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Abstract

Text Spotting in the Wild

by

Siyang Qin

Detecting and segmenting text in natural images is a challenging task which may find

application in multiple scenarios, such as video surveillance, forensic, video annotation,

mobile OCR. Our main interest in text spotting stems from its potential application as

an assistive device for blind people. In this thesis, I propose two efficient and effective

text detection system, a new text stroke segmentation algorithm with state-of-the-art

performance, and a novel encoder-decoder network architecture that can automatically

remove text from image.

The first text detection algorithm is a region-based method, designed in a

bottom-up manner. Characters are first detected before grouped into words. To find

each character, Maximally Stable Extremal Regions (MSERs) is used to propose a

large number of candidate regions which then feed to a Convolutional Neural Network

(CNN) to filter out background regions. To improve the robustness and avoid the

“tricky” post-processing (character grouping) step of the previous method, a cascaded

fully convolutional networks (FCN) is proposed to predict the location of each word

directly by utilizing the wide range of context information.

Segmenting text stroke from its background can benefits optical character

recognition (OCR) and other tasks. I propose the use of FCN and fully connected

ix



CRF with a novel pairwise kernel definition that includes stroke width information. In

order to train the model, we create a new synthetic dataset with 100K text images. Our

method outperforms the state-of-the-art algorithms while being more efficient.

Automatic removal of text or other objects from an image is considered an

unsolved problem. It is challenging due to the fact that foreground segmentation is

unknown, unlike the problem solved by traditional image inpainting algorithms which

assume the known of where to reconstruct. In order to solve this challenging task, I

introduce a novel encoder-decoder network architecture with two parallel and intercon-

nected decoder branches, one designed to segment the foreground, the other to recover

the missing background. The two decoders are connected via neglect nodes that deter-

mine which information from the encoder should be used for synthesis, and which should

be neglected. The foreground text stroke segmentation and the synthesized background

image are produced in a single forward pass.
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Chapter 1

Introduction

1.1 Scene Text Detection

Fast automatic detection and reading of text (such a license plate number,

a posted sign, or a street name) in images, is found useful for applications such as

surveillance, forensics, autonomous vehicles, augmented reality (e.g., visual translation),

and information access for blind people. Traditionally, OCR systems were designed for

documents scanned into well-framed, good resolution images without excessive clutter,

and taken under good illumination. For computational efficiency, a two-step process

is often implemented. The first stage (text spotting) quickly detects the presence of

areas in the image that are likely to contain text. These are then passed on to a

recognition engine that decodes the textual content, using machine learning normally

coupled with lexicon priors. The ability to detect individual words may simplify the

work of the recognizer, and word-level detection is part of typical benchmarks such as
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the ICDAR incidental and focused datasets [1, 2]. Individual word detection could be

cast as an object detection task, for example using popular algorithms such as as Faster

R-CNN [68] or YOLO [66], that can directly predict the coordinates of each object

using axis-aligned rectangular bounding boxes. Unfortunately, direct application of

these algorithms to general text-bearing images produces unsatisfactory results [23, 78].

This is because general object detection methods have difficulties at detecting groups

of very small objects such as words in a text line.

In this thesis, I present two methods on text spotting. The first one is a

region based method (Chapter 2), its structure is shown in figure 2.1. The system

uses multi-channel Maximally Stable Extremal Regions (MSERs) [49] to detect a large

number of candidate character regions, then subsamples these regions using a clustering

approach. Representatives of region clusters are binarized and then passed on to a neural

network. A final line grouping stage forms word-level segments. On the ICDAR 2011

and 2015 benchmarks, our algorithm obtains an F-score of 82% and 83%, respectively,

at a computational cost of 1.2 seconds per frame. I also introduce a version that is three

times as fast, with only a slight reduction in performance.

Region based strategy, however, was plagued by several drawbacks. Detecting

individual characters is difficult in the presence of blur, noise, or poor contrast. Fur-

thermore, region classification is performed using only local patch level information,

text-like background elements were often confused with text characters without the use

of wider range context information. Last but not least, in order to ensure good recall

rate, many (possibly overlapping) templates must be processed by the CNN, resulting
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Figure 1.1: Our text detection results.

in long computational time.

To solve the above mentioned limitations, my second algorithm (Chapter 3) is

formed by the cascade of two convolutional neural networks (see figure 3.1). The first

segmentation network is fully convolutional and is in charge of detecting areas containing

text (in pixel level). This results in a very reliable but possibly inaccurate segmentation

of the input image. The second detection network analyzes each segment produced in

the first stage, and predicts oriented rectangular regions containing individual words.

No post-processing (e.g. text line grouping) is necessary. With execution time of 450

ms for a 1000 × 560 image on a Titan X GPU, our system achieves good performance

on the challenging ICDAR incidental benchmarks [2].
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1.2 Text Stroke Segmentation

Text stroke segmentation plays an important role in improving the performance

of OCR [39] and other specific applications of interest. For example, binarization allows

for operations such as text removal (and possibly substitution), text color change, and

contrast enhancement. This type of operations are often required for stock photography

processing (e.g., license plate number removal from Google StreetView images [19]),

augmented reality (e.g., substitution of original text with its translation in a different

language [18]), and assistive technology (e.g., to increase text readability for people with

low vision [29]). Precise stroke segmentation is needed in these applications in order to

preserve the naturalness of processed images.

Widely used techniques for text stroke segmentation include Maximally Stable

Extremal Regions (MSERs) [49], a fast technique for generic local segmentation that is

robust against domain and photometric distortions; and the Stroke Width Transform

(SWT) [16], which is specifically designed for the detection of stroke like regions. Unfor-

tunately, these methods give unsatisfactory results in challenging cases where low level

image features become unreliable.

In this thesis, I propose a new technique for the accurate segmentation of text

strokes from an image (Chapter 4). The algorithm takes in a cropped image containing

a word. It first performs a coarse segmentation using a Fully Convolutional Network

(FCN). While not accurate, this initial segmentation can usually identify most of the

text stroke content even in difficult situations, with uneven lighting and non-uniform
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Figure 1.2: Text stroke segmentation is a challenging task due to large variance in
text font, color, confounding background, poor contrast as well as different illumination
conditions. Here we show several challenging cases and our results.

background. The segmentation is then refined using a fully connected Conditional Ran-

dom Field (CRF) with a novel kernel definition that includes stroke width information.

In order to train the network, we created a new synthetic data set with 100K text im-

ages. Tested against standard benchmarks with pixel-level annotation (ICDAR 2003,

ICDAR 2011, and SVT) our algorithm outperforms the state-of-the-art algorithms by

a noticeable margin.
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1.3 Jointly Text Segmentation and Removal

Automatic removal of text content in an image is an extremely challenging task

that can benefits lots of applications. There are many situations in which text needs to

be erased, for example to protect personal information. Since automatic text removal is

an yet unsolved problem, these operations are typically performed manually by skilled

Photoshop editors or by simply blur the entire text area. Our interests in automatic

text removal stems from the fact that it can be used to augment the existing limited

and small scale scene text detection datasets by replacing existing texts on image with

new texts (possibly in different languages).

Traditional image inpainting algorithms are designed to fill the missing re-

gion with realistic image content. Most of them require the known of the corrupted

mask which indicating where to reconstruct, typically via manual input. In contrast,

an automatic text removal system must be able to accomplish two tasks, text stroke

segmentation and region filling. Although the two tasks can be performed in a cascade

manner, our experiments show better result can be achieved by jointly predicting the

foreground text segmentation mask and the recovered background image. My work is

born from the realization that, for optimal results, these two tasks (segmentation and

inpainting) should not be carried out independently.

We introduce a new system for automatic text removal and inpainting (Chapter

5). Unlike traditional inpainting algorithms, which require advance knowledge of the

region to be filled in, our system automatically detects the area to be removed and

6



Figure 1.3: Our text removal results.

infilled. Region segmentation and inpainting are performed jointly in a single pass (see

figure 5.1). In this way, potential segmentation errors are more naturally alleviated by

the inpainting module. The system is implemented as an encoder-decoder architecture,

with two decoder branches, one tasked with segmentation of the foreground region, the

other with inpainting. The encoder and the two decoder branches are linked via neglect

nodes, which guide the inpainting process in selecting which areas need reconstruction.

In practice, neglect nodes provide dec-fill with information about which areas of the

image should be erased and infilled, while preserving content elsewhere. The whole

7



model is trained using a conditional GAN strategy. Comparative experiments show

that our algorithm outperforms state-of-the-art inpainting techniques (which, unlike

our system, do not segment the input image and thus must be aided by an external

segmentation module.)
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Chapter 2

Fast and Robust Text Spotting using

MSER and CNN

2.1 Introduction

Systems that can automatically detect the presence of text in an image (text

spotters) may find application in multiple practical scenarios, such as video surveillance,

forensic, video annotation, mobile OCR. Our main interest in text spotting stems from

its potential application as an assistive device for blind people. Being able to detect

and read visible text (e.g., a name tag at a door, a wayfinding sign in an airport, the

name of a store posted above its entrance) could provide a blind traveler with enhanced

environment awareness and better self-confidence. By supporting independent travel,

this technology could have direct consequences in terms of education, employment,

socialization and recreation for the visually impaired community.
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To access text, blind users could rely on the camera of their hand-held smart-

phone, or on a wearable camera that is tethered or wirelessly connected to the smart-

phone. It is important to note that the task of detecting and reading a posted piece

of text is in fact a cooperation between the user who is maneuvering the camera, and

the system, which provides feedback to the user (for example, via acoustic interface or

synthetic speech). In a typical situation, the user would first detect the presence of text

(perhaps serendipitously, or after intentionally exploring the scene with the camera).

It is not critical that the system be able to read the text at this point: in fact, the

image could have low resolution if the text is seen from a distance, or the text could

be only partially framed, making reading difficult or impossible. Upon being informed

by the system that text has been detected, the user could move closer to it and try to

take a well-framed, well-resolved snapshot, which could then be processed by an actual

text reader (OCR). Non-visual interfaces could be used to help the blind user in this

task. This operation trades reading accuracy for redundancy: as long as the user is

able to keep the text within view of the camera, and the text spotter can reliably detect

and localize text in the video frames, a large number of images containing the text are

available for OCR, maximizing the chance that at least one of these images can be read

correctly.

The system presented in this contribution focuses solely on detecting and lo-

calizing text in an image, deferring reading to later in the pipeline. High priority was

given to efficiency (computational speed) and of course performance (as measured by

standard criteria [86]). At a speed of 1.2 seconds per image (VGA size), our text

10



spotter achieves F-scores of 82% and 83% on the ICDAR 2011 and 2015 benchmarks,

respectively. For comparison, the published algorithm with best reported results [99]

achieves an F-score of 0.80 on both data sets at much lower speed. A faster version of

our algorithm (running at 0.38 seconds per image) results in F-scores of 0.80 and 0.79,

respectively.

The general structure of our algorithm, shown in Fig. 2.1 is similar to that of

other successful systems presented in the literature, with some important differences.

We first process the input color image with multi-channel MSERs [49], using a very

conservative threshold. We then carefully prune the ensemble of resulting extremal

regions; this is a critical step to reduce the computational cost of all subsequent mod-

ules. Our pruning procedure is an original contribution of this paper. The remaining

MSERs are then resized to fit 32× 32 bounding boxes, and fed to a convolutional neu-

ral network (CNN). Unlike standard approaches that use the grayscale-valued array as

input, in our work the input to the CNN is a binary indicator mask (see Fig. 2.2). Our

experimental results show that this simple “trick” can increase classification accuracy

significantly. Rather than training the CNN on individual characters (synthetically pro-

duced or manually segmented), as is typical for similar algorithms, we mine positive and

negative examples from training data sets that are only labeled at the word level. The

resulting positive examples may contain digrams and sometimes other n-grams; this is

not a problem, as our goal is word-level detection and labeling, rather than individual

character recognition. Finally, the score assigned by CNN to the individual regions is

used to guide a simple but effective line grouping algorithm. Calibration of the individ-
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ual system components is performed using a metric of precision/recall that is specifically

designed for text spotting.

2.2 Related Work

Text detection and localization methods have been traditionally grouped in

two main categories. The first category contains sliding window approaches [83, 31, 99,

32, 8, 24, 82]. Sliding window analysis has been a cornerstone of computer vision since

its infancy. It is a well understood technique with remarkable robustness to noise and

to undesired effects such as disconnected strokes. Unfortunately, its computational cost

is usually high, considering that multiple size windows are normally needed.

Methods belonging to the second group extract candidate text characters based

on local characteristics. Stroke width transform (SWT) [16] and maximally stable ex-

tremal regions (MSERs) [49, 57] are among the most popular approaches. Such methods

allow one to concentrate only on the more promising candidate regions, but are quite

sensitive to noise and blur. SWT finds character candidates by grouping pixels with

similar stroke width into connected components, where stroke widths are computed

from almost parallel edges. MSERs, an universal tool used in multiple applications of

computer vision, has also been shown to work well for the task of identifying text char-

acters. For example, Neumann and Matas [54] proposed a method to perform efficient

sequential selection from the set of extremal regions in the image to obtain character

candidates. Huang et al. [27] introduced the Stroke Feature Transform, which extends
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the Stroke Width Transform idea by considering color for increased robustness, along

with two novel Text Covariance Descriptors used to train a classifier. Chen et al. [6]

enhanced the MSERs algorithm by adding Canny edge cues, with the goal of increased

robustness to blur and noise.

Some works attempt to combine the advantages of sliding-window and of con-

nected component methods. Neumann and Matas [53] proposed a novel approach to

character detection based on the detection of strokes as connected components; strokes

then induce a set of rectangles to be classified, thereby reducing the number of candi-

date character regions by three orders of magnitude with respect to traditional sliding-

window approaches. Zamberletti et al. [97] proposed a hybrid system that generates a

text confidence map using a sliding-window classifier based on fast feature pyramid [14],

then remove false positives using MSERs.

Recent years have witnessed tremendous progress in unsupervised feature dis-

covery and deep learning; these techniques have been applied to almost every area of

computer vision, and scene text localization is no exception. Rather than rely on hand-

designed features, deep convolutional neural networks (CNN) [38] [28, 83, 31, 99] use

hierarchical and over-complete features learned from large training data sets. Use of

CNN has enabled substantial improvement in text detection and localization accuracy.

For example, Wang et al. [83] use a sliding window to extract candidate regions that

are then fed to a CNN (with the features of its first convolutional layer trained in an

unsupervised manner [9]). Huang et al. [28] use MSERs to find candidate regions that

are then classified by a CNN similar to that of [83]. Zhang et al. [99] rely on the spa-
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Figure 2.1: The overall structure of our first region based algorithm. Multichannel
MSERs are thinned out through clustering and pruning, then resized and binarized
before being fed to a CNN classifier. The compound patches that have been classified
positively are then grouped into text lines.

tial symmetry that is charateristic of character groups, then use CNN to remove false

positives.

For more comprehensive surveys, the reader is referred to [35, 72, 93].

2.3 Methodology

As customary for text spotting [8], we structure our algorithm as a cascaded

classifier, with the initial stages designed to have high recall rate. Our system (Fig. 2.1)

can be divided into two main components: the first component produces a set of rect-

angular patch, each weighted by a confidence value of being contained in a text area

(Stages I to III); the second component groups these areas into linear chains – tentative

“words” (Stage IV).
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2.3.1 Stage I: MSER Segmentation

The first stage of our algorithm is multi-channel MSERs segmentation. MSERs [49],

along with Stroke Width Transform, is widely used to identify promising regions in mod-

ern text spotters. It is particularly suited to discovery of high-contrast regions such as

text characters. We employ very conservative parameters for MSERs computation: us-

ing the terminology of [49], an extremal region Qi is determined to be maximally stable

if the incremental area ratio |Qi+1 \Qi−1|/|Qi| is smaller than τ (τ = 0.25 in our imple-

mentation). We compute MSERs with both polarities (dark on bright and vice-versa)

on 7 image channels: R, G, B, grayscale, H, S, V. MSERs that contain fewer than 30

pixels, or with anomalous format ratio (less than 0.3 or larger than 3) are rejected.

While in many cases a character is well segmented by one or more MSERs,

in some situations no MSERs can be found that correctly encompasses just one full

character. For this reason, several authors (e.g. [28]) have proposed techniques that

modify or subdivide these regions, with the purpose of localizing individual letters. This

may be necessary when the exemplar set used for training contains individual characters

(e.g., synthetically generated). We don’t make this assumption in our system: positive

exemplars are mined directly from the MSERs regions, and thus may contain digram or

other n-grams. Consequently, we don’t need to modify the regions produced by MSERs

in any way (except for reshaping them to a common 32× 32 size in Stage III.)
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Figure 2.2: Some resized binary patches fed to CNN, together with their original
grayscale counterpart. Note the presence of a trigram and of a four-gram.

2.3.2 Stage II: Region Clustering and Pruning

MSERs segmentation produces a large number (on average, 3151 per image

on ICDAR benchmarks) of possibly overlapping rectangular image patches. While it

would be possible to pass each one of these patch on to the classifier (Stage III), the

computational cost would be prohibitive. We thus need a method to weed out the least

promising patches.

Our criterion for clustering and pruning is guided by two empirical observa-

tions. The first observation is that actual characters tend to fill their rectangular bound-

ing box1 more than spurious MSERs. We embody this notion by a simple measure of

fullness (ratio of the area of the MSER to the area of its rectangular bounding box).

Note that other features describing the shape of the MSERs have been used in previous

work (e.g.[54]). Measuring these features on all detected MSERs, however, wold be

computational demanding. The second observation is that multi-channel MSERs tend

to cluster around actual text characters, as revealed by observation of the heat map

formed the MSERs in most images (see Fig. 2.1). In this context, a heat map simply

assigns a value to each pixel equal to the number of MSERs that overlap on that pixel.

1By “bounding box” of a region we mean the smallest rectangle containing the region with sides
pairwise parallel to the image axes .
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We find clusters of overlapping MSERs’ bounding boxes, possibly pruning out

small clusters, and extract one cluster representative based on the fullness measure.

More precisely, we create a graph with the MSERs as nodes; two nodes are linked by an

edge if the Jaccard index between the corresponding MSERs’ bounding boxes is larger

than 0.8 (where the Jaccard index of two sets is the ratio of the intersection to the union

of the sets). Note that this graph can be computed very efficiently using a sweep line and

an interval tree. The connected components of this graph are computed. Optionally,

connected components with a small number of components can be removed; for example,

our “fast” implementation prunes away all clusters containing less than 3 nodes. Finally,

the number of MSERs is reduced by selecting one representative MSER per connected

component, and specifically the one with highest fullness in the cluster. This operation

reduces the average number of regions to 1392 per image (without pruning), and to 300

per image (when clusters with less than 3 components are removed).

2.3.3 Stage III: Region Classification

Patches produced by Stage II are resized to a common square size of 28 × 28

pixels, then zero-padded to 32 × 32 pixels squares and fed to a convolutional neural

network (CNN). We use a standard CNN structure [83, 28] with two convolutional layers

(conv1 and conv2) containing 96 and 256 kernels respectively. Kernels in conv1 have size

of 8×8 pixels; those in conv2 have size of 2×2 pixels. Each convolutional layer connects

to a rectified linear unit (ReLU) and to a max pooling layer. The first pooling layer

(pool1) performs 5× 5 max pooling, the second one (pool2) performs 2× 2 max pooling.

17



Figure 2.3: MSERs within a cluster centered at the red rectangle (only a few shown).
The MSERs are ordered in decreasing value of fullness. The MSER to the left is chosen
as the cluster representative

The 2× 2× 256 output from the last pooling is passed on to a fully connected layer to

obtain a 500 length feature vector which is feed into the SVM classifier, producing the

final classification score. Training is fully supervised from exemplars with binary labels.

Unlike other approaches that use character-level exemplars for training (either

hand-segmented or synthetically generated), our training samples are obtained with

exactly the same method as described in Stage I, from a data set that was hand-

segmented at the word level (as available in the ICDAR 2011 and 2015 text localization

data sets). We mine positive samples from the training portions of these datas set by first

running multi-channel MSER (Stage I, but without the clustering/pruning procedure

of Stage II), then treat each resulting rectangular region (bounding box) as a positive

sample if (1) this region is substantially contained within a word-labeled rectangle,
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and (2) its height is similar to the rectangle’s height. More precisely, the region must

overlap with the word-labeled rectangle by at least 80% of its area, and its height must

be between 60% and 120% of the height of the word-labeled rectangle (see Fig. 2.4).

If either condition is unsatisfied, the region is treated as a negative sample. Overall,

we obtained approximately 60K positive samples, and seven times as many negative

samples, mined from the training portions of the ICDAR 2011 and 2015 text localization

data sets. The negative set is then subsampled to about 110K samples.

The practical importance of not requiring character-level training is twofold.

First, it is arguably easier to hand-segment whole words from images, rather than

individual characters. Of course, this problem is immaterial if synthetic data sets are

created, although the verisimilitude of this synthetic data to real images may be called

into question. Second, there is no need to pre-process patches which are suspected to

contain multiple characters, an operation that can be challenging and time-consuming.

In a small but significant departure from standard CNN classification ap-

proaches, we feed the classifier with a binary image, and precisely with the indica-

tor mask of the MSER in the patch, rather than using the full grayscale value range

(Fig. 2.2). We have found that this simply trick significantly improves results (see

Sec.2.4). While more research is needed to understand the exact reason for this im-

provement, we speculate that the chosen MSER representatives may overcome the effect

of blur and poor contrast, and perhaps remove undesired background clutter that could

be otherwise present in the graylevel patch.
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Figure 2.4: Mining positive (red) and negative (blue) examples from an image that was
labeled at word level (yellow rectangles). Only a subset of MSERs are shown on the
image for readability.

2.3.4 Stage IV: Text Line Grouping

The last stage of our algorithm groups together patches that passed CNN clas-

sification into text lines, and separates these groups into “words”. As a first step, we

recover the connected components of MSERs whose representative was passed on to

CNN (Stage II), and create a rectangular bounding box (“compound patch”) encom-

passing all such regions. Each compound patch is assigned the confidence value given

by CNN to the corresponding resized representative patch. To find text lines, we resort

to a sequential voting strategy with greedy removal. Starting from the compound patch

with highest confidence value P0, we examine all other compound patches; for each other

patch Pi, we compute the angles (within −π/2 and π/2 from the horizontal direction)

of three lines: the line joining the tops of the vertical bisectors of the two patches; the
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line joining the midpoints of the vertical bisectors; and the line joining their bottoms.

We found that all three lines need to be considered, in order to account for rectangle

with different sizes. These three angles are then quantized into 36 bins; each line con-

tributes one vote to the corresponding bin’s counter, with a weight that is proportional

to the CNN classification score Pi, divided by the Euclidean distance between the cen-

ters of the two patches. The angle corresponding to the highest bin counter is selected,

defining a line drawn from the center of the compound patch. The compound patches

intersecting this line are ordered based on their horizontal distance to the patch under

consideration, and visited to determine whether they should be added to the current

“text line”. Two variables, containing the average patch width and height respectively,

are updated each time a patch is added to the text line. A strip is centered on the

line, with height equal to the current average patch height. A visited patch is added

to the line if two conditions are satisfied: (1) the Jaccard index between the patch’s

vertical bisector and the stripe section aligned with this bisector is larger than 0.5; and

(2) the horizontal distance between the visited patch and the last added patch in the

same direction (measured at their closest sides) is smaller than twice the average patch

width. As soon as a patch is found that does not satisfy condition (2), the process is

stopped; all patches assigned to the text line are removed, and the process is started

again from the remaining highest confidence compound patch. Finally, line groups with

average patch confidence below a certain threshold are removed.

Once a line group is formed, the extent of individual words is determined.

Since we don’t perform any lexical analysis, this operation is performed solely based
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on the patches’ spatial characteristics. We first compute the average distance between

consecutive patches; then, we split the line halfway between any two consecutive patches

whose distance is larger than 3 times this value.

2.4 Experimental Results

Our text spotter was implemented in C++ using OpenCV and the Caffe im-

plementation of CNN [33]. Multichannel MSER was parallelized using OpenMP. The

system was benchmarked on a 3.4 GHz, 4 cores desktop with Nvidia Geforce GTX 650

GPU, running Linux. The classifier was trained with the training portion of both the

ICDAR 2011 and 2015 data sets.

2.4.1 Speed

End-to-end computational times for VGA image size are reported in Fig. 2.5

and Tabs. 2.1 and 2.2. Multi-channel MSER takes 50 ms. If all MSERs in the image

(3151 on average) are fed into the CNN, a frame is processed in 2.3 s, with 2.1 s used

by CNN processing (Stage III). By clustering MSERs and only retaining one cluster

representative per cluster (an operation that takes 90 ms), only 1392 patches are sent

to CNN on average, reducing the associated processing cost to 980 ms. If clusters with

less than 3 MSERs are pruned away (our “fast” implementation in Tabs. 2.1 and 2.2),

only 300 patches are sent on to CNN, reducing its cost to 210 ms. Line grouping (Stage

IV) takes 30 ms.
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Figure 2.5: Patch-level evaluation (see Sec. 2.4.2 for definition of precision/recall in this
context). Red: using binary patches. Blue: using greyscale patches. S1-3: Stages I and
III with no MSER clustering (end-to-end computational time: 2.3 s/frame). S1-2-3:
Stages I, II and III, with one representative per MSER cluster sent to CNN but no
cluster pruning (1.2 s/frame). P1, P2, P3: pruning away clusters with less than 1, 2 or
3 MSERs per cluster (550 ms/frame, 380 ms/frame, 320 ms/frame respectively).
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2.4.2 Patch-Level Evaluation

In order to tune the parameters and take design decisions for all initial steps

(Stage I–III, before text line grouping), it is important to use a metric that allows for

patch-level quality assessment. Unfortunately, the standard word-level metric used in

text localization contests [86] would not serve us well for this purpose. We thus devised

a simple precision/recall2 metric that is specifically designed for patch-level evaluation.

More precisely, we want to be able to measure how well the characters in the text are

covered by patches that are classified positively by our system, as well as to measure

how well such patches are contained within word-level segments. Note that use of

this metric requires availability of a character-level hand-labeled data set, along with

word-level segmentation (we use the ICDAR 2015 text segmentation dataset). Let us

emphasize that character-level labels are never used for training; this data set is only

used to evaluate patch-level performance.

In our metric, recall measures the proportion of ground-truth characters that

have been detected. We found the measure of recall defined by Zhange et al. [99]

appropriate for this metric. Specifically, we assume that a given character has been

“detected” if there exists at least one patch classified positively by our system such

that at least 80% of the character’s bounding box is contained in the patch, and its

height no less than 0.7 times and no more than 1.5 times the patch’s height. Precision

measures the proportion of patches that have been correctly classified. We assume that

2Please note that the terms “precision” and “recall” are being overloaded here – they do not have
the exact same meaning as the equivalent metrics used in statistics, yet they convey similar meanings.
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a patch has been “correctly classified” if it is contained for at least 80% inside a word’s

rectangular region, with the ratio of the patch’s height to the word’s region height

between 0.5 and 1.3.

Fig. 2.5 shows patch-level precision-recall values for different variants of our

algorithm. We would like to highlight the fact that selecting the cluster representatives

for CNN classification (rather than classify all MSERs) has a minor effect on precision

(at 64.49%) while reducing recall by approximately 1% to 94.10% – but also resulting

in an almost twofold increase in speed. As mentioned in Sec. 2.3.2, the choice of cluster

representative is based on the fullness of the MSER’s bounding boxes. Indirect evidence

of the appropriateness of the fullness measure for representative selection is given by

the drop seen in recall if the cluster with median fullness or with minimum fullness were

to be chosen (93.55% and 88.24%, respectively), with precision remaining stationary

(65.03% and 63.07%).

Remarkably, if the full grayscale value is maintained for the pixels in a patch

classified by CNN, recall is reduced by as much as 5%, with an almost equivalent increase

in precision.

2.4.3 Word-Level Evaluation

We benchmarked our system with the ICDAR 2011 and 2015 text localization

data sets. Comparative results are shown in Tabs. 2.1 and 2.2; please note that the

definition of precision and recall used for these tests [86] are substantially different from

those introduced in the precious section. The slower version of our systems (without
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Recall (%) Precision (%) F-score (%) Time (s/f)

Proposed 77.21 87.59 82.07 1.2

Proposed (fast) 72.88 85.76 78.80 0.38

Proposed (grayscale) 69.66 85.21 76.65 1.2

Zhang et al. [99] 76 84 80 60∗

Huang et al. [28] 71 88 78 unknown

Yin et al. [95] 68 86 76 0.43

Neumann et al. [52] 68 85 75 3.1

Table 2.1: Word-level benchmarking with the ICDAR 2011 text localization data
set [86]. Proposed is our method without cluster pruning. Proposed (fast) prunes away
clusters with less than 3 MSERs in Stage II. Proposed grayscale uses grayscale instead
of binary patches (no cluster pruning). Computational time is measured in seconds per
frame (∗refers to a Matlab implementation).

Recall (%) Precision (%) F-score (%) Time (s/f)

Proposed 78.67 88.79 83.42 1.2

Proposed (fast) 75.18 84.64 79.55 0.38

Proposed (grayscale) 71.03 83.45 76.78 1.2

Zhang et al. [99] 74 88 80 60∗

Zamberletti et al. [97] 70 86 77 0.75

Neumann et al. [55] 72 82 77 0.8

Yin et al. [95] 66 88 76 0.43

Table 2.2: Word-level benchmarking with the ICDAR 2015 text localization data
set [86]. See caption of Tab. 2.1.
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cluster pruning; 1.2 s/frame) produces the highest F-score among all other algorithms

published to date in both data sets. The faster version (pruning clusters with fewer

than 3 MSERs) is three times as fast, with only slightly reduced F-score.

Figs. 2.6 shows several successful results of our algorithm. The figures also

show the resulting heat maps, where each pixel is assigned a value equal to the number

of MSERs overlapping on that pixel, multiplied by the CNN score assigned to the

representative of the cluster at that pixel (when the representative received a positive

score). Although we don’t use these heat maps directly in our algorithm, they very

well represent the relevance of both classification score and of the presence of multiple

overlapping MSERs as indicators of the presence of text.

2.5 Conclusion

We have presented an algorithm for text detection and localization that pro-

duces state of the art results while being computationally efficient. While the general

structure of the algorithm (MSER computation, CNN classification, text line grouping)

is quite standard, we have introduced a number of carefully designed improvements

that have a significant effect in performance and speed. The novel contribution of this

work includes a new strategy for thinning out MSERs that substantially reduces the

cost associated with CNN with only minor loss in performance; a method for mining

positive samples from word-level labeling; and the use of binarized patches for CNN clas-

sification, which is shown to improve results substantially with respect to grey-valued

27



Figure 2.6: Some successful results from our algorithm. Top: image with superimposed
detected word-level regions. Bottom: heat map.
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patches. While this algorithm is not yet feasible for real-time implementation on a

smartphone, we are currently exploring further possibilities for increased speed-up that

maintain similar quality level.
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Chapter 3

Cascaded Segmentation-Detection

Networks for Word-Level Text Spotting

3.1 Introduction

Fast automatic detection and reading of text (such a license plate number, a

posted sign, or a street name) in images taken by a fixed or a moving camera, is very

desirable for applications such as surveillance, forensics, autonomous vehicles [12, 13],

augmented reality (e.g., visual translation), and information access for blind people.

Traditionally, OCR systems were designed for documents scanned into well-framed,

good resolution images without excessive clutter, and taken under good illumination.

Recent mobile OCR software implemented in smartphones (e.g. ABBYY TestGrabber

or KNFBReader), dedicated hardware (OrCam), or in the cloud (Google Vision API)

produces very good results, but none of these systems is designed for real-time de-
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ployment (multiple frames per second), which is critical for the applications mentioned

above. For computational efficiency, a two-step process is often implemented. The first

stage (text spotting) quickly detects the presence of areas in the image that are likely to

contain text. These are then passed on to a recognition engine that decodes the textual

content, using machine learning normally coupled with lexicon priors.

This contribution focuses on fast and accurate word-level text spotting. The

ability to detect individual words may simplify the work of the recognizer, and word-

level detection is part of typical benchmarks such as the ICDAR incidental and focused

datasets [1, 2]. Individual word detection could be cast as an object detection task,

for example using popular algorithms such as as Faster R-CNN [68] or YOLO [66],

that can directly predict the coordinates of each object using axis-aligned rectangular

bounding boxes. Unfortunately, direct application of these algorithms to general text-

bearing images produces unsatisfactory results [23, 78]. This is because general object

detection methods have difficulties at detecting groups of very small objects such as

words in a text line.

Another possible approach to text spotting is the use of segmentation algo-

rithms (such as the fully convolutional networks, or FCN [44]) to identify images ar-

eas that are likely to contain text. These algorithms have proved very effective in

terms of detecting text at variable size, but are generally poor at identifying individual

words [100, 92].

In this work, we combine FCN’s remarkable robustness at segmenting text re-

gions, with YOLO’s efficient mechanism for detecting objects (in this case, words), ap-
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Figure 3.1: The general architecture of our word-level text spotting system. TextSegNet
finds text blocks with arbitrary shapes and size. A squared resized block is passed on to
WordDetNet, which generates oriented rectangular regions containing individual words.

propriately modeled as oriented rectangles. The two systems are integrated as a cascade

(see Fig. 3.1): text regions produced by our fully convolutional network (TextSegNet)

are cropped out of the image and resized to a square shape with fixed size. Then, a

YOLO-like network (WordDetNet) is trained to generate oriented rectangular bound-

ing boxes around each word. A simple non-maximum suppression stage takes care of

overlapping boxes. In analogy with foveated vision, TextSegNet takes the role of a

“spotter”, determining regions of interest to be analyzed in detail by WordDetNet. The

resized text regions contain a limited density of words, matching the inherently limited

capacity of WordDetNet. The scheme is simple and elegant, and requires none of the

post-processing steps (region grouping into straight lines, word splitting) that are typi-

cal of prior approaches. With execution time of 450 ms per image, our method achieves

excellent results on popular benchmarks.
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3.2 Related Work

Early attempts at text spotting used hand-designed features to capture char-

acteristics of text images, both statistical (bimodal marginal brightness distribution)

and morphological (uniform stroke width, connectivity, consistent width and height,

alignment into text rows). Two of the most successful examples were [54], based on

MSER segmentation, and [16], based on the stroke width transform. While these tech-

niques worked reasonably well, a substantial increase in detection and localization accu-

racy was achieved with the use of convolutional neural networks (CNN). The first such

methods [83, 28, 99, 62] used specific techniques to extract regions (proposals) with good

likelihood of containing text (or individual characters), which were then passed on to a

CNN classifier that would rule out false detections. This strategy, however, was plagued

by several drawbacks. Detecting individual characters is difficult in the presence of blur,

noise, or poor contrast. Since the operators used for character detection were typically

local, text-like background elements were often confused with text characters. In order

to ensure good recall rate, many (possibly overlapping) templates must be processed by

the CNN, resulting in long computational time.

Recent progress in semantic segmentation and object detection has offered

new tools that are well suited to text spotting. Fully convolutional networks (FCN) [44,

102, 7, 89, 61] and end-to-end object detection architectures such as Faster R-CNN [68]

and YOLO [66] process a full image, and produce pixel-wise labelling or labelled regions

containing objects of interest. In particular, through the use of skip layers, FCN are able
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to analyze an image using both large and narrow receptive fields, effectively encoding

both local features and global context. Unfortunately, the segmentation produced by

FCN, while highly reliable, cannot in general separate individual text lines or words,

and further processing is required (see Fig. 3.2).

The use of FCN for text spotting was pioneered by Zhang et al. [100], who

trained an FCN model to predict a saliency map; text line hypotheses were formed

by combining this saliency map with individual character templates found via MSER.

A final character-level FCN was used to remove false detections. The work of Yao et

al. [92] added supervision on the scale and center of characters as well as the linking

orientation of nearby characters when training the text block FCN. With additional

information produced by FCN, the task of the text line grouping module was much

simplified. Individual words were found based on the detection of indents between

characters in a text line.

In order to accurately locate text lines, Tian et al. [78] used a recurrent neu-

ral network to connect proposal regions into individual lines. This algorithm could be

trained end-to-end; compared to other bottom-up methods, it required no dedicated post

processing to form a text line. Unfortunately, this method only worked for near horizon-

tal text lines, and was unable to identify individual words. Gupta et al. [23] introduced

a method for individual word detection that did not require any post-processing (such as

grouping individual character templates). They trained a fully convolutional regression

network similar to [66] using a large dataset of synthetic images. This algorithm splits

an image into cells in a grid, where each cell is responsible for detection of a word cen-
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tered in it. Each image cell predicts the pose parameters (location, width, height, and

orientation) of a word, along with a confidence value. This method gives good results

on relative simple benchmarks [1], but suffers from its inherent inability to detect small

words in the image, when several such words locate inside the same (fixed size) image

cell. This limits its performance on the challenging ICDAR incidental dataset [2].

3.3 Methodology

As discussed in Sec. 3.2, the traditional bottom-up approach (from individual

characters to text line grouping to individual words) has recently been replaced by top-

down strategies, which start by detecting text regions (e.g. using FCN), then proceed

to identifying individual words. Unfortunately, while FCN enables very robust pixel-

level text block segmentation, detecting individual text lines or words with the same

mechanism becomes more challenging. This can be intuitively justified as follows.

FCN is designed to produce a pixel-level classification, where the label assigned

to each pixel comes from a multi-scale analysis of the pixel’s neighborhood (scale here

identifies the effective size of each node’s receptive field). The ability to utilize both

local and extended context allows FCN to produce high quality semantic segmentation.

Text patterns, however, are a special category of “objects”, characterized by a specific

geometric structure: characters are spaced regularly along a mostly straight line, with

words in a line separated by relatively small gaps. With large receptive fields, it is hard

for FCN to reliably separate individual words, resulting in segments that may contain
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a group of text lines, an individual line, or even an individual word or character (see

Fig. 3.2).

Input image FCN segmentation

Figure 3.2: FCN is in general unable to separate individual words.

Direct application of object detection algorithms such as R-CNN or YOLO

also generally produces poor results. R-CNN [20] relies on multiple region proposals,

generated by methods such as selective search; this limits both performance and speed.

Its successor, Faster R-CNN [68], replaces selective search with a learning-based algo-

rithm for proposal generation. But due to the large variation in scale and aspect ratio

that is typical of word regions, Faster R-CNN does not produce very good results, as
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reported in [78]. It should also be noted that most object detection algorithms predict

axis-aligned rectangular regions, while words may have arbitrary orientation.

Figure 3.3: By cascading segmentation (TextSegNet) with detection (WordDetNet), our
algorithm can detect both large and small words. If only WordDetNet is used, as trained
on whole images, detection will fail in the case of too small words. Detected words by
TextSegNet + WordDetNet are shown by red rectangles, the result of WordDetNet only
are shown by yellow rectangles.

YOLO [66] formulates object detection as a regression problem. This algorithm

is very fast and has shown good results for general object detection, but is by nature

constrained in terms of its “capacity (the maximum number and density of regions

produced in output). YOLO generates two boxes centered at each cell of a set defined

on a regular grid. If more than two regions (e.g. words) are centered within the same

cell, they cannot all be detected. The network capacity could be increased by changing

the size of the cells or the number of boxes generated per cell. This, however, would

37



result in increased computation and false positive rate.

Our architecture is a cascade of two stages (see Fig. 3.1): a segmentation

stage (TextSegNet), that detects areas with high likelihood to contain text; and a word

detection stage (WordDetNet), that, from the area cropped out by TextSegNet, resized

to a common size, identifies and localizes individual words. The two stages are described

in detail in the following.

3.3.1 TextSegNet

The first stage in our cascade, TextSegNet, is a fully convolutional network

that takes both local and global context information into consideration to determine

the label of each pixel. Text block detection is cast as a semantic segmentation problem

with two labels (‘text’ and ‘non-text’).

3.3.1.1 Architecture

TextSegNet is based on the FCN-8s [44] model, which is derived from the VGG

16-layer network [73] with the final classifier layer removed, and the fully connected

layers converted to convolution layers. We attach an additional final 1× 1 convolution

layer with channel dimension 2 to obtain prediction scores for ‘text’ and ‘non-text’. Two

skip layers are used to combine finer details (pool 3 and pool 4 ) with high level semantic

information; the output of the main and skip layers are combined and interpolated to

the original image resolution using bilinear kernels (the weights of these kernels are also

learnt during training). Softmax loss is used for training. The output of the network
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is a binary map representing likely areas containing text. For more details about the

network structure of FCN-8s, the reader is referred to [44].

3.3.1.2 Training

During training and testing, all input images are resized so that their largest

side has length of 1000 pixels. Both datasets considered in the experiments have ground-

truth word-level labelling. Specifically, individual words are labelled by axis-aligned

rectangular bounding boxes in the ICDAR 2013 focused dataset, and by generic quadri-

laterals in the ICDAR 2015 incidental dataset. In order to train TextSegNet, a binary

mask is first created, where all pixels in the word labelled regions are marked as “text”,

while the other pixels are marked as “non-text”.

3.3.2 WordDetNet

Each individual region identified by TextSegNet is first resized to a fixed square

shape. More precisely, a square box tightly bounding and co-centered with the region

is computed; the square box is then reshaped uniformly to a fixed size. In this way,

the aspect ratio of the text image is not changed. The only exception is for segments

that are very close to the image edges, where a co-centered square bounding box would

extend outside the image area. In this case, a rectangular bounding box is considered,

which is then re-sized as a square (see eg. Fig. 3.1). Reshaping text image segments to

uniform size provides some degree of scale invariance, except for segments containing

one or a few very long text lines, in which case the reshaped characters may have small
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size. The square reshaped images are then fed to a network (WordDetNet) to predict

the locations of individual words.

Inspired by the YOLO architecture [66] and the work of Gupta et al. [23],

WordDetNet is tasked with identifying individual words. It defines a N × N grid on

the image, where each cell in the grid predicts B candidate oriented rectangular regions

(boxes), all centered within the cell. A box can be parameterized in terms of the position

(x, y) of its center relative to the bounds of the grid cell, its width and height (w, h)

relative to the size of image, and its orientation angle θ, which is normalized to a value

between 0 and 1. In addition, the network produces a value (C) that represents the

confidence that this box actually contains a word.

3.3.2.1 Loss Function

The network is trained to minimize a multi-part squared loss function L(P).

P represents the set of all N2 · B box parameter vectors pji = (xji , y
j
i , w

j
i , h

j
i , θ

j
i , C

j
i ),

where i identifies the cell and j identifies the box. L(P) is defined as follows:
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]
In the equation above, δobji is equal to 1 if the training image contains a word (represented

by a oriented rectangle) centered at the i-th cell, 0 otherwise. δji is 1 only for the j-th
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predicted box with the largest Intersection-over-Union (IoU) with the word centered at

the i-th cell (this is the responsible box [66]). The hatted notation represents “ground

truth” values for the oriented rectangular word regions. In practice, for cells with no

words centered on them, only the second term of the loss expression is activated, which

penalizes predicted box confidence values larger than 0. Otherwise, only one responsible

box is considered, with a penalty that takes into account both the box’s confidence

(which should be close to 1) and its localization accuracy; the non-responsible boxes are

given a penalty for large confidence values. Note that Eq. (3.1) is equivalent to the

loss function for the original YOLO network, except that (i) it contains an additional

term for the rectangle orientation (θ), and (ii) there is no term assessing the posterior

distribution of class assignment, as only one class (text) is considered here. We set the

weights as follows: λang = 10, λcoord = 5 and λnoobj = 0.1, which approximately balance

multiple loss terms. The smaller value for λnoobj is justified by the fact that only few

cells are expected to be the center of words in the text region.

Predicted boxes with confidence value Cji less than 0.5 are discarded. Non-

maximum suppression is used to remove overlapping detection with IoU less than 0.3.

Note that general object detection algorithms use a larger threshold on the IoU. How-

ever, since words are normally placed along a line, a smaller overlap is expected in this

case.
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3.3.2.2 Architecture

WordDetNet (see Fig. 3.4) is built on the VGG 16-layer architecture [73], with

the front layers initialized with the weights learned for TextSegNet (which also based on

VGG 16-layer network). The original VGG 16-layer network is decapitated after conv

5-3, and two additional convolutional layers (conv 6 and prediction) are added, along

with a ReLU and dropout layer after conv 6. conv 6 has 4096 filters with kernels size

of 7× 7, while prediction has B · 6 filters with size of 3× 3, resulting in B sets of box

parameters ({pji}). Both conv 6 and prediction are properly padded to maintain the

size of the feature map. Note that that there are four 2 × 2 max pooling layers before

conv 5-3. This means that, in order for the channels in output of conv 5-3 to have size

of N ×N (corresponding to the cell grid described earlier), the input image must have

size of 16 ·N × 16 ·N . For example, an input 240× 240 color image will result in a grid

of 15×15 cells. Note that the original YOLO network contains multiple fully connected

layers, which are replaced by convolutional layers in WordDetNet. This results in a

smaller number of parameters, allowing for easier training.

3.3.2.3 Training

WordDetNet operates on square text block regions. During training, text

blocks are generated by the following algorithm, which mimics the expected output of a

typical segmenter, where nearby words are likely to be grouped within the same segment.

A graph is formed on the ground truth word-level rectangular bounding boxes, where

two such bounding boxes are linked in the graph if their minimum distance is smaller
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Figure 3.4: The structure of WordDetNet, shown here for N=15 and B=1. Our exper-
iments show the above configuration achieves the best result.

than a threshold (set to be equal to the sum of the heights of the two rectangles). Then,

the connected components of this graph are found. For each connected component, the

tightest axis-aligned bounding rectangle is computed. Then, as explained in Sec. 3.3.2,

this rectangle expanded to a square and resized, before being passed on to WordDetNet

for training.

3.4 Experiments

3.4.1 Implementation Details

Our training data come from three sources: the training portion of the ICDAR

2013 focused dataset (229 images) and of the ICDAR 2015 incidental dataset (1000

images), as well as the large scale synthetic dataset (around 8 million images) described

in [23]. We augment the images from the ICDAR datasets by means of random rotations,

translations, and color adjustment, and add a subset of 20K images randomly selected
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from the synthetic dataset [23]. Note that we use only a small portion of the synthetic

dataset in order to maintain a balance between natural and synthetic images. Overall,

our training dataset contains about 35K images. We found that the addition of synthetic

images has a moderate effect on performance (F-score increase by 1% in the ICDAR

incidental dataset only).

The training dataset for WordDetNet contains 40K text blocks which are au-

tomatically mined using the algorithm mentioned earlier in Sec. 3.3.2.3. Weight sharing

between TextSegNet and WordDetNet enables good performance in spite of relatively

small training data size.

Our implementation is based on Caffe [33], and runs on a workstation (3.3Ghz

6-score CPU, 32G RAM, GTX Titan X GPU and Ubuntu 14.04). As mentioned earlier,

the images given in input to TextSegNet are resized to 1000 pixels in their longer side.

We use the same training strategy as in [44], with batch size of 1, learning rate of 10−9,

momentum of 0.99, and weight decay of 0.0005. Training TextSegNet takes 20 hours for

100K iterations. WordDetNet takes text blocks resized to 240×240 pixels, resulting in a

15×15 grid. Training parameters are: batch size of 16, learning rate of 10−5, momentum

of 0.9 and weight decay of 0.0005. At 50K iterations, training of WordDetNet takes 10

hours.

At deployment, one image is processed by TextSegNet in about 250 ms, then

each text block is processed by WordDetNet in about 50 ms. End-to-end processing

takes about 450 ms per image on average.
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3.4.2 ICDAR 2015 Incidental Dataset

3.4.2.1 Dataset Description

The ICDAR 2015 incidental dataset [2] contains 1000 training images and

500 images used for testing. These images were taken by wearable cameras, without

intentional focus on text regions. They are characterized by large variance in text size

and orientation; some amount of blur is often visible. This dataset thus represents a

much more challenging benchmark than the older ICDAR 2013 Focused dataset, which

is described later in Sec. 3.4.3. A quadrilateral bounding box is defined for each word

in the dataset; however, only the bounding boxes for the training portion are made

available to the public. Detection results are evaluated by measuring the Intersection-

over-Union (IoU) between a predicted box and the closest ground truth quadrilateral;

if the IoU is larger than 0.5, the predicted box is deemed a true positive. A score is

produced in terms of precision (ratio of true positives count and all detections count)

and recall (ratio of true positives count and all ground truth labels count), as well as

of their harmonic mean (F-score). Note that some unreadable words are marked as “do

not care”; they are still counted as ground truth labels when computing precision, but

not when computing recall. Our algorithm is only trained on the words not labelled as

“do not care”.
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Table 3.1: Results on the ICDAR 2015 Incidental dataset

Method Precision (%) Recall (%) F-score (%)

HUST [34] 44 38 41

AJON [34] 47 47 47

NJU-Text [34] 70 36 47

StradVision [34] 53 46 50

Zhang [100] 71 43 54

Google Vision API 68 53 59

CTPN [78] 74 52 61

Megvii-image++ [92] 72 58 64

Proposed (Seg+Det) 79 65 71

Proposed (Det only) 61 40 48

3.4.2.2 Results

Tab. 3.1 shows results of our method as compared with other state of the art

published algorithms [100, 78, 92], as well as with Google Vision API, which produces

word-level detection and recognition. Our cascaded (segmentation + detection) network

outperforms the previous best results by a large margin (7% higher F-score than its

closest competitor). In order to highlight the importance of the prior segmentation step,

we also show results using only WordDetNet as applied on the whole image, rather than

on the segments detected by TextSegNet. Performance decreases substantially in this

case, showing the importance of a prior segmentation step. Some detection examples in

challenging images are shown in Fig. 3.5.
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Figure 3.5: Some successful results.
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Figure 3.6: Examples of failure cases: incorrect box orientation or size, missing words
in curved text.

The network capacities (defined as the maximum density of candidate boxes

generated) can be changed by varying the number of cells in the N × N grid defined

in WordDetNet, or the number B of boxes generated in each cell. Fig. 3.7 plots the

F-score resulting from varying N between 7 and 19 (only odd values [66]) and with B

equal to 1 and 2. This data shows that generating more than one candidate box per cell

doesn’t seem to provide an advantage, and that the optimal number of cells is 15× 15.

Note that with fewer cells, the burden is on the network to correctly localize the box

within a larger cell. With more (hence smaller) cells, correct localization is easier, but

the risk of false positives increases.

In spite of the good quantitative results, we noticed that sometime the box

orientation and/or size as estimated by WordDetNet is somewhat inaccurate (see exam-

ples in Fig. 3.6). Incorrect orientation or size of an estimated word region may reduce

the Intersection-over-Union with the corresponding ground truth region, thus affecting

the resulting recall rate.

48



N
6 8 10 12 14 16 18 20

F-
sc
or
e

50

55

60

65

70

75
B=1
B=2

Figure 3.7: The F-score of ours system on the ICDAR 2015 incidental dataset as a
function of the parameters N (which determines the number of cells in grid considered
by WordDetNet) and B (the number of boxes generated per cell).

3.4.3 ICDAR 2013 Focused Dataset

3.4.3.1 Dataset Description

The ICDAR 2013 focused dataset [1] contains images “explicitly focused around

the text content of interest”. 229 images are used for training and 233 for testing. In

these images, text is seen at good resolution and at approximately horizontal orienta-

tion. Each word is labelled with an axis-aligned rectangle. The evaluation protocol is

described in [35, 87].
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Table 3.2: Results on the ICDAR 2013 Focused dataset

Method Precision (%) Recall (%) F-score (%)

Neumann et al. [52] 85 68 75

Yin et al. [95] 86 68 76

FASText [5] 84 69 77

Huang et al. [28] 88 71 78

Zhang et al. [99] 88 74 80

TextFlow [77] 85 76 80

He et al. [25] 93 73 82

Qin et al. [62] 88 77 82

Zhang et al. [100] 88 78 83

Gupta et al. [23] 92 76 83

Yao et al. [92] 88 80 84

TextBoxes [40] 88 83 85

Zhu et al. [104] 93 81 87

CTPN [78] 93 83 88

Proposed 90 83 86

3.4.3.2 Results

Tab. 3.2 shows comparative results against other published algorithms. Our

system has F-score of 86%, ranking among the top performers. The best current result

is achieved by CTPN [78], with F-score of 88%. Note, however, that CTPN cannot

identify individual words, and does not work for text with arbitrary orientation. In

the more challenging ICDAR 2015 incidental dataset, our system outperforms CTPN

by 10%. Looking closer at the data, one may notice that our algorithm produces the

same recall value (83%) as the best performing systems, but lags behind in precision

(90%, vs. 93% as obtained with CTPN [78] and Zhu et al. [104]). Part of the reason

is that our method is able to find existing text that doesn’t appear in the ground-truth

labelling (see e.g. Fig. 3.8), resulting in an (incorrect) penalty in terms of precision.
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Figure 3.8: Our method finds words in very challenging situations (yellow boxes), even
when these words are not labelled in the ICDAR 2013 focused dataset.

3.5 Conclusion

We have presented a new approach for word-level text detection and localiza-

tion. Our algorithm identifies individual words and draws bounding boxes in the shape

of oriented rectangles. The system is formed by the cascaded of a segmentation net-

work (TextSegNet) and a detection network (WordDetNet), where the latter operates on

regions segmented out by the former, resized to a common size. By combining segmen-

tation and detection, we leverage on the strengths of each network. TextSegNet (which

is based on the fully convolutional architecture of [44]) can very robustly detect the
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presence of text in the image, but is unable to identify individual words. WordDetNet

(inspired by the YOLO architecture [66]) can effectively detect and localize individual

words from a resized regions identified by TextSegNet. Unlike most existing algorithms,

our system does not require a post-processing step to enforce alignment of the detected

words.

We show experimentally that the first step (segmentation and resizing) is crit-

ical for the second step to be effective. On the challenging ICDAR 2015 incidental

dataset, our system achieves top results among the published algorithms, outperform-

ing the closest one by 7% in terms of F-score. In the more benign ICDAR 2013 focused

dataset, our system produces an F-score that is only 2% less than the top performing

algorithm (CTPN [78]).
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Chapter 4

Robust and Accurate Text Stroke

Segmentation

4.1 Introduction

Optical character recognition (OCR) has been one of the earliest success stories

in computer vision. A fully electronic text reading system was demonstrated as early

as in 1946 [48], while the first commercial OCR company, Intelligent Machines, was

founded by Shepard and Cook in the early 50’s. By the early 1980s, OCR of scanned

documents was considered a solved problem; by the end of the same decade, a patent

on automatic license plate reading was granted [21]. More recently, automatic text

reading has received renewed interest in domains that were considered too challenging

for traditional technology.
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Scene text (or text in the wild) is a term often used to indicate text of any

kind appearing in pictures or videos, often taken by hand or by a moving camera.

As such, these images suffer from all sort of imperfections: blur, low resolution, poor

exposure, reduced contrast. The text content itself is often very coincise (e.g., the name

of a store), and not necessarily displayed on a straight line. Text may appear in front

of a possibly multi-colored background. Specularities and cast shadows cutting across

the text area are not unusual. Unlike scanned documents, which normally contain a

large portion of well-structured text printed against a solid color background, detecting

and localizing text areas in general scenes is challenging, especially when the scene

contains visual clutter and the text itself occupies a small area. In addition, almost all

applications involving scene text reading demand high frame rate processing. For this

reason, considerable research effort went into algorithms for fast and robust scene text

detection (or spotting). Once a text bearing region has been identified, its content can

be processed by any standard OCR algorithm. Some text spotting algorithms specialize

on separating individual words within the text area [63], thus further simplifying the

job of subsequent modules.

Early attempts at text spotting considered an initial stage of text stroke seg-

mentation, that is, segmentation of the regions corresponding to text strokes from

the background. Widely used techniques include Maximally Stable Extremal Regions

(MSERs) [49], a fast technique for generic local segmentation that is robust against do-

main and photometric distortions; and the Stroke Width Transform (SWT) [16], which

is specifically designed for the detection of stroke-like regions. More modern text spot-

54



ting approaches skip the text stroke segmentation step altogether, relying instead on

general object detection techniques based on convolutional neural networks (CNNs).

While text stroke segmentation may not be needed for text detection, it still

has an important role in improving the performance of OCR [39] and other specific

applications of interest. For example, binarization allows for operations such as text

removal (and possibly substitution), text color change, and contrast enhancement. This

type of operations are often required for stock photography processing (e.g., license

plate number removal from Google StreetView images [19]), augmented reality (e.g.,

substitution of original text with its translation in a different language [18]), and assistive

technology (e.g., to increase text readability for people with low vision [29]). Precise

stroke segmentation is needed in these applications in order to preserve the naturalness

of processed images.

Our main contribution is a novel algorithm for text stroke segmentation that

produces accurate results in the face of adversarial conditions such as cast shadows

and cluttered background. The algorithm operates on image areas that have been

previously identified as containing text (by an appropriate spotting algorithm). It is

structured as the cascade of two modules. The first module uses a fully convolutional

network (FCN) trained to robustly discriminate pixel within a stroke from those in the

background. This results in a segmentation that reliably identifies text stroke areas;

however, due to the multi-scale nature of FCN, this segmentation is often not accurate

(see e.g. Fig.4.3). The second module is in charge of refining the earlier segmentation,

in order to ensure that the contour of the stroke regions is correctly preserved. It relies
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on a fully connected conditional random field (CRF) model that uses an innovative

expression for the pairwise energy term, one that uses information from the estimated

local stroke width. We show that, by adding the proposed stroke width term to the

more traditional bilateral kernel, the accuracy of segmentation improves noticeably.

In order to train the FCN, a large amount of images labeled at the pixel level are

necessary. Unfortunately, existing data with pixel-level labeling of text content is scarce.

We therefore assembled a new synthetic data set, with 100,000 images, representing a

wide variety of font and backgrounds, along with pixel-level ground truth labels. This

is the second original contribution of our work. Note that another synthetic data set

was created in prior work to facilitate training of text spotters in natural images [23].

However, this prior data set did not provide pixel-level labels, and thus could not be

used for our purpose.

We also propose the use of our text stroke segmentation algorithm and image

inpainting technique to generate realistic synthetic data (see Sec.4.5.4). This is our

third contribution.

4.2 Related Work

Document image binarization has a long history. A number of algorithms,

based on image brightness thresholding , have been developed, beginning with Otsu’

seminal work[59, 56, 71, 74, 26]. These techniques achieve good performance on scanned

documents, but often fail on scene text segmentation, due in part to the typical large
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Figure 4.1: Our proposed framework.

variance in font, color, illumination that is typical in this type of imagery, as well as the

to possible presence of complex background.

Early attempts at scene text segmentation tried to separate text strokes from

background using local features such as edge [42] and color [84, 47], which were processed

using simple thresholding or filtering. Later work used more sophisticated image models

such as Markov Random Field (MRF) [51, 76, 50]. For example, Mishra et al. [51]

used a MRF model where the unary energy term is described by a Gaussian mixture.

The parameters of the color distribution within the text area were initialized using

the stroke width transform (SWT [16]) Energy minimization was obtained via iterative

graph cut [70]. A variant of this algorithm, proposed by Tian et al. [76], used the Stroke

Feature Transform (SFT [27]) for initialization. SFT is more robust than SWT, resulting

in more accurate initial color distributions, and thus avoiding the need for iterative graph

cuts. Unfortunately, neither algorithm can cope with challenging situations, when local
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features become unreliable.

Maximally Stable Extremal Regions (MSERs) [49] have been used widely for

scene text detection[54, 28, 62] and segmentation[54, 75, 52]. A classifier is trained to

separate text from background based on the shape of each MSER region, along with

other hand–drafted features. In order to achieve high recall rates, MSERs are often

extracted from multiple color channels and using different thresholds; this, however,

increases the computational load. Zhou et al. [103] proposed to use analysis-by-synthesis

for text segmentation. A physical model was used to synthesize image given an initial

set of rendering parameters and initial foreground/background labels. The parameters

of the model were optimized using Expectation Maximization.

In recent years, convolutional neural networks (CNN) have been successfully

applied to virtually all fields of computer vision, including scene text reading. In partic-

ular, fully convolutional networks (FCN) [44] are well suited for pixel-level segmentation.

One problem with FCNs, however, is that, due to the large receptive field size of the cells

in the network, the segmentation produced is often poorly localized (i.e., the contours

of the detected regions may not closely follow the contours of the foreground regions in

the image). Fully-connected conditional random field (CRF) [36] models are often used

to overcome this limitation, and to refine local details of segmentation by minimizing

a carefully designed global energy function. Chen et al. [7] fed the label assignment

probabilities produced by an FCN to a fully-connected CRF, with the two modules

trained separately. Zheng et al. [102] reformulated the mean-field algorithm for approx-

imate inference for a fully-connected CRF as a Recurrent Neural Network (RNN), thus
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enabling end-to-end training.

4.3 A New Synthetic Text Data Set with Pixel-Level La-

bels

Figure 4.2: Samples from our synthetic dataset.

Training CNNs requires a large amount of data. Large data sets have been as-

sembled for scene text detection (e.g. [81]). These sets are equipped with bounding box

annotation identifying individual words. Unfortunately, data sets with pixel-level anno-

tations are of a much smaller scale. For example, ICDAR 2003[46], ICDAR 2011[72],

ICDAR 2015[1] and SVT[82] only contain a few hundreds word bounding boxes anno-

tated at the pixel level as text stroke vs. background. While this size can be adequate

for a test set, it is insufficient for training a network. We thus decided to generate a

new, large scale data set with synthetic data. In the following, we describe how our new
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data set has been generated.

We began by sampling 100K words from an English corpus. These words were

rendered using ImageMagick1 onto a background. Each word was randomly assigned

one of 264 different fonts, with height varying between 15 and 90 pixels. The font color

could be white (25% of words), black (25%), grey (25%), or randomly chosen from a

palette. Each word underwent one of a set possible geometric transformations (rotations,

cylindrical projections, perspective transformations, wave distortion), with parameters

sampled from a normal distribution. Words were then rendered against a background

that could have a randomly chosen solid color (66% of words), or a portion of a “natural”

image, randomly selected from the IAPR TC-12 Benchmark. The resulting images were

corrupted with additive noise (Gaussian, impulse, and Laplacian), reflection and shadow

effect. The resulting images have height of 112 pixels and variable width; the binary

mask (text stroke vs. background) is provided for each image. We only use images from

this set to train our algorithms (reserving a 10K subset for validation); the algorithms

are then benchmarked on all available annotated real images.

4.4 Text Stroke Segmentation

Our proposed framework and FCN structure are shown in Fig.4.1. The resized

input word patch (height is 112 pixels) is fed to the FCN to produce a coarse segmenta-

tion, more accurate text stroke mask is obtained with a fully-connected CRF refinement

step.

1imagemagick.org
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4.4.1 Coarse Segmentation: FCN

The first step in our algorithm is a coarse pixel-level segmentation of text

strokes from the background using a FCN. Thanks to their ability to use information

at multiple scales, FCNs can segment text strokes even in challenging situations.

The network structure of the original FCN [44] was derived from the VGG 16-

layer network[73], with the final classifier layer removed, and the fully connected layers

converted to convolutional layers. We modified the original FCN scheme for our applica-

tion as follows. First of all, we remove the last pooling layer (pool5 ) and all subsequent

layers. This is justified by the observation that text stroke segmentation from an al-

ready cropped word patch is a simpler undertaking than generic semantic segmentation,

which was the task addressed by [44]. The last convolutional layer (conv 5 3 ) is fed to

a 1 × 1 convolutional layer with channel dimension of two, producing class prediction

scores for text and background (score s16 ). As suggested in [44], two skip layers are

added, with the purpose to combine low resolution, highly semantic information with

finer detail. The coarse prediction scores score s16 are upsampled by two before being

combined with the prediction scores from conv 4 3 to produce a finer scale prediction

(score s8 ). The same process is repeated for the second skip layer. The resulting pre-

diction score score s4 is then upsampled by four to match the input image size. The

upsampling layers are initialized with a bilinear interpolation kernel, whose weights are

then learned during training.

Another difference with respect to the original FCN [44] is that the skip layers
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branch out at the end of a “block” of layers between two pooling layers, rather than

at the beginning (layers labelled in red in Fig. 4.1). Skip layers are used to maintain

information at higher resolution. The end layer of a block has the same resolution as the

beginning layer, but may contain semantically richer information, and thus may prove

a better candidate for a skip layer branching point.

Note that features at the coarsest scale (score s16 ) have receptive field size

of 192-by-192 , which is substantially larger than the height of input word block (112

pixels).

4.4.2 Refinement: Fully-Connected CRF with Stroke Width Kernel

The first stage FCN is able to segment out text strokes under a variety of

font, color, illumination and background. However, as observed in Fig.4.3, the resulting

segments are often not accurately localized. This is likely due to the large receptive

field size of the nodes in the network, and to the fact that the result is upsampled from

a low resolution map.

In order to refine the segmentation produced by FCN, we add a fully-connected

CRF as a post-processing step. This produces a very noticeable improvement. A further

improvement is obtained by modifying the the standard bilateral kernel [7] used to com-

pute joint energy terms. Specifically, we propose to include in this term the estimated

stroke width as a new text-specific feature. This is born by the observation that the

stroke width is approximately constant within a text character. The standard bilateral

kernel, which discourages assigning different labels to nearby pixels that have similar
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colors, fails to properly characterize the appearance of characters with large local color

variations (e.g. as due to a cast shadow); background pixels with similar color as text

region might be wrongly predicted as text (see Fig.4.4). By adding a measure of stroke

width consistency in the joint energy term, CRF is more likely to correctly segment out

whole characters and filter out background region with confounding color.

We define the following CRF energy function:

E =
∑
i

− logP (xi) +
∑
ij

θij(xi, xj) (4.1)

θij(xi, xj) =µ(xi, xj)w exp(−|pi − pj |
2

2θ2α
− |Ii − Ij |

2

2θ2β
− |si − sj |

2

2θ2γ
). (4.2)

where xi and xj are labels for pixels i and j, located at position pi and pj ,

with colors Ii and Ij , and associated stroke widths si and sj . (The computation of

stroke width is described later in Sec. 4.4.2.1.) In the unary energy term, P (xi) is

the probability of pixel i having label xi; this is computed from the score returned by

FCN. More specifically, P (ti) = 1 − P (bi) is the probability that pixel i belongs to a

text stroke. µ(xi, xj) = 1 if xi 6= xj , zero otherwise. θij(xi, xj) for xi 6= xj is the cost

of assigning different labels to pixels i and j, which depends on the distance between

pixels, their difference in color, and their difference in associated stroke width. The

hyper-parameter w controls the weight of the joint energy term, while θα, θβ and θγ

controls the scale of each feature.
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Figure 4.3: The first row is input images, second row is raw FCN predictions and last
row contains final results with CRF refinement.

4.4.2.1 Modified Stroke Feature Transform

The stroke width at each pixel (term si in equation (4.2)) is computed before

CRF refinement, based on the original image with additional input from the FCN pre-

dictions. It is based on the Stroke Feature Transform (SFT) [27], which is a modification

of the original Stroke Width Transform (SWT) algorithm [16]. In the SFT algorithm,

edges are first extracted from the image (using Canny); then, a line is drawn from each

edge pixel in the direction of the image gradient. The line is stopped as soon as it hits

another edge pixel, or when the color of the current pixel differs from the median color

of the pixels in the current segment by a large margin. The segment is then accepted

if the image gradients at its endpoints point in approximately opposite directions. In

addition, after all segments have been drawn, any segment whose median gradient orien-

tation or colors is significantly different from that of its neighbors is discarded. Finally,
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Figure 4.4: The first row is input images, second row is results without stroke width
kernel and last row contains results with stroke width kernel. In left example the text
color has large variance due to shadow and for right image the background contains
regions with similar color as text region. In these cases use bilateral kernel alone becomes
unreliable.

all pixels within a segment are assigned a stroke width value equal to the segment’s

length. Note that this algorithm may leave some small untouched “islands” of pixels

within a character; these pixels are then assigned a value equal to the median of the

value of their closest neighbors.

SFT was shown to be more robust than SWT, especially in situations in which

edges may be difficult to compute reliably, or when the gradient at an edge pixel points

away from the normal to the stroke edge. We further improve on the SFT algorithm

(Modified SFT) by using information from the FCN output probability map. Specifi-

cally, we only keep a segment (as computed by SFT) when the average of P (ti) for pixels

i within the segment is larger than a threshold. This helps ensuring that incorrect seg-
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ments are not mistakenly accepted only because the image gradients at their endpoints

happen to have approximately opposite directions. We run our modified SFT twice on

two polarities, in order to find the stroke widths for dark text on light background as

well for light text on dark background.

Note that, unlike SFT and SWT, we don’t compute connected components of

pixels with similar stroke width. We use the stroke width information solely as a feature

in the kernel for the joint pairwise energy.

4.5 Experiments

4.5.1 Implementation Details

The coarse FCN segmentation component of our system is trained on the 100K

synthetic images in our data set. As mentioned earlier, each image in the data set has

fixed height (112 pixel) and variable width, depending on the word’s aspect ratio. Due

to the variable size of the samples, we set the batch size to one, and reshape the network

at each forward pass. Cross-entropy loss is used during training.

The weights of our FCN are initialized from those of the network described

in [63] (originally trained for scene text detection), and fine-tuned following the guide-

lines of [44]. We first fine-tune the model without skip layers for four epochs, with learn-

ing rate set to 10−9, momentum set to 0.99, and weight decay set to 0.0005. We then

add one skip layer at a time with reduced learning rate (10−11 and 10−12 respectively).

The hyperparameters of the fully-connected CRF are determined by cross-validation on
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the validation set. We used the publicly available C++ implementation of the CRF’s

provided by the authors of [36].

Our system is implemented using Caffe [33] and runs on a workstation (3.3Ghz

6-core CPU, 32G RAM, Nvidia GTX Titan X GPU and Ubuntu 14.04 64-bit OS). At

run tine, a 180 by 60 pixel input image is processed in about 0.2 seconds.

4.5.2 Quantitative Results

Data sets: We evaluated our algorithm against several popular document

binarization methods [26, 56, 59], as well as against other state-of-the-art scene text

segmentation techniques [45, 51, 17, 76, 75, 103]. We computed pixel-level precision,

recall, and f-score for three popular scene text data sets: ICDAR 2003 [46] (1110 words);

ICDAR 2011 [72] (716 words); and SVT [82] (647 words). For each data set, cropped

rectangular regions containing individual word are available. Pixel level ground-truth

labeling was generated by Kumar[39] using a publicly available semi-automated tool.

Polarity: For document binarization algorithms such as Niblack and Howe,

correct polarity is not guaranteed. For fair comparison, we simply computed f-scores for

each polarity, and reported the largest one. This is an optimistic measure: in practice,

an automatic polarity check would be needed when using these algorithms, which may

generate errors not considered by this measure.

Ablation study: We present results (1) using the full system (FCN+CRF/SFT),

(2) removing the stroke width term form the CRF joint energy term (FCN+CRF ), and

(3) without using the fully connected CRF refinement step (FCN).
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Figure 4.5: In this figure we compare the result of Otsu binarization algorithm [59],
Zhou’s text segmentation algorithm [103] and our method with several challenging im-
ages. From top to bottom: input image, Otsu result, Zhou’s result, our result and our
raw FCN output probability map.

4.5.2.1 ICDAR datasets

Comparative results for the ICDAR 2003 and ICDAR 2011 data sets are shown

in Table 4.1 and 4.2. Note that these sets are relative easy as compared with SVT. Many

images have clean background and clear text with bimodal color distribution, which al-

lows simple binarization algorithm such as Niblack[56] and Howe[26] to reach appreciable

performance (assuming correct polarity). More modern scene text segmentation algo-

rithms consistently outperform these simpler binarization algorithms, thanks to their

enhanced ability to remove background. FCN produces lower score than most competi-

tors, due to poor localization. However, using the fully-connected CRF refinement step

(FCN+CRF/SFT), significant improvement is observed, with an increase in f-score by

6.75% on ICDAR 2003 and by 7.05% on ICDAR 2011, achieving the the highest pre-

cision and f-score. Note that Lu[45] reaches a higher recall, but much lower precision

due to oversegmentation. The stroke width term in the CRF kernel contributes to the
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improvement in f-score by 0.87% and 1.71% respectively. Detailed analysis shows that

even though the modified Stroke Feature Transform sometimes fails with extremely low

contrast images, the algorithm can still produce good results thanks to the robust FCN

output and the bilateral CRF kernel component.

Table 4.1: Pixel level segmentation evaluation on ICDAR 2003 dataset.

Method Precision Recall F-score

Niblack[56] 71.10 81.72 76.04

Lu[45] 72.61 95.48 82.49

Howe[26] 81.08 87.92 84.36

Mishra[51] 85.20 88.60 86.86

Feild[17] 86.58 87.84 87.21

Tian[76] 87.45 90.63 89.01

Zhou[103] 88.06 90.35 89.19

Tian[75] 88.27 90.18 89.21

Ours (FCN) 83.11 85.11 83.75

Ours (FCN+CRF) 88.80 90.47 89.63

Ours (FCN+CRF/SFT) 89.96 91.04 90.50

Table 4.2: Pixel level segmentation evaluation on ICDAR 2011 dataset.

Method Precision Recall F-score

Niblack[56] 77.39 90.33 83.36

Lu[45] 77.26 95.37 85.36

Howe[26] 82.50 89.28 85.76

Feild[17] 90.84 89.61 90.22

Tian[76] 87.24 93.85 90.42

Ours (FCN) 84.87 86.91 85.88

Ours (FCN+CRF) 90.03 92.45 91.22

Ours (FCN+CRF/SFT) 92.04 93.84 92.93
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4.5.2.2 SVT dataset

Compared with the ICDAR 2003 and 2011, the SVT dataset is arguably more

challenging. Its images, which are extracted from Google Street View images, tend to

be affected by noticeable blur, low contrast, complex background, and large variation in

illumination. As shown in Table 4.3, prior methods produce results with substantially

lower quality on this data set. Our system (FCN+CRF/SFT) achieves an f-score of

86.36%, compared with 81.20% for its closest competitor.

Table 4.3: Pixel level segmentation evaluation on SVT dataset.

Method Precision Recall F-score

Niblack[56] 57.59 78.56 66.46

Howe[26] 69.16 81.32 74.74

Zhou[103] 71.93 87.18 78.82

Tian[75] 76.74 86.22 81.20

Ours (FCN) 77.67 82.43 79.98

Ours (FCN+CRF) 83.01 85.36 84.17

Ours (FCN+CRF/SFT) 85.34 87.40 86.36

4.5.3 Qualitative Results

In Fig. 4.5 we show some results of our method (FCN+CRF/SFT) for some

challenging cases. The raw FCN probability map output is also shown, along with the

output from the classic Otsu binarization algorithm[59] and from the scene text seg-

mentation method proposed by Zhou [103]. Our method produce cleaner segmentation

with high recall. It can deal with uncommon font, complex background, reflections, dif-

ferent illumination conditions and poor contrast. With large receptive field and trained
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multi-scale features, the coarse FCN segmentation produces robust results. The CRF

refinement steps allows local details to be captured more faithfully. Key to our approach

is the fact that “local” features (color, stroke width) are used only to refine the FCN

output, and not to segment text from background, as in traditional algorithms based

on MSER or edges. Even when local features become unreliable, FCN, thanks to its

large receptive field, gets the job done.

Failure cases includes images with extremely low contrast (Fig. 4.6, left), as well

as images with background similar to the text color and containing pattern consistent

with text strokes (Fig. 4.6, right).

Figure 4.6: Failure cases.
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4.5.4 Application: Text Substitution

Text substitution [18] is the art of replacing visible text in an image with other

text (using different content, font, color, size, or language), in such a way that the

rendered image looks “natural”. Accurate text stroke segmentation is an important

component of text substitution. A typical computational pipeline for text substitu-

tion would follow these steps: (1) segment original text strokes; (2) remove text stroke

content, substituting with background color or texture; (3) superimpose new text, pos-

sibly warped according to the surface orientation [23]. In Fig.4.7 we show examples of

text substitution based on our text stroke segmentation algorithm. The segmentation

was first morphologically dilated, then the resulting area was inpainted from nearby

background using PatchMatch [3] (with 5× 5 patch size).

One intriguing application of text substitution could be in the creation of

natural-looking synthetic data sets for training convolutional neural network to perform

text detection, segmentation and recognition. In [23], the author proposed a method to

find “plain” surface on natural images to render text. However, the data set generated

by [23] are not fully realistic, in that the distribution of background textures and context

information on which text is superimposed may not match the distribution of real world

scenario (see Fig.4.7 last column). By substituting text in regular scenes, we are able to

generate new synthetic images (thus increasing the size of training data) while preserving

the “natural” background. With our proposed method, large scale high quality synthetic

dataset for multiple languages with character, word and pixel level ground truth labels
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can be generated.

Figure 4.7: The left column is original images, middle column is our result with text
substituted and last column contains samples from dataset generated in [23]. Clearly
our synthetic data is more realistic.

4.6 Conclusion

We have presented a new algorithm for text stroke segmentation that produces

state of the art results. The algorithms relies on FCN, a robust technique for pixel-level

segmentation. FCN, however, cannot precisely localize the stroke edges, due to the

large receptive fields of its cells and to its multi-resolution nature. The output of FCN
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is then refined by a fully connected CRF that uses the assignment probabilities from

FCN as unary potentials. Results are further improved by adding to the standard joint

energy term of the CRF information about the stroke width, which is computed using

a modified Strike Feature Transform. The FCN is trained on a new data set with 100K

synthetically generated test images. When tested on standard benchmarks with pixel-

level annotations (ICAR 2003, ICDAR 2011, SVT), our algorithm is shown to work very

well, with quality (as measured by the f-score) exceeding the state of the art by a sizable

margin. We also show promising applications of our algorithm in text substitution.
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Chapter 5

Automatic Semantic Content Removal

by Learning to Neglect

5.1 Introduction

Automatic removal of specific content in an image is a task of practical interest,

as well as of intellectual appeal. There are many situations in which a part of an image

needs to be erased and replaced. This may include text (whether present in the scene

or overimposed on the image), which may have to be removed, for example to protect

personal information; people, such as undesired passersby in the scene; or other objects

that, for any reasons, one may want to wipe off the picture. While these operations are

typically performed manually by skilled Photoshop editors, substantial cost reduction

could be achieved by automatizing the workflow. Automatic content removal, though,

is difficult, and an as yet unsolved problem. Removing content and inpainting the
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image in a way that it looks “natural” entails the ability to capture, represent, and

synthesize high-level (“semantic”) image content. This is particularly true of large

image areas infilling, an operation that only recently has been accomplished with some

success [60, 94, 91, 96].

Image inpainting algorithms described in the literature normally require that a

binary “mask” indicating the location of the area to be synthesized be provided, typically

via manual input. In contrast, an automatic content removal system must be able to

accomplish two tasks. First, the pattern or object of interest must be segmented out,

creating a binary mask; then, the image content within the mask must be synthesized.

The work described in this paper is born from the realization that, for optimal results,

these two tasks (segmentation and inpainting) should not be carried out independently.

In fact, only in few specific situations can the portion of the image to be removed be

represented by a binary mask. Edge smoothing effects are almost always present, either

due to the camera’s point spreading function, or due to blending, if the pattern (e.g.

text) is overimposed on the image. Although one could potentially recover an alpha

mask for the foreground content to be removed, we believe that a more appropriate

strategy is to simultaneously detect the foreground and synthesize the background image.

By doing so, we do not need to resort to hand-made tricks, such as expanding the binary

mask to account for inaccurate localization.

Our algorithm for content removal and inpainting relies on conditional gen-

erative adversarial networks (cGANs) [30], which have become the tool of choice for

image synthesis. Our network architecture is based on an encoder-decoder scheme with
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Figure 5.1: System architecture. x is the input image, yp (recovered background image)
and zp (foreground text segmentation) are the outputs of the generator, yg is the ground
truth background image.

skip layers (see Fig. 5.1). Rather than a single decoder branch, however, our network

contains two parallel and interconnected branches: one (dec-seg) designed to extract the

foreground area to be removed; the other (dec-fill) tasked with synthesizing the missing

background. The dec-seg branch interacts with the dec-fill branch via multiple neglect

nodes (see Fig. 5.2). The concept of neglect nodes is germane (but in reverse) to that

of mixing nodes normally found in attention networks [90, 80]. Mixing nodes highlight

a portion of the image that needs to be attended to, or, in our case, neglected. Neglect

nodes appear in all layers of the architecture; they ensure that the dec-fill branch is

aware of which portions of the image are to be synthesized, without ever committing to

a binary mask.

A remarkable feature of the proposed system is that the multiple components

of the network (encoder and two decoder branches, along with the neglect nodes) are all
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trained at the same time. Training seeks to minimize a global cost function that includes

a conditional GAN component, as well as L1 distance components for both foreground

segmentation and background image. This optimization requires ground–truth avail-

ability of foreground segmentation (the component to be removed), background images

(the original image without the foreground), and composite images (foreground over

background). By jointly optimizing the multiple network components (rather than, say,

optimizing for the dec-seg independently on foreground segmentation, then using it to

condition optimization of dec-fill via the neglect nodes), we are able to accurately re-

construct the background inpainted image. The algorithm also produces the foreground

segmentation as a byproduct. We should emphasize that this foreground mask is not

used by the dec-fill synthesizing layer, which only communicates with the dec-seg layer

via the neglect nodes.

To summarize, this paper has two main contributions. First, we present the

first (to the best of our knowledge) truly automatic semantic content removal system

with promising results on realistic images. The proposed algorithm is able to recover

high-quality background without any knowledge of the foreground segmentation mask.

Unlike most previous GAN–based inpainting methods that assume a rectangular fore-

ground region to be removed [60, 94, 91], our system produces good result with any

foreground shape, even when it extends to the image boundary. Second, we introduce a

novel encoder-decoder network structure with two parallel and interconnected branches

(dec-seg and dec-fill), linked at multiple levels by mixing (neglect) nodes that determine

which information from the encoder should be used for synthesis, and which should be
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neglected. Foreground region segmentation and background inpainting is produced in

one single forward pass.

5.2 Related Work

Semantic image content removal comprises two different tasks: segmentation

of the foreground region (which in some contexts represents a “corrupted” image region

to be removed), and synthesis of the missing background after foreground removal. We

briefly review the literature for these two operations in the following.

Pixel-level semantic image segmentation has received considerable attention

over the past few years. Most recently published techniques are based on fully convolu-

tional networks (FCN) [44], possibly combined with fully connected CRF [37, 102, 7, 64].

The general architecture of a FCN includes a sequence of convolution and downsampling

layers (encoder), which extract multi–scale features, followed by a sequence of deconvo-

lution layers (decoder), which produce a high–resolution segmentation (or “prediction”).

Skip layers are often added, providing shortcut links from an encoder layer to its corre-

sponding decoder layer. The role of skip layers is to provide well-localized information

to a decoder layer, in addition to the semantic-rich but poorly resolved information

from the prior decoder layer. In this way, skip layers enable good pixel-level localization

while facilitating gradient flow during training. Similar architectures have been used in

various applications such as text segmentation [63, 100, 64, 92], edge detection [89], face

segmentation [61], and scene parsing [101]. Although these algorithms could be used
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for the foreground segmentation component of a content removal system, unavoidable

inaccuracies are liable to dramatically decrease the quality of the recovered background

region.

Image inpainting [4] has a long history. The goal of inpainting is to fill in a

missing region with realistic image content. A variety of inpainting methods have been

proposed, including those based on prior image statistics [69, 105], and those based on

CNNs [67, 98]. More recently, outstanding results have been demonstrated with the

use of GANs to inpaint even large missing areas [94, 91, 60, 96]. While appropriate

for certain domains (e.g. face inpainting), methods in this category often suffer from

serious limitations, including the requirement that the missing region have fixed size

and shape.

All of the inpainting methods mentioned above assume that the corrupted

region mask is known (typically as provided by the user). This limits their scope of

application, as in most cases, this mask is unavailable. This shortcoming is addressed

by blind inpainting algorithms [88, 43], which do not need access to the foreground mask.

However, prior blind inpainting work has been demonstrated only for very simple cases,

with constant-valued foreground occupying a small area of the image.

5.3 Proposed Algorithm

Our system for automatic semantic content removal comprises an encoder-

decoder network with two decoder branches, tasked with predicting a segmentation
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mask (dec-seg) and a background image (dec-fill) in a single forward pass. Neglect

nodes (an original feature of this architecture) link the two decoder branches and the

encoder at various levels. The network is trained along with a discriminator network in

an adversarial scheme, in order to foster realistic background image synthesis.

We assume in this work that the foreground region to be removed occupies a

large portion of the image (or, equivalently, that the image is cropped such that the

foreground region takes most of the cropped region). In practice, this can be obtained

using a standard object detector. Note that high accuracy of the (rectangular) detector

is not required. In our experiments, the margin between the contour of the foreground

region and the edges of the image was let to vary between 0 (foreground touching the

image edge) to half the size of the foreground mask.

5.3.1 Loss Function

Following the terminology of GANs, the output zp of dec-seg and yp of dec-

fill for an input image x are taken to represent the output of a generator G(x). The

generator is trained with a dual task: ensuring that zp and yp are similar to the ground–

truth (zg and yg), and deceiving the discriminator D(x, y), which is concurrently trained

to separate yp from yg given x. The cost function LG for the generator combines the

conditional GAN loss with a linear combination of the L1 distances between prediction

and ground–truth for segmentation and inpainted background:

LG = E[log(1−D(x, yp))] + λfE[||yg − yp||1] + λsE[||zg − zp||1] (5.1)
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The discriminator D is trained to minimize the following discriminator loss LD:

LD = −(E[logD(x, yg)] + E[log(1−D(x, yp))]) (5.2)

5.3.2 Network Architecture

5.3.2.1 Generator

Segmentation and background infilling is generated in a single pass by an

encoder–decoder network architecture, with multiple encoder layers generating multi-

scale features at decreasing resolution, and two parallel decoder branches (dec-seg and

dec-fill) producing high–resolution output starting from low–resolution features and

higher–resolution data from skip layers. Each encoder stage consists of a convolution

layer with kernel of size 4×4, stride 2, followed by instance normalization [79] and ReLU.

Each stage of dec-seg contains a deconvolution (transpose convolution) layer (kernel of

4 × 4, stride 2), followed by instance normalization and ReLU. dec-fill replaces each

deconvolution layers with a nearest–neighbor upsampling layer followed by a convolution

layer (kernel sized 3 × 3, stride 1). This strategy, originally proposed by Odena et al.

[58] to reduce checkerboard artifacts, was found to be very useful in our experiments

(see Sec. 5.4.3). The total number of convolution kernels at the i-th encoder layer is

min(2i−1 × 64, 512). The number of deconvolution kernels at the i-th dec-seg layer or

convolution kernels at the i-th dec-fill layer are the same as the number of kernels at the

(i− 1)-th encoder layer. The output of the first dec-seg layer and dec-fill layer has one

channel (foreground segmentation) and three channels (recovered background image)
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respectively. All ReLU layers in the encoder are leaky, with slope of 0.2. In the dec-seg

branch, standard skip layers are added. More precisely, following the layer indexing in

Fig. 5.1, the input of the i-th layer of dec-seg is a concatenation of the output of the

(i+ 1)-th layer in the same branch and of the output of the i-th encoder layer (except

for the 7-th decoder layer, which only receives input from the 7-th encoder layer.) As

mentioned earlier, skip layers ensure good segmentation localization.

The layers of dec-fill also receive information from equi-scale encoder layers, but

this information is modulated by neglect masks generated by neglect nodes. Specifically,

the i-th neglect node receives in input data from the i-th encoder layer, concatenated

with data from the (i + 1)-th dec-seg layer (note that this is the same as the input to

the i-th dec-seg layer). A 1 × 1 convolution, followed by a sigmoid, produces a neglect

mask (an image with values between 0 and 1). The neglect mask modulates (by pixel

multiplication) the content of the i-th encoder layer, before it is concatenated with the

output of the (i + 1)-th dec-fill layer and fed to the i-th dec-fill layer. The process

is shown in Fig. 5.2 (a). In practice, neglect nodes provide dec-fill with information

about which areas of the image should be erased and infilled, while preserving content

elsewhere. Visual inspection of the neglect masks shows that they faithfully identify the

portion of the image to be removed at various scales (see e.g.Fig. 5.2).

5.3.2.2 Discriminator

The input to the discriminator is the concatenation of the input image x and

of the predicted background yp or background ground–truth yg. The structure of the
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Figure 5.2: (a) Neglect node architecture. Green blocks: encoder output. Blue block:
output of previous dec-seg layer. (b) Top row: input images. Second and third row:
associated neglect masks generated by the neglect node in layer 1 and 2, respectively.

discriminator is the same as the first 5 encoder layers of the generator, but its output

undergoes a 1 × 1 convolution layer followed by a sigmoid function. In the case of

128 × 128 input dimension, the output size is 4 × 4, with values between 0 and 1,

representing the decoder’s confidence that the corresponding region is realistic. The

average of these 16 values forms the final discriminator output.

5.4 Experiments

5.4.1 Datasets

Training our model requires, for each image, three pieces of information: the

original background image (for dec-fill); the foreground region (mask) to be removed

(for dec-seg); and the composite image. Given that this type of rich information is not

available in existing datasets, we built our own training and test sets. Specifically, we
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considered two different datasets for our experiments: one with synthetic text overim-

posed on regular images, and one with real images of pedestrians.

5.4.1.1 Text Dataset

Images in this dataset are generated by pasting text (generated synthetically)

onto real background images. In this way, we have direct access to all necessary data

(foreground, background, and composite image). Text images come from two resources:

(1) the word synthesis engine of [64], which was used to generate 50K word images, along

with the ground–truth associated segmentation masks; (2) the ICDAR 2013 dataset [1],

which provides pixel-level text stroke labels, allowing us to extract 1850 real text regions.

Random geometry transformations and color jittering was used to augment the real text,

obtaining 50K more word images. Given a sample from the 100K word image pool, a

similarly sized background image patch was cropped at random positions from images

randomly picked from the MS COCO dataset[41]. More specifically, the background

images for our training and validation set come from the training portion of the MS

COCO dataset, while the background images for our test set come from the testing

portion of the MS COCO dataset. This ensures that the training and testing sets do

not share background images. In total, the training, validation and testing portions of

our synthetic text dataset contain 100K, 15K and 15K images, respectively.
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5.4.1.2 Pedestrian Dataset

This is built from the LASIESTA dataset[11], which contains several video

sequences taken from a fixed camera with moving persons in the scene. LASIESTA

provides ground–truth pedestrian segmentation for each frame in the videos. In this

case, ground–truth background (which is occluded by a person at a given frame) can be

found from neighboring frames, after the person has moved away. The foreground map

is set to be equal to the segmentation mask provided with the dataset. We randomly

selected 15 out of 17 video sequences for training, leaving the rest for testing. A sample

of 1821 training images was augmented to 45K images via random cropping and color

jittering. The test data set contains 198 images.

5.4.2 Implementation Details

Our system was implemented using Tensorflow and runs on a desktop (3.3Ghz

6-core CPU, 32G RAM, Titan XP GPU). The model was trained with input images

resized to 384 × 128 (for the text dataset images) or 128 × 128 (for the pedestrian

dataset images.) Adam solver was used during training, with learning rate set to 0.0001,

momentum terms set to β1 = 0.5 and β2 = 0.999, and batch size equal to 8. We set

λf = λs = 100 in the generator loss (5.1), and followed the standard GAN training

strategy [22]. Training is alternated between discriminator (D) and generator (G).

Note that the adversarial term for the cost LG in (5.1) was changed to (− log(D(x, yp)))

(rather than log(1−D(x, yp)) ) for better numerical stability, as suggested by Goodfellow

et al. [22]. When training D, the learning rate was divided by 2.
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Method Text Pedestrian Time (s)
L1 PSNR SSIM L1 PSNR SSIM

Exemplar (zp) 5.44% 16.563 0.553 4.11% 17.99 0.74 15.6
Exemplar (zg) 5.46% 16.769 0.554 3.87% 18.36 0.77

Contextual (zp) 3.59% 19.788 0.752 3.41% 20.916 0.879 0.23
Contextual (zg) 3.28% 20.170 0.779 2.64% 21.997 0.891

EPLL (zp) 2.00% 19.123 0.732 2.9% 16.143 0.780 53.5
EPLL (zg) 1.87% 24.417 0.823 2.61% 16.852 0.800

IRCNN (zp) 2.62% 21.282 0.773 2.87% 19.117 0.870 6.67
IRCNN (zg) 1.79% 25.767 0.835 2.39% 20.225 0.884

Baseline 2.07% 24.188 0.811 3.06% 23.064 0.883 0.011

Ours (deconv) 1.91% 24.879 0.831 2.63% 23.612 0.904 0.018

Ours (nn+conv) 1.85% 25.300 0.845 2.55% 23.877 0.918 0.018

Table 5.1: Quantitative comparison of our method against other state-of-the-art image
inpainting algorithms (Exemplar [10], Contextual [96], EPLL[105], and IRCNN[98]).
Competing inpainting algorithms are fed with a segmentation mask, either predicted
by our algorithm (zp), or ground–truth (zg). The difference between the original and
reconstructed background image is measured using L1 distance, PSNR (in dB, higher is
better) and SSIM (higher is better)[85]. Time measurements refer to a 128× 128 input
image.

87



5.4.3 Ablation Study

5.4.3.1 Baseline

In order to validate the effectiveness of the two-branches decoder architecture

and of the neglect layers, we compared our result against a simple baseline structure.

This baseline structure is made by the encoder and the dec-fill decoding branch, without

input from the neglect nodes, but with skip layers from the encoder. This is very very

similar to the architecture proposed by Isola et al. [30]. Tab. 5.1 shows that our

method consistently outperforms the baseline structure with both datasets and under

all three evaluation metrics considered (L1 residual, PSNR, SSIM [85]). This shows that

explicit estimation of the segmentation mask, along with bypass input from the encoder

modulated by the neglect mask, facilitates realistic background image synthesis. An

example comparing the result of text removal and of inpainting using the full system

and the baseline is shown in the first row of Fig. 5.3.

5.4.3.2 Deconvolution vs. upsampling + convolution

Deconvolution (or transpose convolution) is a standard approach for generating

higher resolution images from coarse level features [65, 15, 30]. A problem with this

technique is that it may produce visible checkerboard artifacts, which are due to “uneven

overlapping” during the deconvolution process, especially when the kernel size is not

divisible by the stride. Researchers [58] have found that by replacing deconvolution with

nearest neighbor upsampling followed by convolution, these artifacts can be significantly
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reduced. In our experiments, we compared the results using these two techniques (see

Fig. 5.3, second row). Specifically, upsampling + convolution was implemented using a

kernel sized 3×3 with stride 1 (as described earlier in Sec. 5.3.2), while deconvolution was

implemented by a kernel with size of 4×4 and stride of 2. Even though the deconvolution

kernel side is divisible by the stride, checkerboard artifacts are still visible in most cases

using deconvolution. These artifacts do not appear using upsampling + convolution,

which also achieves better quantitative results as shown in Tab. 5.1.

Input Ground-truth Baseline Ours

Input Ground-truth Ours (deconv) Ours

Figure 5.3: Experimental comparison between the baseline and our architecture (top),
and between our architecture using deconvolution and using upsampling+convolution
in dec-fill (bottom). See Sec. 5.4.3.

5.4.4 Comparative Results

Due to the lack of directly comparable methods for automatic content removal,

we contrasted our technique with other state-of-the-art image inpainting algorithms,

which were provided with a foreground mask. More specifically, we considered two

setting for the foreground mask fed to these algorithms: (1) the segmentation mask
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obtained as a byproduct from our algorithm (zp), and (2) the ground–truth mask (zg).

Note that the latter is a best-case scenario for the competing algorithms: our system

never accessed this mask. In both cases, the masks were slightly dilated to ensure that

the whole foreground region was covered.

Tab. 5.1 shows comparative results with two legacy (but still widely used)

inpainting techniques (Exemplar [10] and EPLL[105]), as well as with two more recent

CNN-based algorithms (IRCNN[98] and Contextual [96]). When fed with the zp mask

(setting (1)), all competing algorithms produced substantially inferior results with re-

spect to ours under all metrics considered. Even when fed with the (unobservable)

ground–truth mask zg (setting (2)), these algorithms generally performed worse than

our system (except for IRCNN, which gave better results than ours, under some of the

metrics). We should stress that, unlike the competing techniques, our system does not

receive an externally produced foreground map. Note also that our algorithm is faster

(often by several orders of magnitude) than the competing techniques.

Fig. 5.4 shows comparative examples of results using our system, IRCNN, and

Contextual (where the last two were fed with the ground–truth foreground mask, zg).

Note that, even when provided with the “ideal” mask, the visual quality of the results

using these competing methods is generally inferior to that obtained with our content

removal technique. The result of IRCNN, which is very similar to the result of EPLL,

is clearly oversmoothed. This makes the object boundary visible due to the lack of high

frequency details in the filled-in region. We also noted that this algorithms cannot cope

well with large foreground masks, as can be seen in the last two columns of Fig. 5.4
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(pedestrian dataset). Contextual [96] does a better job at recovering texture, thanks to

its ability to explicitly utilize surrounding image features in its generative model. Yet, we

found that our method is often better at completely removing foreground objects. Part

of the foreground’s boundary is still visible in Contextual’s reconstructed background

region. Furthermore, the quality Contextual’s reconstruction drops significantly when

the foreground region reaches the border of the image. This problem is not observed

with our method.

Fig. 5.4 also reveals an interesting (and unexpected) feature of our system.

As can be noted in the last two columns, the shadow cast by the person was removed

along with the image of the person. Note that the system was not trained to detect

shadows: the foreground mask only outlined the contour of the person. The most likely

reason why the algorithm removed the shadow region is that the background images in

the training set data (which, as mentioned in Sec. 5.4.1, were obtained from frames that

did not contain the person) did not contain cast shadows of this type. The system thus

decided to synthesize a shadowless image, doubling up as a shadow remover.

5.5 Conclusion

We have presented the first automatic content removal and impainting system

that can work with widely different types and sizes of the foreground to be removed and

infilled. Comparison with other state-of-the-art inpainting algorithms (which, unlike are

system, need an externally provided foreground mask), along with the ablation study,
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Figure 5.4: Sample inpainting results using Contextual [96] (third row), IRCNN [98]
(fourth row), and our system (last row). Contextual and IRCNN were fed with the
ground–truth segmentation mask, while our system automatically extracted and in-
painted the foreground. Top row: input image. Second row: ground-truth background
image.

show that our strategy of joint segmentation and inpainting provides superior results in

most cases, at a lower computational cost. Future work will extend this technique to

more complex scenarios such as wider ranges of foreground region sizes and transparent

foreground.
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Chapter 6

Conclusion

In this thesis, I introduce two text detection system, a novel text stroke seg-

mentation algorithm with state-of-the-art performance, and a new encoder-decoder net-

work architecture combined with an adversarial trained discriminator for automatic text

removal.

Our first proposed text detection algorithm shares similar general structure

(MSER computation, CNN classification, text line grouping) with other successful meth-

ods. Our contributions include a carefully designed strategy for thinning out MSERs

that significantly reduces the computation cost with a minor drop in performance; a

method for mining character-level training samples from word-level labeling; as well as

the use of binarized patches for region classification. A more robust and efficient text

spotting system is also presented, which is formed by two cascaded networks, TextSeg-

Net and WordDetNet. The TextSegNet is trained to segment text blocks in a image,

each text block may contain one or more words. The WordDetNet is trained to predict
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the coordinates of each word, given each text block as input. The first segmentation

network determines regions of interest to be processed in detail by the second detection

network.

To segment text stroke from its background, I present a FCN based algorithm.

The output of FCN is further refined by a fully connected CRF using a novel ker-

nel definition, which combines the traditional bilateral kernel with text-specific stroke

width information. Our method outperforms state-of-the-art algorithms on standard

benchmarks while being more computationally efficient.

Last but not least, I present an automatic text removal algorithm with promis-

ing results on challenging cases. The proposed algorithm is able to jointly predict the

foreground text stroke segmentation and he background image. In order to achieve this,

a new encoder-decoder architecture is proposed with two parallel and interconnected

decoder branches, one focus on foreground segmentation and the other focus on back-

ground recovery. The neglect nodes, which is an original contribution of our work and

the key to the good result, is used to determine which information should be used for

background synthesis.
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