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Abstract
Grid-scale storage technologies have emerged as critical components of a decarbonized power system.

Recent developments in emerging technologies, ranging from mechanical energy storage to

electrochemical batteries and thermal storage, play an important role for the deployment of low-

carbon electricity options, such as solar photovoltaic and wind electricity. This chapter details the

types of technological learning models to evaluate the experience rates (ERs) for key grid-scale

storage technologies, including lithium-ion and lead-acid batteries, pumped hydro storage, and

electrolysis and fuel cells. It updates the state of the literature to determine learning rates of these and

other grid-scale storage technologies. We discuss methodological issues in determining ERs for grid-

scale storage systems, which often provide multiple applications and services on the grid. In addition,

the chapter highlights future outlooks and new areas for research, including topics related to learning-

by-doing, learning-by-searching, and manufacturing localization to derive further insights. Rapid cost

reductions in lithium-ion batteries have the potential to disrupt electricity and transportation sectors,

creating further complementarities and innovation cycles. More rigorous data collection for grid-scale

storage systems on cost indicators that incorporate multiple services and applications provided by

storage, life cycle greenhouse gas emissions from storage options, and materials availability of

emerging battery chemistries could inform better policies to enable low-carbon power systems.

Chapter Outline
8.1 Introduction 120
8.2 Methodological issues and data availability for technological learning 124
8.3 Results 130

8.3.1 One-factor learning curves 130

119
Technological Learning in the Transition to a Low-Carbon Energy System.

DOI: https://doi.org/10.1016/B978-0-12-818762-3.00008-X

© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-818762-3.00008-X


8.3.2 Multifactor learning curves 133

8.4 Future outlook 134
8.5 Conclusions and recommendations for science, policy, and business 138
References 140
Further reading 143

8.1 Introduction

Grid-scale energy storage has the potential to transform the electric grid to a flexible

adaptive system that can easily accommodate intermittent and variable renewable energy,

and bank and redistribute energy from both stationary power plants and from electric

vehicles (EVs). Grid-scale energy storage technologies provide the means to turn the power

system into a dynamic market of distributed producers and consumers, indeed, “prosumers”

of energy.

Electricity can be stored through the conversion of different types of energy—for example,

mechanical energy in the form of pumped hydropower or flywheels, electrochemical energy

for batteries, electrical energy storage in capacitors, chemical energy in the form of

hydrogen, and thermal energy such as pumped heat or ice cooling devices. Flywheels that

use mechanical storage take electric currents and use them to spin a disk, which can store

electricity in the rotational inertia of the disk.

On the main grid, pumped hydro storage has provided electricity storage for decades;

however, new options are emerging. Storage systems operate at different scales—including

those that enable load balancing for mini-grid systems, which includes those that are

isolated and those that can interact with the large-scale utility grid.

Technological learning that leads to cost reduction and performance improvements for these

storage technologies could enable reliable electricity supply with intermittent renewable

sources that are directly competitive with fossil fuel-based electricity. Technological learning

curves may reduce the uncertainty level of future capital costs and technology applications.

The market for a diverse variety of grid-scale storage solutions is rapidly growing with

increasing technology options. For electrochemical applications, lithium-ion batteries have

dominated the battery conversation for the past 5 years; however, there is increased

attention to nonlithium battery storage applications including flow batteries, fuel cells,

compressed air energy storage, supercapacitors, and flywheels. Globally, lithium-ion

batteries have attracted the most attention due to their multiple applications at the grid-scale

and rapid cost declines for consumer products and EVs. Pumped hydro storage maintains

the largest existing market share of grid-connected energy storage. While certain lithium-

ion batteries have the most attention to date in terms of market deployment for both
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vehicles and grid-scale applications, numerous opportunities remain for newcomer grid-

scale mechanical, thermal, or electrochemical storage solutions.

The economic value of storage technologies also varies across application, technology, and,

ultimately, through battery chemistry or physical performance. Grid-economics and

alternative remuneration schemes for energy storage on the grid provide multiple revenue

streams for grid-scale storage owners; opportunities where previous electricity generation

technologies may not be able to compete (Stephan et al., 2016; Davies et al., 2019).

Pumped hydro storage historically has the most installed capacity of any energy storage capacity

on the grid with nearly 184 GW of installed nameplate capacity (US DOE Global Energy

Storage Database, 2019). The basic concept utilizes gravity and potential energy to pump stored

water in a reservoir up from a low elevation to a higher elevation. Pumped hydro storage has

opportunities for expansion, especially as an option to retrofit existing large-scale hydropower

plants and turn them into storage, which has been one option under consideration in places with

a large hydropower dependency such as Laos and Switzerland (Schmitt et al., 2019).

Lithium-ion batteries are available today and are a promising electrochemical storage

technology for their dual applications on the grid and for EVs offering a wide range of

energy densities, operating temperature ranges, and scales for deployment. Key components

of lithium-ion batteries include positive and negative electrodes and an electrolyte.

Graphite-based electrodes are the most popular; however, new materials and battery

chemistries have experimented with different positive electrodes such as lithium-phosphate

or manganese-based cells. Typically, lithium-ion cells are distinct from the actual battery

and are formed in cylindrical, flat, or pin shapes. The cells are contained in packs. Current

research and development includes the increase of cycle life, power density, and safety

concerns to reduce flammability risks.

In 2010 the total volume of lithium-ion batteries was 20 GWh largely owing to

portable electronics. Since then, production has been growing annually by 26% reaching a

total market size of 120 GWh in 2017 (Avicenne Energy, 2018). While the electronics market

gradually slowed down, production of lithium-ion batteries continued to increase, primarily

due to the growing demand from EVs. Overall, the market share of lithium-ion batteries for

EVs and stationary storage increased from about 5% early this decade to more than 60% in

2017, surpassing the sales for electronics (Fig. 8.1). Still, volumetric energy densities of

600!650 Wh/L in cylindrical cells have been reported (Choi and Aurbach, 2016).

As of 2017, global capacity of electrochemical system storage reached about 1.6 GW, and

lithium-ion batteries are the main type used, accounting for about 1.3 GW or 81%, in terms

of power capacity in 2017 (Fig. 8.1). Deployment of residential lithium-ion batteries

behind-the-meter was estimated at around 600!650 MWh (or about 200 MW) in 2016

(Schmidt et al., 2017; Sekine and Goldie-Scot, 2017), which is substantial, considering that

it represents almost 20% of the total lithium-ion battery capacity installed for system
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storage. Bloomberg New Energy Finance reports additional behind-the-meter storage

capacity of 650 MWh in commercial and industrial sectors (Sekine and Goldie-Scot, 2017).

Dramatic increases are expected in the coming years, with a number of state and federal

mandates, and large utility-scale projects expected to result in the deployment of multiples

of the 2017 capacity.

Flow batteries offer potential advantages to lithium-ion technologies at the grid scale.

Flow batteries are formed of two electrochemical cells that can be separated by a

membrane where ion exchange occurs. Often times, the separation of the liquids in an

electrolyte mean that one could build a larger battery that scales with the volume of the

liquid and area of the membrane. This allows for distinct advantages at the grid scale

compared to lithium-ion batteries that are optimized for transportation applications. For

instance, the typical flow battery design allows for a decoupling of the power density and

energy capacity, which means that batteries can increase their duration. Compared to

lithium-ion batteries, flow batteries maintain separate electrolytes and electrodes, which

decouples their energy!power ratio and offers a variety of new material chemistries for

next-generation batteries and grid-scale storage. Unlike most chemical batteries whose

performance degrades after a few thousand cycles, flow batteries can maintain their

charge-discharge characteristics for over 100,000 cycles over 20-year lifespans. In

addition, flow batteries contain much fewer risks for explosion or fire than their lithium-

based counterparts. Conventionally, aqueous redox-flow batteries have dominated the

research discussion; however, now alternative materials have emerged ranging from

organic metal-free flow batteries based on quinones to vanadium- and zinc-based options.

Emerging chemical flow batteries also range across aqueous and nonaqueous solutions

(Dunn et al., 2011; Larcher and Tarascon, 2015).

Fuel cells have struggled to achieve commercial success due to the lack of materials science

advances in catalyst or membrane technologies, combined with a lack of suitable
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infrastructure to deploy in a hydrogen-based economy. Nevertheless, with excess and

abundant intermittent renewable electricity stemming from utility-scale solar and wind

farms, fuel cells are becoming an increasingly viable option to reelectrify hydrogen for

power or transport applications.

Compressed air energy storage offers new seasonal and long-duration opportunities for high

power and utility-scale energy storage. However, the affordability and availability of

compressed air storage varies geographically, thus significantly limiting its potential.

Compressed-air-energy storage often uses natural gas as a fuel to combust in the

pressurized air and expand with the compressed air to generate electricity. Natural gas

expands the capacity and efficiency of operating a compressed-air-storage facility (Succar

and Williams, 2011). There are also options to use compressed-air-energy storage without

natural gas inputs; however, these projects remain at the demonstration phase. There are

two existing commercial compressed air energy storage plants totaling only 400 MW

installed capacity—located in underground caverns mined from salt in Germany (290 MW)

and the United States (110 MW). Recent studies demonstrate achievable storage in the

range of $0.42!$4.71/kWh in saline aquifers (Mouli-Castillo et al., 2019).

Flywheels, mechanical energy storage devices using the rotational energy in a spinning

disk, also have the potential for rapid performance improvements as technologies gain

access to commercial markets. Flywheels are a type of mechanical storage that store

rotational energy proportional to the square of their rotational speed. Major applications

include frequency regulation and voltage control of power output as a source of torque.

Flywheels can be used as spinning reserves. Larger flywheels are also increasing in the

duration of their storage, making them another promising grid-scale storage option. The

majority of profitable revenue streams for flywheels rely on providing frequency control

tasks; however, new economically viable applications are emerging (Diaz-Gonzalez et al.,

2015). Mini-grid studies highlight the ability for flywheels to integrate hybrid photovoltaic (PV)

mini-grids at a low-cost and reduce the overall system costs by providing stability and

storage services. As distributed energy resource architectures change, grid-scale flywheels

operating in larger power system networks could gain tractability. Lower cost material

advances for flywheel technologies also enable potentially greater learning similar to wind

turbines due to the largely mechanical nature of the energy storage compared to

electrochemical options.

Supercapacitors can provide short bursts of power on the grid. Physically, they exploit the

difference in electrical potential across an electric field and can provide fast-responding

bursts of power. Supercapacitors can also be used in vehicle applications and are notably

interesting for micro-grid or distribution system level applications that may require higher

levels of voltage control than other types of battery storage.

The different technologies noted here have different properties and can provide electricity

over seconds, hours, or even weeks. All of these applications fulfill different roles in a
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power grid with high penetrations of intermittent renewable electricity. For instance,

supercapacitors and flywheels that may provide short duration bursts of power into the grid

may work in conjunction with longer duration flow batteries that may provide hours of

storage. Pumped hydropower storage or hydrogen gas in a power-to-gas facility could

provide seasonal storage over long durations in case there are supply!demand mismatches

in renewable dependent power systems. It is likely that the different roles of the technology

will coevolve as policies and applications create new niches. Grid-scale storage could

provide complementary or enabling capabilities to generation sources such as solar and

wind. Combined flow-battery and solar-PV systems could generate “baseload” electricity.

In addition, the types of storage needed at different timescales may vary, and just because

one distribution feeder has a flow battery installation would not preclude the growing

technical and economic viability of supercapacitors or flywheels in the same system.

Taken together, the variety of emerging energy storage technologies for grid-scale

applications has created a newly competitive ecosystem for clean energy systems to reduce

costs, gain experience in manufacturing and deployment, and increase innovations to

improve their CO2 emissions, use fewer rare earth materials, and become safer for human

health and the environment.

8.2 Methodological issues and data availability for technological learning

Technological learning and experience curves offer improved analytics and more

generalized theories of technological change. Various types of quantitative models have

been proposed to quantify and investigate the rates of technology adoption, investment in

R&D, innovative cluster effects and technological spillovers, and policies that encourage

emergent technological progress. All of these technological change agents have remained

active for battery storage technologies. A variety of tools exist to examine technological

learning for grid-scale storage technologies in further detail and are summarized here.

Traditional experience curves are based on the idea of “learning-by-doing” and relate the

deployment and cumulative production of a storage technology with cost reductions. The

one-factor experience curve model is appealing because the idea that firms learn from

experience in the past seems intuitive, and by reducing the complex process of innovation

into a single parameter, the model is simplified (Gross et al., 2013). They also have been

described as the most objective method to project future cost of technologies (Farmer and

Lafond, 2015). The underlying reasons for cost reduction as a result of learning-by-doing in

manufacturing are identified as spreading overhead cost over larger volumes, reducing

inventory cost, cutting labor cost with process improvements, achieving greater division of

labor, and improving efficiency through greater familiarity with the process (Abernathy and

Kenneth, 1974).
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One-factor experience curves focus on relating the unit cost of a technology to its

cumulative installed capacity. In the case of storage, this would relate to the amount of

electricity stored. The typical learning rate is a useful metric because one can understand

that for each doubling of installed cumulative capacity, the associated percentage cost

should be reduced. The one-factor experience curve provides a theoretical framework to

evaluate cost reductions systematically using a log-linear relationship, dating back to

“Wright’s law” in the manufacturing sector (Wright, 1936; Rubin et al., 2015).

Conceptually simple, a one-factor approach allows for broad technological comparison.

This can be achieved in the electricity storage sector as well and encompasses many of the

factors related to the cost trajectory of an emerging technology.

However, one-factor curves lack causation and accountancy to the various cost reducing

factors. They show how cost may reduce over time but provide no explanation for the

underlying reasons beyond its relationship to cumulative output (Junginger et al., 2008).

Additional cost-reducing factors are R&D expenditures (learning-by-searching; Cohen and

Levinthal, 1989); improvement of product characteristics via user feedback (learning-by-

using; Kahouli-Brahmi, 2008); and network relationships between research laboratories,

industry, end-users and political decision-makers that can lead to spillover effects (learning-

by-interacting) (Kahouli-Brahmi, 2008). Some authors suggest that experience curves

largely reflect economies of scale (Hall and Howell, 1985) and may underestimate rapid

innovations and materials science advances that change design or standardization of the

technology or related changes in inputs for materials or labor. This weakness in the one-

factor model has been explored in the development of solar and wind studies and also

applied to lithium-ion batteries (Qiu and Anadon, 2012; Nemet, 2006; Zheng and Kammen,

2014; Kittner et al., 2017). These alternative models view cost reductions “beyond the

learning curve” and attribute industry structure, technical barriers, and investment in R&D

as better or additional indicators driving the cost reduction of critical low-carbon

technologies. Efforts to incorporate further two-factor and multifactor experience curve

models for a diverse set of energy storage technologies are underway.

Two-factor experience curves typically incorporate a proxy for innovation or R&D

investment into the experience curve models. For lithium-ion energy storage, two-factor

models have more closely aligned with current projections of battery storage development

compared to one-factor experience curves (Kittner et al., 2017). Data availability and

model complexity remains one of the foremost challenges to implement two-factor learning

rates into a large-scale energy system optimization model that may help assist capacity-

expansion efforts.

Therefore many of the major techno-economic energy system optimization models treat

technological learning and experience rates (ERs) as exogenous to the model. However,

when experience curves become endogenous to the model, there are better synergies and
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opportunities to understand how R&D investment and/or future deployment policies could

help lower overall system costs for electric grid operations in the long term. This could also

significantly aid deep decarbonization efforts across the power sector and related industries

(Rubin et al., 2015).

An overview of general data collection issues applicable to grid-scale storage technologies

is summarized in Table 8.1. One main issue using current experience curve datasets for the

electricity storage technologies presented here remains that the number of data-points, as

well as the number of doublings of cumulative capacities, is very limited. This is due to the

nascence of emerging battery chemistries and alternative technologies. The number of data-

points for lithium-based systems is especially low. However, current data stay close to the

fitted experience curve, resulting in a low error in the established learning rate. For flow

battery systems, however, the data-points represent only about three doublings of

cumulative capacity, and the technology is still very much on the cusp of

commercialization (Schmidt et al., 2017). Variations in reported prices from the fitted

experience curve result in a high error for the established learning rate. The data for utility-

scale lithium battery systems reflects the exceptionally fast price decline of lithium

batteries, which was observed in 2017. However, one of the main challenges to modeling

data based on prices is the inability to fully capture knowledge spillover effects across

similar technologies or storage applications. Spillover effects between different storage

types are not considered here in detail. It is likely that there are spillover effects for

lithium-ion batteries, in terms of cells, pack components, and power electronics across

applications such as consumer electronics, EVs, and stationary systems.

Table 8.1: General data collection issues for electricity storage technologies.

Issue Resolution Applicability

Data is not for cost but for price Use price data as indicator for costs
Data not available for desired cost unit Convert data to desired unit if possible

Use available data as a proxy
Data is valid for limited geographical scope Price data assumed to reflect global

marketplace
Capacity data scaled to global market if
applicable

Cumulative production figures not available
Data is in incorrect currency or currency year Convert currency and correct for

inflation and PPP
Early cumulative production figures are not
clear or available
Supply/Demand affecting costs significantly Use data as is but recommend tracking

and updating
Lack of empirical (commercial scale) data

PPP, Power purchase parity.
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Particularly important for battery storage technologies remains the functional unit

considered for an experience curve analysis. Given that batteries and other energy storage

technologies serve multiple applications, there may be strengths and weaknesses when

characterizing costs. For instance, a capital cost expressed in terms of $/kW would certainly

weigh the power density application of the storage device more heavily than the duration of

storage, which could be a factor better represented by studying the cost in terms of $/kWh

or levelized cost of stored electricity (Schmidt et al., 2019a). At the same time, grid-scale

storage engineering may continue to measure advances in power or energy density in a

volumetric way that considers the $/kg or $/L for critical components such as the

electrolyte or the electrode. New metrics exploring the levelized cost of energy storage

capture the unit cost of storing energy, subject to the system not charging, or discharging

power beyond its rated capacity at any point in time (Comello and Reichelstein, 2019). Yet

these metrics require site- and technology-specific data that may not be easy to implement

when considering experience curves, since different dimensions of battery performance and

economically viable applications can change with new innovations. Most often, experience

curve datasets report the declining cost of lithium-ion storage in terms of $/kWh. This

remains a useful metric, but as an increasing number of grid-scale applications related to

frequency response, voltage control, storage capacity, and ancillary services become

economically viable, the challenge in measuring progress related to cost reductions becomes

less straightforward than technologies that generate electricity only.

As is common when analyzing experience curves, we use price data as a proxy to reflect all

cost input factors (R&D, sales expense, advertising, overhead, etc.), which makes the

analysis vulnerable toward pricing policies (Abernathy and Kenneth, 1974). As discussed in

Chapter 2, there are several stages in the market deployment of technologies with specific

dynamics between the cost and price of a technology. High data variance can lead to

significant variations of ERs across studies and data sets. Depending on the spread of the

data, it is possible to calculate different learning rates by changing the start and end point of

the analysis and the inclusion or exclusion of outliers (Junginger et al., 2010). In particular,

when price data is used, a period of at least 10 years’ worth of historical data or two orders

of magnitude of cumulative output should be available for price trends to be reliably

reflective of cost trends (Gross et al., 2013; Junginger et al., 2010), which is rarely the case

for many novel electricity-storage technologies.

Geographies and temporal scope of the data matter too. A majority of studies in the United

States and Europe highlight dramatic cost reductions for lithium-ion batteries. Tropical

regions may utilize alternative battery technologies or storage mechanisms based on

technology and materials availability due to the potential for overheating existing

technologies. Sodium!sulfur batteries require an operating temperature at nearly 300"C,

and lithium-ion battery performance may decline in hot and humid environments. That may

cause added stress and cost for these batteries. In addition, more geographically constrained
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storage options—ranging from compressed air energy storage to pumped hydro storage—

require suitable site selection to enable cost-effective deployment. For instance, a recent

study identifies the range of storage costs when siting compressed air storage in saline

aquifers for the United Kingdom (Mouli-Castillo et al., 2019). This raises a fundamental

question whether geographically specific technologies such as compressed air storage can

be assessed using learning curves due to their low levels of standardization and site-specific

siting requirements that heavily influence the cost of deployment. In mountainous mini-grid

or island regions where diesel is often used, there could be synergistic advantages of using

energy storage technologies to reduce the overall cost of a mini-grid or improve the mini-

grid’s energetic performance which also could impact the learning curve (Kittner et al.,

2016). Further studies to explore cost reductions across a variety of countries, scales, and

geographies would better indicate global progress as often experience curves omit soft-costs

or other project development costs that would potentially change based on region.

Experience curves are incapable of predicting step-change innovations or accounting for

product changes that might improve performance for the same costs (Abernathy and

Kenneth, 1974; Nemet, 2006). It has been argued that radical product changes constitute

new products that exhibit new experience rates (Junginger et al., 2010). Moreover, in

situations with significant product changes, other indicators than the specific investment

costs may be more appropriate to reflect learning outputs, such as product functionality or

the levelized cost of electricity for a power-generation technology (Watanabe et al., 2009;

Wiesenthal et al., 2012). For example, lithium-ion batteries may experience significant

performance improvements with different material compositions in anode or cathode or the

development of solid electrolytes.

The idea of experience improvement at a constant rate is also critiqued. Some argue that costs

reduction is stronger during the R&D phase due to radical discontinuity (Staffell and Green,

2013; Ferioli et al., 2009). Others argue that learning might be stronger in the commercial

phase due to competition (Söderholm and Sundqvist, 2007). ERs can inform near-term

forecasts and longer term strategies, better than alternative methods, and provide a standard

basis for comparison across technologies. Following the logic that relative cost shares of

components with high rates decrease over time, a reduction of the aggregated experience rates

for products over time appears feasible (Ferioli et al., 2009). This can be represented in energy

systems models with “kinked” (piece-wise linear) curves or ERs that depreciate with time

(Kouvaritakis et al., 2000; Seebregts et al., 1998; Epple et al., 1991). Table 8.2 highlights

components of electric energy storage technologies and their contribution to further cost

reductions. As electrodes currently comprise a large portion of the overall cell cost, new

materials innovations for electrodes could achieve further cost reductions. Wiring and

interconnections could also provide cost reductions, but perhaps not at the same potential scale

as these costs have already moved into mature phases of the learning curve related to other
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electrical equipment. Identifying synergistic cost-reduction opportunities between hardware

and soft costs could be important for further learning curve research.

Finally, an important distinction between products that require extensive on-site

construction and those mass-produced in centralized factories must be made, due to the

often highly specific, custom-built nature of the former resulting in lower ERs (Junginger

et al., 2008).

Table 8.2: Components of electricity storage technologies and indicative cost contributions
(Schmidt et al., 2017).

Technology scope Indicative contribution Reported technologies

Cell 19%
Electrodes 46% !
Electrolyte 14% 18,650 cell costs for EV packs reported at

145 US$/kWh (Cobb 2015)Separators 15%
Current Collectors 19%
Terminals 4%
Cell container 2%
Battery (consumer electronics) no data
Power electronics no data Lithium-ion (electronics)
Housing no data
Module Included in pack
Thermal conductors 9% Lead-acid (multiple)
Cell group interconnectors 0%
State-of-charge regulator 85%
Terminals 1%
Provision for gas release 2%
Module enclosure 3%
Pack 11%
Wiring, interconnections and connectors 21% Lithium-ion (EV)
Housing 15% Nickel!metal hydride (HEV)
Temperature control 7% Electrolysis (utility)
Power electronics 24% Fuel cells (residential)
Battery Management System 33%
Exworks System 35%
Inverter 45%93 !
Container 45%93

SCADA/controller 10%93

System 35%
Transport ! Lithium-ion (residential, utility)
Installation - Lead-acid (residential)
Commissioning - Redox-flow (utility)

Sodium!sulfur (utility)
Pumped hydro (utility)

100%

EV, Electric vehicle; HEV, hybrid electric vehicle.
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8.3 Results

8.3.1 One-factor learning curves

Prices for storage technologies differ by scope, application, and size. Here we review most

recent one-factor experience curves for grid-scale storage technologies. The results for

electricity storage experience curves are differentiated along two main dimensions, application

category, and technology scope. Application category covers portable (electronics), transport

(hybrid EV—HEV, and EV) and stationary (residential, utility); technology scope covers cell,

battery, module, pack, ex works system, and system level.

Fig. 8.2 shows decreasing product prices as per energy capacity with increasing cumulative

installed nominal energy capacities for most electricity storage technologies. Pumped hydro

(system), lead acid (module), alkaline electrolysis (pack), and lithium ion for consumer

electronics (battery) and EVs (pack) exhibit current prices below 200h/kWh with above

100 GWh cumulative installed capacity. The relatively low ERs below 5% of the first two are

contrasted by 17% for electrolysis (pack) and 30% and 22% for lithium-ion batteries and

packs, respectively. Technologies between 1 and 100 GWh cumulative installed capacity,

such as nickel!metal hydride (pack), utility-scale lithium-ion (system) or sodium!sulfur

(system), show current prices between 200 and 600h/kWh and ERs of 11% and 16%.

Those below 1GWh, such as residential lithium ion (system), lead acid (system), redox

flow (system), and fuel cells (pack), cost more than 800h/kWh with ERs between 13%

and 16%.

The price and cumulative capacity data used for electricity storage technologies come from peer-

reviewed literature, research and industry reports, news items, energy storage databases, and

interviews with manufacturers. In the literature, learning (based on manufacturing cost) and ERs

(based on product price) are sometimes used interchangeably. The sources in the referenced

literature were therefore double-checked to ensure the use of actual product price data.

The geographic scope of the data is global. Where cumulative deployment data is available

on company or country level, the data is scaled to global level. Regarding price data, it is

assumed that the global marketplace ensures that these are globally applicable (Wiesenthal

et al., 2012) and those technologies where prices are more likely to vary by geography are

highlighted. Regardless of geographic applicability, it can be assumed that identified ERs

are applicable globally.

Technology scope for electricity storage technologies is differentiated into cell, battery,

module, pack, exworks system, and system level. While exworks system refers to the

factory-gate price of complete electricity storage systems, system level includes the cost for

transportation, installation, and commissioning if applicable. Additional information on the

cost components included at each level can be found in Table 8.2.

130 Chapter 8



Experience rate uncertainty is determined using the 95% standard error-based confidence interval

(CI). While this is relatively small (, 6 5%) for most emerging and maturing technologies,

most mature technologies (pumped hydro, lead-acid modules, alkaline electrolysis) exhibit high

ER uncertainty (. 6 5%) and are not significantly different from zero (P. .05). This is the

result of the relatively short data series in terms of doublings of cumulative capacity. Ideally, a

dataset for experience curves should cover two magnitudes of cumulative capacity deployment,

in order to be significant (Junginger et al., 2010). This is only the case for fuel cells,

nickel!metal hydride batteries, and consumer electronics and EV lithium-ion batteries.
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Figure 8.2
Experience curves for electricity storage technologies. Results show product prices per nominal
energy capacity. Dotted lines represent the resulting experience curves based on linear regression
of the data. Top legend indicates technology scope, and bottom legend denotes technology
(including application and experience rate with uncertainty). Experience rate uncertainty is

quantified as its 95% standard error confidence interval. Gray bars indicate overarching trend in
cost reduction relative to technology maturity. Fuel cell and electrolysis must be considered in
combination to form an electricity storage technology. kWhcap is the nominal energy storage

capacity. Source: Updated from Schmidt et al. (2017).
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Electricity storage technologies with insufficient data are excluded, but these may still hold

promise in the future. For sodium!sulfur, no feasible ER could be determined from the

compiled data (displayed in Fig. 8.2 for reference).

In addition, it can be observed that ERs for lithium-ion technologies decrease with

increasing technology scope (Fig. 8.3). Higher ERs for cells and batteries than for packs

and systems imply that cost reductions are likely driven by experience in cell

manufacturing rather than other components required in packs and systems. Stronger cost

reduction for consumer electronics batteries compared to cylindrical cells could reflect the

ongoing shift from cylindrical (e.g., 18,650 dimension) to more cost-competitive prismatic

and laminate cells used for consumer electronics batteries (Pillot, 2014). Strong cost

reduction for cylindrical cells between 2013 and 2015 might be the result of increased

demand in EV packs, partly driven by Tesla (Pillot, 2014), which enhanced the experience

curve effect and moved the technology down along the experience curve.
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Figure 8.3
Experience curves for lithium-ion technologies (energy terms). Results are shown for product

prices per nominal energy capacity. Dotted lines represent the resulting experience curves based on
linear regression of the data. Top legend indicates technology scope, and bottom legend denotes
technology (including experience rate with uncertainty). Experience rate uncertainty is quantified

as its 95% standard error confidence interval. Source: Updated from Schmidt et al. (2017).
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Furthermore, these models are not conducted in isolation. Fig. 8.4 shows different learning

rates that have reported for lithium-ion batteries based on a variety of methods and data

sources including the incorporation of two-factor models (Kittner et al., 2017; industry

reports BNEF EVO 2017; and across applications ranging from stationary to vehicle and

consumer applications). Though imperfect, this chart begins to also uncover the challenges

related to knowledge spillovers and data uncertainty from a lack of cross-industry, cross-

sectoral knowledge transfer. The period of analysis, the technology boundaries, and the

metrics used (e.g., cost or price, annual or cumulative production) offer possible

explanations as to why the values range. For lithium-ion batteries, Schmidt et al. (2017)

note that learning rates tend to decrease with increasing technology scope. Learning rates of

inverters, a key component of stationary storage systems, are reported at 19% (6 1%)

(IRENA, 2016; Fraunhofer ISE, 2015; Schmidt et al., 2017).

8.3.2 Multifactor learning curves

Although conventional one-factor experience curves retain a good level of explanation from

2010 to 2015, recent years of grid-scale storage experience have generally overestimated

prices when focused only on economies of scale. In a similar vein to Nemet (2006),

multifactor experience curve approaches can integrate the knowledge and innovation

acquired from technical improvements, investment in R&D, or alternative industry aspects

that could influence cost reductions. For instance, when substituting patent activity for

cumulative battery production in a study on ERs for lithium-ion batteries, Kittner et al.

(2017) find that the learning rate could nearly double when considering patents only. This is

explained by a learning rate of approximately 15% based on cumulative production (over the
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Figure 8.4
Experience and learning rates of lithium-ion batteries across different applications

(Tsiropoulos et al., 2018).

Grid-scale energy storage 133



timescale 1991!2015) and 31% based on patent activity alone (a proxy for R&D efforts).

Therefore two-factor models can attribute part of the cost reduction to innovation. While

imperfect, these alternative approaches seek to integrate existing technological innovation

system theory, innovation policy studies, and extra knowledge spillovers into learning curve

models. In these cases, they can often implement, with a high correlation, the critical factors

related to cost reductions. From a materials perspective, Kittner et al. (2017) also found that

lithium and cobalt prices had weak correlations with the price reduction due to highly

diversified materials composition and resilient design features of grid-scale lithium-ion

batteries that are not subject to wild price changes due to the lithium and cobalt market.

Multifactor learning curves have the potential to identify key characteristics related to the

cost reduction of storage technologies and highlight differences across technologies and

applications. For instance, materials chemistry may play a significantly larger role in

determining the ER of fuel cells compared to lithium-ion batteries due to the high materials

cost of a catalyst for fuel-cell production. Recent assessments do not find cobalt and lithium

to significantly limit the cost-reduction potential for existing lithium-ion cells (Kittner et al.,

2017; Ciez and Whitacre, 2016). However, for nonlithium storage solutions, there could be

raw material bottlenecks as discussed later in the chapter.

The application of multifactor learning curves remains a key component of the innovation

literature that is currently evolving. Recent studies are trying to incorporate two-factor and

multifactor experience curves endogenously to energy systems optimization modeling tools.

This presents a methodological challenge and source of uncertainty given the numerous

challenges facing data collection, validation, and verification.

8.4 Future outlook

Using the derived experience curves, future prices for electricity storage based on increased

cumulative capacity can be projected (Fig. 8.5), and the feasibility of these projections

tested against indicative cost floors is defined by raw material and production costs.

When projecting the experience curves forward to 1 TWh cumulative capacity, the

categorization of electricity storage technologies along product prices and cumulative installed

capacities can be refined into cost-reduction trajectories for the three-application categories.

Prices for stationary systems reduce to a narrow range between 150 and 330h/kWh, and for

battery packs reduce to between 80 and 150h/kWh, regardless of technology. This implies

that the only technology that manages to bring most capacity to market is likely to be the

most cost competitive. Prices for portable batteries reduce to 100h/kWh.

The shaded regions in Fig. 8.5 are visual guides indicating the cost-reduction trajectory for

each application category (at a particular technology scope). These narrow to the above-

mentioned price ranges. For fuel cells and electrolyzers, prices are only reported on pack
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level. The combination that could be used for stationary storage would cost 330h/kWh at

pack-level (electrolysis: 80h/kWh, fuel cell: 250h/kWh), setting the upper bound of the

range for stationary system. However, at system level, this combination would cost more,

implying a higher upper bound. Pumped hydro systems and lead-acid modules are beyond

1 TWh cumulative installed capacity but cost 200h/kWh (pumped hydro) and 130h/kWh,

respectively, which is well within the ranges identified for stationary storage systems and

transport packs.
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Future cost of electricity storage technologies at 1 TWh cumulative capacity. Experience curves
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Due to the empirical rather than analytical nature of experience curves, extrapolations are

subject to uncertainty of the derived ERs and uncertainty associated with unforeseeable

future changes (technology breakthroughs, knowledge spillovers, commodity price shifts)

(Junginger et al., 2010; Gross et al., 2013). When accounting for uncertainty of the

underlying price and capacity data, the resulting price range at 1 TWh is 90!440h/kWh

(systems), 70!160h/kWh (packs), and 95!105h/kWh (batteries).

Experience curve studies should include cost floors in extrapolated forecasts to avoid

excessively low cost estimates (Junginger et al., 2010; Gross et al., 2013). Raw material

costs for each technology are calculated by multiplying material inventories from the

literature with commodity prices of the past 10 years (Fig. 8.5). The average raw material

cost across all technologies is significantly below their ER projection. Production and other

costs are typically below 20% (Argonne National Laboratory, 2015; James et al., 2014) of

final system price for electrochemical, or between 50% and 80% (IRENA, 2016) for

mechanical storage technologies, that are technologically mature. This confirms that the

identified cost reduction potentials to 80!330h/kWh are feasible without limiting materials

availability. Even if this would be the case, material requirements could potentially be

further reduced per kW or kWh of energy-storage capacity.

However, it should be acknowledged that despite using price ranges of the past 10 years,

there is still high uncertainty on the development of commodity prices. On the one hand,

there could be raw material and other input bottlenecks as storage takes off for particular

technologies such as fuel cells and increasing commodity prices, while on the other hand,

the competition will potentially attract new producers of raw materials and other inputs,

depressing commodity prices, and spurring innovation.

To map future cost reductions onto time, the market diffusion process of electricity storage

technologies is modeled with the archetypal sigmoid function (S-curve) that has been

observed for the deployment of several technologies (Rogers 1995; Schilling and Esmundo,

2009).

It is found that 1 TWh cumulative capacity could be installed for most new technology

types within 5!20 years (Table 8.3). By 2030 stationary systems may cost between 200 and

440h/kWh, with pumped hydro and an electrolysis!fuel cell combination as minimum and

maximum values, respectively. When accounting for ER uncertainty, the price range

expands to 150!520h/kWh (min: utility-scale lithium-ion, max: electrolysis!fuel cell). The

price range for transport applications in 2030 is 50!190h/kWh (40!200h/kWh with

uncertainty). Lithium-ion EV pack prices may fall to 50h/kWh by 2030 due to the high ER

of 21% combined with the high demand if 15 million EVs are sold annually by 2030

(MacDonald, 2016). This equals more than 700 GWh annual capacity, compared to 50 GWh

for utility storage. Lower demand projections combined with a lower ER for nickel!metal

hydride HEV battery packs, means prices could be reduced only to 190h/kWh. Lithium-ion
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batteries for consumer electronics would be at 95h/kWh by 2030 (90!100h/kWh with

uncertainty).

The identified price range of 200!440h/kWh for stationary systems by 2030 lies within

other projections (100!450h/kWh). However, individual products such as the lithium-ion

based Tesla Powerwall 2 were at an estimated retail price of 360h/kWh already by 2017

(Tesla Motors, 2016). A possible explanation could be synergistic learning effects for an

electricity storage technology across applications due to shared components, cross-over

techniques, or knowledge spillovers, leading to cost reductions not considered in this

analysis (Kahouli-Brahmi, 2008). This pricing level could also reflect deliberate

underpricing as part of a pricing strategy in newly commercialized products. In contrast, the

cost projections in this study are based on the assumption of 100% market share for each

technology in their respective application, which yields optimistic trajectories, and would

support the projections at the upper end of the literature.

Table 8.3: Future cost of electricity storage technologies relative to time.

h2018/kWhcap 2020 2025 2030 2035 2040 2045 2050

Pumped hydro
(system, utility)

2056 0 2056 1 2066 4 2076 8 2086 13 2096 18 2096 21

Lead-acid (module,
multiple)

1096 0 1096 0 1096 0 1096 1 1096 1 1086 1 1086 2

Lead-acid (system,
residential)

6696 147 4166 178 2926 173 2436 166 2206 161 2066 158 1966 155

Lithium-ion (battery,
electronics)

1496 3 1146 5 946 5 816 6 726 6 656 6 606 6

Lithium-ion
(pack, EV)

1216 7 796 11 516 12 356 11 276 10 236 10 216 9

Lithium-ion (system,
residential)

7946 62 4656 102 3086 102 2486 97 2216 94 2046 92 1936 90

Lithium-ion (system,
utility)

4746 63 3026 85 2146 85 1696 81 1466 78 1336 76 1246 74

Nickel!metal hydride
(pack, HEV)

2506 3 2186 4 1916 6 1726 6 1596 7 1496 7 1436 7

Vanadium redox-flow
(system, utility)

4516 65 3106 78 2366 78 1976 76 1766 73 1636 72 1546 71

Electrolysis (pack,
utility)

1256 1 1186 3 1036 9 886 13 786 15 726 17 676 17

Fuel cell (pack,
residential)

9006 50 5186 72 3346 68 2666 64 2356 61 2166 58 2036 57

Cost projections based on experience rates and S-curve type market growth assumptions for consumer electronics, HEVs,
electric vehicles, residential storage and utility-scale storage. Hundred percent market share assumed for each technology in
their application category (e.g., electronics, EV, HEV, residential, utility). Uncertainty based on experience rate and growth
rate uncertainties. Fuel cell and electrolysis must be considered in combination to form an electricity storage technology.
EV, Electric vehicle; HEV, hybrid electric vehicle.
Source: Updated from Schmidt et al. (2017).
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The range of 50!190h/kWh for transport packs is at the lower end of similar projections

(50!540h/kWh), but supported by recent industry announcements of lithium-ion cells

reaching 70h/kWh as early as 2022 (Cobb, 2015). Since higher estimates come from expert

interviews versus lower from ER projections, the difference could be based on the latter

placing more emphasis on future capacity additions, which would be significant if

transportation is electrified. Conversely, increasingly competitive markets have driven

strong price reductions since 2014, which could overestimate the underlying production cost

reductions and distort the derived ERs (The Boston Consulting Group, 1970).

It should also be noted that the price projection for lithium ion battery packs beyond 2030

approaches the raw material cost floors identified in Fig. 8.5. This means that if these

projections were to come true, significant reductions in commodity prices, improvements in

energy density, or changes in commodity composition of lithium-ion batteries must be

achieved. The latter two developments are within that timeline in current lithium-ion

innovation roadmaps (Global EV Outlook 2018, 2018; Thielmann et al., 2015).

The future outlook for a variety of grid-scale storage technologies and applications provide

a rapidly emerging field that requires innovative methods and analytical tools to understand.

Major innovation theories related to learning-by-doing, learning-by-searching, economies of

scale, and manufacturing localization are all required to consider how grid-scale storage

technologies can become key features of a deeply decarbonized power system running on

intermittent renewable electricity.

8.5 Conclusions and recommendations for science, policy, and business

Academia, policymakers, and industry can all contribute to the development and

encouragement of the use of technological learning models to understand cost reduction and

performance improvement related to grid-scale storage technologies and their associated

innovations. Because of the wide range of grid-scale solutions that incorporate

electrochemical batteries all the way to compressed air and pumped hydro-based storage,

experience curve models need to consider a variety of indicators related to cost—beyond

simply h/kWh or h/kW. However, the largest obstacle to achieving new indicators related

to technological learning in grid-scale storage remains quality data availability.

A major theme revolving uncertainty in technological learning for grid-scale storage is the

actual lack of experience and data to make quality forecasts. The rapid pace of materials

science advances on the battery chemistry front especially introduces new challenges that

have not been faced by energy innovations such as hydropower dams or natural

gas!combined cycle plants. Therefore vigilance and increased call for transparency and

public access of data remains the key to validating new learning curve models.

Furthermore, by encouraging public!private partnerships to share data, there are new
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opportunities for understanding an innovation ecosystem. The key challenges for grid-scale

storage remain quantifying and comparing technologies on a fair basis when batteries may

perform multiple applications and functions on the grid. They may provide difficult-to-

quantify services such as deferred investment in infrastructure when implemented on the

grid and also provide electricity that may be “expensive” from a generation standpoint, but

from a systems’ approach could lower overall costs. Therefore technological learning

studies that incorporate alternative indices related to the life cycle greenhouse gas emissions

from storage options, materials availability of emerging battery chemistries, and cost

indicators that incorporate multiple services and applications provided by storage can begin

to inform policy and research investment.

One particular concern remains that a spate of recent studies (Schmidt et al., 2019b; Fares

and Webber, 2017; Hittinger and Azevedo, 2015) demonstrates that under current grid

conditions, implementing existing lithium-ion and other battery storage options at the grid-

scale, could increase the overall carbon emissions on the grid, due to economically efficient

electricity market bidding strategies. However, as highlighted by Louwen et al. (2016) for

energy return on investment and CO2 emission impacts of PV modules, there could be

experience-based improvements in materials intensity and CO2 emission impacts of

different battery storage technologies. This can also be coupled with research that quantifies

the “energy stored on energy invested.” Further research that explores further technological

learning along nontraditional indices including materials recycling and footprints, cycle life,

roundtrip battery efficiency, and net energy ratios have been underdeveloped related to cost

metrics.

From an economic perspective, cost remains one of the key indicators. New data for

nonlithium-based grid-scale storage options needs to be transparent and available as new

chemistries, flywheels, and fuel cells emerge. Learning curves in the case of grid-scale

storage can inform public policy and R&D investments. Low-cost and innovative storage

technologies are critical to achieve low-cost, deep decarbonization of the electricity system.

Experience curves inform policymakers and industry to work together to develop research-

based roadmaps and pathways toward building experience through new technologies. One-

factor and multifactor learning curves can both inform society on the cost to deploy new

technologies and the expected return on investment and inform strategies to balance

resources to effectively gain deployment and research-based experience to drive down the

cost of new technologies.

Research development, demonstration, and deployment measures have decreased in the

United States over the past decade (Margolis and Kammen, 1999; Nemet and Kammen,

2007; Kittner et al., 2017). Globally, this remains concerning, even as deployment and

investment in behind-the-meter storage increases in Germany and as spillover effects from

consumer battery industries in South Korea and China develop. However, there are key
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reasons to believe, based on the data presented in this chapter, that energy-storage systems

are already cost competitive and will outcompete traditional electricity-generation

technologies in the next 5 years. Therefore better policies to understand this evolution and

manage the transition to enable “baseload” renewable electricity systems require the

methodological development of experience curves. More data and studies are needed across

a variety of technologies and geographies to increase model accuracy and validation.

Research is largely concentrated in Europe and the United States, whereas grid-scale storage

manufacturers are typically located in China and South Korea. The main markets for

deployment of electricity grid-scale storage technologies are expected to occur most

significantly in China, South Korea, and South and Southeast Asia. Therefore in rapidly

growing regions, where high levels of investment are moving toward new technology

deployment, there is a need for further information sharing, collaboration, and studies across

markets to improve the understanding of technological learning and experience curves.

Fundamental theoretical and applied research that integrates an interdisciplinary approach to

economic change, materials science advances, physical grid engineering, and human

behavior is necessary to advance grid-scale storage to the level of technological maturity

rivaling solar panels and wind turbines. The future of storage is exciting and therefore

should invite strategic efforts to share information resources, invest in critical R&D

expenditures necessary to promote innovation, and coevolved deployment activities to gain

experience and understanding in low-carbon energy systems.
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