Lawrence Berkeley National Laboratory Recent Work

Title

THE CRYSTAL STRUCTURE OF POTASSIUM BROMORHENATE

Permalink

https://escholarship.org/uc/item/89q7q50v

Authors

Templeton, D. H.
Dauben, Carol H.

Publication Date

1950-11-16

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

RADIATION LABORATORY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Radiation Laboratory
 Contract No. 7405-W-eng-48

UNCLASSIFIED

THE GRYSTAL STRUCTURE OF POTASSIUM BROMORHENATE
 D. H. Templeton and Carol H. Dauben

November 16, 1950

Berkeley, California

INSTALLATION
Argonne National Laboratory 8
Armed Forces Special Weapons Froject 1
Atonic Energy Commission - Washington 2
Eattelle hemorial Institute 1
Erush Eeryllium Company 1
Brookhaven National Laboratory 4
Bureau of wiedicine and Surgery 1
Bureau of Ships 1
Carbide and Carbon Chemicals Division (K-25 Flant) 4
Carbiae and Carbon Chemicals Division (Y-12 Plant) 4
Chicago Operations Office 1
Columbia University (J. K. Dunning) 1
Columbia University (G. Failla) 1
Dow Chemical Company 1
H. K. Ferguson Company 1
General Electric Company, Fichland 3
Harshaw Chemicel Corporation 1
Idaho Operations Office 1
Iowa State College 2
Kansas City Cperations Eranch 1
Kellex Corforation 2
Knolls atomic Fower Laboratory 4
Los Alamos Scientific Laboratory 3
Miallinckrodt Chemical Works 1
Massachusetts Institute of Technology (A. Gaudin) 1
Wiassechusetts Institute of Technology (A. K. Kaufmann) 1
Mound Laboratory 3
National Advisory Committee for Aeronautics 1
National Bureau of Standards 3
Naval ivedical Kesearch Institute 1
Naval Kadiolcgical Defense Laboratory 2
New Erunswick Laboratory 1
New York Operations Office 3
North American aviation, Inc. 1
Oak Ridge National Laboratory 8
Patent Eranch - Viashington 1
Rand Corporation 1
Sandia Corporation 2
Santa Fe Operations Office 2
Sylvania Electric Froducts, Inc. 1
Technical Information Division (Oak Ridge) 15
Armament Division, Deruty for Research and Development 1(Capt. Glenn Davis)
Assistant for Atomic Energy, Deputy Chief of Staff 1(Col. Kobert E. Greer)
Chief of Documents and Dissemination Branch (Col. J. E. Mallory) 1USAF Assistant for kesearch Director of Research and1Development, Deputy Chief of Staff (Col. B. G.. Holzman)
Number of Coples
Electronic Systems Division (Mr. E. C. Trafton) , 1
Chief of Scientific Advisors (Dr. Thecdore von Karman) : . . l
USiF, Eglin hir Force Ease (Major A. C. Field) l l
USAF, Kirtland Air Force Ease (Col. Marcus F. Cooper).... 1
USiF, Maxwell Air Force Ease (Col. F. N. Moyers) : $\quad 1$
USAF, NEFA Office $\therefore 2$
USAF, Offutt Air Force Ease (Col. H. F. Sullivan, Jr.). 1
USAF, Surgeon General, Redical Research Division $\quad 1$
(Ccl. A. F. Gagge)
USAF, Wright-Fatterson Air Force Base (Rodney Nudenberg) ... 1
U. S. Army, Atomic Energy Eranch (Lt. Col.A. W. Eetts) ... 1
U. S. Army, Army Field Forces (Captain James Kerr). ... 1
U. S. Army, Commending General, Chenical Corps ll
Technical Command (Col. John A. MacLaughlin thru
Wirs. Georgia S. Eenjamin)
U. S. Army, Chief of Oranance (Lt. Col. A. R. Del Campo) I
U. S. Army, Comanding Officer, Vatertown Arnsenal I
(COI. Carroll H. Deitrick)
U. S. Army, Director of Operations Research (Dr. Ellis Johnston) 1
U. S. hrmy, Office of Engineers (Allen OlLeary) I
U. S. army, Office of the Chief Signal Officer 1
(Curtis T. Clayton thru Raj. George C. Hunt)
U. S. army, Office of the Surgecn General (Col. W. S. Stone) I
U. S. Geclogical Survey (T. E. Nolan) 2
U. S. Hublic Health Service. 1
University of California at Los Angeles \quad l
University of California Radiation Laboratory ... 5
University of Rochester
University of Mashington 1
Western Feserve University $\quad 2$
Westirghouse Electric Company ...
K. F. Facher (California Institute of Technolcgy) I
Cornell University $\quad \therefore \quad 1$
Total

Information Division
Kadiation Laboratory
University of California
Eerkeley California

THE CRYSTAL STRUCTURE OF POTASSIUM BROMORHENATE
D. H. Templeton and Carol H. Dauben Department of Chemistry and Radiation Laboratory University of California, Berkeley, California

November 16, 1950

ABSTRACT

$\mathrm{K}_{2} \mathrm{ReBr}_{6}$ has a face-centered cubic lattice with $\underline{a}=10.445 \pm 0.005 \mathrm{~A}$. It is isostructural with $\mathrm{K}_{2} \mathrm{PtCl}_{6}{ }^{\circ}$ The parameter for the bromine atoms has been determined to be $x=0.242 \pm 0.004$, corresponding to a Re-Br distance of $2.53 \AA$.
D. H. Templeton and Carol H. Dauben Department of Chemstry and Radiation Laboratory University of California, Berkeley; California

The compound $K_{2} \mathrm{ReBr}_{6}$ seems to have been first prepared by Krauss and Steinfeld ${ }^{1}$ who reported no structure determination. We have shown by x-ray
(1) F\%Krauss and Ho Steinfelds Ber: 64s 2552 (1931).
diffraction that its structure is the $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ type, ${ }^{2}$ as are those of $\mathrm{K}_{2} \mathrm{ReCl}_{6}{ }^{3}$
(2) J I_{1} type, Strukturbericht, 1,429 (1937); 3, 121 (1937).
(3) B.Aminofif, Z.Kristallographie, 94, 246 (1936).
and $\mathrm{K}_{2} \mathrm{ReF}_{6}{ }^{4}$
(4) 0. Ruff and W. Kwasnik, Z. anorg。Chemo, 219, 78 (1934).

Dro Z Zimmerman Hugus of this laboratory prepared single crystals of potassium bromorhenate by dissolving $R e O_{2}$ in hydrobromic acid and crystallizing the potassium salt. These crystals were well formed cubes, very dark red in color.

The powder diffraction pattern, taken with copper Ka x-rays $(\lambda=1.5418 \AA$) correspond to a face-centered cubic lattice with $a=10.445 \pm 0.005 \mathrm{~A}$. With four molecules to the unit cell, the density is calculated to be $4.34 \mathrm{~g} / \mathrm{cm}^{-3}$. The intensities of most of the reflections were estimated visually from a rotation photograph taken about the $[100]$ axis. Weissenberg photographs were used to obtain several reflections absent or not resolved in the rotation pattern. The magnitudes of 95 independent structure factors (all that are permitted by the space group up to $h^{2}+k^{2}+1^{2}=180$) were calculated from these data after correction for Lorenz, polarization, and velocity factors.

No correction was made for absorption other than to average the results for equivalent reflections.

Preliminary calculations showed these data to be consistent with the structure:

$$
\begin{aligned}
& \text { Space group } 0_{h}^{5}-\text { Fm3m; } Z=4 \\
& 4 \mathrm{Re} \text { in } 4(\mathrm{a}):(000)+\text { F. C. } \\
& 8 \mathrm{~K} \text { in } 8(\mathrm{c}): \pm\left(\frac{111}{444}\right)+\text { F.C. } \\
& 24 \mathrm{Br} \text { in } 24(\mathrm{e}): \pm(\mathrm{x} 00 ; 0 \times 0 ; 00 \mathrm{x})+\text { F. C. }
\end{aligned}
$$

with the parameter x approximately 0.25 . Signs of the structure factors were calculated on this basis; only seven were negative. An optical Fourier summation of the electron density made according to Huggins ${ }^{5}$ for a section
(5) M. L. Huggins, J. Am. Chem. Soc., 63, 66 (1941).
through a rhenium atom and four bromine atoms showed the series to be well convergent with well-resolved peaks for the atoms. A numerical summation of the same series along the edge of the unit cell showed the bromine atom to be at $x=0.242 \pm 0.004$. The probable error was estimated from the rate of change of a few structure factors of large indices with change in x .

The percentage discrepancy, $100\left(\sum\left|\left|F_{\text {obs }}\right|-\left|F_{\text {calc }}\right|\right|\right) / \sum F_{\text {obs }} \mid$, is 25% for this value of the parameter x, which is as good as was expected because of the crude visual estimates and the neglect of absorption corrections. In view of the simplicity of the structure, further refinement of the observations was not deemed necessary.

The bromine-rhenium distance in the bromorhenate ion is $2.53 \pm 0.04 \AA$. If the covalent radius of bromine is taken ${ }^{6}$ as $1.14 \AA$, the octahedral radius
(6) L. Pauling, "Nature of the Chemical Bond," Cornell University Press, Ithaca, New York, 1942, p. 165.
of rhenium is $1.39 \AA$, in good agreement with the value 1.38 A calculated in the same way from $\mathrm{K}_{2} \mathrm{ReCl}_{6}$.

We wish to thank Dro Hugus for making available the crystals. This research was supported by the U. S. Atomic Energy Commission.

APPENDIX

As the crystal is face-centered, it is possible to sum over half the face with indices of the body-centered tetragonal cell, thereby allowing the use of more terms than would otherwise be possible with the Huggins masks. The axes were shifted to place the rhenium at the center of the base. The resulting optical summation is shown in Fig. 1.

Fig. 2 shows the result of the numerical summation, along a cell edge from one rhenium to another.

In Table I are tabulated the observed magnitudes of the structure factors, and the values calculated for $x=0.242$.
-7-

FIG. I

Table I
Observed and Calculated Values of the Structure Factor

$\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{i}^{2}$	$h, k, 1$	$\mathrm{F}_{\text {obs }}$	$\mathrm{F}_{\text {calc }}$.
3	111	26	32
4	200	43	52
8.	220	9	15
11	311	23	25
12	222	37	-53
16	400	74	100
19	331	28	30
20	420	34	34
24	422	13	13
27	511	36	30
	333	17	14
32	440	59	86
35	531	30	25
36	600	42	32
	442	40	30
40	620	6	13
43	533	22	20
44	622	43	-38
48	444	61	78
51	711	23	16
\therefore	551	32	29
52	640	39	29
56	642	11	12
59	731	16	12

Table I (Cont.)

Table I (Cont.)

$\mathrm{h}_{2}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}$	h,k,1	$\mathrm{F}_{\text {obs }}$	$\mathrm{F}_{\text {calc }}$.
107	9;5,1	34	26
	7,7,3	8	5.
108	10,2,2	29	-28
	6,6,6	23	-28
115	9,5,3	28	23
116	10,4,0	27	24
	8,6,4	24	22
120	10,4,2	10	1.1
123	11,1,1	12	10
	7,7,5	16	18
128	8,8,0	34	58
131	11,3,1	7	8
	9,7,1	19	18
	9,5,5	29	28
. 132	10,4,4	21	23
	8,8,2	33	20
136	10,6,0	11	11
	8,6,6	8	9
139	11,3,3	7	5
	9,7,3	20	15
140	10,6,2	10	-25
144	12,0,0	43	56
	8,8,4	47	56
147	11,5,1	11	. 18
	7,7,7	0	3

Table I (Cont.)

$h_{2}^{2}+k^{2}+1^{2}$	$h, k, 1$	$F_{\text {obs }}$	Fcalc.
148	12,2,0	27	20
152	12,2,2	14	7
\because	10,6,4	9	11
155	11,5,3	9	10
	9,7,5	20	21
160	12,4;0	38	53
163	9,9,1	30	26
164	12,4,2	26	19
	10,8,0	26	21
	8,8,6	27	20
168	10,8,2	12	9
171	13,1,1	25	23
	11,7,1	5	5
\%	11,5,5	13	14
6	9,9,3	27	23
172	10,6,6	11	-23
176	12,4,4	31	51
179	13,3,1	26	20
	11,7,3	5	3
	9,7,7	16	11
180	12,6,0	20	18
	10,8,4	24	20

