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PERSPECTIVE

Reassess the t Test: Interact with All Your Data via ANOVA
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Plant biology is rapidly entering an era where we have the ability to conduct intricate studies that investigate how a plant interacts
with the entirety of its environment. This requires complex, large studies to measure how plant genotypes simultaneously interact
with a diverse array of environmental stimuli. Successful interpretation of the results from these studies requires us to transition
away from the traditional standard of conducting an array of pairwise t tests toward more general linear modeling structures, such
as those provided by the extendable ANOVA framework. In this Perspective, we present arguments for making this transition and
illustrate how it will help to avoid incorrect conclusions in factorial interaction studies (genotype3 genotype, genotype3 treatment,
and treatment 3 treatment, or higher levels of interaction) that are becoming more prevalent in this new era of plant biology.

IDENTIFYING BIOLOGICAL INTERACTIONS BETWEEN
AND AMONG TREATMENTS, GENOTYPES, AND
ENVIRONMENTS IS CRITICAL IN PLANT SCIENCE

Testing interactions between and among treatments, genotypes,
and environments (Table 1) is central to nearly every field of plant
biology, from genetics tests for epistasis, to physiology tests for
interactions of multiple treatments. Understanding how results
translate from one condition to another requires us to determine
how these variables interact with each other in the context of an
experiment. These interactions between variables form the basis
of integrative studies that aim to assess how genetic variation
influences the response toaspecific treatment or environment. As
a result, numerous plant biology studies require robust statistical
methods to test hypotheses about how two variables interact.

OVERUSE OF STUDENT’S t TESTS

Given the ubiquity of testing interactions, plant biologists are
naturally well versed in the importance of assessing their data for

statistical significance. Unfortunately, the analysis methods used
are not always appropriate. A survey of three recent issues of The
Plant Journal (Vol. 81, issues 1 to 3), The Plant Cell (Vol. 26, issues
10 to 12), and Plant Physiology (Vol. 166, issue 4, and Vol. 167,
issues 1 and 2) showed that 83 of 185 articles (45%) relied solely
uponpairwise t testsusingasingle trial ofanexperiment toanalyze
quantitative data, with the vast majority of studies involving
multiple variables, experiments, or interactions. Of the remaining
articles, 42 (23%) presented no quantitative data relevant to the
statistics discussed in this article (i.e., modeling results or de-
velopmental pictures) and 41 (22%) reported quantitative data for
which statistical analysis was either not conducted or not de-
scribed. Finally, only 19 (10%) combined the data from multiple
trials within an ANOVA to directly test for an interaction between
two variables. Although we do not suggest that ANOVA would
havebeen thebest option in all of the above instances,we feel that
these numbers indicate the extent to which ANOVA is under-
utilized in our community. The t test (describedbelow) is familiar to
most molecular biologists, is easy to perform and interpret, and is
properly applied when there is no interaction among variables or
variation across trials. However, given the increasing prevalence
of experiments investigating the interaction among variables
within a single study, the t test does not fully use the power of
the experimental data or even directly test the hypothesis that
two variables/components interact. Under these conditions, the
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trial-specific t test can deliver false conclusions that could be
avoided by combining all the data in an ANOVA.

LINEAR STATISTICAL MODELS SUCH AS ANOVA
PROVIDE MORE POWER TO TEST THE HYPOTHESIS OF
INTERACTION

Employing a linear statistical model like ANOVA can allow a re-
searcher to include data from all experiments under analysis and
make better use of existing experimental designs that seek to test

interactions. Here, we use two simulated data sets to compare
statistical analyses of multiple variables across multiple trials
using t tests and ANOVA. We first show how ANOVA can prevent
a false conclusion that would have been drawn if relying on the t
test and then show how ANOVA can reveal a true conclusion that
would have been dismissed by the t test. Finally, we illustrate the
critical nature of the replication underlying the experiment and the
importance of post-hocgraphical analysis of the data.Because all
research programs rely on previous results to shape future ex-
periments, preventing errors that can affect further studies will

Table 1. Definitions for This Article

Term Definition

Additive A condition in which the quantifiable phenotypic effect of allelic variation (mutations/polymorphisms)
in nonallelic genes can be simply added to predict the phenotype of the polygenic mutant. This also
applies to individual genes when distinguishing between heterozygotes and homozygotes.

Biological replicate One of several samples where an organism with the same genotype is grown or treated with the same
conditions and independently evaluated. Biological replicates may be sampled within a single
experiment or in replicate experiments (trials); the power of an experiment is vastly improved by
conducting replicate experiments.

Environment Any and all growth conditions under which the plant is maintained. Some aspects of the environment
may be varied in a controlled fashion depending on the experiment.

Epistasis A condition in which the phenotypic effect of allelic variation (mutations/polymorphisms) across single
genes does not predict the phenotype of the polygenic mutant.

Experiment A test established to assess if a chosen factor of interest (genotype, treatment, environment, etc.)
affects a particular phenotype.

Factor An experimental element that is to be tested for its phenotypic contribution. For example, treatment
(presence versus absence of a hormone), trial number (1, 2, etc.), or genotype (wild type versus
mutant) are common factors. This is often equivalent to the term variable.

Genotype The allelic state of all genes within each individual line being studied in an experiment.
Interaction A condition in which the combined effect of two simultaneous treatments, or the effect of a genotype and

a treatment together, leads to a change in the phenotype that cannot be predicted from the isolated
treatment or genotypic effects. This is similar to the definition of epistasis for two or more genes.

P value The probability that the data are consistent with the null hypothesis under a theoretical random set of
experiments and trials. If the calculated P value is less than a given threshold, frequently 0.05, then
the null hypothesis is rejected in favor of the alternative hypothesis. Typically in plant biology the null
hypothesis is that the treatment or genotype has no effect on the observed phenotype and the
alternative hypothesis is that there is an effect.

Phenotype Any measurable property of a plant that is of interest to the researcher.
Redundancy A specific form of epistasis in which single gene mutations have little to no known phenotypic effect,

while the polygenic mutant displays an altered phenotype. This is a form of epistasis in which the
single mutants do not fully predict the polygenic mutant phenotype.

Statistical power The ability of a statistical test to reveal a statistical significance that actually exists within a set of data.
Technical replicate Data points derived from multiple assays on the same sample. This is employed to assess the level of

variance that is contributed by variance in technical aspects of measurement, i.e., from the
equipment or experimental protocol. These should be averaged prior to statistical analysis or
accounted for differently than biological replicates.

Treatment Any manipulation of the external or internal environment that is applied by the experimenter to test the
phenotypic response of the plant.

Trial A completely independent growth and testing of plants conducted to assess the experimental
question at hand and how reproducible the answer is across trials. Trials are typically separated in
calendar times. Typically, experiments should contain multiple independent trials for which data
sets can be combined.

Variation Any measurable difference in phenotype between individuals; can be caused by changes in genotype,
treatment, or stochastic processes.
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require increased efforts to more accurately model the data.
Transitioning to ANOVA and crucially using all available data can
help to increase the productivity of a research group by dimin-
ishing inferential errors.We aim to demonstrate how changing our
standard approach to statistical analysis of interactions could
significantly benefit plant biologists beyond these specific in-
stances.

t TEST CALCULATIONS

A t test assesses if themeans of two groups differ; we can choose
one of several different variant t tests depending upon assump-
tions about the variances and directionality. In the articles we
surveyed, most used a t test that assumed equal variances, using

the equation t ¼ X1

�

2 X2

sX1X2 $
ffiffi

2
n

p . In this equation, X12X2 is the differ-

ence in the means between the two groups being compared
(genotypesAandBor treatments 1 and2),while sX1X2

is thepooled
within-group SD and n is the number of samples for each group (if
thegroupshaveequal sample sizes). ThePvalue is thenestimated
by comparing the t value to the expecteddistribution of t across all
experiments of a similar sample size (degrees of freedom), the t-
distribution. As canbe seen from the equation for a t test, it cannot
be extended to more groups or factors, is limited to a single
pairwise comparison at a time, and thus is not designed to test
interactions.

Resources

t tests canbe run in nearly anyworksheet package (suchasExcel),
statistical package (such as R, SAS, or SPSS), and even a number
of calculator applications.

ANOVA CALCULATIONS

ANOVA is a class of linear statistical models written in a linear
algebraic form that is extensible and allows us to specifically test
multiple variables and their interactions. For example, to compare
genotypes across two treatmentswith a term for trial, themodel to
explain the phenotype (ygte) for each specific genotype (g),
treatment (t), and trial or environment (e), would be written as
ygte ¼ mþGg þ Tt þ Ee þGg3Tt þ «gte, where m represents
a constant, G represents the contribution of the genotype (g),
T represents the contribution of the treatment (t), and E represents
the contribution of the environment (e), incorporating the variation
in all of the trials. Finally, Ɛ represents residual error. Thus, ygte can
represent all thephenotypes for everygenotype in every treatment
in every trial or, more simply, all the data. Another way to think of
this is that themodelhypothesizes that thephenotype (ygte)maybe
altered by variation in the genotypes (Gg) and/or variation in the
treatments (Tt) and/or variation in the trials (Ee) andan interactionof
the genotypes with the treatment (Gg x Tt) plus some error that
can’t be controlled (Ɛgte). A researcher canaddadditional levels for
each factor (e.g., multiple levels of a treatment or different mutant

alleles of a gene) as well as other factors, and it is thus extendable
to new experimental designs.
Any variation in phenotype is then partitioned into the con-

tributions made by the various factors and significance is de-
termined by an F-test where F ¼ variance between treatments

variance within treatments . This
essentially asks how the variation in the average phenotype be-
tween the genotypes in the experiment compares to the random
variation in the experiment. We can then determine the P value for
this factor’s F value by comparison to the F-distribution, the
predicted distribution of all possible F values across all similarly
sized experiments. The significant benefit of ANOVA, or other
linear models, is that including all the experimental factors that
may affect the phenotype allows for a better estimation of the
randomvariation and thusgivesmoreprecision to theF value than
to the corresponding t value.

Extensions

The extensibility of the ANOVA linear model is one of its particular
strengths. This includes the ability to add variables and generate
different models to directly test a hypothesis. One-way ANOVA
tests variation across a single variable, whereas two-way ANOVA
assesses two variables and can include their potential interaction.
This can be extended further. In addition to multiple variables, the
variables can be classed as fixed or random effects. Fixed effects
can be considered as variables that can be qualitatively grouped,
suchasgenotypes. In contrast, randomeffects canbeconsidered
as variables that show quantitative variation or possibly a large
range of levels that cannot be readily grouped into discrete
classes. Both fixed and random effects can be included in the
same model, leading to the generation of mixed models.

Resources

Simple one-wayANOVAs canbe run inmostworksheet packages
such as Excel. However, the worksheet packages contain pre-
packaged structures that may not match the linear model to be
tested. The application of two-way or more complex models
requires the use of a publicly available statistical package such as
R or a commercially available package such as SAS and SPSS.
These statistical packages provide more flexibility and are thus
more likely to be suitable for the types of analyses described here.
Within R, the basic package allows for simple ANOVA analysis
using the aov command (Crawley, 2014; R Development Core
Team, 2014). A number of websites have information about basic
statistics in R (http://www.statmethods.net/ and http://cran.
r-project.org/). These include guides to beginning analysis (http://
cran.r-project.org/web/packages/HSAUR/vignettes/Ch_analysis_
of_variance.pdf). The basic R package also allows for the use of
multivariate approaches like MANOVA. Advanced linear models
will require the use of the CARor LME4 packages, which allow the
user to individualize the analysis to properly test the hypothesis
using the experimental design command (Fox and Weisberg,
2011; Bates et al., 2014; Crawley, 2014).
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ANOVA PROPERLY TESTS GENETIC INTERACTIONS

Genetic analysis commonly tests if two genes show an epistatic
interaction. This can examine, for example, whether two genes in
a gene family have overlapping functions or if different genes
interact epistatically to control a phenotype by functioning in the
same pathway (for examples, see Lynch and Force, 2000; Carlborg
etal., 2006;Freeling, 2009; Josephetal., 2013;Mackay, 2014). For
genes with redundant functions, both genes may need to be
mutated to produce an altered phenotype. Unfortunately, testing
genes for redundancy or epistasis by using pairwise t tests to
compare mutant to wild type is prone to errors. Performing an
ANOVA,whichuses thedata fromall individuals andall trials of the
experiment together, can describe the interaction more accu-
rately. To illustrate this, we simulated two genes with a purely
additive interactionwith each singlemutant leading to a reduction
of 15 mm in root length in comparison to the wild type and the
double mutant having a reduction of 30 mm root length (see
SupplementalMethods for the fabricated data sets). Thenwebuilt
a model that randomly drew samples from a normal distribution
with homogenous variance for each class.
Using anANOVA approach to analyze randomly simulated data

from all three independent trials, each with three biological rep-
licates, identified the true underlying genetic model (Figure 1). It
showed that each gene has an additive effect but finds no sig-
nificant support (significance threshold is P < 0.05) for an in-
teraction between the effects of gene 1 and gene 2, indicating no
support for epistasis or redundancy of these two genes (Figure 1)
(Li et al., 2008). To illustratehowcombiningall thedata intoasingle
analysis increased thepowerof the test,wealso ranANOVAwithin
each separate trial (Figure 1; Supplemental Table 1). This trial-
specific ANOVA made it difficult to draw any conclusion from the
study, as the results were inconsistent between trials (Figure 1).
The effects of the individual mutants were only significant in some
of the tests using independent trials, which could havemisled the
researcher to conclude that each gene does not affect root length
(Figure 1). Yet, the combined ANOVA explicitly showed that each
genotype does affect root length.
Assessing reproducibility in the face of experimental variation

requires the ability to assess the effect of variation among the
trials. In the combined ANOVA, examining the “trial” term (E) re-
vealed no statistical support for the three trials of the experiment
being different (Figure 1). Thus, the researcher can conclude that
the differences between the trials are not significant. If the trial
variation is large, it is possible to use the modeling approach to
directly address whether variation across trials interacts with the
other terms to assess if the results are not reproducible across the
trials. The ability of ANOVA to identify the correct underlying
genetic model is further boosted by the inclusion of more data

Figure 1. Case Study 1:Model of ANOVATesting of HowTwoGenesMay
or May Not Interact.

Using the model described in the supplemental methods wherein two
genes interact to modulate root length in a purely additive fashion, we
randomly generated three independent trials involving three independent
samples per genotype. These were then used to conduct t tests and
ANOVAbothwithin each trial andby combining all the data. The bar graphs
show thestandard representationofmean6 SDwith letters showing if there
is a significant difference from the control group using Student’s t test
comparisons of the mean. The summary table shows the ANOVA results
(full results are shown in Supplemental Table 1). “No”means the term is not
significant and “Yes”means it is significant. The ANOVA for each trial and

combined across all trials is shown. Trial shows the trial term in the ANOVA
combining all the trial data. KO, knockout genotype; WT, wild-type ge-
notype. Data are shown in Supplemental Table 3.
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points per genotype in the combined analysis while simulta-
neously showing that there is no difference between the trials.
Theuseof t tests to compare eachmutant to thewild typewithin

each trial led to a different conclusion. The trial-specific t tests
suggested that only the double mutant differs significantly from
the wild type (Figure 1). Thus, using t tests would lead the re-
searcher to conclude, incorrectly, that gene 1 and gene 2 are
redundant and that the results were similar in three independent
trials. The reason the t test fails in this instance is that it treats the
doublemutant separately from thesinglemutants (i.e., each test in
isolation) and thus does not test the effects of the two genotypes
on each other, but instead tests the effect of the combined
genotypes (the wild type versus the double knockout). As such, in
this instance, the lack of a detected effect is not equivalent to the
lack of an effect but is instead caused by not directly testing the
interaction. We note in this instance that the observation that
the three trials were not significantly different would have allowed
the researcher topool thedataandconduct t testsof the individual
genotypes.However, in this scenario, the researcherwould not be
able to test the interaction between genes. The ANOVA allows the
effect of alleles to be tested across all the genotypes and trials and
thereby enables the researcher to describe the underlying genetic
model.

ANOVA PROPERLY TESTS A GENOTYPE 3 TREATMENT
INTERACTION

In the previous case study, ANOVA identified the correct un-
derlyingmechanisticmodelwhile the isolated trial t testmisled the
researcher by statistically suggesting an interaction that was not
present biologically. An isolated trial t test approach can also lead
to incorrect rejection of an interaction hypothesis. If, for example,
the treatment response wasmoderate and themutant phenotype
was not fully penetrant, typical results could resemble those
shown in Figure 2 (Supplemental Table 2 and Supplemental
Methods) (Kliebenstein et al., 1999, 2002; Li et al., 2014; Taylor-
Teeples et al., 2015). To illustrate this example, we modeled how
jasmonate application affects glucosinolate accumulation in
plants mutated in a single transcription factor that quantitatively
controls jasmonate perception (Sønderby et al., 2007; Sønderby
et al., 2010; Li et al., 2014). In this case, using t tests may lead
researchers to assume from the second and third trials that the
mutant responded to jasmonate like the wild type, while ignoring
the first trial as an outlier. Alternatively, researchers may run ad-
ditional trials or, worse, conclude that no real effect was detected
and drop the entire line of investigation. Combining the data in an

Figure 2. Case Study 2: Model Showing When Combined Data Resolves
Confusion.

Using the model described in the supplemental information wherein
a mutation alters glucosinolate accumulation in response to a given
treatment, we randomly generated three independent trials involving three
independent samples per genotype 3 treatment class. These data were
then used to conduct t tests and ANOVA both within each trial and by
combiningall thedata. Thebargraphs show thestandard representationof
mean6 SD with letters showing if there is a significant difference from the
control group using Student’s t test comparisons of the mean. The
summary table shows the ANOVA results (full results are shown in

Supplemental Table 2). “No” means the term is not significant and “Yes”
means it is significant. The ANOVA for each trial and combined across all
trials is shown. KO, knockout genotype; WT, wild-type genotype; Ctl,
control treatment; Treat, alternative treatment. Data are shown in
Supplemental Table 4.
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ANOVA provides statistical support for the interaction and argues
that the transcription factor alters jasmonate responses (Figure 2;
Supplemental Table 2). Taken together, Figures 1 and 2 illustrate
that it is possible tobebothpositively andnegativelymisledby the
isolated trial t test approach.

CROSS-CHECK YOUR DATA ANALYSIS WITH
VISUALIZATION

In both case studies discussed above, the ANOVA allowed the
researcher to state whether or not they have evidence that their
treatments, genotypes, and/or interactions influence their phe-
notype.However, theANOVAdoesnotprovide visualizationof the
data that can enable a researcher to develop a model or hy-
pothesis (for example, howamutationaffects root length). Thus,at
this stage of analysis, it is very useful for a researcher to visualize
the results by plotting the group means along with all of the in-
dividual data points to assess if the ANOVA and visual in-
terpretation coalesce into a single conclusion. This visualization is
easily conductedwith theaidofbeanorviolinplotswithinR (Hintze
and Nelson, 1998; Kampstra, 2008). Further analyses can include
a comparison of the group means using post-hoc tests such as
Tukey’s orWelch’smean comparisons. Occasionally, the visual and
statistical analysesdonotagree. For instance, in trial 3 inFigure2, the
individual trial ANOVA provides no statistical support for an in-
teraction but the means suggest an interaction. In such situations,
exploring the data further can identify potential outliers due to
technical errors such as genotype misclassification or misplanting.
Additionally, further replicate trials should be conducted and/or the
underlying hypothesis adjusted until the visualization and statistical
analyses do agree. While it would ideally be possible to perform
unlimited replicates to test all possible alternative hypotheses, this is
not always the case given the numerous constraints on research.
Thus, at a minimum, authors should fully describe any potential
discrepancies or issues arising fromcomparisonsof the visualization
andstatisticalanalyses.Finally,wenotethatall statisticalapproaches
are susceptible to errors and as such the only way to cross-validate
any result is to conduct an independent line of inquiry.

INDEPENDENT REPLICATION IS THE FOUNDATION OF
ANY SUCCESSFUL HYPOTHESIS TEST

Appropriateandadequate independent replicationwithinabiological
experiment is essential to the successful use of any of the above
approaches (Hurlbert, 1984;Vauxetal.,2012;ButtigiegandRamette,
2014). A general reading of plant molecular literature shows that the
most common strategy is to conduct three repeats in three different
trials, although thenature of these biological repeats can varywidely.
For example, a biological replicate may mean phenotyping three
individuals per genotype per trial. The results from these three
separate trials are typically analyzed independently, and one trial is
shown in a figurewith the researcher stating that similar results were
found in other trials. This classical experimental design arose largely

frommolecular biological studies.Asimple improvement is todouble
the replication from three to six or more individuals per trial if at all
possible because increased levels of replication providemore power
to any statistical approach.
In addition, the replicates performed need to be independent,

meaning that there should be as little connection as possible
between the samples. For example, leaves fromdifferent plants of
a single genotype are more biologically independent from each
other than leaves collected from the same plant (Schmid et al.,
2003; Schmid et al., 2005). Measuring multiple leaves for a given
plant increases accuracy in measuring the phenotype of that
specific individual, but could be highlymisleading if that individual
plant is not representative of a genotype because of location,
pathogen infection, or another factor. Thus, instead of repeatedly
sampling the same individual, it is better to sample multiple in-
dividuals to minimize the potential for bias in the analysis. Even
more independent are leaves from different plants where the
seeds were obtained from different mothers. The researchers
need to carefully determine what may influence a measurement
and work to randomize sampling, or control the influences that
theyarenot testing, toensure thatall replicatesareas independent
as possible (Elwell et al., 2011).

SUMMARY

The case studies presented above illustrate how t tests or trial-
specific analyses can mislead a researcher. These examples only
provide a small sample of all the possible instances when trial-
specific pairwise t tests might lead to incorrect descriptions of the
underlying mechanistic model. As a simple, but by no means all-
inclusive, solution, we urge that researchers use ANOVA or other
linear models (e.g., mixed models or random effect models) to di-
rectly test interactions and to include all the data in a single model.
While therearemanybooksor reviews thatcanbeuseful to learnand
implement these statistical approaches, a readily available resource
on this topic may be our colleagues in ecology, evolution, quanti-
tative genetics, statistics, or mathematics, who can rapidly provide
the necessary guidance to conduct the suggested analyses. The
resources suggestedheremayalsobeastartingpoint for thosenew
to this type of statistics. No matter how we get there, we anticipate
that a shift in the field to employing linear models that include all
the experimental data will help to improve the community’s in-
terpretation of experiments and generation of hypotheses.

Supplemental Data

Supplemental Table 1.Model of when t tests improperly inform about
how two genes may or may not interact.

Supplemental Table 2. Model of when combined data resolves t test
confusion.

Supplemental Table 3. Data from Figure 1.

Supplemental Table 4. Data from Figure 2.

Supplemental Methods. Journal analysis and computational models.
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