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Abstract

Applications of Magnetic Particle Imaging to Brain Imaging

by

Ryan Daniel Orendorff

Joint Doctor of Philosophy with University of California, San Francisco in Bioengineering

University of California, Berkeley

Professor Steven M. Conolly, Chair

Magnetic Particle Imaging is a novel imaging modality with many applications in the
preclinical, and soon, clinical space. In particular, mpi shows promise for imaging of vari-
ous brain related pathologies, such as stroke, hemmorhage, and traumatic brain injury. In
this thesis, we demonstrate a series of first-in-animal proof-of-concept experiments that mpi
could soon be superior to our conventional imaging technologies, including X-ray ct, mri,
ultrasounds and nuclear medicine for particular neuroimaging applications. In the process,
we will develop algorithmic enhancements to the image reconstruction of mpi signals in or-
der to achieve real time interventional imaging, much like X-ray fluoroscopic imaging, but
without ionizing radiation and significant risks of catheter and iodinated contrast media.
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Chapter 1

Introduction to Magnetic Particle
Imaging

Magnetic particle imaging (mpi) is a novel tracer-based medical imaging modality that shows
great promise for imaging biologically important phenomenon with good resolution, high
signal to noise ratio (snr), linearity and shift invariance, and fast acquisition capabilities.
Here we will introduce the basics of magnetic particle imaging (mpi), and compare mpi with
various other imaging technologies.

1.1 Basics of Mpi
The formation of images with mpi are described in detail here: [1, 2, 3, 4, 5, 6, 7]. We briefly
summarize the basic theory behind mpi.

Super paramagnetic iron oxide nanoparticles (spios) are nanoscale iron particles with a
diameter of approximately 30 nm or less that have a single magnetic domain that, in aggre-
gate, align to an applied magnetic field almost instantaneously and without any coercivity.
The magnetic field of a population of particles in response to an applied magnetic field can be
modeled by the Langevin function [2], as shown in Figure 1.1. For small amplitude applied
magnetic fields, the particle population creates a net magnetization with an approximately
linear dependence on the applied field. However, at larger applied field strengths, the parti-
cles “saturate”, meaning that nearly all of the particles have aligned with the applied field
and therefore higher field strengths have diminishing effects on the resulting magnetization
response from the particles.

Magnetic particle imaging exploits this saturation phenomenon to image only a small
number of particles within a volume. Magnets in mpi are designed to oppose each other and
create a magnetic field gradient, with a field free region (ffr) in the center that experiences
zero applied field (to within some tolerance). This arrangement allows particles to linearly
respond to an applied magnetic field inside the ffr while eliminating signal outside of the
ffr due to the saturation of the particles. To produce an image, the ffr is rastered over
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Figure 1.1: Introduction on magnetic particle imaging (mpi). (a top) mpi abides by the
physics of the spio nanoparticles that it images. The spio particles have a nonlinear mag-
netization response to an applied field, characterized by the Langevin function. When the
applied magnetic field is low, the particles have an approximately linear response to the
applied field; however, when the applied magnetic field is strengthened, the response mag-
netization in the spio particles saturates. (a bottom) mpi detects the derivative of the spio
magnetic response, which forms mpi’s psf. (b) All mpi scanners must make a gradient mag-
netic field to exploit the Langevin physics. In this case, two permanent magnets are placed
opposite each other to create a magnetic field gradient. In the middle of the magnets is
a field free region (ffr) where the particles have a near linear dependence on the applied
field: any particles not located in the ffr experience a saturating applied field, and therefore
produce no signal. The mpi scanner creates an image by rastering the ffr over space to
acquire signal from the spio particle distribution at each sample point. (c) An image of the
Berkeley ffp scanner used in this report.

space to acquire the magnetization response of the particles as the ffr passes over them.
As mpi detection is done through inductive means, the derivative of the magnetization
response is captured. As described in [2, 7], mpi is a linear and shift invariant (lsi) system
with a spatially-invariant 1d point-spread function (psf)—the derivative of the Langevin
function—as shown in Figure 1.1.

1.2 Comparison of MPI to other imaging modalities
The mpi modality offers some excellent properties over its main competitors, positron emis-
sion tomography (pet), single photon emission computed tomography (spect), and fluoro-
scopic imaging. All of these modalities are known as tracer based imaging systems, which are
generally characterized by the response of some injected contrast agent to some perturbation
to produce a signal that is detected. In addition, mpi competes with imaging modalities that
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images all the anatomy inside the imaging volume, such as computed tomography (ct) or
magnetic resonance imaging (mri). These imaging methods can often have enhanced con-
trast by injections of a contrast agent, such as iodine for ct or gadolinium in the case of
mri.

Mpi compares with those modalities in the following manner.

• Non-toxic tracer without ionizing radiation: in pet and spect imaging, a radioactive
tracer is injected into the patient, which decays to produce light that is picked up by a
receiver outside of the patient. The tracer is generated by attaching a positron-emitting
radionuclide onto a host molecule, often glucose in the form of fludeoxyglucose. As
this molecule decays, it produces gamma rays that are detected by a ring of detectors
outside of the patient. This process exposes the patient to the ionizing radiation of
the gamma rays, limiting the dose that can be given to a patient.
In contrast, mpi uses an iron-oxide tracer that does not produce any ionizing radiation
in the process of acquiring an mpi signal. While making tracers in mpi is still an
emerging field, some common tracers such as feramoxitol are common iron supplements
that are given to patients suffering from anemia. Additionally, the safe dosage range
with such iron supplements is large and the mpi signal can be detected from a very
minute amount of iron, allowing mpi to operate within already defined safety limits
for iron supplement exposure.

• Long duration studies: the iron tracers used in magnetic particle imaging are non-toxic,
and the signal from the iron particles does not degrade with time (unlike ct or spect
tracers). This allows for long term studies to be performed. This manuscript describes
one several-day study for traumatic brain injury, and there have been publications
showing long term tracking of different nanoparticle types over weeks, tracking of
nanoparticle uptake in cancerous tissues, and others.

• No attenuation or scattering: mpi signals do not change with regards to the depth of
the iron tracer within a sample. This property is not shared with many of its brethren:
pet and spect can both experience scattering and absorption events that cause ar-
tifacts within an image, and fluorescence based imaging techniques experience heavy
scattering that leads to depth dependent resolution and signal strength. ct (includ-
ing contrast enhanced variants) also experiences scattering and absorption; while the
scattering is malevolent in terms of producing artifacts, the absorption is the quantity
measured and does not pose a problem. mri is similar to mpi in that it also experiences
no attenuation with depth.

• Quantitative (linear and shift invariant): iron signals gathered in mpi have a property
known as linear and shift invariant (lsi). The linear component means that if twice
as much iron is placed at a point, twice the signal is produced. The shift invariance
means that a point of iron produces the same signal at any location in space. This
allows mpi signals to be quantitative, in that mpi images give an exact quantity of iron
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in a given voxel. This allows researchers to determine exactly how much iron is in a
given vessel or absorbed by a given organ.

• Resolution: The resolution in mpi is currently comparable to (or a tad better than)
pet and spect imaging at approximately a millimeter on newer mpi architectures.
This resolution is poorer than what can be achieved in mri and ct at the moment,
although new developments in particle signal responses and nanoparticle design are
rapidly changing the mpi field.

• Temporal resolution: The temporal resolution of current mpi systems can be as fast
as 30 frames per second, although this speed is achieved at lower resolutions. At
millimeter resolutions, the current speed achievable is approximately half a second per
frame, as shown in a later chapter. In comparison, pet and spect scans can take on
the order of a few minutes per acquisitions, while ct and mri can image fast enough
for interventional methods.

• Small molecule dynamics: pet and spect have the leg up on mpi in terms of tracking
small molecule dynamics. Since the tracers used in these modalities can be attached
to biologically active molecules such as glucose, these modalities can track the uptake
and metabolism of small molecules. Additionally, these small molecules allow for better
imaging inside the brain tissue itself, as the tracers are small enough to pass through
the blood brain barrier.

• Contrast or attenuation from tissues: One of the advantages of mpi is that it does
not image anything other than the injected iron. This means that, if the iron can be
directed towards an area of interest in the body, the contrast in the image is equivalent
to the signal in the image. However, the downside of this ability is that there is no
reference for where a particular signal comes from. mpi signals share this property in
common with pet and spect, where the image after acquisition is some amorphous
blob shape in a black background. In order to overcome these limitations, tracer based
imaging modalities are often paired with ct or mri in order to co-register the tracer
images with an anatomical reference.

1.3 Current challenges in magnetic particle imaging
The age of mpi (approximately 12 years as of this writing) means that there are still many
open challenges in the field to solve. These fall into a few categories.

1.3.1 Nanoparticle physics
Designing spio particles suitable for mpi is a rich and active area of research [5, 8]. In
current mpi imaging setups, spio particles are ideally monodisperse, and each iron core is
surrounded by an organic coating. The physics of the iron core and the chemistry of the
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coating allows for tailoring the particles to many applications, allowing researchers to alter
attributes including blood circulation times, particle clearance routes, ability to permeate
tissues, adsorption, cellular uptake, and ability to act as a biomarker. As an extra degree of
freedom, polydisperse particle distributions have been shown to produce mpi signals.

The design of iron core has implications for the imaging physics as well; in particular,
image resolution and signal intensity per gram of iron can be improved by choosing the
appropriate iron crystal formulation. Some other properties must be carefully tuned to the
application at hand. A particle with a significant blood half-life may be unsuitable for
imaging transient phenomenon such as blood volume or flow changes, while a particle with
a short half-life may not experience significant uptake in some biological models. Tailoring
the blood half-life is quite important if multiple imaging sessions of a dynamic phenomenon
are to be performed serially; if the particles are too slow to clear before a new injection
is given then particles from prior scans may introduce an undesirable baseline signal and
disrupt attempts to analyze the system of interest.

1.3.2 Hardware
While great strides have been made in detecting small concentrations of iron nanoparticles
in mpi, there are still many open hardware challenges to be tackled. The current designs are
coil-noise or amplifier noise dominated, meaning that the noise from the detection system
dominate noise from the patient. New imaging hardware designs are devised and developed
on a yearly cycle, leading to a rich literature of hardware devices that each have their own
benefits and drawbacks. The hardware has also yet to scale to a size beyond imaging a rabbit,
meaning that attempting to build human-sized scanners is only just beginning. However,
there is absolutely no fundamental physics barrier to human mpi; after mpi-tailored SPIOs
are advanced significantly, then the cost of a human scanner with roughly 0.7T/m gradients
should be safe, 1 mm resolution, highly sensitive (1 micromolar) and cost effective.

1.3.3 Imaging theory and reconstruction
The method by which mpi acquires and converts a signal into an image is unlike the processes
done in other modalities. In other medical imaging techniques, the method by which to
reconstruct images is well known, and algorithms that are developed introduce subtle changes
in image quality or other metrics. The age of mpi means that it does not yet have this wealth
of image reconstruction techniques, and many avenues of image reconstruction have yet to
be explored.

In this thesis, we will investigate novel image reconstruction methods that enable online
(or interventional) imaging. These methods are critical to enabling clinical use of mpi; many
dynamic imaging methods require an interventional response or real time analysis from the
physician performing the imaging.
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1.4 Thesis Order
The manuscript is divided into the following sections.

1. Traumatic Brain Injury (tbi) imaging, a new approach to quantifying the results of a
traumatic impact on the skull.

2. Brain perfusion imaging, demonstrating mpis potential as a technology in diagnosing
types of strokes, brain hemorrhaging, aneurysms, and more.

3. A matrix-free optimization framework called PyOp, which allows for optimization
problems to be solved in Python using far fewer resources that with standard ma-
trix methods.

4. Sparse reconstruction in field free line (ffl) mpi, which allows for radially undersam-
pled data to be reconstructed. This allows for the acquisition time to be decreased by
approximately 4 fold.

The thesis is roughly divided into two major components. The first section describes
novel applications of mpi, showing the flexibility and versatility of the technique. The second
section focuses on the algorithmic advances in image reconstruction that assist in enabling
faster acquisition speeds, which in turn enables a larger application space for mpi.
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Part I

Brain Imaging Applications using
Magnetic Particle Imaging
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Chapter 2

First in-vivo Traumatic Brain Injury
Imaging via Magnetic Particle
Imaging

2.1 Introduction to TBI
The Centers for Disease Control and Prevention estimates 1.6–2.1 million emergency visits
for Traumatic Brain Injury (tbi) annually in the US alone, with additional cases unaccounted
for or untreated [9, 10]. Despite the prevalence of tbi in humans and various animal models
of tbi [11], classifying the severity of injury remains an open challenge.

In clinical settings, diagnoses and recovery are assessed using neuropsychological batteries
and the Glasgow Coma Scale (gcts), with efforts to develop a more robust classification
system under way [12, 13]. Depending on initial clinical presentation, physicians may order
X-ray computed tomography (ct) or diffusion tensor magnetic resonance imaging (dti) to
visualize potential hemorrhages, lesions, or contusions caused by severe impacts [14, 15].
While these techniques are suitable for severe tbi injuries, many mild to medium grade
impacts go undiagnosed, untreated, or are deemed too mild to necessitate imaging [14].
Severity is determined by observing motor, reflex, cognitive, and histological changes using
the modified Neurological Severity Score (mnss), cognitive tasks, and post mortem analysis,
respectively [16, 17].

Magnetic particle imaging (mpi) is a promising new modality that images a distribu-
tion of superparamagnetic iron oxide (spio) nanoparticles inside the body [1]. Mpi has
many advantageous properties, including a safe tracer [18], zero ionizing radiation, minus-
cule changes in magnetic reporter signal over time, 200-nM sensitivity [19, 20], fast image
acquisition and reconstruction [4, 21], robust linear and shift invariant (lsi) properties [7],
and sub-millimeter resolution [22]. In addition, particles can be tracked for long periods of
time in both the blood (with a half-life of approximately 3 hours) and inside cells (with a
half-life on the order of months [23]). Due to their size, the iron oxide tracers are excreted
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through the liver and spleen, instead of the kidneys [23]. This has prompted interest in us-
ing one spio agent (Ferumoxytol) as a kidney-safe mri T1 contrast agent for patients with
chronic kidney disease [24], who are at risk for contrast induced nephropathy from iodine
contrast agents [25].

Compared to contrast-enhanced ct and mri, mpi has favorable contrast since there
is no signal from obscuring tissue; mpi produces images with excellent contrast to noise
ratio (cnr) as only the iron particles produce a signal. This property makes mpi well
suited for angiography and blood pool imaging, as only the blood appears in the resulting
image due to the particles staying inside the vasculature. The only limitation to imaging
capillary-level perfusion or blood volume is signal to noise ratio (snr). Typically, in ct
angiography (cta) and mr angiography (mra), our ability to discern a 5% blood volume
in voxels with capillaries (without larger-diameter blood vessels) is obscured by so-called
“partial volume” effects; essentially the background signal variations are indistinguishable
from the minute variations of contrast agent in the capillaries. Since mpi does not detect the
tissue surrounding a capillary—only the particles in the capillaries themselves—it is mostly
robust to this partial volume effect.

In this report, we present preliminary data and methods showing that mpi can provide
high contrast to noise ratio (cnr) images of internal bleeding, and in particular cerebral
bleeding caused by tbi. This application requires all the fundamental advantages of mpi,
including excellent contrast, sensitivity, spatial resolution and long circulation time.

2.2 Materials and Methods
To assess the ability of mpi to detect internal hemorrhaging, a closed head tbi model was
used with two Fisher-344 female rats. We briefly describe the associated induction procedure;
see Figure 2.1 for a graphical representation of the technique.

2.2.1 Closed Skull Tbi Induction
All tbi animal experiments were approved by the UC Berkeley Animal Care and Use Com-
mittee (ACUC).

Both animals were female Fisher-344 rats. The tbi impact animal weighted 207 g while
the control weighed 136 g.

Each rat was anesthetized using 3% isoflurane and a bolus of 2.4mg/kg LS-13 spios was
administered via tail vein injection. One animal was then placed in a rectangular animal bed
filled with a plush bedding material underneath a custom designed closed impact tbi device
(Figure 2.1). The animal’s head was placed under a bolt with a hex nut attached to the
threaded end, with the hex nut gently resting on the animal’s skull near the lambda skull
suture (see FIgure 2.2). A 454 g weight—consisting of a Falcon tube filled with lead shot
pellets—was then calibrated to drop from one meter above the top of the bolt. A forepaw
pinch was performed to confirm that the animal was still under the effects of the isoflurane,
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Figure 2.1: Diagram of the tbi impact device, which imparts a closed skull tbi injury onto
an animal. An impact procedure is briefly described as follows. A 50mL Falcon tube (dark
green) is filled with lead pellets to the desired weight and the height set point block (light
green) is set to the desired drop height. The animal (light orange) is placed in the animal
bed (dark blue) on top of a soft bedding material (light blue). The weight is then dropped
onto a bolt resting on the animal’s skull (dark red). The bolt is held in place by a 3d printed
part (light red). Impact device is drawn to a 1:16.5 scale with respect to the page.
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after which the weight was released. The second animal went through the same procedure
as a sham control without the weight drop.

After being in the tbi impact device, both animals were allowed to wake up to check for
signs of lethal trauma such as erratic movements, high frequency whisker twitches, and (in
the worst case) mortality.

2.2.2 Mpi Imaging Protocol
A detailed design of the Berkeley field free point (ffp) scanner can be found in the literature
[3]; here we describe only the imaging parameters.

Following the injury and post-operative checks, both animals were imaged in the Berkeley
ffp mpi scanner with gradient strengths of 7T/m by 3.5T/m by 3.5T/m in x, y, and z,
respectively. The drive field amplitude was set to 40mTpp at a frequency of 20.225 kHz
along the axis of the bore (z). Selection field electromagnets moved the ffp in the x and
y directions to acquire samples on a rectilinear grid for one XY slab through the imaging
volume. The width of each slab was 0.91 cm in z. 40 XY slabs were acquired at increments
of 0.2 cm in z.

Scans were performed with the following parameters: 4.0 cm by 3.75 cm by 8.5 cm field
of view (fov) (x, y, z) using LS-13 spio particles. The acquisition time was measured to be
approximately ten minutes.

X-Space image reconstruction—including dc recovery and slab stitching—was performed
as described by [7]. No deconvolution was applied to the image.

The longitudinal analysis was performed by imaging the animals over successive days
using the same scan parameters. Before each scan, the animals were anesthetized with
isoflurane and kept under anesthesia for the duration of the scan. The images were then
registered with the initial image using a cross-correlation method [26]. Regions of interest
were then selected within these images and the maximum signal in each region over time
was plotted; see Figure 2.5.

Anatomical x-ray images were taken using a Kubtec XPERT 40 cabinet, with an energy
range of 10 kV to 50 kV, a tube current up to 1.0mA, and a resolution of 10 lp/mm. The
animals were placed in contact-mode into the cabinet and imaged using the auto-calibration
setting.

2.3 Results
Signal in the region affected by the tbi impact can be clearly seen in the mpi scans, both
immediately after and a few days following the impact (see Figure 2.5). The acquired mpi
images indicate that spio particles accumulated quickly after impact at some location around
the skull and persisted for a two week period. Additionally, X-ray scans of the tbi animal
indicated a small skull fracture in a -shape near lambda in the XZ X-ray projection.
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Figure 2.2: Animal in the TBI impactor. A 450 gram weight is dropped onto the screw/hex
nut from 1.1 meters, causing a head injury approximately at the blue circle.
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Figure 2.3: Maximum intensity projection images of the image acquisition sequence over
time for the control animal. Each time point is approximately 24 hours apart. The images
show a quick decrease in the signal over the imaging days. All images are plotted with the
same intensity
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Figure 2.4: Maximum intensity projection images of the image acquisition sequence over
time for the tbi animal. Each time point is approximately 24 hours apart. The images show
a slower decrease in iron signal in the brain of the animal over time in comparison to the
control. All images are plotted with the same intensity
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Figure 2.5: (Top left) XZ maximum intensity projection (mip) of both animals after injec-
tion/impact. Note the large hemorrhage in the tbi animal. (Top right) mip of the animals
after 3 days; blue circle represents the impact site, green circles indicate lymph nodes. The
tbi rat continues to have significant signal from the hemorrhage and inside the lymph nodes,
unlike the control. The field of view was 4.00 cm by 3.75 cm by 8.5 cm (x, y, z). (Bottom
left) X-ray images taken of the rat that underwent the tbi impact. A faint -shaped fracture
can be seen at the back of the head in the XZ projection. (Bottom right) Signal from the
spio nanoparticles over time inside the skull. The clearance rate at the point of injury and
the lymph nodes in the tbi rat is significantly slower than in the control animal. Error bars
represent two standard deviations of the background noise at each time point.
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The clearance rate of particles at the impact site and locations within certain regions
of the head were significantly retarded from the estimated six hour blood half-life of LS-13
particles (Figure 2.5). The half-life of the particle signal in the impact region was approx-
imately four days for the tbi animal, while no signal above the noise was detected in the
equivalent area of the sham animal.

In both animals, signal accumulated in small regions on both sides in the neck. Due
to the location of the signal and the clearance pathway, these regions are suspected to be
lymph nodes. In both animals, the lymph nodes started to appear in the mpi images after
approximately half a day. The clearance half-life rate for the control animal was three days,
while the tbi animal experienced a slightly delayed clearance of four days. The lymph node
signal was still visible in the tbi animal at the last time point of eleven days, while the
lymph signal in the control animal was still visible at the last time point of nine days. The
bottom right pane of Figure 2.5 provides a more detailed illustration of the particle signal
over time in both the impact region and lymph region.

2.4 Discussion
The acquired mpi images indicate that the internal bleeding was significant enough to allow
for spio particles to infiltrate into blood pools in the interstitial space. Signal decay of the
control is consistent with typical clearance of spios through the circulatory system and liver
[27, 28]. Furthermore, appearance of signal lateral to the cervical spine with unique decay
rates suggests spio clearance mechanisms from cerebral interstitium are facilitated through
the brain’s lymphatic system which have been shown to drain to submandibular and cervical
lymph nodes [29, 30]. Recent reports have also shown meningeal localization of these vessels
[31, 32]. While further experiments must be performed for validation, the clearance through
lymphatic nodes provides a method by which to observe and analyze the lymphatic pathways
in the skull.

The results show potential for mpi in clinical settings. The bleeding caused by the tbi
was visible both immediately after the injury as well as many days post injury. The ability
to monitor the change in the impact zone provides a metric for measuring the healing process
as blood is cleared from the interstitial space.

In this study particles were injected prior to injury: this scenario is unlikely to occur in
clinical practice. As such, further studies should be performed to determine the uptake of
particles after an injury occurred. Of particular interest would be the uptake over time, as
it would indicate whether the particles would need to be injected soon after the injury was
suspected or if this injection could be delayed until arriving at a clinic.

The ability to image hemorrhages in mpi makes it a potential augmentation or replace-
ment for ruling out hemmorhhages following brain trauma or following stroke, which is
currently done by ct. While ct is able to image severe hemorrhages quite well without
a contrast agent, it remains an open challenge to image mild to medium severity injuries
[14]. Part of the challenge lies in the contrast to noise ratio in imaging modalities like ct,
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where signal of interest must be compared to a similarly strong signal from background tis-
sues. mpi does not detect background tissues and the mpi signal is completely unattenuated
with depth in tissue, allowing the hemorrhage to show up with unprecedented contrast and
sensitivity.

2.5 Conclusion
Our work represents the first visualization of primary brain injury and associated hematoma
in any tbi model using mpi. Currently investigators and clinicians rely on changes in the
Neurological Severity Score (nss) and gcts, which primarily evaluate cognition, motor func-
tion, and loss of reflexes to evaluate injury severity. We demonstrate that mpi can be used
to determine site, severity, and depth of bleeding from a closed skull tbi model regardless
of brain regions targeted and behavioral manifestation of injury.

Furthermore, by demonstrating the ability to detect extravasation of blood associated
spio into extravascular space we propose that mpi is a modality well suited to localizing and
quantifying internal bleeding regardless of pathophysiological cause. Additional experiments
will be performed to analyze how the iron particles migrate in the brain after a tbi event.
These results demonstrate a potential future for noninvasive diagnosis of internal bleeding
for patients suffering from trauma in the emergency setting using mpi.
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Chapter 3

Brain Perfusion Imaging in Magnetic
Particle Imaging

3.1 Stroke Prevalence, Presentation, and Diagnosis
Strokes represent the fifth leading cause of the deaths in the United States, with over 795,000
cases per year and 130,000 deaths [33, 34]; this represents a stroke every 40 seconds and a
death every 4 minutes in the US [35]. Stroke is the leading preventable cause of disability
in the US [35]. When a stroke occurs, the patient demonstrates symptoms that are often
described by the acronym FAST[36]: Facial drooping (potentially one sided), weakness in the
Arms or other extremities, slurred or incoherent Speech, and finally Time to call emergency
services. Persons experiencing these symptoms are rushed to medical services, as time is a
significant factor in the clinical outcome for the patient. The guideline is that the patient
should get to the clinic within six hours, as after this point brain tissue can become necrotic
due to a lack of oxygen and nutrients.

Strokes are generally classified into two different causes: ischemic stroke and hemorrhagic
stroke. In ischemic stroke (approximately 87% of cases [33]), an artery within the brain has
experienced a blockage within the vessel that prevents blood flow to a section of the brain,
while a hemorrhagic stroke (13% of cases) is when a vessel bleeds into the intracranial space.
It is possible to treat both, although in slightly different manners. Ischemic stroke is often
treated with some form of a “clot-buster” such as a tissue plasminogen activator (tpa) [34,
37], which attempts to dissolve the clot and thereby restore blood flow to the affected parts
of the brain. Treating hemorrhagic stroke is done by a very different method [34]: the patient
may be given drugs to thicken the blood or lower blood pressure, or simple supportive medical
care may be performed.

The clinical need to diagnose the cause of stroke is due to the opposing natures of the two
types of stroke [38]. Using a clot-busting drug like tpa will greatly increase the survivability
and clinical outcome of patients with ischemic stroke; in cases where patients are suffering
a hemorrhagic stroke, pushing drugs such as tpa will only cause them to bleed out more,
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leading to worse clinical outcomes and potentially death. Similarly, if patients with ischemic
stroke are given the treatment for hemorrhagic stroke then the arterial blockage will not be
addressed and the affected brain tissue may die, leading to potentially poor clinical outcomes
for the patient. In general the medical doctors (mds) at the emergency doctor (er) must
make a decision within 3 hours in order to save the most amount of brain tissue [33].

3.2 Current methods for diagnosis
In order to diagnose stroke and other related diseases, doctors use ct [39, 40], ct perfusion
(ctp) [41, 42, 43], and cta [39] to determine blood flow rate and volume through the
cerebral vasculature. While these techniques work well for determining large-scale deficits
like hemorrhagic stroke, they are fundamentally ill-equipped to track blood changes over time
due to high background signal from the tissue surrounding the vasculature [44]. Additionally,
ctp and cta have high radiation dose and use an iodinated contrast agent that is toxic for
patients with chronic kidney disease (ckd); the majority of those who have a stroke have
some form of ckd [45].

Magnetic particle imaging (mpi) is a promising new modality that images only a safe
magnetic tracer, commonly spio nanoparticles. mpi contains no signal from tissue, and thus
can see the cerebral vascular clearly as iron nanoparticles flow through the brain. In this
section we shall show some of the first results demonstrating the potential to use mpi in
diagnosing stroke.

3.3 Methods to calculate brain perfusion metrics in
dynamic imaging modalities

The methods for diagnosing strokes operate in one of two ways: either a static image is
captured in the attempt to identify a hemorrhagic stroke, or dynamic (time series) imaging
is performed to determine areas of the brain that are receiving less blood flow or volume, or
that experience a delayed delivery of a bolus of blood compared to neighboring tissues [46].
Here, we will be discussing methods that focus on identifying ischemic stroke from dynamic
images.

Dynamic imaging allows clinicians to identify two pieces of tissue within the brain that
are affected by an ischemic stroke: an ischemic core of dead tissue and a section of nearby
tissue that is at risk of becoming necrotic, known as the penumbra [47]. Identification of
the core indicates how much of the brain is permanently damaged, while the penumbra is
an marker of what tissue could possibly be saved by clinical intervention.

There are generally four metrics, visualized as maps of the relevant values over a brain
slice, that are used to determine the core and penumbra [48, 49, 43, 50, 51].
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• Mean transit time (mtt): a measure of how long it takes for a bolus of blood to pass
through a location, in units of seconds.

• Cerebral blood flow (cbf) and Relative cerebral blood flow (rcbf): a metric of the
blood flow at a location, in units of mL/100 mg brain tissue per minute.

• Cerebral blood volume (cbv) and Relative cerebral blood volume (rcbv): a measure
of the blood volume at a particular location, in units of mL/100 mg brain tissue.

• Time to peak (ttp): a measure of how long it takes for a bolus of blood to arrive at
a location, in units of seconds.

3.3.1 Indicator Dilution Theory
The way in which these metrics are measured is commonly done by using indicator dilution
theory. This theory assumes that the brain vasculature is a single input, single output
stationary flow system with an instantaneous bolus injection of an amount of a tracer with
mass m. This allows for the steady state flow to be measured by the simple relation [48, 52]∫ td

ta

c(t) dt =
m

CBF
(3.1)

where c(t) is the concentration of the tracer at time t in units of mol/L, CBF is the stationary
flow rate, m is the mass of the injected tracer at t = 0, and ta and td are the times when
the tracer appears and disappears at the outlet, respectively. Intuitively, this equation is
simply another statement of the conservation of mass; the change in mass can be expressed
as the how much material flows through a volume over time (dm = c(t)Qdt), and all the
mass must that entered the system must leave the system.

From here, it is possible to calculate the time it takes for the bolus to pass through the
system, known as the mean transit time.

MTT =

∫ td
ta

c(t)t dt∫ td
ta

c(t) dt
(3.2)

The volume of fluid that passes during this time can then be simply calculated from the
flow rate and the amount of time.

CBV = CBF ·MTT (3.3)
This model allows for the calculation of the relevant parameters (with ttp coming from

the position of the peak of c(t)) in the case of an instantaneous bolus. However, it is
not possible to administer an instantaneous bolus due to the time of the injection and the
broadening that the bolus experiences due to friction. As such, this model is often augmented
with an additional measurement of the arterial input function (a(t)), which can capture the
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distortion of the bolus from an impulse input [51]. The measured concentration signal is
then modeled as a convolution.

cm(t) = c(t) ∗ a(t) (3.4)
One can then use deconvolution to determine the concentration response as if the input

were an impulse response and thereby use the equations from the indicator dilution theory.
There are approximations for calculating some of these parameters. rcbf can be esti-

mated by calculating the maximum slope of the bolus injection under the original impulse
assumption (max(dcm(t)/dt), ∀t ∈ [ta, td]). Additionally, rcbv can be calculated as the total
material to pass through a specific location during the bolus (

∫ td
ta

cm(t) dt) [48, 53].
This theory is used for most of the dynamic imaging studies, whether in ct or in mri

perfusion studies. mpi can use the same theory when tracking the passage of iron nanopar-
ticles through the brain vasculature. In this manuscript, we measure the relative metrics
as they are simpler to obtain without knowledge of the arterial input function (aif), and
because medical metric of importance is the differences between the cbv, cbf, and mtt
maps, not the quantitative value. However, mpi can measure the aif if the artery supplying
the brain is measured during the scan, directly providing the aif.

3.4 Verification of iron nanoparticle tracer using MRI
We have attempted to capture perfusion metrics in three different ways to verify the potential
for mpi to be used in perfusion imaging studies.

First, we wanted to verify that the iron nanoparticles used in mpi (specifically Resovist
[6]) can be used to image perfusion through the brain vasculature by capturing the passage of
Resovist using mri. In this type of imaging, the iron nanoparticles act as a negative contrast
agent by causing the signal where the Resovist passes through to drop due to T ∗

2 -dephasing
effects [54]. When performing the perfusion study, we are looking for when the signal within
the brain drops, which is the opposite effect that is observed in ct and mpi perfusion studies.

We can use the change in intensity in the mri image to calculate the relative concentration
curves over time through the brain, in order to get back similar curves to what we expect in
mpi and ct [54]

c(t) ∝ ∆R∗
2(t) =

− ln(I(t)/I(0))
TE

(3.5)

where contrast media concentration c(t) is proportional to the relaxation rate ∆R∗
2(t) =

1/∆T ∗
2 (t); I(0) is mri signal intensity before contrast arrival (usually from an average of 4-8

pre-contrast images) and I(t) is signal intensity after contrast arrival. Relatively concentra-
tion profiles can be compared with this relation, and one can measure the proportionality
constant for a particular system to get the real c(t) should that be desired. The relative
blood flow and volume can be used in the clinic, so the lack of this proportionality constant
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does not write off this technique from practical use. Additionally, time based metrics such
as mean transit time and time to peak are unaffected by this transformation.

With this understanding, we performed mri experiments to track the flow of an iron
tracer through the brain vasculature.

3.4.1 Materials and Methods
mri was performed on a Fisher-344 rat over a period of a few minutes; a brief description of
this process follows. The rat was first anesthetized using 3% isoflurane. A catheter was then
inserted into the tail vein of the rat. Then the rat was placed in the scanner with access
to the catheter from outside the imaging bore. An injection of 0.2 mL of 25 mg Fe/mL
Resovist iron nanoparticle solution was performed as a bolus into the animal over a period
of six seconds.

mri was used to monitor the iron over time, using an echo planar imaging (epi) sequence
with a TE of 14 ms and a TR of 500 ms. The total acquisition time was 20 seconds with a
rate of 2 frames per second. The fov was 2.4 cm by 4 cm with a 2 mm slice thickness.

3.4.2 Results
We were able to successfully image the transit of Resovist within a rat model. As figure
3.1 demonstrates, the passing of the Resovist bolus can be seen as a darkening of the image
(panel b), and then a restoration of the brain tissue signal after the iron passes through the
plane. By analyzing the time course curves over each pixel in the image, we are able to
derive maps of time for the peak to appear in a given pixel (panel e). The maximum slope
of the concentration curve is used to estimate the relative blood flow, as show in panel f.

These results confirm that mri T∗
2 agents can provide quantitative estimates of brain

perfusion metrics like ttp and rcbf. What is likely the most important metric out of this
data set is an estimate of the mean transit time of a bolus through the animal’s brain. We
can see from panel d that the time it takes for the signal to decrease as the iron passes
through the slice, and then return to baseline, is approximately four seconds (with some
error due to the noisiness of the signal). This indicates that for mpi perfusion studies to
accurately capture the dynamics of Resovist within this particular animal model, a minimum
temporal resolution of at least 0.5 FPS is required in order to capture at least some of the
peak dynamics.

3.5 Acquisition of transverse plane using MPI
Given the experiment performed imaging the passing of a resovist bolus of a rat in mri,
we then attempted to perform the same imaging study using mpi. The animal protocol is
similar to the mri study, imaged using the Berkeley ffp mpi scanner instead.
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Figure 3.1: Transverse slice of a rat skull as a bolus of Resovist passes. 7 T mri epi
sequence (TE=14 ms, TR=500 ms). Acquisition time was 20 seconds at a rate of 2 FPS, 2.4
cm by 4 cm fov, with a 2 mm slice thickness. Tracer was Resovist at a concentration of 5.7
mg/ml at a volume of 0.2 mL per injection. a) Image of the rat skull immediately after the
injection, before the bolus reaches the brain. The brain is seen as the brain white structure
in the bottom of the image, while the other structures are from the jaw. Significant blowout
is seen due to the air in the ears, which limited which brain slice could be acquired. b) The
Resovist bolus passes through the rat brain, decreasing the signal temporarily as shown by
the lower signal inside the brain. This occurs at the 12.5 second mark. c) The rat skull
at the end of the 20 second scan after the bolus has passed. The brain signal has largely
returned to normal. d) The signal of a single pixel in the brain over time, showing the effect
of the bolus as it passes through the brain. e) A map showing the time taken for bolus to
cause the largest decrease in signal from the initial time point, from the . f) The relative
cerebral blood flow (rcbf) through the brain.
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Figure 3.2: (a) An mpi image of a resovist bolus 210 seconds after the start of the acquisition.
We can see signal from the brain, although substructures are not apparent in this image due
to the PSF of resovist. (b) An time course of the signal through the red region in part (a),
averaged at each time point to increase the snr of the signal. We can see a rise as the
resovist passes through the brain, but no peak. The non-zero y-crossing of the time course
is due to iron circulating from a prior injection. (c) A map of the relative cerebral blood
flow, measured using the maximum derivative of the signal time course at each pixel in the
image.

3.5.1 Materials and Methods
mpi was performed on a Fisher-344 rat over a period of a few minutes; a brief description
of this process follows. The rat was first anesthetized using 3% isoflurane. A catheter was
then inserted into the tail vein of the rat. Then the rat was placed in the scanner with
access to the catheter from outside the imaging bore. 0.2 mL of 25 mg Fe/mL Resovist iron
nanoparticle solution was injected as a bolus into the animal over a period of six seconds.
MPI was used to monitor the iron over time.

Imaging was performed using the Berkeley field free point (FFP) scanner. This MPI
scanner has a gradient strength of 7 T/m by 3.5 T/m by 3.5 T/m in the x, y, and z directions,
respectively. A single transverse, xy plane through the rat’s brain was captured at a rate
of one frame every 2.16 seconds, for a period of three and a half minutes. The field of view
was 3.25 cm by 3.25 cm. The time series images were then processed to produce a map of
the relative cerebral blood flow (rCBF) through each pixel in the image. This calculation
was done by finding the maximum rate of change of the iron signal through each pixel in the
image, using a Savitzky-Golay filter to calculate the derivative of the signal. The maximum
slope at each pixel was then plotted to produce an rCBF map.
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3.5.2 Results
This experiment represents some of the first in-vivo perfusion results in mpi. For this imaging
study, we were able to show that we were able to capture the mpi time course passing of the
resovist through the transverse plane of the rat. However, we note that we were not able
to detect a peak in the mpi signal. We believe this is due to the poor temporal resolution,
which could have skipped over the peak signal.

We also note a potential problem for the mpi version of perfusion imaging; after the
bolus passes, a large residual signal exists. We shall see a similar trend in later experiments,
and we hypothesize that this is due to the relatively long blood half-life of Resovist, which
is approximately 15 minutes. mri imaging of the resovist would also have this problem, of
which there are indications of this in the time course series shown in Figure 3.1. However,
the mri signal change is unlikely to be sensitive to smaller concentrations of iron than mpi,
as mpi is incredibly sensitive. Most variants or calculations using indicator dilution theory
assume a return to baseline signal after the bolus passes, and this high signal after the bolus
decreases the conditioning of certain analysis tools such as gamma-variant fitting.

These results indicate a promise of using mpi for perfusion, but by missing the peak
signal we cannot say that these results are definitive proof of the potential for mpi. The
calculation of cbf, cbv, and mtt all require an accurate assessment of the bolus shape, and
unfortunately this experiment missed that particular signal. However, the acquired signal
does show the flushing of the mpi signal through the brain tissue, which represents a first
step in getting to perfusion imaging.

3.6 Acquisition of horizontal plane
We would have liked to continue scanning the transverse plane, as it both offers potentially
greater acquisition speed while being more relevant to researchers analysing rat brain per-
fusion studies, but alas the scanner broke due to an accident relating to cooling. As such,
we tried something new! We decided to alter the current ffp mpi scanner to enable the fast
image acquisition in a horizontal plane, which enabled us to acquire more perfusion data
(albeit in a different plane).

3.6.1 Alterations to the Berkeley FFP scanner to enable
horizontal plane imaging

In order to continue acquiring dynamic images, we altered the way in which the ffp elec-
tromagnets generate their shift field. The Berkeley ffp scanner (see Figure 1.1) has electro-
magnets used to move the magnetic field slowly the y axis of the scanner, as show in part
a of Figure 3.3. In this configuration, the scanner cannot normally shift the field in the z
direction, as there are no electromagnets currently on the system to perform this movement
(although they could be added). Instead of adding new electromagnets, we altered the di-
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(a) Normal scanning mode (b) Horizontal scanning modez

y

Figure 3.3: Alterations to the Berkeley 7 T/m ffp scanner to enable horizontal plane imag-
ing. (a) an image of the Berkeley ffp from an yz cross-section of the scanner. The red
cylinders are electromagnets used to move the magnetic field slowly inside the bore (copper
cylinder), with the yellow arrows indicating the direction of the field produced by the mag-
nets. The blue arrow shows the summation of the contribution of all of the electromagnets,
leading to a shift in the y direction. (b) By altering the direction of the currents through the
electromagnets (and disabling the two middle magnets), it is possible to get the magnetic
field to shift in the z direction instead of the y direction.

rection of the current going through some of the electromagnets, allowing the scanner to
acquire a horizontal plane through the animal.

3.6.2 Alterations to the image reconstruction algorithm
After these hardware modifications, slight alterations were performed to the software in
order to put the correct current waveforms through the coils during acquisition. This process
mirrors the normal scanning sequence performed with the ffp point scanner exactly, and
hence the only reconstruction changes that needed were to reorient some intermediate data
structures in the code to the correct format to be called by the reconstruction software.

However, in order to enable interventional style imaging, slight changes were made to
several components of the reconstruction pipeline. From a high level, the reconstruction
down into the following components [2].

1. Filtering of the time domain signal using a high pass filter. This both removes the
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feedthrough experienced in mpi signals as well as undoes a nonlinear phase alteration
performed by an analog filter applied before the digital acquisition.

2. Gridding of the time domain signal to a spatial signal. Each point in the time series
signal corresponds to a certain position of the ffr in the imaging volume, meaning
that the time domain signal and the spatial location are bijective via the scanning
sequence.

3. constant (dc) reconstruction of the image, as the dc component of the signal in the
spatial signal is lost due to corruption from the feedthrough.

The components that take the most amount of time are the filtering step and the dc
recovery. The filtering was originally performed using the default Matlab implementation,
which was not particularly fast. This was replaced with a faster, fast fourier transform
(fft) based implementation of filtering. In addition, the dc recovery was performed using
the optimization techniques discussed in the next section, with a warm start for each acquired
frame.

With these alterations, the rate limiting step was still the filtering. However, the dc
recovery could be done at approximately 1/30th of a second, and the filtering could be done
around 1/3th of a second, meaning that reconstruction can occur at approximately 3 frames
per second (fps). For an acquisition that lasts 61 seconds (see below), the reconstruction time
was 21.48 seconds, meaning that image reconstruction can complete within the acquisition
of the next frame, as desired.

3.6.3 Materials and Methods
mpi was performed on a Fisher-344 rat; a brief description follows. The rat was anesthetized
using 3% isoflurane and a catheter was inserted into a tail vein. The rat was then placed in a
MPI scanner with access to the catheter from outside the scanner. 0.2 mL of 5.7 mg Fe/mL
Resovist iron nanoparticle solution was injected into tail vein over a period of six seconds.

The result was imaged using the Berkeley 7 T/m FFP scanner at 1.28 FPS with a 2.6 cm
by 2.6 cm field of view. The imaging was performed continuously over a period of 160 seconds
(Figure 3.5). The time series images were processed to produce a map of the relative cerebral
blood flow (rCBF) in the image. This calculation was done by finding the maximum rate of
change of the iron signal through each pixel in the image, which was plotted to produce an
rCBF map (see Figure 3.4).

3.6.4 Results
With this experiment, we have managed to acquire similar data as before but in a different
anatomical plane (see Figure 3.4 and Figure 3.5. This leads credence to a consistent phe-
nomenon matching our imaging expectations. This method shows that our acquisition speed
is still a challenge, as we are only able to see the peak of iron flow through the brain for
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Figure 3.4: Here we demonstrate in-vivo perfusion maps of the horizontal plane created
by mpi. (a) Image of the Berkeley field free point (FFP) MPI scanner, named Gertrude.
This scanner has a gradient field of 7 T/m by 3.5 T/m by 3.5 T/m respectively. For this
experiment, we imaged anesthetized Fisher-344 rats that were catheterized via their tail
vein. A bolus of Resovist iron nanoparticles were injected into the animal over a period of
six seconds, and the result imaged at a 1.28 FPS with a 2.6 cm by 2.6 cm field of view.
(b) The time course plot shows a marked peak increase in signal as the particles first pass
through the brain, followed by a slow decay as the particles recirculate in the bloodstream
and are filtered out by the liver. (c) A measure of the relative Cerebral Blood Flow (rCBF)
for each pixel in the image, clearly showing high perfusion rates inside the brain. (d) A
measure of the relative Cerebral Blood Volume (rCBV) for each pixel in the image, which is
a measure of the amount of iron/blood flowing through the brain as the first bolus passes.
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Figure 3.5: Time series of the horizontal plane perfusion images shown in Figure 3.4. These
images (with timestamps in the upper left) show how the mpi signal evolved in the rat’s
brain over time. We can see no signal in the initial images, followed by a flushing as resovist
flows into the vessels of the brain. This signal peaks at approximately 30 seconds after the
start of imaging, after which a steady state of iron in the blood is reached.
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one or two frames at most. This data set also further demonstrates the slow removal of iron
from the vasculature over time, in a similar manner to the transverse plane images.

We believe that this data indicates that mpi does show promise but requires even faster
acquisition rates. In addition, the high signal after the peak could be mitigated by particles
that clear from the blood quickly, which would allow for a faster return to baseline.

3.7 Extensions of perfusion studies for stroke imaging
The mpi perfusion studies showed promise, although were plagued with some unfortunate
losses in hardware due to heating and other problems over time.

We had an approved animal protocol to perform the same experiment, but in animals
where a stroke was induced unilaterally in one hemisphere to demonstrate the ability of mpi
to image some physiological phenomenon of note. In order to perform these studies, one can
induce strokes in an animal using a photothrombotic method [55], where a dye is injected
into the animal and then coaxed to coagulate in the presence of a strong light applied to
the brain. This procedure can even be done without any type of surgery whatsoever, using
only an injection of a dye (in our case, rose bengal) and using a strong enough light source
placed directly on the skull.

We perform some initial testing of this method (along with mri imaging) to determine
the efficacy of this method. It appeared that we were able to induce strokes in a targeted
area in Fisher-344 female rats without performing any sort of surgery. This allows for less
pain for the animals and simpler animal protocols. Alas, we were not able to execute this
protocol due to a lack of certification to administer pain medication, as well as some final
major hardware bugs that limited the ability to acquire the desired images.

In addition to stroke based models, it should be possible perform functional imaging using
mpi and this acquisition technique, as some preliminary (unpublished) data from colleagues
indicates that the mpi signal changes when the animal is exposed to a hypoxic environment
for a brief period of time [56].

3.8 Conclusion
mpi shows promise for perfusion imaging while having many benefits; mpi produces zero
radiation while proceeding unprecedented contrast, lack of attenuation from tissues, and
quantitative measurements. Akin to nuclear medicine without radiation or cost. There are
currently some limitations due to the resolution of the images and the acquisition time is a
tad short of what would be sufficient for imaging the bolus as it passes through the brain.
However, these challenges are not insurmountable; a focus on hardware designed for faster
acquisition times would alleviate many of the challenges, while new particles with lower
blood half-life and higher resolution will help with the calculations of mtt and cbv. When
these problems are solved, mpi is poised to be able to give images of the brain vasculature



CHAPTER 3. BRAIN PERFUSION IMAGING 31

with impeccable clarity, and offer clinicians insights into the types of vascular problems that
a patient is suffering from in the process to diagnosing and treating stroke.
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Part II

Optimization Image Reconstruction
Techniques for Magnetic Particle

Imaging
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Chapter 4

Matrix-Free Optimization
Frameworks and Their Application to
Magnetic Particle Imaging

Linear systems abound in engineering disciplines such as imaging. Indeed, most if not all
of the major imaging systems used in the world are linear and shift invariant (lsi). This is
not just happenstance—lsi is a crucial feature for efficiency and quantitation of an imaging
system and, for example, its noise properties.

There are major ramifications for image reconstruction given lsi properties. For example,
one popular method for image reconstruction is to solve a so-called inverse problem. If a
system is lsi, it can always be described with the notation y = Ax where y is the output of
the system and A characterizes all of the linear transformations associated with the system.
These could include the fundamental physics of the modality, signal processing steps, and
the particulars of the scanning sequence. To recover the image x, we must invert this system.

In practice, A is the composition of many linear transformations or constructed from
block components, and it is often these different sub-components that one can formulate.
For example, we often have

A = A1A2 . . . AN (4.1)

A =

[
A1 A2

A3 A4

]
(4.2)

or a combination these. As long as we can define each of these sub-components, composition
or blocking of linear operators is straightforward. In our image reconstruction problem, we
can then find the solution to the inverse problem to reconstruct an image:

min
x

∥Ax− y∥2 (4.3)

In general, this problem has an analytical solution given by:

x̂ = A†y (4.4)
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where A† is the Moore-Penrose inverse of A. For ill-conditioned problems, we may add
Tikhonov regularization:

min
x

∥Ax− y∥2 +
√
λ ∥x∥2 (4.5)

which has the analytical solution:

x̂ = (A⊤A+ λI)−1A⊤y (4.6)

We may also want to incorporate *a priori* information such as positivity of the image
‘x‘ leading to a convex optimization formulation:

min
x

∥Ax− y∥22 (4.7)

s.t. x ⪰ 0 (4.8)

which has no analytical solution.
Often, A and the subcomponents are defined in terms of matrices. When this is possible

and easy, then formulating and solving the reconstruction problem is very straightforward.
However, in some applications, including image reconstruction, the matrix form (even when
sparse and stored accordingly) can be too big to fit in memory and/or cause cache thrashing
issues. In these cases, “matrix-free” methods become much more attractive, if not necessary.

A matrix is only one way of representing a linear transformation. In the most general
case, a linear transformation need only have some functional representation for its forward
operation. However the adjoint operation is often just as necessary. When we encapsulate
these operations in the form of a function, we can store this information on the order of kB
of memory as opposed to the GBs needed for large matrices.

Considering the image reconstruction problems described above, when couched as a con-
vex optimization problem, gradient descent or other methods can be used to solve the recon-
struction problem using only the forward and adjoint operations (compared to the analytical
solutions which require an inverse).

In general, when using linear operators, we need to be able to properly formulate the
forward and adjoint operations and accommodate various forms of the operator depending
on the specific context (e.g., matrix vs. functional). PyOp is designed to give users the
flexibility to seamlessly create, compose, and use linear operators defined as dense matrices,
sparse matrices, in functional form, or any arbitrary mix.

In this chapter, we develop a python package called PyOp that implements linear oper-
ators in a functional, matrix free form. This enables mpi reconstruction techniques to be
described as convex optimization problems and solved efficiently.

4.1 Comparison to other matrix-free frameworks
PyOp is but one of many similar frameworks for creating matrix-free operators in a simple
fashion in Python. For example, the SciPy project contains a LinearOperator class [57], as
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well as methods on these linear operators such as composition and eigenvalue decomposition.
There are other packages such as pyoperators [58] and linop [59] that accomplish similar goals
as well. In addition, the optimization package cvx recently starting to implement certain
matrix free operations [60].

All of these packages are complete and can be used to perform matrix-free operations.
We believe that the simplicity of PyOp’s design (based on the fundamentals of lambda cal-
culus and functional programming) enable a robust formulation of the matrix-free operators
that has been well tested and documented. In addition, PyOp provides operators and con-
venient higher order functions specifically for imaging applications, allowing functions on
multidimensional arrays to be lifted into the framework operating on matrices with ease.

In the following sections, we will describe how to use PyOp and some results obtained
from using PyOp in image reconstruction methods.

4.2 PyOp Design for implementing linear operators
PyOp is based around the simple concept of linear operators as higher order functions. The
basic definition of the LinearOperator class is not much deeper than its declaration.

class LinearOperator(object):

def __init__(shape, forward, adjoint):
# Store the input parameters

This is to say that LinearOperators can be described by the triple (shape, f, fT ), where
shape is the shape of the linear operator if it were in matrix form, f is the forward function
representing Ax, and fT is the adjoint function representing ATx

The real design of PyOp is not this container (which is shared with many of its brethren),
but the simple way in which the operators are composed. For example, the way on which
addition of two linear operators A and B can be written as follows, where the first element
of the pair is the forward and the second element is the adjoint function.

A+B = (x 7→ Ax+Bx, x 7→ ATx+BTx) (4.9)
In PyOp, the addition function is written as follows.

class LinearOperator(object):

# ...

def __add__(self, other):

return LinearOperator(self.shape,
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lambda x: self.forward(x) + other.forward(x),
lambda x: self.adjoint(x) + other.adjoint(x))

This is a simplified form of what is written in PyOp, as there are additional techs to
make sure that the sizes of the operators matches and other properties are met.

PyOp has several combinators built in.

• Negation

• Scaling

• Addition

• Subtraction (through negation and addition)

• Multiplication

• Power

• Vertical block operators

• Horizontal block operators

• Diagonal block operators

• Arbitrary block operators

All of these combinators return a new LinearOperator whenever they are called. While
this can technically take up more space, the result means that the operators can be treated
as mathematical objects without worrying about conflicts arising between operators or mis-
managed pointers.

4.2.1 Drawbacks to PyOp’s design
PyOp is simple in design, but in some regards this is to PyOp’s detriment. The way in which
PyOp is coded does not allow for introspection of the inner design of any particular operator;
there is no available abstract syntax tree (ast) to manipulate in PyOp. In a related point,
PyOp does not attempt to include a description of what properties any particular operator
has, such as idempotence or symmetry. These problems mean that optimizations like those
performed by the package Theano and similar packages cannot be applied to this framework.
This drawback is shared with all other implementations of matrix free linear operators as of
the time of this writing, although it is not an unsolvable problem by any means.

Additionally, Python has some quirks in its multiprocessing library that make paralleliz-
ing PyOp challenging. This is because the default serialization package known as pickle
cannot “pickle” lambda expressions. There are other serialization libraries such as dill that
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do have this ability, but they are not standard and do not always play well with the current
python concurrent programming frameworks. Agsin, this is not a fundamental problem for
linear operator packages, just a hurdle caused by the architecture of both linear operator
packages and python’s concurrency framework.

4.3 Basic PyOp Use
We shall now go over some basic usage of PyOp. PyOp is designed to generalize the concept
of a linear operator in the context of scientific computing and software development.

LinearOperator instances are quite simple to create. Below we discuss different ways
of defining operators. For more information look at the source for those already defined in
PyOp itself.

4.3.1 Unbound Functions
The basic way to create a LinearOperator instance is to just pass forward and adjoint func-
tions to the LinearOperator constructor. The following example implements a square iden-
tity in this manner.

def id(x):
return x

I = LinearOperator((4, 4), id, id)

This is a great way to test new forward and adjoint functions alone during development.

4.3.2 Nested Functions/Closures
Often it is helpful to create a LinearOperator in a nested function.

def squareIdentity(shape):

# Do some pre-processing here.

def id(x):
return x

return LinearOperator((shape, shape), id, id)

Note that in the above example, since squareIdentity is a nested function, the inner id
function can operate on any data created before it in the squareIdentity lexical environ-
ment. This can very useful when realizing complicated operators or, for example, to create
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many similar operators that define the same basic morphism over different dimensions, as
shown here.

4.4 Operator Rules
The most basic form of a LinearOperator takes in a shape defining the operation and a
function (called the forward function) that operators on only one input. However, certain
operators are practically useless.

A = LinearOperator((4, 4), lambda x: array([0, 2, 0, 0])
A(array([1, 1, 1, 1])) # The result is probably not what you wanted.

While the LinearOperator cannot automatically determine non-linear or bogus forward
functions (or at least not easily), it does perform the following checks when the call method
is used.

• both the operator and the input have a shape attribute,

• the inner dimensions of the operator and the input match, and

• the return of the forward function matches the expected dimensions (the outer dimen-
sions).

Therefore, it is impossible to use the following operators due to the checks.

LinearOperator((4, 4), lambda x: "Hinc lucem et pocula sacra.")
LinearOperator((4, 4), lambda x: "Pax et Lux.")
LinearOperator((4, 4), lambda x, y: x + y)

Similarly, the following will be rejected because only positive pair shapes make sense, as
they define a mapping from one finite dimension (the domain) to another (the codomain).

LinearOperator((4, 0), lambda x: x)
LinearOperator((4, -1), lambda x: x)
LinearOperator((4, ), lambda x: x)

Even though there is no automatic way to determine if an operator provides a correct
(or linear) function–at least without intense lexical analyzing that could solve only the most
basic of cases–adhering to the following rules will help ensure that an operator is functioning
properly.
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4.4.1 Guidelines for creating LinearOperators
There are a few guidelines for creating linear operators.

• LinearOperator instances are nearly useless without an adjoint function. While it
is not required, it becomes impossible to perform calculations such as an eigenvalue
decomposition without an adjoint, as well as any first order convex optimization solver.

• For LinearOperator instances that have an adjoint function defined, they should pass
the adjointTest. This is a basic check that the forward and adjoint are indeed are each
other’s adjoints, although it does not guarantee that the operator is defined correctly.

• If there is a reference operation (such as a matrix), check that the function output
matches the reference. While an operator that passes the adjoint test is usually doing
what you expect, this is not always the case (defining the convolution operator is an
example where an adjoint test can easily pass without defining the correct operator).

• Forward and adjoint functions that are defined on NumPy arrays should respect the
dimensionality of their input. This means that 1D inputs should result in 1D outputs,
and 2D inputs should lead to 2D outputs. This follows the way that many NumPy
functions are styled.

• Forward and adjoint functions should be defined to work on 2D array inputs when
the inputs are NumPy arrays. This is to say that the functions should be defined
as matrix-matrix multiplications instead of matrix-vector multiplications, for example.
This allows for the toMatrix function to work, which is helpful for turning an operator
into its matrix form for further manipulation (for example, factorization or low rank
approximations). toMatrix even works on operators that are created out of any of
the composition or combining tools, as long as all the functions are defined as matrix-
matrix multiplies.

• Do not make operator functions that hold state. Since the forward and adjoint func-
tions can be anything that implements call, they can be functions, closures, or classes.
All of these can contain state, but doing so breaks the immutable flavour of the operator
and makes understanding the code more difficult. For example

res = [1, 1]
def forward(x):

res *= x
return res

A = LinearOperator(..., forward, ...)

## These two sequences lead to different results for the
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## second statement.
A(array([1, 0]))
A(array([2, 1]))

A(array([0, 0]))
A(array([2, 1]))

In other words, the forward and adjoint functions, if they are to match those of standard
linear operator theory, must be pure functions.

4.4.2 Tips for crafting LinearOperators
Here are some tips for developing operators that come from sometimes painful experience.

• Define the forward and adjoint functions in a non-nested namespace before putting
them inside either a nested function or a class. They are simpler to iterate through in
this form, while the nested/class form is really just a nice (simple) packaging of the
result.

• Use the utilities decorators when possible to ease the creation of matrix-matrix func-
tions. These decorators convert vector or vectorized (a nD array vectorized) functions
to matrix-matrix functions and take care of concatenating the results together, flat-
tening along the correct dimensions, etc.

One thing to note is that the checks do not specify the input data type. While the input
to a LinearOperator is often a NumPy ndarray, it is entirely possible to use any input type
that defines a shape pair. This could be useful, for example, if the input was a graph that
was simpler to express and operate on as a “Graph“ type instead of an adjacency matrix.
This is an (accidental) result of Python’s duck typing.

LinearOperator instances are designed to behave in an immutable manner, although they
are strictly not immutable as a determined programmer can always redefine the functions
held by a LinearOperator or modify the instance (or class) at runtime. However, in the
course of normal programming, they can be treated as a non-hashable immutable as all of
the composition rules create new operators containing the old ones. This means that if an
operator is given to a function, it will not change after the function executes.

4.5 Convenient decorators
Often, certain forward and adjoint functions are simpler to define as a matrix-matrix multi-
plication or to operate on a reshape version of the input. The decorators defined here allow
for functions of these forms to be modified to matrix-matrix functions easily. The examples
for each decorator give a good sample of how to use such functions.
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4.5.1 matmat
Convert 1D array to 2D column and back to 1D after calculation.

This function is meant to work only with functions following the LinearOperator calling
declaration, which is a function taking in only one argument, the data to work on.

If the function receives a sparse input, then this wrapper does nothing since a sparse
matrix cannot be squeeze or reshaped without significant alterations in its structure.

>>> import numpy as np
>>> from pyop import LinearOperator
>>>
>>> def squareEye(shape):
... #
... @matmat
... def id(x):
... return x
... #
... return LinearOperator((shape, shape), id, id)
>>>
>>> I = squareEye(4)
>>> I(np.arange(4))
array([0, 1, 2, 3])

4.5.2 matvec
Takes some function and Operates on an input matrix one column at a time. A function
that implements a matrix-matrix function from a matrix-vector function. This decorator
takes an input matrix, feeds each column as a 1D array to the function f, and then combines
the results.

Often it is more natural to define matrix-vector function, since the matrix-matrix function
is just the collection of the matrix-vector function applied to each column of the input. For
these cases, use this decorator.

>>> import numpy as np
>>> from pyop import matvec
>>>
>>> @matvec
... def multFirstColumn(column):
... img = column.reshape((2, 2), order = 'C')
... img[:, 0] *= 2
... return img.flatten(0)
>>>
>>> multFirstColumn(np.array([[1, 1, 1, 1], [2, 1, 2, 1]]).T)
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array([[2, 4],
[1, 1],
[2, 4],
[1, 1]])

4.5.3 matvectorized
A decorator to turn a function on a matrix into matrix-matrix product. This decorator
is an extension of matvec. It operates on each column of a matrix at a time, but before
passing the column to the decorated function, matvectorized reshapes the column based on
the dimensions and order supplied into a nD array.

>>> import numpy as np
>>> from pyop import matvectorized
>>>
>>> @matvectorized((2, 2))
... def multFirstColumn(img):
... img[:, 0] *= 2
... return img
>>>
>>> multFirstColumn(np.array([[1, 1, 1, 1], [2, 1, 2, 1]]).T)
array([[2, 4],

[1, 1],
[2, 4],
[1, 1]])

4.6 Currently Implemented Operators
PyOp has some operators defined in the package that assist with image reconstruction algo-
rithms. These include

• zeros: The zeros matrix,

• ones: The ones matrix,

• select: a permutation matrix,

• diag: diagonal element matrix,

• fftn: an n-dimensional DFT,

• ifftn: an n-dimensional IDFT,

• convolve: an n-dimensional convolution with a kernel,
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• gradient: an n-dimensional gradient based on the gradient operator.

4.6.1 Magnetic Particle Imaging Specific Operators
We have implemented operators that represent the forward model for image reconstruction
from acquired but dc lacking image data [61]. There are two operators that are part of this
forward model: an operator describing splitting the image into acquired chunks based on the
scanning sequence, and a dc removal operator that models the loss of the dc component
of the signal in each patch. A graphical representation of these operators can be seen in
Figure 4.1.

In order to represent these operators, we first define some helper functions to massage
input data into the correct format that the operators expect.

## Tuples to describe the imaging sizes and the size of each patch
__ImageShape = namedtuple('ImageShape', 'height width')
__Blocks = namedtuple('Blocks', 'len height num shift')

## Takes the image shape and patch information, performs some checks,
## and returns the named tuples above.
def __toImageShapeAndBlocks(image_shape, blocks):

h, w = image_shape
length, shift = blocks

image_shape = __ImageShape(*image_shape)
blocks = __Blocks(length, h, int((w - length) / shift) + 1, shift)

if any(x <= 0 for x in image_shape):
raise ValueError("Image shape contains a non-positive. {}".

format(image_shape))

if any(x <= 0 for x in blocks):
raise ValueError("blocks contains a non-positive. {}".

format(blocks))

return image_shape, blocks

## Take a stream ov values and return all adjacent pairs.
def __pairwise(x):

''' s --> (s0, s1), (s1, s2), (s2, s3), ... '''
a, b = tee(x)
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next(b, None)
return zip(a, b)

Using these helper functions we can now implement the splitting operator quite easily.
This operator models the splitting of the image into the acquired patches/blocks.

def split(image_shape, blocks):

image_shape, blocks = __toImageShapeAndBlocks(image_shape, blocks)

h, w = image_shape
length, _, num, shift = blocks

op_shape = (length * h * num, h * w)

def stride(x, shift, length):
i = 0

## Run until we can't take any more lengths out
while i + length <= len(x):

yield x[i: i + length]
i += shift

@matvectorized((h, w), order = 'F')
def splitting(img):

return hstack(z.T for z in stride(img.T, shift, length))

@matvectorized((h, -1), order='F')
def splittingAdjoint(block_set):

block_list = hsplit(block_set, num)

combined = zeros((h, w))
for step, b in zip(count(step = shift), block_list):

## Add in each block in the right spot
combined[:, step : step + length] += b

return combined.flatten(1)

return LinearOperator(op_shape, splitting, splittingAdjoint)



CHAPTER 4. MATRIX-FREE OPTIMIZATION FRAMEWORKS AND THEIR
APPLICATION TO MAGNETIC PARTICLE IMAGING 45

The dc removal operator is even simpler to define, as it is self-adjoint. While we do not
note this property in PyOp itself, the self-adjoint nature does make specifying the operator
simpler as the forward and ajoint functions are the same.

def dcRemove(image_shape, blocks):

image_shape, blocks = __toImageShapeAndBlocks(image_shape, blocks)

h, _ = image_shape
length, _, num, _ = blocks

op_size = length * h * num
op_shape = (op_size, op_size)

@matvectorized((h, -1), order = 'F')
def dcRem(block_set):

## Partial field of views, one per row
pfovs = block_set.reshape((-1, length))

## Sum across rows to get the average of each pfov.
dc_values = pfovs.sum(1) / length

## Tiling to apply DC removal to each point in each pfov.
## Transpose due to tile treating 1D as a row vector.
dc_values_rep = tile(dc_values, (length, 1)).T

## reshape into the blocks_set image. Turn to column format
return (pfovs - dc_values_rep).reshape((h, -1))

return LinearOperator(op_shape, dcRem, dcRem)

4.7 Using PyOp for DC recovery in Magnetic Particle
Imaging

In mpi, we have to perform a process known as dc recovery [2, 7]. The basic problem is
that while the response from the particles is easily picked up, the way in which the particles
are caused to flip means that the transduction signal is picked up in the receive signal. This
feed through is removed by filtering, but this filtering removes the particle signal at that
frequency. From the mpi imaging theory, this feedthrough means that the dc component of
the signal is lost, and must be recovered to regain the lsi property of mpi.
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(a) PyOp  reconstruction technique using the
fista proximal operator method.
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S ← LinearOperator(f
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Figure 4.1: A 3d coronary artery phantom. (a) PyOp is used to first convert image seg-
mentation and dc removal functions into linear transformations, which are then used in a
gradient descent algorithm (fista) to reconstruct the image. (b) A 3d printed coronary
artery phantom used to test the PyOp based reconstruction. (c) 2d mip of the data after
the gridding step, prior to the matrix free stitching. (d) 2d mip after stitching. The total
imaging time was 10min with a field of view of 4.5 cm by 3.5 cm by 9.5 cm (x,y,z).

One method of recovery uses convex optimization techniques to determine the dc offsets
that match the a priori knowledge [61]. This method produces excellent images but requires
significant time and memory resources to perform.

Here we demonstrate the benefits of PyOp as applied to x-space mpi dc reconstruction,
allowing the dc reconstruction to both run faster and in less space; this enables the dc
reconstruction to run on modest hardware.

4.7.1 Methods
For mpi we have defined two operators, dc removal (D) and image segmentation (S) that
combined represent a forward model of the x-space mpi dc recovery process (see Figure 4.1.
In finite form, these matrices (especially D) are not sparse and take up approximately n2

amount of data, where n is the total number of pixels in the input data. The description of
these operators are found in a prior section.

With the mpi functions defined as linear transformations through PyOp, we were able to
use a variety of proximal operator based optimization methods (such as the Fast Iterative
Soft-Thresholding Algorithm (fista) [62]) to reconstruct an mpi image. The solver methods
are implemented in a general manner, allowing for more a priori information to be easily
added. See Figure 4.1 for more details.
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4.7.2 Results
Prior dc recovery on 3d x-space mpi datasets could take over an hour and 150GBs of
memory; with PyOp the same recovery takes under ten minutes and bytes of space. This
represents a 109 times improvement in space and a 6.625 times improvement in speed. The
PyOp method will always guarantee that the operators will take bytes of memory. We note
that this method does not alter the results of the image reconstruction; PyOp merely allows
us to perform the computation in a more efficient manner.

Method Memory Used Compute Time (Minutes)
Matrix 150GB (O(n2)) 53
PyOp Bytes (O(1)) 8

Improvement 109 6.625

Additionally, for a 100 by 100 pixel 2d final image, the combined fista and PyOp
approach allows for the dc reconstruction to occur in as fast as 37ms (27 fps). This speed
is required to enable real time, interventional mpi in the future.

4.8 Conclusion
PyOp defines an interface to convert functions on images into linear transformations easily,
provides a robust testing framework that enables mathematical robustness, and implements
a complete set of composition rules for ease of use. The PyOp technique is efficient and com-
pletely generalizable to other reconstruction problems in mpi and linear algebra in general.
In addition, this software framework can be used to easily augment the image reconstruction
with additions such as filtering in the Fourier domain or alternate optimization formulations.
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Chapter 5

Sparse Image Reconstruction for
Field Free Line Magnetic Particle
Imaging by Angular Subsampling

5.1 Introduction to Field Free Line Magnetic Particle
Imaging

Magnetic Particle Imaging (MPI) is a promising new modality that images only a magnetic
tracer, commonly super-paramagnetic iron oxide (SPIO) nanoparticles. This technique re-
quires scanning a field free region (ffr) over space, taking a significant amount of time to
acquire an image. Reduction of imaging time is achievable via new scanner configurations,
such as field free line (ffl) scanners that take projections of an object (similar to ct), as
well as optimal spatial scanning trajectories.

This chapter discusses an efficient implementation of ffl mpi 3d image reconstruction
using proximal optimization methods that allow for significant undersampling of the required
number of projections, while including a novel and generalized forward model that allows
for arbitrary scanning trajectories to be taken into account.

Notation: The real and natural numbers are denoted by R and N, respectively. The
vector of ones is denoted by 1. The convex-hull of a set X ⊆ Rn is the set conv(X ) ={∑n

i=0 λixi : xi ∈ X , λ ≥ 0,1Tλ = 1
}
. We define a predicate set intersection to determine if

two sets intersect each other a ⊓ b ≡ a ∩ b ̸= ∅, and a shorthand
d

a B = {b : b ∈ B, a ⊓ b}

5.2 Introduction to the Radon Transform
The radon transform describes this process mathematically [63]. We will discuss the deriva-
tion in two dimensions, although the formulations are simple to extend to higher dimensions.
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Figure 5.1: A graphical representation of the radon transform and its adjoint. (a) The radon
transform takes some function f and performs an integral projection along a line L. Many
lines at the same angle θ can be grouped together to show the “shadow” of f at that angle.
(b) In the adjoint of the radon transform, we take the shadow and “smear” it back across
the original domain. This process is often called backprojection.

The common form of the radon transform is the line integral through some function f .

Rf (L) =

∫
L

f(x⃗) dx⃗ (5.1)

In this equation, L is a line passing through R2 and f ∈ R2 → R is a function of finite
support of which is to be projected (in ffl mpi, this is the nanoparticle distribution). We
can cast the definition of L as the set of all points some distance s from the y axis rotated
by some angle θ

L(θ, s) =

{
Rθx⃗ :

[
1 0
0 0

]
x⃗ =

[
s
0

]
, x⃗ ∈ Rn, s ∈ R, θ ∈ [0, π)

}
(5.2)

where Rθ is the rotation matrix. Intuitively, equation (5.2) says that we first select a vertical
line by choosing an fixed horizontal offset for that line (s), and then rotate that line by θ
around the origin to get our desired target line through a two dimensional space.

Often we are interested in all of the lines at a given fixed angle θ projected onto a line.

Projθ(f) = {Rf (L(θ, r)) : r ∈ R} (5.3)
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With this in place, it is common to create what is called a sinogram, which is a set of
projections over a finite set of (usually unique) angles Θ.

S(f,Θ) =
∪
θ∈Θ

Projθ(f) (5.4)

With the sinogram in hand, it is possible to reconstruct many projection based imaging
systems such as mpi or ct. The radon transforms describes the forward model of these
imaging systems, and therefore the transform can can be used to either analytically solve
the for the original function f from the sinogram data, or an iterative method can be used.

In ffl mpi, the ffr is a line that passes through a 3d volume (Figure 5.2) [4]. The ffl
is then moved around on a plane using electromagnets to cause the iron particles that are
in (or near) the ffr to align with the changing magnetic field, inducing a signal in a pickup
coil. Since an entire line of particles responds in ffl mpi, the sum of the signal from all of
the nanoparticle near the ffr is detected.

5.2.1 Generalization of radon transform to projections over sets
While the standard definition of the radon transform is useful, it is somewhat restricted
geometrically by requiring the projection to occur over lines (in (5.1)). In mpi, there are cases
where it can be beneficial to take projections over more complicated shapes. For example,
some current ffl mpi systems project three dimensional data down to two dimensions in a
lissajous pattern, where the weighting of each node trajectory point is given by the relative
volume of the surrounding voronoi cell (see Figure 5.3) [64]. Other ffl scanners project two
dimensional data down to one dimension but with continuous rotation instead of discrete
steps in θ [65].

To capture these different potentially scanning modalities, we simply define the radon
transform to be over sets instead of over a line

Rf (s) =

∫
s

f(x⃗) dx⃗ (5.5)

where s is some arbitrary subset of the space that f is defined over (in any dimension). This
“modification” is not actually a change at all; we defined the line L as a set that we can
replace with any subset of the support of f that we desire. While this is not a drastic change,
it presents computational challenges both in terms of efficiency and in terms of numerical
accuracy.

5.2.2 Algorithm for computing sinograms of discrete functions
The more generalized definition of the sinogram allows for one to mathematically encapsulate
more types of imaging designs, but can be tricky to implement due to numerical error. It
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Figure 5.2: A diagrammatic overview of ffl mpi. (a) An image of the Berkeley 6.3 T/m
ffl mpi scanner. The large copper coils seen in the image generate opposing magnetic fields,
generating a ffl in the center. The center copper shield contains another coil that enables
fast movement of the ffl. (b) A simplified rendering of the Berkeley scanner. The coils
(orange) generate the ffl (red cylinder) that passes through the imaging volume (blue box).
The electromagnets enable the ffl to move across a 2D cross section (red arrow) of the
imaging volume (the imaging plane, green). An additional coil inside the copper shield in
panel a allows for quick movement of the ffl in the vertical direction (red zig-zag arrow).
The electromagnets only allow for one projection angle and a small amount of the imaging
volume to be captured, so translational and rotational stages move the imaging volume to
get fill 2D projections from many angles (blue arrows) (c) An example of the projections
acquired at two different angles through an imaging plane. Many such planes are acquired
in order to reconstruct a 3D volume. (d) The many projections of a single imaging slice at
many angles are collected into an image known as a sinogram. Panel c and d are related by
the radon transform.



CHAPTER 5. SPARSE IMAGE RECONSTRUCTION FOR FIELD FREE LINE
MAGNETIC PARTICLE IMAGING BY ANGULAR SUBSAMPLING 52

(a) Lissajous Trajectory 
path of slow shift

(b) Voronoi weighting of 
path node points

Figure 5.3: Lissajous sampling trajectory, along with a weighting of the sample points. (Top)
The Lissajous pattern can be defined by a set of coprime frequencies a and b, their amplitudes
A and B, and an offset parameter δ: x = A sin(at + δ), y = B sin(bt), t ∈ [0, 2π). 99 points
were selected from this set. (Bottom) A Voronoi tesselation of the space (bounded by a
box) allows for the Lissajous sample points (white dots) to be weighted by the area based on
the density of nearby points. This discretized sampling of some two dimensional function is
often used as a metric to compensate for oversampling certain regions while undersampling
others.

is a well known problem in computational geometry that algorithms often fail due to the
lack of numerical precision. A straightfoward implementation of equation (5.5) can lead to
cases where calculating Rf (s) produces wildly wrong results. For example, the calculation
of the voronoi regions in Figure 5.4 was originally performed using Qhull [66], but this
resulted in voronoi regions where the boundary intersected its associated site, or where the
voronoi region did not contain its associated site, of which both cases are impossible given
the definition of a voronoi region.

To mitigate this problem, we implement (5.5) using cgal, a computational geometry
framework designed to accurately answer geometric predicates without the problems of inter-
mediate round off errors [67]. We start by sampling f on some grid G, where G is some decom-
position of space into sets. For example, G can be the voronoi tesselation of the space, which
for equispaced sampling points corresponds to a rectilinear grid. We denote the sampled ver-
sion of f on G as f̂ . In addition, we denote the set of “sensing functions” as S, which is the
set of functions that select some subset of the domain of f̂ (s(dom(f)) ⊆ dom(f), ∀s ∈ S).
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(a) Qhull implementation of
Voronoi

(b) CGAL implementation of
Voronoi

Figure 5.4: A comparison of the performance of various computational geometry libraries
when attempting to perform the Voronoi tesselation of a lissajous pattern. (a) The common
package to perform the voronoi calculation is known as QHull. This program is used by
Matlab to implement the voronoi tesselation. The results on the lissajous pattern show an
error in the center cell, where the center cell is divided incorrectly into three pieces. (b) The
cgal implementation of the same algorithm does not experience this error.

The radon transform can then be defined by the following linear operator

R = ΣWP = diag(1T , . . . ,1T ) diag(diag(ws1), . . . , diag(wsn))


d

s1
G

...d
sn
G

 (5.6)

where P is a permutation operator selecting the intersection of some s ∈ S with the grid
G, diag(w) is a diagonal square weighting operator that weights how much any much a
particular s intersects a particular g (with values between 0 and 1), and Σ sums the result.
Algorithmically, we can write this out as follows.

The adjoint of the radon transform (also known as backprojection) can then be derived
by simply taking the transpose.

RT = P TWΣT =
[d

s1
G, . . . ,

d
sn
G
]
diag(diag(ws1), . . . , diag(wsn)) diag(1, . . . ,1) (5.7)

The linear algebra form provides some intuitions to why backprojection is the adjoint
operator; any particular point in the original grid g is defined by the sum of all the projections
through g, weighted by how much any particular sensing function intersected g. We can write
this algorithmically as well. We have not implemented this part algorithmically, as we merely
store the algorithm as a sparse matrix and transpose that matrix.
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Algorithm 1 discrete radon transform (drt)
Input: f̂ , the sampled version of f on the grid G
G, the sampling grid,
S, the set of “sensing functions”

Output: S, the projected data
for all s ∈ S do

for all g ∈ G do
v(s, g) = vol(s∩g)

vol(g) f̂(g)

end for
S(s) =

∑
g∈G v(s, g)

end for

Most radon transform implementations follow this model, but the individual operations
such as set intersection, volume calculation, or grid definition are specialized to handle the
specific case of that particular projection model [68]. For example, code to perform the
radon transform for cone beam projections in ct exists and run on graphical processing
units (gpus), but may only work over functions discretized on a rectilinear grid.

The value of our generalization is that it allows for flexibility to create image recon-
struction methods without needing to come up with a specific projection implementation,
allowing for faster testing of new acquisition sequences. Additionally, this algorithm is rel-
atively simple to make more performant: simply replace any slow calculation with a faster
one.

For example, the initial version of this algorithm was written using half-plane descriptions
of the sets and then used a linear program to calculate the volumes. This process took
approximately 6 hours to complete for image sets with approximately 20 projections of a 100
by 100 pixel grid; by parallelizing the for loops and performing smarter set intersection, we
were able to get the runtime down to approximately a minute (a 360 fold speed improvement).

5.2.3 Forward model for FFL MPI
The discrete radon transform (drt) represents the forward model of ffl mpi reconstruction
of a 3D dataset from 2D projections. In the current cgal implementation of the radon
transform, the output of the algorithm is v formatted into a sparse matrix (the drt). This
allows us to trade the computation time of the drt for storage space, which is minimal
due to the small cardinality of S for sparse acquisitions in practice and that few grid cells
intersect any particular sensing function.

As input to our algorithm, we have defined the following sets in two dimensions.

• S =

{
Rθ

([
1, 0
−1, 0

]
x ≤

[
c+ w/2
−c+ w/2

])
: x ∈ R2, c ∈ C, θ ∈ Θ

}
where C is the set of

center points of the sensing function, w is the width of each sensing function, and Θ
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is the set of projection angles taken in a scan. This represents vertical slabs through
space. We note that the algorithm presented can handle unbounded sets without
problem.

• G = {conv(z) : z = (x± wx, y ± wy), ∀x ∈ X, y ∈ Y } where X and Y are the locations
of the pixel centers (for example, given a min xmin and max xmax point, X = xmin, xmin+
wx, xmin + 2wx, . . . , xmax) and wx, wy are the width of each pixel. This defines a 2d
rectilinear grid.

We then plug the result into our algorithm 1 as DRT(S,G). We have not provided f̂ in
this case, as we can simply store the result of the intersection and volume calculations in a
matrix and supply f̂ later as a vector.

We can take the 2d result from this and convert it into the 3d implementation by
simply repeating the drt matrix for the number of rows in the projection images: DRT3D =
diag(DRT(S,G), . . . ,DRT(S,G)). This ability is due to the locality of the radon transform
in any dimension higher than 2d [63].

We have also implemented a modified version of the radon transform and adjoint from
Gao [68], which combined with the python linear operator package PyOp allows us to create
a matrix-free linear operator reconstruction. This variant performs the same operations as
defined by algorithm 1, but in a more performant form. The implemented algorithm can be
seen in algorithm 2 and algorithm 3.

5.2.4 Ways to reconstruct images modeled by the radon
transform

From S(f), there are a variety of ways to reconstruct the original f . The most simple is
filtered backprojection [63], which uses the dual Radon transform (often called backprojec-
tion) to first undo the projection and then applies a k-space filter (often a ramp) to account
for oversampling the center of f when acquiring the projections. Simultaneous Algebraic
Reconstruction Technique (sart) is another method by which to perform the reconstruction
of f , and is often preferred in ct imaging for its robustness when given few projection angles
[69]. A final method involves solving a simple forward model l2 norm convex optimization
with any desired constraints (often none), where the forward model is the radon transform
[70, 71]. This can be solved either through direct inversion such as the penrose inverse or
via some iterative method such as gradient descent or second order methods like Newton’s
method.

Here we solve the following optimization problem,

min ||Rρ− y||22 + g(ρ) (5.8)

where ρ is the concentration of iron particles over space, R is the drt, y is the projection
data from the ffl mpi scanner, and g is any regularization function. In mpi, we often use a
null function for g, although one can choose some a priori information such as smoothness
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Figure 5.5: A diagrammatic overview of the sparse reconstruction algorithm. (a) The
sparse reconstruction follows the standard ffl mpi reconstruction procedure up to the point
of generating the projection data. After this point, instead of performing a radon trans-
form, we implement a proximal update algorithm in order to iteratively find the filtered
backprojection image. (b) A result of reconstructing a coronary phantom image using the
proposed algorithm, both on data that has been sampled angularly at Nyquist and data
that is subsampled by a factor of 4.8x. The results clearly show the sparse reconstruction
algorithm performing better on the sparsely sampled data, with no streak artifacts. The
sparse algorithm also correctly reconstructs the fully sampled data.

of the image or reducing the dc component. In our case, we set the regularization function
g(x) = ||x||TV,n = |Dx|n, which is the TV-norm and D is the first order finite difference. A
diagrammatic depiction of this process can be seen in Figure 5.5

This optimization can be solved with any proximal algorithm. We tried Nesterov’s algo-
rithm (nesta) [72] and fista [62] algorithms to solve this problem, with equivalent results.
In this case, we have chosen fista for pragmatic reasons. For this algorithm, we provided
the objective function F (x) ≡ f(x)+g(x) = ||Rρ−y||22+||x||TV,2. The proximal TV operator
was provided by the proxTV python package [73, 74].

5.3 Simulation Methods
A simulation of the Berkeley 6.3 T/m ffl mpi scanner was used to create sample images of
a coronary phantom. The required number of projections to satisfy the Nyquist sampling
theorem was calculated and used to simulate a image acquisition with an SNR of 50 using
25nm iron particles. Image acquisition with 1/4th fewer projections was also simulated. The
acquired data was then reconstructed using the filtered back-projection (fbp) and using the
proposed sparse sampling algorithm.
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Figure 5.6: Sparse sampling reconstruction algorithm for FFL MPI. (a) Image of the Berkeley
FFL MPI scanner simulated in this study. (b) The FFL MPI forward model is calculated
from a generalized Radon transform that allows for arbitrary trajectories of space. The
model is used in a proximal fixed-point algorithm to reconstruct the image given some
penalty on the TV norm. (c) The results of the reconstruction on a simulated phantom
image. 100 projections was calculated as the minimum number of projections satisfying
the Nyquist sampling theorem. The CS reconstruction achieves similar results as the fully
sampled image without streak artifacts in a fourth of the number of projections. Sinogram
data was simulated with a 25nm iron particle (0.95mm FWHM in a 6.3 T/m FFL MPI
scanner) with a 4cm by 4cm, 64x64 pixel FOV. 2D reconstruction time is 1 second; a tilted
3D version of the coronary phantom takes 10 seconds for a 64x64x64 pixel image.

The novel sparse sampling algorithm solves a convex optimization that attempts to min-
imize both a data consistency term (between the simulated scan and the acquired data)
and a sparse domain (total variation). The algorithm was designed matrix-free using PyOp.
In addition, the novel forward model allows for reconstructing data taken using arbitrary
scanning trajectories, opening up new possibilities for image acquisition sequences.

5.4 Simulation Results
The coronary phantom was reconstructed using fbp and the proposed sparse sampling mpi
method (Figure 5.6; the results show that while fbp for images sampled with 1/4 the number
of projections leads to significant artifacts, the proposed method correctly reconstructs the
coronary phantom. This means that the amount of time required to acquire the image is
reduced by a factor of 4. The sparse method took 10 seconds to reconstruct a 3d version of
the phantom, demonstrating that this algorithm is fast in practice.
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5.5 Conclusion
The sparse sampling mpi algorithm enables fast and robust reconstruction of undersampled,
noisy ffl mpi data in a manner that reconstructs the underlying data more accurately than
the state of the art reconstruction method. In addition, the algorithm and code developed
here is general enough to allow for many extensions in the future. For example, reconstructing
a sequence where the imaging volume is continually rotating and translating (often known
as a spiral trajectory in ct) can be reconstructed easily with this method by changing the
input sensing functions.
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Appendix A

Code for Radon Transform in Sparse
Sampling Magnetic Particle Imaging

In the sparse reconstruction chapter, we discussed an algorithm from Gao [68] that calculates
the radon transform quickly. The algorithm achieves faster speeds largely by reducing the
number of set intersections performed through determining which sets cannot possibly inter-
sect, and by utilitizing the high degree of parallelizability inherent in the radon transform.
The intersection method for a finite parallel beam with a unit square of known center can
also be made highly efficient, for example using the 2D intersecting area formula from Gao’s
Appendix B.

The Gao variant requires the restriction that the image grid G is rectilinear grid with
square cells of unit dimension, and is approximately two times slower in practice than the
sparse matrix multiply. However, the only optimizations in this formulation is to parallelize
the algorithm using OpenMP; a version of this algorithm running on a gpu is likely to be
quite fast in comparison.

The following code shows the modifications made to Gao to work for parallel beam radon
projections.
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Algorithm 2 Gao’s Forward drt for Regular Square Regions, Adapted for Finite-Width
Beam
Input: nx ∈ Z+, number of pixels along the x-axis, centered at 0;

ny ∈ Z+, number of pixels along the y-axis, centered at 0;
List P of triples Pj = (j, τj−τj+) for vertical projection beam bounded by [τj−, τj+] along
the x-axis.
List F of triples Fxy = (x, y, v[x, y]) for unit square pixel region rxy with value v[x, y] and
center located at (x, y);

Output: The sinogram output S(f) after applying the discrete radon transform (drt)

for all (j, τj−, τj+) ∈ P , θk ∈ Θ do
S(j, k) = 0
m = −1/ tan(θk)
a = cos(θk)
b = sin(θk)

if |m| < 1 then

τ−, τ+ =

{
τj−, τj+ if b > 0

τj+, τj− if b ≤ 0

for x ∈ Z : 0.5− nx/2 ≤ x ≤ nx/2− 0.5 do
q− = ⌊τ−/b+mx⌋ − 0.5− mod(ny, 2)/2
ymin = max(0.5− ny/2, q−)
q+ = ⌈τ+/b+mx⌉+ 0.5 + mod(ny, 2)/2
ymax = min(ny/2− 0.5, q+)
for y ∈ Z : ymin ≤ y ≤ ymax do

S(j, k) = S(j, k) + vol(rxy ∩ pj)v[x, y]
end for

end for

else

τ−, τ+ =

{
τj−, τj+ if a > 0

τj+, τj− if a ≤ 0

for y ∈ Z : 0.5− ny/2 ≤ y ≤ ny/2− 0.5 do
q− = ⌊τ−/a+ y/m⌋ − 0.5− mod(ny, 2)/2
xmin = max(0.5− nx/2, q−)
q+ = ⌈τ+/a+ y/m⌉+ 0.5 + mod(ny, 2)/2
xmax = min(nx/2− 0.5, q+)
for x ∈ Z : xmin ≤ x ≤ xmax do
S(j, k) = S(j, k) + vol(rxy ∩ pj)v[x, y]

end for
end for

end if
end for
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Algorithm 3 Gao’s Adjoint drt for Regular Square Regions, Adapted for Finite-Width
Beam
Input: nx ∈ Z+, number of pixels along the x-axis, centered at 0;

ny ∈ Z+, number of pixels along the y-axis, centered at 0;
List P of triples Pj = (j, τj−τj+) for vertical projection beam bounded by [τj−, τj+] along
the x-axis;
The sinogram input in the form of triples (pj, θk, S(j, k)) representing the sample value
S(j,k) of slab pj rotated by θk.

Output: Cartesian image, formed after applying the adjoint drt, in the form of triples
Fxy = (x, y, v[x, y]) for unit square pixel region rxy with value v[x, y] and center located
at (x, y).

for all (j, τj−, τj+) ∈ P , θk ∈ Θ do
S(j, k) = 0
m = −1/ tan(θk)
a = cos(θk)
b = sin(θk)

if |m| < 1 then

τ−, τ+ =

{
τj−, τj+ if b > 0

τj+, τj− if b ≤ 0

for x ∈ Z : 0.5− nx/2 ≤ x ≤ nx/2− 0.5 do
q− = ⌊τ−/b+mx⌋ − 0.5− mod(ny, 2)/2
ymin = max(0.5− ny/2, q−)
q+ = ⌈τ+/b+mx⌉+ 0.5 + mod(ny, 2)/2
ymax = min(ny/2− 0.5, q+)
for y ∈ Z : ymin ≤ y ≤ ymax do

v[x, y] = v[x, y] + vol(rxy ∩ pj)S(j, k)
end for

end for

else

τ−, τ+ =

{
τj−, τj+ if a > 0

τj+, τj− if a ≤ 0

for y ∈ Z : 0.5− ny/2 ≤ y ≤ ny/2− 0.5 do
q− = ⌊τ−/a+ y/m⌋ − 0.5− mod(ny, 2)/2
xmin = max(0.5− nx/2, q−)
q+ = ⌈τ+/a+ y/m⌉+ 0.5 + mod(ny, 2)/2
xmax = min(nx/2− 0.5, q+)
for x ∈ Z : xmin ≤ x ≤ xmax do
v[x, y] = v[x, y] + vol(rxy ∩ pj)S(j, k)

end for
end for

end if
end for
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