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ABSTRACT

A three-dimensional finite element is adapted to represent a
curved shell element, of arbitrary geometry, with the conventional five
degrees of freedom per node. The numerical integration of the strain energy
is performed separately for each strain energy component, resulting in an
efficient shell element for either moderately thick or thin shells.

Four variational princ1§1es, aoplying to the linear theory of
elasticity, are given. Using two of these principles, an examination of the
efficiency of one class of mixed model is made.

Using the displacement method, the performance of a shell
element, derived from a three-dimensional element, is discussed. The
determination is made of the numerical integration required to gquarantee
correct convergence of the solution, as the finite element mesh is refined.
A numerical integration scheme is developed, satisfying the convergence
criteria, which allows the element to represent certain higher order bending
and in-plane deformation modes more efficiently. The element is used in
a finite element program and a number of static and dynamic problems,
involving both thick and thin shells, are solved. Comparisons of these
solutions are made with solutions by full three-dimensional finite elements

and thin shell finite elements.
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PREFACE

Until quite recently, the analysis of shell structures
presented a formidable task, capable of solution for only the simplest of
shapes and loadings. Simplifying approximations were made at all stages
of the analysis in order to be able to obtain any solution at all.
Approximations were made at the outset regarding the stress and
displacement fields. These approximations enabled the setting up of a
set of differential equations, that described the shell's behavior.

Many different approximations were then made on these equations them-
selves in order to obtain a so]utioh.

The increasing availability of digital computers and the rapid
increase in efficiency of both computer hardware and analysis techniques
now have allowed many of the simpiifying assumptions of classical shell
theory to be discarded, and a virtually unlimited range of geometrical
shapes to be analyzed. Indeed, using three dimensional analysis, a
structure with any geometry and loads could be analyzed, subject only
to restrictions of computer space and time. At the present time,
however, these restrictions are very real and three dimensional analysis
is a prohibitively expensive way to analyze most structures.

The analysis of many structures can be simplified by
recognizing certain characteristics of these structures and by making
justifiable kinematic or stress assumptions. This research is an
attempt to develop a shell element for use in the finite element method,
which, being derived from general three-dimensional elements, is
capable of analyzing shells whose geometries are such that classical thin
shell assumptions are not applicable, yet which is efficient enough to be

able to be used on classical thin shells also, if desired.



[. FINITE ELEMENT METHOD

I.1 Description

In Tinear structural mechanics we seek to solve the boundary

value problem characterized by
Lu = f (1-1)

and an appropriate set of boundary conditions. [ is a linear
differential operator, operating on the variable u in a region R.

An alternative way of posing the problem is by the use of a
variational formulation. We seek dn extremum of a functional I(u)
(associated with the operator [v) over a range of admissible functions
u. This latter statement of the problem is the form generally used in
the finite element method. The admissible functions are those functions
that satisfy certain constraints on the boundary or interior of R, and
satisfy certain continuity conditions. The functional is such that its
variation with respect to the variables u yields an extremum for those

values of u

u given by the diff

Y equation 4_u = f. This is
known as the Euler equation of the functional.

In the theory of elasticity, the variable u represents some
or all of the stresses ( 7;; ), strains ( 6%7 ) and displacements
( %) of the system, and the Euler equation represents the field
equatjons of the theory of elasticity.

In a finite element formulation the region R s considered
as subdivided into subregions known as finite elements. Within each
element, the variables represented by u are approximated by a

function v. The functions v are defined by interpolation functions



within the element, associated with generalized coordinates Vs which are
the values of v at points called nodes within the element or on its
boundary. The interpolation functions p are usually taken as polynomial
expressions in the global coordinates xj, or in a local system of axes.
Thus the variables are approximated by
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(I-2)

When the variable is expressed this way the functional I(V)
can be determined as a function of the nodal values Vj' The solution
of the variational problem in the discrete variables Vj then yields a

set of linear equations to be solved for the Vj'
[K] {v} = (R}

Using the values of v, found from this set of equations, and
the interpolation functions p, the complete spatial solution for v is
ch approximates the t

Provided that v satisfies certain requirements to be
discussed later, the systematic subdivision of the region into finer

meshes results in v converging to u.

1.2 Some Variational Principles

In elasticity problems, any or all of the stress, strain, or
displacement variables may be used as independent parameters defining

the functional.

ety v G



A1l stress, strain and displacement components are used in a
variational principle quoted by Fraejis de Veubecke,in an excellent
article on this subject (6). In this form, all components of stress
( T‘j ), strain ( €; ), and displacement ( u; ) are totally independent,
and are not related,a priori,by any of the field equations of the theory

of elasticity. Using indicial notation, the functional can be defined

by:
I ’//V(égjdv —//Ea‘-alv - [g“iol-’
R R % (I-3)
+ //Tg’/ u"'jz_ e - &]/ dv  + //t /12,;— “4') ods
3 Za

In this and the following variational principles, the following

definition apply:

// dv represents the volume integral over the body R.
R
//‘ds represents the surface integral over the surface, £ .

£, represents that part of the surface over which stresses are
defined.

£. represents that part of the surface over which displacements
are defined.

£ represents the entire surface of the body R.
-E- represents body forces per unit volume.
t; represents surface tractions.

t; represents the prescribed surface tractions on 2’,



|

represents the prescribed surface displacements on éﬁ*

Lerq) represents the strain energy density, calculated from the strain
field , 6?'
Taking the variation of the functional with respect to each
variable results in an extremum for those values of the variables that

satisfy all the field equations:

e.('j' = _/u(id * uJ}(//Z

%+ b =0

T‘j = Cljﬂe E&(
and boundary conditions:

;= ¢ on 5,

u& = ‘-4-4' on Z“

The previous general variational form can be simplified to
involve only one, or two of the three basic parameters, (‘Zb é&j U; s
of the functional.

If we satisfy , a priori, the constitutive relation

]
\

Ly Cyke  Ege
we get a functional involving only displacements and stresses or only
displacements and strains. These two are actually fully equivalent forms
and may be converted from one to the other through the constitutive

relations. This functional, involving stresses is known as the Hellinger

Reissner Principle (21) and can be written:

//A/(nj) L v //R,gu,.,zv , /Z,["“ﬁ »
-///ﬁ'l;sz'/ag +uJ-M-) dv - /‘f‘./a‘._u‘,)a[s
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For completeness, another form of the same functional, derijved
by use of the divergence theorem in vector field algebra, will be

presented here:

//4“//@‘)‘” /// Ui(Zy e f. ) el
/‘{4- W ds  + /é/é:-t)h ols

(I-5)

Su

A detailed discussion, with numerical examples, of the
application of these two principles will be given in Chapter II.

If, further, the strain—disp1acement relations are satisfied a
priori, and the displacements are constrained to satisfy displacement
boundary conditions on 2f“ , only displacements are left as independent
parameters, and we are left with a functional that represents the
potential energy, and the variational principle is known as the minimum

potential energy theorem. The functional becomes:

7 //9/////,‘ v //9//[ Uy v // {ow, ds 1-6)

Further details of this principle, to be used in the main
section of this research will be given in Chapter I1.4.

For completeness, one more functional will be presented. alsn
derived from the two-field Hellinger Reissner Principle. If the stresses
are assumed, a priori, to satisfy the equilibrium equations,
and to provide equilibrium on the stress boundary ‘fr s then the

functional reduces to:

///ﬁwrﬁ.) hr - /Lm; ds (1-7)



This formulation is the basis of the equilibrium method of

finite element analysis (19), (20).

1.3 Convergence Requirements

In order to be confident of the accuracy of a solution by the
finite element method, it is necessary that the solution should converge
to the exact solution as the finite element mesh is repeatedly subdivided
into finer and finer meshes. The nature of the functions pj chosen for
each element determines whether this convergence will be attained.

The requirements for convergence fall into two categories. The
first requirement is completeness df the expansion. The second is
inter-element continuity.

First we will examine the completeness requirement. This is
simply a requirement that ensures that the enérgy represented by the
functional includes the possibility of a constant energy state in each
element. If this is provided, then the true energy state of the whole
body can be represented, in the limit, as the mesh layout is refined, by
a series of step functions of infinitesimal width. Mathematically, this
requires that in each element, all uniform states of the variable v
must be included up to the highest derivative occurring in the
functional. In the displacement method, for example, the highest
derivatives of displacements occurring in the functional are the first
derivatives. Thus completeness requires that at least linear expansions
must be provided for displacements. This results in the familiar
requirement that "constant strain" and "rigid body" states must be

satisfied.



The second requirement is that of continuity between adjacent
elements. In order to avoid introducing singularities in the energy
integral occurring at the inter-element boundaries, it has been
considered necessary to provide continuity of any variable v of one
order lTower than the order of that variable's highest derivative in the
functional. Thus in the displacement method, again, continuity of order
C° was required, resulting in the requirement of full inter-element
compatibility. Success of certain non-compatible elements have however
led to a re-evaluation of this requirement. The weaker condition, first
stated by Zienkiewicz, (25) demands that continuity of the above order be
maintained only for the states of constant energy in the region R.

A rigorous examination of the above requirements is contained
in the doctoral dissertation by K. Willam (31) and nothing further will

be presented here.

I.4 Displacement Method

With the exception of Chapter II, the research described in
the following chapters is concerned with the displacement method only.
A brief summary of the displacement method of the finite element method
will now be given. Many references are available on this basic material
(25, 26) and only the briefest outline is included here.

The variational principle (I-6) given in Chapter 1.2 involves

the functional:

| T- //RL\//L(;)G/U' —//Z-a; sy - //zz@ s
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and the constitutive relation is:

(e} = [e]fe]

The functional can be written, for three dimensional elasticity

I- z’//R € [E] (€] o —///(uvw><(§‘> o
Yo ’f

Iy

(I-9)

L")

cls \ 7

) ot Ty

3
The displacements at any point are defined in terms of the nodal
values within the element or on its boundary (I-2), by means of

interpolation functions

w)  eny «
v = <p) v
ol (P |¥

or

|1
- v (1-10)
| =4

&
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By use of the strain-displacement relations
! .
E{/ = 3 ( U.,,,'I' + u,-,4)

we can write {&€ } 1in terms of the nodal displacements as

e} = [7]

Where [T] 1is obtained from [P] by appropriate differentiation.

(I-11)

TS

Using the above relations we get the contribution to the total

potential energy from each element:

I, = z—’(e’zf'y')//”[T’][E][TJdv

- (W y'ﬁf’)/// [p"] ds

alf

- (e’y’g’>// [P ] ds
ot s
4,

and the total energy _[ = Z/ I¢/¥. (1- 12)

|agis

m FanYERa V|
el

Cy i
—

We will now re-interpret u, v, w as nodal displacements for
for the whole structure, and [P], [T] as being "patch" functions for
any node which are defined by the interpolation functions p for

elements connected to that node and are zero otherwise. Using these new
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definitions, the previous equation for the energy of one element applies
for the total energy, the integrations now being performed over the whole
region R.

Taking the variation of U with respect to u, v, and w and

setting AU=20

we obtain
e«
R <5 (1-13)
= //[P’] f o el
R r £ _’>
3 t,
or writin v = ( u
BN
=
(k] = JJ[TEe]l7] av
R
and

s

A
L
If
=
—
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ﬂ
| R
| oy Ny
+
| —
T
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)= 1A o
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In a finite element computer program the integrations are
performed element by element, and added successively to the stiffness
matrix [ K] and the nodal force vector {R} defined for the entire
structure .

Since a term in [K] is non-zero only if the two nodes associated
with this term are connected to the same element, the matrix [K] is very
sparse. The non-zero terms may be arranged in band form, if the
equations are placed in the appropriate order. Further, the equations
associated with nodes that are connected to only one element involve only
those degrees of freedom associated with that element and may therefore
be eliminated from the stiffness of that element before assembly of the
whole stiffness matrix [K]. This process of eliminating internal degrees
of freedom is known as static condensation and decreases both the bandwidth
and the total number of equations in the whole system. The stiffness
matrix [K] is both symmetric and positive definite, allowing the simplest
equation-solving algorithm to be used.

Once the nodal displacements are found by solving the equations,
the displacements, strains and stresses within each element may be found
by use of equations (I-10), (I-11), (I-8). This completes the formal

solution by the displacement method.
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II. ONE CLASS OF MIXED MODEL

II.1 General Commeﬁts

In an attempt to improve the efficiency of analysing thick
shells, a general examination of one class of mixed model was undertaken.

In the displacement method, displacements are the primary
variables and the stress field is computed from the displacements by
differentiation. The stress field is thus of lower order accuracy than
the displacement field. Yet it is the stress field which is usually
sought for the purpose of design. It seemed Tikely, therefore, that if
the stress field were a primary variable, it would give better accuracy
for a given finite element mesh. It was decided to develop a three-
dimensional finite element, using both stresses and displacements as
primary variables, defined by values at the element nodes. This of
course results in considerable more computational effort than using
displacements alone. However it was hoped to take advantage of the
stress boundary conditions at the nodes on each surface of the shell,
thus eliminating these components of stress from the variational problem
altogether,

While this research was progressing, Dunham (39) was working

on similar research in two dimensions, reporting some success.

I1.2 Variational Formulation

The functional to be used was presented in Chapter I and is

given by:
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/ w dv 4/14/{1) olr
_ | (11-1)
r’ w dv / Lu. s - / L /&‘--u.-) oLs
;“

5
In th1s formulation, the stress field and the displacement field

are totally independent. Further, the displacements are not required to
satisfy boundary conditions on 25‘ and the stresses need not satisfy
equilibrium either within the body or on the stress boundary Z, . If
we choose, instead, to satisfy equilibrium on the stress boundary S, ,
a pm'o'm', no change in the functional results. If we choose to satisfy
the displacement boundary conditions, a priori, (with or without

satisfying stress boundary conditions) the functional reduces to:

Uy + U0
I - /TI 12 2 odv s [ W(T) dv
v _ _ v (11-2)
4/414.' dv /fgu; s
4 =

The continuity requirements stated in Chapter I required at
least a complete linear expansion in displacements and full continuity
of displacements between elements for states of constant energy at
least. Only constant stress capability is required within each element,
and no stress continuity between elements is necessary.

A different expression for the same functional (II-1) can be
derived easily, by use of the divergence theorem in vector field algebra.
The details wi]]lnot be given here, but the alternative form of the

functional is given by:
I - /u//r) ar /zg(?:};,w [ ) v
4 ’ - (11-3)
- /{‘ ;(,“ ol + /{z‘ "é;) us d:
Eu §-24
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If displacement boundary conditions on S, are satisfied, a
priori, there is no change in the form of the functional, but if stress
boundary conditions on 2; are satisfield a priori, (with or without

satisfying displacement boundary conditions) the functional simplifies to:

I- /b/(r)alv + u[,./,/,[) dv /{ ds (11-4)

v

In the following, we will discuss, this mixed model in two-
dimensional plane stress problems, in order to evaluate its performance.

To apply the finite element method, the displacements u, v
within each element are assumed to be related to the nodal values by

7
{“} .| < ()
v (77> | 7

where {E} represents the vector of nodal displacements in both
directions.

Similarly, the stresses within each element are related to the

nodal stresses {Zf} » by the expression:

/T,, F(p’) -
(T} (P {z
L (F)

. \ / L. .

For simplicity, we will assume that all stress boundaries are
parallel to the global x or y directions. (If this is not the case,
as in the numerical examples following, a rotation of axes is required

for the stress boundary integral given in the following functional).
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We will also assume for simplicity that the prescribed displacements and
stresses on the boundaries 5. f,- respectively, are related to the
prescribed values at the nodes by the respective interpolation functions

Further, we will assume the body forces to be zero.

9, p. f;

Then, if Y, Y

4 » represent the direction cosines of the normal

to a boundary S5 , and if p, q are re-defined as patch functions for
the whole body, as described in Chapter I, we get the following

discretized version of the functional (II-1):

I= 302 [Keer {7
(27 Kog 2]
(T Kee ] 2 ]
() a7 )
+<Z'r)j:u/(r1]{3“

where o [ { P} r(ﬁ)

Kpep| = P} E (P dv
aayim !PL[ | ()
N G 1[¢e" > o ]

Keq,|= {,l o (2:) | dv
. Al (P} ]l(2s ) <27 |

({7} [ Kg) o
LKP7]= {r} o K¢y |ds
L e v

The functional I

{Z} ,{g} when:

is stationary with respect to the variables
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- = =3 r \
I | -
Kpep ikﬂ, el O zKe ||Z
S el Y )
7o — -
oy K| 0 " Kpg !0 u
o ’ “ I h—{r I _‘k J

This is the set of equations to be solved for stresses and
displacements.

The alternative form II-3, results in the following set of

equations:
g 0. | 1/ i 1/ _\
ree Kep-JKee|| Z °©  uKer || Z
ol IR
K- Kl 0 ||u Kee | 0 | |&
L ‘ J\ J - 4\ ) (11-6)
where i B i
(£} fo}l| .
q) © .
Kee = [l |{o]} |&]} ol
© (¢
v -{ﬁl} {B}J_ )

In both these formu1ations,‘stresses and displacements at all
nodes, even on stress or displacement boundaries, are unknowns, and,
when the equations are solved, due to the discretization assumptions
these unknowns will in general not equal the prescribed boundary values
exactly.

If we choose to adopt forms II-2 or II-4 we get the following

discretized forms.
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_— - ‘ — s
[ _
K’(A '/(F?' Z O o Z
feipe- SN N — (11-7)
Koy | © u '/(Prr' © u
" {r I -
B i / . J
- - — - \
/(/"f’ Kpe z © ;z.‘/‘//’f z
BUAATEAN T B — =T e
Krg! © “ o o ||%
L - / — ' -4\

In this case, those stresses or displacements, that are on
boundaries along which the boundary conditions are satisfied, a priori,

are set equal to the prescribed values. Further the equations resulting

from the variation of these boundary unknowns are struck from the set

of equations.
Since the two forms II-1 and II-3 are mathematically identical

and only the actual numerical computations differ, we will consider only

the first form II-1, from now on.

I1.3 Solution Difficulties
When ordered appropriately, the discretized sets of equations

11-5, II-7 are banded, as in the displacement method. However the sub-

set of equations derived from variations of displacements contains zeroes

on the diagonal of the matrix. If stress variables precede displacement
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variables for each node, the solution process usually over-writes the
zero before that term is used for pivoting. However, if this is not

the case, an equation-solving algorithm developed by Professor Leonard
Herrmann at University of California, Davis, can be used, which does not
increase the bandwidth.

However a serious problem arises due to the block of zeroes
associated with the displacement variations. If the number of unknown
displacements n, ~exceeds the number of unknown stresses N, the set
of n, equations involving n, stresses will be of rank less than Ny
The set of equations is then singular, and redundant or contradictory
equations will arise. This is a most undesirable characteristic. For
two dimensional problems this situation can frequently occur if we
constrain boundary stresses to satisfy stress boundary conditions. If we
leave stresses on J. free to be determined by the set of equations,
this problem will not arise, since there will then be always three stress
components and two or less displacements, at each node. Thus n, < n,

As an example consider the arch divided into elements as shown

in Fig. II.1

bbb by bbb bbb bbb,

N

1’

Fig, II.1
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If all T , w are unknowns,

15 x 3 = 45

3
~
]

15 x 2 =30

Nu

and as, n, < Nz no singularities occur.

If, however, we satisfy stress boundary conditions,a priori,
two stress components are eliminated from each node on the faces of the

arch leaving

45 - 10 x 2 = 25

3
L]

30 as before

N
3
[N
=

£

i

So n < n_ and the resulting set of 55 equations will be
singular.

To compare the efficiency of mixed models using full stress
continuity, with displacement models, we will choose the easiest way of
avoiding this singularity problem. We will use only those forms of the
functional that treat all stress components as unknowns, at all nodes.
Using plane stress examples we will compare solutions with displacements
on z; both free and constrained to the prescribed boundary values. These
results will be referred to as "Uf" and "UC" respectively, and they
will be compared with results from a displacement model referred to as
Z14, in which stresses at the nodes are averaged from all adjacent
elements. In each case, quadrilateral elements will be used with
bilinear interpolation functions within each element, and a node on each
of the four corners. The interpolation functions are as described in

Chapter V, for isoparametric elements.
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I1.4 Numerical Examples

The first example is to examine the effect of the stress
concentration at a hole in a rectangular plate in tension. Using symmetry,
a quarter of the plate was analysed. The dimensions are shown in
Fig. II.2. A coarse mesh for the mixed model, and a finer mesh for the
displacement model were adopted to give approximately the same total
computer time.

Displacements in the x directions along the horizontal line of
symmetry and stresses z'xx on the vertical and horizontal lines of
symmetry are shown in Figs. II.4, 5, 6. The reference curves are as
given by Howland (40).

Examining these graphs, we see that the displacements for the
displacement model ZI4 are very much superior to those of the mixed
models Uf, Uc‘ Similarly the stresses for ZI4 are closer to the correct
values than either mixed model. The stresses for Uf and UC appear to
give a reasonable solution considering the coarseness of the grid used,
crossing the true solution, in each case. However with a grid so much
coarser than that for ZI4, the stresses from the mixed models are unable
to follow the changes of stress as accurately as the solution by ZI4 with
the finer mesh.

The second example to be shown, consists of a circular disc
Toaded with diametrically opposite concentrated forces. The solution is
given by Timosheﬁko (39). Again, using symmetry, only a quarter of the
disc is analysed.

The displacement u and the two stresses 7}, and 2. along
the horizontal line of symmetry are shown in Figs. I1.7, 8, 9. The

stress component 29’ along the vertical edge is shown in Fig. II.10.
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The displacement of ZI4 shown in Fig. II.7 are graphically
indistinguishable from the exact values. However, those from the mixed
models show considerable departure from the reference curve. The
stresses calculated by ZI4 are in each case, once again, considerably
more accurate than those from both Uf and Uc’ the latter two giving
stresses that oscillate severely about the reference curves.

These results and other examples not recorded here, indicate
that the mixed model, that maintains continuity of stress, is inferior to
the displacement model with the same interpolation functions within the
element, when equal computation time is used as the basis for comparison.
Dunham (38) reported that the mixed model gave improved results over the
displacement model. However, in his comparisons he used identical meshes
for each model and no account was taken of the greater amount of
computation required for the mixed models. When a finer mesh is used for
the displacement model, to give the same computation time the stresses
and displacements of the displacement model are markedly superior to
those of the mixed model.

As a result of these investigations, it was decided to abandon
this line of research and to attempt to improve the performance of three-

dimensional displacement elements.
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IIT. ANALYSIS OF SHELLS

For the purposes of this discussion we can define a shell as a
structural component, whose geometrical properties can be conveniently
described by reference to two curvilinear coordinate axes described on a
reference surface in space. The shape of the reference surface, the
actual definition of material geometry with reference to that surface,
and the loading pattern determine the class of shell.

The simplest class of shell is the degenerate shell defined
by a plane reference surface. This is referred to as a plate.
Disp]acemenfs in the plane of the plate result in membrane action, those
perpendicular to the plate result in bending. In the linear theory of
small deflections, these is no coupling between these two types of
behavior of a plate.

However, if the reference surface is curved, in general,
deformations in the tangential plane and perpendicular to it are
coupled.

If the thickness of the shell is small compareg with the
radii of curvature of the reference surface (or mid surface as it is
usually called) the shell will be referred to as a geometrically thin
shell. If the largest total transverse shear force per unit width
acting on a shell is small enough so that transverse shear deflections
are insignificant, then it will be referred to as a structurally thin
shell. This Tatter concept can be of special importance in dynamic
analysis. Certain simplifications can be made for thin shells, that
will be outlined below.

Other classifications, of importance to closed form methods of

analysis are concerned with the form of the mid-surface. Thus we can
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refer to shallow shells, shells of revolution, shells of translation,
cylindrical shells, etc. These categories all fall within the general
curved shell analysis to be presented here, and hence need not be
considered as special cases. It should perhaps be remarked that certain
of the following work could easily be applied to the solution of
axisymmetric shells formulated by an axi-symmetric solution method, but
this approach has not been pursued in the present work.

We will be concerned with the Timited case of small deflections
and linear elastic, isotropic material properties in the following,
although using standard techniques now available the range of
applicability could be expanded into the nonlinear range. ’

We will now consider the various assumptions usually applied
to thin and moderately thick plates and shells.

Consider an element of a shell as shown in Fig. (III. 1).

fig IITI.1 Shell Coordinates

Any point in the shell can be referred to the global coordinate
system (x, y, z) or to a curvilinear coordinate system ( f ”7“f ) where
f ,‘7 are coordinates on the mid-surface, and _f is a coordinate

perpendicular to the mid-surface.
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In order to reduce the three-dimensional problem to a problem
in the two shell coordinates, we must specify the deformed state of the
shell uniquely by the displacements of the mid-surface.

We will describe now the kinematic and geometric assumptions
usually made for shells that are thin both geometrically and structurally.

It is assumed that as the shell deforms and the mid surface
stretches and bends, the fibers of the shell initially straight and
normal to the mid surface remain straight and normal to the mid surface.
(See Fig. III. 2) this assumption is identical to the usual assumption
introduced in simple beam theory, and is referred to as Kirchhoff's

Hypothesis.

Initial Position Deformed Position

fig III.2 Kirchhoff's Hypothesis

Using this assumption, from any assumed deformed shape of the mid surface,
we can (at least in theory) calculate the strains at all points in the
shell and hence find the stresses, which must satisfy equilibrium. The

above kinematic assumptions, however, are not sufficient to determine the
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strain in the normal direction _r and a further assumption must be made.
The simplest assumption, requiring the normal to displace by simple
translational and rotational displacements, without change of length,
enforces a zero strain in the normal direction. This results in membrane
stresses in the shell that are (//(I-))Z) too great. Instead, the
assumption is made that the normal stress is zero, resulting in the
desirable membrane stresses. This assumption is reasonable since in-
plane stresses are usually far greater than the normal stresses caused

by the surface loading or the shell curvature.

In computing strains from the displacements of curved shells a
simplifying assumption is usually made. Due to the fact that the initial
length of the fibers at any surface, such as ab in Fig. III. 3, depends
on the radial distance r, a displacement of the normal, undeformed,
results in a non-linear strain distribution across the thickness. In this
case,lack of lTinearity depends on the ratio of the thickness of the beam

to the radius of curvature of the middle surface. For thin shells, i.e.

I

/

A

\

fig I1I1.3 Tangential Strain Variation for Thick Shell
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if t/R is small enough, we can ignore this effect, using the initial
length of the mid surface as the initial length of all fibers. This
results in a linear strain distribution across the thickness of the shell.
In order to be able to describe the stresses acting on the
cross section of a shell by two coordinates § and’? only, it is
necessary to eliminate their dependence on § » the normal coordinate.
This is done as in elementary beam theory by integrating the stresses
across the thickness, resulting in moments and in-plane forces as the

variables used in the formulation. As we see in Fig. III. 4, this

/,G'ciﬂ = //0’. be . dr

involves elemental areas which depend on the width b-c¢, which is a

integral

function of the radius r.

fig I11.4 Integration Area for Stress Resultants

For geometrically thin shells, we usually ignore this effect,

and integrate using a constant width equal to that at the mid surface.
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With the preceding kinematic assumptions we can relate the
strains in the shell with the displacements of the mid surface. Hence
we can compute the stresses and hence moments and in-plane forces, which
must satisfy a set of equilibrium conditions. This procedure looks

deceptively simple. The resultant differential equations represent:
(i) Equilibrium conditions

(ii1) Equations relating moments and in-plane forces with
extensions and changes in curvature of the mid surface

(iii) Equations relating extension and curvature changes of

the mid-surface with displacements.

This set of equations is, in fact, quite difficult to solve
except for the simplest geometry and loadings. In most realistic
situations, the solutions become almost intractable. In order to get
some sort of solution for these differential equations we must resort to
simplifications of the differential equations themselves. The art and
science of the theory of thin shells relies largely on judicious
approximations to, and deletions of, various terms of the differential
equations.

Numerical methods may be employed to solve these differential
equations, or we can circumvent the elaborate mathematical treatment by
the finite element method, to be described in later chapters.

When the shell is thick enough compared with the radii of
curvature, various of the above thin shell assumptions may be invalid.
We may find that the assumption of the linear strain distribution across
the thickness and the simplified integration on the cross section
introduce unacceptable errors and more exact relationships should be

used. This of course results in a far more complicated set of shell
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equations. Further, the kinematic assumptions adopted to enable a two
dimensional theory to be used, may be too restrictive. This may come
about by significant bending of the normal, rapid change of thickness of
the shell, or by the interaction between the inplane stresses and the
normal stresses due to extreme curvature. In these situations the
analysis become at least partly three dimensional, and two dimensional
shell equations may be unsuitable.

Even if the shell is geometrically thin enough that none of the
preceding assumptions are invalid, another condition may arise that will
render classical thin shell theory inadmissible. If the transverse shear
stresses are significant compared with the in-plane stresses, then all
the thin shell assumptions may be acceptable except for the Kirchhoff
Hypothesis, which restrains the normal to remain perpendicular to the
middle surface. This type of deformation will be typical of what we have
referred to here as "structurally thick" shells.

Theoretically, transverse shear deformation results in a cubic
deformation of the normal as shown in Fig. III. 5, preserving zero shear

strain at the surfaces of the plate. (27)

fig III.5 Shear Deformation of Normal
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However since this shear effect is normally quite small, and
since a linear deformation of the normal is therefore quite close to the
true deformation, we can obtain good results by forcing the normal to
remain straight, but allowing rotation of the normal with respect to the
middle surface. This procedure was adopted by Reissner (21) in his
classic paper on plate deflections.

Large transverse shear stresses can occur in situations where
the shell's thickness is significant compared with its other dimensions,
or even for thin shells when the loading is such as to cause many lines
of bending contraflexure in the shell. One example where this might be
important is the dynamic behavior of shells or plates subject to high
frequency excitation. The static behavior might be well within the
class of structurally and geometrically thin shells or plates. However,
the high frequency vibrations, which result in sinusoidal - like
displacement patterns with wavelengths of the same order of magnitude as
the thickness, may require assumptions appropriate to a structurally
thick shell.

Many situations arise in practice, where the shell over all or
part of its structure cannot be considered a thin shell, and hence a
solution based on thin shell approximations is invalid. For instance,
an arch dam may be quite thick compared to its radius of curvature and
span especially at the base, and even Tow frequencies of vibration can
very easily have wavelengths comparable to the thickness over parts of
the structure. A full three dimensional analysis is quite time-
consuming and an analysis providing refinement between this and thin

shell theory is called for.
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In the totally different class of structures represented by a
steel I-beam, we can examine another case where more than a thin shell
theory is required, but less than a three dimensional solution is needed.
Let us suppose we are interested in reproducing local buckling of the
flanges and web. The buckling may occur with wavelengths only a few
times the flange or web thickness, so we would not expect very good
agreement with a theory based on thin plates connected together. A
thick plate solution would be required to represent this accurately and
efficiently.

The research described in the following pages concerns the
development of an efficient shell element for moderately thick shells,
that is based on the assumption of undeformed normals and zero normal
stresses, but makes no other geometrical or kinematic assumptions

described in this Chapter.
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IV. REVIEW OF SHELL ELEMENTS

IV.1T Flat Elements, from Bending and Membrane Elements

The earliest attempts at constructing suitable shell elements
were based on combining membrane elements with plate-bending elements that
enforced Kirchhoff's Hypothesis. This process resulted in elements with
uncoupled membrane and bending actions and hence were restricted to flat
elements. Assembly of these elements into a many-faceted surface gave
a geometry which approximated the true shell surface. This class of shell
element has proven to have good convergence characteristics and is widely
used at the moment for the analysis of thin shells (29).

The development of shell elements of this type closely paralleled
the development of good plate-bending elements, from which they are derived.
Until 1965-66, considerable difficulty had been experienced in forming a
plate-bending element of arbitrary geometry that satisfied the requirements
of continuity, rigid body displacements and constant strain states. Clough
and Tocher (1) presented a triangular element satisfying the above criteria,
which has been quite successful in its applications. This element is con-
structed from three triangular sub-elements with corner nodes and mid-side
nodes between the sub-elements. A more recent paper by Clough and Felippa (4)

gives details of a quadrilateral element formed similarly.

IV.2 Relaxation of Kirchhoff's Hypothesis and Compatibility

Until 1966, most research effort had been put into the search for
elements for which there was full continuity of displacements and slopes
and for which the Kirchhoff's Hypothesis, appropriate to thin plates and

shells, was maintained. The former assumption was considered a necessary
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condition for convergence, while the latter was considered a "simplifying"
assumption as in classical shell theory.

Two papers presented at the same conference, the first by
Bazely, Cheung, Irons and Zienkiewicz (3) and the second by Melosh (2),
suggested the weakening of one or more of these conditions.

Bazely et al. recognized that the requirement of slope compati-
bility between elements was unnecessarily strict. They restated the com-
patibility condition as requiring continuity of slope, only for the
condition of constant curvature. This, with rigid body displacements
exactly satisfied, they pointed out, is sufficient to guarantee convergence.
They illustrated the weaker condition with some examples of non-conforming
and conforming elements. This weaker compatibility requirement has since
been shown more rigorously by Oliveira (22).

Irons and Draper (23) had pointed out in 1965 the difficulties
that the Kirchhoff Hypothesis caused in defining an element with corner
nodes. Melosh (2) abandoned this reqqirement, allowing independent trans-
verse displacements and rotations of the normal. He adopted a triangle
with corner nodes and assumed linear expansions for the transverse dis-
placement and each rotation of the normal. This element automatically
included the effects of transverse shear deformations, thus allowing a wider
class of shells to be analyzed than previously possible.

The effect of shear was also considered by Clough and Felippa (4)
in the quadrilateral version of their conforming element, by allowing a
shear rotation of the normal, relative to the mid-surface, that varied lin-
early within the element. The inclusion of these shearing angles as

nodal parameters leads to a stiffness including both actual rotations of
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the normals and shearing angles. Since the shearing angles don't affect
compatibility, they are eliminated from consideration by static condensa-
tion.

When elements similar to that discussed by Melosh were used in
actual problems, a probiem of inefficiency was encountered. When the
nodes of a plate element of this type are given displacements corresponding
to some bending deformation, the transverse shear energy is usually large
compared with the correct value. This results in a high stiffness for
the element. As the size of the element decreases, with refining of
the mesh, this discrepancy in shear energy decreases and the solution
to the problem converges to the correct solution, but at a rather slow
rate.

A paper by Wempner, Oden and Kross (17) explained how, by
suitable choice of the displacement variables, constraints could be im-
posed pointwise at the nodes to enforce the Kirchhoff Hypothesis at these
discrete points only. Thus the overall degrees of freedom are reduced,
and the convergence to the thin shell solution is speeded up.

A similar paper by Stricklin, Haisler, Tisdale and Gunderson (10)
gave the details of a triangular plate element in which a similar discrete
version of the Kirchhoff Hypothesis was used to give an element with 9

plate-bending degrees of freedom.

IV.3 Some Curved Shell Elements
| Curved elements, based on exact or approximate shapes of shells
began to appear in 1967.

Bogner, Fox and Schmit (12) describe a c¢ylindrical shell element,
which used interpolation functions defined in shell coordinates. Nodal

values involved the three displacements and various derivatives, with
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respect to the local coordinates, of these displacements. This
resulted in a stiffness with twelve degrees of freedom for each of the
four nodes in an element.

Utku (11) expanded on the work of Melosh, previously described,
and widened the use of the triangular element to include shallow curved
triangular shell elements. Using three displacements and two rotations
at each node, by use of thin shallow shell equations, he defined the in-
ternal strains from an assumption of linear variation of the displacement

quantities within the triangular element.

IV.4 Equilibrium and Mixed Models

While much work was going into the foregoing displacement
models, a number of researchers were seeking solutions to plate and shell
problems by the use of finite elements based on other variational
principles (see Chapter 1.2). Three more or less distinct classes of
element resulted, which will be described briefly.

Following the initial presentation of the basis for the
equilibrium element (6), de Veubecke followed his first paper on plane
stress elements with a plate-bending element (19), (20) in which moments
are the primary variables and the stress field resulting from the
assumed interpolation functions satisfy stress equilibrium, or in tne
case of a plate, moment equilibrium, point-wise over the whole element.
The complementary energy variational principle is used to determine the
actual stress field.

The second class of element, being simultaneously developed,
was the so-called mixed model, based on a variational principle

including both displacements and stresses (or moments) as primary
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variables. One principle, first enunciated by Reissner (21) was
discretized by Herrmann (5) to give a model with both moments and
displacements varying linearly within a triangle. A later paper by
Herrmann (7) improved considerably on the first element by slight changes
in the definition of the element.

An interesting mixed model, generally referred to as a "hybrid"
element, was developed by Pian (8). He used nodal displacements as the
primary variables, from which the displacements along the inter-element
boundaries are defined. However the displacement field is not defined
within the element at all, and instead, a stress field depending on
certain parameters is defined, in such a way that the stress field is
in equilibrium at all points within the element. The complementary
energy principle is used for each element to determine the stress
parameters, and from these the stiffness of the element with respect to
its nodal displacements can be determined by a matrix inversion.

This method has been used by Dungar, Severn and Taylor (9) to

construct a triangular element for shell analysis.

IV.5 Three-Dimensional Elements in Shell Analysis

While the foregoing shell elements were being developed, work
was continuing on the wider class of solids that could only be
represented by fully three-dimensional elements. Their development by
Argyris (24) and Zienkiewicz and Irons (18) made possible the representa-
tion of a shell as a three-dimensional solid, with no special shell
assumptions being made.

Zienkiewicz and his group popularized the highly successful
isoparametric series of elements described by Irons (13). The

displacement functions for these elements, defined in a local curvilinear
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coordinate system, are the same as the functions defining the global
coordinates of points within the element, in that local coordinate
system.

The logical extension of this work was the development by
Ahmad, Irons and Zienkiewicz of a shell element, derived from three-
dimensional elements, but specialized to be represented by the usual
5 degrees of freedom per node and modified to take advantage of certain
shell properties. It is a refinement of this class of shell elements

with which this research is concerned.
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V. AHMAD-IRONS SHELL ELEMENTS

V.1 Isoparametric Elements

This versatile class of finite elements was first described by

Irons (13). It has since been used widely for two and three dimensional

analyses and provides efficient and easily programmed elements. A

brief outline of the underlying assumptions and the stiffness formation

will be given in this section.

For further details, refer to any one of

a number of papers by Zienkiewicz and his group at Swansea (14), or

Zienkiewicz' excellent book (25).

We will consider here only three-dimensional elements. We sub-

divide the body being analyzed into a finite number of elements in a more

or less regular way, forming six-sided hexahedra (or "bricks" as some

like to call them) of regular or irregular shapes.

For simplicity we will consider for our example the simplest

element, consisting of eight nodes joined by straight lines. (See Fig. V.1.)

x

fig V.1 Three-dimensional Isoparamatric Element
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Each node has three degrees of freedom, one in each global
direction, u, v, w. We now define a coordinate system § ,'7 . &
Tocal to this element, such that x, y, z are products of linear interpolation
functions in f s T s ‘f , and such that f N are + 1 on
the faces of the element.

We define an interpolation function for each node i (i =1 - 8),

as follows.

p o= a5 5)e)(1 £ F)

where fg , ﬂl. , ji are the _g 7 f coordinates of node i and

are as follows.

A = /" 2 3 4 5 6 7 B
§ A AR Y Y S Sy By
4

Y Y Y A Y Y Y
jﬂ‘ Y Y Y B Y Y

Explicitly this gives

po= Je (1-§)1+m)(1ef)
po= B (1§ )(1ef)
o= p(1e8) -7 )(05)
o= (-0 ) (e )
g o= s l1-5)1en)(-5) (v-1)
po= 4 Lies )0 )(0-5) |
B o= g (1§ )(r-1)(1-5)
o= 4% (1§07 )(0-f)
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We define (pT) = QEH%@>

Using these functions we now define the coordinate transformation:

(xy3) = (p7) [ ¢ 7] (v-2)
where X, y, z are vectors of the global coordinates of the nodes.
We note, in passing that
| Z,q. = [
., W.) at

We next define for any nodal displacement (ui, Vis Wi

node i the displacements within the element, by reference to the local

f » 7 s .f coordinate system

(w vwy = <p7) [uy w (v-3)

where u, ¥, w, represent the vectors of these quantities, associated with

each of the nodes 1 - 8.
We need the strain-displacement transformation next, but since

1 ¢ 7’ , j system, we

5 s

must first evaluate the derivatives in this sytem.

. v e
the displacement fi

Thus
i ‘ i a
u v Jw op u v
f 2F af <95> [z ]
w av ow | | (227
7 27 a7 27
du ov Jw ar’
B (55 )
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or, more simply

[« vepne] = [ pay e v o] e

Now at any point

~ ) -

du v Jw Ix Jy di du Jv Jur
2§ 2§ It 2f ofF of | | ox 2x ax
Ju v Jur| | 2 Py 93 | | Ju Jv Jur
OT 97 27| ™ | 27 27 27 | |3y %y 9y
du v Jw Ix 24 9 | |u v v
| 2f 9f of | | of of ajd ~2§ 2% Q}J

or

[ uvwf,,u_1 - [ 7 ] [ﬂ?fu%,ﬂ] (V-5)

PR

where [J] is the jacobean of the transformation of x, y, z to ‘f ’

7. % . Thus
(wvwng | = [77] [uvwymy ] (v-6)

Now , as{: x® ;f Z ] = [ P ] [ X ;/ 4 ]
by differentiation

7]

So [u v w xyz] can be determined as a function of nodal dis-

placements, at any point, by reference to equations (V-4), (V-6) and (V-7).

i

[f"m] [ff J z } (v-7)

e

Now the strains €ij are various combinations of
u Jr Jur da Do D Du Pu O
o ox’ ax 2J’aj’35«’az 22 ° 2z
and can be picked out of the matrix [u v wxsz’ term by term.
This results in a strain dispalcement matrix [T], defined by
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(v-8)

where €  represents (€n €n €3 ¥z ¥ Yar )
The element stiffness matrix, as outlined in Chapter 1.4, is

formed by the integration of

[7 [TI[E]IT] dedydz (V-9)
element volume

where [E] is the matrix defining the constitutive relation defined

by

{r} = [£](e} (v-10)

{T} being the stresses corresponding with the strains,{é] .

Since we are using local coordinates } . ’? s ? we need to
transform the integration over the volume of the element to an integration
in the } . ”2 , f system.

This is done by considering an infinitesimal element of volume
enclosed by vectors along each Tocal coordinate direction, at the point

where the elemental volume is being considered.

fig v.2 Volume Integration Transformation
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This element of volume is equal to the scalar triple product of

-~ o~ —~
the three vectors € , €, %

A/‘:\*\ A ;o % JAﬁ N
dv - (8.¢,)x% O,e {22125

but R -

/ - X 4 & 2; + ZE

\

S0

~ _ gx/\ 2 " +9 A
and >

I~ - allx 2 ~ 9 ~

g = (=41 .277.22 & )d
and

2 = XA . 297,227

8- (587 GR)Y
So the volume dv /

5[1)" = Gl@'[ J- %Glf 47 G(f
where det J = the determinant of the jacobean Jac.

NN % - Jfrlelrlar gaae g

The inversion of [J] results in polynomials in the denominator
of the integrand, and so the volume integration is performed numerically.
A Gaussian scheme of integration is most convenient, resulting

in the following approximate statement

a/,, dez‘fdfd’7df
I /// T [ Mdm “7]0q 0

where ki = Gaussian weighting factor and [ Ji = the value of [ ]

<

at the integration point 1.
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Sufficient integration points are chosen in f N/ f to
get the accuracy desired.

Details of the numerical integration willbe given later, but
suffice to say, that, for non-prismatic elements, the greater the number
of integration points in each direction .j ,'7 ,‘f » the more accurate
the integration, and further there is a minimum order of integration that
will yield a satisfactory stiffness to guarantee convergence.

The numerical integration (V-13), results in an element stiffness
matrix of dimensions 24 x 24 for this eight nodal point element.

Internal stresses can be computed at any desired points from
nodal displacements by use of the same transformations presented above,

resulting in the relation

(e} = [£]l7]

The existence of constant strain and rigid body displacement states (which

(v-14)

AT

must be included in the assumed displacement interpolation functions to
ensure convergence) follow simply from the definitions of the displacement
field and the coordinate transformation.

Consider first a rigid body displacement of the nodes

{u} = R{I}] « & {4} » 4 |z}

where {J} is a vector of unit elements.

Then the internal displacements, governed by

(p7) fu}
(p7) { 41T}« Alyl + &{z}]

&
1]

become iU

11
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but <pr>{[} = Z po= 1 as we noted earlier

and (7MY

1
&

"
N

(#)f=)
So 7] = )€ + 4; y o+ ﬁ% Fa
representing correct rigid body motion. A similar proof is used for

displacements v, w.

Similarly, a constant strain condition €, = k requires

nodal displacements {u } k { 5} . Then, internally

(p7) {4}

KP) ) = b

U

Again, we get the exact displacements., Similar arguments can be used for
displacements in the y, z direction.

Since the deformations of an element face are determined solely
by the displacement of the four adjacent nodes, full cohtinuity of dis-
placement is maintained.

The simplest three dimensional isoparametric element has been
used above to illustrate the basic assumptions and the stiffness formation.
However, this is only one of a theoretically infinite family of similar

elements of increasing geometric complexity, but having identical method
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of formation. These elements may in general have edges curved in space

and may or may not have internal nodes and midside (or even mid-face)
nodes. A number of examples are shown in Fig. V-3.

In each case, a local coordinate system _% s 4? ,,f is es-

tablished, which satisfies the requirement of having values of + 1 on

opposite faces for each coordinate } s ”7 s f in turn. Then the in-
terpolation function for each node is defined in such a way that the function

is unity at that node, and zero at all others.

Thus, for example (i) in Fig. V.3 the interpolation functions

are built up from

.
R = g

W

h

(
(
(
(
p o= 4(1-
(
(
(
(

A= 4 (147 N - "
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,.

(1) Linear Element (ii) Linear x quadratic-
with Internal Node x quadratic Element

(iii) Quadratic x quadratie- ‘ (iv) Cubie x cubic x cubie

x quadratic Element Element

fig V.3 Iypical Isoparametric Flements
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for example (iii) we have

(v-16)
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As before

(x yz) = (p)l2y z]

and

{u vw)y = (pT)luvw]

and all other details are identical.

It should be noted here that although we have discussed the
caseof the coordinate definition and the displacement definition having
identical form, being defined by the functions (PT.>, this is not strictly
necessary. A satisfactory element may be built up with the coordinate
relationship being of a lower order than the definition used for displace-
ment. The converse, however is not, in general, true -- rigid body modes
or constant strain states being violated in this case.

A simple example will illustrate this point. This example
will be referred to later in the definition of a curved shell element.

We will consider a quadratit x quadratic element in two dimensions with
mid-side nodes, as shown in Fig. V.4. The internal node 9 will also be
used to define displacements.

The geometrical relationship

(xyz)=(p )=y z] (v-17)
involves nodes 1-9 and nine interpolation functions
(-§)(1-$)7(1+7)

§ (’*§)7('°7) (V-18)

o
0"
L Y.

»
B

--continued...
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However, if we choose the position of node 9 suitably, the above

relation degenerates to

(xyz)y = (p ="y 2" ] (v-19)

involving only the eight external nodes. In this case we find

fig V.4 Plane Isoparametric Element
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Thus, if the position of the internal node 1is such as to satisfy

this latter relation (V-20), it will also satisfy the former, {V-18).

We can therefore turn the problem around and define the geometry

by the eight nodal point definition (v-20), and if the internal node is

correctly positioned we can define the displacements by the nine nodes.

This formulation is effectively identical to using nine nodes for both

relations.

It can be easily shown however that attempts to use a higher

order geometry than displacement relation, will in general fafl to satisfy

one or both of the constant strain or rigid body motions. Thus, for instance,

we could not use an eight nodal point hexahedron with curved sides defined

by 20 nodal points.
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V.2 SHELL ELEMENTS BASED ON ISOPARAMETRIC ELEMENTS

The three dimensional elements described above provide a power-
ful tool for the solution of complex three-dimensional problems. They
can, of course, be used unaltered, if desired, for shell problems.

As we refine the finite element mesh in both the surface and
normal directions, the solution will converge to the correct theory of
elasticity solution, since no shell assumptions have been imposed on the
solution.

Clearly, this is an expensive way of modelling a shell, since
various special information is known about shell behavior and some or all
of the thin shell assumptions may be valid to use. Application of this
knowledge should reduce the complexity of the problem.

We saw in Chapter III that there were three basic types of
assumptions used in formulating any shell theory.

(i) Geometric approximations of either the shell geometry
itself, or the geometric variation of strains, depending on the
ratio of the thickness to the radii of curvature.

(i) Kinematic assumptions on deformation behavior.

(iii) Assumptions on stresses themselves.

By ﬁsing three-dimensional elements (or elements derived closely
from them, as described in the end of this section), we are approximating
the actual surface geometry, rather than the mid-surface geometry, that 1is
used in any thin shell elements. Hence, as we refine the mesh with either
curved or straight-sided elements, the actual geometry of the shell is
approximated as closely as we like, and all transformations and energy

integrations are based on the correct shell geometry. See Fig. V.5.
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Geometry with Geometry with
3=dimensional Elements Thin Shell Elements

fig V.5 Comparison of 3-dimensional
and Thin Shell Elements

For this reason, the thickness to radii of curvature may be small
or large, and no error in the converged solution will result from this cause.

The kinematic and stress assumptions, on the other hand, depend
directly on the type of three-dimensional element used. It is desirable
to use elements, which, when only one layer is used through the thickness,
represent the kinematic deformation and stress variations that any particular
class of shells requires.

If we are interested in including a particular type of deformation
(e.g., transverse shear deformations) we must decide further between an
element that will model this exactly, or one that will approximate this
behavior.

We will now examine certain classes of shells and see what
elements can be used to represent them,

For simplicity, we will examine in detail the behavior of

plate elements formed from general three-dimensional elements. (Fig. V.6.)
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\

\
\

\

Small Element in Shell Small Element in Plate

Fig. V.6 Small Elements from Shell and Plate

The behavior of a very small element (i.e., small compared with
its thickness) is similar to a small element in a shell, except for the
geometrical effects discussed above. So, by requiring that a small
plate element behave in a certain manner, we will be fixing the class of
shell that can be represented by this element used in a shell.

We will be primarily interested in an element that can reproduce
exactly (in the 1limit) membrane strains, and bending strains and will in-
clude, with good accuracy, deformations due to transverse shear.

Elements with this capability, formed from three dimensional
elements so as to accurately reproduce geometrical relations, will be
suitable elements for most thick shell applications as, for instance,

arch dams. This class of element could also be used for thin shells, although
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we may find that their efficiency may not be as high as elements designed
for thin shells alone. This will be examined later.

We discussed previously the importance of satisfying the constant
strain modes of deformation exactly, in order to get convergence to the
correct solution. This necessary condition, for a shell becomes a require-
ment that any particular shell deformation mode can be exactly satisfied.
Thus it is no longer sufficient (nor indeed relevant) that the six constant
strains € i are present, but that an element of small size and arbitrary
shape can reproduce all constant shell deformation modes exactly.

Two characteristics of the shell element will affect this capability,
namely the order of expansion for displacements in the surface coordinates

f » " » and that in the normal coordinate _f

Let us first consider the simplest three d1mens1ona1 isoparametric
element, with 8 nodes, one at each corner, using a Tinear assumption on
displacements.

Further, let us first examine an element with rectangular

surfaces, as shown in Fig. V.7.

fig V.7 Rectangular 3-dimensional Element
asg Plate
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A membrane deformation of the plane stress type will first be examined.
Any membrane strain, constant in the element, can be exactly satisfied by
this element, since it is one of the constant strain states that the
three dimensional element must satisfy anyway.

However, this element will, in general, not satisfy a constant
bending deformation precisely, for two reasons.

Under pure bending, for non-zero values of Poisson's Ratio, V ,

the normal strain € n in a plate varies linearly with f . See Fig. V.8.

n

o o \
/

nr

L.

IE,
m

Fig. V.8 Normal Strain in Bending

This is the result of the in-plane stresses varying linearly with f , and
the normal stress being constant and equal to zero. However, in this element
the Tinear expansion for w in the ‘? direction allows only constant

€nn’ So, as ¢ m is anti-symmetric about the mid-surface for this loading,
we conclude that € I 0. This causes the bending stiffness to be too

large by a factor of 1/0-92. No matter how small an element we examine,

this failure remains, and this will cause an error of the same magnitude in
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any problem involving bending. To represent this correctly, by a
strictly displacement model, a quadratic variation with jr is required

for w, resulting in three nodes on the normal. See Fig. V.9.

—3

F4
Tz.’
x

Fig. V.9 Element to Allow Quadratic Stretching of Normal

The second weakness is the result of the fact that, for pure
bending, the normal displacement w of the actual shell varies quadratically
with ‘f and/or 47 . This again is impossible with the linear displacement
element. See Fig. V.9 again. We see also that the transverse shear strains
¥ , and/or B’yz are non-zero over most of the element. These two effects
are the result of the same constraint. Hence, a constant moment cannot
be feproduced by a finite sized element. However, as the element size
is decreased, the incorrect strains caused by this constraint decrease to

zero. See Fig. V.10.
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Fig. V.10 GROUP OF SMALL ELEMENTS IN BENDING

This is a necessary (although not sufficient) condition for the
element to converge towards a constant moment condition. In fact we do
find that this rectangular element does converge to this capability.
Since an element in a fine enough mesh satisfies constant curvature as
closely as we like, this element satisfies conditions for convergence of
a mesh built up of these elements. So rectangular elements will
converge to the exact bending solution.

However, if we consider the case of a non-rectangular plate

element as shown in Fig. V. 11,
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A 4

FIG. V.11 NON-RECTANGULAR PLATE ELEMENT

we are unable to show this convergence. Indeed even if we take an
element that has surface dimensions very small compared with the thick-
ness, we find that this element, when acted on by forces corresponding
to a constant moment, deflects in a manner very different from the
expected nodal displacements corresponding to constant curvature.
Failing to satisfy the constant curvature state, even in the 1limit of
a small element, we are unable to draw any conclusions about convergence.
Since the plate element fails to satisfy conditions for convergence,
no guarantee of convergence exists for a shell either.

If we now consider the next complete higher order expansion
in the surface coordinates j and ’1 , which is quadratic x quadratic,
(Fig. V.12) we now find that even a non-rectangular element contains

the constant curvature state exactly.
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fig V.12 FPull Quadratic Element

Hence this element converges to the correct bending solution.
Note that the interior nodes are used to form the stiffness, since it
has been generally found that in most classes of finite element the
addition of interior nodes to at least the order of the expansion of the
exterior nodes is beneficial to the element stiffness. This was con-
firmed numerically on a plate problem for this particular pair of
elements.

The next constant strain mode we will examine is the transverse
shear deformation. The exact solution (see for instance (39) for beams)
includes a cubic term in ‘& , for the in-plane displacements u, v.
(Fig. II1.5) The quadratic displacement variation of the element we are
 considering, (Fig. V.12) is not enough to represent this cubic. So this
element will not exactly represent shear displacements. However the

shear effects, in problems where our other assumptions are still valid,

Eaa
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are small, and the energy difference between the true cudbic and a linear
displacement that the element can reproduce is very small, and a
satisfactory shear distortion mechanism results. This can, in practice,
be improved somewhat by multiplying the shear energy by a factor based
on the knowledge that this shear strain should be quadratic in_} s
rather than constant as imposed by this element. This is further
discussed in Chapter V.

We have seen that the simplest full three-dimensional element
that can represent membrane, bending and shear deformations of a shell
or plate is a quadratic element in all three shell coordinates. This
has 3 x 3 = 9 degrees of freedom on each normal, instead of the usual 5
(comprising two rotations and three translations) for most shell elements.

Ahmad (16) was able to adapt the full three-dimensional element
to a shell element with the conventional representation by mid-surface
nodes only, preserving most of the desirable characteristics of the more
time-consuming three-dimensional element.

The element he started with had only a linear expansion in the
normal direction § , representing 6 degrees of freedom for the two nodes

on the normal (Fig. V.13).

b4
2

O v

= 7+
(3»-((
e,

€
z

F 4
L
x

fig V.13 Transformation to Shell Degrees
of Freedom
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These six degrees of freedom can be transformed to six
different degrees of freedom, namely three mid-point translations and two
mid-point rotations about two axes perpendicular to the normal, and a
change of length of the normal itself.

We saw that the three dimensional element with only two nodes
on the normal yielded a stiffness too high in bending due to the fact
that the normal strain €&,, = 0. However Ahmad replaced the Tinear
variation with‘f of the normal displacement with the condition 7,, =0,
the usual assumption used for beam and plate theory. This assumption
allows us to totally eliminate the extension of the normal from further
consideration.

As we saw, a linear assumption in the'& direction for the
in-plane displacements is sufficiently good to represent membrane strain
states exactly and transverse shear strains closely (but not exactly),
so all desired features are now included.

The geometry of a curved shell is exactly reproduced by the
elements in a fine enough mesh, since they are derived from three
dimensional elements, so the resulting shell element will be applicable
to shells with thickness large compared with the radii of curvature.

The final requirement for convergence is the exact representa-
tion of rigid body displacements. This requirement is exactly satisfied
for any iso-parametric three dimensional element, so it will be also
when the three dimensional element is used as a shell element.

So we see that a shell element based on quadratic x
quadratic Tinear expansion in } ,’7 and ‘% , but with a constraint
Tan = 0 replacing the extensional degree of freedom of the normal,
results in an acceptable element allowing considerable ratio of thickness

to radius of curvature, and allowing significant transverse shear distortion.
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V.3 ELEMENT STIFFNESS FORMATION

The following description of the element stiffness formation
is based on the elements described by Ahmad (16), but certain details
depart from the original presentation.

Consider an element with mid-surface nodes only, as discussed

in the last section

Fig. V.14 Shell Element

The global coordinate system, x, y, z has z vertically
upwards. The local f ,’7 R ? system is defined by equation V.22 below.
The five degrees of freedom of each node will be 1) three translations
U, v, w in the global x, y, z system ii) two rotations of ,/AQ

~ ~

about axes a, b. The directions of a, b are defined to form a
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mutually perpendicular triad with the vector 7, which is drawn in the
direction of the § axis at the node (Fig. V.14). The orientation of
2, b is such that 3 is horizontal, and if both a, b are horizontal,
then a is in the x direction.

The Tocal axis system f s ’7 R j' is defined in terms of

X, ¥, 2 by a relation derived simply from the transformation given in

Chapter V.1. (equation V.2)

We obtain

<x(7 z) = (F7>[Z‘gf] + f'(P’)[z(‘g‘g*] (v.22)

where (pT) represents the vector of two-dimensional interpolation

functions in } 1. X, Y, 2 are the vectors of global coordinates
o &

for the nodes. %, Y, 3" are the vectors of the global coordinates

of the points ( f‘ » 7, 1) with respect to the node ( L 7. o)
p

ie. xX; = XK., — X (v.23)

. & .
where nodes ¢ , 4 are shown in Fig. V.14
We now define a displacement pattern, based on the relation

V.3.
(uvw) = (p7) [g vwl| «F(p7) [g' v’ g"] - (v.24)

Again (P’) are two dimensional interpolation functions,

U, v, w are vectors of the global displacement of the nodes, and
u*, v*, w* are the relatiwe global displacements of points i* at

j‘ = 1 with respect to those at node i at J' = 0, caused by

rotations of the "normal".
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We will now determine the relative displacements u*, v*, w*
in terms of the rotations & ’ﬁ at a node, in order to express the
displacements within the element in terms of nodal displacements and
rotations.

Referring back to equation V.23 we observe that x’, y', 2’

are the coordinates of a vector along n (see Fig. V.15).

Fig. V.15 Global and Rotational Axes at Node i

) ~
From this vector M we can define a vector a perpendicular to n and

~

also to the vertical k.

Thus a = g,.,’{
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~

We then define b perpendicular to both nand  a by

5. nea
302=2x(x’?+3‘f~z'2)
= ‘?‘f + Z'A
and 6= (x'2+3lj*z‘,§)x(—y4 +DC])
) —x*z‘f-y‘z*’\ +(?’7‘+x x‘)/{»*

¥ & ~ ”~
Note. If >x = Y4 =0  define a = 4

SO b

ENY

~ ”~
We now normalize a and b referring from now on to the
A ~

normalized vectors as a, b.

A ~

Consider a rotation o« about axis a and /3 about axis b.
. _ - -t _ I o~
The displacement at f-l , 7 ( bot + a/s>

or, using the previously introduced u*, v*, w* notation

(Wv'w') = -i(bbb)x +i(aama)g

~N

Where a; b. are the direction cosines of a, b .

<

The vectors of these displacements due to rotations,of all

nodes, become

[wvw] = 3[e][=][e & & ]
s [ellgllz o o]

Where [ﬁ] and [g_(J and [@] represent the diagonal

matrices of thicknesses and rotations at all nodes.

(v.25)
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Thus the displacement definition V.24 at any point within the

element becomes

(U v W)

PP

3P CPT)

We seek to determine the

(P )|

ng]

[t lx]leeg] o

@

e lleaa]

strains and, as before, we must do

this by first determining the displacement derivatives with respect to

Tocal element axes.

Thus we get, since R are two-dimensional functions of } s ,‘;

the relations:

‘ = |24 v 2w
[’“’”“ff*zy] 5 % 2
ou v e

57 97 77
u dv 9w
%5 Y

1

B

i~

[~ s ]
i
2P
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o
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=y

PEEY [ o] & 8]
¢35
_ <P’>_

i 7\ '

5’<§'§7> [t Jelle aal
s (2F
| (PT) ]

| ]
N
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i
—J

As before, we need the Jacobean of the transformation of

X, ¥, Z to } » 7 ,‘f to determine the global derivatives.



This is easily found from V.22

[J’J = FQ} 9}25-

2F % °f
ox 24 92
29 3% a7

and as we saw previously

[uvuf] = [
xyz

So
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(v.28)
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From this relationship, using the strain displacement

relationship

M
\
Pol -

=

4}' (u‘c,)‘ + uf,i)

we can pick out the terms required to determine [T] in the relation

(e}

| = [T]{I} (V.30)
;E where
{E } = fexx\ and tr} = ((L, \
€33 ,
€22 e,
< By > </f«', >
LFP %
; Yo !
’1 \ ) ) L/e")

The last step is to use the relationship Th, = O, discussed
earlier. To do this we must rotate the axes from the X, y, z system to

aset X,y, z as shown in Fig. V.16.

5

Fig. V.16 Local Axes for Strain
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This is a set of mutually perpendicular axes at the point being
considered. This set is determined by the local element axes §)7, j‘ as
shown in the figure. X is identical to} , Z is perpendicular to} and
’7 s },’Z, Z forming a right-handed set, and '7' is perpendicular to 3, 2,
with, i,g, Z forming a right handed set. The direction Z will be
referred to as the normal, the direction j‘ as the "normal".

The rotation of coordinates to the normal axes is easily
achieved using some of the previous work.

The vectors 3. , 3, , 33 as shown in Fig. V.16, along the

local element axes, can be found by use of the relations (V.11).

If
alf . d7 , df are defined as unity

(v.31)

since the matrix of derivatives is the familiar Jacobeam, [J].

~ PN -~ _— -
We want to define three vectors €, , e, , ?3, along 2, Y,

Z,defined as we saw, by € = €
> 5 2 A & A . . | .
G L €, & € ,%€ @, forming a right hand triad
= = = = R = ) ) .
€ L€ e €., 6 € forming a right hand triad

= = =
The direction cosines of the new normal vectors € €

by
can be found from

) 2
g :-€¢+6 = (T3 % - T )}
) &
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and if we define [J] by

3]
—
i
ed

(v.32)

FoySN) A

SOH D)

If we now normalize the vectors (J” 10 J]3>,

<J2], Jops Jo3 > , <J3], J30s 33 > we have the [T_l_matm’x,‘

. . . . . . I~
representing direction cosines of the new axes directions, € 6 &, , €

)

Now the strains in the new, rotated coordinate system, are

related to the global strains by

é-ns = ‘];u' '7:} 64/

[e]{e} (v.33)

Where {E} , {e} are the six strains (in the respective systems)

1]

or we can write i'é }

written as a vector, and [©] 1is constructed from [5] by appropriate

multiplication.
We are now able to express the strains in the coordinate

system X, y, z as a function of nodal displacements by

@) o) - [dmin e P e



We next consider the constitutive relation.
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We will consider for

simplicity an isotropic linearly elastic material, for which the following

holds.
E

{;E'} = (1+0)(1-2V)

If T; = O

we get the reduced relation

() -

oo
Rt

or {¥} =

vectors now.

promems

-y Y Y
v -y 2
y v Y
[-2D
2
122
2
e
(-y2 |-y*
YE E
-y =p?
£
,2(/“))
1,E
#2(1+Y)
,X
F 3

74¢8

<X§3> (v.35)

[E] (€}, with {Z} , {€} only5 x 1

(Note that this differs from the relationship given by Ahmad, Irons in

ref. 16, which is the relationship with the strain €33

=O_)

The shear modulus has been divided by a factor k for the

transverse shear, to give a better representation of shear deflection



80

when a constant shear strain is assumed across the thickness, rather than
the correct quadratic (27). The factor 6/5, applicable to a rectangular
beam, will be adopted in this study.

The strain energy of the element is

///(é’) [EJf€} o <I’>///[‘7”__EJ_7"J v 7]
So the stiffness [K] ///[?7][5: _-[- o

As for the full three dimensional element, this integral is evaluated by

it

numerical integration with respect to the local f ,'7 ,_f coordinates

resulting in

- Y 4 [P, w

<

(v.36)

4

Details of suitable numerical integration procedures will be
given in Chapter VI.

The computation of nodal loads from body and surface loads
follows normal procedures and will be given in detail in Chapter VI.

Finally we observe that when the element stiffnesses have been
added into the full stiffness and the displacements found for the
prescribed loads, we can compute the stress at any point in the shell

coordinates, by use of V.35,

thus {%} = [E]{é}

i

(v.37)
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V.4 COMMENTS ON AHMAD - IRONS SHELL ELEMENTS

The family of elements described in the previous two chapters
provides a useful tool for the analysis of shells falling between
classical thin shells and very thick shells for which three dimensional
elements are needed. Some numerical results for extreme cases of geometry
are given in Chapter VIII for some simple cases. In addition a number of
actual shell problems of various types are presented in Chapter VIII.
These examples show that the basic assumptions are valid over a wide range
of geometrical types of shell and loading conditions.

The principal weakness of the Ahmad-Irons element as described
is inherent in many elements that have been derived from the relaxation of
the Kirchoff hypothesis. This weakness is that, due to extraneous shear
strain energy, caused by the kinematic assumptions used, the convergence
is slower than desired. This effect has been noted by many authors (see
Chapter IV).

We will now examine this effect as it applies to both linear
(four nodal point) and quadratic (nine nodal point) elements. For
simplicity we will use a one dimensional beam element to illustrate this
bending behavior defect.

First, consider a linear displacement beam (Fig. V.17).

S f e,
]

{ ~ f

L g

fig V.17 Linear Displacement Beam
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If we exclude rigid body displacements and membrane effects from
consideration, we can use the two rotations 6, and &, at the nodes as
the only degrees of freedom of the element, and we can compute the
stiffness of this element, with respect to these two rotations. This can
be evaluated in closed form, due to the simplicity of the element, and we

obtain the stiffness K as:

L

[K]= £ L -t + %g g
4L
3

L? L
-L L L

W

Where EI is the bending stiffness and AG the shear

stiffness.

Now consider rotations &, = - 92 ©  being the correct

nodal displacement for constant bending.
EI G
Then M, = ?(ZL)Q + %—{gl.) 6
e

= .‘5_1.-29 * d_e_[__.
L 6

The first term represents the correct bending moment, the

second the extraneous moment caused by the extraneous shear energy. As

L — 0 (with f‘ held constant, say)
e
M, — 2EI the correct value
For, say, L = A
= EAze & EHZG
M 6 1Z2(1+P)

representing a 50% error in moment.
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The source of this error is easily seen by examining the
deformation of the element. The finite element constraints imposed,
result in the deformation shown in Fig. V.18, resulting in non zero

shear strains as shown.

o\ —f—

Fig. V.18 Constant Moment Nodal Rotations

We have, of course, decided against using this class of shell
element, when anything other than rectangular elements are needed, but
the same type of error occurs with the higher order moment condition.

Consider for simplicity a thin beam as shown in Fig. V.19.

-

L.

fig V.19 Quadratic Displacement Beam
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This time the constant moment deformation can be exactly
reproduced by rotations and translations of the three nodes. However, a
linearly varying moment, which can be represented even by the simplest two
nodal point, simple beam element, imposing Kirchhoff's Hypothesis, can't
be represented by this element with three nodes. Consider nodal rotations
of 6, "g , ©, as shown in Fig. V.20 which are the rotations appropriate

“to a linear moment condition.

T

fig v.20 Linear Moment Nodal Rotations
(Thin Beam)

The beam deforms as shown, instead of developing transverse
displacements as it should. This involves shear strains which vary
quadratically with x, rather than linearly, as expected for a linear
moment. Once again, the excess shear energy results in a high stiffness,
which slows down the convergence of the correct solution.

As an example, a cantilever beam ten times as long as its
depth, gives an end displacement of 3/4 of the correct displacement,
whereas a normal beam element gives the exact bending deflection.

A second weakness of the Ahmad-Irons shell element occurs

when the element is curved, again resulting in a high bending stiffness
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that again nevertheless converges to the correct value. Consider the

quadratic element representing a thin curved beam, as shown in Fig. V.21.

]
]
| ¥ S
i f’(’- § ‘f)f1 '
. T
_..-//
fo
i
| ~—— =
Fig. V.21 Curred Beam or Arch
We will consider a constant moment applied as shown. We will
compare the displacements of the middle surface of the beam (or shell)
element with that of the actual curved beam.
For simplicity, to avoid algebraic complications, we will
J consider a relatively flat parabola, for which we can ignore (r/¢ )4

compared to 1.
We can easily show that the correct displacement pattern for

the middle surface of the beam is given by:

PR T, R
FEL (v.38)
v = L XZ

2ET
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The quadratic element cannot represent the cubic power of X and
hence cannot represent this simple constant moment state.

We can either appeal to mathematics or a physical argument to
show that in fact this does not affect the converged solution. A more
rigorous mathematical argument will be given in Chapter VI. 3, but
suffice to say here, that a very small element with almost straight
middle surface will not have to develop any displacement other than the
normal displacement v to represent bending, and hence a curved beam
formed of many such elements will satisfactorily represent constant
moment in the limit.

This particular effect is far from trivial for elements of
considerable curvature, giving for example a transverse deflection of
less than one hundredth of the correct value, for an included angle of

about 30 degrees.
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VI. MODIFIED SHELL ELEMENT

VvI.1 A BRIEF OUTLINE OF NUMERICAL INTEGRATION

Since this research is largely concerned with modified integra-
tion techniques for shell elements derived from isoparametric elements, a
brief review of one class of numerical integration will be made at this
point.

The most convenient and efficient method of integration for
isoparametric elements and their related elements is the Gaussian method.

A11 integrations are performed with respect to each of the } R

M, § coordinates between the values of -1 and +1. |

We seek to find one or more points in the interval (-1, +1)
for each coordinate, at which to evaluate the functions required to be
integrated and, after multiplying by an appropriate weight at each point,
we will add the contributions from each point to give the approximate
intearal., Thus if we have a function f(x,y,z) and we want to evaluate
the integral over the cube bounded by x, y, z = +1 we will adopt points
(xi, Yi» Zi) called integration points and express the integral as the

sum:
plelel

/////x,y,z) de,dydz = Z & fixi, g, 2) VI-1)

- ot =t

where ki is the weight at point 1.

We will first investigate the simpler one dimensional integral

/;/(x) dx = Z A f/x;) (Vi-2)

-/
and determine how many integration points are required for various functions

f(x). We will examine only functions f(x) which are polynomials and will
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express f(x) as
/x) = xl J= 0//,2,

Thus the exact integration is given by:
4

+/
/{(:c) dx = /xj dx
- I PLIEY
X

-

}H -1

(1]

1 V)
-~
o
<

e,
)
3
3

(VI-3)
Thus for

]
oS
LAY
S
D

+! J
. (V1-3)
/x/dx -;— o

-4
Observing that the integral is zero for odd powers of x, we

M
N
o

Wing

can immediately say that if the integration points are symmetric about
x = 0 and equally weighted, then, as contributions from symmetric points
cancel for odd powers of x, we achieve a zero integral as required.

Thus we may look for points as shown in Fig. VI.1 with weights

k, as shown, to integrate correctly the even powers of x.

0 +Q rb +C +1

Fig. VI.1 Integration Points
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Now the'numerical integration of the form (VI-2) becomes

x dx = i £ x?!

4 4
K {=!
= éo*zgq 4 Z‘b + zic + {9!}50 (VI-4)
= 0 .2ka' . kb <28 . jr2
= 0+ Z“Q‘O‘?i‘bf+2{¢ C4¢'... j=4

If we wish to integrate the following powers of x exactly, we

must therefore satisfy, from equations (VI-3), (VI-4), the following

conditions:
2 = K28, 28 + 2R « .. j-oO
%— = 028 a's 2R4 + 2k j2
-; = 0. Zf,a“zi‘b‘o'?ﬁc'o... 4

the odd powers of x, x3. x5 being automatically satisfied by the symmetric
integration points chosen.

The numerical integration for a constant need only satisfy the
first of these equations. Hence, one point, symmetrical about x = 0,
f.e., x = 0 itself, and weight ko = 2, will perform the integration
exactly.

1f we wish to integrate x2

also, we must satisfy the second
equation also, the simplest way being to use two points, x = + a, and
requiring as before

2
_;- = 24K a to integrate x°

2 = 2k to integrate constant
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Se

and

This is the two-point Gaussian quadrature formula.

If we wish to integrate x4, x2 and constant terms, we must

satisfy all three equations. This can be done most simply by using three

points
x = 0
x = +b

and we get the conditions

£° + 2{6 = 2
28 - 3
288 - %

So
b o= V2
1€5 =

3

q

. 8

4@, - 9

So the following integration schemes will integrate all powers

of x up to the following powers (and trivially all odd powers)
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constant | B
| 5 |
[
o ’l ! , —
-{/3 . /73
59 8 5
* } /= q =/q J‘

Fig. V1.2 Gaussian Quadrature Constants

Wwe will move now to the consideration of area integrals of

the type

4 ¢)

///(x,,) e dy

Again we will consider polynomials, now of the type x‘y’

4]+ e

//(x,y) dx dy = /x‘y‘ e dly

4

= /x"c(,t */7}“’)‘ (VI-5)

-1

= -2- " —z— for both (‘/' even
{+/ /-tl !

= 0 for either ()/' odd
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This separation of variables indicates that we ean use

separate integration schemes in each direction, multiplying the weighting

factors from each direction to get the new weights. We get various inte-

gration grids, depending on the polynomials we want to integrate exactly,

some examples of which are given in Fig. VI.3.

g_,q . g # I/ =1
/A
|
S04 2 ﬂ; T
3*'13
| A
N VA /- S ol [
(a) (b)

Fig. VI.3 Typical Integration Grids

From the foregoing, we see that (a) will integrate all polynomial

terms up to x4y2 and' (b) up to xzyz, both including all odd powers of x ory

trivially.
For volume integrals of polynomials of the type

iiyjzk

the integration is similarly performed with a three dimensional grid

and weights that are the product of the weights from each of the three

directions.
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To conclude this section we will consider one last integration
scheme. In a later chapter, we will wish to integrate all terms up to
x4y4 using, not the 3 x 3 grid, but a grid composed of the points shown
in Fig. VI.3(a),(b) (including the first rotated ninety degrees). This

results in the grid shown in Fig. VI.4.

Ll L

— [

Fig. VI.4 Alternate Integration Scheme for x4y4

By a process similar, in two dimensions, to that already given,
we can derive a set of conditions for each term xiyj involving the
(given) positions of the points, and the {unknown) weights. We easily
can show that the weights shown in Fig. V1.4 will correctly integrate all

terms up to x4y4 as desired.

VI.2 SYMMETRIC NUMERICAL INTEGRATION FOR SHELL ELEMENTS

The formation of the stiffness of a shell (and the calculation

of nodal Toads from temperature, body forces, etc.) requires the volume
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integration of certain functions. We will distinguish between the inte-
gration in the "normal" direction f , and the in-plane integration in
the .f » 1 coordinates.

For a flat plate element the transverse shear strains are constant
through the thickness, while in-plane strains vary linearly through the

thickness.

The integration used to form the stiffness is of the form:

fleee ddye

) €7Eé represents at most a quadratic function of the "normal” coordinate
j . This means that a two-point integration is exact in the _f direction.

However, a curved shell has a non-linear strain distribution ‘
across the thickness, the degree of non-linearity depending on the thick-
ness of the shell compared with the padii of curvature. So a higher order
numerical integration is needed to give exact integration. However, numeri-
cal examples on even a quite thick arch (see Chapter VIII) gave quite
acceptable results, so, since the formation time for the element stiffness
varies with the number of integration points, it is considered that two-
point integration in the coordinate } is sufficient for anything except
the most severe curvature, when other assumptions made may be invalid, anyway.

The rest of this chapter will be devoted to a discussion of the
integration in the } » ‘7 directions and we will assume two-point
integration in the .f direction.

The first question to concern us is what numerical integration
grid should be used to guarantee convergence of the solution to the correct
solution. We will restrict our attention to the nine nodal'point element

described in Chapter V.2 unless noted otherwise (Fig. (VI-5).
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Fig. VI.5 Shell Element Adopted

We showed in Chapter V.2 that a flat, finite-sized element of
this type was able to represent constant bending exactly. Implicit in
the earlier discussion was the assumption that the stiffness matrix was
formed by exact integration from the strain displacement relations. Due
to the presence of the inverse jacobean, which represents terms with
polynomial denominators, the strain variation within the element is not,
in general, a simple polynomial function. (An exception is the rectangular
plate element to be discussed further below.) Hence, no finite number of
integration points in the f » 7 coordinates will give the exact
stiffness.

So we must ask the question: What is the minimum integration
grid to guarantee convergence of an arbitrary plate element? (A small

enough shell element tends geometrically towards a plate element, so
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except for effects related to integration in the normal direction f »
the following remarks apply to shell elements.)

Consider an arbitrary quadrilateral plate element. We will Took
for the lowest order integration in the § , ] coordinates that can
integrate a constant function exactly, over the element. This integration
scheme will then give a stiffness that will at least satisfy the constant
strain states exactly, and hence the solution will converge to the correct
solution as the mesh of elements is refined. This fundamental capability
of the integration scheme to be adopted will be referred to often in the
following sections.

The element to be examined consists of eight external nodes
and one interior node. If the position of the interior node, instead of
being arbitrary, is defined to be at the origin of the f ,‘7 coordinates
defined by an eight nodal point expansion, then the coordinate transforma-
tions involving nine nodes and nine interpolation functions (V-18) (see
Chapter V.1) reduces to the eight nodal point transformation (V-20).

To integrate a constant, say 1, over the element, we get, ignoring

the _} integration discussed earlier,

//dxdj ; —H/*/Mc/effalf dn

slement
Now if we re-examine the relations (V-20) for Pi» We see that

the coordinates x, y, z are functions of some or all of the following powers

of §.,7.
AN A
so 2%, '?% ,‘Zf contain [/ 7 72 j f?

9_'5 P 2
anda?z;; ,59% ,g% contain /7 f f7 Jf



Now the Jacobean

[ 9x 2y 2z

2f o 2%

= 2x 9y 2z

4 7 9 o7
¢ 2y 22

Y oy of

and for a plate with .f in the same direction as z this becomes

o g

2x 2%
of 2 °
= ox Iy
4 7 7
(o) (@] const‘,
So
_ ox 2f _ 2x 2%
det J = const. x (?_f 97 97 ?f>

This is of order

(1o fef1){ienef 12§
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In order to integrate det J correctly, we see that we must
integrate all the above terms exactly. We will adopt an integration
scheme symmetric in ‘f ,’7 about the origin, hence any odd powers are
automatically exactly integrated.

We are Teft with /[ + 7l+ fz * fz72 to be integrated.

Referring back to the discussion on Gaussian integration, in
Chapter VI.1, we see that a two-point integration point is needed in each
direction. So an absolute minimum integration grid is 2 x 2 points in
the f ,'7 directions. |

We now know that the strain energy from nodal displacements
corresponding to constant strain states will be correctly integrated,
so the correct displacements are a possible solution fo a problem that should
result in constant strain.

However we must ask, is it possible that other displacements
are possible solutions. This would mean that the stiffness formed from
this low order integration would be singular. So we ask, is there a nodal
displacement pattern that, using the minimum 2 x 2 integration grid, results
in no computed strain energy? If there is, this set of nodal displacements
will result in zero strain at the integration points.

To examine this question, we will consider a square plate element
for simplicity, oriented as shown in Fig. VI.6. Deformation of the two
types shown will result in no strains Gxx’ € at the integration points

Yy

shown and when combined, will give no strain ylxy either.

So a singular matrix would result, demonstrating the possibility
of this mode of deformation occurring as a membrane or bending mode. So
we will have to use a higher order integration grid for the in-plane
direct strains € xx® € yyo SO that neither of these two deformation modes

Yy
isa zero energy mode. A 3 x 3 grid is sufficient to achieve this.
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Fig VI.6 Zero Energy State for Membrane Action
8-n§de Element ‘
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fig VI.7 Zero Energy State for Transverse
Displacements. 8-node Element
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A similar zero energy mode can occur with displacements normal
to the surface also. The three types of disp]acemehts shown in Fig. VI.7,
each resulting in transverse shear strains only, can be combined to give
zero shear strain at the 2 x 2 grid points. Thus again the lowest acceptable
symmetric inteagration arid is 3 x 3.

For completeness of this discussion we observe that a similar
phenomenon occurs for the square linear displacement element (Fig. VI.8).
In this case the determinant is formed by a product of linear functions
O+f)(1+7).

So as one point integration is sufficient to integrate linear terms in

[

f ,’7 exactly, a one-point integration is sufficient to integrate
a constant over the element. However, zero energy modes shown in Fig. VI.8
result from this one-point integration, and a 2 x 2 integration grid is

the Towest symmetric inteqration grid to avoid singularities.

/éf W= XYy

= = él) = 0 af 4'nf PtS

fig vI.8 Bending & Shear Nodes for Linear Element




13

R e " ki

17 A

& B

101

VI.3 MODIFIED INTEGRATION PROCEDURES

Having examined in Chapter V the characteristics, strengths and.
weaknesses of the Ahmad-Irons series of shell elements, and having dis-
cussed in Chapter VI.2 the requirements of the numerical integration grid
to ensure convergence, we will now consider the choice of integration pro-
cedure to improve the efficiency of the solution. Since we are not altering
the basic assumptions, the converged solution will be unaltered.

To examine this question, we will look at the bending and membrane
effects separately, by discussing first the degenerate shell represented
by a beam or arch, and secondly that represented by a flat plate with

membrane stresses.

v1.3(a) Modified Integration for Arch or Beam Elements

The linear displacement arch element, a degenerate form of the
Tinear displacement shell element is shown in Fig. V.17. This element is
described by two nodes, each of which has two displacements u, v and a
rotation 6 as shown.

In the discussion of the Ahmad-Irons elements in Chapter V.4
we described the over-stiffness of a finite-sized element which results
from the extraneous shear energy included. For this element the nodal
displacements appropriate to constant moment are shown in Fig. V.18. Not
only is the constant bending condition violated for a finite-sized element,
but the transverse shear is able to vary linearly with x.

In a report in January 1969 (28), Doherty, Wilson and Taylor
discussed this problem for the four nodal point Irons membrane element.

They recognized that the "bending" mode was too stiff due to shear energy



idast

102

and that a better element could be formed in which the shear energy was
integrated by a one-point numerical integration at the center of the
element, while maintaining the usual 2 x 2 integration on the stresses

Te? z&} . Consider the deformation modes shown in Fig. VI.9.

() (b) (c)

\

N
(d) (e)

L 4

Fig. VI.9 Deformations of Linear Displacement Element (Membrane Strain)

We can see that in the two "bending" modes in this figure, (d), (e),
the shear strains, while non-zero over most of the element, are zero at
the center, and hence if a one-point integration is used, no shear energy

results. This formulation is orientation-dependent and a local axis
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system was recommended along which the strains are defined, to optimize the
effect for all orientations of the element.

An equivalent process can be adopted for the arch or beam element,
with only mid side nodes as shown (Fig. V.17). We note that the shear
strain defined in local coordinates is zero at j = 0, for the constant
bending mode (Fig. V.18). Therefore, since _} = 0 is the position required
for a one-point integration, if we adopt a one-point integration procedure
for Eé* in the f direction, we will get no extraneous shear energy for
pure bending,

For the constant shear strain mode (Fig. VI.9(c)) the shear strain
reproduced by the element is also constant in ‘f and so again one-point
integration is sufficient to give this deformation correctly.

Since the shear energy contribution to the bending mode is now
zero, the "effective" deformation can be thought of as being the true

bending deformation (Fig. VI.10).

Fig. VI.10 Deformation Modes for Linear Element

[ —
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We saw previously for the linear displacement shell element that
a one-point integration in _} was sufficient to guarantee convergence,
and that the two-point integration was only needed to avoid the singularity
due to the shearing mode of Fig. VI.8, which is not possible in the degen-
erate arch element. So a one-point integration in the j direction may be
used for both €,.c and %.. if desired.

This simple change in the integration procedure results in a
dramatic change in the efficiency of the solution.

The integration in the "normal" direction is dictated by the
thickness to radius of curvature ratio. As stated before a two-point
integration gives satisfactory results for even quite severe examples.

For the reasons given in Chapter V.2, the quadratic displacement,
rather than the linear displacement shell element will be used as a basic
element in later work. The degenerate beam or arch element resulting is
shown in Fig. VI.11.

This element suffers from a similar defect in transverse shear
energy, as was pointed out in Chapter V.4, Although an initially flat
element is able, due to its middle node, to represent a constant moment
exactly, this is actually quite inefficient compared with a classical
beam element which, with one less node, can reproduce linear moments
exactly (admittedly without shear deformations). The shear strains developed
by this element vary quadratically with x, an unnecessarily high order
variation for a secondar} effect.

Let us consider a beam element subjected to displacements
appropriate to a beam with equal and opposite moments applied to each

end (Fig. VI.11)
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Fig. VI.11 Linear Moment Nodal Rotations

G% represents the rotations due to bending, and &5, the added
rotations due to shear deflections.
We observe that,due to the quadratic variation of u with x,
the in-plane strain varies linearly from end to end, reproducing correctly
the in-plane strains for this condition.

However the transverse shear strain ng varies as shown in

Fig. VI.12
\\\\\\\\\‘ 73 L % &
_ A/;///////// ) -‘
\ © / -94, e 'f
=/ -Q +a +1 >
3 y
2C

fig VI.12 Shear Strain Variation in Quadratic
Element under Linear Moment Condition
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We see that the shear strain is the correct value, 65 , at
only two points, * a, as shown. The parabola representing shear strain

is defined by

We solve for a from

- ?2 + 6 + 3_9!’ a’
2 2
{
and get a = ‘31/2;—

These are precisely the positions of the two-point integration

;
LD

scheme. If we integrate the shear strain energy at these points, the
energy computed by the integration is that for a full linear moment

( + shear) so the element is now capable of representing this higher
order bending mode.

We have already seen that a two-point integration is sufficient
to guarantee convergence. The singularity problem of the shell deformation
does not affect the arch, so we can adopt the two-point integration in the

f direction for the shear strain X;x , to speed up convergence to the
desired solution.

Again we will adopt a two-point integration in ‘?

The effect of the lower order integration procedure is to
allow shear strain energy due only to the actual shear deformation
of the beam, which effectively allows a deformation as shown in

Fig. VI.13 to take place.
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Fig. VI.13 Effective Deformation for Linear Moments

In Chapter V.4 we drew attention to another defect of the
quadratic element that occurs when it is curved. The quadratic element
is unable to reproduce the cubic variation with x (or } ) of the
displacement wu, for the constant moment condition. See Fig. V.21

The correct expression for u (for a shallow arch) is

|
W ay
Y
AR

x (VI.6)

l

while the best the finite element can do is the linear form

-2 rx (v1.7).
3T
Which satisfies the nodal displacements at all nodes. The

finite element does, however, give the correct expression for v,

namely

M 2
v o= Sgr (v1.8)

Fig. VI.14 shows the relative displacements of two

neighbouring points P], P2 on the curved arch.



=

108

dy | dv ok dy
elx / olx dx
1
A B oy 9
é.“rd.x
N olx
o P2 R
\
B
i .
R \ osttio ‘ !
dal P ot .
oy \n\\\ \d’ SU({'ace d—:dx
£ du
e = d)( e
odx

Fig. VI.14 Deflection of Element of Arch

From this diagram, we see that for flat arches, the in-plane
strain at the mid-surface is

_ de | dv o dy

€xx ° I= ¢ dx d (VI.9)

Substituting the correct relation VI.b6 (and VI.8) we see that
the in-plane strain = 0 as it should be, but using VI.7 (and VI.8)
for the finite element, we get a membrane strain of
2Mr ( ! x 2 )
— = et L ey
As the size of the element decreases 77— O and this error

term ——s= 0, confirming a less rigorous statement made in Chapter V.4.

However, if a high order integration (greater than two points) is used
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for the strain energy due to €55 , we will get a contribution from this
extraneous strain energy, resulting in a stiffness that is too high, and
hence in rather slow convergence.

Again we seek to annul this effect by determining at what point
the extraneous membrane strain vanishes.

This is at

nN
I
(]

or

These are again the two point integration positions, that were
used to benefit the element integration previously.

So we see by integrating the in-plane local strain €5 % also,
at only two points in the } direction, we improve the element so that it
will now be able to deform in a pure constant bending mode, exactly.

The algebra appropriate to greater initial curvature is much
more involved than that described here, but the above improvement
applies at least qualitatively for this condition.

So we see that maximum benefit is to be gained by using the
two point integration in f for both strains €55 and Jsx

For completeness we should note that the other vital constant
strain state that we must satisfy is the membrane state of deformation.
This condition is satisfied exactly for any integration rule for €Exsx
(greater than 1 of course). The exact arch displacements (for a

shallow arch) are

_ Mo
£ = Fr

_ T
V“EI/‘
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Both of these can be represented exactly by the finite element,
and integrated exactly by any integration scheme, with greater than one
integration point.

The preceding examination of bending and in-plane deformations
of straight and curved beams leads us to draw a conclusion regarding the
use of the Ahmad-Irons elements in axisymmetric problems. When the shell
is axisymmetric, the problem can be reduced to a one-dimensional problem
using the same basic assumptions described in Chapter V, sections 2, 3.
(16) see Fig. VI.15. The most efficient element using quadratic
displacement assumption will thus use an integration scheme involving
only two points in the ‘f direction, for both the in-plane strain €;3

and the shear strain X;i

Fig. VI.15 Axisymmetrix Shell Element
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VI.3(b) Modified Integration of Membrane Strains

The foregoing two sections have laid down;

1) certain minimum integration procedures for shell elements
to guarantee convergence

2) desirable integration procedures for certain strain energy
components for the degenerate arch element, to speed up
convergence,

We will now Took at one further facet of the integration method
before attempting to set up a desirable integration scheme for general
shell elements.

In most shells a considerable amount of energy (frequently the
major amount) goes into membrane straining. It is desirable, therefore,
that the shell elements behave as well as possible under these conditions.

We have referred to work by Doherty, Wilson and Taylor (28) who
suggested that an improvement could be made to a four nodal point membrane
element by integrating the shear energy with a one point scheme only.

(2 x 2 integration is normally used and actually this is the minimum that
will integrate all the terms that arise in integrating the shear energy

in a rectangle.) This allows a lower energy for the sometimes important
"bending" mode (Fig. VI.9(d), (e)). Johnson (29) and many others achieve
this same result in a quadrilateral formed from four triangles, by using
linear strain variation within the sub-elements.

This improvement is easy to include in the square linear shell
element including bending, and is done similarly by using only one
integration point for the in-plane shear strain. This is sufficient to
guarantee convergence and does not introduce any singularities, so con-

stitutes an acceptable and desirable improvement.
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The success of the modified linear arch element integration and
the similar quadratic arch element modification, leads us to suspect that
an equivalent process may exist for the membrane shear integration of the
nine nodal point quadratic displacement shell element. We would presume
that a 2 x 2 integration for this membrane shear strain energy would be
more accurate than a 3 x 3 integration (which is the minimum that will
exactly integrate all terms of the shear energy for a rectangle .) This

hypothesis is confirmed, numerically, by examples in Chapter VIII.

VI.3(c) An Improved Integration Scheme for Shell Elements

We will now summarize the findings to date:

1) There exists, for either the linear or quadratic displacement
shell element discussed, a minimum integration in f)'7 that
will integrate a constant strain state correctly and hence
that will gurantee convergence.

2) The minimum integration grid is not sufficient to actually
use, since a singular matrix results from this grid. We
must therefore use a higher order integration for some
strain components, at least,to get a non-singular matrix.

3) The higher order integration resulting from 2) is
detrimental to efficiency if used on the transverse shear
strains for either the linear or quadratic element, or if
used on the membrane strains of the curved arch element,
the integration resulting from 1) being superior.

4) The desirable membrane shear integration is that occurring
in 1.
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These are incompatible requirements, unless we break up the
integration procedure so that each strain energy component is integrated
over its own grid of integration points.

Re-examining the deformation modes of the nine-point element
that cause the singularities in 2) (see Fig. VI.6) we observe that if
we were to integrate €, _ by a 2 x 3 grid and é?, by a 3 x 2 grid in

f)”? respectively, these deformations would now have non-zero strain
energy, so that the resultant deformation would no longer represent a
zero energy state. A similar conclusion can be made regarding the
transverse shear deformation that causes a singularity (Fig. VI.7). If
the transverse shear energy from X;x is integrated by a 2 x 3 grid and
that from Z%’ by a 3 x 2 grid, the strains resulting from the three
deformations shown in Fig. VI.7 no longer cancel, and the singularity is
avoided.

We see that the lower order integration procedures suggested
for €., and X;x give just the same integration as our arch analysis
suggested was desirable. The same of course holds for E}i and 3;’

Similar conclusions can be drawn for the rectangular linear
displacement shell element. In each case the 3 x 2 integration grid is

replaced by a 2 x 1 grid, and the 2 x 3 by a 1 x 2 grid.

If we denote the number of integration points in each
direction needed to integrate a constant exactly, in an element of
arbitrary shape, by ne then we should integrate the following terms

with the following grids:
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term grid quadratic linear
element element
€z £, Exz Mex(n +1) 2+3 1=2
&g Exn €35 (me+ 1) xm, 3x2 2+
€xx -,z 699 N, » N, 2x2 ] *1
¥rg Cas 3 7, ="M, 2+2 1ol
Y5e £ Yz (Meet) < 32 2+
X%ii 55 %éﬁ N = (’1"") 2-3 =2
Table V.1

In establishing the rules for convergence, we were concerned
with an arbitrary-shaped shell element, but in the subsequent discussion
of desirable integration grids we discussed only arch elements which are
in effect shell elements with a rectangular shape, and actual rectangular
elements. If the element is non-rectangular, the foregoing integration
grids will not, in general, lead to the higher order moment capability
exactly, and the departure will be more pronounced as the element shape
becomes "less rectangular." However, having satisfied the requirements of
convergence for an arbitrarily shaped element, we need have no fear that
the solution will not converge to the correct solution, but it may converge

more slowly than a mesh of rectangles.
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For a non-rectangular element there is, however, a situation
that should be guarded against (at least in theory). If as the finite
element mesh is refined, the element edges 7 =1 and ’7 = - 1 do not
approach parallel directions then a small error is introduced in the
converged solution. This is because the direction of the axes along
which the local strains are measured are defined as being along the
axis locally and perpendicular to it. If the direction of this axis
varies from integration point to integration point then the energy of
a particular strain component will be slightly misrepresented. This does
not occur when all strain energy components are integrated together, as
in the usual isoparametric formulation, since, regardless of the directions
chosen at an integration point the total strain energy is being correctly
sampled.

This means that for highest accuracy, we should arrange our
finite element mesh so that at least two sides of all elements are
approximately parallel, skew boundaries being fitted by triangular
elements.

To conclude this section we will briefly examine, for the
simpler linear displacement shell element only, the effective displacements
that the modified integration procedure produces. (See effective dis-
placements for beams, Fig. VI.10, Fig VI.13). Whereas for the beam, a
simple unique, higher order, bending deformation resulted, we now find
that displacement incompatibilities occur, either within or between
elements, for most nodal displacements. For the essential constant
strain conditions, however, the compatibilities are restored, as required

by Zienkiewicz' weakened compatibility requirement (see Chapter 1.3).
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The first example (Fig. VI.16) shows an initially square element
subjected to equal and opposite rotations of two nodes, as could occur in
some bending problem. Referring to the previous table giving the
integration scheme for a linear displacement element, we see that at the
points at which Xxj, 842 » &, » and €,y are computed, these
strains are all zero and the values of €,, at the two points at which

€,., is computed indicate €, varies linearly with z and y. Thus the
effective displacement pattern is that for which b;fx 2 = Xz,‘ = éﬁ =
and €= Z | "—ij) .
‘The strain compatibility equations of the theory of elasticity

(e.g. 30) require, among other relations:

Poo | 2 (L26p , s . 2en)
95 Jz Ix Px 24 22

This is violated, so the effective displacement pattern is not a
compatible one.

The second example is that of two elements, as shown in
Fig. VI.17 with equal and opposite in-plane displacements given to the two
nodes as shown. Following the argument in Chapter VI.3(a) the effective
displacement is as shown in the figure, separation occuring along the
join of the two elements.

When nodal displacements appropriate to constant strain
conditions are imposed, bofhtﬁese,types of incompatibilities vanish.

It would appear at first that the use of the grid recommended
for the quadratic element would lead to an increase in the time required
to compute the element's stiffness, since it has 16 integration points

instead of the 9 for the symmetric 3 x 3 scheme. However, the number



Fig. VI.16 Incompatible DisplacementsWithin Element

E Hective D/J/n/acemen ts

Actval D/sp/acemenfs

Fig. VI.17 Incompatible Displacements Between Elements
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of strain components invo]ved at each point is always only two or three,
so the final [TUT [E] [T] multiplication, which is the most time-

consuming part, is reduced considerably, since less than half the columns
and rows of the [T] matrix are now involved in the calculation at each

point.

VI.4 DETAILS OF SHELL STIFFNESS, NODAL LOADS, ETC.

VI.4(a) Stiffness Matrix

The transformations involved in constructing the stiffness are
given in some detail in Chapter V.3 for general shell elements, of the
Ahmad-Irons type. Only those details not discussed there will be
presented here.

The element chosen as the basic element is the nine nodal point

quadratic displacement element Fig. VI.19.

Fig. VI.19 Shell Element Adopted.




o Y

119
Only nodes 1 - 8 are referred to externally in the program, the
coordinates of node 9 being generated internally. The position of node 9
is chosen to be the origin of the coordinates, defined by the eight

external nodes.

(xyz) = (p)[xg2z]
4.)'(/9’)[?5‘;7* "]

where (;9') represents the eight interpolation functions given in Chapter

IN

V, equation V.20.
By substituting f = 7 = J’ = 0 we get the mid-surface

coordinate of node 9

o~

1 and f =0 at node 9

<7‘qu29> = <Pj=’l=° ) [?5 d Z]
and we get the coordinate difference between =

similarly, from the second term of V.22

(%o th 29 ) = P joges ) ["5‘ ?’ 3']

From these two quantities, we can calculate for node 9 the nodal
rotational axes 2 and D as in Chapter V.3. The displacement field is

defined from the nine nodal displacements by equation V.26
-
(uvw) = (p) [¢ v w]
R
35y [t B b b
31847 [lelle o 2]

We could use a completely new set of interpolation functions

corresponding to nine nodes, (equation V.18) or, to simplify the computer

programming, resort to a procedure similar to that described by Irons (13).



120

We will define the nodal "relative displacement"at node 9 by the
difference between the actual displacement of node 9 and that, at node 9
due to displacements of the other 8 nodes. Then if we define

B = (/—fz)(l—”zl) and interpret u,, V,, Wy  as relative
displacements, we can write the previous equation for displacements, using
the first eight A? identical to those for eight nodes, anci/g as just
described. This procedure preserves rigid body displacement and constant
strain modes of deformation and results in an identical formulation to the
usual nine node interpolation functions.

From this point on, the analysis proceeds exactly as described
in Chapter V.3 and by use of the integration procedure developed in
Chapter V.3(c) and listed in Table V.1 for quadratic elements, the 45 x 45
stiffness matrix is formed.

Since node 9 is internal to the element, the degrees of freedom
associated with it are removed by static condensation, (see Chapter 1.4)

resulting in a 40 x 40 element stiffness matrix.

VI.4(b) Body Loads, Surface Loads

Nodal loads resulting from gravity and temperature will now be
considered.

Gravity loads are calculated from a uniform density throughout
each element, temperature loads from a temperature distribution T,
uniform on each face of each element, and varying linearly through the
thickness. The nodal loads associated with these conditions may be found

by usual procedures, and only an outline is included here.
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The vertical displacement W 1is given by

w o= (p7){w

(&)= )] e -if{pibsf) o
doment | 5’”"’“3}‘
H*\ﬂr{P}

= pg)) ciblpta)) T G

f
A | sk pta)

If the temperature on the surfaces }’= -1,+1 are T, , T,
then the temperature at any internal point is T = 7; + %}f(7: —‘Z:>

giving initial in-plane strains in local coordinates

E, = x|[T-Tef )
where 'Z;{ is the zero-strain reference temperature and o is the
coefficient of thermal expansion.
Then using equation V.34
(e} = [T]iz)
So the nodal forces due to temperature become

{R] //[( m{ o

a9l

/// (T-Tog) et T olf 47 4f

1]
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Both the gravity and temperature load integrals are performed
numerically.

The highest order term occurring in the gravity load integral
results from }z7zin{/9}and }z7zin det 7 . So to integrate this term
exactly we will need a higher order integration than 2 x 2. Since we
have already fixed the integration point grid for the stiffness, itself,
we will use the same points for the body load integration also, to avoid
having to use more integration points than necessary. We use the grid
and weights shown in Fig. VI.4.

We could use the same integration for the loads due to temperature,
but to economize on the stiffness formation time, we have not computed all
strains at all points, so we will only use a 2 x 2 grid, where we do have
these strains computed. To justify this, we again check that if the element

is in a state of constant strain, the integral is exact. The energy

() )Yl o

TRIEy

///(onsf cdet T df d7 df

=f-1-]

integral

—7 o
since for constant strain <:/'r> [T :l = <é ) : constan?

So once again, as a 2 x 2 grid integrates det J correctly, it will satisfy
convergence requirements.

In addition to the loads discussed above, we wish to be able to
apply surface loads due to a vertical uniform load on each element, and
pressures either uniform, or due to water pressure, varying linearly with

depth below some reference surface, as in the case of an arch dam.
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To evaluate nodal loads for surface pressures we must determine
the normal displacement of any point on the surface. Referring back to
V.32 we see that we have the direction cosines of the normal in the last

row of J , so the normal deflection is given by
f }

U, = {uv w)

<

(vi.1)

SIS

\ )

Using equation V.26 we can set up the vector relating the normal

displacement %, with the nodal displacements {z} s

-
Un = (S7) T}
and after multiplying by the appropriate pressure, integrate over the

surface area of the element.

{ 5} » pressure dA

area of element

This integration is performed in the coordinates} R ’7 .

Referring once more to Fig. V.2, the element of area

S et

<97c 92 _ ox 5_’3)2

o

ds:’é,«ez

A

iz oy _ 9z 2y \2
MneTe det, «/ (G oy =%) + Uoylp o5 &
. (; 9z _ aygz} -
%91 1

Then the nodal loads, become

//{5} . pressure x det, df 47

wl =}
The nodal loads due to vertical loading are computed similarly using

U, =W instead of equation VI.1l
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Due to the quadratic terms, in both S, cietz we would Tike to
integrate this by a 3 x 3 grid on each surface, but this means 9 more
integration points and it was decided to adopt the simpler 2 x 2 grid.

This is justifiable, since for a small element in a fine mesh,
it isn't really important how the total force on the element is distributed,
among the nodes, provided that this total element force is correct. The
simplest mathematical proof that 2 x 2 is a sufficient grid goes back to
considering the element as a full three dimensional element as in Fig. V.3
(An equivalent proof which is not quite as algebraically simple applies to
the actual two dimensional element.)

We have U,

(u v w)

-

Sl S

.y
- (P [e v w]| T,
{ T
T

4

The (say) horizontal nodal forces in the x direction are

») @

/{P} .7-; « pressure « det, clf el

-l

Thus the total horizontal force =

2//3 T o« pres. < cet, df o

For a small enough element, we may consider the pressure and the

=4

term .T

3 @s constant over the element, so the horizontal force becomes

= press =x '7; // ‘Z E ddz df 0(7

40 9

//defz dj oly

el

= F"C.ﬂ' x
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sinceZﬁz = 1 for any valid interpolation functions.
4

So the total of all nodal forces will be correct for a small

element, provided we can integrate dktz correctly, which is achieved

by a 2 x 2 grid in f 7.
VI.4(c) Mass Matrix

The mass matrix, derived in a consistent way from the finite
element method, contains terms in the same matrix locations as occur in
the stiffness itself. However, common practice is to simplify this approach
by using a diagonal matrix for the mass, representing a "Tumped" mass at
each node. Felippa (4) indicates that this, in fact, gives better results
than the fully consistent mass, in many cases.

One way to achieve this diagonal matrix is to add to each
diagonal element of the mass matrix, the elements of all columns in that
row. This results in a mass distribution for each finite element,
identical to that of the nodal forces resulting from body loads, and 1is

given for a mass densityl/o , by:

me = ////op‘ dv ;(or node

element

While satisfactory for many elements, this results in undesirable dynamic
characteristics for this quadratic displacement element. When the mass
is lumped in this manner, negative masses occur at the corner nodes,
resulting in an indefinite mass matrix. To avoid this problem, (without
simply dividing up the total mass of each element arbitrarily between the

nodes, which takes no account of element shape, change of thickness etc.)
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we can add linear combinations of the diagonal masses described first, in
such a way as to produce positive values at all nodes. One formula for

achieving this for corner (subscript c) and mid-side (subscript m) nodes

is given by:
“ | 7 2:

m, = g M * 64( ",
adjacent
nodes

%
© g AT

M, EEM“' * /‘( ",
a&{jarh"
nodes

where m represents the nodal lumped mass from the body load distribution
described above, and m* represents the new lumped masses. These modified
lumped masses m* reflect changes in thickness of the shell, or non-
rectangular geometry, as is desired, and, except perhaps for exceptional
cases of strangely distorted elements, give positive definite nodal masses.

The resulting distribution of the total mass M in a rectangular element

is as shown in Fig. VI.Z20.

3
1 il /
mﬂﬁ ® ?fE”
3,0 Y4
iz 2"
® /
in® ‘4$/§”1
12 %/7
/

Fig. VI.20 Nodal Lumped Masses for Rectangle
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Since we are primarily interested in thick shells, we will

include both translational and rotational inertial effects by including

2
the terms ///E/O {}' %— ) dv associated with nodal rotations,

and then distributing the nodal rotational "masses" in the same manner

as the translational masses above.
The sum of the masses m* of all corner and mid-side nodes,

for each translational direction x, y, z 1is given by:
* * _ 1 25 7
ch * Z-mm T8 XM‘ *‘%'2 Zm"' *32 ZP”‘ ’/-6‘22."7‘

T Do,

which is equal to the sum of the nodal masses m,.

This sum is given by:

=
~
&

= the total mass of the element. So for very small elements
in a very fine mesh, the mass distribution will be represented correctly,
and so convergence to the correct inertial behavior is assured. A similar

proof applies for the rotational behavior.

Since the mass integration is of the same form as the body load

integration, the same integration scheme is adopted.
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VI.4(d) Stress Evaluation

For the unmodified Ahmad-Irons element we showed that the stress

evaluation from the nodal displacements is of the form
(=} - [E][7]iz]

In that situation, we could reasonably adopt any points within
the element or on its inter-element boundaries, to find the stresses.
Different investigators seem to favor different locations. However, when
using the modified integration procedure we have definite optimum positions.
If we examine the discussion of transverse shear integration for a
quadratic diiglacement beam element, we recall that only at the points

f =¢-t1/é' is the transverse shear due to a linear moment displacement,
exact. (The same observation applies at f = 0 for the linear beam.)
Similarly we find this position is the only point at which the in-plane
strains are correct for a curved arch under constant moment.

So to get the best stresses we are to use these points. Since
we have used _f,’7 = 1‘V/gf. for integration of the surface loads, we
have evaluated the necessary stress-displacement transformations already,
so these are, for a second reason, convenient points to evaluate stresses.
So we will adopt the eight points f = 2/ , f,7 = % \[5'-

in this shell program.

VI.4(e) Triangular Elements

To form triangular elements, the simplest way is to simply

coelesce three nodes into one after forming the stiffness in the
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usual way. If this is done as shown in Fig. VI.21, provided mid-side
nodes are used, the f axes are parallel throughout the element and

exact convergence is assured (see Chapter VI.3(c)).

N
\\\\ / —— \

Fig. VI.21 Formation of Triangular Elements

VI.4(f) Connection to Three-Dimensional Elements

In order to connect these shell elements to three-dimensional
elements the nodal displacements and rotations of the mid-surface nodes
must be transformed to pure translational displacements of the nodes on

the two shell surfaces adjacent to the mid-surface node (see Fig. VI.22).
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Fig. VI.22 Connection of Shell to 3-D Element

It can be easily verified that this transformation is given by:

[ 4, )

!
E /

[ S0
NI~
|\
<

™ e
i
N~
L1
B,
RS
™

i hp by by by br by V2
o A @ asfi -af oy -afy |\ ")

where Uys Vis Wy are the displacements of the new node on the f =]

surface and Uy Vos W, are those on the f -] surfgce. ais a, a3,
b], b2 b3 are the direction cosines of the vectors a, b described in

Chapter V.3.
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Rewriting this transformation for node 1 as

w) - [

we can express all the mid-surface node displacements and rotations in

terms of both the unaltered shell node displacements and the connecting

node displacements :

/u:\ W 7 /u’z\
KA
| ) A '/J \’i"/

The element stiffness matrix, increased in size by one row and

column for each connecting node so transformed becomes:

GCER O
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VII. PROGRAM SHELSOL

The concepts deseribed in Chapters V and VI were incorporated
into a program called SHELSOL, for analyzin shells and three-dimensional
solids. The program SHELSOL is based on a program called STRUCTURAL ANALYSIS
PROGRAM, or SAP, developed by Edward L. Wilson and Lindsay R. Jones at
the University of California, Berkeley. Modifications to SAP were made
for more efficient handling of thick shells.

SHELSDL is a program for assembling the stiffnesses, nodal
forces for any number of load cases, and nodal masses of shell or three-
dimensional elements, and solving for displacements, stresses and dynamic
mode shapes and frequencies if desired. The subroutines shown in Fig. VII.1
are called one after another by the control program SHELSOL. A brief
description of the main characteristics of each subroutine will be given
now.

For shells, INPUTNS reads, first, the coordinates of points
adjacent to each shell node on each surface of the shell. For three-
dimensional solids, this subroutine reads the coordinates of the nodes
themselves. Next this subroutine reads an array called ID which specifies
for each node whether each nodal degree of freedom is "free" or constrained
to zero displacement. This array is subsequently modified to become an
array giving the equation number for each degree of freedom for each
node. Nodes for three-dimensional elements have three degrees of freedom
and for shells have five, so this identifying array, ID, is referred to
frequently for identifying terms in all matrices for the complete structure.
Material properties of the various materials used, and details of water

pressure loading, if any, are read at this stage.
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ELSTFS reads the node numbers for each element, and various
details required for evaluating stiffnesses, masses and element loading,
such as temperatures, surface pressures and vertical surface loading.

Then by caliing the stiffness subroutines THKSHEL or SOLID the stiffness

and stress-displacement matrices for each element are formed. At the same
time the mass vector and the load vector caused by internal loads, are
formed. (Any combination of dead load, surface pressure and/or water
pressure loading, surface loading in the vertical direction, and tempera-
ture can be added to any load case.) These are all placed on tape for
later use. To provide flexibility of programming during development of
the program, the integrations for THKSHEL are performed by a subroutine
SHELINT called from THKSHEL. Two versions of SHELINT can be used.

Version 1 is the unmodified Ahmad Irons symmetric integration, while
Version 2 has the new modified integration scheme.

INPUTLS reads the externally applied nodal loads and adds them
to the total nodal load vector, using the identifier array ID. Any
number of load cases may be run at once.

ADDSTFS assembles the element stiffnesses into the full stiff-
ness matrix, in blocks small enough to be stored in the available in-core
memory, by running through the tape containing the element stiffnesses
and picking out the desired terms for each block, by use of the array
ID again. The element nodal loads and nodal masses are similarly assembled.

_ UsoL is an equ&tion solver which solves the full set of linear
equations, two blocks at a time, making use of symmetry and recognizing
zeroes within the bandwidth which is stored, to shorten the number of

computations. Solutions for any number of load vectors can be found.
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PRINTDS prints the displacements for each load case using the
array ID to identify the results from USOL.

STRESSS computes stresses in the elements from the displace-
ments from USOL for each load case, using the stress matrices computed
under ELSTFS.

DYNAMS is a subroutine which can be called if mode shapes and
frequencies of the structure are desired. To avoid finding eigenvalues
and eigen vectors for the total number of degrees of freedom of the
assembled structure, this subroutine uses only a limited number of con-
strained displacement patterns to form the eigenvectors. These displace-
ment patterns are formed by applying loads to the structure in a manner
selected by the user, and care must be taken to ensure that components of

the vibration modes sought are included in one or more of these displace-

.ment patterns.
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VIIT. NUMERICAL RESULTS

A number of structures of differing types have been chosen to
demonstrate the behavior of the THKSHEL element. The examples are
designed to illustrate, firstly, the performance of the elements in
special situations that emphasize certain characteristics and, secondly,
their performance in more typical thin and thick shell situations.

The first set of examples is given to indicate the magnitude of
the errors inherent in the basic kinematic and stfess assumptions, in a
situation of extreme thickness-to-curvature ratio.

The next set of examples illustrates the efficiency of the new
element integration compared with the original symmetric integration
scheme proposed by Ahmad and Irons, for both bending and in-plane
displacements.

Finally, a number of examples are considered that represent
typical (although simple) thin and thick shell structures. Comparisons
of results obtained with the new element are made with the original
Ahmad - Irons element and with solutions by other authors.

For simplicity, in the following section the unmodified Ahmad
Irons element will be referred to as the A-I1 element and the new element

presented here as THKSHEL.

VIII.1 Very Thick Ring

The thick ring shown in Fig. VIII.1 was analysed, subject to the
three loading conditions given:

(a) Uniform body load directed radially outward

(b) Moment applied at one end

(c) Transverse shear applied at one end.
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In each case, the surfaces perpendicular to the axis of the ring
were free of stress,

The first two cases result in stresses that are constant around
the ring, being the constant membrane and bending states, respectively.

The third, case (c), includes both bending and membrane effects, as well
as transverse shear.

A fine mesh of 20 elements in the circumferential direction was
used in order to get a solution that includes insignificant errors due to
discretization, and gives the best result which the underlying assumptions,
used in both A-I or THKSHEL, can give.

The circumferential stresses across the beam at the lower end
are shown in Fig. VIII.2. For comparison, the same stresses are shown for
each case computed first by the simplest thin shell assumptions and
secondly by the theory of elasticity, for a ring with plane stress
assumptions, (39).

It is seen from the graphs of tangential stresses that even with
the severe geometry used here the stress distribution is reasonably
accurate, representing considerable improvément over thin shell
approximations. Another analysis of a moderately thick shell is given
later providing another comparison of thick shell behavior with the more

accurate results from a three-dimensional finite element solution.

VIII.2 Membrane Behavior of Shell Elements

To compare the efficiency of the THKSHEL element with other shell
elements for in-plane displacements a thin rectangular plate fixed at one
end was loaded with a parabolically varying load in its own plane, as
shown in Fig. VIII.4. This example has been used by Felippa (35) and
Johnson (29) for the same purpose. The two surfaces of the plate are

assumed stress free.
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Two finite element meshes only were examined, the first being a
single element representing the plate and the second being two elements
across and eight along the cantilever, to give square elements. These
two meshes (a) and (b) are shown in Fig. VIII.4.

Results are shown for both the A-I element and THKSHEL and a
comparison is given with a thin shell quadrilateral element used by
Johnson (29). To give a meaningful comparison in this and subsequent
examples, it is noted that a mesh of quadrilaterals with only corner nodes
requires approximately the same amount of work to solve the equations as
a mesh twice as coarse formed with quadrilaterals including mid-side nodes.
For proof, see the brief digression below. Therefore in this and sub-
sequent examples, when comparisons are made with a certain r x n mesh,
say, a mesh of 2r x 2n 1is used for the four node elements.

ﬁr"'-""'“"'“““ .. . .
Digression to prove statement of comparison mesh fineness.

Consider a square plate to be solved by

(a) Elements with mid side and corner nodes

(2) Elements with only corner nodes

We divide the plate into two different meshes as shown in
Fig. VIII.3, which represent the same amount of work to solve the equations
when used with the two different element types. If the number of elements

is "large", we get the following:

Element Type Corner, Mid-Side Nodes Corner Nodes
Ext. degrees of freedom/element 40 20
No. of elements along each side m c
Total number of nodes 3m2 c2
Total degrees of freedom "n" 5 x 3m2 5 x c2
p; bandwidth "b" 5 x 3m S xc
Solution time ( = 4 nb2 ) L x 15m2 X 152 m2 LY x5 c2 X 25 c2
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equating PR 53 x 27 m4 = L X 53 X c4
we see
¢ = 2.25m
/ . . . & /
2% > 2
3 9—e < - 3
“ 3 p 4 &
y ] Y
] ) >
mxm e/emenls C=C e/emen(s

Fig. VIII.3 Mesh Comparisons

Thus to make an approximate comparison with elements without

mid-side nodes, we can use a mesh twice as fine as the original mesh.

Given in Table VIII.1 are the tip deflections for the two dis-
cretizations, and the longitudinal stress at the points where the stresses
are evaluated by the subroutine. Each is compared with the theoretical
solution for the beam, given by Felippa.

It is seen that in this example both the A-I and THKSHEL elements
are more efficient than the elements used by Johnson and the improvement
shown by THKSHEL relative to A-I is considerable.

So we can feel confident of good membrane behavior of the new

element THKSHEL.
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TABLE VIII.1

Mesh Element Tip Deflection Stress at P
a A-1 .3028 29.165
a , THKSHEL .3476 36.427
beam theory . 3558 36.429
b A-1 .3553 45.603
b THKSHEL . 3554 45,657
beam theory .3558 45,654
c Johnson . 3497 58.37
beam theory . 3558 60.00

VIII.3 Plate-Bending Behavior of Shell Elements

To examine the bending behavior of the new element, THKSHEL, the
square, simply supported thin plate shown in Fig. VIII.5 was analysed,
loaded by a concentrated central load. Using conditions of symmetry,
only a quarter of the plate was analysed. Three different meshes were
used, as shown in Fig. VIIIL.5.

For comparison, the results given by Clough and Tocher (1) for
the triangular thin plate element HCT, and results given by Clough and
Felippa (4) for the quadritateral element Q 19 are included, using a mesh
twice as fine, for the reason described in the last example.

The numerical results are shown in Fig. VIII.6 and VIII.7. The
first shows the convergence of the central displacement to the solution
given by thin plate theory (36) for the different elements. The second
gives the convergence of displacements along a 1ine of symmetry as the

mesh is refined.



141

The two plots show remarkable bending behavior of the element
THKSHEL. Dramatically improved from the parent A-I element, the central
deflection is actually more accurate than the highly efficient Q-19
element in this particular example, converging from above.

We are thus assured of good bending behavior for the element
THKSHEL.

To examine the behavior of shell elements of non-rectangular
geometry, the same plate-bending problem was analysed again, using non-
rectangular elements with both straight and curved sides. The three
examples are shown in Fig. VIIL.8. The first, (mesh (a)) is highly
distorted from the optimum rectangular shaped elements. The second and
third examples (meshes (b), (c)) are about as non-rectangular as may be
needed in more typical finite element applications.

Fig. VIII.8 shows the displacements along the line of symmetry
for each of the meshes, using THKSHEL.

It is seen from the graph, that the two straight-sided elements
give significantly poorer results than the rectangular grid, with
approximately 5% error being introduced in each case. The much distorted
curved element mesh (a) gives a very poor solution, matched only by the
incredibly bad solution for A-I with this geometry.

It can be inferred from these examples that, as we have said
before, it is desirabie to use rectangular elements, wherever possible,
especially at regions of high change of stress. Again it should be stressed
that meshes containing elements whose two edges 7 = 1 and 7 = -1 are not
parallel or do not converge towards parallelism will not converge to the
exact solution. However the small errors introduced may, in a particular

example, be quite acceptable.
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The last set of plate-bending examples is to determine
quantitatively, what defines a structurally thin plate. That is, at what
thickness-to-span ratio do shear effects start to modify the deflections
due to bending significantly. The same simply supported plate, as
previously examined, was loaded, this time with a uniform load to avoid
the problems of the singularity in the shear stresses at the center.

Four different thickness were considered, varying from a thickness-to-span
ratio of 1/2000 to a ratio of 1/2, (at which, incidentally, the various
kinematic assumptions are probably unacceptable). The loading was
increased with the thickness, to give an identical bending deflection for
each example.

The total deflection at the center, and the bending stress z'xx
at the center are given for each thickness in Figs. VIII.9, VIII.1O0.

Since for this example the loading increases as the cube of the
thickness, and the shear area as only the first power, the shear deflection
(added onto the bending, approximately) varies approximately with the
thickness squared. This is very small compared with the bending
deflection until the thickness to span ratio is about 1/20, then increases
rapidly quickly dominating the bending effects. As a rule of thumb this
example would indicate that the use of a thick shell element would be
indicated for thickness to span ratios between about 1/40 and 1/5, the
larger ratio being simply an estimate of when the shell assumptions used

become invalid.

VIII.4 Thin Cylindrical Shell Roof

To examine the effectiveness of the THKSHEL element for
analyzing thin shells, the first example chosen was cylindrical shell

cited by Johnson, (29). The geometry, material properties and loading
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are given in Fig. VIII.11. The shell is supported on diaphragms as shown,
that allow no displacements in their own plane, but offer no resistance
to displacements perpendicular to it.

Only a quarter of the shell was actually analyzed, by using
symmetric boundary conditions along the two orthogonal planes of symmetry.
The three different finite element meshes used are shown in Fig. VIII.11.

Displacements of the shell in the vertical direction at the
mid-span section are shown in Fig. VIII.12 and Fig. VIII.13. The
reference curve is that used by Johnson. Fig. VIII.14 an Fig. VIII.15
show the Tongitudinal force per unit length and moment per unit length
across the same section for the finest mesh, Mesh (c). These values were
computed from the stresses in the adjacent elements using interpolation
with these stresses and the identical values on the opposite side of the
line of symmetry.

The graphs show that this thin shell is well modelled by the
4 x 4 mesh, Mesh (c), yielding moments and forces accurate enough for
design purposes. The improvement shown in both stresses and deflections
by the improved integration technique used in THKSHEL is very significant.
The solution is of comparable accuracy to that obtained by Johnson using

an 8 x 12 mesh.

VIII.5 Thin Hyperbolic Paraboloid Shell

The next structure to be examined is the thin hyperbolic
paraboloid or hypar shell as shown in Fig. VIII.16. This structure has
its boundaries rigidly held against both displacements and moments, and

develops high moments as a result.
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The structure possesses rotational symmetry about two
perpendicular axes and thus can be analysed by considering only a quarter
of the full shell. The loading due to dead weight is anti-symmetric for
this type of symmetry and leads to the anti-symmetric boundary conditions
shown.

Three meshes were used, as shown in Fig. VIII.16. Vertical
displacements and moments Mxx along the O0X axis are shown in Figs.
VIII.17, 18, 19. The moments on the axis were found by interpolation
about the axis of symmetry, using the stresses on the adjacent elements.
The results are compared with those given by Chetty and Tottenham (32).

This problem containing high moment gradients converged rather
slowly, with THKSHEL again providing much better solutions, for all

meshes, than A-I.

VIII.6 Arch Dam Number One

A thick shell in the form of an arch dam of simple geometry was
next analyzed. This dam is a segment of a thick cylinder and is number
one of the series of arch dams proposed for study by the institution of
Engineers. This is the simplest of the series, consisting of a thick
cylinder of uniform thickness, in a rigid valley. The dam is loaded by
water pressure with the water level at the crest of the dam. Details of
the geometry are given in Ref. 37.

Using a symmetrical half of the dam, three finite element meshes
were considered, as shown in Figs. VIII.20, 21. In each case there are
triangular or quadrilateral elements associated with the sloping edge. As
was pointed out in Chapter V, the terms of the stiffness matrix of
triangular elements, formed by coalescing three nodes, depend on the

orientation of the element numbering. To determine how sensitive the
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solution was to this orientation the three different orientations were
tried, using THKSHEL and Mesh (b). To see whether the solution was
sensitive to the theoretically incorrect use of distorted quadrilaterals
(see Chapter VI.3(c)) a fourth run was made using THKSHEL with an extra
corner node added to the sloping side of the triangular elements. Since
the most accurate definition of the stiffness results when the '7 =1
edge is parallel to the ’7 = - 1 edge, trapezoidal elements, when used,
were defined with the local element nodal numbering rotated through 90°
as indicated in the figures.

For purposes of comparison, the same basic three meshes were used
for analyses using A-I elements. Although any shaped triangles or
quadrilaterals converge correctly as the mesh is refined, since the
triangles were so distorted it was decided to re-run Mesh (b) using a
quadrilateral definition of the triangles using an extra corner node on
the sloping side, as was done for THKSHEL above. To increase the accuracy
(not necessarily the efficiency) of the stiffness matrix for these elements,
a higher order (4 x 4) integration rule was used.

Comparisons of the various runs on Mesh (b) using different
methods of defining the triangular elements, as described above, resulted
in virtually no difference in the solutions for either A-I or THKSHEL
elements. These results are not shown here, for almost all points would
fall on top of the points shown on the accompanying graphs, to the
accuracy plotted.

Graphs of normal displacements on the centerline and along the
80 m. Tevel are given in Figs. VIII.22, 23 for both A-I and THKSHEL
elements. A]so(shown are the same displacements, as determined by
Zienkiewicz using a full three dimensional finite element analysis (14),

and by Otter using dynamic relaxation and thick shell assumptions, (33).
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Fig. VIII.25 shows fhe vertical stresses on the water face at the center
line of the dam found by interpolation with the symmetrically equal
stresses, as outlined in the previous example. Fig. VIII.26 compares the
converged result with the results of Otter and Zienkiewicz. The graphs
show that the solution by THKSHEL elements converged more rapidly than

the A-I solution, once more. The converged solution differs slightly from
the three dimensional solution by Zienkiewicz lying closer to the thick
shell solution of Otter. However, for this structure these differences

are not significant for purposes of design.

VIII.7 Avrch Dam No. 5

A second arch dam of a more realistic geometry than the previous
one was examined under water pressure loading. This dam is number five in
the Institution of Civil Engineers' series of arch dams. It is of variable
thickness and curvature, the ratio of thickness to radius of curvature
varying from that typical of geometrically thin shells, at the crest
(t/R = 1/30), to a very thick shell at the base, (t/R = 1/3). The geometry
and material properties are given in Ref. (37). The cross section of the
dam is shown in Fig. VIII.27 along with horizontal cross sections at the
base and crest of the dam. Meshes similar to those shown in Fig. VIII.24
(b), (c) were adopted.

Zienkiewicz (14) examined the same dam using loading resulting
from pore pressure within the dam varying linearly from the full water
pressure on the water face, to zero on the air face. This is equivalent
to a radial body force distribution. To approximate this loading, the
results shown for THKSHEL are the mean of applying the water pressure on

the water and air faces.
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Fig. VIII.28 shows the radial displacement at the centerline
of the dam for the three-dimensional solution by Zienkiewicz and for
solutions by THKSHEL using 1, 9 and 32 elements, the latter two being
graphically indistinguishable. An interesting comparison is made between
the solutions from one THKSHEL element and one cubic A-I element (34)

Fig. VIILI.29 shows the vertical stresses on the water face at
the dam's centerline. In this graph, the discrepancy between the 9 and
32 element solutions by THKSHEL is more significant. The 32 element
THKSHEL solution is somewhat different from the 32 element three-
dimensional solution. This is due largely to the great thickness at the
base of the dam. A further analysis using 3 integration points in the
"normal" direction gave virtually identical results, confirming an
earlier statement that two-point integration in the normal direction is
satisfactory up to the point where the shell assumptions themselves are
invalid. It is seen, that with the extreme thickness over the most
highly stressed part of the shell the stresses are reaching the limit of

acceptability for design purposes.

VIII.8 Dynamic Analyses

VIIT.8(a) Simply Supported Plate

To examine the dynamic response of THKSHEL elements, the first
example chosen was a square, simply supported plate as in Chapter VIII.3.
A mesh identical to Mesh (b) was used, with alternately symmetric and
anti-symmetric boundary conditions at the lines of symmetry. Various
thicknesses of the plate were chosen, ranging from a thickness to span

ratio of 1/2000 to approximately 1/6.
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The frequencies of vibration (normalized by division by
Tszégg— * ééz where D is the flexural plate stiffness and m 1is the
mass per unit area) for each thickness are shown in Fig. VIII.30.

As expected, the higher frequencies suffer more than the lower
frequencies from discretization errors, resulting in frequencies below
the theoretical frequencies. As the plate thickness is increased, the
frequencies decrease, the higher frequencies being most affected. This
is because the higher frequencies have shorter distances between the lines
of zero displacement and hence the effective thickness to span ratio is
greater than for the lower frequency vibrations. The reduction in
frequency is due to both the reduced stiffness as a result of increasing
shear deflection, and the increased inertia due to rotational effects.

Considering the high accuracy in bending of square elements,
the results for the higher modes are disappointing. Apparently, the
rather arbitrary way in which the mass was lumped at the nodes is not
completely satisfactory. It does of course converge to the correct

solution as the mesh is refined.

VIII.8(b) Cooling Tower

Fig. VIII.32 shows an axisymmetric concrete cooling tower,
constructed in Czechoslovakia. The geometry of this shell was
approximated by the dimensions given in Table VIII.2. The boundary
conditions at the base prevent translational movement, but allow
rotations about both tangential axes. It was desired to determine the
Towest frequency of vibration that is symmetrical about each of two
perpendicular planes of symmetry. For this mode of vibration, a
quarter of the tower may be analysed, with symmetric boundary conditions

along the vertical sections.
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Two meshes were used, as shown in Fig. VIII.31. Fig. VIII.32
shows the radial displacements of the shell (plotted from the undisplaced
position) for this mode of vibration. Also shown are the same displace-
ments calculated by Chang Hua Yeh (graduate student, U.C. Berkeley) using
thin shell quadrilateral elements. (In the circumferential direction,
the radial displacement of the converged solution varies with the angle,

® , according to sin 46 . Also shown are the frequencies of
vibration for each of the above analyses. A convergence study by Chang
Hua Yeh using the thin shell elements in the same structure with slightly
different boundary conditions indicated that the 8 x 9 mesh appeared to
give the frequency correct to about * 0.2.

This indicates that again the convergence of dynamic analyses,
ausing THKSHEL, is rather slow. This again appears to be the result of

the poor mass distribution within each element.

TABLE VIII.2

yA Radius Thickness
624.6 935.0 31.0
581.0 930.0 5.12
300.0 915.0 "
0.0 905.5 "
-300.0 915.0 "
-600.0 930.0 i
~-900.0 968.0
~-1200.0 1013.0 !
-1500.0 1066.0 '
-1800.0 1130.0 5.12
-2100.0 1200.0 5.22
-2400.0 1280.0 5.63
-2700.0 1360.0 7.80
-3024.0 1452.0 21.60
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VIII.8(c) Arch Dam Number Five

The same dam examined previously was analysed to determine the
first §1x modes of vibration. Mesh (c) was used and fifty different
displacement modes were used to construct the six vibration modes. The
dam was assumed empty. Symmetric and antisymmetric boundary conditions
at the center line were used to determine symmetric and antisymmetric
modes.

Figs VIII.33, 34 show representative displacements for each
of the modes. The frequencies of vibration are shown in Table VIII.3.
Also shown in the Table are results given by Ermutiu (37). Almost no
correlation between the two sets of results exists. It is believed that
the discrepancy is due to the use of a poor finite element model by
Ermutlu. He uses one layer of constant strain tetrahedra through the
thickness of the dam to model the dam. This produces a structure that
is very stiff in bending regardless how fine the mesh is. With a shell
so stiff in bending, the bending that should occur in the Tow modes of
vibration is prevented and a deflection consisting largely of in-plane
deformations occurs. The "antisymmetric" modes shown by Ermutlu depart
cbnsiderab]y from exact antisymmetry, indicating either serious round off

error or more likely erroneous programming.

W, e, e,y W, i, .

freg cps. | 208 | 228 | 301 | 358 | wuo | wusvy
THKSHEL — F—t

S_yM. or 5 S

anti -sym. a s 5 a

freg cps.| 3.27 4./6 £./8 693 | 725 -
ERMUTLY 2 s

inéz—;ym, 5 approx. Q 5 apprx Q s

TABLE VIII.3 Arch Dam No. 5 Frequencies
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IX. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

The shell element THKSHEL has been shown to be applicable to a
wide range of shell problems. The kinematic and geometric assumptions
used in the formulation ensure that the element will accurately represent
situations where the curvature of the shell is significant, and where the
transverse shear stresses are large enough that shear deflections must
be considered. At the same time, the important class of shells, thin
enough that these can effects can be ignored, is also efficiently
represented by the same element. Accuracy, comparable with thin-shell
finite elements currently in use, was attained, when the element mesh
finenesses were such as to give the same equation-solving time in each
case. It is therefore a particularly suitable element for use when
parts of a shell could be represented by thin shell elements, but parts
could not, due to large thickness, excess curvature or high transverse
shears. Similarly, since high frequency modes of vibration can cause
high transverse shear stresses in shells and plates, which could other-
wise be solved satisfactorily for the static situation using thin-shell
elements, THKSHEL provides a useful element to represent either situation.

Since the efficiency decreases as the shape of the elements
departs from rectangularity, it is undesirable to divide the shell into
a mesh containing many elements whose shape is markedly "non-rectangular".
Small errors are introduced also, even into the converged solution, if
the 7 = 1 and the‘7 = -1 edges do not converge towards parallelism

as the mesh is refined. However, in most structural applications, these
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situations can be readily avoided. If necessary, the mesh can follow the
geodesic 1ines of the shell's mid-surface, for then the elements will
automatically converge to small rectangular elements.

Perhaps one of the greatest advantages of this type of shell
element (common to all shell elements derived from three-dimensional
elements) is the small amount of expertise in shell theory that is
required to understand the behavior of the element. A curved shell
element, involving virtually any level of desired mechanical behavior can
be formulated without any knowledge of the intricasies of the coordinate
geometry of curved surfaces (necessary to even the simplest closed-form
method of solution). Only a basic knowledge of the three-dimensional
field equations of elasticity and of the transformation of strains from
global to local coordinate systems, is required. This knowledge is
needed for three-dimensional elements also, so the two and three
dimensional analyses are unified into one general method of analysis.
This is most desirable from the point of view of both teaching and
learning the analysis of shells by the finite element method.

An apparent weakness of the THKSHEL element, as formulated, is
that the accuracy of the mass matrix seems to be much inferior to that
of the stiffness matrix. To overcome the difficulties presented by the
indefinite mass matrix when usual lumping procedures were used, a
highly arbitrary Tumping procedure was adopted. Significant errors were
introduced in the dynamic problems presented in Chapter VIII. Probably
the best way of improving the dynamic performance is to introduce the
full consistent mass matrix. Using the Rayleigh-Ritz technique for

vibrations, the dynamics subroutines take only a small proportion of the
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total time of solution. So, although using the full mass matrix will
approximately double the computer time for the dynamics section, it will
not appreciable affect the total solution time.

It is noted here also, that in situations that can arise in
arch dams (e.g. Number 5) the limit of "moderately" thick shell behavior
may be reached and loss of accuracy compared with the three-dimensional
solution may occur.

To conclude this Chapter, some suggestions for possible future
research arising from this work are made. As pointed out above, a more
thorough examination of the role of the mass matrix should be made, and
either a more accurate lTumped mass distribution should be used, or
perhaps the full consistent mass matrix.

As noted in Chapter VI, the integration developed for beams
and arches is directly applicable to axisymmetric shell problems. It
would be interesting to see whether the axisymmetric THKSHEL element is
more efficient than elements at present in use.

Although not brought out strongly in the preceding Chapters,
the integration procedure adopted is the minimum integration that can be
used without introducing singular stiffness matrices. It is hypothesized
that a isoparametric three-dimensional element, based on integrating each
strain component over its minimum integration grid, will be far more
efficient than the full integration, and will of course converge correctly
if the minimum integration requirements are met.

No great difficulties arise in using other than the isotropic
constitutive relation adopted here. For example an orthotropic relation

could be used for a reinforced concrete shell. Since transverse shear
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is automatically included, a constitutive relation arising from sandwich
construction could be easily derived for sandwich shells, the transverse
shear modulus being that of the core material, the in-plane moduli being

derived easily from the face materials and dimensions.
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