R, t2−t1
E[X]+E[G]+W0

) → Poisson(R(t2−t1)
E[X]+E[G]+W0

).
Therefore, the CV of interarrival → 1

Since the proof introduced more assumptions, we will show the Conjecture 1 numerically
using simulation experiments.

The first set of experiments set X to be normally distributed. Let G be Uniform(1, 2),
X be Normal(µ, σ), and define width w = 6σ such that X ∈ [µ− w/2, µ+ w/2] with high
probability. Run simulations for 1,000,000 arrivals at the first node, and set R according to

APPENDIX A. THE ASYMPTOTIC POISSON PROPERTY 93

G E[G] std[G] X E[X] std[X] CV of inter-arrival time
deterministic 1.000 0.000 uniform 100.000 28.868 0.980
deterministic 1.000 0.000 normal 100.000 16.667 0.984
uniform 1.500 0.289 uniform 100.000 28.868 0.982
uniform 1.500 0.289 normal 100.000 16.667 0.978
normal 1.000 0.167 uniform 100.000 28.868 0.987
normal 1.000 0.167 normal 100.000 16.667 0.984

Table A.1: Simultion estimated CV for different G distributions with ρ = 0.9

the observed flow so that ρ = vE[G] ≈ 0.8. By changing µ from 2 to 1000, and w from 0
to 2µ, the result is shown in Figure A.1a (and Figure A.1b for the zoomed-in version that
focuses on CV > 0.9). Each data point is the estimated result from one trail of 1,000,000
arrivals. The color of the data point represents the relative width w/µ. As we can see, no
matter how we choose w/µ, CV increases to 1 as E[X]→∞. A larger CV of X results in a
faster convergence.

Similar results can be found by setting X to be Uniform(µ− w/2, µ+ w/2), where w is
the width of the distribution. We did the same experiments and found the same result, that
as X →∞ in probability, CV of the arrival interval will → 1. (See Figures A.2a, and A.2b)

Then, we let X to be Normal(µ, µ/6), and we change R so that utilization ρ = vE[G]
increase from 0.2 to 0.99, µ from 2 to 1000. The result is given in Figures A.3a and A.3b. As
we can see from the results, CV → 1 no matter how we choose ρ, and larger ρ leads to faster
convergence. Similar results can also be found when we set X to be Uniform (µ/2,3µ/2).
(See Figures A.4a and A.4b)

We also do simulations for different G distributions. Let G come from uniform, normal, or
deterministic. Do simulations with 1,000,000 arrivals and set R so that ρ ≈ 0.9. In Table A.1,
we can see CV all come close to 1 if E[X] is about 100 times of E[G].

Although there are some fluctuations in the previous experiments due to the estimation
error in CV and the fact that R must be an integer so that we can only approximately
set the value of ρ and v, the trend is clear: our conjectures hold when G is uniformly
distributed/ deterministic/ normally distributed, and X is uniform or normally distributed.
In our problem, G is a categorical distribution, which has a similar property as a uniform
distribution or deterministic, X is a mixture of all path lengths, so it is similar to a uniform
(if all paths have similar length) or normal distribution for a large system (if paths have
different length, according to the central limit theorem). Therefore, our conjecture holds for
our grid-based multi-robot problem.

94

Appendix B

Proof of Theorems for Warehouse
Design

B.1 Proof of Proposition 3

Proof. Proof of Proposition 3 Consider one internal workstation. Let ω be the time
interval between two complete totes at the workstation. Note ω is the inter-departure time
from an M/GI/1 queue with service time S. Let W be the waiting time of robots at the
internal workstation.

Based on [39], equation (9),

E[ω] =
1

λ

Var[ω] =
1

λ2
+ 2Var[S]− 2(1− ρ)E[W]

λ

With ρ := λ
µ
close to 1. We can apply Kingman’s formula to approximate waiting time:

E[W] =
ρ

2(1− ρ)µ
(CV 2

a + CV 2
S)

Therefore, plug in E[W] into Var[ω], we have

Var[ω] =
1

λ2
+ 2

CV 2
S

µ2
− 2(1− ρ)

λ

ρ

2(1− ρ)µ
((CV 2

a + CV 2
S))

=
1

λ2
+ 2

CV 2
S

µ2
− (1 + CV 2

S

1

µ2

=
CV 2

S

µ2
+

1

λ2
− 1

µ2

APPENDIX B. PROOF OF THEOREMS FOR WAREHOUSE DESIGN 95

Based on Proposition 2, the departure interval is
∑ξ

l=1 ωl, where ωl are i.i.d. with the same
distribution of ω. We have

E[
ξ∑

l=1

ωl] =
ξ

λ
(B.1)

Var[

ξ∑
l=1

ωl] = ξ(Var[S] +
1

λ2
− 1

µ2
)) (B.2)

Using the central limit theorem, for large ξ, the inter-departure time distribution is approxi-
mately Normal(ξ

λ
, ξ(Var[S] + 1

λ2 − 1
µ2))

B.2 Proof of Theorem 2

Proof. Proof of Theorem 2 For convenience, denote E[S2] = ES2,E[S1] = ES1. For i ∈ I2,
combine Equations 5.3 and 5.4, we have

CV 2
i,Arrival =

1

Qi

∑
k∈I1,i

[
Zki

ξ
(1 + (QkES1)

2(CV 2
S1
− 1)]

where I1,i = {k ∈ I1, Zki > 0} are the set of internal workstations assigned to the external
workstation Wi, i ∈ I2. Note ρi = QiES2 =

Qi

µi
, ρk = QkES1 =

Qk

µk
, the sojourn time

E[Di] = Qi

(
1

µi

+
CV 2

S2

2µi

Qi

µi −Qi

+

1
Qi

∑
k∈I1,i [

Zki

ξ
(1 + (QkES1)

2(CV 2
S1
− 1)]

2µi

Qi

µi −Qi

)

= ρi +
CV 2

S2
ρ2i

2(1− ρi)
+

ρ2i
2(1− ρi)

1

ξ

∑
k∈I1,i

[
Zki

Qi

(1 + ρ2k(CV 2
S1
− 1)]

The relative error

|E[Di]− E[D̃i]|
E[D̃i]

=

ρ2i
2(1−ρi)

1
ξ
|
∑

k∈I1,i [
Zki

Qi
(1 + ρ2k(CV 2

S1
− 1)]|

ρi +
CV 2

S2
ρ2i

2(1−ρi)

=
1

ξ

ρ2i |
∑

k∈I1,i [
Zki

Qi
(1 + ρ2k(CV 2

S1
− 1)]|

2ρi(1− ρi) + ρ2iCV 2
S2

=
1

ξ

ρi|
∑

k∈I1,i [
Zki

Qi
(1 + ρ2k(CV 2

S1
− 1)]|

2(1− ρi) + ρiCV 2
S2

≤ 1

ξ

ρi
∑

k∈I1,i
Zki

Qi
|(1 + ρ2k(CV 2

S1
− 1)|

2(1− ρi) + ρiCV 2
S2

.

APPENDIX B. PROOF OF THEOREMS FOR WAREHOUSE DESIGN 96

Note ρk ≤ 1 and
∑

k∈I1,i
Zki

Qi
= 1, we have

|E[Di]− E[D̃i]|
E[D̃i]

≤ 1

ξ

ρi
∑

k∈I1,i
Zki

Qi
|(1 + ρ2k(CV 2

S1
− 1)|

2(1− ρi) + ρiCV 2
S2

≤ 1

ξ

ρi
∑

k∈I1,i
Zki

Qi
(1 + |CV 2

S1
− 1|)

2(1− ρi) + ρiCV 2
S2

=
1

ξ

ρi(1 + |CV 2
S1
− 1|)

2(1− ρi) + ρiCV 2
S2

Since CV 2
S2
≥ 0, ρi < 1− ϵ, and 1− ρi > ϵ, we have

|E[Di]− E[D̃i]|
E[D̃i]

≤ 1

ξ

ρi(1 + |CV 2
S1
− 1|)

2(1− ρi) + ρiCV 2
S2

≤ 1− ϵ

2ξϵ
(1 + |CV 2

S1
− 1|)

Therefore, if ξ ≥ 1−ϵ
2εϵ

(1 + |CV 2
S1
− 1|), we have the relative error |E[Di]−E[D̃i]|

E[D̃i]
≤ ε.

