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Mapping a Single Assignment Programming Language

to Reconfigurable Systems

W. Bohm!, J. Hammes, B. Draper, M. Chawathe, C. Ross and R.

Rinker
Colorado State University

W. Najjar

University of California Riverside

Abstract. This paper presents the high level, machine independent, algorithmic,
single-assignment programming language SA-C and its optimizing compiler target-
ing reconfigurable systems. SA-C is intended for Image Processing applications.
Language features are introduced and discussed. The intermediate forms DDCF,
DFG and AHA, used in the optimization and code-generation phases, are described.
Conventional and reconfigurable system specific optimizations are introduced. The
code generation process is described. The performance for these systems is analyzed,
using a range of applications from simple Image Processing Library functions to more
comprehensive applications, such as the ARAGTAP target acquisition prescreener.

Keywords: Reconfigurable Computing Systems, FPGA, Image Processing, High
Level Languages, Optimizing Compilation.

1. Introduction

Recently, the computer vision and image processing communities have
become aware of the potential for massive parallelism and high com-
putational density in FPGAs. FPGAs have been used for real-time
point tracking (Benedetti and Perona, 1998), stereo vision (Woodfill
and v. Herzen, 1997), color-based detection (Benitez and Cabrera,
1999), image compression (Hartenstein et al., 1995), and neural net-
works (Eldredge and Hutchings, 1994). The biggest obstacle to the more
widespread use of reconfigurable computing systems lies in the difficulty
of developing application programs. FPGAs are typically programmed
using hardware description languages such as VHDL (Perry, 1993).
Application programmers are typically not trained in these hardware
description languages and usually prefer a higher level, algorithmic
programming language to express their applications.

The Cameron Project (Hammes et al., 1999) has created a high-level
algorithmic language, named SA-C (Hammes and Béhm, 1999), for ex-
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Figure 1. SA-C Compilation system.

pressing image processing applications and compiling them to FPGAs.
The SA-C compiler provides one-step compilation to host executable
and FPGA configurations. After parsing and type checking, the SA-
C compiler converts the program to a hierarchical data dependence
and control flow (DDCF) graph representation. DDCF graphs are used
in many optimizations, some general and some specific to SA-C and
its target platform. After optimization, the program is converted to a
combination of dataflow graphs (DFGs) and host code. DFGs are then
compiled to VHDL code via Abstract Hardware Architecture (AHA)
graphs. The VHDL code is synthesized and place-and-routed to FPGAs
by commercial software tools. Figure 1 shows a high-level view of the
system.

To aid in program development, it is possible to view and simulate
intermediate forms. For initial debugging the complete SA-C program
can be executed on the host. All intermediate graph forms can be
viewed, and DFG and AHA graphs can be simulated. The SA-C com-
piler can run in stand-alone mode, but it also has been integrated into
the Khoros"™) (Konstantinides and Rasure, 1994) graphical software
development environment.

The rest of this paper is organized as follows. An overview of the
SA-C language is presented in section 2. Compiler optimizations and
pragmas are discussed in section 3. Translations to dataflow graphs and
then to VHDL via AHA are discussed in section 4. Applications and
their performance data are presented in section 5. References to related
work are given in section 6, and section 7 concludes and describes future
work.
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2. The SA-C Language

The design goals of SA-C are to have a language that can express
image processing (IP) applications elegantly, and to allow seamless
compilation to reconfigurable hardware. IP applications are supported
by data parallel for loops with structured access to rectangular multidi-
mensional arrays. Reconfigurable computing requires fine grain expres-
sion level parallelism, which is easily extracted from a SA-C program
because of its single assignment semantics. Variables in SA-C are associ-
ated with wires, not with memory locations. This avoids von Neumann
memory model complications and allows for better compiler analysis
and translation to DFGs. Data types in SA-C include signed and un-
signed integers and fixed point numbers, with user-specified bit widths.
The extents of SA-C arrays can be determined either dynamically or
statically. The type declaration int14 M[:,6] for example, is a declaration
of a matrix M of 14-bit signed integers. The left dimension will be
determined dynamically; the right dimension has been specified.

The most important aspect of SA-C is its treatment of for loops
and their close interaction with arrays. SA-C is expression oriented, so
every construct (including a loop) returns one or more values. A loop
has three parts: one or more generators, a loop body and one or more
return values. The generators provide parallel array access operators
that are concise and easy for the compiler to analyze. There are four
kinds of loop generators: scalar, array-element, array-slice and window.
The scalar generator produces a linear sequence of scalar values, similar
to Fortran’s do loop. The array-element generator extracts scalar values
from a source array, one per iteration. The array-slice generator extracts
lower dimensional sub-arrays (e.g. vectors out of a matrix). Finally,
window generators allow rectangular sub-arrays to be extracted from a
source array. All possible sub-arrays of the specified size are produced,
one per iteration. The dot product operator combines generators and
runs them in lock step. A loop can return arrays and reductions built
from values that are produced in the loop iterations, such as sum,
product, min, and max.

Figure 2 shows SA-C code for the Prewitt edge detector (Prewitt,
1970), a standard IP operator. The outer for loop is driven by the
extraction of 3x3 sub-arrays from array Image. Its loop body applies
two masks to the extracted window W, producing a magnitude. An
array of these magnitudes is collected and returned as the program’s
result. The shape of the return array is derived from the shape of Image
and the loop’s generator. If Image were a 100x200 array, the result array
M would have a shape of 98x198.
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int16[:,:] main (uint8 Image[:,:]) {
int16 H[3,3] = {{-1,-1,-1}, { 0, 0, 0}, { 1, 1, 1}};
int16 V[3,3] = {{-1, 0, 1}, {-1, 0, 1}, {-1, 0, 1}};
int16 M[:,:]
for window W[3,3] in Image {
int16 dfdy, int16 dfdx =
for h in H dot w in W dot v in V
return(sum(h*w), sum(v*w));
int16 magnitude =
sqrt (dfdy*dfdy+dfdx*dfdx);
}return(array (magnitude));
}return(M);

Figure 2. Prewitt Edge detector code in SA-C.

Loop carried values are allowed in SA-C using the keyword next
instead of a type specifier in a loop body. This indicates that an initial
value is available outside the loop, and that each iteration can use the
current value to compute a next value.

3. Optimizations and pragmas

The compiler’s internal program representation is a hierarchical graph
form called the “Data Dependence and Control Flow” (DDCF) graph.
DDCEF subgraphs correspond to source language constructs. Edges in
the DDCF express data dependencies, opening up a wide range of loop-
and array-related optimization opportunities.

Figure 3 shows the initial DDCF graph of the Prewitt program of
Figure 2. The FORALL and DOT nodes are compound, containing
subgraphs. Black rectangles along the top and bottom of a compound
node represent input ports and output ports. The outer FORALL has
a single window generator operating on a two-dimensional image, so it
requires window size and step inputs for each of the two dimensions. In
this example, both dimensions are size three, with unit step sizes. The
output of the WINDOW_GEN node is a 3x3 array that is passed into
the inner FORALL loop. This loop has a DOT graph that runs three
generators in parallel, each producing a stream of nine values from its
source array. Kach REDUCE_SUM node sums a stream of values to a
single value. Finally, the CONSTRUCT_ARRAY node at the bottom
of the outer loop takes a stream of values and builds an array with
them.

Many IP operators involve fixed size and often constant convolution
masks. A Size Inference pass propagates information about constant

pap.tex; 27/09/2001; 16:06; p.4



An Algorithmic Language for FPGAs )

-1-1-1 000111 -101-101-101

Image
CREATE_ARRAY CREATE_ARRAY
B v
598 84 FORALL
WINDOW_GEN
W
N FORALL
DOT

‘ELEMENT,GEN ‘ ‘ELEMENT,GEN ‘ ‘ELEMENTﬁGEN ‘

T

‘ REDUCE SUM ‘ ‘ REDUCE_SUM ‘
i’ dfdy’ i’ dfdx’

‘magnitude’

CONSTRUCT_ARRAY

Figure 8. DDCF graph for Prewitt program.

size loops and arrays through the dependence graph. Array size infor-
mation can propagate from a loop or source array to its target and vice
versa. In addition, size information from one generator can be used
to infer sizes of other generators. Effective size inference allows other
optimizations, such as Full Loop Unrolling and Array Elimination, to
take place.

Full Unrolling of loops with small, compile time assessable num-
bers of iterations can be important when generating code for FPGAs,
because it spreads the iterations in code space rather than in time.
Small loops occur frequently as inner loops in IP codes, for example in
convolutions with fixed size masks.

Array Value Propagation searches for array references with con-
stant indices, and replaces such references with the values of the array
elements. When the value is a compile time constant, this enables con-
stant propagation. In the Prewitt example, this optimization removes
the arrays H and V entirely.

Loop Carried Array Elimination The most efficient representa-
tion of arrays in loop bodies is to have their values reside in registers.
The important case is that of a loop carried array that changes values
but not size during each iteration. To allocate a fixed number of regis-
ters for these arrays two requirements need to be met. 1) The compiler
must be able to infer the size of the initial array computed outside the
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loop. 2) Given this size, the compiler must be able to infer that the
next array value inside the loop is of the same size.

N-dimensional Stripmining extends stripmining (Wolfe, 1996)
and creates an intermediate loop with fixed bounds. The inner loop
can be fully unrolled with respect to the newly created intermediate
loop, generating a larger, more parallel circuit. The compiler generates
code to compute left over fringes.

Some (combinations of) operators can be inefficient to implement
directly in hardware. For example the computation of magnitude in
Prewitt requires multiplications and square root operators. The evalu-
ation of the whole expression can be replaced by an access to a Lookup
Table, which the compiler creates by wrapping a loop around the ex-
pression, recursively compiling and executing the loop, and reading the
results.

The performance of many systems is limited by the time required
to move data to the processing units. Fuston of producer-consumer
loops is often helpful, since it reduces data traffic and may eliminate
intermediate data structures. In simple cases, where arrays are pro-
cessed element-by-element, this is straightforward. However, the win-
dowing behavior of many IP operators presents a challenge. Consider
the following loop pair:

uint8 RO[:,:] =

for window W[2,2] in Image return (array (£(W)));
uint8 Ri[:,:] =

for window W[2,2] in RO return (array (g(W)));

If Image is a dyxd; array, RO is a (dyp — 1)x(d; — 1) array, and R1 will
be (dy — 2)x(d1 — 2), so the two loops do not have the same number
of iterations. Nevertheless, it is possible to fuse such a loop pair by
examining their data dependencies. One element of R1 depends on a
2x2 sub-array of RO, and the four values in that sub-array together
depend on a 3x3 sub-array of Image. It is possible to replace the loop
pair with one new loop that uses a 3x3 window and has a loop body
that computes one element of R1 from nine elements of Image.

Common Subexpression Elimination (CSE) is a well known com-
piler optimization that eliminates redundancies by looking for identical
subexpressions that compute the same value. This could be called “spa-
tial CSE” since it looks for common subexpressions within a block of
code. The SA-C compiler performs conventional spatial CSE, but it
also performs Temporal CSE, looking for values computed in one
loop iteration that were already computed in previous loop iterations.
In such cases, the redundant computation can be eliminated by holding
such values in registers so that they are available later and need not be
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recomputed. Here is a simple example containing a temporal common
subexpression:

for window W[3,2] in A {
uint8 sO0 = array_sum (W[:,0]);
uint8 si1 = array_sum (W[:,1]);
} return (array (s0+s1));

This code computes a separate sum of each of the two columns of
the window, then adds the two. Notice that after the first iteration of
the loop, the window slides to the right one step, and the column sum
sl in the first iteration will be the same as the column sum s0 in the
next iteration. By saving sl in a register, the compiler can eliminate
one of the two column sums, nearly halving the space required for the
loop body.

A useful phenomenon often occurs with Temporal CSE: one or more
columns in the left part of the window are unreferenced, making it
possible to eliminate those columns. Narrowing the window lessens
the FPGA space required to store the window’s values.

In many cases the performance tradeoffs of various optimizations
are not obvious; sometimes they can only be assessed empirically. The
SA-C compiler allows many of its optimizations to be controlled by
user pragmas in the source code. This allows the user to experiment
with different approaches and evaluate the space-time tradeoffs.

4. Compiler Backend

A dataflow graph (DFQG) is a non-hierarchical and asynchronous pro-
gram representation. DFGs can be viewed as abstract hardware circuit
diagrams without timing or resource contention taken into account.
Nodes are operators and edges are data paths. DFGs have token driven
semantics.

The SA-C compiler attempts to translate every innermost loop to a
DFG. The innermost loops the compiler finds may not be the innermost
loops of the original program, as loops may have been fully unrolled or
stripmined. In the present system, not all loops can be translated to
DFGs. The most important limitation is the requirement that the sizes
of a loop’s window generators be statically known.

In the Prewitt program shown earlier, the DDCF graph is trans-
formed to the DFG shown in Figure 4. The SUM nodes can be imple-
mented in a variety of ways, including a tree of simple additions. The
window generator also allows a variety of implementations, based on
the use of shift registers. The CONSTRUCT_ARRAY node streams its
values out to a local memory.
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Figure 4. DFG for Prewitt after optimizations.

DFGs are translated into a lower level form called Abstract Hard-
ware Architecture (AHA). This is also a graph form, but with nodes
that are more fine-grained than DFG nodes and that can be translated
to simple VHDL components. AHA graphs have clocked, semi-clocked
and non-clocked nodes. The clocked and semi-clocked nodes have in-
ternal state but only the clocked nodes participate in the handshak-
ing needed to synchronize computations and memory accesses. Some
clocked nodes communicate via an arbitrator with a local memory. An
AHA graph is organized as a sequence of sections, each with a top
and a bottom boundary. A section boundary consists of clocked nodes,
whereas its internal nodes are non-clocked or semi-clocked. In the AHA
model, a section fires when all clocked nodes at its top boundary can
produce new values and all clocked nodes at its bottom boundary
can consume new values. This contrasts with DFGs, where each node
independently determines when it can fire.

The AHA graph of the Prewitt code is too large and complex to
display in this paper (1568 nodes). Figure 5 shows a dataflow graph
on the left and an AHA graph on the right of a much simpler code
fragment, which copies a one dimensional array A to another array B:

uint32 B[:] = for a in A return(array(a))

The DFG consists of an Element Generator node extracting elements
out of A, and a Construct Tile node collecting the elements of B. The
top three nodes in the AHA graph implement the Element Generator
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Figure 5. One-dimensional array copy in dataflow and AHA.

node, whereas the bottom three AHA nodes implement the Construct
Tile node. The inputs 1, 2 and 3 in the AHA graph represent the extents
of A, the start address of A, and the start address of B, respectively.
Dotted horizontal lines represent section boundaries. Upon an input
n, a TOK_.GEN node produces n+1 control signals (dashed edges):
n 0-s and a 1. A COUNTER is a semi-clocked node, starting at its
left input and incrementing with its middle input (1 here). BUFFER,
READ_WORD and WRITE_WORD speak for themselves.

Some low-level optimizations take place in this stage. A Bitwidth
Narrowing phase is performed just before AHA graphs are generated.
Dead code elimination and graph simplification sweeps are ap-
plied on the AHA graph. A Pipelining phase uses node propagation
delay estimates to compute the delay for each AHA section, and adds
layers of pipeline registers in sections that have large propagation de-
lays. The maximum number of pipeline stages added to the AHA graph
is user controlled. Reducing propagation delays is important because it
increases clock frequency.

AHA graph simulation allows the user (or, more likely, the compiler
or system developer) to verify program behavior. The AHA simulator
strictly mimics the hardware behavior with respect to clock cycles and
signals traveling over wires. This removes the need for time consuming
VHDL simulation and hardware level debugging. AHA-to-VHDL trans-
lation is straightforward; AHA nodes translate to VHDL components,
which are connected according to the AHA edges.
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5. Applications

The current test platform in Cameron is the WildStar Board, produced
by Annapolis Micro Systems (Annapolis Micro Systems, 1999). The
WildStar has three XCV2000E Virtex FPGAs made by Xilinx (Xilinx
Incorporated, 1999). The WildStar board is capable of operating at
frequencies from 25 MHz to 180 MHz. It communicates over the PCI
bus with the host computer at 33 MHz. In our system, the board is
housed in a 266-MHz Pentium-based PC. This section compares the
performance of SA-C codes running one WildStar FPGA chip to the
performance of C or assembly code running on an 800 MHz Pentium III.
A 512x512 8 bit image is used for input.

5.1. INTEL IMAGE PROCESSING LIBRARY

When comparing simple IP operators one might write corresponding
SA-C and C codes and compare them on the WildStar and Pentium.
However, neither the Microsoft nor the Gnu C++ compilers fully ex-
ploit the Pentium’s MMX technology. Instead, we compare SA-C codes
to corresponding operators from the Intel Image Processing Library
(IPL). The Intel IPL library consists of a large number of low-level
Image Processing operations. Many of these are simple point- (pixel-)
wise operations such as square, add, etc. These operations have been
coded by Intel for highly efficient MMX execution.

For example, in case of a pointwise add, naively implemented SA-C
runs four times slower on the FPGA than MMX assembly code on the
Pentium. However, if care is taken by the SA-C programmer to strip-
mine and interleave both input and output memories to take advantage
of 64 bit memory access, the FPGA is twice as fast as the Pentium.
Overall, the difference in run times for simple operators is not signifi-
cant. This result is not surprising. The compute/communicate ratio in
these codes is very low, and thus the memory bandwidth governs the
performance.

However, the Prewitt edge detector is more complex. It requires
convolving the image with two 3x3 masks, squaring the results, sum-
ming the squares, and finally computing the square root of the sum
(see figures 2 and 3). Prewitt written in C using a single IPL routine
(iplConvolve) runs on the Pentium, for our 512x512 test image, in 158
milliseconds. In comparison the equivalent SA-C code on the WildStar
runs in less than 2 milliseconds, a speedup of 80 over the Pentium.
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5.2. ARAGTAP

The ARAGTAP pre-screener (Raney et al., 1993) was developed by
the U.S. Air Force at Wright Labs as the initial focus-of-attention
mechanism for a SAR automatic target recognition application. Arag-
tap’s components include down sampling, dilation, erosion, positive
differencing, majority thresholding, bitwise-and, percentile threshold-
ing, labeling, label pruning, and image creation. All these components,
apart from label pruning and image creation, have been written in
SA-C. Most of the computation time is spent in a sequence of eight
gray-scale morphological dilations, and a later sequence of eight gray-
scale erosions. Four of these dilations are with a 3x3 mask of 1’s in the
shape of a square, the other four are with a 3x3 mask with 1’s in the
shape of a cross and with zeros at the edges.

The dilate and erode loops allow temporal CSE and window narrow-
ing. A hand optimized C implementation of a dilate sequence running
on the Pentium takes 66 milliseconds. The SA-C compiler fuses the
whole dilate sequence into one loop, which takes 3 milliseconds to
execute on the WildStar, delivering a speedup of 22 compared to the
Pentium.

5.3. CANNY

In section 5.1 we discussed the Prewitt operator. A more sophisti-
cated edge detector is the Canny operator, which comprises a four
step process. The four steps are 1) image smoothing, 2) computing
edge magnitudes and (discretized) orientations, 3) non-maximal sup-
pression in the gradient direction, and 4) hysteresis labeling, which is a
connected components algorithm. For a clear and simple explanation of
Canny and the reasoning behind it, see (Trucco and Verri, 1998), Chap-
ter 4. The first three steps of Canny were implemented in SA-C and
run on the reconfigurable hardware. Although connected components
can be written in SA-C, it can currently not be compiled to FPGAs.
Therefore, we assume that the last step will be performed on the host.
The compiler performed eight fold vertical stripmining, among other
optimizations. SA-C execution time on the WildStar is 6 milliseconds.

Comparing the performance to a Pentium is hard. A version of the
same program was written in C, using Intel’s IPL whenever possible.
The resulting program took 850 milliseconds on the Pentium. However,
Intel’s OpenCV library has a hand-optimized assembly-coded version
of Canny that includes the fourth (connected components) step. By
setting the high and low thresholds to be the same (so that connected
components will not iterate), the OpenCV routine takes 135 millisec-

pap.tex; 27/09/2001; 16:06; p.11



12 Bohm e.a.

onds. So SA-C was 22 times faster than assembly code and 140 times
faster than a C plus IPL implementation.

5.4. WAVELET

Wavelets are commonly used for multi-scale analysis in computer vi-
sion, as well as for image compression. Honeywell has defined a set of
benchmarks for reconfigurable computing systems, including a wavelet-
based image compression algorithm (Kumar, 2000). This code takes one
image and returns four quarter sized images, three of which are deriva-
tives of the original. The SA-C code takes 2 milliseconds execution time
on the FPGA, whereas on the Pentium the Honeywell C code took 75
milliseconds. SA-C was 37 times faster.

Concluding, apart from very simple point wise operations, SA-C on
the WildStar using one Virtex 2000E chip runs between 20 and 75 times
faster than the fastest code we could run on the 800 MHz Pentium III.

6. Related work

Hardware and software research in reconfigurable computing is active
and ongoing. Hardware projects fall into two categories — those using
commercial off-the-shelf components (e.g. FPGAs), and those using
custom designs.

The Splash-2 (Buell et al., 1996) is an early (circa 1991) implemen-
tation of an RCS, built from 17 Xilinx (Xilinx Incorporated, 1998)
4010 FPGAs, and connected to a Sun host as a co-processor. Several
different types of applications have been implemented on the Splash-2,
including searching(Hoang, 1993; Pryor et al., 1993), pattern match-
ing(Ratha et al., 1996), convolution (Ratha et al., 1995) and image
processing (Athanas and Abbott, 1994).

Representing the current state of the art in FPGA-based RCS sys-
tems are the AMS WildStar(Annapolis Micro Systems, 1999) and the
SLAAC project (Schott et al., 1997). Both utilize Xilinx Virtex (Xilinx
Incorporated, 1999) FPGAs, which offer over an order of magnitude
more programmable logic, and provide a several-fold improvement in
clock speed, compared to the earlier chips.

Several projects are developing custom hardware. The Morphosys
project (Lu et al.; 1999) combines an on-chip RISC processor with an
array of reconfigurable cells (RCs). Each RC contains an ALU, shifter,
and a small register file.

The RAW Project (Waingold et al., 1997) also uses an array of
computing cells, called tiles; each tile is itself a complete processor,
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coupled with an intelligent network controller and a section of FPGA-
like configurable logic that is part of the processor data path. The
PipeRench (Goldstein et al., 1999) architecture consists of a series of
stripes, each of which is a pipeline stage with an input interconnection
network, a lookup-table based PE, a results register, and an output
network. The system allows a virtual pipeline of any size to be mapped
onto the finite physical pipeline.

On the software front, a framework called “Nimble” compiles C
codes to reconfigurable targets where the reconfigurable logic is closely
coupled to an embedded CPU (Li et al., 1999). Several other hardware
projects also involve software development. The RAW project includes
a significant compiler effort (Agarwal et al., 1997) whose goal is to cre-
ate a C compiler to target the architecture. For PipeRench, a low-level
language called DIL (Goldstein and Budiu, 1999) has been developed
for expressing an application as a series of pipeline stages mapped to
stripes.

Several projects (including Cameron) focus on hardware-independent
software for reconfigurable computing; the goal — still quite distant — is
to make development of RCS applications as easy as for conventional
processors, using commonly known languages or application environ-
ments. Several projects use C as a starting point. DEFACTO (Hall
et al., 1999) uses SUIF as a front end to compile C to FPGA-based
hardware. Handel-C (Oxford Hardware Compiler Group, 1997) both
extends the C language to express important hardware functionality,
such as bit-widths, explicit timing parameters, and parallelism, and
limits the language to exclude C features that do not lend themselves
to hardware translation, such as random pointers. Streams-C (Gokhale
et al., 2000) does a similar thing, with particular emphasis on exten-
sions to facilitate the expression of communication between parallel
processes. SystemC (SystemC, 2000) and Ocapi (IMEC, 2000) pro-
vide C++ class libraries to add the functionality required of RCS
programming to an existing language.

Finally, a couple of projects use higher-level application environ-
ments as input. The MATCH project (Banerjee et al., 2000; Banerjee
et al., 1999; Periyayacheri et al., 1999) uses MATLAB as its input lan-
guage — applications that have already been written for MATLAB can
be compiled and committed to hardware, eliminating the need for re-
coding them in another language. Similarlyy CHAMPION (Natarajan
et al., 1999) is using Khoros (Konstantinides and Rasure, 1994) for
its input — common glyphs have been written in VHDL, so GUI-based
applications can be created in Khoros and mapped to hardware.

pap.tex; 27/09/2001; 16:06; p.13



14 Bohm e.a.

7. Conclusions and Future Work

The Cameron Project has created a language, called SA-C, for one-step
compilation of image processing applications that target FPGAs. Vari-
ous optimizations, both conventional and novel, have been implemented
in the SA-C compiler.

The system has been used to implement routines from the Intel
IPL, as well as more comprehensive applications, such as the ARAG-
TAP target acquisition prescreener. Compared to Pentium III/MMX
technology built at roughly the same time, the SA-C system running on
an Annapolis WildStar board with one Virtex 2000 FPGA has similar
performance when it comes to small IPL type operations, but shows
speedups up to 75 when it comes to more complex operators such as
Prewitt, Canny, Wavelet, and Dilate and Erode sequences. Performance
evaluation of the SA-C system has just begun. As performance issues
become clearer, the system will be given greater ability to evaluate var-
ious metrics including code space, memory use and time performance,
and to evaluate the tradeoffs between conventional functional code and
lookup tables.

Currently, the VHDL generated from the AHA graphs ignores the
structural information available in the AHA graph. We will soon be
investigating the use of Relatively Placed Macros (RPM) as a method
to make some of the structural information explicit to the synthesis
tools. Providing constraints to specify the placement of nodes relative
to each other may prove to decrease synthesis and place and route time.

Also, stream data structures are being added to the SA-C language,
which will allow multiple cooperating processes to be mapped onto
FPGAs. This allows expression of streaming video applications, and
partitioning of a program over multiple chips.
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