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a b s t r a c t

Due to reducing the reliance of buildings on fossil fuels, Passive House (PH) is receiving more and more
attention. It is important that integrated optimization of passive performance by considering energy
demand, cost and thermal comfort. This paper proposed a set three-stage multi-objective optimization
method that combines redundancy analysis (RDA), Gradient Boosted Decision Trees (GBDT) and Non-
dominated sorting genetic algorithm (NSGA-II) for PH design. The method has strong engineering
applicability, by reducing the model complexity and improving efficiency. Among then, the GBDT algo-
rithm was first applied to the passive performance optimization of buildings, which is used to build
meta-models of building performance. Compared with the commonly used meta-model, the proposed
models demonstrate superior robustness with the standard deviation at 0.048. The optimization results
show that the energy-saving rate is about 88.2% and the improvement of thermal comfort is about 37.8%
as compared to the base-case building. The economic analysis, the payback period were used to integrate
initial investment and operating costs, the minimum payback period and uncomfortable level of Pareto
frontier solution are 0.48 years and 13.1%, respectively. This study provides the architects rich and
valuable information about the effects of the parameters on the different building performance.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Population growth, increased demand for indoor environment
and global warming have led to a sharp increase in energy con-
sumption for buildings heating and cooling, which accounts for 20%
of global energy consumption [1]. Especially, the energy con-
sumption by the residential building is increasing at approximately
30% annually worldwide [2]. Therefore, developing sustainable
buildings has increasingly become a very important task, and
Passive House (PH) has emerged as the preferred concept for ar-
chitects and subject for researchers in most countries. PH are
buildings that need 80%e90% less heating energy than conven-
tional buildings to provide comfortable indoor conditions, while
the incremental cost of their construction is only 5%e10% [3]. Many
countries have introduced PH standards. For example, China has
issued “Passive ultra-low energy green building technology
guidelines” [4]. However, the standards merely set deterministic
nce and Engineering, Tianjin
results to evaluate the design without pre-directing the design.
Therefore, it is almost impossible to use standards to fully exploit
large design spaces and to guide decision-makers. In addition, en-
gineers and technicians put more focus on active equipment and
facilities but ignore the idea that PH is based on improving passive
performance [5]. The passive performance is the base of sustainable
development, especially for residential buildings [6].

Current research on PH buildings mainly focuses on perfor-
mance assessment such as energy consumption and thermal
comfort. Many studies have shown the superior performance of PH
buildings. Based on the performance simulation, the heating en-
ergy demand of the PH building is less than the requirement of the
PH standard, and the annual cooling energy demand is also very
low [7]. The measured data shows that the total energy con-
sumption of PH buildings is reduced by about 50% compared with
traditional buildings [8] and reduce heating energy consumption by
about 65% and energy consumption by 35% compared with low-
energy buildings. However, there are also studies that expose the
negative side of PH buildings in the indoor thermal environment,
especially during the transitional season. For example, based on in-
use monitored data gathered in 21 months, a study evaluated the
thermal comfort of a UK PH dwelling with vulnerable occupants [9].

mailto:lvshilei@tju.edu.cn
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Nomenclature

Abbreviation
PH Passive house
EUI Annual energy use intensity [kWh/(m2a)]
HEUI Annual heating energy demand [kWh/(m2a)]
CEUI Annual cooling energy demand [kWh/(m2a)]
CTR Annual thermal comfort level [%]
DCTR Annual thermal discomfort level [%]
WWR Window to wall ratio[%]
SHGC Solar heat gain coefficient
ACH Air exchange times under the pressure difference of

50Pa [/hr]
WDH20 Wet-bulb degree hours 20[kKh]
DDH28 Dry-bulb degree hours 28[kKh]
NMBE The standard mean deviation

CVRMSE The coefficient of variation of root mean square error
PDF The probability density function
IOR Indoor overheating risk
BPO Building performance optimization
PBC Payback period [year]
SD The standard deviation

Method
LHS Latin hypercube sampling
RDA Redundancy analysis
SA Sensitivity analysis
PRCC Partial Rank Correlation Coefficient
SVM Support vector machine
ANN Artificial neural network
MLR Multiple linear regression
GBDT Gradient boosted decision tree
NSGA-II Non-dominated sorting genetic algorithm
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This research indicated that indoor overheating risk (IOR) can occur
if the dwelling is not managed correctly, energy and carbon savings
should not be at the expense of thermal comfort. In Europe, IOR in
PH buildings has been recorded as more widespread compared to
traditional buildings [10,11]. Moreover, in Australia, the high-
performance buildings do not directly encourage passive surviv-
ability and can even increase IOR compared to traditional buildings
[12]. Even some studies have directly pointed out that improving
building fabric (increased insulation and airtightness) increases IOR
[13]. It should be mentioned that natural ventilation is very effec-
tive in reducing energy consumption and improving the indoor
thermal environment [14]. Opening the window for ventilation
during the night or uncomfortable daytime can maintain indoor
thermal comfort [15]. In short, thermal comfort issues should be
valued in high-performance buildings such as PH buildings.

Many recent scientific studies performed building performance
optimization whether it is single or multi-objective. There are
numerous metrics involved in assessing building performance: 1)
energymetrics [16e20], including annual heating, cooling, lighting,
and total building energy demand; 2) life cycle metrics [16],
including life cycle costs, life cycle carbon emissions and life cycle
energy consumption; 3) indoor thermal comfort metrics [17,18]. It
should be mentioned that it is easy to transfer energy metrics into
life cycle metrics with some simple additional information [21].
According to the research objects, these studies mainly focus on
new residential buildings and renovated buildings. For example, a
study developed a newmethodology to optimize building life cycle
cost, environmental impacts, and occupant satisfaction in the early
design phase [17,22]. Another research proposed a set of optimi-
zation methods for energy-renovating buildings that focus on en-
ergy consumption, retrofit cost, and thermal discomfort hours [23].
However, the design priorities of PH and conventional buildings are
different, in the related research of PH buildings, few studies
involve integrated optimization of energy efficiency, thermal
comfort, and economic benefit.

Computer-aided optimization is the earliest method used in
building performance optimization (BPO). It is automatically opti-
mized by coupling simulation software and optimization algo-
rithms [24]. However, evolutionary algorithms usually still need a
large number of cost function evaluations before a satisfying result
can be obtained [25]. Moreover, higher time costs of dynamic
building performance simulation reduce the effectiveness of BPO
and especially its diffusion in professional practice [26]. A survey
study based on architects, mechanical engineers, and green
construction consultants demonstrated that slower optimization
speed is themain reason for hindering the actual application of BPO
[19]. More important, some optimization indicators cannot be
directly obtained by running simulation software, generally, they
need secondary processing. Therefore, traditional computer-aided
algorithms are not suitable for multi-objective optimization prob-
lems. For this reason, an approximation of the optimization prob-
lem is required. Among existing approximation approaches, the
functional approximation approach (a.k.a. meta-model or surrogate
model approximation) is the most used in BPO [27]. The meta-
model constructs a functional relationship between multiple in-
puts and multiple outputs, which improve efficiency by sacrificing
precision [28]. It should be mentioned that the meta-model is not
equal to the agent model. The former is generally used for building
performance optimization problems, while the latter generally
appears in research related to human behavior and perception [29].
Seeking appropriate algorithms to build a high-precision meta-
model is getting more and more research attention [30e33].
Several studies have employed a variety of algorithms to establish
meta model, such as multiple linear regression [34e36], support
vector machines (SVM) [33] and artificial neural networks (ANN)
[17,23,37,38]. These meta-models are generally combined with
optimization algorithms such as genetic algorithms (GA). For
example, Asadi et al. present a multi-objective optimization model
using GA and ANN to quantitatively assess technology choices in a
building retrofit project [23]. Gou et al. established a model to
optimize the thermal comfort and energy demand of new resi-
dential buildings, by using the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) coupled with the ANN [17]. Although the
meta-model has been generally accepted and applied, proposing
new algorithms to build a more robust and highly accurate meta-
model is still the research focus. Especially for multi-objective
optimization problems, the robustness of the meta-model is more
important [39].

Based on the above analysis, a summary of the existing prob-
lems and the corresponding innovations is as follows:

(1) From the optimization model:

C The existing problems on PH buildings: Most research

related to PH buildings focuses on performance assess-
ments, some of which only raised the phenomenon of the
indoor overheating risk in PH buildings, but did not
propose solutions to solve the problem. In addition, PH
standards have only constrained the range of energy
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consumption and certain design parameters, but it is
difficult to guarantee an optimal solution. In summary,
there is still a lack of systematic optimization methods to
guide the passive design of PH buildings in engineering
applications.

C The corresponding innovation: This paper establishes
an optimization model for PH buildings. Different from
previous research, the optimization model considers the
effect of windowing for natural ventilation on the indoor
thermal environment. The relationship between 20 pas-
sive design parameters and two building properties
including energy demand and thermal comfort was
constructed and the optimization scheme was explored
under the constraints of PH standards. Finally, an eco-
nomic analysis of the Pareto frontier solution was carried
out. The optimization framework produces more prac-
tical and detailed design guidance.
(2) From the optimization method:

C The existing problems on passive optimization: Exist-

ing research generally uses meta-models coupled multi-
objective optimization algorithm to improve optimiza-
tion efficiency. Although the effectiveness of the meta-
model has been proven in numerous architectural per-
formance optimization studies, seek alternative algo-
rithms suitable for all building performance to build
robust and highly accurate meta-models is still the focus
of current research.

C The corresponding innovation: This paper proposes a
three-stage optimization method (RDA-GBDT-NSGA) that
simultaneously improves the optimization efficiency and
accuracy. The GBDT machine learning algorithm
(described in Section 2.3.2) is used to establish meta-
models of building performance, which was first
applied to the building optimization. From the two as-
pects of accuracy and robustness, its effectiveness is
Fig. 1. The overall research fra
verified by comparison with the commonly used algo-
rithms including ANN and SVM.
2. Method

The optimization framework for PH buildings mainly includes
three parts: constructing optimization model, establishing opti-
mization method and post-Pareto analysis (Fig. 1). This section
details the involved methods.

2.1. Optimization model

2.1.1. Optimization variables
The optimization variables involved are dominated by passive

parameters, generally relate to design parameters of building
components, such as the wall and roof (insulation, density, and
specific heat), exterior windows (insulation and SHGC), building
shape (shape coefficient and window-wall ratio), airtightness and
building layout (orientation, etc.). The relationship between these
parameters is more or less non-linear, so therewill be interaction in
the construction of variable space [40]. As shown in Table 1, 20
optimization variables are covered in this paper.

The boundaries and probability distribution of optimization
variables will largely affect the optimization result. Considering
that the research is oriented at the overall passivity of a building, it
is assumed that the design variables are continuously and evenly
distributed in order to fully cover the architectural feature space
[41]. The determination of the boundaries of design variables can
be divided into three cases. First, variables have been clearly
defined in the PH standards [42], such as SHGC, the U-vale of en-
velope components and airtightness. According to common prac-
tices, the insulation layer and the filling layer (usually concrete) of
walls and roofs respectively affect the insulation level and thermal
mass. The U-value is obtained by changing the insulation thickness,
mework.



Table 1
Input parameters and probability distribution.

category description unit No. Probability distributions boundary

Exterior wall U-value W/(m2K) X1 Continuous uniformity [0.1,0.25]
density kg/m3 X2 Continuous uniformity [500,2500]
specific heat J/(kg K) X3 Continuous uniformity [800,2500]

Roof U-value W/(m2K) X4 Continuous uniformity [0.1,0.25]
density kg/m3 X5 Continuous uniformity [500,2500]
specific heat J/(kg K) X6 Continuous uniformity [800,2500]

Exterior window U-value W/(m2K) X7 Continuous uniformity [0.8,1.5]
SHGC / X8 Continuous uniformity [0.16,0.45]

Air tightness ACH50 1/hr X9 Continuous uniformity [0.01,0.6]
Solar absorptance Exterior wall / X10 Continuous uniformity [0.1,0.9]

Roof / X11 Continuous uniformity [0.1,0.9]
Orientation Long axis � X12 Continuous uniformity [0,360]
WWR east / X13 Continuous uniformity [0.2,0.45]

south / X14 Continuous uniformity [0.2,0.6]
west / X15 Continuous uniformity [0.2,0.45]
north / X16 Continuous uniformity [0.2,0.4]

The floor U-value W/(m2K) X17 Continuous uniformity [0.15,0.35]
Window external shading Overhang height m X18 Continuous uniformity [0,0.5]

Overhang depth m X19 Continuous uniformity [0,2]
Fin depth m X20 Continuous uniformity [0,2]

R. Wang et al. / Energy 192 (2020) 1167234
and the density, as well as specific heat, are obtained by changing
parameters of the filling layer [17,43]. Second, WWR for different
orientations determined according to the JGJ series of standards
[44]. Third, the boundary is determined according to the variables
occurring in the related literature though they may not be clearly
defined in norm or standards. For example, the overhang depth and
the fin depth of shading are set equal to the height of the external
window [17]; The specific heat changes within default limits as per
EnergyPlus modeling guidelines [33]; the change in the density of
the envelope is based on the characteristics of conventional con-
crete [45]. The solar absorptance of building coating was set ac-
cording to the absorptive characteristic of surface materials of
various colors. The building orientation is changed from 0� to 360�.
The external windows are closed in the cooling season and the
heating season. In the transition season, the indoor thermal envi-
ronment can be regulated by natural ventilation. In this study, the
“Wind and Stack with Open Area model” is used, which is a func-
tion of wind speed and thermal stack effect. The model is designed
to simplify ventilation calculations rather than using a flow
network model for more detailed ventilation investigations.
2.1.2. Optimization objectives

2.1.2.1. Energy-related performance indicators. Building energy de-
mand was defined as the sum of the cooling and heating energy
demand of all flats, calculated for the cooling (from Jun. 14 to Aug.
28) and heating periods (from Nov. 15 to Mar. 15) respectively. The
energy demands for domestic hot water, electronic equipment, and
artificial lighting were not considered as they were not expected to
vary significantly throughout the periods of optimization [17].
Building energy demand, cooling and heating energy demand are
represented by the annual energy use intensity (EUI), cooling en-
ergy use intensity (CEUI) and heating energy use intensity (HEUI),
respectively. Similar to many previous related studies [16,17,19], the
HVAC system used in this study was the ‘Ideal Loads Air System’,
which means that the Coefficient of Performance (COP) of the
system was assumed to be 1 and is used in situations where the
intention is to study the building HVAC energy demand. Among
then, humidification/dehumidification consumptions were
considered and the fresh air change rate of the HVAC system was
set as 1 per hour for every simulation case. The building perfor-
mance is based on the hourly simulation of the whole year, and the
time step is 6 times/h.
The formula is as follows:

HEUI¼
Xi¼Nh

i¼1
EUhi=M (1)

CEUI¼
Xi¼Nc

i¼1
EUci=M (2)

EUI¼HEUI þ CEUI (3)

EUi is hourly energy demand in kWh; Nh is annual heating
hours; Nc is annual cooling hours; M (m2) is the conditioning
area,1029.6 m2 in this paper.
2.1.2.2. Thermal comfort indicator. The adaptive model is used to
evaluate the thermal comfort of free-running buildings, and the
ASHRAE-55 adaptive model, which is based on field data collected
from various climate zones, is the most commonly used [46]. The
ASHRAE-55 model uses outdoor monthly average temperatures to
represent outdoor weather conditions. The indoor environment of
the transition season in this paper can be evaluated using this
model.

The neutral temperature calculation based on the ASAHE-55
model is shown in equation (4):

Tc ¼0:31� Tr þ 17:8 (4)

Considering 80% acceptability, thermal comfort fluctuates
within 3.5 �C on either side of neutral temperature (7 �C
bandwidth).

Based on the adaptive model, the annual cumulative comfort
ratio (CTR) is used as a thermal comfort measure. The calculation
formula is as follows:

CTR¼ 1
m

Xk¼m

k¼1

0
@XNp

j¼1
wfj,

1
Np

1
Am

2½0;1� (5)

wfj ¼
�
1;
0;

if
if

Tlower � T � Tupper
T3Tloweror_Tupper

(6)

Where T is the comfort indicator, which here is the room temper-
ature. Tupper and Tlower are the limits of the thermal comfort zone. NP

represents the total hours. The number of flats is m, CTR is the
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average of the thermal comfort of nine flats.

2.1.3. Objective functions
In this paper, the annual EUI and CTRwere taken as optimization

targets. In addition, according to the general requirements of the
PH standard, the constraint condition is set as HEUI and CEUI.

The fitness function is defined as Eq.

OF ¼
�
f1 ¼ f ð x!; EUIÞmin
f2 ¼ f ð x!;CTRÞmax

�
(7)

Subject to8<
:

x!¼ x!range
HEUI � 15
CEUI � 3:5þ 2�WDH20 þ 2:2� DDH28

(8)

Where, the x!range contains 20 variables, all variables meet the
distribution form and value range requirements in Table 1. WDH20

(Wet-bulb degree hours 20) is the cumulative value of the differ-
ences between the wet-bulb temperature and the 20 �C when it is
higher than 20 �C in one year (kKh). DDH28 (Dry bulb degree hours
28) is the cumulative value of the difference between the dry-bulb
temperature and the 28 �C temperature when it is higher than
28 �C in one year (kKh).

2.2. Sensitivity analysis

Sensitivity analysis (SA) plays an important role in performance
analysis such as building energy, which can specifically extract key
factors that affect each building performance [41,47]. Regression
methods are the most commonly used global SA method because
they are easy to understand, and the minimum sample size
required is relatively small [41]. Many sensitivity indicators are
derived based on regression methods, such as Standardized
Regression Coefficients (SRC), Partial Correlation Coefficients (PCC),
standardized rank regression coefficient (SRRC) and partial rank
correlation coefficient (PRCC). The first two apply to linear models,
and their ranks apply to non-linear monotonic models. Compared
to SRRC, PRCC suits the correlated input variables better because it
can exclude the effects of correlations between input variables [48].
In the field of building performance, some passive variables are
interactive, and the relationship between variables and optimized
performance goals is non-linear. Therefore, PRCC is used as the SA
index.

2.3. Optimization method

2.3.1. Redundancy analysis
PRCC can show the relative order of importance of a set of input

variables on output variables. There are no clear assessment criteria
to measure absolute importance, but mainly to present the relative
importance of variables. Therefore, this paper used redundant
analysis (RDA) to compensate for the deficiencies of the PRCC in this
respect. While giving the level of influence of the input variable on
the output variable, the redundancy analysis can also give the
significance of the effect at the same time.

RDA is a multivariate technique that examines how a set of
response variables (Y) is related to a set of explanatory variables (X)
by measuring the portion of the variance in the response variables
that is explained by explanatory variables. In this paper, design
parameters and building performances are explanatory variables
(X) and response variables (Y), respectively. Intuitively, RDA is a
canonical version of principal component analysis (PCA), and in
general consists in deriving a series of multiple linear regressions of
the dependent variables Yon the independent variables X, followed
by principal component analysis of the matrix of fitted values. The
main steps in an RDA, which are described in Makarenkov and
Legendre [49], are as follows:

Multiple linear regression is computed for each Y, one by one, on

all X. This step yields the fitted values bY through the following
formula:

bY ¼XB¼X½X’X�X’Y (9)

The covariance matrix S of the matrix of fitted values bY is
computed using the following formula:

S¼ ½1 = ðn�1Þ�bY ’bY ¼ ½1 = ðn¼1Þ�Y ’XðX ’XÞX ’X½X ’X��1X ’Y (10)

Eigenvalue and eigenvector decomposition of the covariance

matrix S of bY is carried out by solving the following matrix
equation:

ðS� lkIÞuk ¼0 (11)

Where lk is a canonical eigenvalue and uk is the related canonical
eigenvector. The matrix containing the normalized canonical ei-
genvectors uk is called U.

The ordination of objects (Y rows) independent variable space is
obtained directly from the centered matrix Y, using the standard
equation for computing principal components:

Ordðresponse variable Y spaceÞk¼Yuk (12)

The ordination vectors defined by Eq. (4) are called ‘‘site scores’’.
Their variance is similar, although not necessarily equal to the
corresponding eigenvalues.

Likewise, the ordination of objects in X space is obtained using
the following equation:

Ordðexplanatory variable X spaceÞk ¼ bYukXBuk (13)

The ordination vectors, called ‘‘fitted site scores’’, are the linear
combinations of the explanatory variables X. Their variance is equal
to the corresponding eigenvalues.

2.3.2. Meta-model
2.3.2.1. Gradient Boosted Decision Trees (GBDT). More advanced
thinking called ensemble learning was introduced in the early
1990s [50]. The ensemble learning leverages the principle of model
complementation to provide more accurate and stable results
compared to base models [51]. Most review articles published in
the recent past, suggest that ensemble algorithms are more effec-
tive than single prediction algorithms [52,53]. Choosing an effective
machine learning algorithm is critical to achieving good perfor-
mance with the resulting meta-model. GBDT also called multiple
additive regression trees (MART) or gradient boosting machine
(GBM), is an integratedmachine learning algorithm [54]. Due to the
high robustness, the GBDT algorithm has been increasingly popular
in the field of building energy management. Numerous studies
have shown that the GBDTmodel exhibits the highest performance
in the prediction of energy consumption by appliances in a low-
energy house [55], building baseline energy consumption pre-
dictions [56], and electricity load forecasting for utility energy
management systems [57]. Therefore, this study builds meta-
models for building performances based on GBDT algorithm. The
detailed construction process of this algorithm is described in
Ref. [58].

2.3.2.2. The evaluation index
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(1) Accuracy.

The error indicators specified in ASHRAE Guideline 14e2002 are
introduced, that is the basic requirements for meta-models. When
the standard mean deviation (NMBE) and the coefficient of varia-
tion of rootmean square error (CV-RMSE) is less than±5% and±15%,
respectively, the model is accurate and reliable [59].

The calculation formula is as follows:

NMBE¼
�����
Pi¼n

i¼1ðyi � byiÞ
n� y

������ 100% (15)

CVRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
Pi¼n

i¼1ðyi � byiÞ2q
y

� 100% (16)

Where the yi byi y represents the actual value, the predicted value
and the average actual values.

(2) Robustness

The robustness of meta-model refers to the ability to provide
acceptable accuracy for diverse problems with varying levels of
complexity and dimensionality [60]. This paper covers a variety of
building performance indicators include energy and thermal
comfort. These performance indicators vary substantially in
complexity and in the shape of the output distribution (see Section
2.4). Thus, the meta-model technique must be robust to each per-
formance indicator. As an indicator of robustness, previous works
have used the standard deviations of the accuracies obtained from
multiple problems [61,62]. R2 is generally used as an accuracy index
to calculate the standard deviation [60].
2.3.3. Optimization algorithm
The multi-objective function is solved by a multi-objective

optimization algorithm. Multiple optimization functions are
generally involved in the performance optimization of building,
and the dimensions between different properties may be different,
such as energy demand kWh/(m2a) and thermal comfort level (%/a)
in this article. It is difficult to integrate into one optimization
function. Therefore, the Pareto method is usually used to solve such
problems [63]. The Pareto method can provide a non-dominated
optimization solution that allows for solution selection based on
preferences during subsequent decision making [64]. These algo-
rithms can handle efficiently non-linear problems with disconti-
nuities and many local minima [65]. Among them, genetic
algorithms (GA) are widely and effectively applied to building
performance optimization problems, especially non-dominated
sorting genetic algorithms (NSGA-II) [66]. For example, a study
developed objective functions of energy consumption, retrofit cost,
and thermal discomfort hours, and studied the interaction between
these conflicting objectives and assess their trade-off using the
NSGA-II algorithm [23]. Another study used the NSGA-II algorithm
to solve the optimization function with the annual energy con-
sumption and the summer comfort degree as the optimization
goals [67]. Therefore, NSGA-II is used in this paper to optimize the
passive performance of buildings.
2.4. Economic assessment

An economic analysis of the Pareto frontier solution is necessary.
In this paper, the initial investment, operating costs and payback
period are used to evaluate the economic benefits of the optimized
solution. The design parameters that cause great economic
differences due to various values are mainly the insulation thick-
ness and the windows type. Therefore, they are the main parame-
ters considered in the initial investment.

The main initial investment cost and the annual operating costs
of HVAC are calculated as follows:

Ci ¼ cwall þ croof þ cwindow (17)

Co ¼ cheating þ ccooling (18)

PBC¼ðCio �CibÞ = ðCob �CooÞ (19)

Among them, Ci is the initial investment cost, CNY/m2. The price
of the insulation material and the exterior window can be obtained
from Green building material selection technology [68] and the
China Building Materials Network [69], respectively. Co is the
operating cost, including heating and cooling, CNY/m2. The urban
heating network is used in the winter, and the local heating cost is
0.13RMB/kWh. The household air conditioner is used in the sum-
mer, and the COP value is 2.8. The PBC is the payback period. The Cio
and Cib present the initial investment of optimized solution and the
base building. Coo and Cob present the operating costs of optimized
solution and the base building.
2.5. Construction of sample space

The input-output matrix is built by the coupling of Python
programming language and EnergyPlus. As shown in Fig. 2, firstly,
the input matrix is constructed using Latin hypercube sampling
(LHS) in Python and stored in a CSV file. Then each set of the input
variable is read from the CSV file and written to the EnergyPlus
software in turn by means of Python. Then use Python to read the
CSV file, and then write each set of the input variable to the IDF file
of EnergyPlus in turn. Finally, EnergyPlus performs building per-
formance simulation and enters the next loop. In general, the entire
program consists of two loops: pythonwrites the input variables to
EnergyPlus in turn, and the EnergyPlus software performs a full-
year simulation in time steps.

The sample size taken by the LHS during the uncertainty anal-
ysis is generally at least ten times the number of input variables, but
it is also related to the interaction complexity between input pa-
rameters. In order to ensure that the selected sample size is sta-
tistically representative, this paper compares the probability
density function (PDF) of performance indicators for different
sample sizes. It is generally believed that when the probability
density function gradually becomes uniform as the sample size
changes, the sample size can represent the overall building library.
Independent sampling is performed to get the sample sets of var-
iables in different sizes. According to Fig. 3, when the sample size is
greater than 300, the PDF curve does not vary substantially as the
sample size changes, especially CEUI. This verifies the effectiveness
of the LHS method in this research question. In the subsequent
analysis, we need to ensure that the sample size is greater than 300.
3. The base-case building model

3.1. Setting the building model

Since the optimization of passive parameters exists in the early
stage of building design, as in most of the related existing studies,
the simulation data is used to expand the research database [16].
The entire building performance is simulated using EnergyPlus
(Ver.9.0.1), which is a highly validated simulation engine widely
used in building energy analysis [70]. In order to represent the



Fig. 2. The framework used to perform automatic EnergyPlus simulations.

Fig. 3. The curve of the probability density function under different sample sizes.
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Fig. 4. Elevation and Isometric view of case building.
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characteristics of most Chinese residential buildings, this paper
takes the popular slab-type building as an example, which has a
rectangular footprint and there are about three flats on each storey
[71]. According to the database of Lianjia [72], the most common
area of flats is about 100 m2 in most of the newly built buildings.
The rectangular footprint of the total building is 31.2 m � 11.0 m
(length � width) with three units on each story (Fig. 4). The
building long axis is oriented East-West. The parameters of the
envelope components are determined in accordance with JGJ res-
idential building standards [44], which are shown in Table 2. It is
assumed that three persons live in each unit, and their schedule of a
workday is shown in Table 3. The internal thermal load from
lighting, equipment, and people are assumed to be 4.3 W/m2 on
average.

Multi-story, especially the high-rise residential buildings,
contain thousands of interior spaces, and it is not realistic to
simulate a complete architectural model. In order to improve the
computational efficiency, the common practice in the existing
research is to select the bottom, standard and top stories to
construct the building model according to the influence of the
external meteorological environment [17]. Therefore, in order to
reduce the number of thermal zones, this study uses a three-story
building model in the subsequent process. In addition, since our
research object is the average performance of the entire building,
each flat is used as a thermal zone in order to simplify the calcu-
lation. This division method refers to some existing research [17]
and the standard residential building model generated by the U.S.
Table 2
Basic parameters of the case building.

Exterior wall Roof Exterior window The floor Interior wall

U-value 0.7 0.45 2.5 0.65 1.5
WWR North: 0.3; South: 0.5; West: 0.35; East: 0.35
Form Layer height:2.9; Shape coefficient:0.299

Table 3
The setting of schedules.
DOE Building Energy Codes Program [73].
3.2. Climate characteristics

China’s policy prescribes the design features of traditional
buildings in the cold climate to be mainly for thermal insulation in
winter [45]. However, with global warming and the improvement
in living standards, the cooling demand during summertime is
gradually increasing in the cold climate and the cooling energy
consumption cannot be ignored. Therefore, it is necessary for the
region to find the optimal passive design. This study selects the
typical city of Tianjin as the case location. Tianjin is located in
eastern China. HDD18 and CDD26 are 2743 and 92 respectively, and
the annual average horizontal radiation intensity is 102 W/m2. As
shown in Fig. 5, the average daily temperature throughout the year
is between�10 and 30 �C. The heating season in the area lasts from
November 15 to March 15 of the following year, and the cooling
season is from June 14 to August 28. The weather data for simula-
tion are derived from the Chinese Standard Weather Data pub-
lished by the EnergyPlus website [74].
Fig. 5. The daily average temperature in Tianjin and the season division.



Table 4
The determination coefficient (R2) of the regression model.

Sample size CEUI HEUI EUI CTR

100 0.930 0.852 0.952 0.863
300 0.916 0.864 0.802 0.836
500 0.913 0.861 0.935 0.841
700 0.907 0.846 0.923 0.830
900 0.918 0.853 0.931 0.831
1100 0.911 0.850 0.927 0.839
1300 0.913 0.851 0.925 0.826
1500 0.917 0.849 0.930 0.837
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4. Results

4.1. Multivariate performance analysis

PRCC, the sensitivity index, derived from MLR is applied to
analyze the main factors affecting building performance. The larger
the sample size, the more stable the indicators will be. However,
there is no a priori exact rule for determining the adequate sample
size for LHSePRCC index. A way to solve the problem is to sys-
tematically increase the sample size and check if the sensitivity
index used can consistently capture and rank a similar set of most
important effects [75]. Therefore, the sensitivity analysis results
under different samples are compared in this section. The input
variables involved include not only thermo-physical parameters
but also parameters that have potential effects on EUI and thermal
comfort such as WWR. SA has the complementary role of ordering
by importance, the strength, and relevance of the inputs in deter-
mining the variation in the output. The SA results are determined
and motivated by the thermo-physical characteristic, and also
affected by the uncertainty of input variables [41]. For variables that
are highly correlated in thermo-physical properties, it is also
possible to have a relatively low order of influence when the
parameter uncertainty (constrained by PH standards) is small.

For the EUI, PRCC and R2 of the regression model for different
sample sizes are exhibited in Fig. 6 and Table 4. For different sample
sizes, the PRCCs are slightly different but the overall trend can be
used as the basis for measuring important variables, and the fitting
performance of the regression model is perfect with R2 higher than
0.90. This indicates that the regression analysis model is robust.
ACH (x9) is recognized as the most important contributor. It ac-
counts for over 95% of the explainable output variation. The U-value
of the external wall (x1) and roof (x4), as well as the WWR of the
south (x14) are ranked after and contribute about 40%. The U-value
of the external window (x7), the SHGC (x8) and WWR of the north
(x16) have some influence with PRCC about 30%. The solar
Fig. 6. The Sensitivity index PRC
absorptance of coating (x10 and x11) also has some influence on
PRCC, about 10%. The remaining factors are considered relatively
less important with individual contributions less than 10%. In
addition, the impact of variables on the annual cooling load and the
annual heating load also are shown in Fig. 6. The results of SA of EUI
are different from both HEUI and CEUI, which indicates that the EUI
is not only determined by the cooling or the heating energy
demand.

Finally, obtaining the PRCC indices of CTR. The model achieved
acceptable fitting performance with R2 of 0.83. For CTR, the density
(x5) and heat capacity (x6) of roof and SHGC (x8) are the most
important factors with PRCC around 0.6. Followed by WWR (x13-
x16) and the length of overhang (x19). The U-value of window (x7),
ACH (x9), building orientation (x12) and fin depth (x20) have almost
no impact on CTR.

For the cold climate zone, the rank and the magnitude of the
influence of input variables are not consistent for EUI and CTR.
Contrary to EUI, the effect of ACH (x9) on CTR is largely negligible.
This is because natural ventilation which is used during the tran-
sition season weakens the effect of airtightness on the indoor
temperature. However, during the cooling and heating seasons, the
external windows are closed, so the ACHwill have a large impact on
the load. EUI is more sensitive than CTR to the U-value of the wall,
C of building performances.
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roof, and windows. The density and heat capacity of the roof has
little effect on EUI, but it is an important factor in CTR. But there are
some commonalities, for example, the density and heat capacity of
the external wall, the fin depth (x20) and orientation (x12), the U-
value of the floor (x17) have little impact on EUI and CTR.

The sign of the PRCC indicates whether the relationship be-
tween input variables and output variables is positive or negative.
WWR (x13-x16) is positively correlated with energy-related per-
formance but negatively with CTR. This means that smallerWWR is
proposed as much as possible to reduce energy consumption and
improve indoor comfort. Nevertheless, the premise is that the re-
quirements of indoor natural lighting must be met. The solar ab-
sorptances (x10 and x11), overhang height (x18), ACH (x9), U-value of
roof (x4) and the SHGC (x8) are positively correlated with EUI, and
the length of the overhang (x19) is negatively correlated with EUI.
For CTR, the result is just the reverse.
4.2. Redundancy analysis

The RDA method can quantify the explanation and significances
the explanatory variables to the overall response variables
including EUI and CTR. Table 5 presents and explains and signifi-
cance, other than x2, x20, x3, x12 and x20. The effect of the remaining
explanatory variables on the response variables is significant with p
less than 0.05. Taking two response variables as a whole, the
explanatory variables of the top seven variables are, from high to
low, x9, x8, x5, x6, x14, x16, and x19, each explaining more than 1% of
the response. In subsequent optimization analysis, variables with
insignificant effects were removed to reduce the complexity of the
optimization model.
4.3. Meta models

Based on the GBDT algorithm, meta-models of building perfor-
mance were established. Trading off the calculation time and reli-
ability, the overall sample size is set to 1100 and randomly divided
into two parts, of which 1000 cases are used as training sets and
100 cases are used as test sets. Two commonly used algorithms,
SVM and ANN, were used to verify the reliability of the GBDT
method.

The setting of hyperparameters has important influences on
model accuracy. The main parameters affecting the GBDT model
Table 5
Explains and significant.

Name Explains % pseudo-F P P (adj)

x9 42.1 799 0.002 0.04
x8 10.8 252 0.002 0.04
x5 10.1 301 0.002 0.04
x6 6.8 248 0.002 0.04
x14 7 330 0.002 0.04
x16 3 162 0.002 0.04
x19 2.8 173 0.002 0.04
x4 0.9 61.4 0.002 0.04
x1 0.8 54.4 0.002 0.04
x15 0.7 47.2 0.002 0.04
x13 0.5 33.9 0.002 0.04
x7 0.3 22.1 0.002 0.04
x11 0.3 19.9 0.002 0.04
x18 0.2 18 0.002 0.04
x10 0.2 17.2 0.002 0.04
x2 <0.1 2.1 0.128 0.64
x20 <0.1 1.6 0.188 0.752
x3 <0.1 1.4 0.236 0.752
x12 <0.1 0.8 0.432 0.864
x17 <0.1 0.6 0.61 0.864
include the maximum depth of trees (MD), the number of trees
(NT), the maximum of features (MF) and the learning rate (LR). The
SVR model has two crucial parameters: c and g. The c is the penalty
factor, which is the tolerance for error. The g is the coefficient of the
kernel function, which implicitly determines the distribution of the
data after mapping to the new feature space [76]. For ANN, the
activation and training functions are “tansig” and “traingd”,
respectively. The number of hidden layer nodes and learning rates
is their main parameters. The parameter settings of three algo-
rithms after optimization are shown in Table 6.

The linear fit between predicted and simulation results and their
R2 are shown in Fig. 7 and Table 7, respectively. The comparison
shows that the fitting performance of the GBDTmodel is superior to
other models as awholewith the R2 of EUI and CTR being 0.996 and
0.935, respectively. Table 8 present the accuracy evaluation indices
for the two objectives. Besides SVM, GBDT and ANN also meet the
requirements of ASHRAE Guideline 14e2002 with NMBE and
CVRMSE less than 5% and 15%, respectively. In particular, the GBDT
model, NMBE of EUI and CTR are 2.45% and 1.78%, and CVRMSE of
EUI and CTR are 3.36% and 2.36%.

In addition, the model robustness is also important, which
represents the versatility for all building performance indicators.
The standard deviation of R2 for EUI and CTR is used as the
robustness indicator (shown in Fig. 8). It can be seen that the
robustness of GBDT is the best with the standard deviation at 0.048,
followed by ANN and SVM.

In summary, the GBDT model is superior in terms of robustness
and fit and was chosen to construct the fitness function of the
optimized model.

4.4. Multiply optimization and evaluation

The building performance model established by GBDT can
participate in multi-objective optimization as adaptive functions in
the genetic algorithm. The optimization objectives are to minimize
the EUI and maximize CTR in this paper. In order to cope with the
two opposite optimization goals of minimizing and maximizing,
the minimization convention is generally followed. Therefore, the
minimization of discomfort (DCTR ¼ 1-CTR) is used instead of CTR.
In terms of the NSGA-II algorithm, the roulette selection method
and two-point cross are selected. Several other important optimi-
zation settings, including the population size, number of maximum
generations, generation gap, crossover and mutation probability
are summarized in Table 9, according to a statistical summary of
existing literature and an adaptive variation of optimization con-
figurations [77].

Fig. 9 shows the Pareto frontier solution. The solution distribu-
tion is very concentrated because this optimization assumes that
natural ventilation is maintained during the transition season,
which alleviates the conflict between two optimization goals. The
Table 6
Parameter settings for meta-models.

Model Parameter DCTR EUI

GBDT subsample 0.8 0.8
MD 3 8
MF 9 7
NT 800 1300
LR 0.01 0.01

SVM c 0.1 1
g 1 0.1

ANN Iterations 10000 10000
Convergence error 0.00001 0.00001
LR 0.01 0.01
The number of hidden layer nodes 10 10



Fig. 7. The fitting curve between predicted and simulated results.

Table 7
The R2 between the predicted and simulated results.

Objective GBDT SVM ANN

EUI 0.996 0.910 0.938
CTR 0.935 0.842 0.820

Table 8
Accuracy metrics.

Objectives Indictors [%] GBDT SVM ANN

EUI CVRMSE 3.36 5.96 4.53
NMBE 2.45 5.16 3.67

CTR CVRMSE 2.36 4.06 2.59
NMBE 1.78 3.3 2.00

Fig. 8. Robustness evaluation of meta-models.

Table 9
The setting of the NSGA-II algorithm.

Parameter Value

Population size 100
The number of maximum generation 500
Generation gap 0.5
Crossover probability 0.8
Mutation probability 0.6

Fig. 9. Pareto optimization solution.
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optimized EUI and DCTR both fluctuate within a small range with a
variation of 13.1e14.1 kWh/(m2a) and 13.1e13.3%, respectively. The
CEUI and HEUI constraints of the PH standard are less than 16.73
and 15 kWh/(m2a), respectively. The corresponding CEUI of the
Pareto frontier solution is approximately 13.4e14.6 kWh/(m2a),
while the HEUI is substantially lower than 1 kWh/(m2a), which is
obviously meeting constraints. In addition, the EUI and CTR of the
base-case building are known to be 111.2 kWh/(m2a) and 63.0%,
respectively. Therefore, the energy-saving rate of EUI is about 88.2%
and the improvement rate of CTR is about 37.8%. In short, in the case
of reasonable design and operation, the overall performance of PH
buildings can be greatly improved.

In order to more intuitively display the distribution of design
variables corresponding to the Pareto frontier solution, it is
normalized as shown in Fig. 10. Some variables such as x5, x6, and
x19 are concentrated in the upper limit of the constraint range, and
its correlation with all optimization targets is negative. The larger
the value, the better the optimization goal. Therefore, the value of
these variables should be as large may be permissible under the
circumstances. Some variables are all distributed at the lower
boundary of the constraint range, and these variables are positively
correlated with all variables (x7, x8, x9, x13, x14, x15, and x16).
Therefore, the design should be as small as possible. There are also
some variables that are distributed almost throughout the con-
straints, such as the x1, x7, x10, x11 and x18. These variables have



Fig. 10. Normalized distribution of optimized design variables.
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different correlation directions for the two optimization goals, and
the difference in the degree of relevance is not very large. Taking x1
as an example, the conventional approach is to make the U-value as
small as possible, but in the multi-objective trade-off design, the
optimization value is in the middle of the recommended value of
PH standards. This shows that the integrated design of the building
ontology is necessary.

4.5. Economic analysis

An economic analysis is performed in order to investigate the
cost-effectiveness of the optimal solutions. Through the investiga-
tion of 20 high-performance buildings in the climate, the common
insulation materials are summarized in Fig. 11. Rock wool and XPS
are the most commonly used materials for walls and roofs,
respectively. The market price of rock wool and XPS per square
meter is 0.3 and 0.5 CNY/(mm thickness). According to Table 2, the
U-value of thewall and roof of the base building are 0.45 and 0.7W/
(m2K), and the cost of corresponding insulation materials is 7.2 and
23.7 CNY/m2 respectively. The external window of the basic
building has a U-value of 2.5 W/(m2K) and the corresponding type
Fig. 11. Insulation type for exterior
of external window is plastic steel (5mmþ 12mmAirþ5mm)with
the market price being 310 CNY/m2. In addition, since the U-value
and SHGC of windows corresponding to Pareto frontier solution are
concentrated around 1 W/(m2K) and 0.18, it can be realized by
adjusting the air layer thickness, so the window price can be
considered the same with a market price of 483 CNY/m2 [plastic
steel window (5 mm low-eþ13 mm Airþ5 mm þ 13 mm
Airþ5 mm)].

Calculated according to Eqs. (17) and (18), Ci and Co of the base
building are 96.6 and 107.8 RMB/m2, respectively, and the corre-
sponding cost of the Pareto frontier solution is shown in Fig. 12.
There is an exponential relationship between Ci and Co (R2 ¼ 0.73),
and with the increase of Ci, Co tends to be stable. Further, the
payback period is used to integrate Ci and Co. The shorter the
payback period, the better the economic benefit, so it is used to the
final decisionmaking on the Pareto frontier solution. As can be seen
from Fig. 13, there is generally a positive correlation between the
payback period and the DCTR. The optimal solution is present, with
the payback period and DCTR of 0.48 years and 13.1%, respectively.
5. Conclusion

This paper proposes a multi-objective optimization method for
PH design, and the cold climate zone is chosen as an example to
construct the multi-objective optimization model. Annual energy
demand and comfort level are used as optimization objectives, and
the boundaries of design parameters, annual cooling, and annual
heating energy demand are used as constraints. The proposed
three-stage optimization design method can reduce the complexity
of the model and improve optimization accuracy and efficiency.

The main conclusions are as follows:

1) Linear regression-based PRCC sensitivity indicators were used to
analyze the correlation between design variables and building
performance indicators. To increase reliability, repeated tests
wall and roof in the climate.



Fig. 12. The economic analysis of the Pareto frontier solution (Initial investment, operating costs and payback period).

Fig. 13. The relationship between the payback period and DCTR of the Pareto frontier solution.
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were performed on the SA and results show that the PRCC at
different tests is slightly different, but the overall trend can be
used as a basis for measuring important variables. The fitted
MLR model achieved higher robustness with the CEUI, HEUI,
EUI, and CTR, R2 being 0.92, 0.85, 0.92 and 0.84, respectively.

2) The pre-RDA method is used for dimensionality reduction,
which can provide the importance ranking and significance of
design parameters to the overall optimization objectives.
Compared to SA, this method reduces the influence of subjective
judgment and is more suitable for multi-objective optimization
problems. RDA shows that the impact of five variables (the
density of wall, the fin depth, the specific heat of wall, the
orientation, and the U-value of the floor) is not significant with
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p˃0.05. Therefore, these variables were excluded from the
problem space for further optimization.

3) This study is the first one in which the GBDT algorithm has been
implemented to study a PH building. It outperformed other
commonly seen big data algorithms such as SVM and ANN in our
experiment. Meta-model based on GBDT algorithm meets the
requirements of ASHRAE with NMBE and CVRMSE of EUI and
CTR are 2.45%, 3.36%, 1.78%, and 2.36%, respectively. An indicator
is proposed to evaluate the robustness of the model. The meta-
model based on GBDT withthe standard deviation at 0.048, is
more robust than several existing advanced models.

4) By using the GBDT-based NSGAmethod, the optimized solutions
of EUI and CTR are 13.1 kWh/(m2a) �14.1 kWh/(m2a) and
86.7e86.9%, respectively. The energy-saving rate of EUI is about
88.2% and the improvement rate of CTR is about 63.0% compared
with the base-case building.

5) Implement an economic analysis of the Pareto frontier solution.
There is an exponential relationship between Ci and Co
(R2 ¼ 0.73), and with the increase of Ci, Co tends to be stable. The
Ci and Co of the base building are 96.6 and 107.8 CNY/m2,
respectively. Further, the payback period is used to integrate Ci
and Co. The shorter the payback period, the better the economic
benefit, so it is used to the final decision making on the Pareto
frontier solution. There is generally a positive correlation be-
tween the payback period and the DCTR. The optimal solution is
present, with the payback period and DCTR of 0.48 years and
13.1%, respectively.

This study can provide a reference for the integrated design of
Passive house buildings. It can be further extended to other fields,
such as building energy-saving renovation, early performance
design of buildings of different types or located in different regions.
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