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Abstract

Network clustering is an important problem that has recently drawn a lot of attentions. Most 

existing work focuses on clustering nodes within a single network. In many applications, however, 

there exist multiple related networks, in which each network may be constructed from a different 

domain and instances in one domain may be related to instances in other domains. In this paper, 

we propose a robust algorithm, MCA, for multi-network clustering that takes into account cross-

domain relationships between instances. MCA has several advantages over the existing single 

network clustering methods. First, it is able to detect associations between clusters from different 

domains, which, however, is not addressed by any existing methods. Second, it achieves more 

consistent clustering results on multiple networks by leveraging the duality between clustering 

individual networks and inferring cross-network cluster alignment. Finally, it provides a multi-

network clustering solution that is more robust to noise and errors. We perform extensive 

experiments on a variety of real and synthetic networks to demonstrate the effectiveness and 

efficiency of MCA.

I. Introduction

Networks (or graphs) are widely used in representing relationships between instances, in 

which each node corresponds to an instance and each edge depicts the relationship between 

a pair of instances. Network clustering (or graph clustering) [1]–[3] has become an effective 

means in discovering modules formed by closely related instances in such networks, which 

may in turn reveal functional structure of the networks. Recently, the attention has moved 

from clustering in a single homogeneous network (built on instances from one domain) to 

joint clustering on multiple heterogeneous networks (from different but related domains), 

due to obvious reasons: integrating information from different but related domains not only 
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may help to resolve ambiguity and inconsistency in clustering outcome, but also may 

discover and leverage strong associations between clusters from different domains. 

Consequently, these multi-view network clustering methods [3], [4] are able to substantially 

improve the clustering accuracy. For example, millions of genetic variants on human 

genome have been reported to be disease related, most of which are in the form of single 

nucleotide polymorphism (SNP). These SNPs do not function independently. Instead, a set 

of SNPs may play joint roles in a disease. Such interactions between SNPs can be modeled 

by a SNP interaction network. Fig. 1 shows an exemplar SNP interaction network  of 17 

SNPs on the left, in which nodes are SNPs and weighted edges represent interactions 

between SNPs. Even though the underlying biological processes are complex and only 

partially solved, it is well established that SNPs may alter the expression levels of related 

genes which may in turn have a cascading effect to other genes, e.g., in the same biological 

pathways [5]. The interactions between genes can be measured by correlations of gene 

expressions and represented by a gene interaction network. Fig. 1 shows an exemplar gene 

interaction network of 20 genes on the right, in which nodes are genes and weighted edges 

represent interactions between genes. These two networks are heavily related because of the 

(complicated) relationships between SNPs and genes, as demonstrated in many expression 

quantitative trait loci (eQTL) studies. These cross-domain relationships are represented by 

dotted edges between SNPs and genes in Fig. 1. The strength of such relationship is coded 

by the edge weight. It is evident that a joint analysis becomes essential in these related 

domains.

Despite the success of previous approaches in network clustering, they still suffer from two 

common limitations. First, existing methods usually assume that information collected in 

different domains are for the same set of instances. Thus, the cross-domain instance 

relationships are strictly one-to-one correspondence. This assumption may not hold in many 

applications. More often than not, data instances (e.g., SNPs) in one domain may be related 

to multiple instances (e.g., genes) in another domain. Methods that can account for many-to-

many cross-domain relationships are in need [6]. Second, existing approaches tend to focus 

on network clustering and ignore any associations that may be exhibited between clusters 

from different domains. However, “alignment” between clusters from multiple domains may 

provide a more comprehensive depiction of the whole system. For example, a cluster of 

SNPs may jointly regulate the expressions of a cluster of genes, which may be revealed by 

cluster level associations. Fig. 1 shows 2 SNP clusters: A (including SNPs {1, 2, 3, 4}) and 

B (including SNPs {12, 13, 14, 16}), and 3 gene clusters: C (including genes {a, b, c, d}), D 

(including genes {p, q, r, s}) and E (including genes {i, j, k, m}). As summarized in Table I, 

SNP cluster A is strongly associated with gene cluster C and SNP cluster B is strongly 

associated with gene cluster D. Gene cluster E is not strongly associated with any SNP 

cluster. Although we are given cross-domain associations at the instance level, it is still 

nontrivial to discover cross-domain associations at the cluster level, especially in the 

presence of noise. Our goal is to discover such strong associations between pairs of clusters 

from different domains simultaneously when we perform network clustering.

In this paper, we propose a robust approach, MCA (Multi-network Clustering via cluster 

Alignment), to detect network clusters in multiple domains and their cross-domain 
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associations. In addition to the advantages discussed above, the duality between clustering in 

individual networks and inferring cross-network cluster alignment enables mutual 

reinforcement when both tasks are performed simultaneously. As a result, MCA can 

effectively filter noise and resolve ambiguities in individual networks, and achieve much 

higher accuracy in detecting network clusters and their cross-domain associations. It also 

employs a sparsity regularizer on the cluster alignment to provide additional robustness to 

noise in the prior cross-domain (instance-level) relationships.

Our contributions are summarized as follows.

• To the best of our knowledge, little prior work has studied the problem of cross-

domain cluster association detection. In this paper, we propose and investigate this 

novel problem under the multi-domain setting. The problem is essential to a wide 

range of applications.

• We develop a framework, MCA, based on nonnegative matrix tri-factorization to 

simultaneously cluster instances within each domain and reveal the associations 

between clusters from different domains. Clustering and cluster association 

discovery could mutually enhance each other. We provide rigorous theoretical 

analysis of MCA in terms of its correctness, convergence and complexity.

• We evaluate MCA by extensive experiments on both synthetic and real datasets. 

The experimental results demonstrate that MCA is superior to existing approaches 

in both clustering accuracy and cluster association accuracy.

II. Related Work

To the best of our knowledge, this is the first work to “align” clusters across multiple 

domains. Existing work on network clustering primarily focused on clustering in a single 

network [7], [9]. In [9], the authors pioneered a graph partitioning algorithm using 

normalized cut. Spectral clustering has gained popularity as an efficient clustering 

algorithms in recent years [11]. It is simple to implement since its computation burden is 

primarily on the computation of eigenvectors which has been studied in-depth in numerical 

analysis. In [7], the authors proposed a framework to detect communities in a network based 

on modularity. Some other multi-domain graph (network) clustering methods [3] focus on 

improving the clustering accuracy within each domain utilizing information from other 

domains. The cross-domain instance relationships are only used to enhance the clustering 

result within each domain. They do not capture associations between clusters across multiple 

domains. Multi-domain data are inherently heterogenous. Networks constructed from 

multiple related domains can be transformed into a heterogenous information network, on 

which clustering may be performed [12]. However, this pioneer work focused on ranking-

based clustering which ranks clusters on a pre-specified target type (domain). This is 

different from our goal of performing clustering within and cross domains. In addition, some 

methods on co-clustering also make use of Nonnegative Matrix Tri-Factorization (NMTF) 

and graph regularizer. Co-clustering [13], DNMTF [14] and RCC [15] were originally 

designed to improve the clustering accuracy on documents by clustering rows and columns 

of a term-document matrix simultaneously [16]. They usually pay special attentions to the 
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duality of clustering of terms and clustering of documents. The cross-domain cluster 

associations are not explicitly considered by co-clustering methods, even though some of 

these methods may be adapted to derive information about cross-domain cluster 

associations. They are either incapable of handling multi-network setting or sensitive to 

noise, since they were not designed for network clustering.

III. Multi-Network Clustering via Cross-Domain Cluster Alignment

In this section, we discuss the problem definition and our proposed algorithm MCA.

A. Problem Definition

Suppose that we have N domains . Instances and their relationships within 

each domain are represented by a network , (1 ≤ p ≤ N). Let Ap be affinity/adjacency 

matrix . It is possible that some instances in domain  may be related to 

some instances in domain . These cross-domain relationships between 

instances can be represented by a matrix Wpq. Important notations are listed in Table II. 

More often than not, the matrix Wpq is derived from prior knowledge and may be 

incomplete and noisy. Our goal is to integrate these cross-network instance relationships into 

the task of multi-network clustering and infer cross-network associations between clusters. 

We formulate this problem as an optimization problem that generates clustering and cluster 

associations simultaneously. We now discuss them in detail.

For simplicity, we begin with 2 domains. For clustering in domain , We want to minimize 

the following objective function

where H1 is the cluster assignment matrix in domain  and  means the i-th row of 

matrix H1.  can be viewed as the probability that the i-th instance in domain  belongs 

to the k-th cluster of this domain. A similar objective function can be applied to clustering in 

domain .

In order to capture the cross-network cluster associations, we adopt the co-clustering 

strategy that minimizes the following objective function

This objective function is the Sparse Nonnegative Matrix Tri-Factorization. With 

orthogonality constraints on H1 and H2, it is equivalent to running K-means co-clustering on 

W12 [13]. S12 is the cross-domain alignment matrix, depicting the alignment of the clusters 

from the two domains. Because W12 may contain noise, we employ the ℓ1-norm on S12 to 

suppress the influence of any inconsistencies in W12.
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Combining together the above two parts, we have the following optimization problem

(1)

where α1, α2 and η1 are parameters that balance different between terms, whose values can 

be determined via cross validation.

By simplifying it, we obtain

(2)

where Θ1 and Θ2 are the Laplacian Matrices of  and , respectively.

Now we come back to the multi-domain case. Let Wpq be the matrix defining instance level 

relationships between domain  and domain . Here we assume . Similarly, 

we use Spq to represent the cross-domain cluster alignment matrix between domain  and 

domain  and we have . The optimization problem in Eq. (2) can be naturally 

extended to the following multi-domain case.

(3)

B. Learning Algorithm

In this section, we present the learning algorithm, MCA, to solve the optimization problem 

in Eq. (3). Since the objective function is not jointly convex with respect to all variables, we 

adopt an alternating optimization scheme. Specifically, each time we optimize the objective 

with respective to one variable while fixing others. The following two theorems set the 

foundation for our algorithm. Their correctness and convergence are guaranteed, which will 

be proven later.

Theorem 1—While fixing other variables, the objective function in Eq. (3) will 

monotonically decrease every time we update Spq according to Eq. (4) until convergence.

(4)
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Theorem 2—While fixing other variables, the objective function in Eq. (3) will 

monotonically decrease every time we update Hp according to Eq. (5) until convergence.

(5)

where  is the negative part of Θp, i.e., .

Note that ∘,  and  are element-wise multiplication, division and square root, 

respectively. Based on Theorems 1 and 2, we develop an iterative updating algorithm 

summarized in Algorithm 1.

C. Correctness Analysis

In this section, we give the correctness analysis of the updating rules in Theorem 1, 

according to the Karush-Kuhn-Tucker (KKT) condition. The proof of updating rules for 

Theorem 2 is similar and hence omitted here.

Define the Lagrangian function with respect to Spq as

(6)

where Λpq is a symmetric matrix whose entries are the lagrangian multipliers. Note that 

‖Spq‖1 becomes Spq in Eq. (6) because Spq ≥ 0. We also omit all constant terms with respect 

to Spq in Eq.(6). The same tricks are used in the following analysis.

The partial derivative with respect to Sij is
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(7)

From the optimality condition ,

(8)

The KKT complementarity condition for the nonnegativity of Sij is

(9)

Combining with Eq. (8), the KKT complementarity condition becomes

(10)

According to Eq. (4), the update rule for S is

At convergence, Spq at the left-hand side and right-hand side should be equal. Then, via 

simple derivation, we can verify that the update rule for Spq in Eq. (4) satisfies the KKT 

complementarity condition in Eq. (10).

D. Convergence Analysis

In this subsection, we prove the guarantee of convergence using an auxiliary function [17].

Definition 1—[17] Z(h, h′) is an auxiliary function for f(h) if the conditions

(11)

are satisfied for any given h, h′.

Lemma 1—If Z is an auxiliary function for f, then f is non-increasing under the update [17]

(12)

Proof—f(h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) = f(h(t)).   ■

The auxiliary function with respect to S is
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(13)

(14)

Letting , we obtain

(15)

Similarly, the auxiliary function with respect to Hp is

(16)

(17)

Letting , we obtain
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(18)

In order to determine Λp, we have

(19)

Letting , we can solve Λp.

After submitting Λp, we obtain

(20)

E. Complexity Analysis

With proper order of multiplication, updating S and H once require  and 

, where  is the largest number of instances among all domains 

and k = maxp{kp} is the largest number of clusters among all domains. If the number of 

iterations is Iter, the overall time complexity is . In practice, 

the number of instances is much larger than the number of clusters in a domain, which leads 

to . In this scenario, the overall time complexity of MCA can be simplified to 

.

IV. Experimental Results

In this section, we evaluate the performance of MCA on both synthetic and real datasets. To 

the best of our knowledge, there is no previous method that was specifically designed to 

discover cluster associations. Some co-clustering methods might be adapted to infer cluster 

associations. We compare our method MCA with three well-known co-clustering methods–

Nonnegative Matrix Tri-Factorization proposed by Chris Ding (denoted as NMTF_Chris in 

our paper) [13], Graph Dual Regularization Non-negative Matrix Tri-Factorization 

(DNMTF) [14] and Robust Co-Clustering (RCC) [15]. The parameters of each algorithm are 

tuned using a 5-fold cross validation. Other co-clustering methods are not compared because 

they are either not suitable for network clustering or do not impose nonnegativity on 

association matrix S. The nonnegativity constraint on S is essential to ensure the result 

interpretability in this problem setting.
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A. Evaluation Metrics

We evaluate our results in two perspectives: clustering accuracy within each domain and 

cluster association accuracy across domains.

1) Clustering Accuracy—We use the widely used normalized mutual information (MI) 

metric to evaluate the clustering accuracy in each domain. For any domain , assume that 

 is the clustering result where ci is the i-th cluster. Let 

 be the ground truth where ti is the i-th cluster. The normalized MI is 

defined as

(21)

where  and  are the entropies for clustering  and  and  is the 

mutual information between  And .

(22)

where p(ci) is the percentage of instances contained in ci and p(ci, tj) is the percentage of 

instances contained in the intersection of ci and tj.

2) Cluster Association Accuracy—To evaluate the cross-network cluster association 

accuracy, we propose a new metric, Clustering Association Metric (CAM). For simplicity, 

we consider the case where there are only two domains. Assume that we discover  pairs of 

cluster associations , where cj is a cluster in domain  and  is its 

corresponding cluster in domain . Also assume that the ground-truth contains h pairs of 

cluster associations , where ti is a cluster in domain  and  is its 

corresponding cluster in domain . Then the CAM is defined by the following equation.

(23)

where ∪ is the set union and ∩ is the set intersection. Here, in order to measure the similarity 

between an inferred cluster association  and the ground-truth , we use 

 to evaluate the degree of overlap between  and . For each 

ground-truth association pair , we get the maximal value of 

. The CAM is the average of the maximal values for all 

ground-truth pairs.
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B. Simulation Study

We constructed a simulation study on the two synthetic networks ,  in Fig. 1. We 

compare our method MCA with DNMTF, NMTF_Chris and RCC with respect to robustness 

to varying levels of noise in the cross-domain instance-level relationship matrix W12. Fig. 2 

shows that MCA achieves much higher clustering accuracy than all existing methods at all 

noise levels. Fig. 3 demonstrates the clear advantage of MCA over existing methods in 

capturing cross-domain cluster associations.

C. DBLP Dataset

We also evaluate our method MCA using a labeled DBLP dataset [18], [19]. The dataset 

consists of papers and authors from 4 research areas: Database (DB), Artificial Intelligence 

(AI), Data Mining (DM) and Information Retrieval (IR). It contains 20 conferences and 

4057 authors. These conferences are listed by area in Table III and the author distribution by 

area is shown in Table IV. We use  to denote the author domain and  to denote the 

conference domain. In , the network  represents the co-authorship. Each entry  in 

the affinity matrix A1 of  is the number of papers coauthored by the i-th and j-th authors. 

The affinity matrix A2 of  represents the similarities between the topics covered by two 

conferences. To compute it, we first construct the term-conference matrix F, in which each 

entry Fij is the number of occurrences of the i-th term in the titles of papers published in the 

j-th conference. Thus each column Fj of the matrix can be viewed as a feature vector 

describing the j-th conference. The similarity score of two conferences j and j′ can be 

computed as . W12 represents the relationships between authors and conferences, 

in which each entry denotes the number of papers that an author published in a given 

conference. A snapshot of the DBLP network used in our experiment can be seen in Figure 

6.

To compare the robustness of different methods, we introduce noise by randomly shuffling a 

certain percentage of the entries in W12. Fig. 4 shows that noise in the prior knowledge on 

cross-domain relationships does not affect the clustering accuracy of MCA in the conference 

domain at all, and only lowers the accuracy of MCA in the author domain modestly when 

W12 is dominated by noise. Fig. 5 shows that the accuracy of the inferred cross domain 

cluster associations also only drops modestly for MCA when the noise level is very high. In 

contrast, we observe that all other methods are far more sensitive to noise, among which 

NMTF_Chris performs noticeably better than ONMTF and RCC.

To better understand how these methods perform, we list the top 4 associations between 

conference clusters and author clusters returned by MCA and NMTF_Chris in Table V when 

the noise level is set to 30%. We do not list the results by DNMTF and RCC because they 

return only a single cluster that includes all conferences in the conference domain. This is 

obviously not what we desire. From Table V, we observe that MCA produces the correct 

clustering result in the conference domain. The conference cluster in each of the top 4 pairs 

corresponds to a distinct research area. However, NMTF_Chris makes many mistakes. It 

splits the conferences from the Database area into two clusters. The third and fourth 

conference clusters are mixtures of conferences from different areas. In the author domain, 
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for each author cluster, the percentage of authors from each of the 4 research areas is also 

shown in Table V. Each author cluster returned by MCA is primarily dominated by authors 

from one research area, as indicated by the largest percentage highlighted in bold in each 

column, which perfectly matches the area suggested by the associated conference cluster. 

For example, consider the 1st pair of conference cluster and author cluster returned by 

MCA. The conference cluster includes PODS, SIGMOD, VLDB, ICDE and EDBT, all of 

which are Database conferences. 94.2% of authors in the author cluster also come from the 

Database area. MCA correctly infers this association between the author cluster and 

conference cluster. We can make same observation on the remaining cluster pairs by MCA 

in Table V. It demonstrates that MCA can discover meaningful associations between clusters 

from different domains. From Table V, we also observe that some conference clusters and 

author clusters discovered by NMTF_Chris represent a mixture of multiple research areas. 

To further quantify this observation, for the 4 author clusters, we compute the KL-

divergence between author’s research area distributions of each pair of author clusters. A 

KL-divergence of 1 indicates that authors in the two clusters are from two distinct areas. A 

KL-divergence of 0 indicates that the two author clusters have identical research area 

distributions and thus are not distinguishable from each other. We use dark color for small 

KL-divergence and light color for large KL-divergence in Fig. 7. A diagonal entry depicts 

the KL-divergence of an author cluster to itself which is always 0. Off-diagonal entries 

correspond to KL-divergence of two author clusters — the larger the KL-divergence, the 

better the clustering result. We observe that the 4 clusters by MCA all have large KL-

divergence to each other but the first two clusters by NMTF_Chris have small KL-

divergence. This proves that MCA is more robust to random noise.

Duplicate Names—It is possible that some authors may have the same name in the DBLP 

database. Publications by these authors might be mistakenly associated with other authors 

with the same name. In order to evaluate the robustness of our method in this context, we 

first randomly pick a certain percentage of authors and then randomly pair them up. We 

“pretend” that the two authors in each pair use the same name and thus their publications are 

not distinguishable. We replace the two corresponding row vectors in W12 by their average 

vector. Since only a small percentage of authors may have this issue, we only test the 

robustness for up to 30% of duplicate names. Fig. 8 shows that MCA can successfully 

resolve the ambiguity and thus its clustering accuracies and cluster association accuracy are 

not impacted. NMTF_Chris is the second best, having comparable accuracies in cluster 

association and author clustering, but failing short on the conference clustering accuracy.

D. Yeast eQTL Dataset

Expression quantitative trait loci (eQTL) mapping is the process of identifying single 

nucleotide polymorphisms (SNPs) that play important role in the expression of genes. It has 

been widely used to dissect genetic basis of complex traits [5]. Traditionally, associations 

between individual expression traits and SNPs are assessed separately [20]. Since genes in 

the same biological pathways are often coregulated and may share a common genetic basis 

[21], it is crucial to understand how multiple modesetly-associated SNPs interact to 

influence the phenotypes [22]. To answer this question, several approaches have been 

proposed to study the joint effect of multiple SNPs by testing the association between a set 
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of SNPs and a gene expression trait [23]–[26]. Despite their success, these methods have 

two common limitations. First, only the association between a set of SNPs and a single 

expression trait is studied. Therefore, they overlook the joint effect of a set of SNPs on the 

activities of a set of genes, which may act and interact with each other to achieve certain 

biological function. Second, the SNP sets used in these methods are usually taken from 

known biological pathways, which are far from being complete. These methods cannot 

identify unknown associations between SNP sets or gene sets. To better elucidate the genetic 

basis of gene expression and understand the underlying biology pathways, it is highly 

desirable to develop methods that can automatically infer association between a group of 

SNPs and a group of genes. The process of identifying such associations is referred to as 

group-wise eQTL mapping, to distinguish it from the individual eQTL mapping [6] process 

that identifies associations between individual SNPs and genes. The MCA method proposed 

in this paper is suitable for group-wise eQTL mapping.

We compare MCA with NMTF_Chris, DNMTF and RCC on a yeast eQTL dataset [27]. 

This dataset originally includes expression profiles of 6229 genes and genotype profiles of 

2956 SNPs. After preprocessing (e.g., removing missing values), the dataset is reduced to 

1017 SNPs and 4474 genes expression profiles.

We denote the SNP domain as  and the gene domain as , respectively. The SNP 

interaction network  is generated as in [28]. The gene interaction network  is 

constructed by computing the Pearson’s correlation of the expression levels of each pair of 

genes.

(24)

where X and Y are vectors representing the expression profiles of the two genes. Xi and Yi 

are the ith components of X and Y, respectively. From Eq. (24), the value of Pearson’s 

correlation r ranges from −1 to 1, where 1 means that two genes are completely positively 

correlated and −1 means that they are completely negatively correlated. The edge between 

genes X and Y in the gene interaction network is weighted by |rXY |. The association matrix 

W12 is given by the association tests between individual SNPs and individual genes using 

PLINK [29].

Gene Ontology Enrichment Analysis—Since there is no ground-truth in the Yeast 

eQTL dataset, we cannot measure the clustering accuracy and cluster association accuracy 

directly. Here, we evaluate the quality of our result by the Gene Ontology Enrichment 

Analysis (GOEA) [30]. For each inferred gene cluster ci, we identify the most significantly 

enriched Gene Ontology categories [31]. The significance (p-value) is determined by the 

Fisher’s exact test. The raw p-values are further calibrated to correct for the multiple testing 

problem [32]. To compute calibrated p-values for ci, we perform a randomization test, 

wherein we apply the same test to 1000 randomly created gene sets that have the same 

number of genes as in ci. In order to evaluate the clusters in the SNP domain, we first need 

to map the SNPs in a cluster to their nearest genes on the genome, and then apply the 
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standard procedure of GOEA on the set of genes to compute a p-value. In Fig. 9, clusters are 

arranged in ascending order of their p-values. We consider the clusters with p-value less than 

0.05 to be significant. The numbers of significant gene and SNP clusters are listed in Table 

VI. Not surprisingly, MCA can identify more significant clusters in both gene and SNP 

domains than the competitors.

E. Gene Disease Dataset

We further evaluate our algorithm MCA on a gene disease network dataset [33]. The dataset 

contains 590 disease phenotypes in 20 disease classes and 7997 genes in 200 gene pathways. 

There are two domains: gene domain  and disease phenotype domain .  represents the 

“functional” relationships between genes which are measured by interactions between the 

proteins transcribed from the genes, because most genes “perform” their functions through 

their transcribed proteins. This protein-protein interaction network can be obtained from 

HPRD [34]. The relationships among phenotypes are represented by a phenotype similarity 

network , which is obtained from [35]. It is an undirected network with vertices 

representing OMIM [36] disease phenotypes and edges (with weights between 0 and 1) 

representing the similarities between phenotypes measured by their co-occurrences in 

clinical synopsis records. The associations between disease phenotypes and genes are also 

available in OMIM. We evaluate the clustering accuracy in each domain using the 

normalized MI discussed in Section IV-A. The first row in Table VII is the normalized MI in 

the phenotype domain and the second row is the normalized MI in the gene domain. As we 

can see, MCA is again the winner.

F. Performance Evaluation

In this section, we study the run-time performance of MCA, measured by the number of 

iterations before converging to a local optima. Table VIII summarizes the network size and 

the number of iterations upon convergence on difference data sets. We observe that MCA 

can converge within a reasonable number of iterations even for large networks. As expected, 

the number of iterations will increase as the network size increases. Usually, several 

hundreds of iterations are needed before convergence, but the actual running time is fast. 

Table IX shows the time used by different methods to convergence on the DBLP dataset. All 

methods except RCC run very fast. We can conclude that MCA can achieve much better 

accuracy without entailing more computation time.

V. CONCLUSION

In this paper, we propose a novel algorithm, MCA, for network clustering across multiple 

related domains. By leveraging the duality between single network clustering and inferring 

cross-network cluster alignment, MCA well incorporates any prior knowledge on cross-

network instance relationships into multi-network clustering. The algorithm is robust to 

noise and is capable of detecting cross-domain associations between clusters, which, was 

never addressed in previous study. Extensive experiments on both synthetic and several real 

datasets demonstrate the effectiveness and efficiency of MCA and its advantages over 

existing methods.
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Fig. 1. 
An exemplar SNP interaction network and gene interaction network in an eQTL study

Liu et al. Page 17

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2016 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Clustering accuracy as a function of increasing percentage of noise in W12 on simulated 

data.
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Fig. 3. 
Cluster association accuracy as a function of increasing percentage of noise in W12 on 

simulated data.
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Fig. 4. 
Normalized Mutual Information with respect to different noise levels on the DBLP dataset.
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Fig. 5. 
Cluster association accuracy with respect to different noise levels on the DBLP dataset.
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Fig. 6. 
A snapshot of the real DBLP network. We only display edges whose weights are above 

some threshold.
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Fig. 7. 
The pairwise KL-divergence between research area distributions of author clusters in Table 

V.

Liu et al. Page 23

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2016 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Results on the DBLP dataset with duplicate names.
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Fig. 9. 
Gene ontology enrichment analysis on the yeast eQTL data.
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TABLE I

Cross-domain associations between SNP clusters and gene clusters in Fig. 1

association 1st cluster pair 2nd cluster pair

SNP interaction network 
{12, 13, 14, 16} {1, 2, 3, 4}

gene interaction network 
{p, q, r, s} {a, b, c, d }
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TABLE II

Summary of symbols and their meanings

Symbol Description

N The number of domains

The p-th domain

np

The number of instances in 

kp

The number of clusters in 

The network representing relationship among instances in 

Ap

The affinity/adjacency matrix of 

Wpq

The cross-domain relationship between instances from  and 

Hp

The cluster assignment matrix in 

Spq

The cross-domain alignment matrix between  and 
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TABLE III

List of conferences from each research area in the DBLP dataset

DB AI DM IR

PODS AAAI KDD SIGIR

SIGMOD ICML ICDM WWW

VLDB IJCAI SDM WSDM

EDBT CVPR PKDD ECIR

ICDE ECML PAKDD CIKM
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TABLE IV

Number of authors from each research area in the DBLP dataset

DB AI DM IR

number 1197 1109 745 1006

percentage 29.5% 27.3% 18.4% 24.8%
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TABLE VI

The number of significantly enriched clusters measured by GOEA

MCA NMTF_Chris DNMTF RCC

gene 36 31 23 26

SNP 99 98 82 62
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TABLE VII

Results on the gene disease network

method MCA NMTF_Chris DNMTF RCC

Normalized MI_pheno 0.19 0.13 0.14 0.15

Normalized MI_gene 0.05 0.02 0.05 0.04
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TABLE VIII

Number of iterations to converge

dataset
size of network size of network 

number of iterations

synthetic 17 20 24

DBLP 441 20 80

eQTL 1017 4474 741

Gene-disease 3619 366 144
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TABLE IX

Amount of time to converge on DBLP

method MCA NMTF_Chris DNMTF RCC

time cost (second) 0.8 0.4 0.4 11.5
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