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Conserved noncoding sequences provide insights
into regulatory sequence and loss of gene
expression in maize
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Elizabeth A. Kellogg,6 Daniel J. Gates,7 Merritt Khaipho-Burch,2 Peter J. Bradbury,3

Jeffrey Ross-Ibarra,7,8 Matthew B. Hufford,9 and M. Cinta Romay1
1Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA; 2Section of Plant Breeding and Genetics, Cornell
University, Ithaca, New York 14853, USA; 3Agricultural Research Service, United States Department of Agriculture, Ithaca, New York
14853, USA; 4National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for
International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China; 5Agricultural Genomics
Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; 6Donald Danforth Plant Science Center,
St. Louis, Missouri 63132, USA; 7Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA;
8Center for Population Biology and Genome Center, University of California Davis, Davis, California 95616, USA; 9Department of
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Thousands of species will be sequenced in the next few years; however, understanding how their genomes work, without an

unlimited budget, requires both molecular and novel evolutionary approaches. We developed a sensitive sequence align-

ment pipeline to identify conserved noncoding sequences (CNSs) in the Andropogoneae tribe (multiple crop species

descended from a common ancestor ∼18 million years ago). The Andropogoneae share similar physiology while being tre-

mendously genomically diverse, harboring a broad range of ploidy levels, structural variation, and transposons. These

contribute to the potential of Andropogoneae as a powerful system for studying CNSs and are factors we leverage to un-

derstand the function of maize CNSs. We found that 86% of CNSs were comprised of annotated features, including introns,

UTRs, putative cis-regulatory elements, chromatin loop anchors, noncoding RNA (ncRNA) genes, and several transposable

element superfamilies. CNSs were enriched in active regions of DNA replication in the early S phase of the mitotic cell cycle

and showed different DNA methylation ratios compared to the genome-wide background. More than half of putative cis-
regulatory sequences (identified via other methods) overlapped with CNSs detected in this study. Variants in CNSs were

associated with gene expression levels, and CNS absence contributed to loss of gene expression. Furthermore, the evolution

of CNSs was associated with the functional diversification of duplicated genes in the context of maize subgenomes. Our

results provide a quantitative understanding of the molecular processes governing the evolution of CNSs in maize.

[Supplemental material is available for this article.]

The genomes of a million eukaryote species will likely be se-
quenced within the next decade (Lewin et al. 2018), but under-
standing how these genomes work without ENCODE-scale
projects and data (The ENCODE Project Consortium 2012) for
each species will require that we also use evolutionary approaches
to identify key functional regions. In general, noncoding sequenc-
es (CNSs) occupy a larger portion of the genome than coding re-
gions. Most genome-wide association hits have been reported to
be located in the noncoding regions in, for example,maize andhu-
mans, and are enriched in putative gene expression regulatory se-
quences (Wallace et al. 2014; Zhang and Lupski 2015; Nishizaki
and Boyle 2017; Giral et al. 2018). Comparison of noncoding se-
quences across species can identify regions under purifying selec-
tion to reveal functional constraint (Guo and Moose 2003;
Vandepoele et al. 2006; Haudry et al. 2013; Finucane et al. 2015;
Polychronopoulos et al. 2017; Xiang et al. 2019). However, detec-

tion of conserved noncoding sequences in plants is an ongoing
challenge (Van de Velde et al. 2016), receiving extensive recent at-
tention in a broad range of species (Inada et al. 2003; Freeling
and Subramaniam 2009; Algama et al. 2017; Polychronopoulos
et al. 2017; Xie et al. 2018). A genome-wide comparison of features
of putative functional elements (Zhang et al. 2012; Rodgers-
Melnick et al. 2016; Oka et al. 2017; Wang et al. 2017b; Li et al.
2019; Lu et al. 2019; Ricci et al. 2019; Tu et al. 2020) with CNSs
could provide new insight into understudied noncoding fractions
of the genome.

Genomes of the grass tribe Andropogoneae provide a valuable
and powerful system for the study of conserved sequences. Species
of the Andropogoneae tribe have diverged in a relatively short time
frame, sharing a common ancestor ∼16–20 million years ago
(Vicentini et al. 2008). Andropogoneae species include maize, sor-
ghum, sugarcane, and silvergrass, some of the most productive
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grain, sugar, and biofuel crops worldwide (Manners 2011; Brosse
et al. 2012). Andropogoneae species share theNADP-MEC4 photo-
synthesis system (Black et al. 1969; Sage and Zhu 2011) and similar
development patterns, whereas their genomes are highly diverse
with frequent polyploidization (Estep et al. 2014) and extremely
active transposable elements (TEs) (Ramachandran et al. 2020).
Nevertheless, despite rapid sequence turnover elsewhere in
Andropogoneae genomes, functional sequences are expected to
be under purifying selection, making the tribe an ideal system in
which to identify and understand the role of CNSs.

Results

An atlas of CNSs in the Andropogoneae tribe

Inspired by recent studies of regulatory architecture (Oka et al.
2017; Lu et al. 2019; Ricci et al. 2019; Parvathaneni et al. 2020;
Tu et al. 2020), we used coding genes as anchors and developed
a sensitive sequence alignment pipeline to identify CNSs in
Andropogoneae genomes which have undergone genome-wide
duplications, numerous rearrangements, and gene loss (Fig. 1;
Schnable et al. 2011). Andropogoneae genomes (see below) were

aligned to the maize B73 v4 assembly (Jiao et al. 2017), which
was used as a reference. First, we lifted over maize protein-coding
genes to each query genome (Fig. 1, step 1) by mapping coding se-
quences (CDSs) using minimap2 (Li 2018). Gene copy number of-
ten varied between the maize genome and the query genome, so
all minimap2 mapping hits with a similarity larger than 60%
were used as anchors, where similarity is the number of identical
base pairs to the CDS length in maize. All CDSs and high-frequen-
cy k-mers were then removed from the genomes (Fig. 1, step 2).
Next, introns, sequences of 100 kbp upstream of the translation
start codon and sequences of 100 kbp downstream from the trans-
lation stop codon were extracted to perform pairwise alignment.
The selection of a 100-kbp range was based on previous observa-
tions that almost all open chromatin regions and transcription fac-
tor binding sites (TFBSs) are located within 100 kbp of the nearest
gene (Rodgers-Melnick et al. 2016; Ricci et al. 2019; Tu et al. 2020).
Pairwise alignment was conducted following thewidely used seed-
and-extend process (Altschul et al. 1990; Li and Homer 2010).
Briefly, the query sequences were cut into fragments with overlap-
ping sliding windows using a window size of 38 bp and a step size
of 8 bp. The Smith-Waterman algorithm (Smith and Waterman
1981) was employed to align the fragment in each window against

Figure 1. Procedures to identify CNSs in Andropogoneae. The maize B73 v4 genome was used as reference (red lines), whereas the other five genomes
were individually used as a query (green lines). First, full-length CDS of eachmaize protein-coding genewasmapped to the query genome (CDSs belonging
to the same gene are linked with “>” in the cartoon) (1); then we deleted CDSs (orange lines) and high-frequency k-mers (blue lines) (2). Next, upstream,
intron, and downstream sequences were pairwise aligned using a dynamic programming algorithm (3–4). Candidate fragments below a P-value threshold
(0.1) were defined as CNSs (5–7).

Song et al.

1246 Genome Research
www.genome.org



the reference sequence, and any alignments with an alignment
score ≥40 were used as seeds (Fig. 1, step 3). Every seed was then
extended, and extension was terminated using the X-drop ap-
proach (Fig. 1, step 4; Zhang et al. 1998). Alignments with a dy-
namic programming score ≥54 were defined as CNSs. This score
threshold corresponds to a P-value <0.1 assuming that a pair of se-
quenceswith a length of 100 kbpwere aligned (Fig. 1, step 5; Karlin
and Altschul 1990). Finally, the removed CDS and k-mer sequenc-
es were put back into alignedCNSs (Fig. 1, step 6) and the SAM-for-
mat alignments were generated (Fig. 1, step 7; Li et al. 2009).

Three publicly available genomes, sorghum (Sorghum bicolor)
(McCormick et al. 2018), maiden silvergrass (Miscanthus sinensis)
(Zhang et al. 2018), and wild sugarcane (Saccharum spontaneum)
(Mitros et al. 2020) were used as queries (see Supplemental Table
S1 for more information regarding all the genomes used in this
study). In addition, the genomes of two heterozygous Andropogo-
neae species, Hyparrhenia diplandra and Chrysopogon serrulatus,
were assembled to supplement the above-mentioned three ge-
nomes (Fig. 2A). Benchmarking Universal Single-Copy Orthologs
(BUSCO) completeness scores (Simão et al. 2015) of 0.94 demon-
strated that these two newly assembled genomes had high com-
pleteness and low sequencing error rates. The median distance
between genes and contig edges were 35 kbp and 77 kbp in the ge-
nomes of H. diplandra and C. serrulatus, respectively, indicating
the contiguity of these two assemblies was suitable for the detec-
tion of CNSs within 10 kbp of >85% of coding genes (Supplemen-
tal Fig. S1).

Total CNS length identified using each query genome was
positively correlated with the query genome size (Supplemental
Fig. S2). The sorghum genome is the only monoploid assembly
in our data set that has not experienced a genome-wide duplica-
tion event after its divergence from the common ancestor of
Andropogoneae (https://doi.org/10.6084/m9.figshare.1538627
.v1). Aligning the genome sequence of sorghum against that of
maize generated the smallest CNS space (67.07 Mbp, by counting
matched base pairs in the maize genome). The largest CNS space
was observed by aligning genome sequences between wild sugar-
cane and maize (86.97 Mbp). The sizes of CNSs ranged from 27
bp to 15 kbp (Supplemental Fig. S3). The total length of CNSs pre-
sent in maize and at least one other species was 106.52 Mbp, ac-
counting for ∼5% of the maize genome. Hereafter, those CNSs
were designated as pan-Andropogoneae CNSs (pan-And-CNSs). A
total of 42.27 Mbp CNSs were present in all species and were

termed as core-Andropogoneae CNSs (core-And-CNSs). However,
more species are needed to better describe pan- and core-And-
CNSs (Fig. 2B).

Pan-And-CNSs were enriched with putative cis-regulatory
elements (Supplemental Fig. S4) and overlap with 52%–78% of se-
quenceswith putative cis-regulatory features (TFBSs, open chroma-
tin regions, acetylation of histone 3 lysine 9 [H3K9ac] ChIP-seq
peaks, micrococcal nuclease hypersensitive regions [MNase HS],
or DNase I hypersensitive sites [DHSs]) identified in different plant
tissues (Supplemental Table S2). We also confirmed that a few
known regions were correctly classified as CNSs: the third intron
of knox1 (also known as knotted1) (Supplemental Fig. S5; Greene
et al. 1994; Lai et al. 2017), vgt1 (Supplemental Fig. S6; Salvi et
al. 2007), and tcp (also known as tb1) (Supplemental Fig. S7; Clark
et al. 2006; Studer et al. 2011), suggesting the identification of
functional noncoding sequences using our approach.

A large proportion of CNSs overlap with putative

regulatory elements

A large proportion (86.8%) of genes have pan-And-CNSs detected
within 2 kbp upstream. When compared with genes without pan-
And-CNSs detected within 2 kbp upstream, genes with CNSs have
higher expression levels and less tissue expression specificity
(Yanai et al. 2005; Kadota et al. 2006) across 23 maize B73 tissues
(Supplemental Fig. S8; Walley et al. 2016). Fifty-one percent of
the pan-And-CNSs overlap with the untranslated region (UTR) or
intron of coding genes (herein genic CNS, otherwise intergenic
CNS) (Supplemental Fig. S9); this proportion is comparable to
that of Arabidopsis thaliana (Haudry et al. 2013). Because introns
and UTRs have a wide range of conserved functional roles (e.g.,
to promote gene expression, guide splicing, produce noncoding
RNA) (Greene et al. 1994; Akua et al. 2010; Chorev and Carmel
2012; Ritchie and Flicek 2014; Rigau et al. 2019), we did not clas-
sify genicCNSs further by potential function. The overlap between
intergenic pan-And-CNSs and lowDNAmethylation loci (Xu et al.
2020) was higher than the genome-wide random expectation
(Supplemental Fig. S10). Fifty-six percent of intergenic pan-And-
CNS records overlap with open chromatin regions, TFBSs, or
H3K9ac ChIP-seq peaks (Fig. 3A), a 6.5- to 19.5-fold enrichment
relative to random expectation (Fig. 3B). Compared to a previously
released list of conserved elements in the maize intergenic region
(Tian et al. 2020), we generated a larger data set and our intergenic

CNSs have greater overlap with open
chromatin regions, TFBSs, and H3K9ac
ChIP-seq peaks (Supplemental Fig. S11).

To further uncover the function of
intergenic pan-And-CNSs, we analyzed
colocalization of intergenic pan-And-
CNSs with chromatin loop anchors,
TEs, and noncoding RNA (ncRNA) genes.
We started with chromatin loop anchors
because they were inferred to be con-
served and their dynamics are associated
with transcription activity (Dong et al.
2017, 2018, 2020; Harmston et al. 2017;
Liu et al. 2017; Polychronopoulos et al.
2017; Wang et al. 2018; Delaneau et al.
2019; Szabo et al. 2019). Chromatin
loop anchors identified by Hi-C and
HiChIP (Peng et al. 2019; Ricci et al.
2019) overlapped with 47% of intergenic

BA

Figure 2. Pan-Andropogoneae CNSs. (A) Phylogenetic relationships of Andropogoneae species used
in this study. Andropogoneae species are in the green shaded portion of the phylogeny. (B)
Simulation of the total length of pan-And-CNSs and core-And-CNSs by iterative random sampling of
taxa. Red and blue lines indicate the pan- and core-And-CNS curves fit using points from all
combinations.

Conserved noncoding sequences in maize

Genome Research 1247
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
https://doi.org/10.6084/m9.figshare.1538627.v1
https://doi.org/10.6084/m9.figshare.1538627.v1
https://doi.org/10.6084/m9.figshare.1538627.v1
https://doi.org/10.6084/m9.figshare.1538627.v1
https://doi.org/10.6084/m9.figshare.1538627.v1
https://doi.org/10.6084/m9.figshare.1538627.v1
https://doi.org/10.6084/m9.figshare.1538627.v1
https://doi.org/10.6084/m9.figshare.1538627.v1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266528.120/-/DC1


pan-And-CNS records, with an enrichment of 6.6-fold compared
to the genome-wide background (Fig. 3B). In addition to open
chromatin regions, TFBSs, and H3K9ac ChIP-seq peaks, chromatin
loop anchors overlapped with an additional 12% intergenic pan-
And-CNS records (Supplemental Fig. S12). Regulatory elements de-
rived fromTEs have been described by several independent studies
(Xie et al. 2006; Smith et al. 2008; Dupeyron et al. 2019), and cases
of TEs acting as regulatory sequence have been reported (Xie et al.
2006; Smith et al. 2008; Studer et al. 2011;Makarevitch et al. 2015;
Zhao et al. 2018; Dupeyron et al. 2019; Noshay et al. 2020). Enrich-
ment of CNSs overlapping TEs was not observed (Fig. 3B), but
when looking at particular TE superfamilies (Stitzer et al. 2019),
1.08- to 1.78-fold enrichments of intergenic pan-And-CNSs were
observed in four of the 13 TE superfamilies (RIL, RST, DHH, and
DTM) (Supplemental Fig. S13). However, these four TE superfami-
lies only accounted for another 2.09% of intergenic pan-And-
CNSs. Finally, enrichment of CNSs in ncRNA genes (Han et al.
2019) was also observed (Fig. 3B), which accounted for only
1.04% of the total intergenic pan-And-CNSs.

CNSs have diverse functions

Due to the tissue-specific activity of some cis-regulators, a full data
set of putative cis-regulatory sequences has not been generated un-
til the present study. It is essential to know if CNSs that do not
overlap with features of cis-regulatory elements might have alter-
native functions. We therefore classified intergenic CNSs into
the following groups: (1) CNSs overlapping with open chromatin,
TFBS, or H3K9ac ChIP-seq peaks (cis CNS); (2) CNSs overlapping
with chromatin loop anchors not part of the group cis (non-cis
loop CNS); and (3) remaining CNSs not included in (1) and (2)
(rest CNS). We then investigated the DNA methylation ratio, gua-
nine-cytosine (GC) content, and DNA replication activity in the
early S phase of the mitotic cell cycle in each CNS group.
Different DNA methylation ratios, GC content, and DNA replica-
tion activity in the early S phase were obtained for these CNS
groups, indicating these CNSs may have a diversity of functions.

In terms of DNA methylation, the cis pan-And-CNSs showed
a low DNA methylation ratio, which supports the previous obser-
vation that putative cis-regulatory sequences correspond to a low
DNA methylation ratio in plants (Zhang et al. 2006, 2012; Zilber-
man et al. 2007; Suzuki and Bird 2008; Rodgers-Melnick et al.
2016; Oka et al. 2017; Ricci et al. 2019). The non-cis loop pan-

And-CNSs exhibited a medium DNA
methylation ratio (Fig. 4A) and could be
divided into two distinct subgroups ac-
cording to DNA methylation ratios (Sup-
plemental Fig. S14). This might be due to
different functions of CNSs between
these two subgroups; alternatively,
somemay actually be cisCNSswith tissue
specificity but were incorrectly classified
into the non-cis loop pan-And-CNS
group. DNA methylation is associated
with GC content (Mugal et al. 2015)
and GC content is associated with chro-
matin accessibility (Parker et al. 2008;
Schwartz et al. 2019; Hammelman et al.
2020). Compared to the genome-wide
background, the cis pan-And-CNSs
showed a higher GC content, whereas
non-cis loop pan-And-CNSs exhibited a

lower GC content. This is again suggestive of diverse functions
across cis pan-And-CNSs and non-cis loop pan-And-CNSs. The
GC content of the rest of the pan-And-CNSs was similar to that
of the genome-wide background (Fig. 4B). Active regions of DNA
replication in the early S phase (Wear et al. 2017) were associated
with both cis pan-And-CNSs and non-cis loop pan-And-CNSs.
The activity of the rest pan-And-CNSs was higher than that of
the genome-wide background but lower than that of cis pan-
And-CNSs and non-cis loop pan-And-CNSs (Fig. 4C; Supplemental
Fig. S15).

Overall, 14% of pan-And-CNS records did not fall in any pu-
tative features (i.e., open chromatin regions, TFBSs, introns, UTRs,
noncoding RNA genes, chromatin loop anchors, H3K9ac ChIP-seq
peaks, and TEs) (Fig. 4D; Supplemental Fig. S16). These CNSs were
shorter and had lower alignment scores (Supplemental Fig. S17)
than the 86% that could be assigned to a feature and may be en-
riched for false positives. These unannotated pan-And-CNSsmight
also be tissue-specific regulators. A more comprehensive investiga-
tion of functional noncoding features in different tissues may pro-
vide a better understanding of CNS functions.

Variants in CNSs impact gene expression

We further investigated the CNS function by testing if genotypic
variants within the identified CNS affectedmaize gene expression.
Using the expression quantitative trait loci (eQTLs) identified by
Kremling et al. (2018), the intergenic pan-And-CNSs were en-
riched 4.02-fold among the “lead” eQTLs compared to the ge-
nome-wide background. We selected the lead eQTL as the one
with the strongest association (lowest P-value) with the expression
of its target gene. The pan-And-CNS regions harbored a larger pro-
portion of maize HapMap3 variants (Bukowski et al. 2018) with
lowminor allele frequency (MAF)when compared to intergenic re-
gions (Fig. 5A). This result suggests that variants in theCNS regions
are under stronger purifying selection compared to those in the
intergenic regions, likely because variants in CNSs could negative-
ly impact functional elements.

We identified CNS presence/absence variants (PAVs) using
the maize HapMap3 second-generation sequencing reads (Bukow-
ski et al. 2018) and CNSs identified using the sorghum genome as
the query. Most CNS PAVs were rare (MAF<0.1), especially genic
CNSs and cis CNSs (Fig. 5B). Previous studies suggested that non-
coding rare variants contribute to the dysregulation of nearby

BA

Figure 3. CNSs are primarily putative regulatory sequences. (A) Proportions of intergenic pan-And-
CNSs overlapping with features of putative cis-regulatory sequence. (B) Enrichment of intergenic pan-
And-CNSs in open chromatin regions, TFBSs (transcription factor binding sites), H3K9ac (acetylation
of histone 3 lysine 9) ChIP-seq peaks, chromatin loop anchors, TEs (transposable elements), and noncod-
ing RNA (ncRNA) genes.
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downstream genes and are negatively associatedwith organism fit-
ness (Flint-Garcia et al. 2005; Kremling et al. 2018). By analyzing
the CNS absence within the 2-kbp upstream region of a gene and
its expression, we observed loss of CNSs was associated with loss
of gene expression (Fig. 5C). However, further upstream, the asso-
ciation between loss of CNSs and loss of gene expressionwasmuch
weaker (Supplemental Fig. S18); beyond 2 kbp, the regulatory ac-
tivity of CNSs on downstream genes likely diminishes. To further
test the impact of CNS PAVs on gene expression, we used gene ex-
pression profiles of seven tissues from amodern inbred population
(Kremling et al. 2018) along with the CNS PAVs with MAF≥0.1 to
perform an expression genome-wide association study (Supple-
mental Fig. S19). The result showed that more than half of signifi-
cant CNS PAVs were located within 2.5 Mbp of associated genes
(Fig. 5D; Supplemental Fig. S20).

Finally, we investigated the evolution of CNSs in maize dur-
ing domestication and subsequent local adaptation. We identified
regions likely selected during domestication using genome-wide
selective sweeps using RaiSD (Alachiotis and Pavlidis 2018) in a
panel of 31maize landraces (Wang et al. 2017a) and regions impor-
tant for local adaptation in maize using pcadapt (Luu et al. 2017).
The overlap between these regions and pan-And-CNSwas substan-
tially less than would be expected by chance, suggesting recent se-
lection in maize has mainly favored variants that do not modify
these constrained functional regions (Supplemental Fig. S21).

CNS variation is associated with

functional diversity between maize

subgenomes

To further study the effect of CNS varia-
tion on gene expression, we took advan-
tage of the genome-wide duplication
event that occurred in maize after diver-
gence from sorghum (Swigonová et al.
2004) to investigate CNS variation
between the two maize subgenomes.
Syntenic homologous genes between
genomes of maize and sorghum were
identified using the quota-alignment im-
plementation (Tang et al. 2011) with
parameters that keep every two maize
genes corresponding to one sorghum
gene (‐‐quota) (see Methods). First, for
each orthogroup (including two maize
genes and one sorghum gene), the total
CNS length within the 2-kbp upstream
region of a gene was recorded if this
CNS site was present within the 2-kbp re-
gion of the sorghum homologous gene
and at least one maize homologous
gene copy (Supplemental Fig. S22). Sec-
ond, the proportion of shared CNS sites
was calculated as the number of CNS sites
present in bothmaize gene copies to that
of the total CNS length. Third, the ex-
pression similarity between two maize
gene copies was calculated using Pear-
son’s correlation of their expression lev-
els across 23 tissues of maize B73
(Walley et al. 2016). Then, a correlation
analysis of the proportion of shared
CNS sites and expression similarity was

conducted. The proportion of CNS sites shared between the two
paralogous genes was positively correlated with the expression
similarity between them (r2 = 0.10, P-value <2.2 ×10−16, Pearson’s
correlation) (Fig. 6A; Supplemental Fig. S23). Moreover, maize
paralogs with negatively correlated expression patterns shared a
significantly smaller proportion of CNS sites than positively corre-
lated paralogs (P-value<2× 10−16, Wilcoxon rank-sum test) (Fig.
6B). Here, we defined the gene copy with a longer CNS (within
2-kbp upstream region) as the major copy and the gene with a
shorter CNS as the minor copy. In the context of maize subge-
nomes, for each pair of maize syntenic paralogous genes with neg-
ative expression correlation, in addition to spatiotemporal
expression patterns, we also observed a higher nonsynonymous
to synonymousmutations ratio for theminor CNS approximation
gene (Supplemental Fig. S24), which may indicate neofunctional-
ization or pseudogenization. The size difference between the ma-
jor and minor CNSs was smaller in positively correlated paralog
pairs than in negatively correlated paralog pairs (P-value=5×
10−10, Wilcoxon rank-sum test) (Fig. 6C).

In addition, for those negatively correlated paralog pairs,
we examined the correlation between the expression of maize
genes and their sorghum homologs in the shoot tissues. The nor-
malized shoot RNA-seq data of B73 (maize) (Kremling et al. 2018)
and sorghum (NCBI BioProject [https://www.ncbi.nlm.nih.gov/
bioproject/] accession number PRJNA503076) were retrieved
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Figure 4. Patterns of DNAmethylation andGC content in CNSs suggest diverse functions. (A) Different
DNA methylation ratios among pan-And-CNS groups. Red dots correspond to CG DNA methylation,
green dots are CHG DNA methylation, and blue dots represent CHH DNA methylation (where “H” indi-
cates A, C, or T). “other genome regions” on the horizontal axis represents DNAmethylation sites located
in the intergenic regions thatwere not defined as CNSs, and “protein-coding genes” denotes DNAmeth-
ylation sites located within CDSs, introns, or UTR regions of coding genes. (B) Different groups of pan-
And-CNSs (indicated in orange, brown, and green) have distinct GC content when compared with
CDSs (blue) or the genome-wide (red). (C) Overlap of CDS regions, cis, non-cis loop, and rest pan-
And-CNSs with active regions of DNA replication in the early S phase of the mitotic cell cycle.
Sequences that did not overlap with coding genes or CNSs were used as background (intergenic). (D)
The proportion of pan-And-CNSs overlapping with annotated features. Each CNS can overlap with mul-
tiple features. Unknown CNSs are those CNSs that do not overlap with any used features.
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fromWashburn et al. (2019). We observed a higher correlation be-
tween the expression levels of maize major copies and the homol-
ogous sorghum genes than between maize minor copies and the
homologous sorghum genes in the shoot (Fig. 6D). Overall, these
results suggest thatCNS variation is associatedwith expression and
functional diversity between duplicated genes.

Discussion

Despite the challenges ofworking ongenomeswithvast numbers of
transposons and frequent duplications, a novel sensitive alignment
approach shows that noncoding regions under purifying selection
can be identified by comparing genomes of related species. In our
CNS identification pipeline, the aim of using coding genes as an-
chors is to narrow down the sequence alignment scope and reduce
false positives. There are some scenarios where our pipeline will
fail to identify the target gene. The nearest gene of a regulatory ele-
ment is not necessarily its target, and the distance between a regula-
tory element and its target genes might be longer than 100 kbp. In
addition, the proximity of a functional noncoding sequence and
its target genemay be impacted by large insertions or chromosomal
rearrangements. Previous studies suggested that the total number of
predictedTFBSs ismuchsmaller thanthatof transcriptionfactor (TF)
recognition sites. TFs often work cooperatively and the sequence
contexts of TF recognition sites or combinatorial recognition of
cis-elements are key for TF binding specificity (Gerstein et al. 2012;

Dror et al. 2015; Levo et al. 2015;O’Malley
et al. 2016; Tu et al. 2020; Avsec et al.
2021).CNS records identified in this study
are much longer than a single TF recogni-
tion site, suggesting the possibility of rec-
ognition of ordered combinations of
nonoverlapping TFBSs (Viturawong et al.
2013; Shen et al. 2020). CNSs identified
using our approach were highly enriched
in TFBSs, open chromatin regions,
H3K9ac ChIP-seq peaks, chromatin loop
anchors, and eQTLs.

Using the genome sequences of six
Andropogoneae species, we were able to
identify a set of core-And-CNSs and pan-
And-CNSs. Core-And-CNSs and pan-
And-CNSs showed similar enrichment in
potential regulatory sequences, suggest-
ing that not all functional noncoding ele-
ments are conserved across all the species.
The presence/absence of those elements
may be related to species-specific traits
(Khalturin et al. 2008; Won et al. 2019).
As expected based on the role of core-
And-CNS in more essential functions
(Cvijovic ́ et al. 2018) and the likelihood
of mutations in these regions carrying a
higher deleterious burden (Kistler et al.
2018),we observed a largernumber of var-
iants with low MAF in core-And-CNS re-
gions than in pan-And-CNS regions in a
maize population (Fig. 5A), indicating
stronger purifying selection.

The overlap between CNSs and fea-
tures of putative cis-regulatory sequences

has been reported previously (Haudry et al. 2013; Viturawong et al.
2013;Warnefors et al. 2016; Lai et al. 2017;Oka et al. 2017; Lu et al.
2019; Ricci et al. 2019), although not all cis-regulatory sequences
are evolutionarily conserved (Ross et al. 1994; Wittkopp et al.
2002; McLean et al. 2011). We observed enrichment of lead
eQTLs in CNS regions and association between CNS absence and
gene expression (Fig. 5C,D). In terms of the regulation of CNSs
on target genes, wewere able to show that upstream 2 kbpCNS ab-
sence was strongly correlated with loss of expression, both in the
context of natural variation segregating within amaize population
and between duplicated genes in the maize subgenomes. Our re-
sults indicate that a longer conserved region proximal to a maize
gene correlates with higher expression and similarity of its orthol-
ogous gene in sorghum (Fig. 6D), suggesting pseudogenization or
neofunctionalization of the gene copywith a shorter CNS. In sum-
mary, our study shows that a meta-analysis using CNSs, and gene
expression levels combined with open chromatin regions, TFBSs,
chromatin loop anchors, and low DNA methylation loci can pro-
vide amore comprehensive view of themolecularmechanismsun-
derlying the regulation of gene expression.

Analysis of the identified CNSs extended our knowledge of
CNS function. Around half of the identified intergenic CNSs over-
lapped with different groups of putative cis-regulatory features
(e.g., open chromatin regions, TFBSs, and H3K9ac ChIP-seq
peaks). Chromatin looping is important for gene regulation
(Kadauke and Blobel 2009), and subtle changes in chromatin
loop anchors are associated with differential gene regulation and
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Figure 5. Variants in CNS regions impact gene expression. (A) MAF distribution of HapMap3 variants
in CNS regions, genome-wide CDS regions, and genome-wide intergenic regions. (B) MAF distribution
of CNS PAVs in genic, cis, non-cis loop, and rest CNS groups. (C ) Comparison of the proportion of
maintained CNSs in the 2-kbp upstream regions of the top 1500 expressed genes in root tissues in
each maize accession. Dotted lines indicate the 99% one-tailed confidence interval calculated by shuf-
fling the gene expression ranks and CNS maintained proportions 1000 times. Red dots are beyond the
99% one-tailed intervals. Similar patterns were observed across different tissues (Supplemental Fig.
S18). (D) Histogram of the distance between CNS PAVs and associated genes for root expression
data when a PAV and its associated genes are on the same chromosome. The vertical dotted line in-
dicates a distance of 2.5 Mbp.
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expression (Greenwald et al. 2019; Diehl et al. 2020). GC content
and DNA methylation ratio might influence DNA stiffness/flexi-
bility and has been reported to be correlated with DNA supercoil-
ing and recombination (Naughton et al. 2013; Rodgers-Melnick
et al. 2015; Jabbari et al. 2019). In this study, we also observed dis-
tinguishable GC content and DNAmethylation ratios between cis
CNSs and non-cis loop CNSs, suggesting diverse functions be-
tween these two types of CNSs. ncRNAs can interact with DNAs,
RNAs, and proteins, and have been implicated in the regulation
of gene transcription and translation, as well as in response to
stresses and stimuli (Yoon et al. 2013; Chen and Aravin 2015;
Han et al. 2019; Yao et al. 2019; Statello et al. 2021). The enrich-
ment of CNSs in ncRNA genes indicates sequence conservation
of transcribed but untranslated DNA sequences. The enrichment
of CNSs in active regions of DNA replication in the early S phase
suggests that regions of DNA replication initialization might be
evolutionarily conserved. CNS knockout lines should be generated
to gain a comprehensive understanding of their function
(Gasperini et al. 2020). Taking advantage of the observation of
GC content and DNAmethylation pattern across different groups
of CNSs, a model to classify CNSs into different functional groups
might be useful to provide a guide for the verification of CNS func-
tions via molecular approaches.

Methods

Plant materials collection

Hyparrhenia diplandrawas collected inKenyabyRémyPasquet (Pas-
quet 1126) andChrysopogon serrulatuswas obtained from theUSDA

Germplasm Repository Information Net-
work (PI 219580; seed originally from Pa-
kistan). Both plants were grown in the
greenhouse at theDonaldDanforthPlant
Science Center. Vouchers of flowering
specimens were deposited at the herbari-
um of the Missouri Botanical Garden;
full specimen data are available through
the Tropicos database (https://www
.tropicos.org).

DNA preparation and sequencing

Total DNAwas extracted from young leaf
tissues. Long-read sequencing was con-
ducted on a Nanopore MinION platform
at the Institute of Biotechnology, Cornell
University. DNAwith a size of 20–80 kbp
was selected following the Blue Pippin
protocol, and the selected DNA were
cleaned using AMPure XP beads. DNA
repair and end-prep were performed
with NEB enzyme kits. After adapter liga-
tion, MinKNOW software was used for
quality control of the MinION se-
quencing library. Sequencing was per-
formed following the manufacturer’s
instructions.

A total of 1.0 μg of DNA per sample
was used as input material to generate
second-generation sequencing reads. Se-
quencing libraries were conducted using
the NEBNext DNA Library Prep kit fol-
lowing themanufacturer’s recommenda-
tions, and barcodes were added to each

sample. Genomic DNA was randomly fragmented to a size of
350 bp. Then, DNA fragments were end-polished, A-tailed, and li-
gated with the NEBNext adapter for Illumina sequencing, and fur-
ther PCR-enriched by P5 and indexed P7 oligos. PCRproductswere
purified (AMPure XP system) and the resulting libraries were ana-
lyzed for size distribution by an Agilent 2100 Bioanalyzer and
quantified using real-time PCR. The qualified libraries were fed
into Illumina NovaSeq sequencers after pooling according to their
effective concentration and expected data volume.

Genome assembly

We used the NanoPlot (De Coster et al. 2018) and Porechop pack-
age (https://github.com/rrwick/Porechop) to respectively check
and filter the MinION raw reads. The MinION clean reads were
then assembled using Flye v1.4.2 (Kolmogorov et al. 2019) with
the genome size estimated via flow cytometry (Supplemental
Fig. S1F) as reference. The MinION clean reads were mapped to
the assembly using minimap2 (Li 2018) with a setting of “-x
map-ont”, and racon v1.3.1 (Vaser et al. 2017) was used to polish
the assembly with default parameters. Assembly polishing using
MinION reads was repeated three times. The MEM module of
BWA v0.7.17 (Li and Durbin 2009) was used to map Illumina
reads to the MinION polished assembly with parameters “-k11
-r10”. The “markdup” command implemented in SAMtools
v1.09 (Li et al. 2009) was used to remove duplicated Illumina
reads. Pilon v1.23 (Walker et al. 2014) with parameter “‐‐diploid
‐‐fix bases” was used for error correction (Supplemental Fig. S1A).
Assembly correction using Illumina reads was repeated three
times.
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Figure 6. CNS variation is associated with expression diversity between paralogous genes in maize.
(A) Correlation of CNS similarity and expression similarity of paralogous gene pairs. Red dots indicate
negatively correlated genes; blue dots indicate positively correlated genes across tissues. (B) The shared
proportion of CNS sites for negatively (red) and positively (blue) correlated paralogous gene pairs. (C)
The diversity of CNS maintained by the maize major copy and minor copy for negatively (red) and pos-
itively (blue) correlated gene pairs. (D) Correlation of expression levels of the maize major copy genes
with their sorghum homologous genes (red) and minor copy genes with their sorghum homologous
genes (green) in shoots for genes with negatively correlated expression patterns across maize tissues
in panel A.
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Genome assembly evaluation

To evaluate the contiguities of our new assemblies, we identified
5592 Benchmarking Andropogoneae Single-Copy Orthologs
(BASCO) genes shared by four Andropogoneae genomes, maize
(Zea mays), sorghum (Sorghum bicolor), maiden silvergrass (Miscan-
thus sinensis), and wild sugarcane (Saccharum spontaneum), as well
as an outgroup species, foxtail millet (Setaria italica). The URLs to
access these genomes are listed in Supplemental Table S1.

The following procedures were conducted to identify the
BASCO genes:

1. Syntenic genes: CDSs of the B73 genome (v4.34) were first
aligned against the sequences of sorghum, wild sugarcane,
maiden silvergrass, and foxtail millet using BLASTN (Altschul
et al. 1990) with parameters “-outfmt 6 -strand plus -task blastn
-evalue 5 -word_size 7 -max_target_seqs 1000”. Next, the quota-
alignment pipeline (Tang et al. 2011) was used to detect syn-
tenic genes using parameters “‐‐tandem_Nmax=5 ‐‐cscore =
0.2 ‐‐no_strip_names ‐‐filter_repeats” for blast_to_raw.py. The
parameters of quota_align.py were set as “‐‐merge ‐‐Dm=20
‐‐min_size = 3”. In addition, for specific species, the “‐‐quota”
parameter was set as “2:2” for maiden silvergrass, “1:2” for fox-
tail millet, “1:2” for sorghum, and “4:2” for wild sugarcane
according to their different genome assembly ploidy or ge-
nome-wide duplication levels. Overall, 25,155 maize genes
were found in at least one syntenic region.

2. Orthogroups: OrthoFinder (Emms and Kelly 2019) with param-
eter “-S blast -Mmsa”was used to find orthogroups. Only those
orthogroups with 1–2 maize genes, 1 sorghum gene, 1–2 maid-
en silvergrass genes, 1–4wild sugarcane genes, and 1 foxtailmil-
let gene were kept. The CDS of each transcript in the selected
orthogroups was mapped to the corresponding genome se-
quence using minimap2 with parameters “-ax splice -a -uf -C1
‐‐cs”. Any transcripts with a higher than expected number of
hits were removed.

3. Intersect syntenic genes and orthogroups: Orthogroups with at
least one syntenic maize gene were kept, otherwise dropped.

4. Double check gene copy numbers: Similar to step 2; CDSs of the
genes that passed the previous filter weremapped to the five ge-
nomes usingminimap2 and filtered by the number of hits with-
in each genome. Orthogroups that passed this last check were
defined as BASCO.

CDSs of BASCO genes were mapped to the H. diplandra and C. ser-
rulatus assemblies using minimap2 with parameters “-ax splice -a
-uf -C 1 -k 12 -P -t 12 ‐‐cs”. To evaluate the contiguity of the assem-
blies, we defined the minimum extent of flanking for mapped
genes (Supplemental Fig. S1C) as

• n1= start position of mapped CDS
• n2= contig length – end position of mapped CDSs
• minimum extent of flanking regions=minimum (n1, n2)

BUSCOv3.1.0with parameters “-m geno -spmaize -f -r -l” and
the liliopsida_odb10 database were used to evaluate the complete-
ness of the assemblies.

Parameter optimization for identification of CNSs

The pipeline started by finding anchor points using minimap2 (Li
2018)with parameters “-x splice -a -uf -C 1 -k 12 -P ‐‐cs”. Keeping in
mind the high diversity of theAndropogoneae noncoding regions,
for the following alignment steps we used a match score “2”, mis-
match “−3”, gap opening penalty “−4”, and gap extension penalty
“−2”. For step 3 (Fig. 1), we kept alignments with a minimum
Smith-Waterman score of 40 as seeds, thus the minimum seed

length was 20 bp (minimum seed score/match score). A sliding
window size of 38 bp was selected to ensure there was only one
seed in each window. To reduce the computational time and min-
imize the number ofmissing seeds, the sliding step sizewas set as 8.

To identify high-frequency k-mers, we counted the frequency
of 20-mers (minimum seed length) using KAT v2.4.2 (Mapleson
et al. 2017). For each genome, the secondary derivative of the
k-mer frequency density distribution was calculated and the point
withminimumdistance to zero was identified. The k-mer frequen-
cy at that point was used as a threshold to define and remove high-
frequency k-mers.

To find the alignment score that corresponds to a P-value
<0.1, we randomly extracted 10,000 fragments with a length of
1000 bp from the unmasked reference genome and query genomes
separately. A total of 10,000 maximum Smith-Waterman scores
were calculated by aligning those fragments, and results were fit
into a nonlinear least square regression. The final k (0.006662)
and λ (0.382291) values were determined by using maize as the
reference against sequences extracted from the other five species
randomly. Based on those k and λ values, alignments with a
Smith-Waterman score of 54 or higher were kept.

Overlap and enrichment analysis

The output SAM files were reformatted into BAM files using
SAMtools, and the “depth” command of SAMtools was used to
check how many unique base pairs were classified as conserved.
We counted how many unique CNS base pairs overlapped with
open chromatin regions (Ricci et al. 2019; Tu et al. 2020). Then, en-
richment values were calculated as

genome size
total base-pairs of open chromatin

CNS base-pairs
open chromatin CNS base-pairs

.

The overlap and enrichment values for TFBSs (Tu et al. 2020),
H3K9ac ChIP-seq peaks (Oka et al. 2017), chromatin loop anchors
(Peng et al. 2019; Ricci et al. 2019), TEs (Stitzer et al. 2019), ncRNA
genes (Jiao et al. 2017; Han et al. 2019), genome-wide DNA meth-
ylation (Ricci et al. 2019), DNA replication profiles (Wear et al.
2017), and lead eQTLs (Kremling et al. 2018) were calculated in
the same way.

The above-mentioned features were obtained from the origi-
nal publicationswithout further processing. For the data sets using
the B73 v3 genome assembly coordinates, CrossMap v0.2.8 (Zhao
et al. 2014) and the chain file released from Ensembl (Howe et al.
2020) were used to uplift to the maize B73 v4 genome assembly
coordinates.

CNSs and other features were considered overlapping if they
shared ≥1 bp.

Comparison of gene expression for genes with and without

CNS within 2 kbp upstream

A total of 28,950 gene IDs from the expressionmatrix from 23maize
tissues (Walleyet al. 2016)wereuniquely lifted fromthemaizeB73v3
to the v4 genome annotation using the table released by MaizeGDB
(gene_model_xref_v4.txt, https://www.maizegdb.org/search/gene/
download_gene_xrefs.php?relative=v4, downloaded on April 22,
2019, also available at https://github.com/baoxingsong/dCNS/
blob/master/data/gene_model_xref_v4.txt) (Lawrence et al. 2004).
Among those genes, 25,127 have upstream CNSs detected within a
2-kbprange.Thetissuespecificityofgeneexpressionwasmeasuredus-
ing τ (Yanai et al. 2005) and entropy (Kadota et al. 2006).
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CNS PAVs in a maize population

For each accession in themaize Goodman panel (Flint-Garcia et al.
2005), paired-end Illumina reads (NCBI BioProject PRJNA389800)
(Bukowski et al. 2018) were mapped to the maize B73 v4 reference
genome using BWA-MEM v0.7.13 (Li and Durbin 2009) with de-
fault parameters. To save computational time, we used GATK
v3.8 (McKenna et al. 2010) to classify each base pair as “callable”
or “noncallable.” For the “noncallable” base pairs, coverage was
checked using the “samtools mpileup” command. Some CNS re-
gions were shorter than the reads and only a single end of the
paired-end reads fell into the conserved region. Therefore, we
also mapped the reads to the CNS fragments using BWA-MEM
with parameters “-a -c 200000 -S -P” and calculated the coverage
of the CNS fragments using “samtools mpileup”. A base pair of a
CNS fragment was classified as “present” if it was “callable,” if it
had coverage from reads mapping to the genome-wide, or if it
had coverage from readsmapping to the CNS fragment; otherwise,
it was classified as “absent.”Maize accessions with low sequencing
coverage (≤14 Gbp of reads) were excluded from the analysis, as
there was not enough information to accurately conduct calling
(Supplemental Fig. S25).

Association analysis using CNS PAVs as independent

variables

To define CNS PAVs variables, the number of present base pairs/
CNS length was calculated for each CNS in each maize accession.
If the ratio was ≥0.8, it was encoded as 1; if the ratio was ≤0.2, it
was encoded as 0; otherwise unknown. To associate CNS PAVs
with gene expression, we used CNS PAVs with aminor allele count
≥15 and a known allele count ≥35. The list of maize accessions an-
alyzed is available as Supplemental Table S3.

Twenty-five PEER factors and three principal components for
population structure generated by Kremling et al. (2018) were used
as covariants, and association analysis was conducted using a fixed
linear model. Association P-values were calculated using an F-test,
with a significance threshold 1×10−6. The association test was
performed using a custom Python script (https://github.com/
baoxingsong/dCNS/blob/master/scripts/
CnsBasedGwasFixedModelV2.py).

We further investigated the significant associations between
CNS PAVs and gene expression level. To further check the possible
functional/loss-of-function states of alleles, especially those with a
presence ratio <0.8 and >0.2,

1. For each significant association, we grouped those accessions
with CNS PAV encoded as 1 as group “presence,” and grouped
those accessions with CNS PAV encoded as 0 as group “ab-
sence.” For the significantly associated gene, we calculated
the median expression level of group “presence” accessions
and group “absence” accessions separately.

2. For each of those accessions with the CNS presence ratio <0.8
and >0.2; if its expression level is closer to the group “presence”
median value, we classified it into group “presence.” If its ex-
pression is closer with group “absence” median value, we clas-
sified it into group “absence.”

3. We then compared the CNS reads mapping coverage ratio of
group “absence” accessions with group “presence” accessions.

Detection of selective sweeps

Wemapped the raw reads from resequenced landraces (Wang et al.
2017a) to themaize B73 v4 reference genome using BWA-MEM (Li
and Durbin 2009) with default parameters and conducted SNP
calling using the GATK v3.8 (McKenna et al. 2010) germline SNP

calling best practices. Specifically, first HaplotypeCaller was used
to call variants per sample and create GVCF files. Following this,
we used GenomicsDBImport to consolidate GVCF files and joint-
called genotypes from these with GenotypeGVFs. SelectVariants
was used to output SNPs, as the sweep detection software currently
cannot handle indels.We conducted genome-wide scans for selec-
tive sweep patterns using RaiSD v2.5 (Alachiotis and Pavlidis 2018)
with default parameters, correcting for the number of base pairs
with usable sequence data using mop (https://github.com/
RILAB/mop) with default parameters.

In order to screen for adaptive loci as a complement to our
domestication loci screen, we used the program pcadapt (Luu
et al. 2017). We used the program on its default settings but re-
moved inversion Inv4m and known inversions on Chromosomes
1 and 3, as well as a region of low recombination at the end of
Chromosome 10 that is likely the abnormal 10 region (Mroczek
et al. 2006). We removed these regions as low recombination re-
gions interfere with the way that pcadapt defines the background
relatedness for comparisons.

CNS similarity between two maize subgenomes

Syntenic genes between maize and sorghum, introduced above,
were used here. To calculate the proportion of CNS sites shared
in the 2 kbp upstream of the duplicated genes, we calculated the
total length of the sorghum CNSs and the number of matched
base pairs shared between each maize gene copy and sorghum
gene. Then, we checked the proportion of those shared base pairs
that overlapped (Supplemental Fig. S22).

Data access

All the CNS files in SAM format and BED format have been sub-
mitted to figshare (https://figshare.com/articles/dataset/CNS/
14129006) and are available as Supplemental Data. The CNS iden-
tification program source code has been submitted to GitHub
(https://github.com/baoxingsong/dCNS) and is available as
Supplemental Code. All the sequence reads and de novo assembled
genomes generated in this study have been submitted to the NCBI
BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/)
under accession number PRJNA543119.
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