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An improved version of a recently developed stochastic cluster dynamics (SCD) method 
(Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) 
methods for solving coupled ordinary differential equation (ODE) systems for irradiation 
damage simulations. SCD circumvents by design the curse of dimensionality of the 
variable space that renders traditional ODE-based RT approaches inefficient when handling 
complex defect population comprised of multiple (more than two) defect species. Several 
improvements introduced here enable efficient and accurate simulations of irradiated 
materials up to realistic (high) damage doses characteristic of next-generation nuclear 
systems. The first improvement is a procedure for efficiently updating the defect reaction-
network and event selection in the context of a dynamically expanding reaction-network. 
Next is a novel implementation of the τ -leaping method that speeds up SCD simulations 
by advancing the state of the reaction network in large time increments when appropriate. 
Lastly, a volume rescaling procedure is introduced to control the computational complexity 
of the expanding reaction-network through occasional reductions of the defect population 
while maintaining accurate statistics. The enhanced SCD method is then applied to model 
defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+, He+
and H+) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo 
simulations are prohibitively expensive.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The production and accumulation of defects in materials subjected to irradiation is a multiscale problem spanning mul-
tiple orders of magnitude in time and space. For the last several decades, the rate theory (RT) method for solving coupled 
ordinary differential equation (ODE) systems has been the workhorse for irradiation damage simulations [1–3], mostly ow-
ing to its much greater computational efficiency compared to more detailed methods such as molecular dynamics (MD) or 
kinetic Monte Carlo (kMC). RT involves solving a set of coupled ODEs such as:

dCi

dt
= Ḟi − L̇i, (i = 1, . . . , N) (1)
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where each equation describes the time evolution of the average concentration of a particular type (species) of defect cluster 
denoted by index i. The terms on the right hand side are the loss rate L̇i of species i due to various kinetic processes, and 
the production rate Ḟi of species i due to irradiation and reactions involving defect cluster species other than i. RT models 
achieve a high level of simulation efficiency at the cost of drastic simplifications in the underlying physical model, chief of 
which is the mean-field approximation that neglects spatial correlations and finite volume fluctuations. Another significant 
reduction in computational complexity is gained by limiting the number of species considered. In practice, the number of 
admissible defect species (and ODEs in the system) is truncated to achieve a satisfactory balance between accuracy and 
available computational resources. Large defect clusters not explicitly included in the set are accounted for only approxi-
mately (if at all) using a truncation model for the tail of the defect size distribution [4,5].1 Once defined, the number of 
ODEs in the set must remain the same through the simulation. To allow simulations to realistically high irradiation doses, 
this number may need to be as high as 106 even in the simplest materials, e.g. pure iron. Furthermore, the number of 
distinct ODEs that need to be included in the set grows exponentially with increasing number of complex defect cluster 
types, e.g. simulations of VmHen complexes of m vacancies and n helium atoms requires (m × n) equations to be included. 
This is yet another case of combinatorial explosion where the number of equations to be solved is far too large for practical 
numerical simulations. Consequently, current RT models have been limited to defect populations having no more than two 
and, in most cases, only one size dimension. This need to allocate an ODE for every possible defect cluster type even before 
the simulation starts is a serious limitation of the ODE-based RT method.

To overcome these limitations, Marian and Bulatov recently developed the stochastic cluster dynamics (SCD) method to 
model defect evolution in irradiated materials [6]. The SCD method is based on the stochastic simulation algorithm (SSA) 
proposed originally by Gillespie for simulations of chemical kinetics in well-stirred systems [7,8]. Whereas RT is formulated 
in terms of average species concentrations that can take arbitrary fractional values, SSA considers integer-valued species 
populations in a finite volume and interprets the ODEs defining the RT model as a set of stochastic master equations. The 
so-defined species population is then evolved stochastically, one reaction at a time, following a standard kMC algorithm. The 
SSA method has been widely used in the chemical engineering and biochemistry communities [9–13] but is still relatively 
unknown to computational materials scientists. SCD achieves additional efficiency through the use of dynamic data handling 
mechanisms where only defect clusters with nonzero populations are kept track of throughout the simulation time. This is a 
major advantage over RT in which every admissible defect cluster must be allocated a variable and an equation that persist 
through all stages of ODE integration. Importantly, the computational complexity of a SCD simulation is controlled by the 
value of the simulation volume and does not depend on the complexity (number of size dimensions) of admissible defect 
cluster types. Thus, SCD does not suffer from combinatorial explosion and can handle cluster populations with arbitrary 
number of size attributes. Several proof-of-principle studies have been carried out to demonstrate the applicability of the 
SCD method to simulations of irradiated materials [6,14].

Although SCD sidesteps combinatorial explosion, the method relies on a kMC algorithm to sample stochastic evolu-
tion trajectories from the master equation. Thus, SCD simulations face the usual computational challenges characteristic 
of kMC simulation methods, such as stiffness caused by a wide spectrum of event rates. Further applications of SCD to 
technologically relevant materials and irradiation conditions require improvements to make the method more robust and 
computationally efficient. In this paper, we present several enhancements to SCD, specifically (i) a dynamic reaction-network 
expansion mechanism to efficiently update the reaction channels and the total reaction rate, (ii) an implementation of the 
τ -leaping algorithm to accelerate SCD simulations by allowing several reaction events to be leaped over in one single 
time-step τ , and (iii) a volume scaling method in which the reaction volume is reduced adaptively in order to control the 
computational cost while preserving statistically significant defect populations. The τ -leaping method [15] was originally 
developed and used in SSA simulations with fixed variable spaces [13]. In SCD, where the size of the reaction network 
varies with time, an efficient algorithm for updating noncritical reactions and noncritical species and for computing the 
leap time is needed to reduce the overhead associated with τ -leaping. We apply the enhanced SCD method to simulations 
of defect populations in pure iron subjected to triple ion-beam irradiation. The predicted damage accumulation kinetics are 
verified by comparing them to the original SCD algorithm predictions. The same comparisons are used to quantify gains in 
computational performance over the original SCD simulations.

The paper is organized as follows. In Section 2, we overview the theory behind the SSA and the τ -leaping methods. In 
Section 3, we briefly overview our original SCD algorithm, our material model for iron and the types of reaction events 
considered in our radiation damage simulations. Improvements to the SCD method are described in Section 4 together 
with their algorithmic details. In Section 5, we present the numerical verification of the new improved SCD algorithm and 
compare its computational performance to the original algorithm. Finally, Section 6 summarizes our findings.

1 Existing truncation schemes are ad hoc and unlikely to correctly capture the statistic of extreme values in the defect size distribution believed to be 
important for understanding material degradation under irradiation.
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2. Background

2.1. The Stochastic Simulation Algorithm (SSA)

For clarity, we briefly summarize the SSA method developed by Gillespie for simulations of chemical reactions in well-
stirred systems. The reader is referred to the original paper [7] for more details of the method and the theory behind it. Con-
sider a population containing N defect-clusters {S1, S2, .. , SN } that can participate in M reaction channels {R1, R2, . . . , RM}. 

Let 
−→
X (t) be the dynamic state vector of the system at an arbitrary time t , 

−→
X (t) = {X1(t), X2(t), . . . , XN(t)}, where Xi(t)

is the number of defect clusters of type Si at time t . Each reaction channel is characterized by its reaction rate R j and by 

its state change vector −→ν j = (ν1 j, ν2 j, . . . , νNj). The probability that a reaction of type j will take place within the next in-
finitesimal time interval [t, t +dt) is given by the product R jdt whereas νi j specifies the change in the population of species 
Si after a single reaction event along channel R j . The evolution of such reaction network obeys the following chemical 
master equation (CME)

∂ P (
−→x , t|−→x0 , t0)

∂t
=

M∑
j=1

[R j(
−→x − −→ν j )P (

−→x − −→ν j , t|−→x0 , t0) − R j(
−→x )P (

−→x , t|−→x0 , t0)] (2)

where P (
−→x , t|−→x0 , t0) is the conditional probability that 

−→
X (t) = −→x at time t if 

−→
X (t0) = −→x0 at time t0. The above CME 

defines a stochastic process referred to as a continuous time Markov chain. Rather than attempting to solve this CME 
equation directly, individual stochastic time trajectories of the state vector 

−→
X (t) can be obtained using an appropriate kinetic 

Monte Carlo algorithm. In particular, in the following algorithm two random numbers r1 and r2 uniformly distributed in 
(0, 1) are generated. The time to the next reaction event is then given by

�t = − 1∑
j R j

log (r1) (3)

and the index of the same reaction event, Rk , is taken to be he smallest integer k that satisfies the following condition

k∑
i=1

Ri > r2 Rtot (4)

where Rtot = ∑M
j R j , which is the sum of all the individual reaction rates in the volume. Once the next reaction event 

and its time increment are selected, the simulation time and the state vector are updated accordingly, t = t0 + �t and −→
X (t0 + �t) = −→

X (t0) + −→νk . The simulation proceeds to the next reaction event until the desired simulation time is reached. 
The method just described is referred to as direct SSA method. The direct SSA method rigorously generates stochastic 
trajectories sampled for the exact (even if often unknown) solutions of the CME. Several algorithmic enhancements have 
been proposed to improve efficiency of the direct SSA method, including the first reaction method [7], the modified direct 
method [10], the optimized direct method [16], the sorting direct method [17], or the logarithmic direct method [18], to 
name a few. Any such improvements notwithstanding, simulating every reaction event one at a time is often impractical for 
large reaction networks of practical interest. To address this problem, Gillespie proposed the τ -leaping method that allows 
many reactions channels to fire in a single time-step at the expense of some minor accuracy loss. Because conditions that 
justify the using of τ -leaping are often met in radiation damage simulations, in the following we briefly describe τ -leaping 
as a way to accelerate stochastic simulations.

2.2. The τ -leaping method

The τ -leaping method is based on the leap condition which assumes that a reaction channel may be fired multiple times 
within a small time interval [t, t + τ ) if the reaction rate does not suffer significant changes over that interval. Then, given 
the state vector of the system 

−→
X (t) = −→x , the number of times that each reaction channel R j can fire is approximated 

by the Poisson distribution P
(

R jτ
)
. The simulation proceeds as follows: (i) at each time-step we find a value of τ that 

satisfies the leap condition mentioned above; (ii) for each ν j , a Poisson random number with mean R jτ , i.e. P
(

R jτ
)

is 
generated; (iii) the system is updated as 

−→
X (t + τ ) ← −→

X (t) + ∑M
j P

(
R jτ

)
ν j , and the simulation time advances to the new 

time t ← t + τ . As a result, the simulation can be accelerated at a greater speed since it can leap through multiple reactions 
in one single step instead of firing the reactions one by one.
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3. The Stochastic Cluster Dynamics algorithm

3.1. Model representation

At any point in time the state of the model is characterized by the set of all existing clusters 
−→
S all = {Si}. Dynamic 

updates of state vectors are efficiently handled using hash tables with dynamic resizing. More details on the hash functions 
and associated operations are given in the next section. Each cluster Si contains several associated attributes such as the 
number of each component species contained in the cluster, the cluster species population count, its diffusion coefficient, 
the binding energies among the component subspecies and the cluster, and other relevant parameters. Mobile species with 
a nonzero diffusivity are regarded as a subset 

−→
S m (here m stands for mobile) of 

−→
S all . Defect cluster species associated 

with a recently executed event are stored in a dynamic array whose purpose will be described in the following section. 
Such species can be reactants or products of a recently executed reaction event or a collection of defects and clusters that 
have just been introduced into the volume as a result of a defect insertion event (due to irradiation). The evolving reaction 
network 

−→
R = {Ri} specifies all reaction channels available for the current defect population 

−→
S all . Each binary reaction 

channel R(S1, S2) represents a reaction between species of type S1 and type S2 with an associated reaction rate R(S1, S2)

(clusters S1 and S2 can be identical when the reaction involves two like species). To implement the τ -leaping method, two 
more data sets will be defined. The first set 

−→
J = {Ji} contains all noncritical reaction channels whose associated reactants 

have populations larger than a certain user-predefined value ncr . Another set 
−→
P = {Pi} contains all defect cluster species 

associated with the noncritical reactions. Each Pi contains a parameter specifying the highest order of possible reactions 
species i can participate in, as explained in more details later these reaction order parameters are utilized in computing the 
leap time τ .

3.2. Types of events

Hereafter, Vs and Is denote a vacancy cluster or a self interstitial atom (SIA) cluster of size s. In our model, we only 
consider clusters with a maximum of three component species, specifically the clusters only contain He and H atoms 
together with either vacancies or interstitials of the host material. If desired, the model can be modified to admit defect 
clusters of arbitrarily complex compositions. The following reactions are currently admitted in our SCD model of iron:

0th-order reactions

• Defect insertion, e.g. generation of certain types of defects resulting from collisions of incoming energetic particles 
with the host matrix atoms.

1st-order reactions

• Defect absorption at sinks: mobile clusters can migrate towards sinks and become absorbed there. Sinks can be free 
surfaces, dislocation networks or grain boundaries.

• Emission of a monomer from a defect cluster: a cluster can emit a monomer of one of its constituent species, 
reducing its species count appropriately. A complex cluster ViHe jHk can emit a vacancy, or a He monomer or a 
H monomer. Following emission, the initial cluster’s population is reduced by one and two new defect species 
are created or, if one or both species already exist, their counts are increased by one. For example, emission of 
one vacancy V (or one He monomer) produces a smaller defect cluster V(i−1)He jHk (or ViHe( j−1)Hk in case the 
monomer is a He atom).

2nd-order reactions

• Defect annihilation: collisions of two clusters containing vacancies and self interstitial atoms result in their complete 
or partial recombination. For example, collision of a complex vacancy cluster ViHe jHk with a SIA cluster Ii′ produces 
V(i−i′)He jHk (if i > i′) or I(i′−i)He jHk (if i′ > i) or releases j monomers of He and k monomers of H monomers (if 
i = i′). He and H monomers are assumed not to bind unless vacancies and interstitials are also present.

• Defect aggregation: clusters containing like defects can combine to form larger clusters upon interaction. For exam-
ple, a ViHe jHk cluster can collide with a Vi′ He j′ Hk′ cluster producing a larger V(i+i′)He( j+ j′)H(k+k′) cluster.

3.3. Summary of the original SCD algorithm

The main motivation for the development of SCD was to circumvent combinatorial explosion in the number of equations 
encountered in traditional ODE-based RT simulations. In SCD, the simulation volume is finite and defect cluster species 
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have integer-valued populations. In a typical initial state, relatively few (if any) defect species exist, so, rather than al-
locating memory for all possible defect-clusters before the start of the simulation using a regular indexed array, cluster 
species are added or removed from the hash table dynamically, as needed. Therefore, only defect clusters that have nonzero 
populations are kept track of. The hash table is implemented as an associative array in which a hash function is used 
to map the identifying values – known as hash keys – to their associated values. In our model, hash keys that represent 
defect clusters are number strings comprised of the numbers of component species that form the clusters. For example, 
allowing for a maximum size of 1000 for each component species, a cluster formed by nine vacancies, one He atom and 
three H atoms will have the following key: −9001003, while 81011036 represents a cluster with 81 SIAs, 11 He atoms 
and 36 H atoms. More specifically, the first three digits of the key string represent the number of H atoms in the clus-
ter, the next three digits represent the number of He atoms which are finally followed by the number of either vacancies 
or SIAs contained in the cluster. Here, we assign a negative value for clusters that are made of vacancies and positive
value in the case of SIAs. These hash keys can be modified accordingly if there are more species implanted into the vol-
ume. The hash function maps the keys onto the index array elements (or buckets) where the associated values are stored. 
Operations on a hash such as adding, removing or locating buckets take constant time on average and do not depend 
of the size of the hash itself unlike operations on indexed arrays. In simulations of irradiated materials, the number of 
pre-existing defect clusters is usually small but increases rapidly after high energy particles begin to create defects. Fur-
thermore, defect populations and their associated reaction channels change with each subsequent reaction event. It is our 
experience that in such conditions hashing is more efficient than using array structures for handling large and evolving 
data sets since defect clusters can be located and updated quickly. The original SCD algorithm consists of the following 
steps:

1. Construct two hash tables: one, 
−→
S all , to store all the existing defect clusters and another one, 

−→
S m , to store only 

the mobile defects in 
−→
S all .

2. Construct a reaction table 
−→
R containing the reaction channels involving all existing defect clusters, and store 

−→
R in 

an array.
3. Calculate the total reaction rate by summing the rates of all currently existing reaction channels in the reaction 

table.
4. Randomly select the time increment to the next reaction as well as the type of the reaction event using Eqs. (3)

and (4).

5. Execute the selected reaction event, update the hash tables accordingly and delete the reaction table 
−→
R .

6. Return to step 2 and proceed until the total simulation time is reached.

Using an array to store the reaction channels 
−→
R proves to be inefficient due to the highly dynamic nature of stochastic 

evolution. Furthermore it is wasteful to build the reaction table anew after every reaction event since only a portion of 
the reaction channels is changed due to the executed event while most others are left intact. These two inefficiencies are 
addressed in the improved version of SCD presented in the following section.

4. An improved Stochastic Cluster Dynamics algorithm

Except for massive defect insertion events representing collision cascades, only a small number of defect clusters in the 
simulation volume are affected by a single reaction event. Therefore, only the reaction channels involving affected defect 
species need to be updated, while the rest of the reaction network remains untouched. In this enhanced version of SCD, we 
use hashing to maintain existing species and reaction channels and to expand the reaction network when new species are 
introduced by the reaction events. Such updates are typically more efficient than the reconstruction of the entire reaction 
table in between insertion events. Depending on the specific reaction model implemented, some defect species become 
quite numerous and their associated reaction channels can fire much more frequently than others. For example in our model 
for iron, SIAs and vacancies are observed to migrate in large numbers to defects sinks soon after irradiation commences, 
whereas defect insertion and defect association events are relatively infrequent. To expedite SCD simulations under such 
conditions, we implement a version of τ -leaping method in which several repetitive reaction events are executed at once. 
Lastly, we introduce and justify a volume rescaling procedure to reduce the computational complexity of SCD simulations 
at later stages of damage accumulation. This is when the density of defect clusters becomes high, and the diffusion length 
of mobile defects becomes small compared to the linear dimension of the simulation volume.

4.1. Dynamic reaction network updates and expansion

As follows from Eqs. (3) and (4), both the time increment to the next reaction event and the type of reaction are selected 
based on the total event rate summed over all existing reaction channels. In the original version of SCD, the net event rate 
was recomputed after each reaction event throughout the simulation. However, in a production scale SCD simulation the 
number of distinct reaction rates grows rapidly to thousands and even millions and yet only a small sub-set of reaction 
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channels is directly affected by each reaction event. Enabling incremental updates requires that reaction channels affected 
(modified or eliminated) by the last event be located and updated in the computer’s memory efficiently during the course 
of the simulation. We rely on hashing to quickly add, remove, locate and update reaction channels in real time.

In the improved version of SCD reported here, in addition to the two hash tables 
−→
S all and 

−→
S m used to store and 

reference the total and the mobile cluster populations, all existing reaction channels are stored in a reaction hash 
−→
R . These 

reactions are also represented by different hash keys. However, different from integer keys that represent defect clusters, the 
reactions will have structure keys comprised of the keys of all defect clusters that participate in the reactions. The reaction 
table expands or contracts as needed to accommodate new reactions associated with the creation (or extinction) of new 
defect species. The process for updating the affected hash tables goes as follows:

• A new hash key is created for all possible species resulting from these reactions. For each 2nd-order reaction, this key 
is generated from the keys of its constituent reactants stored in 

−→
S all while for 0th and 1st-order reactions, dummy 

keys – two and one, respectively – are used as appropriate.
• Each cluster in the 

−→
S all hash table is assigned a parameter f1 indexing its count change due to the recently executed 

event; another parameter f2 indicates whether the defect already existed in the simulation volume in the previous 
time-step. These parameters let SCD know whether it should look up and update the existing reaction R(S1, S2) or add 
it as a newly created one into the reaction hash table 

−→
R .

• As a cost-savings measure, defect clusters that have participated in a recent reaction event are stored in a dynamic 
array so that product species can be updated efficiently. As the number of these clusters is not very large, a dynamic 
array is simpler than a hash table in this case.

4.2. Reaction rate updating

The first step of the reaction update process is to visit each reaction in 
−→
R and remove those whose component reactants 

no longer exist due to the previous event(s). Subsequently, we visit each element Si in 
−→
S all and update all the reaction 

channels that this cluster associates with. As a result, some existing reactions in Si will be modified and new reactions will 
be added into the reaction hash table 

−→
R .

Based on the values of f1 and f2 mentioned previously, it can be established whether a cluster was a reactant or 
product of the last reaction event. If Si is a new defect cluster, all the reactions associated with it will be added directly 
into the reaction hash table because it is not necessary to check for their existence in it. On the other hand, if the cluster Si
only increases or decreases in number, all of its associated reactions will be first located in the reaction hash and updated 
accordingly based on the value of f1. If f1 is the change in population of cluster Si and R is the rate of a reaction channel 
involving Si , then the total reaction rate Rtot can be updated as follows:

1st-order reaction:

R(Si) ← R0(Si)

[
1 + f1(Si)

X0(Si)

]
, Rtot ← Rtot + R0(Si)

f1(Si)

X0(Si)
(5)

For 2nd-order reactions between a cluster Si and another cluster S j (assuming R(Si, S j) already exists):⎧⎪⎨
⎪⎩

R(Si, S j) ← R0(Si, S j)
[

1 + f1(Si)
X0(Si)

][
1 + f1(S j)

X0(S j)

]
(Si �= S j)

R(Si, S j) ← R0(Si, S j)
[

1 + f1(Si)
X0(Si)

][
1 + f1(Si)

X0(Si)−1

]
(Si ≡ S j)

(6)

⎧⎪⎪⎨
⎪⎪⎩

Rtot ← Rtot + R0(Si, S j)
[

f1(Si)
X0(Si)

+ f1(S j)

X0(S j)
+ f1(Si) f1(S j)

X0(Si)X0(S j)

]
(Si �= S j)

Rtot ← Rtot + R0(Si, S j)

[
f1(Si)
X0(Si)

+ f1(Si)
X0(Si)−1 + f 2

1 (Si)

X0(Si)[X0(Si)−1]

]
(Si ≡ S j)

(7)

where R0() and X0() are the equivalent old reaction rate and old population. Therefore, the reaction rate updates depend 
only on values of the f1 parameters and the old populations of the clusters.

If both f1 and f2 are zero, the cluster Si is not affected by the selected event, but we need to check whether Si can 
engage in any 2nd-order reactions with those clusters S j that are affected by the recent reaction event. These clusters are 
stored in the dynamic array mentioned previously. The last step of this process is to check whether the clusters in the 
dynamic array can form 2nd-order reactions with one another. Some of these reactions, which may have been skipped 
in previous steps because of the way the reaction keys are assigned, are now accounted for in this step. If any pair of 
defect-clusters Si and S j can react, the corresponding reactions – as well as the total reaction rate – can be updated 
accordingly using Eqs. (5), (6), and (7).
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4.3. Implementation of the τ -leaping method in SCD

In this section, we describe our implementation of the τ -leaping method within SCD. The method has been previously 
implemented on top of the direct SSA algorithm [15]. However, implementation of τ -leaping in an open system where 
new species are constantly added to or removed from the reaction network, as is the case of SCD simulations of irradiated 
materials, has not been attempted to our knowledge. Employing hash tables, we now show how τ -leaping can be added 
to the SCD method to make the simulations more efficient. Several improvements have been proposed to the τ -leaping 
method since it was first proposed by Gillespie [15,19–23], including efficient simulations of stiff reaction networks [24–26]
or prevention of meaningless negative species populations that can be caused by leaping [27]. Cao et al developed an 
efficient τ -leaping SSA algorithm that avoids having to solve a complicated set of partial differential equations suggested 
in Ref. [21]. For the sake of clarity and to better explain our implementation of τ -leaping in the SCD algorithm, here we 
briefly summarize Cao et al.’s algorithm. The reader is referred to the original paper for more details of the method and the 
underlying theory [21].

In Cao et al.’s approach, the set of all existing reactions is divided into two non-overlapping subsets: the critical subset 
includes all reactions that are within ncr (a pre-defined integer) firings away from extinguishing one of the component 
reactants and the noncritical subset includes all the other reactions. We add all 0th-order defect insertion reactions to the 
critical subset in which every reaction is advanced one at a time, just like in the direct SSA method. To enable efficient 
τ -leaping over the noncritical reaction subset, we make use of two more hash tables. The first one 

−→
P is used to store 

the noncritical species, each element in 
−→
P containing the species’ attributes such as its key, population count and several 

additional parameters g , μ, σ 2 and O ’s as defined below. The second hash table 
−→
J contains the noncritical reactions J j

with corresponding reaction rates J j . Here, 
−→
J is a subset of the all reaction hash 

−→
R . Therefore, we use another set of 

notations to distinguish these noncritical reactions from the regular reactions for the sake of clarity. Similar to the regular 
reaction hash, each element of 

−→
J contains the key and the rate of a noncritical reaction. Following Cao et al.’s approach, a 

safe leap time τ for every noncritical reaction in 
−→
J is selected as

τ ′ = min
Pi∈−→

P

{
max{ε X(Pi)/g(Pi),1}

|μ(Pi)| ,
max{ε X(Pi)/g(Pi),1}2

σ 2(Pi)

}
(8)

with

μ(Pi) =
∑
J j∈−→

J

νi j J j (9)

σ 2(Pi) =
∑
J j∈−→

J

ν2
i j J j (10)

The value of gi depends on the highest order O i of any reaction in which the noncritical cluster Pi appears as a reactant. 
As appropriate for our model of irradiated materials, we categorize these reaction-order parameters into three different 
types: 1st-order (O 1), 2nd-order (O 2), and 2nd-order with like reactants (O 3). When a reaction becomes critical or no 
longer exists due to exhaustion of one or both of its reactants, O i parameters of the participating reactants are updated 
accordingly. The values of μ and σ 2 for each Pi are also updated every time a reaction involving a noncritical cluster is 
analyzed.

To determine the value of the leap time τ , our algorithm inspects all clusters Pi stored in the noncritical-reactant 
hash 

−→
P , determines the highest order of their associated reactions and calculates the corresponding values of gi . When 

O 2(Pi) = 0, the highest order of reactions involving species Pi is 1st-order, and the corresponding value of g(Pi) is 1. 
A positive O 2(Pi) indicates that Pi takes part in at least one 2nd-order reaction in which case g(Pi) is taken to be 2. 
However when a reaction exists that can involve two clusters of species Pi , O 3(Pi) will also be positive and the value of 
g(Pi) is determined instead as

g(Pi) =
[

2 + 1

X(Pi) − 1

]
(11)

After a safe value of the leaping time is estimated as described above, the number of times ki each reaction Ji ∈ −→
J in 

the noncritical reaction hash will fire during this interval is computed as a Poisson random variable P( J iτ ). However the 
reactions are not executed immediately as it is still necessary to ensure that none of the noncritical reactant populations −→
P becomes negative after τ -leaping is performed on all reactions in the current noncritical reaction hash 

−→
J . To ensure 

that all species populations remain non-negative after τ -leaping, the total number ktot(Pi) of reaction events reducing 
the population of species Pi is obtained by summing k j over all noncritical reactions J j consuming Pi during the leap 
time τ . Only when the population of every noncritical cluster X(Pi) is found to be larger than ktot(Pi), every reaction Ji
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stored in the noncritical reaction hash is executed ki times and the f1 and f2 parameters of reactant clusters S1 or S2
are updated accordingly; otherwise, the value of τ is reduced, new firing times ki ’s are determined and the previous 
non-negativity condition is re-examined. Should the need for reduction in τ persist, τ -leaping is abandoned in favor of the 
direct (single-reaction) SSA algorithm for some number of SSA steps (200 steps in simulations described in Section 5) after 
which τ -leaping is resumed.

4.4. Controlling the simulation complexity using volume rescaling

The computational complexity of SCD simulations is largely defined by the number of distinct cluster species currently 
present in the defect population. This number can be controlled by the size of the simulation volume. In selecting the vol-
ume, one needs to balance two conflicting requirements: (1) defect cluster populations should be statistically representative 
(which favors larger volumes) and (2) the computational cost of SCD simulations should remain acceptable (which favors 
smaller volumes). Here we introduce a method to balance these two requirements through volume rescaling.

Typically, at the start of a SCD simulation, most of defect clusters are mobile and their volume concentrations as well 
as the concentration and the net strength of pre-existing defect sinks (dislocations, grain boundaries, for example) are low. 
Under such conditions, mobile defects diffuse over long distances through the reaction volume before they meet a reaction 
partner. However, as time proceeds and progressively more defects are inserted by continued irradiation, clusters become 
more numerous while smaller mobile clusters combine and form increasingly larger clusters. Such kinetics result in a more 
or less steady reduction in the lifetime and diffusion length of mobile clusters defined as the average time and distance 
traveled by a mobile cluster from birth to death, respectively. In a given defect population, the average lifetime of a mobile 
cluster of species Si is the inverse of the total rate of loss:

L(Si) = D(Si)
∑

l

Zilρl + εm +
∑

j

ki j
X(S j)

V
, (12)

while the maximum diffusion length among all mobile cluster species 
−→
S ′

m can be estimated as

lmax = max
Si∈

−→
S ′

m

lSi , lSi =
√

D(Si)

L(Si)
(13)

where L(Si) is the net rate of loss and D(Si) is the diffusion coefficient of the mobile cluster species Si , Zil is the strength 
of a given sink of type l with respect to the same species (the sink’s ability to remove clusters Si ), ρl is the volume density 
of sinks of type l, εm is the total rate of all dissociation reactions leading to splitting clusters Si , and kij is the reaction rate 
of a 2nd-order reaction between the mobile defect Si and the defect cluster of type S j with a population of X(S j). Here −→
S ′

m denotes the set of all mobile species that will possibly appear in the simulation volume, not limited to only those exist 
at the current time-step.

The significance of parameter lmax is that it defines the range of distances beyond which neighboring reaction sub-
volumes are no longer exchanging their reactants (defect clusters). Thus, reaction volumes with linear dimensions exceeding 
lmax can be viewed as causally isolated from each other. Typically, as a SCD simulation progresses lmax decreases due to a 
more or less steady increase in the magnitude of the last term on the right hand side of Eq. (12). A significant reduction 
in lmax justifies an appropriate reduction in the reaction volume, V new = γ V old ≥ l3max (with γ < 1). The essence of our 
volume rescaling method is that when conditions for volume reduction conditions are satisfied, the cluster population is 
reduced by allowing every cluster to be randomly eliminated with probability (1 − γ ) before resuming the SCD simulation. 
Such a volume reduction procedure allows to maintain the size of the reaction network approximately constant even when 
damage accumulation increases the volume density of defects by orders of magnitude. However, volume rescaling should 
be avoided when there are large fluctuations in the defect population, for example right after a massive defect insertion 
event.

4.5. Algorithm implementation

In this section we present the key algorithmic elements of our improved SCD method in pseudocode format, including 
construction of hash tables for noncritical reactions and defect clusters and an algorithm for estimating a safe leap time τ
in SCD. In the following R(S1, S1) is the rate of a binary reaction R(S1, S2) between species S1 and S2. Similarly, J (P1, P2)

denotes the rate of the noncritical reaction J(P1, P2) between two noncritical species P1 and P2. The set of all critical 
reactions is represented by 

−→
R cr . For a 1st-order reaction R(S1) or J(S1), S1 represents its one and only reactant cluster. 

X(Si) denotes the population (number of units) of cluster species Si in the reaction volume. Finally, Xmin denotes the 
smaller population of clusters among the two reactants of the reaction R(S1, S2).
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4.5.1. Construction of the noncritical hash tables

1. If R is a 2nd-order reaction:
(a) If S1 ≡ S2 (reaction between two like clusters):

i. If X(S1) >= ncr + 2 (reaction R is noncritical, and cluster S1 is noncritical, i.e. R(S1) ≡ J(S1) ∈ −→
J and 

S1 ≡ P1 ∈ −→
P )

• If J(P1) does not exist: add J(P1) into the noncritical reaction hash 
−→
J and update O 2,3(P1) ←

O 2,3(P1) + 1.
• Else: update J (P1) ← R(S1) and Xmin(J) ← X(S1), reset k [J(P1)] ← 0.
• Locate P1 in the noncritical cluster hash 

−→
P

– If P1 does not exist: add P1 to 
−→
P with μtot(P1) ← μ [ J (P1)] and σ 2

tot(P1) ← σ 2 [ J (P1)] as determined 
by Eqs. (9) and (10).

– Else: update μtot(P1) ← μtot(P1) + {μ [ J (P1)]}new − {μ [ J (P1)]}old and σ 2
tot(P1) ← σ 2

tot(P1) +{
σ 2 [ J (P1)]

}
new − {

σ 2 [ J (P1)]
}

old .
ii. Else (R is critical):

• If P(P1) exists: locate P1 in 
−→
P . If P1 exists: update O 2,3(P1) ← O 2,3(P1) − 1, μtot(P1) ← μtot(P1) −

μ [ J (P1)], σ 2
tot(P1) ← σ 2

tot(P1) − σ 2 [ J (P1)]. If O 1(P1) = O 2(P1) = O 3(P1) = 0, remove P1 from the non-

critical cluster hash 
−→
P .

• Remove J(P1) from the noncritical reaction hash 
−→
J .

(b) Else (reaction between unlike species S1 �= S2):
i. If min {X(S1), X(S2)} > ncr (reaction R is noncritical, and clusters S1, S2 are noncritical, i.e. R(S1, S2) ≡
J(S1, S2) ∈ −→

J and S1,2 ≡ P1,2 ∈ −→
P )

• If J(P1, P2) does not exist: add J(S1, S2) into the noncritical reaction hash 
−→
J , update O 2(P1,2) ←

O 2(P1,2) + 1.
• Else: update J (P1, P2) ← R(S1, S2) and Xmin(J) ← min {X(S1), X(S2)}, reset k [J(P1, P2)] ← 0.
• Locate P1 and P2 in the noncritical cluster hash 

−→
P

– If P1 and/or P2 do not exist: add them into 
−→
P with μtot(P1,2) ← μ [ J (P1, P2)] and σ 2

tot(P1,2) ←
σ 2 [ J (P1, P2)] as determined by Eqs. (9) and (10).

– Else: update μtot(P1,2) ← μtot(P1,2) + {μ [ J (P1, P2)]}new − {μ [ J (P1, P2)]}old and σ 2
tot(P1,2) ←

σ 2
tot(P1,2) +

{
σ 2 [ J (P1, P2)]

}
new − {

σ 2 [ J (P1, P2)]
}

old .
ii. Else: (R is critical):

• If J(P1, P2) exists: locate P1 and P2 in 
−→
P . If P1 or P2 exists: update O 2(P1,2) ← O 2(P1,2) − 1, 

μtot(P1,2) ← μtot(P1,2) − μ [ J (P1, P2)], σ 2
tot(P1,2) ← σ 2

tot(P1,2) − σ 2 [ J (P1, P2)]. If O 1(P1,2) = O 2(P1,2) =
O 3(P1,2) = 0, remove P1 and/or P2 from the noncritical cluster hash 

−→
P .

• Remove J(P1, P2) from the noncritical reaction hash 
−→
J .

2. Else: R is a 1st-order reaction (emission or absorption of a defect cluster at sinks). Follow similar steps as described 
in 1(a), except that the noncritical condition for cluster S1 is X(S1) > ncr in this case.
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4.5.2. Reaction update loop

1. Remove all illegal reactions whose reactants are no longer exist from the reaction hash 
−→
R . Starting from the first 

cluster S1 in the all-cluster hash 
−→
S all:

2. If f1(S1) �= 0 or f2(S1) �= 0 (S1 is affected by the recently executed event):
(a) If f1(S1) �= 0 and f2(S1) = 0 (S1 is only the reactant not the product of the previously executed event):

i. Check if S1 is immobile, skip to ii; else: find 1st-order reaction channels associated with S1 and update the 
reaction rates using Eq. (5).

ii. Loop through the mobile-cluster hash 
−→
S m , determine if key(S1) ≥ key(S2) where S2 denotes the mobile 

cluster and find the associated reaction channel R(S1, S2).
A. If R(S1, S2) exists: update values of R(S1, S2) and the total rate Rtot using Eqs. (6) and (7).
B. Else: calculate the reaction rate R(S1, S2) between clusters S1 and S2, add R(S1, S2) to the reaction hash −→

R and update the total reaction rate, Rtot ← Rtot + R(S1, S2).
(b) Else if f2(S1) �= 0 (the cluster has just been created): similar to 2(a), except that all reactions associated with 

S1 will be added directly into the reaction hash 
−→
R . It is not necessary to locate these reactions in 

−→
R since 

they are completely new reactions.
3. Else f1(S1) = f2(S1) = 0 (the cluster does not participate in the previous reaction):

(a) Loop through the effected clusters S2 contained in the dynamic array and evaluate these following conditions: 
1) key(S1) > key(S2) and S1 is mobile, 2) S1 is immobile while S2 is mobile.

(b) If any of those conditions is satisfied: find the associated reaction R(S ′
1, S ′

2) (S ′
1 is the larger value of S1 and 

S2, the other is S ′
2).

i. If R(S ′
1, S

′
2) exists: update R(S ′

1, S
′
2) and Rtot using Eqs. (6) and (7).

ii. Else: calculate the reaction rate R(S ′
1, S

′
2) between clusters S1 and S2, add R(S ′

1, S
′
2) into the reaction hash −→

R and update the total reaction rate, Rtot ← Rtot + R(S ′
1, S

′
2).

4. Proceed to the next cluster in the all-cluster hash 
−→
S all and repeat Step 2 until reaching the last cluster.

5. Loop through the clusters contained in the dynamic array. For all possible pairs of (S1, S2), if at least one of the 
clusters in the pair is mobile: find the associated reaction R(S ′

1, S ′
2) (S ′

1 is the larger value of S1 and S2, the other 
is S ′

2).
(a) If R(S ′

1, S
′
2) exists: update R(S ′

1, S
′
2) and Rtot using Eqs. (6) and (7).

(b) Else: calculate the reaction rate R(S ′
1, S

′
2) between clusters S1 and S2, add R(S ′

1, S
′
2) into the reaction hash 

−→
R

and update the total reaction rate, Rtot ← Rtot + R(S ′
1, S

′
2).

6. Locate in the all-cluster hash 
−→
S all the same clusters Si that are stored in the dynamic array and reset the values 

of f1 and f2: 0 ← f1(Si) and 0 ← f2(Si) and clear the dynamic array.

If the τ -leaping method is implemented, update the noncritical cluster hash 
−→
P and noncritical reaction hash 

−→
J at the 

end of Steps 2, 3 and 5 above as described in Algorithm 4.5.1.



264 T.L. Hoang et al. / Journal of Computational Physics 300 (2015) 254–268
4.5.3. Main event loop

1. If the simulation is resumed from a pre-existing one, enter input data into the hash tables 
−→
S all , 

−→
S m , and 

−→
R . Set 

the appropriate initial time and compute the total rate Rtot of all reactions associated with existing defect clusters 
in 

−→
S all . Skip to Step 3.

2. Update the 
−→
S all , 

−→
S m and 

−→
R hashes and the total reaction rate Rtot as described in Algorithm 4.5.2 Perform 

volume rescaling if the conditions in Eq. (12) are satisfied.

3. If SSA has run less than NSSA steps: select and execute a reaction event R(S1, S2) ∈ −→
R and calculate the time to 

next reaction event using Eqs. (3) and (4), store identities of the effected clusters in the dynamic array and return 
to Step 2 until the final time is reached; else: go to Step 4.

4. Reset NSSA ← 0. If the noncritical reaction hash 
−→
J is empty: τ -leaping cannot be performed, return to Step 3; 

else:
(a) Calculate the value of g(Pi) for each cluster Pi ∈ −→

P based on the values of its O i parameters as described in 
Section 4.3.

(b) Determine the value of the noncritical time leap τ ′ using Eq. (8).

(c) Calculate the total reaction rate Rcr of all the critical reactions in 
−→
R cr and the critical time leap τ ′′ using 

Eq. (3).
(d) If τ ′ is less than some small n-multiple (we set n equal 10) of 1/Rtot , temporarily abandon τ -leaping and 

return to Step 3.
(e) Else:

i. Take the leap time to be the smaller value of τ ′ and τ ′′ , τ = min
{
τ ′, τ ′′}.

ii. Calculate the number of times each reaction Ji ∈ −→
J will fire during this time interval [t, t + τ ) as described 

in Section 4.3.
iii. If P ( Jτ ) > X(P1) (if Ji is a 1st-order reaction) or P ( J iτ ) > min {X(P1), X(P2)} (if Ji is a 2nd-order 

reaction): reduce τ ′ by half and return to Step 4(d). Else: assign k(Ji) ← P ( J iτ ), k(P1,2) ← k(P1,2) +
k [J(P1, P2)]. If k(P1,2) > X(P1,2): reduce τ ′ by half and return to Step 4(d).

iv. Execute Ji ∈ −→
J a number of k(Ji) times. Store the identities of the effected clusters in the dynamic array if 

k(Ji) > 0. Update t ← t + τ , then return to Step 2 or stop if the final time has been reached.

v. If τ ′′ ≤ τ ′: select and execute a critical reaction event R(S1, S2) ∈ −→
R cr and store identities of the effected 

clusters in the dynamic array. If an insertion event is selected, process the event and store the identities of 
the new clusters in the dynamic array, then return to Step 2 or stop the simulation if the final time has 
been reached.

5. Triple ion-beam irradiation of bcc-Fe thin film

5.1. Simulation

Materials performance in nuclear fusion reactors is expected to degrade as a consequence of prolonged exposure to neu-
tron irradiation. However, neutron irradiation experiments are costly, irradiation facilities are scarce and presently achievable 
neutron fluxes are low requiring years of exposure before material specimens receive a significant dose of irradiation. As 
a faster and more cost effective alternative for assessing irradiation-induced changes in physical and mechanical proper-
ties of materials, ion beam experiments are used for accelerated testing of material degradation because ion cascades can 
produce damage similar to neutron irradiation but on a much shorter time scale. In addition to the displacement damage, 
material exposure to fast neutrons results in simultaneous formation of He and H atoms through nuclear transmutation 
reactions. To mimic such specific conditions properly, triple ion beam irradiation can be used in which ions of He and H 
are co-implanted, either sequentially or concurrently, with the heavy ions imparting the primary (displacement) damage. 
Recent triple-beam experiments of this kind conducted on iron crystals have revealed pronounced synergistic effects asso-
ciated with co-implantation of He and H under irradiation by self-ions of Fe [28]. Specifically, the amount of measurable 
swelling increased several fold when all three ion species were implanted simultaneously, relative to baseline sequential 
dual Fe3+/He+ and Fe3+/H+ irradiations.

As previously discussed, ODE-based simulations methods have so far proven incapable of coping with complex cluster 
species with more than two size attributes, as is the case of triple-beam irradiations reported in Ref. [28]. Here we show 
that our enhanced SCD method is capable of simulating of complex defect microstructures in pure iron subjected to simulta-
neous irradiation with Fe3+ ions and co-implantation with He+ and H+ ions. In setting up our model and SCD simulations 
we mimic as close as possible irradiation conditions used in the triple ion-beam experiments performed by Tanaka and 
coworkers. The model parameters used in SCD simulations reported here are the same as in Ref. [6].

We have performed simulations of triple-beam irradiation and tracked the accumulation of pure vacancy (V), V–He, V–H, 
and V–He–H clusters in the simulation volume using first direct (exact) SCD simulations [6] and then repeated the same 
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Fig. 1. Statistical errors of vacancy cluster (Vc) concentrations obtained from various enhancement methods compared to the one obtained from original 
SCD model using SSA method. The specimen is under triple ion irradiation of Fe3+, He+ and H+ , total irradiation time is 40.96 s and the temperature is 
783 K. The inset shows the concentrations of various defect-cluster types as functions of irradiation time, in this case the simulation is carried out using 
the original SCD algorithm with no improvement. Vol scaling 1 uses γ = 0.9999, and Vol scaling 2 uses γ = 0.99999.

simulations after turning on, one by one, the various enhancements described in the preceding sections. The inset to Fig. 1
shows the concentrations of various types of clusters as functions of simulated irradiation time as obtained with the original 
(unenhanced) SCD method.

Each curve in the inset was obtained by averaging over five independent simulations starting from different random 
seeds. The main figure shows the relative deviation from the reference (unenhanced) simulations in the net vacancy cluster 
population obtained in SCD simulations with enhancements. For consistency, five independent simulations were performed 
for every enhancement. The error bars shown on the plot can be used as a measure of statistical significance of the ob-
served deviations. As the figure shows, the results of enhanced SCD simulations fall within the statistical errors to the 
exact (reference) simulations which verifies that the approximations used here to improve computational efficiency of SCD 
simulations, namely τ -leaping and volume rescaling, are not distorting the simulated kinetics of damage accumulation (for 
simulations shown in Fig. 1 we used the following values of runtime parameters: ncr = 10 and ε = 0.03 for τ -leaping and γ
ranging from 0.99999 to 0.9999 for volume rescaling). The ratio γ can be reduced further to achieve even greater speedup, 
but accuracy is what we prefer here since we have already managed to reduce the computing time significantly with the 
current simulations.

However, volume reduction should not be applied when the simulation volume has become too small to be statistically 
representative. Therefore, a better way to implement volume rescaling is to combine this method with model parallelization 
using multiple replicas of the original reaction volume. Specifically, whenever the above volume reduction condition is 
satisfied, the simulation volume will be halved, defect evolution in one of these halves will then continue on another 
processor while that in the other half will continue on the same processor. As time progresses, further volume reduction on 
these reaction sub-volumes will be carried out in the same manner until the final simulation conditions are reached. This 
improvement approach will be addressed in future publication.

5.2. Performance

First of all, a rather significant – a factor of 20 or higher – speedup in SCD simulations is attained simply due to a 
greater efficiency of the incremental updates of the evolving reaction network and associated reaction rates, as described 
in Sections 4.1 and 4.2. This is a general improvement resulting from a better implementation of the standard SCD algo-
rithm reported in Ref. [6]. We use the efficiency of our standard SCD simulations with incremental updates as a reference 
comparison with further enhancements.

We find that, in our SCD simulations of irradiated iron, conditions for τ -leaping are often satisfied and many reactions 
can be allowed to fire at once rather than one at a time. The key condition for τ -leaping to be accurate is that the change 
in the defect population caused by a leaping step should not affect too much the rates of existing reactions. Whenever it 
is safe to perform, τ -leaping results in longer time-steps compared to the standard (one reaction at a time) SCD algorithm, 
as shown in Fig. 2(a) for the same simulation setup as described in the previous section. It is clear that, with τ -leaping 
active, fewer short time-steps are taken than in the direct SCD resulting in a total reduction in the number of time-steps 
required to simulate the same evolution. Thus, the total number of steps taken is reduced significantly, and so is the 
overhead cost for system updating. This is confirmed in Fig. 2(b), where a histogram of the time-step size distribution 
for a τ -leaping simulation is plotted and compared to the same histogram obtained from a standard SCD simulation. In 
addition to showing that the distribution shifts to longer time-steps due to τ -leaping, the same histogram also shows that 
a few specific time-steps occur much more frequently than the rest, and that they are clearly separated from each another. 
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Fig. 2. (a) Number of simulation steps as functions of the irradiation time obtained from SCD simulations of triple-beam irradiation at 783 K with and 
without τ -leaping implementation. (b) Distribution of the time-steps in these two cases, here one millions time-steps are collected and analyzed.

The observed peaks in the distribution indicate that a handful of noncritical reaction channels dominate the kinetics in 
our model, and that our enhanced algorithm can identify and handle such reaction channels efficiently with τ -leaping. 
Specifically, the first peak in Fig. 2(b), which ranges from 89.2 ps to 123 ps is dominated by the absorption of SIA and SIA 
clusters by defect sinks. The second group, whose reactions with time-steps between 5.01 ns and 25.1 ns mostly consists 
of absorption of vacancies by sinks, and reactions in the last group from 0.87 μs to 1.19 μs are predominantly migration of 
vacancy clusters to defect sinks. As a result, τ -leaping is not only better for computational efficiency, but it also provides 
very useful physical information by identifying the reactions that control the kinetic evolution of the system. This has 
implications beyond efficiency improvements because it can indicate where to focus the efforts to calculate the physical 
parameters that matter the most with maximum accuracy. This can potentially be helpful in uncertainty quantification of 
the models and/or to learn where to devote efforts to improve the physical parameterization.

To quantify the speedup gained from the enhancements described in this paper, the computational cost of SCD simula-
tions performed with and without the enhancements is plotted in Fig. 3 as a function of the simulated time. As the figure 
shows, significant gains in simulation efficiency are realized using τ -leaping and volume rescaling. τ -leaping is typically 
most efficient at early stages of SCD simulations but its associated speedup is subsequently negated by an increasing com-
putational cost of updates of the growing reaction network. Under such circumstances volume rescaling is prescribed to 
control the size of a growing defect population. When used together, these two enhancements significantly reduce the wall 
clock time of a SCD simulation without detectable sacrifice in its accuracy. As an example, Fig. 3 shows that while it took 
the original SCD algorithm more than two days to achieve a trivial irradiation dose of 0.1 dpa, it only takes the enhanced 
algorithm only about 12 hours to reach a technologically significant dose of 50 dpa.
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Fig. 3. Comparison of computational cost of the SCD model with different enhancement methods, here a scaling ratio, γ = 0.99999 is used whenever the 
volume scaling method is implemented.

6. Conclusions

We have presented a computationally efficient implementation of the SCD algorithm originally devised as an adapta-
tion of the well-known SSA method to simulations of complex microstructure evolution in irradiated materials. The key 
advantage of the SCD method is that, unlike the traditional ODE-based rate theory approaches that notoriously suffer from 
combinatorial explosion, SCD handles with ease multi-species populations of arbitrary complexity. However, early applica-
tions of the original SCD algorithm to irradiated materials exposed several computational bottlenecks, e.g. wide disparity in 
reaction rates and stiff kinetics. Enhancements presented in this paper are introduced to address some of the bottlenecks 
in order to achieve reactor-relevant irradiation doses at a reasonable computational cost. Gains in computational efficiency 
of SCD simulations are achieved through the following: incremental updates of the evolving reaction network, τ -leaping 
permitting multiple reaction events to take place over a single simulation step, and volume rescaling to control the size 
of defect population. Further enhancements to the SCD algorithm reported here are being considered, e.g. a more robust 
method for SCD simulations of stiff reaction networks with wide spectra of reaction rates and an adaptive mechanism for 
deciding which method is best to use at each particular stage of an SCD simulation to optimize the overall computational 
performance. Efficient parallelization of the SCD algorithm is another interesting venue for further research, e.g. following 
replication strategies recently proposed in the context of parallel kinetic Monte Carlo algorithms [29]. We note that, in ad-
dition to our SCD development borrowing heavily from the SSA method ideas, algorithmic enhancements reported here can 
be re-used in other simulation contexts where reaction-diffusion processes with dynamic species populations are of interest, 
such as in combustion science, cellular process simulation, or chemical kinetics.
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