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Abstract The metabolically connected triad of obesity, di-
abetes, and cardiovascular diseases is a major public health
threat, and is expected to worsen due to the global shift
toward energy-rich and sedentary living. Despite decades of
intense research, a large part of the molecular pathogenesis
behind complex metabolic diseases remains unknown. Re-
cent advances in genetics, epigenomics, transcriptomics,
proteomics and metabolomics enable us to obtain large-
scale snapshots of the etiological processes in multiple
disease-related cells, tissues and organs. These datasets pro-
vide us with an opportunity to go beyond conventional reduc-
tionist approaches and to pinpoint the specific perturbations in
critical biological processes. In this review, we summarize
systems biology methodologies such as functional genomics,
causality inference, data-driven biological network construc-
tion, and higher-level integrative analyses that can produce
novel mechanistic insights, identify disease biomarkers, and
uncover potential therapeutic targets from a combination of
omics datasets. Importantly, we also demonstrate the power of
these approaches by application examples in obesity, diabetes,
and cardiovascular diseases.

Keywords Metabolic disorders . Obesity . Diabetes .

Cardiovascular diseases . Systems biology . Integrative
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Introduction

Common metabolically connected diseases (MetDs) such as
cardiovascular disease (CVD), type 2 diabetes (T2D), and
obesity impose a substantial health burden worldwide, as
demonstrated by the fact that both CVD and T2D are among
the top ten leading causes of death in Europe and the United
States. As obesity (defined as body mass index (BMI)
>30 kg/m2) is a key risk factor for both T2D and CVD,
the rapidly growing obesity epidemic has further exacerbated
the high morbidity and mortality, making an in-depth under-
standing of the mechanisms of MetDs and the development of
novel therapeutic strategies more pressing.

Decades of research on MetDs show that obesity, T2D,
and CVD are tightly linked and both genetic and environ-
mental factors contribute to the susceptibility [1]. At the
genetic level, hundreds of individual genetic loci are associ-
ated withMetDs as shown by recent genome-wide association
studies (GWAS) [2•]. It is striking, however, that the genetic
loci discovered together only explain a small proportion (typ-
ically <20 %) of disease heritability and a large proportion of
the loci appear to act through unknown mechanisms [3].
Adding to the genetic complexity, environmental perturba-
tions such as diet, lack of physical activity, and exposure to
certain xenobiotic chemicals also increase susceptibility to
MetDs but the exact mechanisms remain unclear [4]. Another
layer of complexity lies in the intercellular interactions be-
tween different cell types, tissues, or organs relevant to
MetDs. The above facts call for an improved systems frame-
work to address the missing heritability and molecular mech-
anisms that underlie MetDs.

The past two decades have witnessed major advances in
omics technologies and genome-scale molecular data can
now be obtained in diverse experimental and epidemiological
settings. A large number of genetic, epigenetic, transcrip-
tomic, proteomic and metabolomic studies of MetDs have
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already been conducted and numerous datasets at various
molecular levels have become available. But collecting infor-
mation is not enough. A key challenge for the research com-
munity is to integrate the sea of data into useful knowledge
and insights. To address this critical need, various systems
biology approaches have been developed over the past few
years to organize the fragmented but valuable information into
structures that collectively explain the observed biological
phenomena.

Traditional approaches focus on direct correlations be-
tween the molecular traits and the clinical diagnosis under
investigation, but more advanced integrative or systems
biology methodologies can help infer causality, disseminate
the regulatory relationships among molecular traits, identify
those biological processes or networks that are perturbed,
and ultimately pinpoint the key regulatory genes and mech-
anisms of disease pathophysiology (Fig. 1). In this article,

we systematically review the principles, advantages, and
limitations of various systems biology approaches available
and how these approaches have been applied to MetDs.

Traditional Approaches-Association and Correlative
Analyses

When a particular level of molecular data is generated, the
most straightforward approach is to estimate the correlations
between the molecular traits and clinical phenotypes. To
simplify the discussion, we classify the molecular traits as
either DNA, for which variation is typically captured by
single nucleotide polymorphisms (SNPs), or intermediate
molecular phenotypes (IMPs) that collectively represent
the downstream layers such as the transcriptome, epige-
nome, proteome, or metabolome. Although studies on mul-
tiple types of IMPs have been fruitful in the past years [5–8],

Fig. 1 Systems biology strategies that integrate large-scale genetic,
intermediate molecular phenotypes (IMPs, primarily gene expression),
and disease phenotypes. Traditional genetic association studies such as
GWAS identify genetic loci associated with clinical disease phenotypes
(cQTLs, right lavender edge), which provides causal information but
lacks mechanistic insights. Molecular profiling experiments help iden-
tify IMPs associated or correlated with disease status (bottom orange
edge) but the results are purely correlative with no causal information.
More recent functional genomics efforts offer mechanistic insights on
how DNA variations affect IMPs (primarily gene expression) via the
identification of intermediate QTLs (iQTLs; left lime edge). By

leveraging both iQTL and cQTL and performing statistical testing to
differentiate causal, reactive, and independent relationships between
IMPs and disease, one can detect putative disease causal genes (center
yellow box). IMPs, iQTLs, cQTLs, disease phenotypes, and genetic
causality can all be fed into various network construction algorithms to
reconstruct regulatory networks that inform on mechanisms of IMP
and disease regulation (center orange box). Higher level integrative
approaches that take advantage of multiple methodologies are used to
derive key regulatory genes and subnetworks underlying disease de-
velopment in a tissue-specific fashion (center blue box)
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we mainly focus on gene expression profiling and genetic
association studies due to their ubiquitous applications in
biomedicine to illustrate the power and limitations of the
traditional approaches.

Identification of Genes Correlated with MetDs via Gene
Expression Profiling

The explosion of gene expression data has made central data
repositories such as the NCBI Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) and EMBL-EBI
ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/)
a power house for large-scale systematic meta-analysis, or
expression GWAS (eGWAS). It is plausible that disease-
related genes exhibit persistent differential expression pat-
terns across multiple studies, and that by scanning through a
large data repository related to a given disease condition,
these genes can be identified [9, 10, 11•, 12–14]. In a series
of studies, Butte and colleagues developed and applied
various bioinformatics tools [15–17] to screen GEO datasets
for a wide spectrum of human diseases or phenotypes in-
cluding T2D [11•] and obesity [18]. When conducting an
eGWAS across 130 independent experiments that included a
total of 1175 T2D case–control microarrays, they identified
CD44 as the top differentially expressed gene across studies
and experimentally confirmed its role in modulating adipose
tissue inflammation, insulin sensitivity, and glycemic con-
trol [11•]. Although proven informative and useful, the end
products of such analysis are lists of genes correlated with
disease status or phenotypes with limited ability to separate
non-causal secondary effects from the causal perturbations
that trigger and maintain the disease processes.

Identification of Genetic Risks of MetDs by Linkage Studies
and GWAS

Genetic association studies between genetic markers and
disease phenotypes could infer causality to a certain degree
under the central dogma that heritable disease risks flow
from DNA to other downstream molecular and physiologi-
cal events. That said, the causality inference is not unam-
biguous due to potential confounding effects [19]. Before
the arrival of comprehensive human genome map and af-
fordable genotyping platforms, linkage studies were exten-
sively used to identify genetic risk loci for MetDs by
genotyping sparse genetic markers in human families or
F2 crosses of animal models [20–28]. The resulting clinical
quantitative trait loci (cQTLs) were then used for fine map-
ping and positional cloning. However, the linkage blocks
represented by the genetic markers were typically large
(covering tens or even hundreds of genes), making the
identification of candidate genes a labor-intensive and costly
process.

In the past few years, human GWAS have achieved great
success in uncovering novel genetic risk loci for hundreds of
diseases or traits including MetDs and their risk phenotypes
[29]. GWAS examine the associations between common
genetic variants represented by SNPs and clinical traits or
diseases in large human cohorts. As of August 2012, the
GWAS Catalog [2•] maintained by the National Human
Genome Research Institute (https://www.genome.gov/
gwastudies) has collected a total of 6598 SNPs for 677
unique human diseases or phenotypic traits from 1320 dif-
ferent publications. A number of loci have been associated
with MetDs−56 for obesity, 48 for T2D, and 38 for CVD.
Most of the genetic loci identified were never observed
before the GWAS era and many of the candidate genes
cannot be explained by current knowledge. For instance,
from a recent GWAS of over 80,000 individuals, 13 out of
the 23 significant genetic loci identified were novel and 17
appeared to contribute to CAD risk through mechanisms
independent of traditional risk factors [3].

Despite the demonstrated power in uncovering novel
genetic risk factors, GWAS have limitations. First, as SNP
markers on GWAS genotyping panels are largely pre-
selected tag SNPs rather than functional SNPs, the discov-
ered loci may not directly represent the functional causal
SNPs but may simply be proxies or in linkage disequilibri-
um with true causal genetic variations. Second, even if the
SNP is causal itself, the exact functional consequences of
the SNP and the genes affected are not directly identifiable,
especially when the SNP is (as 40 % of the significant SNPs
are) located in intergenic regions or within introns [30]. The
third issue with GWAS is the missing heritability [31]. For
example, the largest meta-analysis of GWAS for obesity
where ~250 k individuals were surveyed identified a total
of 32 significant loci for BMI but together they only con-
tribute to 2-4 % of the genetic variance [32]. Similarly, all
56 established loci identified for T2D together only explain
~10 % of the heritability [33].

The lack of explanatory and predictive power has cast
severe criticisms and doubts on GWAS. That being said,
GWAS provide first-hand information about the putative
causal relationships between genetic variants and clinical
diseases traits. In addition, much of the hidden heritability
that could not pass the stringent genome-wide significance
threshold may lie within the lower tier GWAS signals and
can be brought back to light using more advanced integrative
methodologies, as discussed later in the review.

Functional Genomics

Once a genetic locus has been linked to a disease phenotype,
the most intuitive step is to search for candidate genes in the
neighborhood of the locus. However, tens to hundreds of
genes may underlie each cQTL and a large proportion of the
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GWAS loci lie within intergenic regions, making it difficult
to pinpoint the true underlying causal gene and mechanisms.
Functional genomics aims to bridge the gap. In principle,
genetic loci can impose disease risk via the products of the
genome, that is, IMPs such as gene expression, microRNA,
DNA methylation, protein levels and downstream metabo-
lites. By linking genetic markers or SNPs to IMPs, functional
consequences of genetic perturbations and mechanistic
insights can be inferred.

As summarized in our recent review articles [34, 35•, 36],
various types of IMPs have been screened in terms of their
relationships with genetic variations to produce a set of
intermediate molecular QTLs (iQTLs). In particular, the
subset of iQTLs that are related to gene expression, denoted
by expression QTLs (eQTLs), have been identified in a spec-
trum of MetD-related tissues or cell types including whole
blood, monocyte, lymphocyte, liver, adipose, and muscle in
humans [35•] and in a wider coverage of cell/tissue types in
animal models or other model organisms [37–39]. Further-
more, large-scale projects such as The Encyclopedia of DNA
Elements (ENCODE; http://www.encodeproject.org/
ENCODE/index.html) and Genotype-Tissue Expression
(GTEx; http://commonfund.nih.gov/GTEx/) are likely to pro-
vide a comprehensive characterization of the full functional
genome in the future. These iQTL/eQTL studies are able to
establish the fundamental genetic regulatory architecture of
IMPs, and thus serve as the basis for causality inference
between genes and disease phenotypes.

Causality Inference via Integration of Genetic, Gene
Expression, and Disease Phenotypes

Based on the central dogma, heritable information flows
from DNA to RNA, to proteins, and then to phenotypic
traits. When cQTL and eQTL overlap, that is, a genetic
locus or multiple genetic loci are in association with both
disease phenotype and the expression levels of a gene, there
is a higher probability that the gene associated with the
disease-linked genetic loci is also the causal gene. Based
on this principle, Meng et al. identified a significant overlap
between the cQTL of aortic calcification and the eQTL for
gene ABCC6 in a mouse F2 population and experimentally
validated ABCC6 as the causal gene for the phenotype [40].
The same principle has been applied to human GWAS
studies where disease-associated SNPs are intersected with
eSNPs (SNPs associated with gene expression levels under
eQTLs) databases to derive candidate genes for MetDs and
related phenotypic traits [3, 35•, 41, 42•, 43, 44, 45•, 46•,
47, 48]. The identification of SORT1 as the gene behind the
chromosome 1p13.3 locus for LDL cholesterol and CVD is
another example of successful causal inference via functional
genomics. Altogether three genes – PSRC1, CELSR2, and
SORT1 – were located within the adjacency of the 1p13.3

risk locus, but SORT1 was identified as the strongest
candidate due to the most significant association be-
tween SORT1 expression and the 1p13.3 GWAS SNP
in a liver eQTL study [44]. Tested in both transgenic and
knockdown mouse models, SORT1 was successfully validat-
ed as the causal gene for LDL and CVD via modulation of
hepatic lipoprotein export by two groups [49, 50]. In cases
where the GWAS locus is within an intergenic region, eSNPs
can reflect genetic control of gene expression regardless of the
genomic position. For instance, expression levels ofULK3 are
consistently associated with the intergenic CVD locus 15q24
across adipose, monocyte, liver, and blood [35•], thus repre-
senting a plausible candidate gene for this locus.

As IMPs can be upstream (i.e., causal), downstream (i.e.,
reactive), or independent of a disease phenotype, eQTL and
cQTL overlap does not directly implicate causality. The
three relationships can be formally tested via statistical and
mathematical inference by using DNA or genetic variation
information as the anchor (Fig. 1). To this end, a likelihood-
based causality model selection (LCMS) procedure was
developed by Schadt et al. [20]. The LCMS causality test
was applied to obesity and atherosclerosis phenotypes in
mouse F2 populations and successfully identified hundreds
of candidate causal genes for adiposity and aortic lesions
[20, 51, 52•]. In the obesity study, perturbation of eight top
obesity candidate causal genes for obesity - Zfp90, Lpl,
Tgfbr2, C3ar1, Gpx3, Gas7, Lactb, and Gyk - was found
to alter adiposity or fat pad mass in knockout or transgenic
mouse models via modulation of genes involved in meta-
bolic pathways and a liver network of genes involved in
lipid metabolism [51]. In the atherosclerosis study, the top
causal genes for aortic lesions were enriched for those
involved in inflammatory processes such as lymphocyte
activation and B cell receptor signaling [52•]. Knockout
mouse model of a candidate causal gene, C3ar1, was found
to reduce aortic lesions. In addition, the expression levels of
most causal genes in the aortic arch altered accompanying
lesion progression in two independent atherosclerosis
mouse models. Furthermore, several causal genes overlap-
ped with candidate genes from CVD-related human GWAS.
These validation experiments strongly support the validity
and power of LCMS in predicting reliable causal genes for
complex MetDs.

Construction of Molecular Networks via Integration
of Genetics, IMPs, and Disease Phenotypes

All the methodologies outlined above yield lists of molecu-
lar markers that are linked to disease development, but they
offer little information on how genes and other IMPs are
organized and how they operate together in complex
biological systems. Networks have emerged as appealing
tools to address this complexity; they depict the active
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agents in the systems as nodes, and their interactions as
edges that connect the nodes. Notably, the edges can represent
different types of relationships such as correlation, physical
binding, biochemical reactions or transcriptional regula-
tion, thereby transcending the boundaries of conventional
statistics.

Networks can be constructed based on curated knowl-
edge (knowledge-driven) or computational modeling of
large-scale genomic data (data-driven). Examples of
knowledge-driven networks include protein-protein interac-
tion (PPI) networks in the Human Protein Reference Data-
base (http://www.hprd.org/), Biological General Repository
for Interaction Datasets (BioGRID, http://thebiogrid.org/),
and Ingenuity networks (www.ingenuity.com). These net-
works can capture literature-supported relationships but are
far from being comprehensive and novel relationships or
insights will not be covered. On the other hand, data-driven
network reconstruction or reverse-engineering approaches
systematically and objectively scan through and integrate
all data points to uncover novel relationships among IMPs
within a cell or a tissue, or even across tissues [53]. Infor-
mation obtained from correlations, cQTLs, eQTLs, and
causality inference discussed above can all be efficiently
incorporated and utilized in various network reconstruction
approaches (Fig. 1).

Examples of data-driven networks include weighted gene
co-expression network analysis (WGCNA) [54, 55], Bayes-
ian network (BN) [56–60], graphical Gaussian models
(GGMs) [61–63], and algorithm for the reconstruction of
accurate cellular networks (ARACNE) [64]. Although these
different methodologies can be applied to various types of
common complex diseases, studies on MetDs have primar-
ily employed WGCNA and BN to identify disease-
associated key regulatory genes and gene sub-networks
[65–69, 70•, 71, 72•].

Weighted Gene Co-expression Network Analysis (WGCNA)

WGCNA aims to identify the correlation patterns among
IMPs (primarily gene expression traits) across samples in-
volved in a study. The construction of co-expression net-
work starts with a Pearson correlation matrix between all
gene pairs, followed by transformation of the correlation
matrix into an adjacency matrix [54, 55]. The adjacency
matrix is further transformed into a topological overlap
matrix based on the direct interactions between genes as
well as the indirect interactions with all the other genes [73].
An average linkage hierarchical clustering algorithm is then
applied to the topological overlap matrix , which is followed
by a dynamic cut-tree algorithm to identify gene modules
[74]. Correlations between the principal components of each
module and phenotypic traits measured in the same individ-
uals can be calculated to derive informative modules that

link to the disease of interest. Alternatively, co-expression
networks can be constructed separately for disease cases and
controls, and network modules that demonstrate differential
network topology and connectivity between cases and con-
trols can be identified [75].

In contrast to simple clustering algorithms where genes
are grouped based on the strength of pair-wise correlations,
WGCNA searches for higher-level co-regulation structures.
Importantly, the gene memberships of a module are deter-
mined not only by their direct correlations but also by the
similarity in their relationships with the other genes [54, 73].
The network structure derived is hence comprised of more
cohesive and biologically more meaningful modules that
contain genes with shared regulatory mechanisms, involved
in similar biological functions or pathways, or enriched for
disease associated genes [44, 54, 65–69, 76–78].

Numerous studies have applied WGCNA to study the
molecular mechanisms underlying MetDs or related pheno-
types [67, 68, 71, 72•, 76, 79–86]. As exemplified in two
parallel studies, Chen et al. and Emilsson et al. identified a
co-expression module that is conserved between liver and
adipose tissues, conserved between human and mouse,
highly enriched for macrophage- and spleen-related inflam-
matory genes, and linked to various metabolic phenotypes
including adiposity, atherosclerosis, and plasma lipids, in-
sulin and glucose levels [65, 66]. This module is termed
macrophage-enriched metabolic network (MEMN). Several
novel genes in MEMN, including Lactb, Lpl, and Ppm1l,
were experimentally confirmed to affect adiposity in knock-
out and transgenic mouse models [65]. Ghazalpour et al. and
Lum et al. identified gene modules related to obesity and
diabetes by using gene expression data from liver and whole
brain tissues from a mouse cross segregating on metabolic
phenotypes. Genes in the obesity-linked liver module are
involved in adipogenesis and fatty acid metabolism whereas
genes in the obesity- and T2D-associated brain subnet-
works are involved in diverse processes including RNA
splicing, circadian rhythm, and lipid metabolism. By con-
structing co-expression networks in six metabolically re-
lated tissues in a mouse population with varying T2D
susceptibility, Keller et al. identified a cell cycle regulatory
module in islets that predicts islet replication and diabetes
development [84]. In two studies on a Finnish cohort,
Inouye et al. constructed co-expression networks using
blood transcriptomic data and identified a lipid-leukocyte
module that was highly enriched for inflammatory genes
and significantly linked to over 80 serum metabolites
including lipoprotein subclasses, lipids, and amino acids,
thereby playing an important role in connecting inflamma-
tion, metabolism, adiposity, and atherogenesis [71, 72•].
All these examples substantiate the power of WGCNA in
identifying novel genes and mechanisms that contribute to
MetDs.
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Bayesian Network (BN)

Although WGCNA is highly informative for deriving the
overall organization of genes or other IMPs and for linking
particular co-expression modules to disease phenotypes, the
detailed relationships among genes within a module or
between modules can be less descriptive. Graphical network
modules such as BNs can provide more granular views of
the interactions and directionalities between genes. BNs
define a partitioned joint conditional probability distribution
over all nodes (genes or other IMPs) in a network where the
probability distribution of states of a node depends only on
the states of its parent nodes [87]. Therefore, BNs are
probability-based directed acyclic graphs. The conditional
probabilities reflect not only relationships between genes,
but also the stochastic nature of these relationships. Due to
computational constraints, thousands of plausible BNs can
be generated using Monte Carlo Markov chain (MCMC)
simulations [88] rather than an exhaustive search for all
possible network structures. The posterior probability of
each BN model given observed data can be calculated using
the Bayes formula. A consensus BN that contain nodes and
edges appearing in a large proportion of all plausible net-
work models is then derived. As probability distributions are
bi-directional and can lead to mathematically equivalent
structures, it is not possible to infer causal directions be-
tween nodes. Fortunately, BN framework can incorporate a
variety of prior information, ranging from literature, genetic,
transcription factor binding, metabolomics, to proteomic
data, to break the symmetry among nodes and infer causal
directions [56, 57]. As the BN algorithm imposes heavy
computing burden and only conserved nodes and edges across
plausible networks are kept, BNs are sparser than co-
expression networks and not all genes profiled are included
in the BN model.

A number of studies in a variety of species have demon-
strated that BNs can capture fundamental properties of mo-
lecular interactions in complex systems and can infer
mechanisms [44, 56, 57, 78, 89, 90]. In searching for the
mechanisms underlying the previously discussed lipid and
CVD locus 1p13.3, Schadt et al. found that the three candi-
date genes adjacent to the locus−SORT1, CELSR2, and
PSRC1− are highly connected in liver BNs. In addition,
the neighborhood subnetworks of the three genes, particu-
larly that of SORT1, are enriched for genes involved in
multiple biological processes relevant to lipid regulation
and CVD development, thus providing mechanistic support
on the involvement of the candidate genes in CVD [44]. To
illustrate how candidate causal genes identified via the
LCMS causality test described above interact and affect
obesity, causal genes were mapped to a liver BN and they
were found to be highly connected in a subnetwork, with the
top causal gene Zfp90 being upstream of the other causal

genes [20]. In a follow-up validation study, by mapping the
liver genes perturbed by the overexpression or knockout of
top obesity candidate causal genes to liver BNs, a liver core
subnetwork that is highly enriched for genes involved in
lipid metabolism and fat cell differentiation pathways was
identified, further elucidating the mechanisms underlying
obesity development [51].

High Level Integrative Approaches

As shown in Table 1, each methodology described above
provides different levels of information with gradual in-
crease in the power to inform on causal genes, biological
processes and mechanisms involved in disease pathogene-
sis. However, each methodology also carries intrinsic limi-
tations. To maximize our ability to discover novel insights,
higher level integrative approaches that take advantage of
different combinations of the above-mentioned methods
have been recently explored and we highlight two such
methodologies.

Integration of Disease-Related Gene Sets and Networks

To harness the strengths of data-driven regulatory networks,
the information from gene expression profiling, causality test-
ing and GWAS can be overlaid onto co-expression networks
and BNs to infer disease mechanisms and key regulatory
genes. In a recent study, we identified a consistent differential
gene signature comprised of ~1500 inflammation-related
genes, termed inflammatome, from 12 tissue-specific gene
expression profiling data of 11 different mouse and rat disease
models of obesity, diabetes, atherosclerosis, respiratory dis-
eases, autoimmune diseases, inflammation, aging, and sarco-
penia [70•]. This inflammatome gene set was integrated with
the GWAS catalog and the metabolic disease-related MEMN
to confirm the causal nature of the gene signature. By inter-
secting the inflammatome signature with co-expression net-
works and BNs constructed from multiple independent
datasets, we not only extracted a consistent subnetwork rep-
resenting the inflammatome signature and detailing gene-gene
relationships, but also identified top key regulatory genes
based on the BN network topology [70•, 78, 91]. The identi-
fication of the common inflammatome signature, its network
architecture, and key drivers via this highly integrative ap-
proach sheds light on the shared etiology and potential thera-
peutic targets between MetDs and other common diseases or
pathophysiological conditions, a level of mechanistic insights
far beyond that of what IMP profiling could offer by itself.
Other types of networks such as PPI networks can certainly
also be integrated, as exemplified by Mori et al. in a study
comparing two mouse strains with different susceptibility to
diabetes [92•]. By leveraging tissue-specific gene expression
with PPI networks, they identified an inflammation- and
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immune system-related adipose subnetwork that contributes
to the differences in diabetes risk.

Integration of GWAS, Functional Genomics, Biological
Pathways, and Data-Driven Networks

In order to explore the candidate causal genes and mecha-
nisms behind GWAS, several novel functional genomics
and network-driven methodologies have been recently de-
veloped. By integrating GWAS with functional genomics
(primarily eQTLs or eSNPs), Zhong et al. found that eSNPs
from T2D-related tissues such as liver and adipose tissues
are more enriched for T2D risk SNPs [45•]. Furthermore, by
coupling T2D GWAS and eSNPs with biological pathways,
candidate causal genes, co-expression networks, and BNs,
multiple subnetworks and biological processes such as lipid
and fatty acid metabolism, calcium signaling, PPAR

signaling, TGF-beta signaling, tight junction, complement
and coagulation, antigen processing and presentation, and
fat cell differentiation were found to be enriched for T2D
genetic risks [45•, 46•, 93]. It is of note that most genes in
the significant pathways or subnetworks only showed mod-
est association in GWAS and therefore were missed by the
traditional GWAS analysis. These results support the hy-
pothesis that a large number of genes in relevant biological
processes with modest effect sizes, rather than only a hand-
ful of individual genes with strong effects, collectively
contribute to disease development. In another method, Kang
et al. screened hundreds of co-expression networks for
genes that were consistently co-expressed with known top
T2D GWAS candidate genes as a means to identify novel
T2D genes [94•]. These new methodologies not only pro-
vide mechanistic explanations for GWAS findings but also
demystify a significant amount of the missing heritability.

Table 1 Comparison of integrative methodologies discussed in the manuscript

Methodology Brief description Information derived Advantages Limitations

IMP-disease
association or
correlation analysis

Association or correlation
analysis between IMPs
and disease phenotypes

List of differential IMPs
between cases and
controls or IMPs
correlated with
quantitative phenotypes

Informative on
IMPs co-segregating
with disease

No causality information

Linkage studies
or GWAS

Association between genetic
markers or dense SNPs
with disease phenotypes

List of genetic loci
associated with
disease (cQTLs)

Implicates potential
causal role of
genetic loci

Confers little
information on
underlying genes
and mechanisms

Functional
genomics

Association between
genetic markers or
dense SNPs with IMPs

IMPs that are
associated with
genetic loci

Infers functional
consequences of
genetic loci on IMPs;
inform on molecular
mechanisms

No information on
disease relevance

Causality test Testing causal, reactive, and
independent relationships
between IMPs and
disease by anchoring
at shared genetic loci
(cQTL/eQTL overlap)

List of genes tested
causal for the disease

Inform on candidate
causal genes
for disease

Statistical inference
only and validation
needed; little
mechanisms

WGCNA network
modeling

Organizing IMPs into
co-regulated network
modules based on
correlations between IMPs

Global overview of
co-regulation or co-
expression structure
of IMPs and modules
associated with
disease phenotypes

Inform on disease
mechanisms

Mainly a co-regulation
structure but with
little regulatory
mechanisms

BN modeling Integrating multiple levels
of IMPs to define
regulatory relationships

Graphical model
depicting detailed
interactions and
relationships
between IMPs

Inform on regulatory
mechanisms
between IMPs

Computationally
intensive, sparse,
no feedback loops

Network-driven
higher level
integration

Integrate network models
with GWAS, functional
genomics, causality, and
IMP profiling to identify
key driver genes and
subnetworks associated
with disease

Key driver genes
and subnetworks
associated with
disease

Prioritize genes and
provide mechanisms

Although most
informative given
higher amount of
data incorporated, still
hypothesis generating
in nature and warrants
experimental validation
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Conclusion

Systems biology approaches that leverage genetic, tissue-
specific IMP profiling data, and disease phenotypes have
evolved rapidly in the past decade. Through their applica-
tions in various MetDs in both animal models and human
populations, these highly integrative systems biology
approaches have unveiled unprecedented insights into dis-
ease etiology and uncovered a large number of candidate
novel genes, pathways, and subnetworks associated with
MetDs. By far, inflammation and immune response related
genes and processes have been the most consistent signal
across tissue types, across studies, and across MetDs, and
thus convincingly represent a key shared component of
MetDs. The systems integration of tissue-specific molecular
data also revealedmany tissue- and disease-specific processes,
such as liver-centric lipid metabolism and transport pathways
for obesity and CVD; liver- and adipose-specific oxidative
phosphorylation, fatty acid oxidation, PPAR signaling, fat cell
differentiation for obesity, insulin resistance, and T2D; liver-
specific glucagon signaling and islet-specific cell cycle regu-
lation for T2D; and circadian rhythm and RNA splicing
processes in brain for obesity and T2D.

These findings highlight how tissue-specific gene networks
and their cross-tissue interactions, rather than individual
genes, mediate MetD etiology. It is therefore critical to shift
from a traditional view of disease mechanisms as independent
actions of individual genes to a network view, where a large
number of genes coordinately define a particular network state
in individual tissues and the interactions of gene networks in
multiple tissues ultimately lead to MetD onset.

Future Directions

Although proven predictive and informative, the existing
systems biology methodologies are far from being compre-
hensive and accurate. Further refinement of existing meth-
ods and development of more advanced approaches are thus
warranted. First of all, incorporation of next generation
sequencing, DNA methylome, microRNA, metabolomics,
and other types of data into the systems biology framework
has become more pressing than ever, as such data are being
rapidly generated and poured into data depositories in the
past couple of years. Although some of the existing meth-
odologies can be easily adapted for additional data types,
innovative approaches guided by biological insights are still
in great need. For instance, based on the regulatory relation-
ships across data types, it is necessary to develop method-
ologies that leverage multiple levels of IMPs simultaneously
to construct more sophisticated networks such as co-
regulatory microRNA-gene-metabolite networks.

Second, the involvement of multiple cell types, tissues, and
organs in MetDs demands methodologies that explore cross-

tissue interactions. As demonstrated elegantly in a recent
study by Dutta et al., communications and signaling trans-
ductions across multiple critical tissues including heart mus-
cle, sympathetic nervous system, bone marrow niches, and
spleen are all involved in the enhanced inflammatory response
after MI to induce atherosclerosis acceleration [95•]. This
type of relationship can only be revealed when data inte-
gration reaches organism-wise systems level. Although
the construction of cross-tissue networks has been sporad-
ically attempted [84, 96], such efforts have to be further
expanded to increase tissue coverage and to develop more
efficient methodologies.

Third, most of the current methodologies capture static
information that only represents snapshots of disease status
at a given time. Dynamic models that take IMP data gener-
ated from time-course experiments are therefore needed to
capture the dynamic nature of disease progression. All these
different levels of technical and biological challenges have
to be properly addressed in the future to allow a full dis-
semination of MetD etiology. Only when a comprehensive
understanding is achieved, can effective diagnostic, preven-
tative, and therapeutic strategies toward these disabling and
deadly diseases become a reality.
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