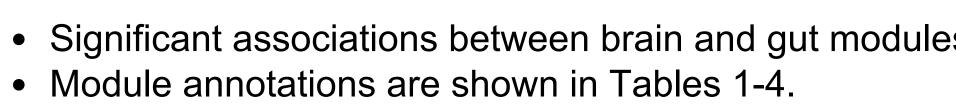
Use of Weighted Gene Coexpression Network Analysis To Identify Connectivity Between Gut and Brain Gene Expression.

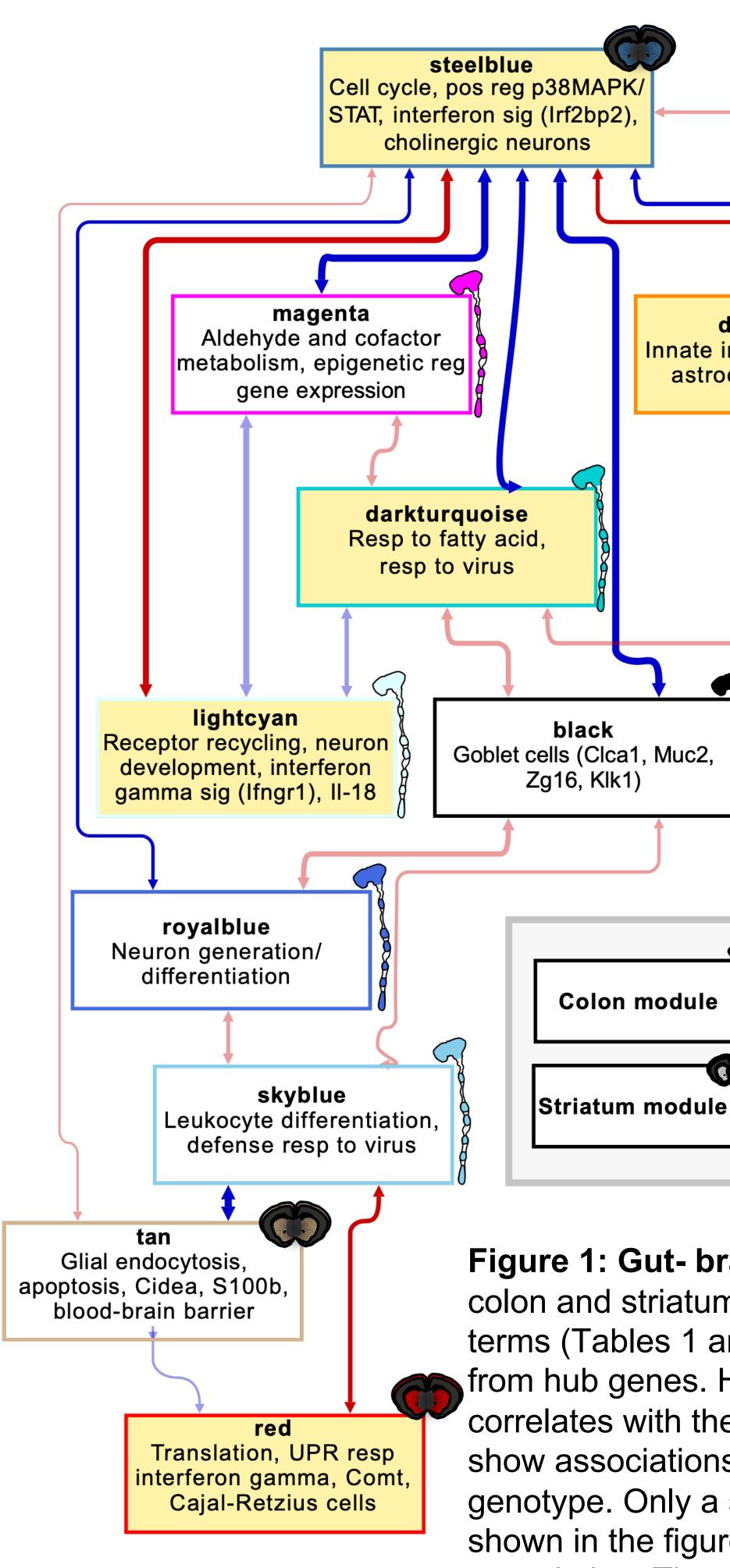
Tasnin Khan MS¹, Asa Hatami, Ph.D.², Chunni Zhu, Ph.D², Riki Kawaguchi, Ph.D.¹, Han Chen MS¹, Jill M. Hoffman, Ph.D.¹, Ka Man Law¹, Ph.D.¹, Carl Robert Rankin, Ph.D.¹, Varghese John, Ph.D.², Daniel H. Geschwind, M.D., Ph.D.^{2,3}, Charalabos Pothoulakis, M.D.¹, and Elizabeth J. Videlock, M.D., Ph.D¹

UCLA Health

Bac

- Alterations in the gut brain axis are being recognized as including neurodegenerative diseases such as Parkinsc
- The extent to which gene expression profiling in the gut Weighted gene coexpression network analysis (WGCN expression profiling data to modules of highly correlated


Aims/


 To determine and explore the strongest associations be • *Hypothesis: Gut-brain connectivity will be strongest for* component, such as immune reactivity.

Μ

RNA sequencing and WGCNA

- WGNCA networks were constructed for distal colon and overexpressing human wild type alpha synuclein (ASO,
- Module annotation:
- Overrepresented gene ontology (GO) terms (GOstat Cell-types: Hypergeometric test against cell type signature data).
- Gut-brain associations in matched samples
- Mice with matched colon and striatum data [n=10 ASO analysis.
- Linear regression, controlling for both age and genotype

¹Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, ²Department of Neurology and ³Department of Human Genetics, David Geffen School of Medicine at UCLA

as a pathogenic factor for an increasing number of diseases, son Disease (PD). ut and the brain is co-regulated is not well understood. (NA) uses unbiased hierarchical clustering to reduce gene ted genes. /Hypothesis Detween colon and striatum gene expression <i>r modules related to physiologic mechanisms with a systemic</i> Methods Ind striatum RNA seq (QuantSeq 3' FWD) data from mice (O, n=18) and wild type (WT, n=16) at 1 and 3 months. Iats) ignatures from the Panglao and Cellmarker databases (single cell O (1m/3m: 4/6), n=6 WT (1m/3m 3/3)] were included in this pe Results Ies are shown in Figure 1. Cell cycle phase transition darkgreen endise transition from the response for the list and lymphocyte sig pathways for the protein complex dissambly for the protein complex di		
<pre>put and the brain is co-regulated is not well understood. :NA1) uses unbiased hierarchical clustering to reduce gene ted genes. //Hypothesis between colon and striatum gene expression <i>re modules related to physiologic mechanisms with a systemic</i> //ethods //e</pre>	ckground	
signatures from the Panglao and Cellmarker databases (single cell O (1m/3m: 4/6), n=6 WT (1m/3m 3/3)] were included in this rpe Results ules are shown in Figure 1. Cell cycle phase transition red entropy of the protein complex dissambly, endoplasmic reticulum protein complex dissambly, endoplasmic reticulum protein complex dissambly, endoplasmic reticulum protein complex dissambly, endoplasmic reticulum pathways B cells, EC cells, CB84 (CB4	nson Disease (PD). gut and the brain is co-regulated is not well understood.	
between colon and striatum gene expression or modules related to physiologic mechanisms with a systemic Methods and striatum RNA seq (QuantSeq 3' FWD) data from mice (O, n=18) and wild type (WT, n=16) at 1 and 3 months. tats) lignatures from the Panglao and Cellmarker databases (single cell O (1m/3m: 4/6), n=6 WT (1m/3m 3/3)] were included in this pe Results les are shown in Figure 1. Cell cycle phase transition red matter immune-mediated prink proteincering sig pathways immune response, protein engiptes dissambly, endoplasmic reticulum proteine response, recyte precursors in physic dissambly, endoplasmic reticulum proteine response, recyte precursors in physic dissambly, endoplasmic reticulum proteine response, fightyellow red pathways B cells, EC cells, CDB4	s/Hypothesis	
and striatum RNA seq (QuantSeq 3' FWD) data from mice O, n=18) and wild type (WT, n=16) at 1 and 3 months. Itats) bignatures from the Panglao and Cellmarker databases (single cell O (1m/3m: 4/6), n=6 WT (1m/3m 3/3)] were included in this pe Results teles are shown in Figure 1. Cell cycle phase transition for the protein complex disambly pink protein complex disambly in mune response pink Protein complex disambly protein complex disambly protein complex disambly for the resp-regulating sig pathways Cells, EC cells, for the resp-regulating sig pathway B cells, EC cells, the resp (the resp-regulating sig pathway B cells, EC cells, the resp (the resp (the resp)	between colon and striatum gene expression	mic
EQ. n=18) and wild type (WT, n=16) at 1 and 3 months. tats) signatures from the Panglao and Cellmarker databases (single cell O (1m/3m: 4/6), n=6 WT (1m/3m 3/3)] were included in this ree Results alles are shown in Figure 1. Cell cycle phase transition Cell cycle phase transition for the immune respregulating sig pathways red under and ymphocyte pink regotive association Positive association	Methods	
signatures from the Panglao and Cellmarker databases (single cell O (1m/3m: 4/6), n=6 WT (1m/3m 3/3)] were included in this pe Results iles are shown in Figure 1. Cell cycle phase transition red entropies (include the immune-mediated entropies (include the immune-mediated entrop		
Positive association	stats) signatures from the Panglao and Cellmarker databases (si	ngle cell
Positive association	SO (1m/3m: 4/6), n=6 WT (1m/3m 3/3)] were included in thi	S
les are shown in Figure 1.	/pe	
e immune response, rocyte precursors pink Protein complex dissambly, endoplasmic reticulum Positive association	Results	
<pre>darkorange e immune response, rocyte precursors pink Protein complex dissambly, endoplasmic reticulum grey60 Immune resp-regulating sig pathway, B cells, EC cells, CD84 lightyellow Rab sig transduction, heterocycle catabolism </pre>		oition
Immune resp-regulating sig pathway, B cells, EC cells, CD84 Iightyellow Rab sig transduction, heterocycle catabolism	darkorange e immune response, crocyte precursors pink Protein complex dissambly,	
Positive association	2, Immune resp-regulating sig pathway, B cells, EC cells, CD84 Iightyellow Rab sig transduct heterocycle catabo	· ·
Negative association		
	Negative association	

Figure 1: Gut-brain connectivity. Squares represent modules from the colon and striatum. Annotations are derived from enriched gene ontology terms (Tables 1 and 2), enriched cell types (Tables 3 and 4) as well as from hub genes. Hub genes are genes where expression strongly correlates with the module eigengene (first principal component). Arrows show associations between module eigengenes controlling for age and genotype. Only a subset of associations with adjusted p value < 0.05 are shown in the figure. The thickness is proportional to the strength of the association. The color indicates the direction. Gut-brain connections are emphasized by stronger intensity of color. Yellow shading is used to highlight modules that may relate to the immune system.

Results				
ole 1: Enriched Gene Ontology Terms - Striatum Table 2: Enriched G				
dule	Terms (p-value)	Module	Terms (
green	reg of phagocytosis (0.001), peptidyl-AA modif (0.002), cell cycle G2/M phase transition (0.002), N reg of cellular carb MP (0.002), sterol MP (0.003), reg of plasma lipoprot particle levels (0.003), resp to ionizing radiation (0.003), reg of coagulation (0.004), histone	black	secretor (0.011), derivativ mediate	
	deubiquitination (0.007), G1/S transition of mitotic cell cycle (0.008), P reg of prot loc to cell periphery (0.01)	darkturquoise	organell cellular r Golgi to	
orange	N reg of cell adhesion (0.001), resp to external biotic stimulus (0.001), reg of vasculature dev (0.003), Golgi-associated vesicle memb (CC) ange (0.003), resp to bacterium (0.003), blood vessel morphogenesis		vesicle c (0.011), (0.016)	
U	(0.004), reg of cell prolif (0.005), defense resp to virus (0.005), reg of imm effector proc (0.018)		imm res (0.003), glycolyti	
yellow	Rab protein signal transduction (2.08E-04), cellular nitrogen compound CP (0.001), inorganic anion transp (0.003), small GTPase mediated signal transduction (0.003), G2/M transition of mitotic cell cycle (0.004), peptidyl-serine phosphorylation (0.006)	grey60	(0.006), chemoki (0.014), of gene	
	translational initiation (0.002), resp to unfolded prot (0.003), cellular resp to interferon-gamma (0.006), reactive oxygen species MP (0.01), lipid modif (0.018)	magenta	metence MP (0.00 complex extracell synaptic	
lbluo	reg of RNA stability (5.57E-05), ribosomal small subunit biogenesis (9.19E-05), reg of mRNA CP (1.20E-04), endosome to lysosome transp (0.001), peptide biosynth proc (0.001), N reg of G2/M transition		prot-con assembl expressi vesicle-r	
elblue	of mitotic cell cycle (0.001), N reg of fat cell diff (0.004), vacuolar transp (0.004), neuronal stem cell population maintenance (0.005), internal peptidyl-lysine acetylation (0.006), P reg of p38MAPK cascade (0.007), P reg of STAT cascade (0.008)	red	N reg of location removal insulin s	
	reg of cell shape (0.001), fatty acid biosynth proc (0.006), import across plasma memb (0.009), reg of apoptotic proc (0.012), reg of cell shape (0.017), mitochondrion org (0.018), axon ensheathment (0.019)		tyrosine receptor transcrip stress (C	
	acid; biosynth; biosynthetic; carb, carbohydrate; CP, catabolic process;	royalblue	forebrain central n (0.013),	
alization gative; P	pment; differentiation, diff; endoth, endothelial; imm, immune; loc, ; memb, membrane; MP, metabolic process; modification, modif; N, , positive; proc, process; prot, protein; regen, regeneration; reg,		activatin	
ulation; resp, response; sig, signaling; transp, transport;		skyblue	myeloid organ m (0.033),	

le 3: Enriched Cell Types - Striatum

dule	Cell Type (Tissue, database)	P value (*FDR <0.05)	Genes
rkorange	Astrocyte precursor cell (Brain, C)	0.0131	S100a6
	Endothelial cells (Vasculature, P)	0.0145	Emcn, Plac8, Clic4, Rgs5
	M1 macrophage (Artery, C)	0.0260	Cdh1
	Endothelial cells (Brain, C)	0.0261	Emcn, Rgs5, Apcdd1
	Pericytes (Vasculature, P)	0.0277	Des, Rgs5
	Mural cell (Brain, C)	0.0360	Rgs5, Tpm2
	Olfactory ensheathing glia (Brain, C)	0.0390	Lhfp, Apcdd1
l	Anterior pituitary gland cells (Brain, P)	0.0173	Pcsk1
	Cajal-Retzius cell (Brain, C)	0.0258	Smad1, Kcnh7, Slc2a13
elblue	Cholinergic neurons (Brain, P)	0.0280	Chat, Slc5a7
1	Ependymal cells (Brain, P)	0.0441	S100b, Angptl2

le 4: Enriched Cell Types - Colon

Module	Cell Type (Tissue, database)	P value (*FDR <0.05)	Genes
black	Goblet cells (Small int., C)	9.96E-08*	Clca1, Zg16, F
	Paneth cells (Int. crypt, C)	2.53E-07*	Hepacam2, Re Slc12a8, Peli1,
	Goblet cells (GI tract, P)	8.28E-05*	Tff3, Atoh1, Mu
	Chandelier cell (Brain, C)	5.24E-04*	Gdf10, Pde3a,
	Goblet cells (Int. crypt, C)	1.28E-03*	Zg16, Reg4, Fo
	EEC precursor (Int. crypt, C)	7.06E-03*	Hepacam2, Re
	Adipocytes (Connective tissue, P)	0.0308	Gdf10, Cdo1, L
grey60	EECs (Int. crypt, C)	0.038	Neurod1, Chgb
	Microglia (Brain, P)	0.042	Slco2b1, Cd53
magenta	Astrocytes (Brain, P)	0.019	Gja1/Tril/Hmg2
red	Goblet cells (Small int., C)	0.036	Ostc, Stard3nl,
royalblue	Endothelial cells (Vasculature, P)	0.017	Ptprb, Stab1, K
skyblue	Type II spiral ganglion neuron (Brain, C)	0.019	Ephb2, Dok7, S

Conclusions

• Correlations exist between gene expression in colon and striatum in mice. • The most highly gut-connected striatum modules are connected to several colon modules which are likely involved in the mucosal immune response.

• "Profiling" the gut-brain axis is feasible and future directions of research include evaluating disease-related changes in a larger sample size.

References: 1. Langfelder P, et al. BMC Bioinformatics. 2008;9:559

ACKNOWLEDGEMENTS/FUNDING: Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA, CURE-DDRC Pilot and Feasibility Studies (NIDDK DK 4130), T32 DK07180, NIH loan repayment program (L30 DK106759), UCLA Claude Pepper Older Americans Independence Center funded by the National Institute of Aging (AG028748)

ne Ontology Terms - Colon

ory granule (CC) (0.002), digestion (0.005), metal ion transp , reg of reproductive proc (0.012), reg of ion transp (0.029), carb tive biosynth proc (0.029), resp to lipid (0.037), proteasometed ubiquitin-dependent prot CP (0.043)

elle loc by memb tethering (4.47E-04), resp to virus (0.005), rep to fatty acid (0.006), retrograde vesicle-mediated transp, o ER (0.007), P regulation of nitric oxide biosynth proc (0.008), docking involved in exocytosis (0.009), resp to acid chemical , reg of extracellular matrix org (0.013), neuron maturation

esponse-reg sig pathway (0.003), reg of gene silencing by miRNA , N reg of gliogenesis (0.003), cytokine MP (0.003), reg of tic proc (0.003), reg of lymphocyte prolif (0.005), prot deacylation , covalent chromatin modif (0.006), amine MP (0.008), P reg of okine production (0.009), reg of purine nucleotide biosynth proc , reg of oxidative stress-induced cell death (0.019), circadian reg e expression (0.02)

cephalon dev (0.002), myosin complex (CC) (0.003), terpenoid .003), reg of gene expression, epigenetic (0.003), prot-DNA ex assembly (0.006), mRNA processing (0.006), cellular resp to ellular stimulus (0.01), prot targeting to memb (0.01), reg of tic vesicle cycle (0.013), epithelial tube morphogenesis (0.016)

ontaining complex disassembly (0.006), prot-DNA complex bly (0.013), P reg of cellular prot loc (0.017), mitochondrial gene ssion (0.019), P reg of intracellular transp (0.029), ER to Golgi -mediated transp (0.034)

of insulin receptor sig pathway (0.002), maintenance of prot n in cell (0.003), reg of prot modif by small prot conjugation or al (0.003), reg of wound healing (0.005), reg of cellular resp to stimulus (0.005), autophagy (0.008), transmemb receptor prot e kinase sig pathway (0.012), imm resp-activating cell surface or sig pathway (0.013), prot processing (0.016), N reg of ription, DNA-templated (0.025), resp to endoplasmic reticulum (0.025)

ain generation of neurons (0.003), N reg of mRNA MP (0.005), nervous system neuron diff (0.009), P reg of macroautophagy , neuron projection morphogenesis (0.014), adenylate cyclaseing G prot-coupled receptor sig pathway (0.015), inscriptional gene silencing by RNA (0.015)

d leukocyte diff (0.016), defense resp to virus (0.019), embryonic morphogenesis (0.031), steroid MP (0.033), reg of translation), lipid biosynth proc (0.034), N reg of cellular prot MP (0.047)

Fcgbp, Klk1, Tff3, Atoh1, Muc2, Rep15, Slc12a8
eg4, Fcgbp, Klk1, Tff3, Gm1123, Ckmt1, Muc2, Tfcp2l1, St6galnac2, Zfp148, I, Rnf216
luc4
, Peli1
cgbp, Klk1, Tff3, Muc2, Rep15, Lpin1, Slc12a8
eg4, Fcgbp, Tff3, Ckmt1, Dpysl2, Fbxo32, Myt1
Lpin1
b, Cacna1a, Aldh1a1, Tph1
3, Ccr5
20a
I, Spdef, Ern2
Kdr, Pecam1, Madcam1, Rgcc
Smim15, Mmp16, Naga, Il3ra, Eef2kmt