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Catalan Numbers, Riccati Equations and Convergence

Yicheng Feng1, Jean-Pierre Fouque2, and Tomoyuki Ichiba 3

1,2,3University of California Santa Barbara

August 15, 2024

Abstract

We analyze both finite and infinite systems of Riccati equations derived from stochastic differential
games on infinite networks. We discuss a connection to the Catalan numbers and the convergence of the
Catalan functions by Fourier transforms.

Keywords: Catalan functions, Riccati equation for periodic network, Stochastic differential games for
infinitely many players

1 Introduction
The Catalan numbers Cn , n ≥ 0 appear as a sequence of natural numbers defined by

Cn :=
1

n+ 1

(
2n
n

)
=

(2n)!

n! (n+ 1)!
, n ≥ 0 . (1.1)

For example, C0 = 1 , C1 = 1 , C2 = 2 and so on. This increasing sequence satisfies the recurrence
relations

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0 =

n∑
j=1

Cj−1Cn−j , n ≥ 1 (1.2)

and grows like 4nn−3/2 /
√
π , as n → ∞ . The Catalan numbers appear in many combinatorial counting

problems, for example, counting of non-crossing partitions, the number of the Dyck words, the number of
standard Young tableaux (see the monographs [5], [6], [7] by Stanley).

In this paper we shall discuss the Catalan numbers and more generally Catalan functions in the context of
the stochastic differential games on infinite network introduced in the recent papers (Feng, Fouque and Ichiba
[1] and [2], see also the referenced papers therein for the related mean-field games, some topics of stochastic
differential games and their applications), where the Catalan functions are defined by the solution to the
system of the infinite Riccati equations. Note that the system of the infinite Riccati equations determines
the Nash equilibrium of the stochastic differential game for infinitely many players. Then we prove the
convergence of the solution of the finite Riccati equation corresponding to a stochastic differential game for
finitely many players (say N players) on a periodic network, as N → ∞ , to the solution of a system of
infinite Riccati equations.

Following Feng, Fouque and Ichiba [1], let us recall the following Riccati equation for the countably many
continuous functions φi

t , i ∈ N0 , 0 ≤ t ≤ T , given by the system

φ̇ i
t =

dφi
t

dt
=

i∑
j=0

φ j
t φ i−j

t − εi; i ∈ N0 , (1.3)

where εi are given by some real constants ε0 := ε , ε1 := −ε , εi = 0 for i ̸= 0, 1 , and the terminal
conditions are φ0

T := c , φ1
T := −c , φi

T := 0 for i ̸= 0, 1 . Here, “ ˙ ” denotes the differentiation with
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respect to t , and the superscript i is not the power of function ϕ but the index i ∈ N0 . Given ε > 0
and c ≥ 0 , the solution {φi

t, i ∈ N, 0 ≤ t ≤ T} of (1.3) exists and is unique (Lemma 1 of [1]). We call such
sequence of functions the Catalan functions.

The solution φi
t , 0 ≤ t ≤ T , i ∈ N0 depends on ε and T . Particularly, we take ε = 1 = ε0 = −ε1 ,

and consider the stationary solution by letting the time derivative zero, that is, φ̇ i
t ≡ 0 , i ∈ N0 , t ≥ 0 .

Then the stationary solution {φi}i∈N0
of (1.3) satisfies

φ0 = 1 , φ1 = − 1

2
, and φi = − 1

2

i−1∑
j=1

φjφi−j ; i ≥ 2 .

Thus, the relation between the stationary solution {φi}i≥1 of (1.3) and the Catalan numbers {Ci}i∈N0
in

(1.1) is

φi = −2Ci−1

4i
; i ≥ 1 . (1.4)

Let us also recall the Riccati equation for N continuous functions ϕi
t , i = 0, 1, . . . , N − 1 , 0 ≤ t ≤ T ,

given by the following system

ϕ̇i
t :=

dϕi
t

dt
=

N−1∑
j=0

ϕj
tϕ

N+i−j
t − εi ; t ≥ 0 (1.5)

of ordinary differential equations for i = 0, 1, . . . , N − 1 and 0 ≤ t ≤ T with the given terminal values
ϕ0
T := c =: −ϕ1

T > 0 , ϕi
T := 0 , i = 2, . . . , N − 1 and real constants ε0 := ε =: −ε1 > 0 and εi := 0

for i = 2, . . . , N − 1 . We impose the periodic condition ϕi
· = ϕi+N

· for every i ∈ Z . The solution
{ϕi

t, i = 0, 1, . . . , N − 1, 0 ≤ t ≤ T} of (1.5) exists uniquely and depends on N .

The finite system (1.5) leads us to the Nash equilibrium for the N -player, linear-quadratic stochastic
differential game on the finite directed chain periodic network, while the infinite system (1.3) leads us to the
Nash equilibrium for the infinitely many player, linear-quadratic stochastic differential game on the infinite
directed chain network. In [1] and [2] the question of the convergence of the Nash equilibrium for the N -
player game to the Nash equilibrium for the infinitely many player game was left as an open question in the
periodic case considered here. In this paper we solve this open question positively.

The main results of this paper are the following propositions of convergence.

Proposition 1. For any fixed j ∈ N0 and t ∈ [0, T ] , the solution ϕj
t of the finite system (1.5) converges

to φj
t of the infinite system (1.3), as N → ∞ . That is,

lim
N→∞

ϕj
t = φj

t ; j ∈ N0 , t ∈ [0, T ] . (1.6)

Proposition 2. For any fixed i ∈ N0 and t ∈ [0, T ] , we have the convergence results

lim
N→∞

N−1∑
j=0

ϕj
tϕ

N+i−j
t =

i∑
j=0

φj
tφ

i−j
t , and lim

N→∞

N−1∑
j=i+1

ϕj
tϕ

N+i−j
t = 0 . (1.7)

Proposition 3. For any K ∈ N0 , T > 0 , the solution {ϕi
t, i = 0, 1, . . . , N − 1, 0 ≤ t ≤ T} of (1.5) and

the solution {φi
t, i ∈ N, 0 ≤ t ≤ T} of (1.3) satisfy

lim
N→∞

sup
0≤i≤K

sup
0≤t≤T

|ϕi
t − φi

t| = 0 . (1.8)

That is, the first K elements of the solution of (1.5) converges uniformly to the first K elements of the
solution of (1.3), as N → ∞ .

These results are proved in the following sections by Fourier transforms. The key observations are the
representations (2.11) and (2.13) of the solutions {ϕj

t} and {φj
t} of the Riccati equations (1.5) and (1.3) in

terms of the solution {ft(x)} in (2.8) of an auxiliary Riccati equation (2.5) below.
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After this manuscript was prepared, the recent papers [3] and [4] by Miana and Romero were brought up
to our attention. In these papers a slightly general quadratic equation for Catalan generating functions, its
spectrum and resolvent operator are studied from the point of view of functional analysis. In contrast to [3]
and [4], the results here on the convergence of the solutions are more concrete, because of the specific form
(1.3) of quadratic equation and because of the Fourier transforms. The generalization of the results in the
current paper will be a theme of another paper.

2 Fourier transforms and Riccati equations

Let us define the discrete Fourier transform {ϕ̂k
t , k = 0, 1, . . . , N − 1} , 0 ≤ t ≤ T of the solution {ϕi

t, i =
0, 1, . . . , N − 1, 0 ≤ t ≤ T} of the Riccati equation (1.5) by

ϕ̂k
t :=

N−1∑
j=0

ϕj
t exp

(
− 2π

√
−1 jk

N

)
; k = 0, 1, . . . , N − 1 , 0 ≤ t ≤ T . (2.1)

Here, the superscript k for ϕ̂· is not the power but the index.
√
−1 is the complex square root of −1 .

Inverting the discrete Fourier transform, we obtain

ϕj
t =

1

N

N−1∑
k=0

ϕ̂k
t exp

(2π√−1 jk

N

)
; j = 0, 1, . . . , N − 1 , (2.2)

and in particular,

ϕ0
t =

1

N

N−1∑
k=0

ϕ̂k
t ; 0 ≤ t ≤ T . (2.3)

Since the discrete Fourier transform of the convolution of two sequences is the product of their discrete
Fourier transforms, it follows from the Riccati equation (1.5) that ϕ̂k

t in (2.1) satisfies the one-dimensional
Riccati equation

˙̂
ϕk
t = (ϕ̂k

t )
2 − (1− e−2π

√
−1k/N )ε ; 0 ≤ t ≤ T (2.4)

with the terminal condition ϕ̂k
T = (1− e−2π

√
−1k/N )c for k = 0, 1, . . . , N − 1 .

In a similar manner, replacing k/N by x in (2.4), let us consider the following, one-dimensional, auxiliary
Riccati equation for C -valued function {ft(x), 0 ≤ t ≤ T , x ∈ [0, 1]} defined by

ḟt(x) = (ft(x))
2 − (1− e−2π

√
−1x)ε ; 0 ≤ t ≤ T , x ∈ [0, 1] (2.5)

with the terminal condition fT (x) = (1− e−2π
√
−1x)c , x ∈ [0, 1] .

Since both Riccati equations (2.4) and (2.5) are scalar-valued ordinary differential equations, we solve
them explicitly by the standard method of solving the general Riccati equation of the form

ẏt = at + btyt + ct(yt)
2 ; 0 ≤ t ≤ T (2.6)

with some (smooth) functions a·, b·, c· . That is, solving a second-order ordinary differential equation

üt −
(
bt +

ċt
ct

)
u̇t + atctut = 0 (2.7)

for {ut} , we obtain the solution yt = −u̇t/(ctut) , 0 ≤ t ≤ T for the general Riccati equation. The
solutions to our Riccati equations (2.4) and (2.5) are given by the following proposition.

Proposition 4. The solution of the auxiliary Riccati equation (2.5) is given by

ft(x) =
√
ε r(x) e

√
−1θ(x) · a+(x)e+t (x)− a−(x)e−t (x)

a+(x)e+t (x) + a−(x)e−t (x)
, (2.8)
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where a±(x) and e±t (x) are C -valued functions defined by

a±(x) :=
√

ε ± c r(x) e
√
−1θ(x) , e±t (x) := exp

(
±

√
ε r(x)e

√
−1θ(x) (T − t)

)
; 0 ≤ t ≤ T (2.9)

with
r(x) := [2(1− cos( 2πx ))]1/4 , θ(x) :=

1

2
arctan

( sin(2πx)

1− cos(2πx)

)
∈ [0, π) (2.10)

for fixed x ∈ [0, 1] .

Proof. For each fixed x ∈ [0, 1] , we shall solve the Riccati equation (2.5) for {ft(x)} , as the special case
of the general Riccati equation (2.6) with at := −(1 − e−2π

√
−1x)ε , bt := 0 , ct = 1 , 0 ≤ t ≤ T . By the

transformation from y· in (2.6) to u· in (2.7), it amounts to solving the second-order differential equation

üt + (1− e−2π
√
−1x)εut = 0 ; 0 ≤ t ≤ T .

With the definitions (2.10) of r(x) and θ(x) , the square roots of −(1−e−2π
√
−1x) is given by ±

√
−1r(x)e

√
−1θ(x) .

Hence, the solution u· to the second-order differential equation is given by

ut(x) = c1(x) · e
√
−1r(x)e

√
−1θ(x)t + c2(x) · e−

√
−1r(x)e

√
−1θ(x)t ; 0 ≤ t ≤ T

for some ci(x) , i = 1, 2 which are determined by the terminal condition fT (x) = −u̇T (x) / uT (x) , and
ft(x) = −u̇t(x) / ut(x) is given by (2.8) for x ∈ [0, 1] , t ∈ [0, T ] .

Proposition 5. With {ft(x)} defined in (2.8), the solution of the Riccati equation (2.4) and the solution
of the Riccati equation (1.5) are represented by

ϕ̂k
t = ft

( k

N

)
, and ϕk

t =
1

N

N∑
j=1

ft

( k

N

)
exp

(
2π

√
−1j · k

N

)
(2.11)

for k = 0, 1, . . . , N−1 , 0 ≤ t ≤ T . Thus, there exists a constant cT := sup0≤t≤T supx∈[0,1]|ft(x)| ∈ (0,∞) ,
such that

sup
N≥2

sup
0≤k≤N−1

sup
0≤t≤T

|ϕk
t | ≤ sup

N≥2
sup

0≤k≤N−1
sup

0≤t≤T
|ϕ̂k

t | ≤ cT . (2.12)

Proof. For each fixed k = 0, 1, . . . , N − 1 , we solve the Riccati equation (2.4) for the discrete Fourier
transform ϕ̂k

t and obtain ϕ̂k
t = ft(k/N) in a similar procedure, replacing k/N by x in the proof of

Proposition 4. Substituting it to the inverse discrete Fourier transform (2.2), we obtain (2.11). The uniform
bound (2.12) is obtained directly by the representations (2.11).

In order to prove Proposition 1, we derive the following representation of the infinite Riccati solution
{φk

t } in terms of the auxiliary Riccati solution {ft(x)} in (2.8).

Proposition 6. With the solution {ft(x)} in (2.8) of the auxiliary Riccati equation (2.5), the solution
{φj

t} of the infinite Riccati equation (1.3) is represented as

φj
t =

∫ 1

0

ft(x)e
2π

√
−1jxdx ; j ∈ N0 , 0 ≤ t ≤ T . (2.13)

Consequently, we have the upper bound

sup
j∈N0

sup
0≤t≤T

|φj
t | ≤ ct = sup

0≤t≤T
sup

x∈[0,1]

|ft(x)| ∈ (0,∞) . (2.14)

Proof. Note that the family {e−2π
√
−1jx, j ∈ N0} of continuous functions on [0, 1] forms an orthonormal

basis of the space L2([0, 1]) , and the right hand of (2.13) is the j -th Fourier coefficient of ft with respect
to this orthonormal basis, that is,

ft(x) =

∞∑
j=0

cj,te
−2π

√
−1jx , cj,t :=

∫ 1

0

ft(y)e
2π

√
−1jydy ; x ∈ [0, 1] , t ∈ [0, T ] . (2.15)
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To show (2.13), we shall verify that the Fourier coefficients {cj,t} satisfy the infinite Riccati equation
(1.3) and we apply its uniqueness of the solution. Since {ft(x)} satisfies the auxiliary Riccati equation (2.5),
by the direct calculation we obtain

d

dt

∫ 1

0

ft(x)e
2π

√
−1jxdx =

∫ 1

0

ḟt(x)e
2π

√
−1jxdx

=

∫ 1

0

((ft(x))
2 − (1− e−2π

√
−1x)ε)e2π

√
−1jxdx

=

∫ 1

0

(ft(x))
2e2π

√
−1jxdx− ε

∫ 1

0

(1− e−2π
√
−1x)e2π

√
−1jxdx

=

∫ 1

0

(ft(x))
2e2π

√
−1jxdx− εj , j ∈ N0 , t ∈ [0, T ] ,

(2.16)

where {εj} was defined as ε0 = ε = −ε1 > 0 , and εi = 0 , i ≥ 2 . For the first term of the right hand, it
follows from (2.15) and the convolution of the Fourier series that∫ 1

0

(ft(x))
2e2π

√
−1jxdx =

∫ 1

0

( ∞∑
ℓ=0

cℓ,te
−2π

√
−1ℓx

∞∑
k=0

ck,te
−2π

√
−1kx

)
e2π

√
−1jxdx

=

∫ 1

0

( ∞∑
k=0

bk,te
−2π

√
−1kx

)
e2π

√
−1jxdx = bj,t :=

j∑
k=0

ck,tcj−k,t

=

j∑
k=0

(∫ 1

0

ft(x)e
2π

√
−1kxdx

)(∫ 1

0

ft(x)e
2π

√
−1(j−k)xdx

)
.

(2.17)

Substituting this expression in (2.16), and because of (2.15), we obtain the infinite Riccati equation

ċj,t =
d

dt

∫ 1

0

ft(x)e
2π

√
−1jxdx

=

j∑
k=0

(∫ 1

0

ft(x)e
2π

√
−1kxdx

)(∫ 1

0

ft(x)e
2π

√
−1(j−k)xdx

)
− εj

=

j∑
k=0

ck,tcj−k,t − εj ; j ∈ N0 , 0 ≤ t ≤ T ,

(2.18)

equivalent to (1.3). Also, the terminal condition is satisfied

cT,j =

∫ 1

0

fT (x)e
2π

√
−1jxdx =

∫ 1

0

c(1− e−2π
√
−1x)e2π

√
−1jxdx = cj ,

where {cj} was defined as c0 = c = −c1 > 0 and ci = 0 , i ≥ 2 . Thus, by the uniqueness of the solution
to the infinite Riccati equation (1.3), we identify cj,t = φj

t , j ∈ N0 , t ∈ [0, T ] as in (2.13).

2.1 Proof of Proposition 1
Now we shall prove Proposition 1. Substituting (2.11) into the inverse discrete Fourier transform (2.2), we
obtain the Riemann sum

ϕj
t =

1

N

N−1∑
k=0

ϕ̂k
t exp

(2π√−1jk

N

)
=

1

N

N−1∑
k=0

ft

( k

N

)
exp

(
2π

√
−1j · k

N

)
for j = 0, 1, . . . , N − 1 , 0 ≤ t ≤ T . Since ft(x)e

2π
√
−1kx is a continuous function of x for every fixed j

and t , taking the limit as N → ∞ , we obtain the limit of ϕj
t ,

lim
N→∞

ϕj
t = lim

N→∞

1

N

N−1∑
k=0

ft

( k

N

)
exp

(
2π

√
−1j · k

N

)
=

∫ 1

0

ft(x)e
2π

√
−1jxdx = φj

t (2.19)
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for each fixed j ∈ N0 and t ∈ [0, T ] , thanks to the identification in Proposition 6. □

2.2 Proof of Proposition 2
The first part of the convergence results (1.7) is obtained in a similar manner as in the proof of Proposition
1. Indeed, using (2.2) and (2.11), we rewrite the sum as a Riemann sum, and then we take the limit, as
N → ∞ ,

N−1∑
j=0

ϕj
tϕ

N+i−j
t =

N−1∑
j=0

1

N

N−1∑
k=0

ϕ̂k
t e

2π
√
−1kj/N · 1

N

N−1∑
ℓ=0

ϕ̂ℓ
te

2π
√
−1(N+i−j)ℓ/N

=
1

N2

N−1∑
k,ℓ=0

ft

( k

N

)
ft

( ℓ

N

)N−1∑
j=0

e2π
√
−1(k−ℓ)j/N · e2π

√
−1iℓ/N

=
1

N2

N−1∑
k,ℓ=0

ft

( k

N

)
ft

( ℓ

N

)
·N · 1{k= ℓ} · e2π

√
−1iℓ/N

=
1

N

N−1∑
k=0

[
ft

( k

N

)]2
e2π

√
−1iℓ/N

−−−−→
N→∞

∫ 1

0

(ft(x))
2e2π

√
−1ixdx =

i∑
j=0

cj,tci−j,t =

i∑
j=0

φj
tφ

i−j
t

(2.20)

for every t ∈ [0, T ] and i ≥ 0 , because of (2.13) and (2.17). Here, 1{k=ℓ} is the indicator function which
takes 1 on the set k = ℓ and 0 , otherwise, and c·,t was defined in (2.15). This proves the first part of the
convergence results (1.7).

For the second part of the convergence results, combining the first part (2.20) with the convergence of
{ϕi

t} in Proposition 1, we obtain

N−1∑
j=i+1

ϕj
tϕ

N+i−j
t =

N−1∑
j=0

ϕj
tϕ

N+i−j
t −

i∑
j=0

ϕj
tϕ

N+i−j
t −−−−→

N→∞

i∑
j=0

φj
tφ

i−j
t −

i∑
j=0

φj
tφ

i−j
t = 0 . (2.21)

Therefore, we conclude the proof of Proposition 2. □

2.3 Proof of Proposition 3
We shall evaluate the difference DN (t) := sup0≤i≤K sup0≤s≤t|ϕi

s − φi
s| , 0 ≤ t ≤ T . With the time-reversal

ϕ
i

t := ϕi
T−t , φi

t := φi
T−t , 0 ≤ t ≤ T , it follows from the Riccati equations that for i = 0, 1, . . . , N − 2 ,

0 ≤ t ≤ T ,

−ϕ̇
i

t + φ̇
i
t = ϕ̇i

t − φ̇t =

N−1∑
j=0

ϕj
tϕ

N+i−j
t −

i∑
j=0

φj
tφ

i−j
t

=

N−1∑
j=i+1

ϕj
tϕ

N+i−j
t +

i∑
j=0

[(ϕj
t − φj

t )ϕ
i−j
t + φj

t (ϕ
i−j
t − φi−j

t )]

=

N−1∑
j=i+1

ϕ
j

tϕt
N+i−j

+

i∑
j=0

[(ϕ
j

t − φj
t )ϕ

i−j

t + φj
t (ϕ

i−j

t − φi−j
t )] .

Since we have ϕ
i

0 = ϕi
T = φi

T = φi
0 , integrating both sides over [0, s](⊆ [0, T ]) , taking the absolute values

and using the triangle inequality, we obtain

|ϕi

s − φi
s| ≤

∫ s

0

|
N−1∑
j=i+1

ϕ
j

uϕ
N+i−j

u |du+

∫ s

0

i∑
j=0

[|ϕj

u − φj
u| · |ϕ

i−j

u |+ |φj
u| · |ϕ

i−j

u − φi−j
u |]du (2.22)
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Then the difference DN (t) satisfies the inequality

DN (t) = sup
0≤i≤K

sup
0≤s≤t

|ϕi
s − φi

s| = sup
0≤i≤K

sup
0≤s≤t

|ϕi

s − φi
s|

≤
∫ t

0

sup
0≤i≤K

sup
0≤u≤s

|
N−1∑
j=i+1

ϕ
j

uϕ
N+i−j

u |du

+

∫ t

0

sup
0≤i≤K

sup
0≤u≤s

max(|ϕi

u| , |φi
u|)DN (s)ds

≤ cN,1(t) +

∫ t

0

cN,2(s)DN (s)ds ,

(2.23)

where we defined

cN,1(t) := t · sup
0≤i≤K

sup
T−t≤u≤T

|
N−1∑
j=i+1

ϕj
uϕ

N+i−j
u | ≤ cN,1(T ) ,

cN,2(t) := K · sup
0≤i≤K

sup
T−t≤u≤T

max(|ϕi
u| , |φi

u|) ≤ cN,2(T ) < ∞

for 0 ≤ t ≤ T . Note that by (2.12) and (2.14), we have supN cN,2(T ) < ∞ . Applying the Gronwall
inequality, we obtain

DN (T ) ≤ cN,1(T ) exp
(∫ T

0

cN,2(t)dt
)
. (2.24)

Since the function f·(·) is bounded, we may refine the proof of Propositions 1-2. Particularly, the
approximation of the Riemann sum in (2.20) is uniform over i = 0, 1, . . . ,K and over [0, T ] . Thus, we
obtain

lim
N→∞

cN,1(T ) = lim
N→∞

T · sup
0≤i≤K

sup
0≤u≤T

|
N−1∑
j=i+1

ϕj
uϕ

N+i−j
u | = 0 .

Therefore, combining this with (2.24), we conclude the proof of Proposition 3:

lim
N→∞

sup
0≤i≤K

sup
0≤t≤T

|ϕi
t − φi

t| = lim
N→∞

DN (T ) ≤ lim
N→∞

cN,1(T ) exp
(∫ T

0

cN,2(t)dt
)

= 0 .

□
As a consequence of Proposition 3, we have the following corollary which resolves the open question left

in [1].

Corollary 2.1. The N -player Nash equilibrium of linear quadratic stochastic differential games on the
directed chain periodic network in [1] converges to the infinitely many player Nash equilibrium of linear
quadratic stochastic differential games on the infinite directed chain network in [1].
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3 Appendix

3.1 Finite system solved by matrix Riccati equation
The above Riccati equation (1.5) can be written as a matrix Riccati equation

Φ̇(t) = Φ(t)Φ(t)−E , Φ(T ) := C , (3.1)

where Φ(·) is the N×N matrix-valued function Φ(t) := (Φi,j(t))0≤i,j≤N−1 , 0 ≤ t ≤ T with Φi,j(t) := ϕi−j
t

for 0 ≤ i, j ≤ N − 1 with the condition ϕi
· = ϕi+N

· for every i ∈ Z and E is an N ×N matrix given by

Φ(t) :=



ϕ0
t ϕN−1

t · · · ϕ1
t

ϕ1
t ϕ0

t

. . . ϕ2
t

...
. . . . . . . . .

...
...

. . . . . . . . . ϕN−1
t

ϕN−1
t · · · ϕ1

t ϕ0
t


, E :=



ε 0 · · · 0 −ε

−ε ε
. . . . . . 0

0 −ε
. . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −ε ε


,

and the N ×N matrix C determines the terminal condition

C :=



c 0 · · · 0 −c

−c c
. . . . . . 0

0 −c
. . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −c c


.

Here, Φ̇(t) stands for the element wise differentiation of Φ(t) with respect to t .
Let us consider the time reversal parametrized by τ := T − t and Ψ(τ) := Φ(T − τ) , 0 ≤ t ≤ T ,

0 ≤ τ ≤ T . Then the matrix-valued Riccati equation is

Ψ̇(τ) = −Ψ(τ)Ψ(τ) +E (3.2)

for 0 ≤ τ ≤ T with the initial value Ψ(0) := C . Its solution is given by

Ψ(τ) = (O21(τ) +O22(τ)C)(O11(τ) +O12(τ)C)−1 , (3.3)
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where Oij(·) , 1 ≤ i, j ≤ 2 are the N ×N block matrix elements of O(·) defined by

M :=

(
0 I
E 0

)
, O(τ) :=

(
O11(τ) O12(τ)
O21(τ) O22(τ)

)
:= exp(Mτ) , (3.4)

for 0 ≤ τ ≤ T . Here 0 is N × N zero matrix and I is N × N identity matrix. Thus, we obtain the
solution to the Riccati equation (1.5) as the first column of Φ(t) = Ψ(T − t) for 0 ≤ t ≤ T .

The characteristic polynomial of the 2N ×2N matrix M in (3.4), in terms of λ ∈ C , is simply given by

det(λ I−M) = (λ2 − ε)N − (−ε)N , (3.5)

and hence the eigenvalues are

λ = ±
√

ε ·
(
1− exp

(√
−1 · 2π k

N

))
; k = 0, 1, . . . , N − 1 ,

and λ = 0 has multiplicity of 2 . Thus, the size of the eigenvalues is bounded by
√
2ε . For example, in

the case of N = 4 , the eight eigenvalues are

{0, 0,±
√
(1 +

√
−1)ε ,±

√
(1−

√
−1)ε ,±

√
2ε } .

The direct numerical calculation of (3.3) is not stable for a large τ , because of multiple eigenvalues. It
is often suggested (e.g., Vaughan [8]) to calculate iteratively

Ψ((k + 1)∆τ) = (O21(∆τ) +O22(∆τ)Ψ(k∆τ))(O11(∆τ) +O12(∆τ)Ψ(k∆))−1 ; k = 0, 1, 2, . . .

with Ψ(0) = C , where ∆τ is set to be small.

3.2 Generating function for infinite Riccati equation
For the infinite system (1.3) let us recall the generating function St(z) :=

∑∞
k=0 z

kφk
t for φk

· , k = 0, 1, 2, . . .
satisfies the scaler Riccati equation

d

dt
St(z) = [St(z)]

2 − ε(1− z) , 0 ≤ t ≤ T , ST (z) = c(1− z)

for |z| < 1 . As in Proposition 4, the solution to this Riccati equation is given by

St(z) =
√

ε(1− z) · a+e+t − a−e−t
a+e+t + a−e−t

,

where
a± :=

√
ε(1− z)± c(1− z) , e±t := exp

(
±

√
ε(1− z)(T − t)

)
for 0 ≤ t ≤ T , |z| < 1 .
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