
UC Irvine
ICS Technical Reports

Title
An O(n3 [square root of] log n) algorithm for the optimal stable marriage problem

Permalink
https://escholarship.org/uc/item/89p9w05j

Author
Ng, Cheng

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/89p9w05j
https://escholarship.org
http://www.cdlib.org/

An ~(n3y'logn) Algorithm for the

Optimal Stable Marriage Problem -
Cheng Ng

Technical Report No. 90-22

Abstract

:z_

09f
C3
hd. 90- d-1i

We give an O(n3y'logn) time algorithm for the optimal stable marriage problem.
This algorithm finds a stable marriage that minimizes an objective function defined
over all stable marriages in a given problem instance.

Irving, Leather, and Gusfield have previously provided a solution to this problem
that runs in O(n4) time [ILG87]. In addition, Feder has claimed that an O(n3 logn)
time algorithm exists [F89]. Our result is an asymptotic improvement over both
cases.

As part of our solution, we solve a special blue-red matching problem, and illustrate
a technique for simulating Hopcroft and Karp's maximum-matching algorithm
[HK73] on the transitive closure of a graph.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

1. Introduction
An instance of the stable marriage problem involves two disjoint sets of equal
cardinality n, the men denoted by mi's and the women denoted by Wi's. Each
individual ranks, in decreasing order of preference, all members of the opposite sex
in a preference liJt. The set of preference lists determines completely the men and
women's ranking functions, denoted by mr and wr respectively, as follows:

mr(mi, Wj) = k if man i ranks woman j in position k,
wr(wi, mj) = k if woman i ranks man j in position k.

Note that a lower value of k indicates a higher ranking.

A pair (mi,Wj) consists of a man and a woman. A Jtable marriage is a complete
matching of men and women that does not result in an unmatched pair (mi, Wj)
such that mi and w j each ranks the other higher than his or her partner.

Most problem instances admit more than one stable marriage. However, the
traditional algorithm, first proposed by Gale and Shapley [GS62], gives only the
male-optimal solution. In this solution, every man has the best partner possible
under any stable marriage; simultaneously, every woman has the worst partner
possible.

The problem of finding more equitable stable marriages has been raised by Knuth
[K76] and others [MW71] [W76]. The optimal stable marriage problem results from
responding to such calls. Given a marriage M = { (m1, w1), ... , (mn, wn) }, define
its value c(M) = L:~mr(mi,Wi) + L:~wr(wi,mi)· The optimal stable marriage
problem is to find a stable marriage with minimum value. Irving, Leather, and
Gusfield provide a solution to this problem that runs in O(n4) time [ILG87]. Feder
has claimed that an algorithm that runs in O(n3 logn) time is available [F89].

Most steps in Irving, Leather, and Gusfield's solution require O(n2) time. The
only exception is a bottleneck step that requires 0(n4) time. In this paper, we
give an O(n3 Jlogn) time algorithm for this step, thus reducing the overall time
complexity to O(n3./logn). We transform the bottleneck step into a specialized
matching problem .in directed graphs, which we name the blue-red matching prob
lem. This problem, to be defined later in this section, is solved via a simulation of
Hopcroft and Karp's maximum-matching algorithm for bipartite graphs [HK73].

We conclude this section with some additional definitions. Section 2 reviews
Hopcroft and Karp's techniques. Section 3 summarizes the work of Irving, Leather,
and Gusfield. We develop the main ideas of this paper and give an 0(n3 log n) time
algorithm in Section 4. In Section 5, we describe the modification necessary for
this algorithm to run in O(n3Jlogn) time. Section 6 consists of some concluding
remarks.

The maximum-matching problem is solved on an undirected graph G = (V, E).
The graph is bipartite if V can be partitioned into two subsets X and Y such that

1

every edge in E joins a vertex in X with a vertex in Y. M ~Eis a matching if no
vertex v E V is incident on more than one edge in M. An edge (u, v) is matched if
it is in M, and unmatched otherwise. A vertex v is matched if it is incident on an
edge in M, and unmatched otherwise. The maximum-matching problem is to find
a matching with maximum cardinality.

A path is a sequence of vertices v1, v2, ... , Vk such that (Vi, Vi+1) E E for 1 :S i :S
k - 1. A path Pis an augmenting path relative to the matching M if (i) k is even,
(ii) v1 and Vk are not matched, and (iii) the edges (Vi, Vi+1) are not matched for
odd i's and matched for even i's. The length of P, denoted IPI, is the number of
edges in P. IPI is always odd for an augmenting path, and is equal to k -1 in the
above example.

The blue-red matching problem is solved on a directed acyclic graph G = (V, E).
A directed path is a sequence of vertices v1, v2, ... , Vk such that (Vi, Vi+1) E E for
1 :S i :S k - 1. A vertex v is reachable from u if there is a directed path (including
zero-length paths) that starts at u and ends at v. B and R are two distinguished
vertex subsets such that B n R = 0. For convenience, we refer to a vertex b E B
as a blue vertex and a vertex r E R as a red vertex. A blue-red matching of size k
is a set of ordered pairs of vertices { (b1, r1), (b2, r2), ... , (bk, rk)} such that (i) all
vertices are distinct, (ii) all bi's are blue vertices and all ri's are red vertices, and
(iii) for every i, ri is reachable from k The blue-red matching problem is to find
a blue-red matching of maximum size.

The maximum-flow problem is solved on a flow network, which is a directed graph
G = (V, E) with two distinguished vertices, a source s and a sink t, and a positive
real-valued capacity c(v, w) for every arc (v, w) E E. A flow 1 on G is a real
valued function on E satisfying the constraints: (i) 0 :S 1 (v, w) :S c(v, w) for all
(v,w) EE, and (ii) ~uEvl(u,v) = ~wEvl(v,w) for all v EV- {s,t}. The
value Ill of a fl.ow 1 is the net fl.ow into the sink, i.e., Ill = ~vEV 1(v, t). The
maximum-flow problem is to find a fl.ow with maximum value.

An arc (v, w) is saturated relative to a fl.ow 1 if 1(v, w) = c(v, w). No additional
fl.ow can use a saturated arc. A fl.ow 1 is a blocking flow if every path from s to t
contains a saturated arc. Many fast maximum-flow algorithms work by finding
a succession of blocking flows, a technique first introduced by Dinic [D70]. Our
algorithm for the blue-red matching problem also requires solving a succession of
blocking-flow problems.

2. Maximum Matching Algorithm
Augmenting paths are central to most matching algorithms. It is well known that
a matching M can be increased if and only if there exists an augmenting path P
relative to M [B57]. Given such a path P, the matching is increased by exchanging
matched and unmatched edges along P.

Hopcroft and Karp's contribution is their observation that it is more efficient to
always use the shortest available augmenting path when increasing a matching.

2

Their algorithm uses a sequence of augmenting paths Po, P1, ... , Pk to compute a
sequence of matchings Mo = 0, Mi, ... , Mk+l · Each Pi is a shortest augmenting
path relative to Mi and it is used to increase the matching from Mi to Mi+l·

Theorem 2.1. [HK73] If Po, P1, ... , Pk are nondecreasing in length, then IPil =
IP; I implies that Pi and P; are vertex disjoint.

Hopcroft and Karp's algorithm operates in phases on a bipartite graph with vertex
partitions X and Y. Since equal-length augmenting paths are vertex disjoint, a
maximal set is found in a single phase as follows. Execute a breadth-first search,
starting with the set of unmatched vertices that are in X, and adding unmatched
and matched edges at alternate levels to a graph H, until an unmatched vertex in
Y is reached. A depth-first search of H then gives the required set of augmenting
paths.

Theorem 2.2. [HK73] Suppose a matching M has cardinality r and the maximum
matching has cardinality s > r. Then there exists an augmenting path relative to
M of length~ 2lr/(s - r)J + 1.

Theorem 2.2 implies that the length of shortest available augmenting paths cannot
get very large until the cardinality of the matching is near the maximum possible.
This idea is captured in Theorem 2.3. We reproduce its proof here since it is
relevant to the analysis of our algorithm.

Theorem 2.3. [HK73] Suppose the maximum matching has cardinality s. Finding
all augmenting paths requires 0 (ylS) phases.

Proof. Consider the matching Mr of cardinality r = ls - y!SJ that results from
applying the sequence of augmenting paths Po, Pi, ... , Pr-1· By Theorem 2.2,

IPrl < 2ls-y'SJ/(s-ls-y'SJ)+l < 2lv'SJ+l.
Since the algorithm finds all equal-length augmenting paths in one phase, only
0 (y'S) phases are required to find all augmenting paths up to Pr-1 · Moreover,
there are only s - r = 0 (ylS) augmenting paths remaining. Therefore, the total
number of phases is 0 (vs). I

3. Optimal Stable Marriage Problem
A stable pair in an instance of the stable marriage problem is a pair that appears
in some stable marriage. Gusfield demonstrated that it is possible to identify all
stable pairs in O(n2) time [G87]. The remaining pairs do not serve any useful
purpose, and may be discarded from the preference lists. We refer to the resulting
abbrevi~ted lists as stable lists.

An important device known as rotation is derived from the stable pairs. Rotations
were first introduced by Irving and Leather [IL86], who used them to obtain a
crucial understanding of the structure underlying the set of stable marriages. This

3

understanding is the basis of Irving, Leather, and Gusfield's efficient algorithm for
the optimal stable marriage problem.

Definition. A sequence p = (mo, wo), ... , (mr-I, Wr-1) is a rotation if there is a
marriage M such that, for all i, (i) (mi, Wi) is matched. in M, and (ii) Wi+l is the
next woman after Wi in mi's stable list (i + 1 is taken modulo r). Every stable pair
appears in at most one rotation [IL86]; so, the total number of rotations is O(n2).

Lemma 3.1. [G87) The set of rotations can be found in O(n2) time.

We summarize Irving, Leather, and Gusfield's main results and refer readers to
[ILG87] for details. Related details are found in [IL86] [G87] [GI89]. Consider
the rotation p in the above definition. The process of eliminating the rotation p
involves switching the partner of every mi from Wi to Wi+i, the next woman in mi's
stable list. Eliminating p results in a new stable marriage. However, every woman
that mi ranks higher than Wi places a constraint on the timing of p's elimination,
regardless of whether she forms a stable pair with mi. These constraints impose a
partial order::; on the set of rotations P. The rotation poset that results, denoted
by (P, ::;), specifies the ordering in which rotations can be eliminated.

Definition. A subset C ~ P is a closed subset if it has the property that for all
p EC and for all 7r E P, 7r::; p implies that 7r E C.

Theorem 3.2. [IL86] [ILG87] The stable marriages of a given problem instance
are in one-to-one correspondence with the closed subsets of the rotation poset.

Definition. Given a rotation p =(mo, wo), ... , (mr-I, Wr-1), define its weight

r-1 r-1
w(p) = L(mr(mi,Wi)- mr(mi,Wi+1)) + L(wr(wi,mi)-wr(wi,mi-1)),

0 0

where i-1 and i + 1 are taken modulo r. If Mis the marriage before eliminating p,
w(p) is the net change in the value c(M) due to the elimination. Define the weight
of a closed subset as the sum of the weights of all rotations in the subset.

Given a closed subset C of maximum weight, Theorem 3.2 implies that an optimal
stable marriage can be obtained by eliminating all rotations in C. Unfortunately,
there is no known efficient way of finding a maximum-weight closed subset directly
from (P, ::;). The key to Irving, Leather, and Gusfield's solution is their demonstra
tion that a succint representation is always available for (P, ::;). This representation
takes the form of a sparse directed acyclic graph P', which can be constructed in
O(n2) time from the preference lists. P' has vertex set P and transitive closure
equivalent to ::;, so it preserves the closed subsets of P.

A maximum-weight closed subset of Pis obtained by solving a special maximum
fl.ow problem based on P'. Details of this reduction are in [ILG87]. Each step in
the reduction runs in O(n2) time, except the maximum-fl.ow computation, which

4

runs in O(n4) time. Moreover, the flow network-and more importantly for us,
P'-has O(n) vertices and O(n2) arcs.

Lemma 3.3. [ILG87] Let w+ and w- denote the sums of the weights of all
rotations in P with positive and negative weights respectively. w+ ~ n 2 and
1w-1 ~ n2.

The first part of Lemma 3.3 concerning w+ is proved in [ILG87]. The second part
has a similar proof.

4. Blue-Red Matching
Instead of reducing the maximum-weight closed subset problem to the maximum
flow problem, we reduce it to the blue-red matching problem. The blue-red
matching problem is solved on a graph G constructed by adding vertices and arcs to
Irving, Leather, and Gusfield's special directed acyclic graph P'. For each p E P'
such that w(p) = k < 0, we add lkl blue vertices, and an arc from each added
vertex to p. For each p E P' such that w(p) = k > 0, we add k red vertices, and
an arc from p to each added vertex. These added vertices are the only blue and
red vertices.

The construction is illustrated in Figures 1and2. Figure 1 shows an example of P',
and Figure 2 shows the corresponding graph G ..

Figure 1. An example of P'. Numbers shown are weights of the vertices.
The set of shaded vertices is a maximum-weight closed subset.

5

Figure 2. The graph G constructed from P' of Figure 1. The bi's are
blue vertices and Ti's are red vertices.

Lemma 4.1. The graph G has O(n2) vertices and O(n2) arcs, and is constructed
in O(n2) time.

Proof. Initially, P' has O(n2) vertices and O(n2) arcs. The number of added
vertices and arcs equals w+ + jw-j of Lemma 3.3, which is O(n2). The time
complexity follows immediately. I

In introducing the above reduction, we are motivated by a special relation that
exists between maximum-flow and blue-red matching problems. This relation will
be developed in Theorem 4.9 and Corollary 4.10, which we are able to prove only
after describing the first part of the blue-red matching algorithm. It should be
noted that the special relation is a generalization of the well-known equivalence
between maximum-flow and maximum-matching problems [ET75] [LP86].

6

I
j·
:i

ll

I

Algorithm Build_G'

Let G' = (V', E'). V' consists of two vertices s and t, plus a subset of the original
vertices of G partitioned into layers Li, L2, ... , Lx. Two vertex subsets Bi and
Ri in each Li layer facilitate the construction of G'.

1. E' +- 0.
2. Bi +- all unmatched blue vertices in G. For each b E Bi, add an arc

(s,b) to E' with capacity 1, i.e., c(s,b) +-1.

For each i,
3a. Li +- all vertices in G reachable from a vertex in Bi and not already as

signed to a layer. All arcs in the subgraph induced by Li on G are added
to E', with a capacity of oo for each arc.

3b. Ri +- all red vertices in Li. If Ri is empty, then x +- i, and Build_G'
terminates abnormally.

3c. If all vertices in Ri are matched, then Bi+l +- all vertices that are matched
to vertices in Ri, and not already assigned to a layer. For each matched
pair (r, b) such that r E Ri and b E Bi+li add an arc (r, b) to E' with
capacity 1. Continue with layer Li+i ·

4. If some vertices in Ri are unmatched, then x +- i, i.e., Li is the last
layer. For each unmatched r E Rx add an arc (r, t) to E' with capacity 1.
Build_G' terminates normally.

Figure 3.

and rx are not matched. Therefore, bi, ri, b2, r2, ... , bx, rx is an augmenting path.
I

Corollary 4.3. Consider all arcs with capacity 1 along an s-t path P. If their
endpoints, when sequenced from s to t, are given by s, bi, ri, b2, r2, ... , bx, rx, t;
then the augmenting path corresponding to P is bi, ri , b2, r2, ... , bx, r x,

Proof. The arcs (s, bi), (Ti, b2), ... , (Tx, t) in the proof of Lemma 4.2 account for
all inter-layer arcs, which are exactly those arcs with capacity 1. I

Definition. If a vertex vis in Li, then its L-number, denoted L(v), is i.

Lemma 4.4. Suppose P = bi, Ti, b2, T2, ... , bk, Tk is an augmenting path in G*. If
L(bi) = j and j < x, then (i) L(Ti) exists and is no greater than j, and (ii) L(bi+1)
exists and is no greater than j + 1.

Proof. The edge (bi, Ti) in G* implies that Ti is reachable from bi. Hence, Ti is
in the same layer as bi unless Ti E Li U L2 U · · · U L;-i. In any case, L(Ti) ~ j.
In the augmenting path P, (Ti, bi+i) is a matched edge. Since L; is not the last

8

L3~~~~~~~~~~~~~

Figure 4. Layers in G, given M= {(b1,rs),(b2,r4),(bs,r1),(b6,r2),(b1,r3)}.

layer (j < x), bi+ I is placed in Lj+1 by construction, unless it already has a lower
L-number. I

Corollary 4.5. Suppose b1, r1, b2, r2, ... , bk, rk is an augmenting path. For all
1 ~ i ~ x, L(bi) ~ i and L(ri) ~ i.

Proof. An augmenting path must start with an unmatched blue vertex b1, which
is placed in Li by construction. Therefore, L(b1) = 1. The corollary then follows
from Lemma 4.4 by induction. I

9

~
" I '

l

~
I

Figure 5. The graph G'. Dashed arrows denote arcs with capacity 1.
All other arcs have infinite capacity.

10

Corollary 4.6. If Build_G' terminates normally, the shortest augmenting path
has length 2x - 1.

Proof. If Build_G' terminates normally, the vertex t is in G'. Since G' is connected,
an s-t path exists. By Lemma 4.2, there is a corresponding augmenting path of
length 2x-1. If a shorter augmenting path exists, consider its final vertex r, which
must be unmatched by definition. L(r) < x by Corollary 4.5. However, all vertices
with L-number less than x are matched, a contradiction. I

Theorem 4. 7. If Build_G' terminates normally, the s-t paths in G' are in one-to
one correspondence with the shortest augmenting paths in G*.

Proof. Half of the proof is provided by Lemma 4.2. For the other half, consider
an augmenting path P =bi, ri, b2, r2, ... , bx, rx of length 2x -1. By Corollary 4.5,
all vertices in P have L-numbers and are therefore in G'. Moreover, L(rx) :::; x.
Since Lx is the only layer with unmatched vertices, L(rx) = x. It follows that
the constraints of Corollary 4.5 can only be satisfied by equality, that is, L(bi) =
L(ri) = i, for all i.

The edge (bi, ri) in G* implies that there is a path from bi to Ti in G. This path is
preserved in G' since both vertices are in the same layer Li, and Li is an induced
subgraph of G. The matched edge (ri, bi+i) is used to construct a corresponding
arc in G'. The arcs (s, bi) and (r x, t) are also in G' because bi and r x are unmatched
vertices. These arcs and paths combine to give the required s-t path. I

Definition. Given a closed subset C ~ P, a red or blue vertex is associated with
C if it is adjacent to a vertex in C.

Lemma 4.8. If k red vertices remain unmatched in M, then the weight of any
closed subset C is at most k.

Proof. A red vertex r can be matched with a blue vertex b only if r is reachable
from b. Suppose r is adjacent to p E P and b is adjacent to 7r E P. By construction,
p is reachable from 7r if r is reachable from b. If p is in C, then 7r is also in C since
C is a closed subset. Therefore, all red vertices associated with C can be matched
only with blue vertices associated with C.

The weight of C is equal to the difference between the number of red vertices and
the number of blue vertices associated with C. This difference cannot exceed k.
Otherwise, the number of red vertices associated with C that remain unmatched
in M exceeds k, the number of red vertices that remain unmatched overall. I

Theorem 4.9. Let C = P - V', where V' is the vertex set of G'. If Build_G'
terminates abnormally, then C is a maximum-weight closed subset of P.

Proof. Suppose p and 7r satisfy the conditions (i) p E C, (ii) 7r E P, and (iii) 7r:::; p.
Condition (i) implies that p fj. V' and condition (iii) implies that p is reachable
from 7r. If 7r E V', then Build_G' assigns p to Jr's layer in V' (Step 3a), resulting

11

in a contradiction. Therefore, 7r rf. V', which implies that 7r E C and C is a closed
subset.

All unmatched blue vertices are in V' (in the layer L1) by construction; therefore,
all blue vertices associated with Care matched. Moreover, they are matched only
with red vertices associated with C since any blue vertex matched to a red vertex
in V' ends up in V' (Step 3c). Therefore, C's weight is exactly the number of red
vertices associated with C that remain unmatched in M. However, all unmatched
red vertices are associated with C since all red vertices in L1 to Lx-l are matched,
by construction, and Lx has no red vertex because Build_G' terminated abnormally.

Therefore, C's weight is exactly the number of unmatched red vertices overall. By
Lemma 4.8, this is the maximum possible weight of any closed subset. I

From a practical point of view, Theorem 4.9 in itself provides for the recovery
of a maximum-weight closed subset. The next corollary is included mainly for
theoretical interest, since it demonstrates that a maximum blue-red matching is
reached simultaneously.

Corollary 4.10.
red matching.

If Build_G' terminates abnormally, then M is a maximum blue-

Proof. If M can be increased, the number of red vertices that remain unmatched
can be decreased. By Lemma 4.8, no closed subset can then have the weight of C,
a contradiction. I

Theorem 4. 7 establishes the relation between s-t paths in G' and shortest augment
ing paths in G*. To push a unit of flow in G' clearly requires an s-t path. Consider
all arcs with capacity 1 on this path. By Corollary 4.3, their endpoints specify
completely the corresponding augmenting path in G*. Since the flow saturates
these arcs, they cannot be used for another unit of flow. Therefore, augmenting
paths that correspond to two different units of flow must be vertex-disjoint.

The above discussion demonstrates that we can find vertex-disjoint augmenting
paths by computing a flow in G'. If it is a blocking flow, every path from s to t
has a saturated arc, and therefore, no additional s-t path is available. This implies
that the set of vertex-disjoint augmenting paths is maximal when a blocking flow
is reached. The FindYaths algorithm (Figure 6) finds such a blocking flow.

Find_Paths is essentially an adaptation of Sleator and Tarjan's blocking-flow algo
rithm [ST83], with an added routine that recovers the augmenting paths simultane
ously. Sleator and Tarjan use dynamic trees to achieve a highly efficient algorithm.
The dynamic trees store information in a forest of vertex-disjoint rooted trees.
Within each tree, every edge has a real-valued cost and is directed towards the
root. These trees are maintained by an appropriate data structure that supports a
rich set of operations efficiently. We list those operations required by Find_Paths.

root(v): Return the root of the tree containing v.

12

Algorithm Find_paths (Adapted from Sleator and Tarjan [ST83])

Initialize each vertex as a separate tree.

Step 1. v +- root(s). If v = t, go to Step 4; otherwise, go to Step 2.

Step 2. (v =f. t; extend path). If no arc leaves vertex v, go to step 3. Otherwise,
select an arc (v, w) and perform link(v, w, c(v, w)). Go to Step 1.

Step 3. (all paths from v to t are blocked). If v = s, stop. Otherwise, delete
from G' every arc entering v. For each such arc (u, v) that is a tree
edge, perform cut(u). Go to Step 1.

Step 4. (v = t; an s-t path is found).
repeat

r +- mincost(s);
output parent(r) and r;
delete the edge (r,parent(r)) from G';
perform cut(r)

until r = s.
Go to Step 1.

Figure 6.

parent(v): Return the parent of v. This operation assumes that v is not a
tree root.

mincost(ti): Return the vertex w closest to root(v) such that the edge
(w,parent(w)) has minimum cost among all edges on the path from v to
root(v). This operation assumes that vis not a tree root.

link(v, w, x): Combine two trees by adding an edge (v, w) of cost x, making
w the parent of v. This operation assumes that v and w are in different trees
and v is a tree root.

cut(v): Delete the edge (v,parent(v)), thus dividing the tree containing v
into two trees. This operation assumes that vis not a tree root.

If the maximum size of any tree is n, the dynamic trees implementation [ST83] runs
in O(log n) time per operation. A simpler implementation based on splay trees
is also available [ST85]. The latter implementation supports arbitrary ordering of
operations in O(log n) amortized time per operation, which meets the requirements
of Find_Paths.

Find_Paths inherits its correctness from Sleator and Tarjan's algorithm. The key
idea is that an arc is only deleted from G' when it is no longer possible to use it

13

in another s-t path. All edges in dynamic trees correspond to arcs that have not
been deleted; therefore, when v =tin step 1, an s-t path is found correctly.

Sleator and Tarjan's algorithm pushes flow in Step 4 and updates the capacities
remaining in edges along the s-t path. It is possible to simplify this step in
Find_Paths because there are only two types of tree edges: those edges with infinite
capacity can be used an unlimited number of times and those edges with capacity
1 can be used only once. Find_Paths uses the mincost operation repeatedly to
find all edges with capacity 1, outputs their endpoints for use in updating M, and
deletes these edges from G' and the dynamic trees.

To obtain a more general analysis of the blue-red matching algorithm, we assume
that G has O(N) vertices and O(E) arcs. At the end of this section, we substitute
the actual values of N and E to get the time complexity for the optimal stable
marriage problem.

Lemma 4.11. G' has 0(N) vertices and 0(E) arcs.

Proof. G' has at most two more vertices (s and t) than G. There are three types
of arcs: O(E) arcs are from G, O(N) arcs from the matching M, and O(N) arcs
each with one endpoint either ins or t. I

Lemma 4.12. Build_G' runs in O(E) time.

Proof. The bulk of the work is in Steps 3a, b, and c. In Step 3a, after obtaining
Li from Bi using breadth-first search, we may delete from G all arcs adjacent to
vertices in Li since these vertices will not be assigned to another layer. Therefore,
every arc in G is visited and deleted at most once, and Steps 3a and 3b run in
O(E) time when summed over all i's.

Step 3c checks any red vertex at most once for the possibility that it is matched.
It is easy to devise a data structure for M such that Step 3c runs in 0(N) time. I

Lemma 4.13. Find_Paths runs in O(ElogN) time.

Proof The O(E log N) time bound is inherited from Sleator and Tarjan's algo
rithm. Each cut operation must be preceded by a link of the same edge. Before a
tree edge is cut, the corresponding arc in G' is deleted and is never visited again.
Therefore, there are 0(E) cuts, 0(E) links, and 0(E) processing time for arcs in
G'. Each root operation in Step 1 must be followed by either a link in Step 2 or
a cut in Step 3 or 4. There are 0(1) mincost and parent operations per cut in
Step 4.

All dynamic trees operations are accounted for in the above discussion, giving a
total of 0(E) such operations requiring a total of 0(E log N) time. I

Theorem 4.14. The blue-red matching algorithm runs in O(VNElogN) time
on a graph with N vertices and E arcs.

14

Proof. The blue-red matching algorithm simulates Hopcroft and Karp's maximum
matching algorithm. By Theorem 2.3, there are 0(VN) phases since N/2 is
the maximum size of the blue-red matching. Each phase executes Build_G' and
Find_Paths once, and requires O(ElogN) time, according to Lemmas 4.12 and
4.13. I

Theorem 4.15. The optimal stable marriage problem has a worst-case time
complexity of O(n3 log n).

Proof. As noted earlier, blue-red matching is the bottleneck step in optimal stable
marriage; all other steps require O(n2) time. By Lemma 4.1, we can substitute
N = O(n2) and E = O(n2) in Theorem 4.14, giving an O(n3 logn) overall time
bound. I

5. Speeding up Blue-Red Matching
We use FindYaths to find a maximal set of shortest augmenting paths. However,
when only a single shortest augmenting path is needed, it is sufficient to perform
a depth-first search on G' in 0(E) time. This observation is the key to speeding
up blue-red matching.

The revised algorithm duplicates the original algorithm until the number of layers
in G' exceeds y' N /log N. The remaining augmenting paths are found by repeated
applications of Build_G', each application followed by a depth-first search of the
resulting graph G'.

Theorem 5.1. The revised blue-red matching algorithm runs in O(Ev'NlogN)
time on a graph with N vertices and E arcs.

Proof. Suppose the maximum blue-red matching has size s, and suppose the size of
the blue-red matching is r when the number of layers in G' first exceeds y' N /log N.
By Theorem 2.2, the shortest augmenting path has length :::;; 2r / (s - r) + 1. By
Corollary 4.6, this length is> 2y'N/logN -1. Therefore,

2y'N/logN -1 <
s

2r 1 --+ ' s-r

s-r <
y'N/logN

The last inequality is due to s :::;; N /2.

<

which implies

1
2,y'NlogN.

The number of augmenting paths remaining is s - r = 0 (v' N log N). These
paths are found by repeated applications of Build_G' and depth-first search, for
a total of 0 (Ev' N log N) time. The first r augmenting paths have lengths :::;;

2y'N/logN -1. They are computed in O(y'N/logN) phases of Build_G' and
Find_P aths, for a total of 0 (Ev' N log N) time. I

15

Corollary 5.2. The optimal stable marriage problem has a worst-case time
complexity of O(n\/logn).

Proof. Substitute N = O(n2) and E = O(n2) in Theorem 5.1. I

6. Remarks
We give an O(n3Jlogn) time algorithm for the optimal stable marriage problem.
Asymptotically, this is an improvement over Irving, Leather, and Gusfield's O(n4)

time algorithm [ILG87] and Feder's claim of an O(n3 logn) time algorithm [F89].

The optimal stable marriage problem can be generalized to a weighted version
where the ranking functions mr and wr are replaced by a general weight function c
when computing the value of a marriage. The weighted optimal Jtable marriage
problem is to find a stable marriage that minimizes c(M) = l:(m,w)EM(c(m, w) +
c(w, m)) . This weighted version allows each person to specify the structure of
his/her preferences in more detail and hence may give more useful solutions.

Our algorithm is applicable to the weighted version when c is an integer function
with small values. For example, if the value of c(p, q) for each pair (p, q) is chosen
to be within a constant multiple of the corresponding value of mr(p, q) or wr(p, q),
the preference structure is still fairly flexible yet w+ + 1w-1 in Lemma 3.3 remains
O(n2). Let U = w+ + 1w-1 and assume that its value is !1(n2). By Lemma 4.1,
the graph G has U vertices and U a.res and by Theorem 5.1, our algorithm runs in
O(U312 JlogU).

When U = O(n2), the time complexities for our algorithm and Irving, Leather,
and Gusfield's algorithm remain unchanged. For larger U's, Irving, Leather, and
Gusfield give an algorithm that runs in O(n4 logn) time [ILG87]. Our algorithm
is asymptotically faster whenever U = o(n813 .tlogn). However, Irving, Leather,
and Gusfield's algorithm also works when c is a real-valued function whereas ours
only works for integer functions. Due to the lack of details, it is not known if
Feder's approach solves the weighted optimal stable marriage problem.

An obvious open question is whether blue-red matching can be improved. Hopcroft
and Karp's matching algorithm runs in 0(VJiiE) time on a graph with N vertices
and E arcs [HK73]. Therefore, any approach similar to ours cannot run faster than
O(n3) time (recall that N = O(n2) and E = O(n2)), unless it also improves on
Hopcroft and Karp's result. Nevertheless, it is still interesting to investigate the
possibility of removing the extra Jlog n factor from our algorithm. One possible
approach is to look for an alternative to Find_PathJ that does not use dynamic
trees.

16

REFERENCES

[B57) C. BERGE, Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A.,
43(1957), pp. 842-844.

[D70] E. A. DINIC, Algorithm for solution of a problem of maximal flow in a net
work with power estimation, Sov. Math. Dokl., 11(1970), pp. 1277-1280.

[ET75] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity,
SIAM J. Comput., 4(1975), pp. 507-518.

[F89) T. FEDER, A new fixed point approach for stable networks and stable mar
riages, In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, ACM SIGACT, Seattle, Washington, 1989, pp. 513-522.

[GS62) D. GALE AND L. SHAPLEY, College admissions and the stability of mar
riage, Amer. Math. Monthly, 69(1962), pp. 9-15.

[G87) D. GusFIELD, Three fast algorithms for four problems in stable marriage,
SIAM J. Comput., 16(1987), pp. 111-128.

[GI89) D. GusFIELD AND R. W. IRVING, The Stable Marriage Problem: Structure
and Algorithms, MIT Press, Cambridge, Massachusetts, 1989.

[HK73) J. HOPCROFT AND R. KARP, An n 512 algorithm for maximum matchings
in bipartite graphs, SIAM J. Comput., 2(1973), pp. 225-231.

[IL86) R. W. IRVING AND P. LEATHER, The complexity of counting stable mar
riages, SIAM J. Comput., 15(1986), pp. 655-667.

[ILG87) R. W. IRVING, P. LEATHER AND D. GUSFIELD, An efficient algorithm
for the "optimal" stable marriage, J. Assoc. Comput. Mach., 34(1987),
k;p. 532-543.

[K76) D. E. KNUTH, Mariages Stables, Les Presses de L'Universite de Montreal,
Montreal, 1976.

[LP86) L. LovA.sz AND M. D. PLUMMER, Matching Theory, North-Holland, Am
sterdam, 1986.

[MW71) D. G. McVITIE AND L. B. WILSON, The stable marriage problem, Comm.
ACM, 14(1971), pp. 486-492.

[ST83) D. D. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees,
J. Comput. System Sci., 26(1983), pp. 362-391.

[ST85) D. D. SLEATOR AND R. E. TARJAN, Self-adjusting binary search trees, J.
Assoc. Comput. Mach., 32(1985), pp. 652-686.

[W76] N. WIRTH, Algorithms + Data Structures = Programs, Prentice-Hall,
Englewood Cliffs, N.J., 1976.

17

lllllllll\11

3 1970 00802 9123

