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Abstract

We discuss two methods for measuring the effectiveness of earth-
quake prediction algorithms: the information score based on the likeli-
hood ratio and error diagrams. For both of these methods, closed form
expressions are obtained for the renewal process based on the gamma
and lognormal distributions. The error diagram is more informative
than the likelihood ratio and uniquely specifies the information score.
We derive an expression connecting the information score and error
diagrams. We then obtain the estimate of the region bounds in the
error diagram for any value of the information score. We discuss how
these preliminary results can be extended for more realistic models of
earthquake occurrence.

Key worps: Earthquake prediction, Statistical methods, Seis-

micity, Renewal processes, Information score, Error diagram



1 Introduction

In a recent article, Jordan (2006) argued that more objective, rigorous, quan-
titative methods for testing earthquake prediction schemes need to be de-
veloped. Particularly, he asked “What is the intrinsic predictability of the
earthquake rupture process?” To contribute to this inquiry we discuss two
methods currently used to measure the performance of earthquake prediction
programs.

The first method is the likelihood ratio procedure which has long been
used for statistical analysis of random processes. In particular, Kagan and
Knopoff (1976; 1987), Kagan (1991), Ogata (1999), Kagan and Jackson
(2000), Imoto (2004), Rhoades and Evison (2006), and Helmstetter et al.
(2006) have applied this likelihood method for earthquake occurrence stud-
ies. Kagan and Knopoff (1977) first proposed calculating the information
score for earthquake predictability based on the likelihood ratio.

The second method is related to the Relative Operating Characteristic
(ROC) used in weather prediction efforts (Jolliffe and Stephenson, 2003),
where the success rate of an event prediction is compared against the false
alarm rate (ibid., p. 69; see also Holliday et al., 2005). Since periodic (diurnal,
annual) effects are strong in weather prediction, such a method has broad
applications; we can compare the above characteristics of a forecast system

for one-day or one-year alarm periods. But in earthquake prediction, there



is no natural time scale for forecasting, so the time interval is arbitrary.
Therefore, if the alarm duration is increased, both criteria approach the
trivial result: all events are predicted with no false alarms.

Molchan (1990) modified this method as an error diagram to predict ran-
dom point processes. Molchan and Kagan (1992) and Molchan (1997; 2003)
also review the error diagram method and its applications. Frror diagrams
are actively used to evaluate earthquake prediction algorighms. Recently,
McGuire et al. (2005), Kossobokov (2006), and Baiesi (2006) and others
used this method for this purpose. Kagan and Jackson (2006) commented
on Kossobokov’s analysis and discussed the application of error diagrams to
predicting earthquakes.

In this paper we consider the simplest stochastic models of earthquake
occurrence — the renewal processes (Davis et al., 1989; Daley and Vere-Jones,
2003) based on the gamma and lognormal distributions. The reason for us-
ing these models is that the closed form information score expressions exist
presently only for these processes (Daley and Vere-Jones, 2004; Bebbington,
2005). We simulate these processes to test both these formulae and our sim-
ulation procedure and thereafter to test the derived forward and inverse re-
lations between the information scores and the error diagrams. Although the
simple renewal models are widely used for representing large earthquake oc-
currences on specific faults, the data available presently are rather scarce. We

discuss extending our results to more complex earthquake occurrence models.



Extensive earthquake catalog data are available that can be modeled using
more sophisticated schemes. A more complete and rigorous investigation of

such models is a task for future work.

2 Information score

Kagan and Knopoff (1977) suggested measuring the effectiveness of earth-
quake prediction algorithm by first evaluating the likelihood ratio to test how

well does a model approximate earthquake occurrence. In particular, they

A

estimated the information score, I, per one event by
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where £ — £y is the log-likelihood ratio, log, was used to obtain the score
in bits of information, N is the number of earthquakes in a catalog, p; is
the probability of earthquake occurrence according to a stochastic model,

conditioned by the past:

p; = Prob{an eventin (¢, t+ A)|I(¢)}, (2)

where I(t) is the past history of the process up to the moment ¢, and =; is a
similar probability of event occurrence for a Poisson process.
One information bit would mean that uncertainty of earthquake occur-

rence is reduced on average by a factor of 2 by using a particular model.



Here the ‘average’ needs to be understood as a geometric mean (Vere-Jones,

1998). For long catalogs (N — o0)

hmf—u:E(logZ&), (3)
™

N oo

where E is the mathematical expectation (Vere-Jones, 1998; Daley and Vere-
Jones, 2003).
For a renewal (i.e., with independent intervals) process the information

score can be calculated as (Daley and Vere-Jones, 2003, their equation 7.6.16)
I'=m(l—-logm+ H), (4)

where m is the intensity (rate) of a renewal process and the entropy function
H is

H = ["f(e) log f(a)de, (5)
where f(z) is a probability density function (pdf) for interevent times.

The entropy function (5) has been calculated in closed form for two dis-
tributions, gamma and lognormal (Daley and Vere-Jones, 2004; Bebbington,
2005). Imoto (2004) obtained information score estimates for the lognormal,
gamma, and several other distributions. For this purpose (5) was integrated
numerically.

The gamma distribution has the pdf
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where ' is the gamma function, & is a shape parameter, A is a scale parameter,
and 0 < A < o00; 0 < Kk <o0; 0 <2< oo (Evans et al., 2000). If x = 1,
then the process is the Poisson one, & < 1 characterizes the occurrence of
clustered events.

For the gamma renewal process, normalized to have the mean equal to
1, i.e., A = &, the information score is (Daley and Vere-Jones, 2004, their

equation 14)

I(r) = [logr + (k= 1)9(r) — & — log['(r)] /log(2), (7)

where 9 is the digamma function (Abramowitz and Stegun, 1972, Eq. 6.3.1).
If Kk =1, I(k) = 0. This function is shown in Fig. 1. The small s-values
correspond to a clustered process, the large values correspond to a quasi-
periodic one.

The lognormal distribution has the pdf

flo) = —— exp{~; lloae) — ]} )

oz 27 202

where o is a shape parameter, p is a scale parameter and 0 < p < oo0; 0 <
o< oo; 0 <z < oo (Evans et al., 2000). For a renewal process normalized

to have the mean interevent time equal to 1.0

A

A = exp(—p—a®/2) = 1.0, (9)



or p = —a?/2, the information score for the lognormal distribution is (Beb-

bington, 2005, p. 2303)

I(o) = [% ~ log, (a\/z_r)] . (10)

This function also is shown in Fig. 1. Contrary to the gamma distribution
plot, the small o-values correspond to a quasi-periodic process, the large
values to a clustered one. The sequence with the parameter value o = 1 is
the closest to the Poisson process, its information score is at minimum, but
is still non-zero, I ~ 0.117 bits.

Fig. 2 displays a simulation of the lognormal renewal process for o = 1.86.
According to (10), the average information score for such a process would
be 1 bit. An initial alarm with the duration 0.1 is declared after each event.
If a new event occurs during a declared alarm, the alarm time is extended
accordingly (cf. Stark, 1997), thus individual alarms may significantly exceed
the length of the initial one. These alarms are shown at the bottom of the

plot.

3 Error diagrams

The error diagram for evaluating how well a prediction program performs
was first suggested by Molchan (1990). For any prediction algorithm, the

diagram plots the fraction of alarm time, 7, versus the fraction of failures to



predict, v. For the optimal prediction algorithm the lower hull of points is
concave (Molchan, 1997; 2003).

Fig. 3 shows a sketch of the error diagram. The diagonal of the square
corresponds to the random guess prediction strategy: an alarm is declared
independently of the process past history (Molchan, 1991; Molchan and Ka-
gan, 1992). The other curves are for hypothetical prediction algorithms.
Two dashed line curves are error diagram curves consisting of two segments,
the lower curve is for a certain forecast strategy and the upper curve is an
‘antipodal’ prediction, obtained by a reversal of alarm declaration (zbid.).

The information score or Shannon’s information for line curves, consisting
of straight line segments, can be calculated, extending arguments by Molchan

(1991) or Molchan and Kagan (1992), as

n+1 Vi — Vi
I = (05— visr) x logy |- B2 (1)
j:]_ TJ - TJ‘I']-

where n is the number of line segments and 7; and v; are the coordinates
of line segment ends. Eq. 11 shows that the information score in Fig. 3 is
the same for the forecast (dashed curve) and for its antipodal prediction
(I =1 bit). The score is 0, 0.84, and 0.63 bits for solid line, dash-dotted and
dotted line curves, respectively.

The error diagram curve for a clustered renewal process can be calculated
as follows. An alarm is declared after each event for a fixed initial time

(At). We normalize the initial alarm window w by dividing it by the mean



interevent time, 7', i.e., making w dimensionless

At
w = —. 12
T (12)

As we discussed above, for both distributions the mean interval T is ad-
justed to be 1.0. If a new event occurs during a declared alarm, the alarm
time is extended by w. Such an alarm declaration strategy produces an op-
timal prediction curve for a clustered process, in which the hazard rate is
monotonically decreasing (Molchan, 1991; 2003).

The fraction of failures to predict is

v(w) = 1 — /Ow f(z)de. (13)

The fraction of total alarm time is

m(w) = wr(w) + /mef(m) de . (14)

The first right-hand term in (14) is the average alarm duration, if no event
occurs in the w interval. The second term is the average alarm length if an
event or events occur during a declared alarm.

For the lognormal and gamma renewal processes the variables v(w) and

7(w) can be found in a closed form. For the gamma distribution

v(w) = 1 — (s, ww)/T(x), (15)
and
r(w) = wrv(w) + y(1 + &, kw)/T(1 + &), (16)

9



where « is the incomplete gamma function (Abramowitz and Stegun, 1972,
Eq. 6.5.2).

For the lognormal distribution

oy = i [ 2t} an
and

r(w) = wr(w) + %{1 +erfe ["2%3;(“’)]} . (18)

Here erf and erfc are the error function and its complementary function,
respectively.

Contrary to similar expressions (15-16) for the gamma distribution, equa-
tions (17-18) do not specify an optimal prediction strategy. In the optimal
strategy the alarm is declared when the hazard function or the pdf exceeds
a certain level (Molchan and Kagan, 1992; Molchan, 1997; 2003). For the
lognormal distribution the hazard function increases initially but eventually
decreases again. However, for the highly clustered version of the process
o = 1.86, the initial increase is concentrated at very small time intervals,
hence the error curve is close to be optimal. For example, if o = 1.86, only
for 7 < 0.0003 the error curve is above the random guess strategy, i.e., the
forecast curve is not optimal. However, these considerations are irrelevant
for the problem we are considering here: the relation between an error curve
and the information score. As shown in Fig. 3 and Eq. 3 even the antipodal

curve yields the same value of I as the real forecast curve. Our numerical

10



experiments show that (17-18) for any value of o specify a curve which, when
processed by (3) or by Eq. 19 below, yields the information score as in (10).

Fig. 4 shows an example of the error diagram for the lognormal renewal
process. The theoretical curves (17, 18) are compared to the simulation
results for 33 choices of the alarm duration w. The alarm duration starts
with 0.001 and then increases logarithmically with the factor value 1.52 until
it reaches the total length of a series (1000 units). We deliberately use

relatively short simulated sequences to show random fluctuations.

4 Relation between the error diagram and in-
formation score

The information score can be calculated for an error diagram curve as an

extension of (11) to continuous concave curves

1 Oov
I = /0 log, (_8_7') dv. (19)

It is helpful to have an estimate of the region boundaries for curves cor-
responding to a specific value of the information score. Such an estimate
can be obtained if the prediction scheme in the error diagram consists of two

linear segments (cf. Fig. 3) with the slopes

(91/1 Alll
Di=—--—2 =22 2
! (97'1 ATl ’ ( 0)

for the first segment and Dy for the second segment;
Dlzl,andngl, (21)
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given a curve concavity. Dy = Dy = Do = 1 is the random guess strategy
(Molchan, 1990).

For the assumed information score I the envelope curve is defined by the
equation

v v
D | ——| =-2%. 22
1|:I/—1—D1:| ( )

By solving this equation for any value of D;, one obtains the v-value for the
contact point of two linear segments, 7 = (v — 1)/ D;.

As an example, Fig. 5 displays several two line segments that correspond
to the prediction schemes with an information score that equals 1 bit. The
envelope curve is also shown. This curve delineates the lower boundary of
all possible error curves with the information score I = 1 bit. Numerical
experiments show that any concave (not straight) line connecting the point
(r,v) with (0, 1) or (1, 0) would have a larger information score (I). A
similar result can be obtained using the Holder-Jensen inequality. The upper
boundary is, in principle, the random guess line, Dy: if D; — oo, the resulting
curve can be as close to this line as needed.

We also show in this diagram the results of simulating a mixture of two
Poisson processes with the rates differing by a factor 44.4. This factor was
adjusted to obtain the information score 1 bit for a renewal process in which
intervals have been selected randomly from each sequence. The simulation

results are similar to theoretical curves having two straight line segments.
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Fig. 6 displays the curves for the renewal processes with gamma and
lognormal distributions. The information score again is taken to be 1 bit.
Curves for both sequences, clustered and quasi-periodic, are shown. All four
curves are within the region specified by (22) and the random guess line.

When simulating or computing curves for quasi-periodic sequences, alarm
declaration is reversed, i.e., it is declared after the elapsed w time period fol-
lowing an event. Alternatively, an alarm strategy is the same as in clustered
sequences producing an antipodal prediction (Molchan and Kagan, 1992;
Molchan, 1997). Then a curve is rotated 180° around the center of symme-
try [T=1/2; v=1/2].

The curves behavior in Fig. 6 is difficult to see in the neighborhood of the
point 7 = 0, v = 1, so we display the curves in a semi-log format (Fig. 7). The
clustered gamma distribution (k = 0.329) is seen as approaching v = 1 line
more slowly than the other curves. This means that for even very small alarm
time intervals, some prediction capability is still available for this model. The
lower envelope of (22) also has non-zero values for the fraction of predicted
events (1 —v) for small 7, i.e., although the curve asymptotically approaches

the purely random forecasts, this convergence is very slow.

5 Discussion

In this work we use simulations as well as previously and newly derived

analytic expressions for renewal stochastic processes to test four relations:
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(a) between the pdf’s of the gamma and lognormal distributions and the
information score;

(b) between the pdf’s of these distributions and error curves;

(c) between the error curve and the information score;

(d) the inverse relation between the information score and the error curve.

Clearly, from the theoretical and the simulation results described above,
the error diagram represents a much more complete picture of the stochastic
point process than does the likelihood analysis. Using the diagram curve one
can calculate the information score for a renewal process sequence. The score
also imposes some limits on the diagram region where curves are located, but
Figs. 5 and 6 show that these limitations are rather broad. By specifying
a more restricted class of point processes to approximate an earthquake oc-
currence, the relation between these two methods can likely be made more
precise.

As we mentioned in the Introduction section, the available information is
limited to few or even only one historical large earthquake on a single tec-
tonic structure. Because of this the renewal models, analyzed in this work,
may have only a minimal application in the statistical analysis of seismic-
ity patterns. However, even with these qualifications, a significant number of
publications apply the renewal or similar models (Davis et al., 1989; Molchan,
1990, 1991; Imoto, 2004; Jackson and Kagan, 2006) for earthquake occur-

rence description. Therefore, it is important to have a quantitative compar-
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ison of various prediction techniques applied to such models. It is even more
important to extend these results to more complex models of earthquake
occurrence: for example, taking into account insufficient earthquake data,
various modeling assumptions, multidimensionality of the earthquake pro-
cess, and so on. Below we will offer a few comments on how the techniques
discussed above can be used to forecast earthquake rupture.

e 1) The derived equations apply to very long processes (N — o0), they
need to be extended for a small number of predicted earthquakes when ran-
dom fluctuations could modify results. For example, in Fig. 4, the direct
application of (11) may give a zero or a negative argument for a logarithm.
If we form a concave hull of simulated points, the obtained simulation curve
would be lower than the theoretical estimate. Molchan (1990, Eqs. 18 and
19) derived asymptotic expressions for statistical estimates of 7 and v for
sufficiently long renewal processes. This result can be used to evaluate un-
certainties in error curve estimates as in Fig. 4.

e 2) Our analysis assumes that earthquake process fits the models exactly.
In reality we work with models which are at best imperfect approximations to
real stochastic relations between earthquakes. Daley and Vere-Jones (2004,
p. 301) suggest that the information score is at a maximum if the true model
is used for the process description. Harte and Vere-Jones (2005, p. 1240) also
write that “the [v-7] curve for a wrong model always lies above the curve for

the true model.” If the data do not match the model, the obtained score I
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(3) should be below the maximum, thus the error curve would be above the
corresponding lower envelope (see Figs. 5, 6). However, the actual shape of
the curve would depend on the employed model pdf form, and hence may
differ significantly from the true model curve. In Figs. 5 and 6 various curves
corresponding to I = 1 bit are quite different and it is possible that a curve
corresponding to a lesser information score may in some 7-interval be below
a curve with a higher I. This problem needs to be investigated more closely.

e 3) Earthquake prediction algorithms are tested against the Poisson
hypothesis even though earthquakes do not follow this distribution. Testing
against weak null hypothesis biases the results (Stark, 1997). More realistic
reference distributions need to be introduced in the measurements of the
earthquake prediction efficiency.

e 4) Additionally, a more appropriate stochastic model for earthquake
occurrence is not a renewal but a branching process (Hawkes and Oakes,
1974; Kagan and Knopoff, 1976; Ogata, 1999) which captures the important
feature of seismicity, its clustering. Renewal processes can yield clustering
features, but in contrast to branching models their clustering is symmetric
in time. Earthquake occurrence is highly time asymmetric, there are few, if
any, foreshocks, and many aftershocks. These events often exhibit secondary
clustering.

e 5) Moreover, earthquakes occur not only in time. Their spatial coordi-

nates, earthquake size, and focal mechanisms need to be taken into account
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in actual prediction efforts (Kagan and Jackson, 2000). Introducing new
variables complicates the calculation of the information score and the er-
ror diagram. Molchan and Kagan (1992) have done some preliminary work
in determining error diagrams for multidimensional processes. Kagan and
Jackson (2000) and Helmstetter et al. (2006) have shown how to evaluate
the effectiveness of spatial smoothing for seismic hazard maps.

The results of statistical analysis of the central California catalog (Kagan
and Knopoff, 1987; Kagan, 1991; Molchan and Kagan, 1992) suggest that
(19) is valid for multidimensional processes as well. In Fig 8 we display
the error curve obtained for the catalog, its processing by (11) yields I =
1.86 bits. Asin Fig. 7 the model exhibits a significant predictive power even
for very small space-time alarm volumes. The information score obtained
by the likelihood procedure is 1.58 bits (Kagan and Knopoff, 1987; Kagan,
1991). There are many potential sources for the score discrepancy: random
fluctuations due to the limited size of the catalog, possible biases in handling
boundary effects, etc. As we mentioned above (item 1), random fluctuations
may increase the estimate of j, obtained from the error diagram.

e 6) Another challenge in dealing with earthquake prediction is the fractal
nature of most distributions controlling earthquakes (Kagan, 2006). Since
these distributions approach infinity for small time and distance intervals,
the value of the information score is not well defined (see Helmstetter et al.,

2006). Similarly, the error diagram curve would start to approach the point of
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the ideal prediction (7 = 0, v = 0) for earthquake catalogs of high location
accuracy and extending to small time intervals after a strong earthquake.
Clearly both predictability measurement methods need to be significantly
modified to apply to fractally distributed seismicity forecasting.

e 7) None of the above-mentioned models would be likely to allow an
analytic computation of the information score or the error diagram curves.
Therefore, the solution to most of the problems listed in this section can
only be obtained by simulation. Most likely simulations need to be started
for simpler models and then model complexity could be increased. If the
simulations could not be tested against closed form expressions, the results
would be less reliable. Nevertheless, we hope that such simulations would
show that Eqgs. 19 and 22 which describe the relationship between two mea-
sures of earthquake predictability turn out to have a general applicability
beyond the simple models analyzed in this paper.

Finally, I would like to mention that Eq. 19 was derived, using heuristic
arguments, exemplified in Fig. 3, in December 1991 — January 1992. Since
that time I have privately sent these preliminary results to many researchers
interested in the problem. Recently, Harte and Vere-Jones (2005) published
a similar formula (see the first right-hand term in their Eq. 18) for a model of
the discrete-time point process. Actually, for this term dr can be cancelled
and since the second term disappears for a continuous process, their equation

is becoming almost identical to our (19). However, they did not explore the
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connection between the error diagram properties and the information score

or any constraints the information score would impose on the diagram.

Acknowledgments

I appreciate partial support from the National Science Foundation through
grants EAR 04-09890, and DMS-0306526, as well as from the Southern Cal-
ifornia Earthquake Center (SCEC). SCEC is funded by NSF Cooperative
Agreement EAR-0106924 and USGS Cooperative Agreement 02HQAGO0008.
I am very grateful to P. Stark of UC Berkeley who sent me marLaB pro-
grams employed in his (Stark, 1997) paper. With appropriate modifications
these programs were used in some calculation reported above. I also thank
D. D. Jackson, I. V. Zaliapin, F. Schoenberg, and J. C. Zhuang of UCLA,
D. Vere-Jones of Wellington University and P. Stark for very useful discus-
sions. Reviews by Rodolfo Console and by two anonymous reviewers have
been very helpful in revising the manuscript. I thank Kathleen Jackson for

significant improvements in the text. Publication 1058, SCEC.

19



References

1]

Abramowitz, M. and 1. A. Stegun (1972), Handbook of Mathematical

Functions, Dover, NY, pp 1046.

Baiesi, M. (2006), Scaling and precursor motifs in earthquake networks,

Physica A, 360(2), 534-542.

Bebbington, M. S. (2005), Information gains for stress release models,

Pure Appl. Geophys., 162(12), 2299-2319.

Daley, D. J., and Vere-Jones, D. (2003), An Introduction to the Theory

of Point Processes, Springer-Verlag, New York, 2-nd ed., Vol. 1, pp. 469.

Daley, D. J., and Vere-Jones, D. (2004), Scoring probability forecasts
for point processes: The entropy score and information gain, J. Applied

Probability, 41A, 297-312.

Davis, P. M., D. D. Jackson, and Y. Y. Kagan (1989), The longer it
has been since the last earthquake, the longer the expected time till

the next?, Bull. Seismol. Soc. Amer., 79(5), 1439-1456.

Evans, M., N. Hastings, and B. Peacock (2000), Statistical Distribu-

tions, 3rd ed., New York, J. Wiley, 221 pp.

Harte, D., and Vere-Jones, D. (2005), The entropy score and its uses

in earthquake forecasting, Pure Appl. Geophys., 162(6-7), 1229-1253.

20



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Hawkes, A. G. and Oakes, D. (1974), A cluster process representation

of a self-exciting process, J. Appl. Prob., 11, 493-503.

Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2006), Compar-
ison of short-term and time-independent earthquake forecast models

for southern California, Bull. Seismol. Soc. Amer., 96(1), 90-106.

Holliday, J. R., K. Z. Nanjo, K. F. Tiampo, J. B. Rundle, D. L.. Turcotte
(2005), Farthquake forecasting and its verification, Nonlinear Processes

Geophys., 12(6), 965-977.

Imoto, M. (2004), Probability gains expected for renewal process mod-

els, Earth Planets Space, 56, 563-571.

Jackson, D. D., and Y. Y. Kagan (2006), The 2004 Parkfield earth-
quake, the 1985 prediction, and characteristic earthquakes: lessons for

the future, Bull. Seismol. Soc. Amer., 96(4B), S397-S409.

Jolliffe, I. T. and D. B. Stephenson, Eds. (2003), Forecast Verification:
a Practitioner’s Guide in Atmospheric Science, J. Wiley, Chichester,

England, 240 pp.

Jordan, T. H. (2006), Earthquake predictability, brick by brick, Seis-

mol. Res. Lett., T7(1), 3-6.

Kagan, Y. Y. (1991), Likelihood analysis of earthquake catalogues,

Geophys. J. Int., 106, 135-148.

21



[17]

[19]

[20]

[21]

[22]

Kagan, Y. Y. (2006), Why does theoretical physics fail to explain and
predict earthquake occurrence?, in: Lecture Notes in Physics, 705,
pp. 303-359, P. Bhattacharyya and B. K. Chakrabarti (eds.), Springer

Verlag, Berlin—Heidelberg.

Kagan, Y. Y., and D. D. Jackson (2000), Probabilistic forecasting of

earthquakes, Geophys. J. Int., 143(2), 438-453.

Kagan, Y. Y., and D. D. Jackson (2006), Comment on ‘Testing earth-
quake prediction methods: “The West Pacific short-term forecast of
earthquakes with magnitude MwHRV > 5.877 by V. G. Kossobokov,

Tectonophysics, 413(1-2), 33-38.

Kagan, Y., and L. Knopoff (1976), Statistical search for non-random
features of the seismicity of strong earthquakes, Phys. Earth Planet.

Inter., 12(4), 291-318.

Kagan, Y., and L. Knopoff (1977), Earthquake risk prediction as a

stochastic process, Phys. Farth Planet. Inter., 14(2), 97-108.

Kagan, Y. Y., and L. Knopoff (1987), Statistical short-term earthquake

prediction, Science, 236, 1563-1567.

Kossobokov, V. G. (2006), Testing earthquake prediction methods:
“The West Pacific short-term forecast of earthquakes with magnitude

MwHRYV > 5.8”, Tectonophysics, 413(1-2), 25-31.

22



[24]

[25]

[26]

[30]

McGuire, J. J., Boettcher, M. S., and Jordan, T. H. (2005), Foreshock
sequences and short-term earthquake predictability on East Pacific Rise
transform faults, Nature, 434(7032), 457-461; Correction — Nature,

435(7041), 528.

Molchan, G. M. (1990), Strategies in strong earthquake prediction,

Phys. Earth Planet. Inter., 61(1-2), 84-98.

Molchan, G. M. (1991), Structure of optimal strategies in earthquake

prediction, Tectonophysics, 193(4), 267-276.

Molchan, G. M. (1997), Earthquake prediction as a decision-making

problem, Pure Appl. Geoph., 149(1), 233-247.

Molchan, G. M. (2003), Earthquake prediction strategies: A theoreti-
cal analysis, In: Keilis-Borok, V. L., and A. A. Soloviev, (Eds) Nonlin-

ear Dynamics of the Lithosphere and Earthquake Prediction, Springer,

Heidelberg, 208-237.

Molchan, G. M., and Y. Y. Kagan (1992), Earthquake prediction and

its optimization, J. Geophys. Res., 97(B4), 4823-4838.

Ogata, Y. (1999), Seismicity analysis through point-process modeling:

A review, Pure Appl. Geophys., 155(2-4), 471-507.

23



[31] Rhoades, D. A.,and F. F. Evison (2006), The EEPAS forecasting model
and the probability of moderate-to-large earthquakes in central Japan,

Tectonophysics 417(1-2), 119-130.

[32] Stark, P. B. (1997), Earthquake prediction: the null hypothesis, Geo-

phys. J. Int., 131(3), 495-499.

33] Vere-Jones, D. (1998), Probabilities and information gain for earth-
[ , , g
quake forecasting, Computational Seismology, 30, Geos, Moscow, 248-

263.

24



Information per event, | (bits)
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Shape parameters, o and K

Figure 1: Dependence of the information score on the shape parameters s
and o for the gamma (solid line) and lognormal (dashed line) renewal process.
Two squares and circles show the curves position for I =1 bit.
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Fig. 2
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Figure 2: Parts of a realization of lognormal distributed renewal process.
Solid line — cumulative number of events. Crosses — beginning of alarms, ‘x’s
— end of alarms. In this example, 33 events are simulated with the shape
parameter o = 1.86 (see Eq. 8). After each event an alarm with duration 0.1
is issued. 17 events fall into 16 alarms, i.e., they are successfully predicted.
The duration of alarms is 23.4 % of the total time.
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Figure 3: Error diagram example.
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Figure 4: Error diagrams for the lognormal renewal process with o = 1.86.
The straight solid line is the strategy curve corresponding to a random guess.
The left solid curve is calculated using (17-18), circles are the result of sim-
ulations. The dashed and dotted curves are the first and second right-hand
terms in (18), respectively.
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Fig. 5
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Figure 5: Error diagrams for renewal processes. The thick straight solid line
corresponds to a random guess. Thin solid lines are for the curves with the
information score 1 bit. The Dj-values (22) for the first segment starting
from the right (or the second segment starting from the bottom) are 2, 2.5,
3, 4, 6, 10, 20, 50, 100, 250, 1000, and 10000. The left thick solid line is
an envelope curve for these two-segment curves. Circles stand for simulating
the Poisson renewal process with two states (see text).
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Figure 6: Error diagrams for renewal processes with the information score
1 bit. The straight solid line is the diagram curve corresponding to a random
guess. The left solid line is an envelope curve for two-segment curves. Dashed
curves with squares and with diamond signs are for the gamma distribution
with k = 0.329, and k& = 8.53, respectively. Solid curves with circles and
with plus signs are for lognormal distribution with o = 1.86, and o = 0.35,
respectively.
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Figure 7: Same as Fig. 6 in semi-log format.
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Fig. 8
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Figure 8: Error diagram (7, v): solid line — the strategy of random guess, solid
line with asterisks — the error curve for the short-term prediction algorithm
by Kagan and Knopoff (1987), as applied to seismicity of central California
in the years 1971-1977.
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