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An ~(n3y'logn) Algorithm for the 

Optimal Stable Marriage Problem -
Cheng Ng 

Technical Report No. 90-22 
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We give an O(n3y'logn) time algorithm for the optimal stable marriage problem. 
This algorithm finds a stable marriage that minimizes an objective function defined 
over all stable marriages in a given problem instance. 

Irving, Leather, and Gusfield have previously provided a solution to this problem 
that runs in O(n4 ) time [ILG87]. In addition, Feder has claimed that an O(n3 logn) 
time algorithm exists [F89]. Our result is an asymptotic improvement over both 
cases. 

As part of our solution, we solve a special blue-red matching problem, and illustrate 
a technique for simulating Hopcroft and Karp's maximum-matching algorithm 
[HK73] on the transitive closure of a graph. 

Notice: This Material 
may be protected 
by Copyright Law 
(Title 17 U.S.C.) 



1. Introduction 
An instance of the stable marriage problem involves two disjoint sets of equal 
cardinality n, the men denoted by mi's and the women denoted by Wi's. Each 
individual ranks, in decreasing order of preference, all members of the opposite sex 
in a preference liJt. The set of preference lists determines completely the men and 
women's ranking functions, denoted by mr and wr respectively, as follows: 

mr(mi, Wj) = k if man i ranks woman j in position k, 
wr(wi, mj) = k if woman i ranks man j in position k. 

Note that a lower value of k indicates a higher ranking. 

A pair (mi,Wj) consists of a man and a woman. A Jtable marriage is a complete 
matching of men and women that does not result in an unmatched pair (mi, Wj) 
such that mi and w j each ranks the other higher than his or her partner. 

Most problem instances admit more than one stable marriage. However, the 
traditional algorithm, first proposed by Gale and Shapley [GS62], gives only the 
male-optimal solution. In this solution, every man has the best partner possible 
under any stable marriage; simultaneously, every woman has the worst partner 
possible. 

The problem of finding more equitable stable marriages has been raised by Knuth 
[K76] and others [MW71] [W76]. The optimal stable marriage problem results from 
responding to such calls. Given a marriage M = { (m1, w1), ... , (mn, wn) }, define 
its value c(M) = L:~mr(mi,Wi) + L:~wr(wi,mi)· The optimal stable marriage 
problem is to find a stable marriage with minimum value. Irving, Leather, and 
Gusfield provide a solution to this problem that runs in O(n4 ) time [ILG87]. Feder 
has claimed that an algorithm that runs in O(n3 logn) time is available [F89]. 

Most steps in Irving, Leather, and Gusfield's solution require O(n2) time. The 
only exception is a bottleneck step that requires 0(n4 ) time. In this paper, we 
give an O(n3 Jlogn) time algorithm for this step, thus reducing the overall time 
complexity to O(n3./logn ). We transform the bottleneck step into a specialized 
matching problem .in directed graphs, which we name the blue-red matching prob
lem. This problem, to be defined later in this section, is solved via a simulation of 
Hopcroft and Karp's maximum-matching algorithm for bipartite graphs [HK73]. 

We conclude this section with some additional definitions. Section 2 reviews 
Hopcroft and Karp's techniques. Section 3 summarizes the work of Irving, Leather, 
and Gusfield. We develop the main ideas of this paper and give an 0( n3 log n) time 
algorithm in Section 4. In Section 5, we describe the modification necessary for 
this algorithm to run in O(n3Jlogn) time. Section 6 consists of some concluding 
remarks. 

The maximum-matching problem is solved on an undirected graph G = (V, E). 
The graph is bipartite if V can be partitioned into two subsets X and Y such that 
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every edge in E joins a vertex in X with a vertex in Y. M ~Eis a matching if no 
vertex v E V is incident on more than one edge in M. An edge ( u, v) is matched if 
it is in M, and unmatched otherwise. A vertex v is matched if it is incident on an 
edge in M, and unmatched otherwise. The maximum-matching problem is to find 
a matching with maximum cardinality. 

A path is a sequence of vertices v1, v2, ... , Vk such that (Vi, Vi+1) E E for 1 :S i :S 
k - 1. A path Pis an augmenting path relative to the matching M if (i) k is even, 
(ii) v1 and Vk are not matched, and (iii) the edges (Vi, Vi+1) are not matched for 
odd i's and matched for even i's. The length of P, denoted IPI, is the number of 
edges in P. IPI is always odd for an augmenting path, and is equal to k -1 in the 
above example. 

The blue-red matching problem is solved on a directed acyclic graph G = (V, E). 
A directed path is a sequence of vertices v1, v2, ... , Vk such that (Vi, Vi+1) E E for 
1 :S i :S k - 1. A vertex v is reachable from u if there is a directed path (including 
zero-length paths) that starts at u and ends at v. B and R are two distinguished 
vertex subsets such that B n R = 0. For convenience, we refer to a vertex b E B 
as a blue vertex and a vertex r E R as a red vertex. A blue-red matching of size k 
is a set of ordered pairs of vertices { (b1, r1 ), (b2, r2 ), ... , (bk, rk)} such that (i) all 
vertices are distinct, (ii) all bi's are blue vertices and all ri's are red vertices, and 
(iii) for every i, ri is reachable from k The blue-red matching problem is to find 
a blue-red matching of maximum size. 

The maximum-flow problem is solved on a flow network, which is a directed graph 
G = (V, E) with two distinguished vertices, a source s and a sink t, and a positive 
real-valued capacity c( v, w) for every arc ( v, w) E E. A flow 1 on G is a real
valued function on E satisfying the constraints: (i) 0 :S 1 ( v, w) :S c( v, w) for all 
(v,w) EE, and (ii) ~uEvl(u,v) = ~wEvl(v,w) for all v EV- {s,t}. The 
value Ill of a fl.ow 1 is the net fl.ow into the sink, i.e., Ill = ~vEV 1( v, t). The 
maximum-flow problem is to find a fl.ow with maximum value. 

An arc ( v, w) is saturated relative to a fl.ow 1 if 1( v, w) = c( v, w ). No additional 
fl.ow can use a saturated arc. A fl.ow 1 is a blocking flow if every path from s to t 
contains a saturated arc. Many fast maximum-flow algorithms work by finding 
a succession of blocking flows, a technique first introduced by Dinic [D70]. Our 
algorithm for the blue-red matching problem also requires solving a succession of 
blocking-flow problems. 

2. Maximum Matching Algorithm 
Augmenting paths are central to most matching algorithms. It is well known that 
a matching M can be increased if and only if there exists an augmenting path P 
relative to M [B57]. Given such a path P, the matching is increased by exchanging 
matched and unmatched edges along P. 

Hopcroft and Karp's contribution is their observation that it is more efficient to 
always use the shortest available augmenting path when increasing a matching. 
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Their algorithm uses a sequence of augmenting paths Po, P1, ... , Pk to compute a 
sequence of matchings Mo = 0, Mi, ... , Mk+l · Each Pi is a shortest augmenting 
path relative to Mi and it is used to increase the matching from Mi to Mi+l· 

Theorem 2.1. [HK73] If Po, P1, ... , Pk are nondecreasing in length, then IPil = 
IP; I implies that Pi and P; are vertex disjoint. 

Hopcroft and Karp's algorithm operates in phases on a bipartite graph with vertex 
partitions X and Y. Since equal-length augmenting paths are vertex disjoint, a 
maximal set is found in a single phase as follows. Execute a breadth-first search, 
starting with the set of unmatched vertices that are in X, and adding unmatched 
and matched edges at alternate levels to a graph H, until an unmatched vertex in 
Y is reached. A depth-first search of H then gives the required set of augmenting 
paths. 

Theorem 2.2. [HK73] Suppose a matching M has cardinality r and the maximum 
matching has cardinality s > r. Then there exists an augmenting path relative to 
M of length~ 2lr/(s - r)J + 1. 

Theorem 2.2 implies that the length of shortest available augmenting paths cannot 
get very large until the cardinality of the matching is near the maximum possible. 
This idea is captured in Theorem 2.3. We reproduce its proof here since it is 
relevant to the analysis of our algorithm. 

Theorem 2.3. [HK73] Suppose the maximum matching has cardinality s. Finding 
all augmenting paths requires 0 ( ylS) phases. 

Proof. Consider the matching Mr of cardinality r = ls - y!SJ that results from 
applying the sequence of augmenting paths Po, Pi, ... , Pr-1· By Theorem 2.2, 

IPrl < 2ls-y'SJ/(s-ls-y'SJ)+l < 2lv'SJ+l. 
Since the algorithm finds all equal-length augmenting paths in one phase, only 
0 ( y'S) phases are required to find all augmenting paths up to Pr-1 · Moreover, 
there are only s - r = 0 ( ylS) augmenting paths remaining. Therefore, the total 
number of phases is 0 (vs). I 

3. Optimal Stable Marriage Problem 
A stable pair in an instance of the stable marriage problem is a pair that appears 
in some stable marriage. Gusfield demonstrated that it is possible to identify all 
stable pairs in O(n2 ) time [G87]. The remaining pairs do not serve any useful 
purpose, and may be discarded from the preference lists. We refer to the resulting 
abbrevi~ted lists as stable lists. 

An important device known as rotation is derived from the stable pairs. Rotations 
were first introduced by Irving and Leather [IL86], who used them to obtain a 
crucial understanding of the structure underlying the set of stable marriages. This 
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understanding is the basis of Irving, Leather, and Gusfield's efficient algorithm for 
the optimal stable marriage problem. 

Definition. A sequence p = (mo, wo), ... , (mr-I, Wr-1) is a rotation if there is a 
marriage M such that, for all i, (i) (mi, Wi) is matched. in M, and (ii) Wi+l is the 
next woman after Wi in mi's stable list ( i + 1 is taken modulo r ). Every stable pair 
appears in at most one rotation [IL86]; so, the total number of rotations is O(n2 ). 

Lemma 3.1. [G87) The set of rotations can be found in O(n2 ) time. 

We summarize Irving, Leather, and Gusfield's main results and refer readers to 
[ILG87] for details. Related details are found in [IL86] [G87] [GI89]. Consider 
the rotation p in the above definition. The process of eliminating the rotation p 
involves switching the partner of every mi from Wi to Wi+i, the next woman in mi's 
stable list. Eliminating p results in a new stable marriage. However, every woman 
that mi ranks higher than Wi places a constraint on the timing of p's elimination, 
regardless of whether she forms a stable pair with mi. These constraints impose a 
partial order::; on the set of rotations P. The rotation poset that results, denoted 
by (P, ::;), specifies the ordering in which rotations can be eliminated. 

Definition. A subset C ~ P is a closed subset if it has the property that for all 
p EC and for all 7r E P, 7r::; p implies that 7r E C. 

Theorem 3.2. [IL86] [ILG87] The stable marriages of a given problem instance 
are in one-to-one correspondence with the closed subsets of the rotation poset. 

Definition. Given a rotation p =(mo, wo), ... , (mr-I, Wr-1), define its weight 

r-1 r-1 
w(p) = L(mr(mi,Wi)- mr(mi,Wi+1)) + L(wr(wi,mi)-wr(wi,mi-1)), 

0 0 

where i-1 and i + 1 are taken modulo r. If Mis the marriage before eliminating p, 
w(p) is the net change in the value c( M) due to the elimination. Define the weight 
of a closed subset as the sum of the weights of all rotations in the subset. 

Given a closed subset C of maximum weight, Theorem 3.2 implies that an optimal 
stable marriage can be obtained by eliminating all rotations in C. Unfortunately, 
there is no known efficient way of finding a maximum-weight closed subset directly 
from (P, ::;). The key to Irving, Leather, and Gusfield's solution is their demonstra
tion that a succint representation is always available for (P, ::;). This representation 
takes the form of a sparse directed acyclic graph P', which can be constructed in 
O(n2) time from the preference lists. P' has vertex set P and transitive closure 
equivalent to ::;, so it preserves the closed subsets of P. 

A maximum-weight closed subset of Pis obtained by solving a special maximum
fl.ow problem based on P'. Details of this reduction are in [ILG87]. Each step in 
the reduction runs in O(n2 ) time, except the maximum-fl.ow computation, which 
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runs in O(n4) time. Moreover, the flow network-and more importantly for us, 
P'-has O(n ) vertices and O(n2) arcs. 

Lemma 3.3. [ILG87] Let w+ and w- denote the sums of the weights of all 
rotations in P with positive and negative weights respectively. w+ ~ n 2 and 
1w-1 ~ n2. 

The first part of Lemma 3.3 concerning w+ is proved in [ILG87]. The second part 
has a similar proof. 

4. Blue-Red Matching 
Instead of reducing the maximum-weight closed subset problem to the maximum
flow problem, we reduce it to the blue-red matching problem. The blue-red 
matching problem is solved on a graph G constructed by adding vertices and arcs to 
Irving, Leather, and Gusfield's special directed acyclic graph P'. For each p E P' 
such that w(p) = k < 0, we add lkl blue vertices, and an arc from each added 
vertex to p. For each p E P' such that w(p) = k > 0, we add k red vertices, and 
an arc from p to each added vertex. These added vertices are the only blue and 
red vertices. 

The construction is illustrated in Figures 1and2. Figure 1 shows an example of P', 
and Figure 2 shows the corresponding graph G .. 

Figure 1. An example of P'. Numbers shown are weights of the vertices. 
The set of shaded vertices is a maximum-weight closed subset. 
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Figure 2. The graph G constructed from P' of Figure 1. The bi's are 
blue vertices and Ti's are red vertices. 

Lemma 4.1. The graph G has O(n2 ) vertices and O(n2 ) arcs, and is constructed 
in O(n2) time. 

Proof. Initially, P' has O(n2) vertices and O(n2) arcs. The number of added 
vertices and arcs equals w+ + jw-j of Lemma 3.3, which is O(n2 ). The time 
complexity follows immediately. I 

In introducing the above reduction, we are motivated by a special relation that 
exists between maximum-flow and blue-red matching problems. This relation will 
be developed in Theorem 4.9 and Corollary 4.10, which we are able to prove only 
after describing the first part of the blue-red matching algorithm. It should be 
noted that the special relation is a generalization of the well-known equivalence 
between maximum-flow and maximum-matching problems [ET75] [LP86]. 
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Algorithm Build_G' 

Let G' = (V', E'). V' consists of two vertices s and t, plus a subset of the original 
vertices of G partitioned into layers Li, L2, ... , Lx. Two vertex subsets Bi and 
Ri in each Li layer facilitate the construction of G'. 

1. E' +- 0. 
2. Bi +- all unmatched blue vertices in G. For each b E Bi, add an arc 

(s,b) to E' with capacity 1, i.e., c(s,b) +-1. 

For each i, 
3a. Li +- all vertices in G reachable from a vertex in Bi and not already as

signed to a layer. All arcs in the subgraph induced by Li on G are added 
to E', with a capacity of oo for each arc. 

3b. Ri +- all red vertices in Li. If Ri is empty, then x +- i, and Build_G' 
terminates abnormally. 

3c. If all vertices in Ri are matched, then Bi+l +- all vertices that are matched 
to vertices in Ri, and not already assigned to a layer. For each matched 
pair (r, b) such that r E Ri and b E Bi+li add an arc (r, b) to E' with 
capacity 1. Continue with layer Li+i · 

4. If some vertices in Ri are unmatched, then x +- i, i.e., Li is the last 
layer. For each unmatched r E Rx add an arc (r, t) to E' with capacity 1. 
Build_G' terminates normally. 

Figure 3. 

and rx are not matched. Therefore, bi, ri, b2, r2, ... , bx, rx is an augmenting path. 
I 

Corollary 4.3. Consider all arcs with capacity 1 along an s-t path P. If their 
endpoints, when sequenced from s to t, are given by s, bi, ri, b2, r2, ... , bx, rx, t; 
then the augmenting path corresponding to P is bi, ri , b2, r2, ... , bx, r x, 

Proof. The arcs (s, bi), (Ti, b2), ... , (Tx, t) in the proof of Lemma 4.2 account for 
all inter-layer arcs, which are exactly those arcs with capacity 1. I 

Definition. If a vertex vis in Li, then its L-number, denoted L( v ), is i. 

Lemma 4.4. Suppose P = bi, Ti, b2, T2, ... , bk, Tk is an augmenting path in G*. If 
L(bi) = j and j < x, then (i) L(Ti) exists and is no greater than j, and (ii) L(bi+1) 
exists and is no greater than j + 1. 

Proof. The edge (bi, Ti) in G* implies that Ti is reachable from bi. Hence, Ti is 
in the same layer as bi unless Ti E Li U L2 U · · · U L;-i. In any case, L(Ti) ~ j. 
In the augmenting path P, (Ti, bi+i) is a matched edge. Since L; is not the last 
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L3~~~~~~~~~~~~~ 

Figure 4. Layers in G, given M= {(b1,rs),(b2,r4),(bs,r1),(b6,r2),(b1,r3)}. 

layer (j < x ), bi+ I is placed in Lj+1 by construction, unless it already has a lower 
L-number. I 

Corollary 4.5. Suppose b1, r1, b2, r2, ... , bk, rk is an augmenting path. For all 
1 ~ i ~ x, L(bi) ~ i and L(ri) ~ i. 

Proof. An augmenting path must start with an unmatched blue vertex b1, which 
is placed in Li by construction. Therefore, L( b1) = 1. The corollary then follows 
from Lemma 4.4 by induction. I 
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Figure 5. The graph G'. Dashed arrows denote arcs with capacity 1. 
All other arcs have infinite capacity. 
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Corollary 4.6. If Build_G' terminates normally, the shortest augmenting path 
has length 2x - 1. 

Proof. If Build_G' terminates normally, the vertex t is in G'. Since G' is connected, 
an s-t path exists. By Lemma 4.2, there is a corresponding augmenting path of 
length 2x-1. If a shorter augmenting path exists, consider its final vertex r, which 
must be unmatched by definition. L(r) < x by Corollary 4.5. However, all vertices 
with L-number less than x are matched, a contradiction. I 

Theorem 4. 7. If Build_G' terminates normally, the s-t paths in G' are in one-to
one correspondence with the shortest augmenting paths in G*. 

Proof. Half of the proof is provided by Lemma 4.2. For the other half, consider 
an augmenting path P =bi, ri, b2, r2, ... , bx, rx of length 2x -1. By Corollary 4.5, 
all vertices in P have L-numbers and are therefore in G'. Moreover, L(rx) :::; x. 
Since Lx is the only layer with unmatched vertices, L(rx) = x. It follows that 
the constraints of Corollary 4.5 can only be satisfied by equality, that is, L(bi) = 
L(ri) = i, for all i. 

The edge (bi, ri) in G* implies that there is a path from bi to Ti in G. This path is 
preserved in G' since both vertices are in the same layer Li, and Li is an induced 
subgraph of G. The matched edge (ri, bi+i) is used to construct a corresponding 
arc in G'. The arcs ( s, bi) and ( r x, t) are also in G' because bi and r x are unmatched 
vertices. These arcs and paths combine to give the required s-t path. I 

Definition. Given a closed subset C ~ P, a red or blue vertex is associated with 
C if it is adjacent to a vertex in C. 

Lemma 4.8. If k red vertices remain unmatched in M, then the weight of any 
closed subset C is at most k. 

Proof. A red vertex r can be matched with a blue vertex b only if r is reachable 
from b. Suppose r is adjacent to p E P and b is adjacent to 7r E P. By construction, 
p is reachable from 7r if r is reachable from b. If p is in C, then 7r is also in C since 
C is a closed subset. Therefore, all red vertices associated with C can be matched 
only with blue vertices associated with C. 

The weight of C is equal to the difference between the number of red vertices and 
the number of blue vertices associated with C. This difference cannot exceed k. 
Otherwise, the number of red vertices associated with C that remain unmatched 
in M exceeds k, the number of red vertices that remain unmatched overall. I 

Theorem 4.9. Let C = P - V', where V' is the vertex set of G'. If Build_G' 
terminates abnormally, then C is a maximum-weight closed subset of P. 

Proof. Suppose p and 7r satisfy the conditions (i) p E C, (ii) 7r E P, and (iii) 7r:::; p. 
Condition (i) implies that p fj. V' and condition (iii) implies that p is reachable 
from 7r. If 7r E V', then Build_G' assigns p to Jr's layer in V' (Step 3a), resulting 
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in a contradiction. Therefore, 7r rf. V', which implies that 7r E C and C is a closed 
subset. 

All unmatched blue vertices are in V' (in the layer L1) by construction; therefore, 
all blue vertices associated with Care matched. Moreover, they are matched only 
with red vertices associated with C since any blue vertex matched to a red vertex 
in V' ends up in V' (Step 3c ). Therefore, C's weight is exactly the number of red 
vertices associated with C that remain unmatched in M. However, all unmatched 
red vertices are associated with C since all red vertices in L1 to Lx-l are matched, 
by construction, and Lx has no red vertex because Build_G' terminated abnormally. 

Therefore, C's weight is exactly the number of unmatched red vertices overall. By 
Lemma 4.8, this is the maximum possible weight of any closed subset. I 

From a practical point of view, Theorem 4.9 in itself provides for the recovery 
of a maximum-weight closed subset. The next corollary is included mainly for 
theoretical interest, since it demonstrates that a maximum blue-red matching is 
reached simultaneously. 

Corollary 4.10. 
red matching. 

If Build_G' terminates abnormally, then M is a maximum blue-

Proof. If M can be increased, the number of red vertices that remain unmatched 
can be decreased. By Lemma 4.8, no closed subset can then have the weight of C, 
a contradiction. I 

Theorem 4. 7 establishes the relation between s-t paths in G' and shortest augment
ing paths in G*. To push a unit of flow in G' clearly requires an s-t path. Consider 
all arcs with capacity 1 on this path. By Corollary 4.3, their endpoints specify 
completely the corresponding augmenting path in G*. Since the flow saturates 
these arcs, they cannot be used for another unit of flow. Therefore, augmenting 
paths that correspond to two different units of flow must be vertex-disjoint. 

The above discussion demonstrates that we can find vertex-disjoint augmenting 
paths by computing a flow in G'. If it is a blocking flow, every path from s to t 
has a saturated arc, and therefore, no additional s-t path is available. This implies 
that the set of vertex-disjoint augmenting paths is maximal when a blocking flow 
is reached. The FindYaths algorithm (Figure 6) finds such a blocking flow. 

Find_Paths is essentially an adaptation of Sleator and Tarjan's blocking-flow algo
rithm [ST83], with an added routine that recovers the augmenting paths simultane
ously. Sleator and Tarjan use dynamic trees to achieve a highly efficient algorithm. 
The dynamic trees store information in a forest of vertex-disjoint rooted trees. 
Within each tree, every edge has a real-valued cost and is directed towards the 
root. These trees are maintained by an appropriate data structure that supports a 
rich set of operations efficiently. We list those operations required by Find_Paths. 

root( v ): Return the root of the tree containing v. 

12 



Algorithm Find_paths (Adapted from Sleator and Tarjan [ST83]) 

Initialize each vertex as a separate tree. 

Step 1. v +- root(s). If v = t, go to Step 4; otherwise, go to Step 2. 

Step 2. ( v =f. t; extend path). If no arc leaves vertex v, go to step 3. Otherwise, 
select an arc ( v, w) and perform link( v, w, c( v, w)). Go to Step 1. 

Step 3. (all paths from v to t are blocked). If v = s, stop. Otherwise, delete 
from G' every arc entering v. For each such arc ( u, v) that is a tree 
edge, perform cut( u ). Go to Step 1. 

Step 4. ( v = t; an s-t path is found). 
repeat 

r +- mincost(s); 
output parent(r) and r; 
delete the edge (r,parent(r)) from G'; 
perform cut( r) 

until r = s. 
Go to Step 1. 

Figure 6. 

parent( v ): Return the parent of v. This operation assumes that v is not a 
tree root. 

mincost( ti): Return the vertex w closest to root( v) such that the edge 
(w,parent(w)) has minimum cost among all edges on the path from v to 
root( v ). This operation assumes that vis not a tree root. 

link( v, w, x ): Combine two trees by adding an edge ( v, w) of cost x, making 
w the parent of v. This operation assumes that v and w are in different trees 
and v is a tree root. 

cut(v): Delete the edge (v,parent(v)), thus dividing the tree containing v 
into two trees. This operation assumes that vis not a tree root. 

If the maximum size of any tree is n, the dynamic trees implementation [ST83] runs 
in O(log n) time per operation. A simpler implementation based on splay trees 
is also available [ST85]. The latter implementation supports arbitrary ordering of 
operations in O(log n) amortized time per operation, which meets the requirements 
of Find_Paths. 

Find_Paths inherits its correctness from Sleator and Tarjan's algorithm. The key 
idea is that an arc is only deleted from G' when it is no longer possible to use it 
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in another s-t path. All edges in dynamic trees correspond to arcs that have not 
been deleted; therefore, when v =tin step 1, an s-t path is found correctly. 

Sleator and Tarjan's algorithm pushes flow in Step 4 and updates the capacities 
remaining in edges along the s-t path. It is possible to simplify this step in 
Find_Paths because there are only two types of tree edges: those edges with infinite 
capacity can be used an unlimited number of times and those edges with capacity 
1 can be used only once. Find_Paths uses the mincost operation repeatedly to 
find all edges with capacity 1, outputs their endpoints for use in updating M, and 
deletes these edges from G' and the dynamic trees. 

To obtain a more general analysis of the blue-red matching algorithm, we assume 
that G has O(N) vertices and O(E) arcs. At the end of this section, we substitute 
the actual values of N and E to get the time complexity for the optimal stable 
marriage problem. 

Lemma 4.11. G' has 0( N) vertices and 0( E) arcs. 

Proof. G' has at most two more vertices ( s and t) than G. There are three types 
of arcs: O(E) arcs are from G, O(N) arcs from the matching M, and O(N) arcs 
each with one endpoint either ins or t. I 

Lemma 4.12. Build_G' runs in O(E) time. 

Proof. The bulk of the work is in Steps 3a, b, and c. In Step 3a, after obtaining 
Li from Bi using breadth-first search, we may delete from G all arcs adjacent to 
vertices in Li since these vertices will not be assigned to another layer. Therefore, 
every arc in G is visited and deleted at most once, and Steps 3a and 3b run in 
O(E) time when summed over all i's. 

Step 3c checks any red vertex at most once for the possibility that it is matched. 
It is easy to devise a data structure for M such that Step 3c runs in 0( N) time. I 

Lemma 4.13. Find_Paths runs in O(ElogN) time. 

Proof The O(E log N) time bound is inherited from Sleator and Tarjan's algo
rithm. Each cut operation must be preceded by a link of the same edge. Before a 
tree edge is cut, the corresponding arc in G' is deleted and is never visited again. 
Therefore, there are 0( E) cuts, 0( E) links, and 0( E) processing time for arcs in 
G'. Each root operation in Step 1 must be followed by either a link in Step 2 or 
a cut in Step 3 or 4. There are 0(1) mincost and parent operations per cut in 
Step 4. 

All dynamic trees operations are accounted for in the above discussion, giving a 
total of 0( E) such operations requiring a total of 0( E log N) time. I 

Theorem 4.14. The blue-red matching algorithm runs in O(VNElogN) time 
on a graph with N vertices and E arcs. 

14 



Proof. The blue-red matching algorithm simulates Hopcroft and Karp's maximum
matching algorithm. By Theorem 2.3, there are 0( VN) phases since N/2 is 
the maximum size of the blue-red matching. Each phase executes Build_G' and 
Find_Paths once, and requires O(ElogN) time, according to Lemmas 4.12 and 
4.13. I 

Theorem 4.15. The optimal stable marriage problem has a worst-case time 
complexity of O(n3 log n). 

Proof. As noted earlier, blue-red matching is the bottleneck step in optimal stable 
marriage; all other steps require O(n2 ) time. By Lemma 4.1, we can substitute 
N = O(n2 ) and E = O(n2 ) in Theorem 4.14, giving an O(n3 logn) overall time 
bound. I 

5. Speeding up Blue-Red Matching 
We use FindYaths to find a maximal set of shortest augmenting paths. However, 
when only a single shortest augmenting path is needed, it is sufficient to perform 
a depth-first search on G' in 0( E) time. This observation is the key to speeding 
up blue-red matching. 

The revised algorithm duplicates the original algorithm until the number of layers 
in G' exceeds y' N /log N. The remaining augmenting paths are found by repeated 
applications of Build_G', each application followed by a depth-first search of the 
resulting graph G'. 

Theorem 5.1. The revised blue-red matching algorithm runs in O(Ev'NlogN) 
time on a graph with N vertices and E arcs. 

Proof. Suppose the maximum blue-red matching has size s, and suppose the size of 
the blue-red matching is r when the number of layers in G' first exceeds y' N /log N. 
By Theorem 2.2, the shortest augmenting path has length :::;; 2r / ( s - r) + 1. By 
Corollary 4.6, this length is> 2y'N/logN -1. Therefore, 

2y'N/logN -1 < 
s 

2r 1 --+ ' s-r 

s-r < 
y'N/logN 

The last inequality is due to s :::;; N /2. 

< 

which implies 

1 
2,y'NlogN. 

The number of augmenting paths remaining is s - r = 0 ( v' N log N). These 
paths are found by repeated applications of Build_G' and depth-first search, for 
a total of 0 (Ev' N log N ) time. The first r augmenting paths have lengths :::;; 

2y'N/logN -1. They are computed in O(y'N/logN) phases of Build_G' and 
Find_P aths, for a total of 0 (Ev' N log N ) time. I 
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Corollary 5.2. The optimal stable marriage problem has a worst-case time 
complexity of O(n\/logn ). 

Proof. Substitute N = O(n2 ) and E = O(n2 ) in Theorem 5.1. I 

6. Remarks 
We give an O(n3Jlogn) time algorithm for the optimal stable marriage problem. 
Asymptotically, this is an improvement over Irving, Leather, and Gusfield's O(n4 ) 

time algorithm [ILG87] and Feder's claim of an O(n3 logn) time algorithm [F89]. 

The optimal stable marriage problem can be generalized to a weighted version 
where the ranking functions mr and wr are replaced by a general weight function c 
when computing the value of a marriage. The weighted optimal Jtable marriage 
problem is to find a stable marriage that minimizes c(M) = l:(m,w)EM( c(m, w) + 
c( w, m)) . This weighted version allows each person to specify the structure of 
his/her preferences in more detail and hence may give more useful solutions. 

Our algorithm is applicable to the weighted version when c is an integer function 
with small values. For example, if the value of c(p, q) for each pair (p, q) is chosen 
to be within a constant multiple of the corresponding value of mr(p, q) or wr(p, q), 
the preference structure is still fairly flexible yet w+ + 1w-1 in Lemma 3.3 remains 
O(n2). Let U = w+ + 1w-1 and assume that its value is !1(n2 ). By Lemma 4.1, 
the graph G has U vertices and U a.res and by Theorem 5.1, our algorithm runs in 
O(U312 JlogU). 

When U = O(n2), the time complexities for our algorithm and Irving, Leather, 
and Gusfield's algorithm remain unchanged. For larger U's, Irving, Leather, and 
Gusfield give an algorithm that runs in O(n4 logn) time [ILG87]. Our algorithm 
is asymptotically faster whenever U = o(n813 .tlogn ). However, Irving, Leather, 
and Gusfield's algorithm also works when c is a real-valued function whereas ours 
only works for integer functions. Due to the lack of details, it is not known if 
Feder's approach solves the weighted optimal stable marriage problem. 

An obvious open question is whether blue-red matching can be improved. Hopcroft 
and Karp's matching algorithm runs in 0( VJiiE) time on a graph with N vertices 
and E arcs [HK73]. Therefore, any approach similar to ours cannot run faster than 
O(n3) time (recall that N = O(n2) and E = O(n2)), unless it also improves on 
Hopcroft and Karp's result. Nevertheless, it is still interesting to investigate the 
possibility of removing the extra Jlog n factor from our algorithm. One possible 
approach is to look for an alternative to Find_PathJ that does not use dynamic 
trees. 
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