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ABSTRACT OF THE DISSERTATION

Reductions and Propositional Proofs for Total NP Search Problems

by

Alan Starz Johnson

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor Samuel R. Buss, Chair

This dissertation studies TFNP, the class of total NP search problems,

and TFNP2, a relativized version of TFNP. Resolving the exact computational

complexities of TFNP and its subclasses is closely tied to the P versus NP question,

thus the main focus is on the relativized class TFNP2. The subclasses of TFNP2

which we study are “syntactic”, meaning that their totality is guaranteed by some

combinatorial lemma.

A main result is that there is a strong connection between TFNP2 and

propositional proofs. We show that a Turing reduction from Q1 to Q2 gives rise to

constant depth, polynomial size propositional (Frege) proofs between the underlying

combinatorial lemmas. We show that a similar result holds for polylogarithmic

degree Nullstellensatz refutations. These results were shown only for the many-one

x



case in [9]. These new translations provide new Turing separations by using

existing upper and lower bounds from proof complexity. We also solve an open

problem stated in [9] by showing that a reverse construction also holds. Namely, we

prove that constant depth, polynomial size propositional proofs of the totality of

one combinatorial lemma from another combinatorial lemma give rise to a Turing

reduction between the corresponding TFNP2 problems.

Another point of investigation is the relation between many-one and Turing

reducibility. We show that for many natural TFNP2 classes many-one and Turing

reducibility are equivalent. To show that this result does not hold in general, we

construct a TFNP2 problem whose Turing closure is strictly larger than its many-

one closure. To generalize these results, we introduce a new type of reducibility

called k-reducibility, and show that k- and (k + 1)-reducibility are not equivalent.

This last result makes use of modular counting principles. These have

been previously studied as propositional formulas, but we introduce them as

TFNP2 problems called MODd. We prove results about the relative complexity

of the MODd’s between themselves and other interesting TFNP2 classes. By

constructing equivalences between the propositional translation of MODd and the

modular counting principles of [3], we can use the provability results in [3] to prove

separations.
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Chapter1

Introduction

Total NP search problems (also called TFNP problems for “Total Functional

NP”) are search problems such that (1) solutions have polynomial growth rate, (2)

solutions can be checked in polynomial time, and (3) a solution is guaranteed

to exist [28]. The totality requirement in (3) causes TFNP problems to behave

differently than decision problems. As an example, consider the problem FACTOR

which is: “Given n, find 1 < d < n which divides n, otherwise return n.” Note that

n is returned when it is prime. By the AKS primality test [1], n is a certificate of

its own primality, and thus FACTOR is an NP search problem. Since FACTOR

is clearly total, it is a TFNP search problem. However, there does not seem to be

a nice way to formulate FACTOR as a decision problem. There is nothing to be

decided since it is always true that n is prime or has a prime factor. In contrast

to decision problems, the computational complexity of FACTOR arises from the

totality of the search problem.

At this point we note that the formal definition of TFNP is given in

Chapter 2. The point of this chapter is to give a broad motivation for the remaining

chapters as well as building intuition for the concepts. Thus this chapter contains

no formal definitions at all, but will instead direct the reader to the appropriate

locations.

The search problem FACTOR is based on an NP ∩ coNP decision problem.

In fact, any NP ∩ coNP decision problem gives rise to a total NP search problem.

To see this, let L ∈ NP ∩ coNP. Then the TFNP search problem corresponding to

1
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L is: “Given x, return y that certifies that x ∈ L, otherwise return z that certifies

x 6∈ L.” There is also a reverse construction taking a TFNP search problem Q with

a unique solution and producing an equivalent NP ∩ coNP decision problem. The

equivalent decision problem is simply the problem which decides whether the ith bit

of the unique solution to Q is 0 or 1. Thus NP∩ coNP is equivalent to those TFNP

problems with unique solutions.

However, TFNP contains many problems which do not have unique solu-

tions. For example, the general pigeonhole principle PHPm
n , for m > n, can be

formulated as a TFNP problem: “Given a (polynomial time) mapping from m

pigeons to n holes, find two different pigeons mapping to the same hole.” It is clear

that PHPm
n does not have a unique solution. In fact, it is shown in [2] that a

relativized version of PHPm
n is not equivalent to any decision problem. Indeed, one

reason to study TFNP at all is that it contains so many natural problems which do

not have nice formulations as decision problems. The (relativized) problems that

we focus on below (including SOURCE.or.SINK, SINK, MODd, PIGEON, ITER)

all have the property that they are not equivalent to any decision problem.

Even though TFNP cannot be characterized in terms of NP∩ coNP decision

problems, it can be characterized as NP ∩ coNP search problems. To see this,

consider F (NP ∩ coNP), the set of NP ∩ coNP search problems from [28]. An

F (NP ∩ coNP) search problem has two polynomial time predicates P1, P2 such

that for every x there is a y with P1(x, 0y) or there is a z with P2(x, 1z); the

extra bit prepended to y or z determines which relation holds. It is easy to show

that F (NP ∩ coNP) = TFNP. For one direction, note that any TFNP problem

is in F (NP ∩ coNP) since only one of P1 and P2 needs to be used. To show the

containment F (NP ∩ coNP) ⊆ TFNP, let Q be in F (NP ∩ coNP). Then Q is a

TFNP problem, where the validity of a solution w is checked by running P1 or P2,

depending on the first bit of w.

The class TFNP contains FP, the set of search problems solvable in

polynomial time, and is contained in FNP, the set of (possibly non-total) NP

search problems; that is FP ⊆ TFNP ⊆ FNP. The first inclusion is conjectured to

be strict, with FACTOR as a problem in TFNP but not in FP. The second inclusion
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is trivially strict, as not all FNP problems are total. However, there is a stronger

result due to [28] which states that there is a TFNP problem that is complete for

FNP if and only if NP = coNP. This result provides evidence that TFNP does

not capture all of the computational complexity of FNP. The class FNP and other

subclasses consisting of partial functions have been studied by Selman [35, 36];

Selman’s work is expanded to total functions in [19].

The main reason to study TFNP is to understand problems, such as PHPn+1
n ,

whose complexity cannot formulated by decision problems. Since a decision-like

question such as “Does a solution exist?” is always answered “Yes” by a TFNP

problem, we are concerned with why the answer is always “Yes.”

At the heart of any TFNP problem is a principle which justifies its totality,

and we can ask questions about the strength of that principle. For example, can we

relate PHPn+1
n , the standard pigeonhole principle, to PHPn2

n , the weak pigeonhole

principle? It can be shown that the standard pigeonhole principle is stronger than

the weak pigeonhole principle (in a relativized setting, this is expanded on near the

end of this chapter). By understanding the relation among TFNP problems we can

understand the relative strength of different lines of reasoning.

TFNP is a good setting for understanding the strength of different problems

because it contains a vast number of interesting principles. One example is the class

PLS, introduced by Johnson, Papadimitriou and Yanakakis [22], of polynomial local

search problems. A PLS problem has a (polynomial time) local search heuristic

which respects a positive integer valued cost function; a solution to a PLS problem

is a local minimum with respect to its cost function. A PLS problem is total since

such a local minimum must exist. A typical instance of PLS has a size parameter n

that specifies a search space of size 2n, so that a brute force search is not possible

in polynomial time. Interestingly, PLS has other equivalent characterizations,

including finding a local optimum for the Lin-Kernighan heuristic for the traveling

salesman problem, or in terms of finding an input to a Boolean circuit that produces

a locally minimum value [22]. For more early work on PLS, including more PLS

complete problems, see [27, 33, 34].

In general, TFNP problems have a nice relationship with combinatorial
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lemmas via their totality requirement. For example, the fundamental theorem

of arithmetic guarantees the totality of FACTOR, and the pigeonhole principle

guarantees the totality of PHPm
n . In fact, any TFNP problem can be thought

as expressing the principle which guarantees its totality. In this way, studying

the relative complexity of TFNP is essentially studying the relative computational

power of combinatorial lemmas.

The exact complexities of important problems in TFNP, like FACTOR, are

still unknown, and this question is not expected to be resolved soon. The next best

thing is to study the relative complexity of TFNP problems. The relation between

two TFNP problems can be thought of as a statement about the relative power of

combinatorial principles. Thus the equivalence between PLS and finding a local

optimum for the Lin-Kernighan heuristic shows that the combinatorial lemmas

underlying these classes are equivalent.

The most common way to create a TFNP problem is to start with a combi-

natorial lemma and define a corresponding search problem whose totality is based

on that lemma. Papadimitriou introduces many TFNP classes in this manner [31].

For example, Sperner’s Lemma guarantees the existence of a panchromatic complex

in a triangulation of a trichromatic triangle; the goal of the corresponding TFNP

problem SPERNER is to find such a panchromatic complex. Other TFNP problems

include NASH, based on the existence of Nash equilibria, and LEAF, based on the

fact that a graph with degree at most two has an even number of leaves.

Interestingly, there are equivalences between seemingly very different TFNP

classes. For example, the problem SOURCE.or.SINK from [2] is “Given a directed

graph where each vertex has in- and out-degree at most one and a given source

vertex with out-degree one, find another vertex with total degree one.” The

many-one closure of SOURCE.or.SINK defines the class PPAD. Surprisingly,

SOURCE.or.SINK is equivalent to SPERNER, [31], and NASH, which imply that

these latter two problems are also complete for PPAD. The equivalence with NASH

was shown in the case with three of more players by [18], and the two player case

was shown by [15]. These equivalences show that the underlying computational

nature of calculating Nash equilibria, whose computational nature is unclear at first
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glance, is equivalent to the easily understandable problem SOURCE.or.SINK. By

studying TFNP we hope to come to a similar understanding of other combinatorial

lemmas.

There are many other problems complete problems for PPAD that arise

from a wide variety of areas, including internet routing and economics [24]. A

compendium of PPAD complete problems is maintained by [23].

The definition of equivalence between two TFNP problems is based on a

many-one reduction for TFNP problems as defined by Megiddo and Papadim-

itriou [28]. Let Q1, Q2 be TFNP problems. Then Q1 is many-one reducible to Q2,

written Q1 ≤m Q2, provided there are polynomial time functions f, g such that if y

is a solution toQ2 on input f(x), then g(y) is a solution toQ1 on input x. While not

specifically mentioned by Megiddo and Papadimitriou, their concept of many-one

reduction can be generalized to allow asking a (polynomially long) sequence of calls

to Q2. Such a reduction is called a Turing reduction, denoted ≤T. For example,

suppose we are trying to solve Q1 on input x. Then after getting a solution y1 to Q2

on input f1(x), another instance of Q2 can be specified by a new function f2, which

depends both on x and y1. After finding a y2 solving Q2 on f2(x, y1), the process

repeats. Finally the reduction computes (in polynomial time) a solution to Q1 on

input x, based on all the answers to instances of Q2 that it received.

Megiddo-Papadimitriou reducibility is the natural definition of a many-one

reduction in the TFNP setting. In particular, ≤m is transitive, and if Q1 ≤m Q2,

and Q2 ∈ TFNP, then Q1 ∈ TFNP. However, there do not seem to be any

TFNP complete problems with respect to ≤m (or any other reasonable notion of

reducibility). The difficulty arises in the totality condition. To better understand

this, recall that FNP is the set of all (possibly non-total) NP search problems. The

class FNP contains many complete problems. For example, the search problem

version of any NP complete problem is FNP complete. One way to interpret this

is that we can enumerate all nondeterministic Turing machines. However, for a

similar result to hold for TFNP we would need to enumerate the nondeterministic

Turing machines such that there is an accepting computation on all inputs. Since

no such enumeration is known or expected, we do not expect there to be any TFNP
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complete problems.

The lack of TFNP complete problems is another motivation for defining

subclasses of TFNP based on combinatorial lemmas, since such classes do have

complete problems. As an example, consider the TFNP problem PHPn+1
n where

the mapping from pigeons to holes is given by f . The requirement that f map n+1

pigeons to n holes can be easily enforced syntactically, and thus the pigeonhole

principle guarantees the totality of the search problem. A subclass of TFNP can be

created by taking the many-one closure of PHPn+1
n ; note that PHPn+1

n is trivially a

complete problem for this subclass. In general, classes whose totality is based on a

combinatorial lemma (such as PHPm
n ) are sometimes called “syntactic” subclasses

of TFNP, since the totality requirement can be enforced through the syntactic form

of the input.

A more general notion of reducibility, called “type-2” reducibility, is intro-

duced in [2]. To motivate the phrase “type-2”, consider a general TFNP problem.

This problem will be described by a string (a type-0 object), which is part of

the input, and functions (type-1 objects), which are not part of the input. In

the case of PLS the string input encodes the instance, and there are polynomial

time functions which take a point and determine its cost, neighbor, and feasibility.

The relativized class TFNP2 generalizes TFNP by allowing problems to take both

strings and functions as inputs; these problems are type-2 since they take type-1

objects (functions) as inputs. The function inputs are accessed as oracles. The

superscript 2 on “TFNP2” indicates the class contains type-2 TFNP problems.

The advantage of the type-2 approach is that each problem in an unrela-

tivized TFNP class can be expressed as an instantiation of a single TFNP2 problem.

For the classes we are interested in, this canonical type-2 problem has a clear and

simple statement. Another reason to use type-2 reducibility is that separations and

reductions using type-2 reducibility give rise to oracle separations and inclusions of

the corresponding unrelativized TFNP classes.

As an example of defining a TFNP class from a canonical TFNP2 problem,

consider PLS. The class PLS can be defined from the type-2 problem ITER, which

is defined as follows. The inputs to ITER are a size parameter n (which can be taken
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as the length of the string input) and a function f mapping n-bit strings to n-bit

strings, and the solutions are those strings u such that (1) f(0) = 0, (2) f(u) < u,

or (3) f(u) > u and f(f(u)) = f(u). It is clear that ITER is total, and that

each solution to ITER can be verified in polynomial time (in fact, two queries to f

suffice), where each call to the oracle f counts as a single step. Let Q be in TFNP.

A many-one reduction from Q to ITER sets up the size and function parameters

to ITER, solves ITER on those parameters, and then produces a solution to Q in

polynomial time. More specifically, Q is many-one reducible to ITER if there are

polynomial time functions f, g, h such that h(x, y) is a solution to Q on input x for

any y that is a solution to ITER on size parameter g(x) and with function input

z 7→ f(x, z). It can be shown that PLS consists of exactly those TFNP problems

many-one reducible to ITER.

This example shows how a TFNP problem can be reduced to a TFNP2

problem. There is also a notion of reducibility between two TFNP2 problems. It

is essentially the same as before, except each function gets oracle access to the

functions input toQ1. Specifically, supposeQ1, Q2 are two TFNP
2 problems, where

Q1 takes function input f0 and string input x. Then Q1 is many-one reducible to Q2

if there are polynomial time functions f, g, h relative to f0 such that h(f0, x, y) is a

solution to Q1 on input f0 and x for any y that is a solution to Q2 on function input

z 7→ f(f0, x, z) and string input g(f0, x). Type-2 reducibility is defined formally in

Section 2.3.

Whereas the purpose of reducibility from a TFNP problem to a TFNP2

problem is to define subclasses of TFNP, reducibility between TFNP2 problems

gives oracle results for subclasses of TFNP by the following three equivalent

conditions for Q1, Q2,∈ TFNP2 [17]: (1) Q1 is many-one reducible to Q2 (2) for

any oracle G the many-one closure of Q1 relative to G is contained in the many-one

closure of Q2 relative to G (3) there is a generic oracle G such the many-one

closure of Q1 relative to G is contained in the many-one closure of Q2 relative to G.

The main advantage of type-2 reducibility is that it allows us to prove separation

results without resolving difficult open questions about computational complexity.

Namely, if P = NP, then all TFNP problems can be solved in polynomial time.
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This means that a separation between two TFNP classes implies P 6= NP. Our

separations involve the relativized search problems of TFNP2, and thus do not

resolve P versus NP.

Our separation results are all relative to generic oracles. However, other

authors have proved results for different kinds of oracles. As an example, [19]

introduces Proposition Q, which states that TFNP is “easy.” More precisely, a

polynomial time predicate R(x, y) defines a TFNP problem if there is a polynomial

p such that R(x, y) implies |y| ≤ p(|x|), and for each x there is a y such that R(x, y)

holds. Proposition Q says that for all R and p which define a TFNP problem, there

is a polynomial time function f such that R(x, f(x)) holds. [8] shows there is an

oracle A such that Proposition Q is true relative to A, but the polynomial hierarchy

is proper relative to A. Furthermore, P 6= UP relative to A, where UP is the class

of decision problems such that solutions can be verified in polynomial time and the

verifier accepts at most one solution.

Four TFNP classes of particular interest are PPA, PPAD, PPADS, and

PPP [2]; these classes are defined in Section 2.5. The complete problems for most

of these classes have already been introduced. The class PPA (for “polynomial

parity argument”) is the many-one closure of the problem LONELY, which is based

on the fact that an undirected graph of degree at most 2 has an even number of

odd degree nodes. The class PPAD (for “polynomial parity argument, directed

version”) is the many-one closure of the problem SOURCE.or.SINK. The class

PPADS (for “polynomial parity argument, directed version, sink only”) is the

many-one closure of the problem SINK, which is exactly like SOURCE.or.SINK,

except that the solutions are required to be sinks. The class PPP (for “polynomial

pigeonhole principle”) is the many-one closure of the type-2 problem PIGEON,

which is “Given a function f from n-bit strings to n-bit strings, return the 0 string

if f(0) = 0 otherwise return x 6= y such that f(x) = f(y).” Note that if f(x) 6= 0

for all x, then the pair x 6= y is guaranteed to exist by the pigeonhole principle.

Figure 1.1 shows the relative complexity of these four classes relative to a

generic oracle. In particular, there are no many-one reductions between the classes

other than those shown, so that PPA is not contained in PPADS or PPP, and
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PPAD

PPADS

PPP

TFNP

LONELY

Figure 1.1: The known relationships for some TFNP search classes. This figure is
adapted from [2].

PPADS is not contained in PPA. When a reduction exists, it is quite simple. For

instance it is trivial that PPAD is contained in PPADS, since any solution to SINK

is, in particular, a solution to SOURCE.or.SINK. As another example, it is possible

to show that PPAD is contained in PPA by ignoring the directions in the underlying

directed graph.

The separations in Figure 1.1 are slightly stronger than stated above because

they are proved with respect to Turing reductions, as opposed to many-one reduc-

tions. As with Megiddo-Papadimitriou reducibility, the only difference between a

type-2 many-one reduction from Q1 to Q2 and a type-2 Turing reduction from Q1

to Q2 is that in the many-one case the reduction is only allowed to make one query

to Q2, whereas polynomially many calls can be made to Q2 in the Turing case.

Note that there are two kinds of oracle calls that a type-2 reduction (many-one or
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Turing) can make: those calls made to the functions input to Q1 and those calls

made to Q2.

Decision trees are the main tool used to prove the separations in Figure 1.1 [2,

3, 9]. Recall that if Q1, Q2 ∈ TFNP2 and Q1 is many-one or Turing reducible to

Q2, then the reduction must specify the string and function inputs for an instance

of Q2. Say Q1 has one function f as input, and let F be a particular function input

to Q2 set up by the reduction. This means that there is an oracle Turing machine

MF with oracle access to f which computes the values of F . In particular, the

computation ofMF on input u can be described by a decision tree Tu, whose internal

nodes correspond to f queries during the computation of F (u) and whose leaves

correspond to the computed value of F (u); for more details on the construction of

decision trees see Section 3.4. A separation Q1 6≤T Q2 can be shown by assuming

such a reduction exists, and then deriving a contradiction by arguing about the

decision trees for the functions input to Q2 queries.

As an example, consider proving the Turing separation LONELY 6≤T

PIGEON. For a contradiction, suppose that there is a Turing reduction computed

by a Turing machine M . We show that it is always possible to answer each query

made by M without revealing a solution to LONELY. Once this is shown, M

is forced to output an answer to LONELY without explicitly knowing one, which

contradicts the correctness ofM .

We outline howM can continue its computation without solving LONELY.

The problem LONELY takes one function as input, call it f . Consider a particular

query to PIGEON made by M , and suppose the function input to PIGEON is F ,

which is computed in polynomial time relative to f . ForM to continue, there must

be a way to set the values of f , without solving LONELY, such that there is either a

u such that F (u) = 0 or a pair u 6= v such that F (u) = F (v). Because we are trying

to avoid solutions to LONELY, we prune the branches in all the decision trees for

F whose edge labels give a solution to LONELY. ThenM can continue if (1) there

is some branch labeled 0, or (2) if there are branches P1, P2 in Tu, Tu′ , respectively,

for u 6= u′ such that the previously known values of f combined with the values of

f determined by the edge labels of P1 and P2 do not solve LONELY. The proof,
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which we do not detail further, then derives a contradiction from the failure of (1)

and (2) [2]. A similar approach using decision trees is used to prove the separation

PIGEON 6≤T SINK [2].

The relation of the class PLS to the four classes of Figure 1.1 is studied

in [29]. There it is shown that SOURCE.or.SINK is not Turing reducible to ITER,

which implies that PLS contains none of PPAD, PPADS, PPA, and PPP in a generic

relativized setting. The proof follows the decision tree separation techniques of [2].

The resolution of the reverse inclusions was taken up in [9], where it was shown

that ITER is not many-one reducible to LONELY. Thus the only open relation

left among the classes PPAD, PPADS, PPA, PPP, and ITER is whether ITER is

many-one or Turing reducible to PIGEON.

An interesting aspect of the proof that ITER is not many-one reducible to

LONELY is that it uses known results from proof complexity. Broadly speaking, a

type-2 TFNP problem can be encoded as a purely existential, first-order formula.

A particular instance of this problem then becomes a constant depth propositional

formula. Amany-one reduction between type-2 TFNP problems becomes a constant

depth, polynomial size proof between these propositional formulas. Therefore, the

many-one reduction translates into a constant depth, polynomial size proof relating

the underlying combinatorial principles which justify the totality of the TFNP2

problems. The formalization for propositional proofs is given in Section 2.6.

It is also possible to perform this translation instead using polynomials in

the Nullstellensatz calculus. The Nullstellensatz calculus is a refutation system

involving polynomials, and is described in Section 2.6. Fix a base field F , and

consider a set of polynomials {fi} ⊂ F [x1, . . . , xk] that express, when simultane-

ously set to 0, an unsatisfiable set of propositional conditions. Assume that {fi}

contains x2i − xi for each i so that any simultaneous solution a1, . . . , ak to the fi’s

implies each ai is 0 or 1, and hence each ai ∈ F . Then the weak form of Hilbert’s

Nullstellensatz implies that there are polynomials {gi} ⊂ F [x1, . . . , xk] such that
∑

i gifi = 1. The gi’s are a proof that the fi’s can not be simultaneously set to 0,

since otherwise 1 = 0. The complexity of a Nullstellensatz refutation is measured

by the maximum degree of gifi. The method of [9] translates a many-one reduction
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Q1 ≤m Q2 into a low degree Nullstellensatz refutation of Q1 from Q2. Upper and

lower degree bounds for Nullstellensatz refutations of different principles have been

extensively studied [2, 10, 16]. These bounds can be immediately used to show a

many-one separation between the corresponding TFNP problems. In particular, [9]

uses this idea to prove the separation ITER 6≤m LONELY. This idea is also central

to the separation SINK 6≤T LONELY proved in [2].

A useful feature of Nullstellensatz refutations is that it is often possible to

choose a convenient base field. Correctly picking the characteristic of the base field

can greatly simplify the structure of the involved polynomials. For example, if the

base field has characteristic 2, then pairs of identical terms in a polynomial can be

eliminated and any constant term is either 0 or 1. These properties are useful when

applied to LONELY, which is a kind of parity argument.

One open question asked by [9] is whether the translations of many-one

reductions into constant depth propositional proofs and low degree Nullstellensatz

refutations also apply to Turing reductions. We resolve this question in Chapters 3

and 4 where it is shown that this translation carries through for Turing reductions

for propositional and Nullstellensatz proofs, respectively. This extended result

immediately gives the stronger separation ITER 6≤T LONELY. A key construction

needed to in the proof of the two translations in the case of a Turing reduction is the

decision tree for the machine M calculating a Turing reduction. This decision tree

differs from the ones previously mentioned because M can make oracle calls either

to a function or a TFNP2 problem. It is straightforward to extend the definition of

a decision tree to include the two different kinds of oracle calls. However, there is

a complication with the branching for nodes corresponding to a query to a TFNP2

problem. For example, suppose Q1, Q2 ∈ TFNP2 and that Q1 ≤T Q2. Suppose the

function input to Q1 is f , and that the reduction makes a call to Q2 on input F .

Let µ be the node corresponding to this Q2 call in the decision tree. Note that F is

polynomial time computable relative to f , and that at the time of the call to Q2,

polynomially many values for f are known. Any solution y to Q2 on input F can

be verified to be correct in polynomial time, and corresponds to a child of µ. Since

F is polynomial time computable relative to f , such a verification process reveals
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polynomially many more values for f . However, there may be some y for which

the verification process conflicts with the earlier known values of f . Paths through

such y must be somehow pruned from the tree. Section 3.4 introduces a type of

path through a decision tree with f and Q2 queries called a trace that avoids such

problematic y’s. Traces are the main technical tool used to prove the translations

of Turing reductions into propositional and Nullstellensatz proofs.

It is conceivable that more TFNP2 separations could be proved by attempt-

ing a translation into other proof systems. Generally speaking, any translation

of the reduction Q1 ≤T Q2 into a proof system P should have the property that

if the translation of Q2 is “easy” for P , then the translation of Q1 is “easy”

for P . This is exactly what happens for propositional proofs and Nullstellensatz

refutations. However, finding a proof system with the necessary properties to

prove a particular separation can have its own problems. For example, it is

unknown if ITER is many-one or Turing reducible to PIGEON. The translation

technique for propositional proofs and Nullstellensatz refutations fails to resolve

this question since PIGEON is hard for both these systems [2, 4]. Thus to prove

that ITER 6≤T PIGEON via a translation, one needs to find a proof system in which

PIGEON is easy but ITER is hard. So far, no such proof system has been found.

Another open question posed by [9] is whether the translations of TFNP2

problems into propositional and Nullstellensatz proofs can be reversed. That is,

given proofs of the totality of one TFNP2 problem from the totality of another

TFNP2 problem, is it possible to construct a Turing reduction between the two

problems? Chapter 5 answers this question in the affirmative, and is an even

stronger result because several of the conditions present in the forward translation

can be relaxed. Thus there is a kind of equivalence between constant depth

propositional proofs and Turing reductions between TFNP2 problems.

There are a number of issues to overcome when reversing the translation into

propositional proofs. The first problem is the precise statement of the reversal. In

the forward direction, the propositional proof of the totality ofQ1 on size parameter

n from instances of the totality of Q2 has formulas with size 2n
O(1)

and has 2n
O(1)

many nodes in its treelike representation. Therefore, standard assumptions must
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be made on the uniformity of the proofs for the reversal. Namely, we assume there

are polynomial time functions describing the proof, including: accessing the root

of the proof, finding the parent sequents of a given sequent, finding the principal

formula of an inference, determining the syntactic structure of a formula.

Another problem with formulating the reversal is to decide what kinds

of substitutions are allowable. Recall that the proofs given by the translation

of Chapter 3 use substitution instances of the totality of Q2. However, these

substitutions have a very special form. A query to Q2 passes a function F as input,

where F is polynomial time computable relative to f , the function input to Q1.

The substitutions constructed in the translation replace a variable x~w,y expressing

F (~w) = y with a disjunction of paths from the decision tree for F (~w) that output

y. Therefore, we expect that in the reverse direction the substitution instances of

the totality of Q2 arise from decision trees. Chapter 5 defines a “decision tree”

substitution intended to capture those substitutions expressible by decision trees.

In fact, decision tree substitutions are more general than the substitutions used in

the forward translation. This is one way in which the reversal is stronger than just

undoing the forward translation.

Once properly formulated, there are still issues to be resolved with the proof

of the reversal. A Turing reduction is obtained from propositional proofs by con-

structing a backwards traversal (with no backtracking) of a treelike representation

of propositional proofs. Because of this, the height of the propositional proof on

size parameter n must be nO(1) for the traversal to be polynomial time computable.

The previous translation of [9] did not give a height bound on the proofs; however,

Chapter 3 shows that the proofs do indeed have height nO(1).

This backwards traversal is not enough by itself to construct a Turing

reduction from Q1 to Q2. The reason is that such a Turing reduction must make

queries to Q2, and these queries require a function F as input. To define F , we

require side proofs of the totality of the decision tree substitution. A different

traversal of these proofs yields a procedure for F , which will have runtime bounded

by the height of the proofs. As before, these proofs were constructed in [9] without

bounds on the height. Again, Chapter 3 proves that they actually have height nO(1),
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which implies that F is polynomial time.

There are two ways in which these side proofs are more general that what

are produced in the forward translation. One is that the side proofs for F only need

to define the totality of F , and not the functionality of F . The reason for this is

based in the formulation of TFNP2 problems from Chapter 2. While the specifics

follow [9] closely, there is one new convention we adopt that makes functionality

generally unimportant. This is explained in detail in Chapter 5. Another difference

in the reversal is that the side proofs for F can be weakened so that the computation

of F (u) can fail and instead find a solution to Q1. This sort of behavior is not even

allowed in the forward direction.

Once the reversal has been proved for propositional proofs, it is natural

to ask whether a similar result holds in the Nullstellensatz setting. However,

such a result is not expected since, if there were, propositional and Nullstellensatz

proofs would be equivalent through the equivalence between propositional proofs

and Turing reductions. Chapters 4 and 5 discuss why it seems unlikely that a

Nullstellensatz reversal can even be well formulated.

The prior known reductions between TFNP2 classes have all been many-one

reductions [2]: the extra power of making multiple queries to TFNP2 problems

is never needed. With the extended translations of Chapters 3 and 4 to Turing

reductions, all known separations are with respect to Turing reductions. It is

then natural to ask whether there is a difference between many-one and Turing

reductions. That is, are there Q1, Q2 such that Q1 ≤T Q2 but Q1 6≤m Q2?

This is equivalent to the existence of a Q whose Turing closure is larger than

its many-one closure. Turing reductions are seemingly stronger than many-one

reductions, however Chapter 6 shows that the Turing and many-one closures are

the same for the classes PPA, PPAD, PPADS, and PLS. It is an open question

whether PPP is closed under Turing reductions or not. In fact, it is open whether

allowing even two calls to PIGEON is stronger than only allowing one call to

PIGEON.

The equivalence of the Turing and many-one closures for the classes men-

tioned above adds more evidence for the equivalence of many-one and Turing
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reductions. However, Chapter 7 produces a TFNP2 problem whose many-one and

Turing closures are distinct. The proof revolves around the binary operations

⊗,&,` on TFNP2 problems introduced in Section 7.2. Specifically, suppose Q1, Q2

are two TFNP2 problems. Then Q1 ⊗ Q2 is the problem of simultaneously solving

both an instance of Q1 and an instance of Q2. The problem Q1&Q2 is the problem

of solving a user specified choice of one of Q1 and Q2. The problem Q1 ` Q2 is

the problem of solving Q1 or Q2, where the user cannot specify which one to solve.

The notation for these operators is chosen to mimic properties from linear logic.

For example, Γ→A ⊗ B can be interpreted as the statement that Γ has enough

resources to solve both A andB. The sequent Γ→A&B has the interpretation that

Γ has enough to solve A or B individually, but may not be able to simultaneously

solve A and B. Lastly, Γ→A ` B can be interpreted as the statement that Γ has

enough resources to solve A or B individually, but there is no indication as to which

one is solvable.

The separation between many-one and Turing reductions in Chapter 7 shows

there are problems Q1 and Q2 such that Q1 can be solved with two queries to Q2

but cannot be solved with only one call to Q2. This result is shown by applying

⊗ and & to Q1, Q2 such that Q1 6≤T Q2 and Q2 6≤T Q1; for example, Q1 and

Q2 can be taken as LONELY and PIGEON, see Figure 1.1. Then Q1 ⊗ Q2 is

certainly Turing reducible to Q1&Q2, since a reduction needs only to choose to

solve Q1 out of Q1&Q2 and then choose to solve Q2 out of Q1&Q2. However, if

M : Q1 ⊗ Q2 ≤m Q1&Q2, then M ’s one query to Q1&Q2 becomes either a query

to Q1 or a query to Q2. Then this one query must solve both Q1 and Q2, which

we expect to give a many-one reduction from Q1 to Q2, or vice versa, which is a

contradiction. This is only an intuitive argument, Section 7.3 supplies the details

that make it correct.

Chapter 7 goes on to prove new and stronger separations by introducing

a kind of reduction called a k-reduction. A k-reduction from Q1 to Q2, written

Q1 ≤k Q2, is a Turing reduction that makes at most k queries to Q2; thus 1-

reducibility is identical to many-one reducibility. An important result of Chapter 7

is that there are Q1, Q2 such that Q1 ≤k+1 Q2 but Q1 6≤k Q2. The problems
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Q1, Q2 are formed from the mod d counting principles. The mod d principle states

that it is impossible to partition a set of size N 6≡ 0 mod d into sets of size d.

Chapter 7 formulates this principle as the TFNP2 problem MODd. The separation

of ≤k+1 and ≤k shows that Q1 = MODp1 ⊗ · · · ⊗ MODpk+1 is not k-reducible to

Q2 = MODp1& · · ·&MODpk+1 . Since it is obvious that k + 1 calls to Q2 suffice to

solve Q1, this result separates k calls from k + 1 calls.

MODd is the first formulation of the general mod d counting principle as

a TFNP2 problem; [21] defines an axiom which is equivalent to MOD2, but does

not treat the general case. Previously, modular counting had been studied in the

form of propositional formulas, for example the Count principles defined in [3]. The

main result of [3] characterizes the provability between different Count principles

via constant depth, polynomial size proofs; in particular, no such proofs exist

between the d1 and d2 Count formulas when d1, d2 are relatively prime. In order

to make use of this result in our setting, Section 7.4 shows that Count and the

propositional translation of MODd are equivalent via constant depth, polynomial

size propositional proofs. Proving the separation Q1 6≤k Q2, where Q1 and Q2

are defined in the preceding paragraph, is then a three step process: (1) translate

a supposed k-reduction into constant depth, polynomial size propositional proofs

between MODd principles (2) use the equivalence between Count and MODd to

obtain constant depth, polynomial size propositional proofs betweenCount formulas

(3) use the provability characterization of [3] for the Count formulas to derive a

contradiction. Chapter 7 contains the proof which fills in the details of this outline.

The MODd principles are interesting in their own right. The many-one

closure of each MODd principle defines its own subclass of TFNP2, called PMODd

(for “polynomial mod d argument”), in much the same way that ITER, for example,

defines PLS. In fact, MOD2 is exactly the problem LONELY, so that PMOD2 is

exactly PPA. This is not surprising since LONELY is based on the fact that a

graph with degree at most 2 has an even number of odd degree nodes, which is a

kind of parity argument. Chapter 8 explores the relative complexity of the classes

PMODd among themselves and with five other classes: PPAD, PPADS, PPA,

PPP, and PLS. The equivalence of MOD2 and LONELY motivates the search
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for separations and reductions involving MODd. And in fact, many of the results

involving LONELY do generalize to MODd, though there are still some relations

that are left open.

The relative complexity of PMODd discussed in Chapter 8 depends on

whether d is prime or not. This is because some of the separations, ITER 6≤T MODp

when p is prime for example, are proved using lower and upper bounds on the degrees

of Nullstellensatz refutations. The upper bounds are usually proved with respect to

a base field whose characteristic simplifies the polynomials involved. For example,

Section 8.2 shows that MODp has degree p Nullstellensatz refutations over fields

with characteristic p. It is an open question whether similar refutations exist for

composite d, and so our current proof method gives no information as to whether

ITER is Turing reducible to MODd when d is composite. Despite this, we still

conjecture that ITER 6≤T MODd for composite d. The results of Chapter 8 that do

not require Nullstellensatz refutations hold for all d, prime or composite.

There are several possible directions for future research. One such direction

is to consider corresponding weak versions of the main TFNP2 classes. For

instance, PIGEON is the TFNP2 problem characterized by the fact that there

is no injection from n + 1 pigeons to n holes. The corresponding weak problem

is WeakPIGEON characterized by the fact that there is no injection from n2

pigeons to n holes. It is shown in [9] through the translation to propositional

proofs that PIGEON 6≤m WeakPIGEON (the translation of Turing reductions into

propositional proofs of Chapter 3 extends this separation to Turing reductions).

The problems WeakOntoPIGEON and WeakLeftPIGEON are the weak versions

of OntoPIGEON and LeftPIGEON, respectively, and have the property that they

can be solved by polynomial time random algorithms. Since this property does not

hold for the corresponding strong versions, OntoPIGEON 6≤T WeakOntoPIGEON

and LeftPIGEON 6≤T WeakLeftPIGEON. (This type of argument can be used

to give an alternate proof that PIGEON 6≤T WeakPIGEON.) Relatively little

is known of the relations between weak TFNP2 classes. For instance, it is

clear that WeakOntoPIGEON ≤T WeakLeftPIGEON ≤T WeakPIGEON, but

it is unknown whether any of the reverse directions hold. Also, it is unknown
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whether the weak classes are closed under Turing reductions; for example, does

Q ≤T WeakOntoPIGEON imply that Q ≤m WeakOntoPIGEON?

Another direction for future work is generalizing TFNP2 classes. Given

a type-2 TFNP2 problem Q, any relation R that is characterized by universal

conditions can be added to Q as an oracle by adding as solutions all ~x such that

R(~x) fails. For example, recall that a (type-2) complete problem for PLS is ITER, for

which a solution is a local minimum in a graph arising from an integer cost function

with respect to a local search heuristic. Implicit in ITER is the standard ordering

< on the integers, which is characterized with purely universal conditions. If this

ordering is instead described by an oracle which answers queries “a < b?”, a more

general problem called GITER (for “generalized iteration principle”) is created.

The problem GITER is equivalent to the problem HOP (for “Hebrandized ordering

principle”) defined in [37], where it is shown that HOP is not reducible to the weak

pigeonhole principle. In fact, the separation is shown in the case when < is the

successor function. Let HOPsucc be the problem HOP with added oracle access to a

successor function, so that HOPsucc is not reducible to the weak pigeonhole principle;

define GITERsucc similarly. It is easy to show HOPsucc ≤m GITERsucc ≤m GITER,

but it is unknown whether there are reductions in the reverse directions.



Chapter2

Preliminaries

2.1 Overview

This chapter contains the definitions that are the basis for all other chapters.

Section 2.2 contains the definitions of TFNP (from [28]) and TFNP2 (from [2]). The

difference between the two classes is that a TFNP problem only takes strings (type-0

objects) as input, whereas a TFNP2 problem also takes functions (type-1 objects)

as inputs which are accessed as oracles. The class TFNP2 is a relativized version

of TFNP, and, as discussed in the introduction, it is therefore possible to prove

separations in TFNP2, whereas doing the same for TFNP implies P 6= NP.

Section 2.3 defines many-one and Turing reductions (1) from a TFNP

problem to a TFNP2 problem and (2) from a TFNP2 problem to a TFNP2 problem.

Case (1) is important to define important non-relativized TFNP subclasses in terms

of one canonical TFNP2 problem. Case (2) corresponds to TFNP relativized to a

generic oracle [2]. All separations are proved with respect to the reductions of case

(2). Section 2.4 shows how TFNP2 can arise from existential first-order sentences,

and follows [9, 30] closely. In particular, the classes PPA, PPAD, PPADS, PPP,

and PLS are defined in this manner in Section 2.5. The first-order formulation of

TFNP2 problems is an important concept used throughout the remaining chapters.

Section 2.6 defines the propositional LK and Nullstellensatz proof systems,

which are the two proof systems needed for the later chapters. Propositional LK

is a sequent calculus for propositional formulas. The complexity of a propositional

20
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LK proof can be measured by the number of symbols in the proof, the depth of

the formulas in the proof, and the height of a tree representation of the proof.

Propositional LK allows cuts, and thus it is also possible to define cut-free or

free cut-free proofs. The Nullstellensatz calculus is a refutation system based on

polynomials. The complexity measure of a Nullstellensatz proof is the maximum

degree of the polynomials involved.

2.2 TFNP andTFNP
2

An NP search problem is any problem for which solutions are recognizable

in polynomial time. It is total provided that, for each input, there is at least one

solution. The set of all total NP search problems is denoted TFNP.

Definition 2.2.1. Let x, y be binary strings, and let R(x, y) be a polynomial-time

predicate such that R(x, y) implies |y| ≤ p(|x|), for some polynomial p. The search

problem QR is: “Given x, find y such that R(x, y).” This is called an NP search

problem. Let QR(x) be the set {y|R(x, y)}. The problem QR is total if, for all x,

QR(x) 6= ∅. TFNP is the set of all total NP search problems.

By convention x, y, u, v, . . . denote binary strings (type-0 objects); only

binary strings are considered, so “string” always means “binary string”. Let Un

denote the set {0, 1}n of strings of length n. As defined above, TFNP problems

take only a string as input; these problems are called “unrelativized” or “type-1”

because they take as arguments type-0 objects. A Turing machine that only takes

string inputs is also called a type-1 Turing machine. It is useful to work with a

“relativized” version of TFNP, denoted TFNP2. The superscript “2” indicates

that the class contains type-2 problems, namely, problems that also take functions

(type-1 objects) as inputs. Similarly, a Turing machine that takes strings and

functions as inputs is called a type-2 Turing machine.

All type-1 inputs f considered will have arguments and outputs that are

strings of (the same) length n. The integer n serves as a size parameter: a type-2

Turing machine M with type-0 inputs (strings) and type-1 inputs (functions) will

be invoked with type-0 inputs all of length n and is constrained to only query its
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functions with values from Un. The machineM is said to run in polynomial time if

there is a polynomial p such that, for all type-0 inputs of length n and all type-1

functions f as above,M runs in time ≤ p(n), where any call to the function oracles

counts as a single time step.

Definition 2.2.2. A type-2 search problem Q of input signature (`, k1, . . . , kr) and

output arity s assigns a set Q(f1, . . . , fr, x1, . . . , x`) ⊆ U s
n to each choice of functions

fi : U
ki
n → Un and strings xj ∈ Un. It is required that ` ≥ 1, r ≥ 0, and ki ≥ 1.

Then Q is the following search problem: “Given f1, . . . , fr and x1, . . . , x`, find

y1, . . . , ys such that ~y ∈ Q(~f, ~x)”. If the property ~y ∈ Q(~f, ~x) is decided by a type-2

polynomial time Turing machine, then Q is a type-2 NP search problem. If in

addition Q(~f, ~x) 6= ∅ for all n > 0, all fi : U
ki
n → Un, and all xj ∈ Un, then Q is

total. The set of total type-2 NP search problems is denoted TFNP2.

Requiring ` ≥ 1 guarantees there is at least one string input, so that M

always knows the size parameter n. If there is no need for a particular string input,

the input 0n can be used as a placeholder. Note that if there are multiple string

inputs they must all be the same length n.

This definition of type-2 NP search problems effectively requires the search

problems to have linear growth rate; that is, the length of the output ~y is linear in

the length of the string inputs. It is more common to allow NP search problems

to have polynomial growth rate. However, the linear growth rate convention better

fits the formalizations into first-order formulas of Section 2.4. In addition, the

restriction to linear growth rate makes no essential difference since polynomial

growth rate search problems can be simulated by appropriate polynomial padding.

2.3 Many-one andTuringReductions

This section defines many-one and Turing reductions to a TFNP2 problem.

It is possible to reduce either a TFNP or TFNP2 problem to a TFNP2 problem.

The first case is used to define the common TFNP classes, such as PPA, PPAD,

PPADS, PPP, and PLS. The second case is used to separate TFNP classes with
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respect to a generic oracle. The definitions of many-one and Turing reductions to a

type-2 NP search problems are due to [2].

These reductions allow a Turing machine to use a search problem Q as a

subroutine. The key is to define how a Turing machineM can use a search problem

as an oracle; Definition 2.3.1 considers the case whereM is type-1.

Definition 2.3.1. A type-2 search problem Q(~g, ~y) is used as an oracle by a type-1

Turing machineM in the following manner: M has special query tapes for the string

inputs to Q and for each of the input functions gi to Q. The machine M presents

a query (g1, . . . , gr, y1, . . . , y`) to Q by writing each string yi on its designated query

tape and writing a Turing machine description of each function gi on its designated

query tape. Each gi must be given an explicit polynomial time clock pi as part of its

description. In the next step,M receives an answer ~z to Q(~g, ~y).

Letting m be the common length of the string values yi,this call to Q counts

as maxi pi(m) steps for the runtime ofM . The machineM runs in polynomial time

relative to Q providedM always halts within p(n) steps for some fixed polynomial p,

where n is the length of the string input toM .

If M is type-2 instead of type-1, then M may use an oracle Q(~g, ~y) in much

the same way; however, now the functions g1, . . . , gr are described by oracle Turing

machines that are allowed to query the functions input toM . Specifically, suppose

that input of the Turing machine M include functions f1, . . . , fr′ , each fi being

k′i-ary. Then, whenM invokes Q with functions g1, . . . , gr, each gi is described by a

type-2 Turing machineMi that has r
′ function oracles. The runtime ofM is defined

as before. Note that when a Turing machine gi invokes a function fj this counts

as a single time step; this reflects the fact that fj is an oracle and does not have a

runtime.

Note that we could have equivalently hadM write out a circuit descriptions

of the functions gi’s. Special oracle gates are used in the case where the gi’s have

oracle access to the fi’s.

We use type-2 oracle machines to define the notions of many-one and Turing

reducibility.
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Definition 2.3.2. LetQ1(~f, ~x) andQ2(~g, ~y) be type-2NP search problems. A type-2

oracle Turing machineM is a Turing reduction from Q1 to Q2 if for any input (~f, ~x)

to Q1,M outputs some ~z ∈ Q1(~f, ~x) in polynomial time relative to Q2 and ~f . In this

case, Q1 is said to be Turing reducible to Q2, denoted Q1 ≤T Q2 or M : Q1 ≤T Q2.

If Q1 ≤T Q2 and Q2 ≤T Q1, then Q1 and Q2 are Turing equivalent, Q1 ≡T Q2.

If M makes at most one query to Q2, then M is a many-one reduction, and

Q1 is many-one reducible to Q2, denoted Q1 ≤m Q2 orM : Q1 ≤m Q2. If Q1 ≤m Q2

and Q2 ≤m Q1, then Q1 and Q2 are many-one equivalent, Q1 ≡m Q2.

The definition of reductions applies immediately also to type-1 search

problems Q1; the only change is that the oracle machine M is type-1 instead

of type-2. The standard classes of (type-1) TFNP problems are defined in terms of

reductions to type-2 problems.

Definition 2.3.3. Let Q ∈ TFNP2 search problem. The class Cm(Q), respec-

tively CT(Q), is the set of TFNP problems which are many-one, respectively Turing,

reducible to Q.

If Q ∈ TFNP2, then Q is a canonical complete problem for Cm(Q).

Section 2.5 defines the canonical complete problems for the TFNP classes PPA,

PPAD, PPADS, PPP, and PLS.

2.4 TFNP
2 Problems andFirst-order Formulas

This section introduces Buresh-Oppenheim and Morioka’s method [9, 30] of

defining TFNP2 search problems and TFNP classes in terms of first-order formulas.

As a example, consider the following formula from [16, 13]:

0 < f(0) ∧ ∀x[x ≤ f(x)] → ∃x[x < f(x) ∧ f(f(x)) = f(x)]. (2.1)

The formula characterizes the iteration principle, ITER, and thereby the class PLS.

It is intended that this formula will be interpreted in the structure Un with < and ≤

corresponding to lexicographic ordering on n bit strings and with the constant

symbol 0 denoting the string 0n. It is clear that (2.1) is valid in all such structures.
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This formula expresses the totality of the TFNP2 search problem ITER: “Given 0n

as a size parameter and f : Un → Un, find u ∈ Un such that of the following holds:

(1) f(0n) = 0n, or (2) f(u) < u, or (3) u < f(u) and f(f(u)) = f(u).” As is well

known, ITER is many-one complete for PLS, and thus PLS = Cm(ITER). (In fact,

also PLS = CT(ITER) as is shown in Chapter 6.)

The example of ITER generalizes to other existential sentences valid in Un.

These first-order sentences will generally use both uninterpreted function symbols

(e.g., the function f above) and interpreted constant symbols, relation symbols and

function symbols (e.g., 0, <, and ≤). The intent is that the interpreted symbols

depend only on n and thus have a fixed meaning in Un, while the uninterpreted

symbols will be the type-1 inputs.

It is possible to assume without loss of generality that there are no relation

symbols and no uninterpreted constant symbols. Uninterpreted constant symbols c

can be replaced a new unary function symbol fc, and using the term fc(0) in place

of c. Relation symbols R, whether interpreted or uninterpreted, may be replaced

with a new function symbol fR for the graph of R and then using fR(~t) = 0 in place

of R(~t). This works since, as usual, empty structures are not allowed, so n ≥ 1

and the universe has at least two members. The advantage of removing interpreted

relation symbols is that the only atomic formulas are equalities of the form s = t for

terms s and t. The equality sign, =, always denotes true equality. The purpose of

eliminating uninterpreted constant symbols is to avoid the oddity of having 0-ary

functions as inputs to a predicate; the type-0 inputs play the same role and could

be viewed as 0-ary function symbols. (Interpreted constant symbols could also be

eliminated, but this yields no advantage, so it is not done.)

Following [9], interpreted constant and function symbols are called “built-

in”. The interpretation of built-in symbols depends only on n. Commonly used

built-in symbols include 0, 1, f≤, and f<, and are interpreted by 0n, 1n, and the

graphs of ≤ and <, respectively. Any use of ≤ and < is to be understood as

shorthand notation for formulas using f≤ and f<.

A “basic” language is one that follows the above simplifications.

Definition 2.4.1. A language L is basic if it is finite and contains only the following
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symbols: built-in constant symbols and function symbols, equality (=), and the

non-built-in function symbols f1, . . . , fr.

Definition 2.4.2. An ∃-formula is a formula of the form ∃~xφ(~x) over a basic

language, where φ is quantifier-free. If ∃~xφ(~x) has no free variables, then it is an

∃-sentence. An ∃-sentence is total if it is true in all Un.

Total ∃-sentences give rise to NP search problems in the obvious way.

Definition 2.4.3. Suppose Φ is an ∃-sentence of the form ∃~xφ(~x) over a basic

language with non-built-in functions f1, . . . , fr. The TFNP
2 problem QΦ is: “Given

a string 0n and interpretations for the fi’s in the structure Un, find ~u ∈ Un such that

φ(~u) holds.” If Φ is total, then QΦ is called a first-order TFNP2 problem.

If Φ is total, it is clear that QΦ is in TFNP2. The string input 0n to QΦ

serves only as a size parameter. If a formula g(~u) = v occurs in an ∃-sentence Φ, the

function g is either built-in or not. If g is not built-in, it is one of the input functions

to QΦ. If g is built-in, and ~u, v ∈ Un are fixed, then g(~u) = v has a fixed truth value

that depends only on n and not on the choice of fi’s. Similarly, if v, w ∈ Un are

fixed, then v = w will be either true or false, independently of the choice of fi’s.

The following definition simplifies the technical details of working with

first-order TFNP2 problems in Chapters 3 and 4.

Definition 2.4.4. Let QΦ be a first-order TFNP2 problem, where Φ is a formula

over a basic language with one non-built-in function. Then QΦ is a basic first-order

TFNP2 problem if Φ is of the form ∃~xφ(~x), where φ(~x) is in disjunctive normal form

(DNF)
∨J

j=1 φj(~x), such that, for each 1 ≤ j ≤ J , φj(~x) is a conjunction of formulas

of the form g(~u) = v, v = w, or v 6= w, where ~u, v, w are either variables or constant

symbols.

By a slight abuse of notation, if Φ is ∃~xφ(~x) with φ in DNF
∨J

j=1 φj(~x), then

φj(~x) is called the jth disjunct of Φ.

It is easy to see that every first-order TFNP2 problem QΦ is equivalent to a

basic first-order TFNP2 problem QΦ′ . If Φ is ∃~xφ(~u), then putting φ in DNF just

increases the size of Φ, and thus QΦ is still in TFNP2. Complex terms in Φ may
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be eliminated by introducing new existentially quantified variables: for example,

f(g(x)) = h(y) can be replaced with ∃u, v[g(x) = u∧h(y) = v∧f(u) = v]. Formulas

of the form g(~u) 6= v may be replaced with ∃x[g(~u) = x ∧ x 6= v]. The absence of

formulas of the form g(~u) 6= v simplifies the arguments in Chapters 3 and 4. This

absence also has some implications for the reversal in Chapter 5 and the degree p

Nullstellensatz refutations of Chapter 8; see the discussion after Theorem 5.2.1 and

the discussion before Theorem 8.2.4, respectively, for more details.

If there are multiple non-built-in function symbols f1, . . . , fr in Φ, then let

i be a built-in constant symbol with value equal to the binary expansion of i in

all sufficiently large Un. (The case when i > 2n is irrelevant, since the results

rely on asymptotics). Let f have arity equal to one plus the maximum arity of

the fi’s. Then each occurrence of fi(~x) in Φ can be replaced with f(i, ~x,~0), where ~0

represents extra inputs that pad out to the arity of f . If Φ′ is the resulting formula,

then clearly QΦ′ is a basic first-order TFNP2 problem and QΦ ≡m QΦ′ .

2.5 TheClassesDefined

Section 2.4 already defined ITER and PLS, however it is restated here for

convenience. The rest of the section defines the four classes that are shown in

Figure 1.1.

PLS. Let Φ be the prenex form of the formula

0 < f(0) ∧ ∀x[x ≤ f(x)] → ∃x[x < f(x) ∧ f(f(x)) = f(x)].

Define ITER to beQΦ. Then ITER expresses the iteration principle discussed

above which characterizes PLS. In fact, define PLS to be Cm(ITER).

PPAD. Let Φ be the prenex form of the formula

g(0) = 0 ∧ f(0) 6= 0 → ∃x[x 6= g(f(x)) ∨ (x 6= 0 ∧ x 6= f(g(x)))].

This gives the onto pigeonhole principle, OntoPIGEON = QΦ. Note that

g acts as the inverse of f . The class PPAD is Cm(OntoPIGEON).
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PPADS. Let Φ be the prenex form of the formula

g(0) = 0 ∧ f(0) 6= 0 → ∃x[x 6= g(f(x))]. (2.2)

Define LeftPIGEON to beQΦ. Note that g is a left inverse of f . Then PPADS

is Cm(LeftPIGEON).

PPA. Let Φ be the prenex form of the formula

f(0) = 0 → ∃x[x 6= f(f(x)) ∨ (x 6= 0 ∧ x = f(x))].

Define LONELY to be QΦ. Then LONELY expresses the following parity

principle, or mod 2 counting principle. If f pairs elements, and pairs 0 with

itself, then there is another node paired with itself. Since the universes Un

have even cardinality, LONELY is total. Let PPA be Cm(LONELY).

PPP. Let Φ be a prenex form of the formula

∀x[f(x) 6= 0] → ∃x, y[x 6= y ∧ f(x) = f(y)].

This expresses the standard pigeonhole principle. Let PIGEON be QΦ and

PPP be Cm(PIGEON).

The above definitions of PPAD, PPADS and PPA are slightly different from the

prior definitions by [2, 9, 32]. It is more common to define them in terms of the

search problems SOURCE.or.SINK, SINK, and LEAF, respectively. It is easy,

however, to see that the above definitions are equivalent.

Theses five classes are defined as first-order TFNP2 problems. As noted in

Section 2.4, any first-order TFNP2 problem is many-one equivalent to a basic one.

The simplifications applied to the formula (2.2) defining LeftPIGEON yields

∃x, y, z[(f(2, 0)=x ∧ x 6=0) ∨ f(1, 0)=0 ∨ (f(1, x)=y ∧ f(2, y)=z ∧ z 6=x)],

where f is now a binary function. The occurrences of f(t) and g(t) in (2.2) have

been replaced by f(1, t) and f(2, t), respectively, where 1 and 2 are to be interpreted

as 0n−11 and 0n−210 in Un, respectively. Note that the instance of f(0) 6= 0 has
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been replaced by an equivalent expression, and that the quantifier-free subformula

is in disjunctive normal form.

Since any first-order TFNP2 problem is equivalent to a basic one, the five

first-order TFNP2 problems above will be assumed to be basic or not depending on

context.

2.6 Propositional LK and Nullstellensatz Proof

Systems

Chapters 3 and 4 deal with two types of propositional proof systems:

constant depth LK (Frege) proofs formalized with the sequent calculus, and the

Nullstellensatz proof system. The conventions for both systems are standard. This

section assumes some familiarity with these proof systems, but quickly reviews

some terminology.

The formulation we use for propositional proofs is a propositional version

of the sequent calculus called propositional LK. Since the first-order version of

LK is never used, the modifier “propositional” will frequently be omitted from

“propositional LK.” The formulas in LK proofs are formed from propositional

variables, >, ⊥ and the connectives ∧, ∨, ¬. Negations are allowed only on

propositional variables, and ¬x is usually denoted x. An LK proof consists of

sequents Γ→∆, where Γ,∆ are finite multisets of propositional formulas. The set

Γ is called the antecedent and the set ∆ is called the succedent; collectively, Γ and

∆ are called cedents. The multisets Γ,∆ are usually considered to be unordered,

though occasionally we will put an ordering on them. The intended meaning of the

sequent Γ→∆ is that the conjunction of the formulas in Γ implies the disjunction

of the formulas in ∆.

There are many equivalent formulations of propositional LK, but we assume

the rules of inference are given by Figure 2.6. The sequents above the line in an

inference are called the hypotheses of the inference and the sequent below the line

is called the conclusion of the sequent. The absence of the exchange rules
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Γ, B,A,Π→∆
Γ, A,B,Π→∆

Γ→Σ, B,A,∆
Γ→Σ, A,B,∆

corresponds to the fact that the sets of formulas are unordered multisets. An LK

proof is a tree of sequents formed by applying the rules of inference such that the

leaves are either logical axioms or > or ⊥ inferences. The conclusions of these three

inferences are called logical initial sequents. Occasionally, the leaves of an LK proof

will be allowed to be non-logical initial sequents. A family of LK proofs can be

measured by their size, their depth, their height and their cut complexity; see [6]

or [26] for instance. The depth of a formula is based on counting the alternations of

∧’s and ∨’s. Depth 0 formulas are literals. Fix a size parameter S. Then depth 0.5

formulas are conjunctions (or disjunctions) of at most log S many literals. Depth

d+1 formulas are the depth d formulas together with conjunctions (or disjunctions)

of at most S many depth d formulas. The depth, d(P), of a proof P is the maximum

depth of any formula in any sequent in the proof. The size, s(P), of P is the total

number of symbols in P , and it is required that s(P) ≤ S. The height, h(P), of P

is the height of the tree representation of P , i.e., the maximum number of sequents

along any branch from an initial sequent to the conclusion.

The separations in Chapters 3 and 4 only rely on asymptotic growth rates

of families of constant depth proofs Pn. The size of Pn will be bounded by

S(n) = 2n
O(1)

, and its height will be bounded by nO(1). Letting N = 2n, the

size of Pn is bounded by 2(logN)O(1)
and its height bounded by (logN)O(1); the

formulas proved by these proofs will be constant depth and will have size bounded

quasipolynomially in N . The complexity of a proof is measured with respect to the

size of the sequent it proves. Thus, (Pn)n will be a family of quasipolynomial size,

polylogarithmic height, free-cut free proofs. It follows that the Pn’s are constant

depth.

For information on the Nullstellensatz system, refer to [3] or [12]. A

Nullstellensatz proof consists of a polynomial over a field F , with variables that are

intended to range over the field elements 0 and 1 representing the values “False”

and “True”, respectively. Starting from a set of initial polynomials qi, intended to

express a set of propositional conditions φ, a Nullstellensatz refutation is a set of
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Γ, A,B→∆
Γ, A ∧ B→∆

∧ : left
Γ→∆, A Γ→∆, B

Γ→∆, A ∧ B
∧ : right

Γ, A→∆ Γ, B→∆
Γ, A ∨ B→∆

∨ : left
Γ→∆, A,B
Γ→∆, A ∨ B

∨ : right

Γ→∆, x
Γ, x→∆

¬ : left
Γ, x→∆
Γ→∆, x

¬ : right

Γ→∆, A A,Γ→∆
Γ→∆

Cut
p→p Logical Axiom

→>
>

⊥→ ⊥

Γ, A,A→∆
Γ, A→∆

Contract:left
Γ→∆, A,A
Γ→∆, A

Contract:right

Γ→∆
Γ′→∆′ Weakening

Figure 2.1: Γ′ and ∆′ are sets of formulas such that Γ ⊆ Γ′ and ∆ ⊆ ∆′.

polynomials pi such that

p1q1 + p2q2 + · · · pmqm = 1.

This serves to prove that the qi’s cannot be identically equal to zero; thus the

propositional formulas φ cannot be simultaneously satisfied. The polynomials

x2 − x are included among the qi’s to enforce the condition that the variables x are

0/1-valued. It is common to measure the complexity of a Nullstellensatz refutation

in terms of its total degree, i.e., the maximum total degree of the polynomials piqi.

The Nullstellensatz refutations of Chapter 4 will have degree (logN)O(1), that is,

polylogarithmic degree.

This chapter contains material from the paper “Propositional proofs and

reductions between NP search problems” which is currently accepted for publication

by the Annals of Pure and Applied Logic. This paper is co-authored by the

dissertation author and Samuel R. Buss.



Chapter3

ForwardDirection,Propositional

LK

3.1 Overview

The main result of this chapter is Theorem 3.3.1, which states that if

Q1, Q2 ∈ TFNP2 and M : Q1 ≤T Q2, then there are constant depth, polynomial

size LK proofs of the totality of Q1 from the totality of Q2. In particular, M can

make polynomially many calls to Q2. As mentioned in the introduction, this result

was proved in [9] for the case when M can only make one call to Q2, that is when

M : Q1 ≤m Q2. Using existing upper and lower bounds from proof complexity and

the translation from many-one reductions gave new proofs of PIGEON 6≤m ITER,

LONELY 6≤m ITER, and LONELY 6≤m PIGEON. Since Theorem 3.3.1 extends the

previous translation to Turing reductions, there are new proofs these separations

with respect to Turing reductions.

In addition to extending the translation to Turing reductions, Theorem 3.3.1

has other advantages over the results of [9]. The first is that [9] assumes that Q2 has

the instance extension property. This property states that an instance of Q2 on size

n can be extended to an instance of size nO(1) such that solutions to the original,

smaller instance of Q1 can be extracted from solutions to the larger instance in

polynomial time. A minor improvement is that Theorem 3.3.1 does not assume

32
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the instance extension property. A more significant fact is that Theorem 3.3.1

gives a more careful analysis of the height and cut complexity of the LK proofs.

This is important in formulating the reverse problem of using propositional LK

proofs to construct a Turing reduction M : Q1 ≤T Q2. Another advantage of

using Turing reductions over many-one reductions is that the reverse construction

produces Turing reductions. The reverse problem is stated and proved in Chapter 5.

Decision trees are important tools in the proof of Theorem 3.3.1. The first

kind of decision tree describes the computation of a Turing machine relative to a

function oracle. This type of decision tree has been studied extensively, see [2, 3, 9].

A slightly different type of decision tree is needed for the computation of a Turing

machine that uses a TFNP2 problem as an oracle. The difference is that an edge

in such a decision tree may indicate that a query to Q ∈ TFNP2 is answered by ~u.

However, the verification that ~u solves the instance of Q runs in polynomial time

relative to some function f , and thus the verification process may reveal values

for f that contradict previously known values. Such an edge is said to contain

an implicit contradiction. Traces, defined in Section 3.4, are analogous to paths

in decisions trees for function oracles, and are the technical tool needed to avoid

implicit contradictions.

Section 3.2 defines the propositional LK formulas that encode a TFNP2

problem. Section 3.3 states the translation in Theorem 3.3.1 and related results.

Using these, the separations of [9] are proved in the context of Turing reductions;

the proof of Theorem 3.3.1 is delayed until Section 3.5. Section 3.4 defines the

two types of decision trees mentioned above. Decision trees play an important role

throughout the remaining chapters. Traces are also defined in Section 3.4, and are

the main technical tool needed to prove Theorem 3.3.1, as well as Theorem 4.3.1,

which is the main result of Chapter 4.

3.2 Propositional LKFormulation

This section defines the propositional formulas that express the totality of

a TFNP2 search problem defined by an ∃-sentence. Let QΦ be a basic first-order
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TFNP2 problem, where the language has one uninterpreted, k-ary function symbol

f ; see Section 2.4 for details. The goal is to define the propositional sequent

FΦ,n→GΦ,n that expresses the totality of the search problem QΦ on inputs of

length n.

As an example, consider the case of the problem LONELY defined in

Section 2.5. The problem LONELY is QΦ where Φ is the prenex form of

f(0) = 0 → ∃x[x 6= f(f(x)) ∨ (x 6= 0 ∧ x = f(x))].

Note that QΦ is a first-order TFNP2 problem, but it is not a basic one since there

are nested function symbols and subformulas of the form f(a) 6= b. As noted

in Section 2.4, LONELY is equivalent to a basic first-order TFNP2 problem QΦ′ .

Specifically, Φ′ is the formula

∃x, y, z[(f(0) = x ∧ x 6= 0) ∨ (y = f(x) ∧ z = f(y) ∧ x 6= z) ∨ (x 6= 0 ∧ f(x) = x)].

The translation of an instance of QΦ′ with size parameter n uses the propositional

variables xu,v, for all u, v ∈ Un, which define the graph of f : the intended meaning

of xu,v is that f(u) = v. This is the reason that a basic first-order TFNP2 problem

disallows terms with nested function symbols. For the xu,v’s to properly define

a function, there should be exactly one value v ∈ Un for each u ∈ Un such that

xu,v holds. The totality is expressed by the formulas {
∨

v xu,v : v ∈ Un}, and the

functionality is expressed by the formulas {xu,v ∨ xu,v′ : u, v, v
′ ∈ Un, v 6= v′}. The

union of these sets is FLONELY,n.

The last part of the translation expresses the totality of the search problem

QΦ′ on an instance of size n. One solution is x0n,u for any u 6= 0n, which corresponds

to the first disjunct of Φ′. A triple u, v, w ∈ Un is a solution if xu,v ∧ xv,w ∧ u 6= w

holds (corresponding to the second disjunct) or if u 6= 0n∧xu,u holds (corresponding

to the third disjunct). Therefore the existence of a solution to LONELY on size n

is expressed by the formula GLONELY,n defined as

∨

u∈Un
u 6=0n

x0n,u ∨
∨

u,v,w∈Un

u 6=w

(xu,v ∧ xv,w) ∨
∨

u∈Un
u 6=0n

xu,u.

(This formula differs in unimportant ways from the one produced by Definition 3.2.2

below. This formulation better captures the intuition; see the discussion at the end
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of this section.) The search problem LONELY on size n is then expressed as the

sequent FLONELY,n→GLONELY,n.

The following definitions generalize this translation to any basic first-order

TFNP2 problem.

Definition 3.2.1. Let Φ be an ∃-sentence over a basic language with one uninter-

preted, k-ary function symbol. Throughout the definition, ~u is a vector of k elements

of Un. Then TotΦ,n is the set of formulas

{∨
v∈Un

x~u,v : ~u ∈ Un

}

and FuncΦ,n is the set of formulas

{x~u,v ∨ x~u,v′ : ~u, v, v′ ∈ Un, v 6= v′} .

The formulas
∧
TotΦ,n and

∧
FuncΦ,n are formed as balanced conjunctions.

The antecedent FΦ,n is the cedent
∧

TotΦ,n,
∧

FuncΦ,n.

The notation
∨

in the definition of TotΦ,n is shorthand for 2n − 1 many

binary disjunctions, and hence formulas in TotΦ,n have depth 1. The formulas in

FuncΦ,n are each depth 0.5 since they each are a disjunction of two literals. The sets

TotΦ,n and FuncΦ,n both contain 2n
O(1)

many formulas. Specifically, TotΦ,n contains

2kn many formulas, each of size O(2n), and FuncΦ,n contains 2(k+2)n − 2(k+1)n many

formulas, each a disjunction of two literals. Therefore, the conjunction
∧

TotΦ,n is

a depth 2 formula and the conjunction
∧

FuncΦ,n is a depth 1.5 formula.

FΦ,n expresses the well-definedness of the uninterpreted function symbol f ;

note FΦ,n depends only on n and the arity f . The succedent, GΦ,n, is defined below

and expresses the totality of the search problem QΦ.

Definition 3.2.2. Suppose QΦ is a basic first-order TFNP2 problem. That is,

the language contains one uninterpreted, k-ary function symbol f and Φ is in

disjunctive normal form ∃~x
∨J

j=1 φj(~x). Furthermore, each φj is a conjunction of

literals `j,1, . . . , `j,ij such that each literal is of the form g(~a) = b or b = c or b 6= c,

where each ~a, b, c is either a variable xi or a built-in constant symbol. Note that

g may be either a built-in function or the uninterpreted function symbol f . Let ~x be
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a vector of s variables x1, . . . , xs; fix n ≥ 1; and let ~u = u1, . . . , us be a vector of fixed

values in the universe Un.

The intent is that ~u assigns values to the xi’s, namely, val~u(xi) = ui.

This notation is extended to built-in constant symbols c by letting val~u(c) equal

the interpretation of c in Un. The propositional translation ` ~u of ` under the

assignment ~u is defined as follows:

(a) If ` is f(~a) = b, then ` ~u is xval~u(~a),val~u(b). The subscript val~u(~a) denotes the

vector of the values of the members of the vector ~a.

(b) Otherwise ` involves only built-in symbols and variables that have been assigned

values by ~u. In this case, ` ~u is either > or ⊥, depending on whether ` is true

or false in Un with these assigned values.

The propositional translation φj ~u of the disjunct φj is defined to be the conjunction

of the translations of the literals in φj, namely,

`j,1 ~u ∧ `j,2 ~u ∧ · · · ∧ `j,ij ~u
.

The set SolnΦ,n is defined to be the set containing the formulas φj ~u, where j =

1, . . . , J , and ~u ranges over all values from Un. The formula GΦ,n is defined to be
∨
SolnΦ,n, namely, a balanced disjunction of the formulas in SolnΦ,n.

We abuse notation slightly when QΦ is a named problem such as ITER,

PIGEON, etc. For example, let Φ be the ∃-sentence such that QΦ is ITER. To

avoid having to write out this specific Φ, we simply write FITER,n instead of FΦ,n. A

similar convention holds for other the other named problems.

Each φj ~u is SolnΦ,n is a conjunction of constantly many literals, so that

each formula in SolnΦ,n is depth 0.5. Since SolnΦ,n contains 2kJn formulas, GΦ,n is

a depth 1.5 formula. Overall, the maximum depth of the formulas in FΦ,n→GΦ,n

is 2, due to the presence of
∧

TotΦ,n. Also note that, since QΦ is a basic first-order

TFNP2 problem, the formulas in SolnΦ,n contain no negated variables.

As an example of the construction in part (b) in Definition 3.2.2,

again consider LONELY. Fix u, v, w ∈ Un such that u 6= w. Then

y = f(x) ∧ z = f(y) ∧ x 6= z u,v,w is xu,v ∧ xv,w ∧ >; note how x 6= z is
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translated to > since the fixed values u and w are not equal. Similarly,

y = f(x) ∧ z = f(y) ∧ x 6= z u,v,u is xu,v ∧ xv,u ∧ ⊥, because x 6= z u,v,u is now

⊥ since it is false that u does not equal u.

To see how the construction deals with built-in symbols, consider the disjunct

x 6= 0∧ f(x) = x from LONELY; recall the interpretation of 0 in Un is 0n. Then for

any u ∈ Un which is not 0
n, x 6= 0 ∧ f(x) = x u is>∧xu,u and x 6= 0 ∧ f(x) = x 0n

is ⊥ ∧ x0n,0n .

In general, SolnΦ,n contains redundant and unimportant information. Take

the example of LONELY. Even though the disjunct x 6= 0 ∧ f(x) = x does not

contain y or z the set SolnLONELY,n contains x 6= 0 ∧ f(x) = x u,v,w for all choices

of u, v, w ∈ Un. Thus for each u 6= 0n there are 22n copies of the formula > ∧ xu,u.

Note that the > in this formula can be removed to obtain an equivalent formula,

but this is not done. The same holds for ⊥, in particular x 6= 0 ∧ f(x) = x 0n,v,w

is ⊥∧ x0n,0n . These simplifications are not used because they would not reduce the

number of formulas in SolnLONELY,n below 2n
O(1)

, and the formulas in SolnLONELY,n

would still be constant size. In the example above, the formula GLONELY,n is worked

out using these simplifications, even though they are not present in the definition,

because at the time these details would have distracted from the motivation for the

example.

3.3 MainTheorem and Separations

This section states Theorem 3.3.1, which is the main result of this chapter;

the proof appears in Section 3.5. Theorem 3.3.1 states that if QΦ ≤T QΨ, then

there are “well-behaved” propositional LK proofs of the sequents FΦ,n→GΦ,n from

substitution instances of sequents FΨ,m→GΨ,m, where m = nO(1). A “substitution

instance” of FΨ,m→GΨ,m means any sequent obtained by substituting arbitrary

propositional formulas λ~u,v for the variables x~u,v of FΨ,m→GΨ,m. The substitution

instances will required to be of depth 1.5; that is, the formulas λ~u,v will be depth 1.5.

(In fact, the substitutions defined below by (3.1) will be “decision tree substitutions”

as defined in Chapter 5.) Recall that we only allow negations on variables, thus
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when substituting for x~u,v De Morgan’s laws are used to push the negation in λ~u,v

down to the literals.

Theorem 3.3.1. Let QΦ and QΨ be basic first-order TFNP2 problems, and suppose

QΦ ≤T QΨ. Then there are proofs Pn of the sequents

FΦ,n→GΦ,n

such that:

(a) The initial sequents of Pn are either logical axioms or are depth 1.5 substitution

instances of sequents FΨ,m→GΨ,m;

(b) Pn has size 2n
O(1)

, height nO(1), and constant depth; and

(c) There are no free cuts in Pn.

The valuesm are implicitly bounded bym = nO(1) since the entire proof Pn,

and hence each substitution instance of a sequent FΨ,m→GΨ,m, has size bounded

by 2n
O(1)

. Recall that a non-free cut is one whose cut formula is a descendant of a

formula in an initial sequent, in this case, a formula from a substitution instance of

a sequent FΨ,m→GΨ,m.

Corollary 3.3.2. Let QΦ and QΨ be basic first-order TFNP2 problems, and suppose

that QΦ ≤T QΨ. If the sequents FΦ,n→GΦ,n do not have quasipolynomial size,

constant depth proofs, where size is measured in terms of the size of the endsequent,

then the sequents FΨ,n→GΨ,n do not have quasipolynomial size, constant depth

proofs.

Corollary 3.3.2 follows immediately from Theorem 3.3.1, since the proofs

from Theorem 3.3.1 can be combined with substitution instances of proofs of

FΨ,m→GΨ,m to obtain proofs of FΦ,n→GΦ,n.

Existing upper and lower bounds on the complexity of proofs of FΦ,n→GΦ,n

in conjunction with Corollary 3.3.2 give Turing separations between various TFNP2

problems. The separations (a)-(c) of Corollary 3.3.3 were already proved in [2, 29].

However, Corollary 3.3.3 gives new proofs of these facts as well as emphasizes the
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connection to proof complexity theory. Previously, [9] used proof complexity results

to recreate these separations only with respect to many-one reductions, not Turing

reducibility.

Corollary 3.3.3. (a) PIGEON 6≤T ITER. [29]

(b) LONELY 6≤T ITER. [29]

(c) LONELY 6≤T PIGEON. [2]

Proof. [4] shows that FΦ,n→GΦ,n require exponential size bounded depth proofs

when QΦ is LONELY or PIGEON. By [9], FITER,n→GITER,n have quasipolynomial

size bounded depth proofs. The separations (a) and (b) follow by invoking Corol-

lary 3.3.2. It is shown in [5] that proving FLONELY,n→GLONELY,n from substitution

instances of FPIGEON,n→GPIGEON,n requires exponential size bounded depth proofs.

Therefore (c) holds by Theorem 3.3.1.

The proof of Theorem 3.3.1 will use the possible executions of a Turing

reduction M to construct the proofs Pn. Section 3.4 constructs, for each n ≥ 1, a

set of depth 1.5 substitutions σ1, . . . , σr, for r = 2n
O(1)

. A substitution will substitute

a big (size 2n
O(1)

) disjunction of small (size nO(1)) conjunctions of variables. In order

to enforce the condition that negations apply only to variables, when substituting

for a negated atom, De Morgan rules are used to push the negations down to atoms;

that is to say, a negated atom is replaced by a big conjunction of small disjunctions

of negated variables.

The next theorem implies Theorem 3.3.1, and better suits the statement of

the reversal in Chapter 5. Substitutions are denoted with postfix notation, so Aσ

indicates the result of applying the substitution σ to the propositional formula A.

Theorem 3.3.4. Let QΦ and QΨ be basic first-order TFNP2 problems, and suppose

QΦ ≤T QΨ. Then there is a set of depth 1.5 substitutions σ1, . . . , σr, and a set of

sizesm1, . . . ,mr such that the following sequents have a constant-depth, cut-free LK

proofs of size 2n
O(1)

and height nO(1):

(a) (
∧
TotΦ,n)→ (

∧
TotΨ,mi

) σi, for each i = 1, . . . , r,

(b) (
∧

FuncΦ,n)→ (
∧

FuncΨ,mi
) σi, for each i = 1, . . . , r,
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(c)
∧r

i=1 (
∨

SolnΨ,mi
) σi, FΦ,n→GΦ,n.

As Chapter 5 discusses, the conditions (a) and (b) imply that the σi’s are

decision tree substitutions; indeed, the conditions (a) and (b) are a little stronger

than what is required for decision tree substitutions.

To see that Theorem 3.3.1 follows immediately from Theorem 3.3.4, first use

cuts with the substitution instances FΨ,mi
σi→GΨ,mi

σi and the proofs from parts

(a) and (b) to derive the sequents

FΦ,n→GΨ,mi
σi,

for i = 1, . . . , r. Since GΨ,mi
σi is (

∨
SolnΨ,mi

)σi, applying ∧:right in a balanced

manner derives the sequent

FΦ,n→
r∧

i=1

(∨
SolnΨ,mi

)
σi.

Finally, cut this against the sequent (c).

The rest of this chapter gives the proof of Theorem 3.3.4. Section 3.4 defines

decision trees which are needed to define the substitutions. Lemma 3.5.1 proves

parts (a) and (b) and Lemma 3.5.2 proves part (c).

3.4 DecisionTrees

Suppose that M is a Turing reduction from QΦ to QΨ. The machine M

takes as input (α, 0n) where α : Uk
n → Un. (The type-0 input is just 0n since

w.l.o.g. Φ is an ∃-sentence and has no free variables.) M makes queries to the

input function α and to the search problem QΨ. A call to QΨ(β, 0
m) passes a

function β : Uk′

m → Um; the function β is specified by describing a polynomial time

oracle Turing machine M ′ such that, for all ~w ∈ Um, M
′(~w) computes the value

of β(~w). The machine M ′ is allowed to make oracle calls to α but otherwise runs

deterministically. Accordingly, for particular ~w ∈ Um, the computation of M ′(~w)

can be described by a (α, n)-decision tree TM ′, ~w such that the internal nodes of

TM ′, ~w represent queries to α and each leaf of TM ′, ~w is labeled with an output value:
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Definition 3.4.1. An (α, n)-decision tree is a tree where each internal node is

labeled α(~u) for some ~u ∈ Un. Each internal node has 2n children, with the edges to

its children labeled with values v, one edge for each v ∈ Un. Leaves may be labeled by

any member z of Um.

In TM ′, ~w, an internal node labeled α(~u) corresponds to a query to α(~u),

an outgoing edge labeled v corresponds to an oracle response that α(~u) = v, and

a leaf labeled with z indicates that M ′(~w) outputs z = β(~w). It is clear that

if M ′(~v) has runtime bounded by r, then there is a canonical way to build a

corresponding (α, n)-decision tree of height ≤ r which faithfully represents the

computation ofM ′(~v). (This use of decision trees to represent oracle computations

is very similar to many prior works, including [2, 3, 9].)

To simplify some aspects of the proofs in Section 3.5, we adopt the convention

that all nodes have 2n children, even if a particular value α(~u) is queried twice on

the same branch in the tree. Paths that contain a contradictory pair of answers do

not apply to any actual computation ofM ′.

A branch in a tree is any path that starts at the root and descends to a leaf.

The set of branches in T is denoted br(T ), and brz(T ) is the set of branches that

end at leaf with label z. The length |P | of a branch P is the number of edges in P .

The height h(T ) of T is the maximum length of any branch in T . The size s(T )

of T is the number of nodes in T . The oracle queries to QΨ invoked by the Turing

reductionM : QΦ ≤T QΨ give rise decision trees TM ′,~v which have height nO(1), and

therefore size (2n)n
O(1)

= 2n
O(1)

.

Definition 3.4.2. A branch P in an (α, n)-decision tree is identified with the

conjunction ∧I

i=1
x~ui,vi ,

where {α(~ui) = vi}
I
i=1 is the set of α values set by the edge labels of P . The formula

P is defined to be
∨I

i=1 x~ui,vi: this expresses the negation of P .

When using P in a cedent, it is convenient to replace the ∧’s with commas

to control the complexity of formulas appearing in proofs. Accordingly, P̂ is used to

denotes the ordered cedent x~u1,v1 , . . . , x~uI ,vI .
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Recall that cedents in an LK proof are usually considered as unordered

multisets. However, P̂ is ordered because we will need to pick out the last edge in

the branch.

The proofs that will be constructed for Theorem 3.3.4 will contain substi-

tution instances of FΨ,m→GΨ,m. These substitution instances are defined from

families of (α, n)-decision trees. Namely, suppose T is a set of (α, n)-decision trees,

T = {T~w : ~w ∈ Um}. The intent is that the decision tree T~w computes the value

of β(~w) ∈ Um. The substitution σT uses formulas λT , ~w,y defined by

λT , ~w,y =
∨

P∈bry(T~w)

P. (3.1)

Note that this formula is a “big” disjunction of “small” conjunctions, since P is

identified with the conjunction of literals along a branch of length nO(1), and there

are potentially 2n
O(1)

many branches P in bry(T~w). The substitution σT acts by

replacing any positively occurring variable x~w,y with the formula λT , ~w,y. Negatively

occurring variables are replaced with the negation λT , ~w,y, namely, the formula
∧

P∈bry(T~w) P .

The machine M which computes a Turing reduction from QΦ to QΨ itself

has a decision tree. This decision tree is more complicated than the (α, n)-decision

trees used for M ′ above, since M makes queries to instances of QΨ as well as to α.

For n ≥ 1, the decision tree TM,n for the computation of M(α, 0n) is defined as

follows: Each internal node of the decision tree is labeled either (1) with label α(~u)

for some ~u ∈ Un, or (2) with label QΨ(β, 0
m) with β described as a polynomial time

oracle Turing machine M ′. A node with label α(~u) has 2n children and outgoing

edges labeled with values v, one outgoing edge per v ∈ Un. As before, traversing the

outgoing edge labeled v indicates that α(~u) = v. The nodes labeled with QΨ(β, 0
m)

have J ′ · 2s
′m children, where s′ is the output arity of QΨ and Ψ has J ′ disjuncts;

the outgoing edges are labeled with all possible values (j,~a) with 1 ≤ j ≤ J ′ and

~a ∈ Um. The intuition is that the edge with label (j,~a) may be traversed if ~a is

a solution to the search problem QΨ(β, 0
m) and the jth disjunct of Ψ is satisfied

by setting the existentially quantified variables of Ψ equal to ~a. The leaf nodes of

TM,n are labeled with the value output by M(α, 0n) after the computation leading
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to that leaf; thus, each leaf node is to be labeled with a tuple of values ~b which

provides solution to the search problem QΦ (with the exception that an arbitrary

value may be given for a contradictory path through TM,n). Since M has runtime

nO(1), the height of TM,n is nO(1). Each node has 2n
O(1)

children, and hence the tree

has size 2n
O(1)

.

The nodes labeled QΨ(β, 0
m) in TM,n require more explanation. First, note

that the outgoing edges are labeled with values (j,~a), that is to say, the outgoing

edge label specifies both the solution to QΨ(β, 0
m) and the index j of the disjunct

of Ψ which is satisfied by ~a. On the other hand, whenM calls the oracle QΨ(β, 0
m),

only a value ~a is returned, not the value of j. Nonetheless, assume w.l.o.g. that the

oracle call also returns j sinceM can quickly determine a value for j by evaluating

Ψ with its existentially quantified variables set equal to ~a. Second, a path in the

decision tree TM,n may contain contradictions not only in the values given for α,

but also contain “implicit” contradictions if the edge labels (j,~a) on path specify

solutions that are incompatible with the values of α specified elsewhere on the

path. Of course, M could recognize such contradictions quickly by evaluating the

jth disjunct of Ψ with the values ~a. The machine M is not required to check

for these contradictions, but the LK proofs constructed below will be constructed

as if M does immediately verify the correctness of edge labels (j,~a). Indeed, the

following definition of a “trace” of a path in TM,n serves exactly this purpose. Traces

in TM,n are the analogue to paths starting at the root of an (α, n)-decision tree.

Definition 3.4.3. Let µ be a node in TM,n. Let Pµ denote the path from the root

of TM,n to the node µ. The set of traces to µ is defined by induction on the length

of Pµ. Any trace to µ will consist of an ordered multiset of literals x~u,v intended to

indicate the conditions that α(~u) = v. The following constructions may be used to

form traces:

(a) For the base case, if µ is the root node and Pµ has length zero, then the only trace

to µ is the empty sequence.

(b) Suppose node µ is labeled with a query α(~u), and let µ′ be a child of µ with the

edge (µ, µ′) labeled by v ∈ Un. If Λ is a trace to µ, then Λ, x~u,v is a trace to µ′.
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(c) Now suppose µ is labeled with a query QΨ(β, 0
m), and let µ′ be a child of µ

that is reached by an edge labeled with (j,~a). Letting ψj(~x) be the jth disjunct

of Ψ, consider ψj(~a). If ψj(~a) contains a conjunct g(~w) = y′ or y = y′ or

y 6= y′ which is false, then there is no trace to µ. (Here, g is built-in, and the

members of ~w and y, y′ are interpreted constants or members of ~a.) Otherwise,

let T = {T~w : ~w ∈ Um} be the family of (α, n)-decision trees for β, and let

β(~wi) = yi, where i = 1, . . . , r, be the atomic formulas of ψj that involve β.

In this case, for any trace Λ to µ and any choice of paths Pi in bryi(T~wi
), the

sequence Λ, P̂1, . . . , P̂r is a trace to µ′.

We require that traces are ordered multisets because we will need to pick

out the last element of a trace. The motivation for part (c) of the definition is that

in order for ψj(~a) to be true, each of β(~wi) = yi must hold. That is to say, there

must be some choice for branches P1, . . . , Pk such that all literals in ψj(~a) are true.

Suppose µ is an internal node of TM,n labeled α(~u). Then for each child µ′ of

µ, the number of traces to µ′ is the same as the number of traces to µ. Now suppose

µ is labeled QΨ(β, 0
m). Then for each child µ′ of µ the number of traces to µ′ is

2n
O(1)

times the number of traces to µ; the factor 2n
O(1)

corresponds to the number

of ways of choosing the paths P1, . . . , Pr. Since the height of TM,n is nO(1) there are

2n
O(1)

traces to any µ in TM,n.

Traces play a key role in the proof of Lemma 3.5.2, which in turn proves part

(c) of Theorem 3.3.4. Traces also play a role in the proof of Theorem 4.3.1.

3.5 Proof of Theorem3.3.1

This proves Theorem 3.3.4, which, as noted above, easily implies Theo-

rem 3.3.1. Theorem 3.3.4 has parts (a), (b), and (c). The proof is broken into two

lemmas: Lemma 3.5.1 proves parts (a) and (b) and Lemma 3.5.2 proves (c).

Lemma 3.5.1. Let QΦ and QΨ be basic first-order TFNP2 problems. Let T = {T~w :

~w ∈ Um} be a set of (α, n)-decision trees, and let σT the corresponding substitution

described above. If m = nO(1), then the following two sequents have constant depth
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LK proofs which have size 2n
O(1)

, have height nO(1), and are cut free:

(∧
TotΦ,n

)
→

(∧
TotΨ,m

)
σT , (3.2)

(∧
FuncΦ,n

)
→

(∧
FuncΨ,m

)
σT . (3.3)

Proof of Lemma 3.5.1. First consider (3.2). Note that (
∧
TotΨ,m) σT is a balanced

conjunction of the formulas TotT , ~w defined as

∨

y∈Um

∨

P∈bry(T~w)

P,

one such formula for each choice of ~w ∈ Um. Together the two big disjunctions range

over all branches P in T~w. For each branch P , it is trivial that P̂→P is provable

with a cut free proof. Therefore, using ∨:right inferences, there is a cut-free LK

proof PP of P̂→TotT , ~w.

Fix ~w ∈ Un. Let P̂�i be the cedent containing the first i members of P̂ .

For each P ∈ br(T~w), LK proofs PP,i of the sequents
∧
TotΦ,n, P̂�i→TotT , ~w are

constructed by induction, with i varying from |P | down to 0. Fix P ∈ br(T~w).

For i = |P |, PP,i is obtained from PP by a weakening inference. For the induction

step, let the (i + 1)st member of P̂ be x~ui+1,vi+1
. Since T~w is a decision tree, there

are paths Pv′ such that (P̂v′)�i+1 = P̂�i, x~ui+1,v′ for every v′ ∈ Un. The induction

hypothesis gives proofs PPv′ ,i+1 for the sequents
∧
TotΦ,n, P̂�i, x~ui+1,v′→TotT , ~w.

Combining these with ∨:left inferences in a balanced fashion gives a proof of
∧
TotΦ,n, P̂�i,

∨
y′ x~wi,y′→TotT , ~w. The introduced disjunction is a member of

TotΦ,n. The desired proof PP,i is obtained by weakening and then applying ∧:left

inferences and a contraction. For any P ∈ br(T~w), P̂�0 is empty, and PP,0 is a proof

of the sequent
∧
TotΦ,n→TotT , ~w.

Combining all these proofs with ∧:right inferences gives the desired LK proof

of (3.2). The size bounds and the cut-free property are easy to verify.

Now consider (3.3). The formula (
∧

FuncΨ,m) σT is a big conjunction of the

formulas FuncT , ~w,y,y′ defined as

( ∧

P∈bry(T~w)

P
)
∨
( ∧

P ′∈bry′ (T~w)

P
′
)
, (3.4)
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with ~w, y, y′ ∈ Um and y 6= y′. Fix ~w, y, y′ ∈ Um. Any pair of branches P ∈ bry(T~w)

and P ′ ∈ bry′(T~w), as distinct paths in a single decision tree, must contain a clashing

assignment to α. That is to say, there is some pair of literals x~u,v on P and x~u,v′ on P
′

with v 6= v′. This means P and P
′
contain x~u,v and x~u,v′ as disjuncts, respectively.

Thus there are simple cut free proofs of the sequents
∧
FuncΦ,n→P , P

′
, one for

each such choice of P, P ′. Combine these proofs with ∧:right inferences (as usual, in

a balanced fashion) to obtain proofs of the sequents
∧

FuncΦ,n→P ,
∧

P ′∈bry(T~w) P
′
.

Applying more balanced ∧:right inferences to these sequents, and then a single

∨:right inference, gives a proof of the sequent
∧
FuncΦ,n→(3.4).

Finally, letting ~w, y, y′ vary, using ∧:right inferences gives the desired proof

of
∧
FuncΦ,n→ (

∧
FuncΨ,m) σT . The size bounds and the cut free property are

again easy to verify.

Lemma 3.5.2. Let QΦ and QΨ be basic first-order TFNP2 problems, and suppose

M : QΦ ≤T QΨ. Let µ be a node in TM,n, and let Λ be a trace to µ. Let there be

r nodes in TM,n which are labeled with calls to QΨ. To fix notation, for i = 1, . . . , r,

there are integersmi and calls toQΨ(βi, 0
mi) in TM,n, where the function βi is defined

by a Turing machineM ′
i . Each machineM ′

i generates a family T i of (α, n)-decision

trees T i = {T i
~w : ~w ∈ Umi

}. Let σi be σT i.

Then there is a constant depth, cut-free proof Pµ of the sequent

Λ,
r∧

i=1

(
∨
SolnΨ,mi

)σi, FΦ,n→GΦ,n, (3.5)

such that Pµ has size 2n
O(1)

and height nO(1).

Although it is suppressed in the notation, Pµ depends on both µ and Λ.

Proof. The trace Λ contains variables x~u,v with ~u, v ∈ Un. Define Λ to be

contradictory if it contains two literals x~u,v, and x~u,v′ where v 6= v′. If Λ is

contradictory, then there is an easy cut free proof of
∧
FuncΦ,n,Λ→. From this,

(3.5) can be inferred by weakening.

For traces which are not contradictory, the existence of the proofs Pµ is

proved by induction on the depth of µ in the decision tree TM,n. To establish the

size bounds, let Tµ be the subtree TM,n rooted at µ. The induction will show that
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each Pµ has height nO(1)(1 + hµ) where hµ is the height of the subtree Tµ. The

induction progresses from the leaves to the root.

For the base case, let µ be a leaf, and Λ be a trace to µ. As a leaf node,

µ corresponds to a halting configuration ofM . Once the execution ofM reaches µ,

M is finished querying α and QΨ, and it then runs deterministically to output

values ~a in Un that satisfy some disjunction φj(~a). The propositional translation

φj ~a of φj(~a) is a conjunction of variables x~u,v plus possibly occurrences of⊥ and>.

Claim: ⊥ does not occur in φj ~a, and every variable in φj ~a also appears in Λ.

To prove this claim, note that the trace Λ contains enough information to

ensure that there is a correct computation of M that reaches the node µ in the

decision tree. And, since M is, in actuality, a Turing reduction from QΦ to QΨ,

it follows that the output ~a is valid and thus makes some φj(~a) true. Recall that

φj is a conjunction of positive literals. Since φj(~a) is true, no conjunct in φj(~a) is

false. Therefore, ⊥ does not appear in φj ~a. Further, every variable x~u,v in φj ~a

must appear in the trace Λ, since, if not, the value of α(~u) could be set to some

value v′ 6= v and still be consistent with the values specified by Λ. But then φj(~a)

would be false, which contradicts the fact that M is a correct Turing reduction.

The proves the claim.

It follows that the sequent Λ→ φj ~a has a cut free proof (containing only

∧:right inferences). Adding weakening inferences and ∨:right inferences yields the

desired proof Pµ of the sequent (3.5). It is clear that this proof has height nO(1).

Now suppose that µ is an internal node labeled α(~u). For each v ∈ Un,

µ has a child µv. By the definition of trace, Λ, x~u,v is a trace to µv. Consider the

proofs Pµv given by the induction hypothesis of the sequents

Λ, x~u,v,
r∧

i=1

(
∨
SolnΨ,mi

)σi, FΦ,n→GΦ,n.

Combining these with ∨:left inferences eliminates the x~u,v’s in the antecedent and

gives a member of TotΦ,n. The desired proof Pµ is obtained by weakening and

adding ∧:left inferences and a contraction on
∧

TotΦ,n. Also, since the height of Pµ

is at most nO(1) greater than the maximum height of any Pµv , the height of Pµ is
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nO(1)(1 + hµ).

Finally suppose that µ is an internal node labeled QΨ(β, 0
m) with the

function β described by the Turing machineM ′ and induced family T = {T~w : ~w ∈

Um} of decision trees. Let σ be σT . Each child µ′ of µ is reached by an edge labeled

with (j,~a); any trace to µ′ has the form Λ, P̂µ′,1, . . . , P̂µ′,kµ′
, where the path Pµ′,i is

in bryi(T~wi
) if β(~wi) = yi is the i

th conjunct of ψj(~a) that involves β.

The induction hypothesis, and weakening, gives proofs of the sequents

Λ, P̂µ′,1, . . . , P̂µ′,kµ′
,

r∧

i=1

(
∨
SolnΨ,mi

)σi, FΦ,n→GΦ,n.

To form the proof Pµ it will suffice to show the sequent

(
∨

SolnΨ,m)σ→ (3.6)

can be proved from the set of sequents

Pµ′,1, . . . , Pµ′,kµ′
→ (3.7)

with a cut-free proof of height nO(1).

For the moment, fix µ′, and hence j and ~a. Let
∨
Pµ′,i denote the balanced

disjunction taken over all members of bryi(T~wi
). For fixed Pµ′,1, . . . , Pµ′,kµ′−1, use

balanced ∨:left inferences to combine sequents (3.7) to obtain

Pµ′,1, . . . , Pµ′,kµ′−1,
∨

Pµ′,kµ′
→.

Continuing to apply ∨:left inferences in the same way on kµ′ − 1 down to 1 yields

∨
Pµ′,1, . . . ,

∨
Pµ′,kµ′

→.

Note that each
∨
Pµ′,i is one of the conjuncts of ( ψj ~a)σ. Thus, applying a constant

number of ∧:inferences (and possibly a weakening to introduce >), gives a proof of

the sequent ( ψj ~a)σ→.

(A different construction is needed in case ⊥ is in ψj ~a. In this case, there

are no traces to µ′. However, it is easy to derive ( ψj ~a)σ→ from the logical initial

sequent ⊥→.)

Finally, applying ∨:left inferences to these last sequents, letting j and ~a vary

over all possible values, gives a cut free proof of (3.6) from the sequents (3.7) as

desired. It is easy to verify that this cut free proof has height nO(1).
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Part (c) of Theorem 3.3.4 follows immediately from Lemma 3.5.2 by taking µ

to be the roof of TM,n since the trace to the root is empty. Since parts (a) and (b)

were already established in Lemma 3.5.1, this proves Theorem 3.3.4, and hence

Theorem 3.3.1.

This chapter contains material from the paper “Propositional proofs and

reductions between NP search problems” which is currently accepted for publication

by the Annals of Pure and Applied Logic. This paper is co-authored by the

dissertation author and Samuel R. Buss.



Chapter4

NullstellensatzTranslation

4.1 Overview

The main result of this chapter is Theorem 4.3.1, which states that if

Q1 ≤T Q2 and there are polylogarithmic degree Nullstellensatz proofs that Q2

is total, then there are polylogarithmic degree Nullstellensatz proofs that Q1 is

total. This extends the results of [9] which proved this result with respect to

many-one reductions. Corollary 4.3.2 uses this result to prove two new separations:

ITER 6≤T OntoPIGEON and ITER 6≤T LONELY. Corollary 4.3.2 also gives new

proofs of previously known separations.

The proof of Theorem 4.3.1 is similar in spirit to the proof of Theorem 3.3.1.

In particular, (α, n)-decision trees are used to define substitutions, and traces

provide the basis for a proof by induction. However, Theorem 4.3.1 is not analogous

to Theorem 3.3.1, but rather to Corollary 3.3.2. Theorem 3.3.1 proves that if

QΦ ≤T QΨ, then there are LK proofs of the totality of QΦ from the totality

of QΨ. In particular, the LK proofs are allowed to use (substitution instances

of) the non-logical initial sequents FΨ,m→GΨ,m expressing the totality of QΨ.

Corollary 3.3.2 differs slightly from this because it requires both that QΦ ≤T QΨ

and that there are proofs of QΨ while constructing proofs of QΦ with the stronger

condition that there are no non-logical initial sequents. Theorem 4.3.1 is similar to

Corollary 3.3.2 because it requires both a Turing reduction and a Nullstellensatz

proof of the totality of QΨ and produces a Nullstellensatz proof of the totality

50
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of QΦ. Additionally, the Nullstellensatz proof of the totality of QΦ produced by

Theorem 4.3.1 corresponds to the proof constructed by Corollary 3.3.2 (which does

not allow for any non-logical initial sequents) and not the proof constructed by

Theorem 3.3.1 (which allows for some non-logical initial sequents). Indeed, there

does not seem to be a good Nullstellensatz version of a “non-logical initial sequent”.

This leads us to believe that there is no Nullstellensatz theorem that properly

corresponds to Theorem 3.3.1. Section 4.3 contains a detailed discussion of these

issues.

Theorem 4.3.1 is stronger than the corresponding result with respect to

many-one reductions in [9] because it does not assume the model extension property.

However, the result for many-one reductions with the model extension property does

have the advantage that it gives rise to Nullstellensatz proofs of the totality of QΦ

from the totality of QΨ, which is analogous to Theorem 3.3.1. The discussion in

Section 4.3 addresses this result in the context of the preceding paragraph.

Section 4.2 sets notation for Nullstellensatz proofs, and defines the sets of

polynomials that encode a TFNP2 problem. Section 4.3 states Theorem 4.3.1 and

the separations that it implies. Section 4.4 proves Theorem 4.3.1.

4.2 Nullstellensatz Formulation

Fix a base field F and a set of polynomials {fi} such that each fi is in

F [x1, . . . , xk]; let ~x be short for x1, . . . , xk. Then the weak form of Hilbert’s

Nullstellensatz states that {fi} has no common root over the algebraic closure F

or F if and only if 1 is a linear combination of the fi’s, say 1 =
∑

i gifi where the

gi’s are also in F [~x]. This defines the Nullstellensatz proof system in the following

manner: If the fi’s express a set of propositional conditions φ, then the gi’s are a

refutation of φ. The complexity of the refutation is measured with respect to the

maximum degree of gifi.

As explained below, on size parameter n the polynomials in this chapter

have 2n
O(1)

many variables. Each set of polynomials A will contain x2 − x for each

variable x. Therefore any common zero for A is actually in F , since it is a k-tuple
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of zeros and ones; thus there is no need to consider F . Theorem 4.3.1 does not rely

on the choice of the base field F and, in particular, does not rely the characteristic

of F . It is important to be able to choose the base field to prove the separations

in Corollary 4.3.2. As a side note, Theorem 4.3.1 holds when F is only a ring,

since the proof never uses division. However, this yields no advantage because the

separations in Corollary 4.3.2 follow from existing upper and lower bounds, which

require F to be a field.

Definition 4.2.1. Suppose p is a polynomial and F = {fi} is a set of polynomials.

Write p ∈ 〈F, d〉 if and only if there exist polynomials gi such that p =
∑

i gifi and

the maximum degree of the gifi’s is at most d. The gi’s are a Nullstellensatz proof of

p from F . If p is 1, the gi’s are a Nullstellensatz refutation of F . If q is a polynomial,

then p ∈ q + 〈F, d〉 if there is a r ∈ 〈F, d〉 such that p = q + r.

It should be noted that Hilbert’s Nullstellensatz is never used in any of the

proofs below. The original version of the Nullstellensatz gives no upper bound on

the degree of a refutation of a set of unsatisfiable {fi}. Much later, several authors

proved various general degree upper bounds for Nullstellensatz refutations [7, 14,

25]. When the base field is arbitrary the upper bound is exponential in the number

of variables; this bound can be improved when the base field is C, though it is still

exponential. However, since the applications of Theorem 4.3.1 have 2n
O(1)

variables

on size parameter n, these exponential bounds on the degree are 22
nO(1)

. This not

useful in proving the separations below because Theorem 4.3.1 requires nO(1) degree

Nullstellensatz refutations.

Let QΦ be a basic first-order TFNP2 problem, so that Φ is the ∃-sentence

∃~xφ(~x), over a basic language with one uninterpreted function symbol f . A

Nullstellensatz proof that QΦ is total will actually be a Nullstellensatz refutation

of the fact that QΦ is not total. The set of polynomials FΦ,n defined below encodes,

when the polynomials are simultaneously set 0, that Φ fails to be total on inputs

of length n. The polynomials in FΦ,n use variables x~u,v to define the graph of f for

~u, v ∈ Un; in particular, there are 2n
O(1)

many variables. The intended meaning is

that x~u,v is 1 if f(~u) = v and x~u,v is 0 if f(~u) 6= v. The following set of formulas

ensure that the x~u,v’s are 0/1-valued.
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Definition 4.2.2. Let Φ be an ∃-sentence over a basic language with one uninter-

preted, k-ary function symbol. Let BoolΦ,n be {x2~u,v − x~u,v|~u ∈ Un, v ∈ Un}.

Polynomials are satisfied by an assignment if they are set 0. It is clear that

any assignment that satisfies BoolΦ,n sets each x~u,v to either 0 or 1.

The following sets ensure that f is a total function.

Definition 4.2.3. Let Φ be an ∃-sentence over a basic language with one uninter-

preted, k-ary function symbol, let ~u be a vector of k elements of Un. Then TotΦ,n is

{
∑

v∈Un
x~u,v − 1|~u ∈ Un} and FuncΦ,n is {x~u,vx~u,v′ |~u ∈ Un, v 6= v′ ∈ Un}.

Note that the notation TotΦ,n and FuncΦ,n is identical to that of the LK

formulation of Section 3.2. The notation is overloaded to emphasize the similarities

between the proofs in Chapters 3 and 4. There will never be an ambiguity in usage,

since context will always make it clear whether the sets contain polynomials or

propositional formulas.

If TotΦ,n is satisfied then f is total, and if FuncΦ,n is satisfied then f is

single-valued. Further, x2~u,v − x~u,v is in 〈TotΦ,n ∪ FuncΦ,n, 2〉 since

x~u,v

(
∑

v′∈Un

x~u,v′ − 1

)
= x2~u,v − x~u,v +

∑

v′∈Un

v 6=v′

x~u,vx~u,v′ .

Therefore, if S is a set of formulas such that TotΦ,n ∪ FuncΦ,n ⊆ S and p ∈ 〈S, d〉,

then p ∈ 〈S\BoolΦ,n, d+2〉. Since in applications d is nO(1), BoolΦ,n is omitted from

the remaining definitions.

Finally, to express the fact that Φ is not total, we need to encode the fact

that φj(~u) is false, for each choice of j, ~u. Recall the propositional translation · ~u

of Section 3.2.

Definition 4.2.4. Suppose QΦ is a basic first-order TFNP2 problem. That is,

the language contains one uninterpreted, k-ary function symbol f and Φ is in

disjunctive normal form ∃~x
∨J

j=1 φj(~x). Furthermore, each φj is a conjunction of

literals `j,1, . . . , `j,ij such that each literal is of the form g(~a) = b or b = c or b 6= c,

where each ~a, b, c is either a variable xi or a built-in constant symbol. Note that

g may be either a built-in function or the uninterpreted function symbol f . Let ~x be
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a vector of s variables x1, . . . , xs; fix n ≥ 1; and let ~a = a1, . . . , as be a vector of fixed

values from Un.

The Nullstellensatz translation p~a(¬φj) of ¬φj under the assignment ~a is the

polynomial
∏ij

i=1 p~a(`j,i), where

p~a(`j,i) =





1 if `j,i ~a is >

0 if `j,i ~a is ⊥

x~u,v if `j,i ~a is x~u,v

.

Define FailureΦ,n to be the set {p~a(¬φj)|1 ≤ j ≤ J,~a ∈ Un}. Define FΦ,n to be the

union of TotΦ,n, FuncΦ,n, and FailureΦ,n.

We abuse notation with respect to FΦ,n and named problems as in Chapter 3.

Namely, if Φ is the ∃-sentence such that QΦ is ITER, we write FITER,n instead of

FΦ,n. Also note that in the definition of p~a(`j,i) the case of a negated variable is not

addressed. This is possible since QΦ is a basic first-order TFNP2 problem and thus

`j,i is never a negated variable.

If p~a(¬φj) is set 0, then some factor p~a(`j,i) of p~a(¬φj) is 0. There are two

ways p~a(`j,i) can be 0. The first is if `j,i ~a is ⊥ and the second is if p~a(`j,i) is x~u,v

and f(~u) 6= v. In either case φj(~a) is false. Therefore when FailureΦ,n is satisfied

each solution to QΦ is ruled out.

As an example of this construction consider the case of LONELY. Recall

that LONELY can be expressed by the basic first-order TFNP2 problem QΦ′ , where

Φ′ is

∃x, y, z[(f(0) = x ∧ x 6= 0) ∨ (y = f(x) ∧ z = f(y) ∧ x 6= z) ∨ (x 6= 0 ∧ f(x) = x)].

Consider an assignment to the x~u,v’s that satisfies FLONELY,n. The first disjunct of

Φ′ contributes x0n,u to FailureLONELY,n for each u ∈ Un not equal to 0n. When set to

0, these polynomials express that f(0n) 6= u for all u 6= 0n. Since
∑

v∈Un
x0n,v − 1

is in TotLONELY,n and is also satisfied, it must be that x0n,0n = 1, and so f(0n) = 0n.

This rules out solving QΦ′ by satisfying the first disjunct. Similarly, the second

disjunct of Φ′ contributes xu,vxv,w to FailureLONELY,n for each choice of u, v, w ∈ Un

such that u 6= w. When set to 0, these polynomials express that there is no u, v, w
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such that u 6= w and f(f(u)) = w; that is f(f(u)) = u for all u, which rules out

solving QΦ′ by the second disjunct. Finally, the last disjunct contributes xu,u to

FailureLONELY,n for all u 6= 0n, which expresses that f(u) 6= u for all u 6= 0n. Thus all

possible solutions to QΦ are ruled out. Therefore, satisfying FLONELY,n is equivalent

to saying that LONELY is not total. Since LONELY is total, the set FLONELY,n must

be unsatisfiable, and hence, 1 ∈ 〈FLONELY,n, d〉 for some d; in fact, this statement is

shown in [9] to hold for d = nO(1).

4.3 MainTheorem and Separations

Theorem 4.3.1. Let QΦ and QΨ be basic first-order TFNP2 problems, and suppose

QΦ ≤T QΨ. If 1 ∈ 〈FΨ,m,m
O(1)〉, then 1 ∈ 〈FΦ,n, n

O(1)〉.

In particular, if there are nO(1) degree Nullstellensatz proofs that QΨ is

total, and any Nullstellensatz proof that QΦ is total requires degree 2n
O(1)

, then

Theorem 4.3.1 implies that QΦ 6≤T QΨ. This fact is used to obtain the separations

in Corollary 4.3.2 below.

It is worth discussing in more detail the relation between Theorem 4.3.1 and

the results of Section 3.3, namely Theorem 3.3.1 and Corollary 3.3.2. Theorem 3.3.1

states if QΦ ≤T QΨ then there are well-behaved LK proofs of the totality of Φ using

(substitution instances of) the totality of Ψ as an initial sequent. Thus, if there

are actual proofs of the totality of Ψ on hand, it is easy to combine all the proofs

into a proof of the totality of Φ, with only logical initial sequents; this is the

content of Corollary 3.3.2. Note that Corollary 3.3.2 has stronger hypotheses than

Theorem 3.3.1 (another proof is assumed to exist), but also has a stronger conclusion

(the constructed proof has no non-logical initial sequents). Theorem 4.3.1 follows

the structure of the argument of Corollary 3.3.2 in the Nullstellensatz setting. It is

worth noting that the proof that LONELY 6≤T PIGEON in Corollary 3.3.3 requires

the use of Theorem 3.3.1, as opposed to Corollary 3.3.2, since the result from [5]

deals with proofs with non-logical initial sequents.

Is it possible to prove a stronger result in the Nullstellensatz setting that

is analogous to Theorem 3.3.1? To prove such a result, it would be necessary to
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have a Nullstellensatz notion corresponding to a non-logical initial sequent in LK

proofs. This would require something to allow the free use of some new polynomial

in the Nullstellensatz proof. However, a Nullstellensatz proof does not have enough

structure to allow such a notion.

To expand on this point, consider a Nullstellensatz proof of p from F = {fi};

the only information in the proof is the coefficient gi of fi for each i. Now consider

adding a new polynomial q supposed to represent a Nullstellensatz non-logical

initial sequent; call such a polynomial a non-logical initial polynomial. To mimic

the initial sequent aspect, let the degree of q not count toward the degree of the

Nullstellensatz proof. Then q functions like a placeholder for a Nullstellensatz proof

of q, which is exactly what a non-logical initial sequent does for an LK proof. There

are two ways in which q could help in the proof of p, either (1) adding q to the set

F , or (2) using q to help derive each gi.

Let F ′ be F with q added, so that a Nullstellensatz proof of p from F ′

has one more term in the sum for p, namely p = gqq +
∑

i gifi. Then q acts like

a non-logical initial sequent in an LK proof. To make this clear, consider the

following property of LK proofs. Suppose there is an LK proof P1 of Γ→∆ that

makes use of (perhaps multiple instances of) a non-logical initial sequent Π→Σ.

If there is an LK proof (one that only uses logical initial sequents) P2 of Π→Σ,

then replacing all occurrences of Π→Σ in P1 by the proof P2 yields an LK proof

of Γ→∆ with only logical initial sequents. Now consider p = gqq +
∑

i gifi. Given

a Nullstellensatz proof of q from F , say q =
∑

i hifi for some polynomials hi, there

is a Nullstellensatz proof of p from F , p =
∑

i(gi + hi)fi. In this sense, q acts just

like a non-logical initial sequent in an LK proof.

However, the analogy with LK proofs is not perfect. A LK proof could use a

non-logical initial sequent multiple times, and the replacement property described

in the preceding paragraph still holds. But in the sum p = gqq+
∑

i gifi, q is used as

a non-logical initial polynomial just once. This is because we have only considered

case (1). It is possible that q could help in deriving the gi’s as in case (2), which

could decrease the degree of the proof. As an extreme example consider the case

where gi is q for all i and gq = 1, so that p = q +
∑

i qfi. When viewing q as
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a non-logical initial polynomial, this derivation has degree equal to the maximum

degree of the fi’s (since q does not count towards the degree of the proof), but when

q is not considered as a non-logical initial polynomial, the derivation has degree

equal to the maximum degree of the qfi’s and q, which is strictly larger (assuming

q is not constant).

If the dependence of the gi’s on q were known, then substituting q with a

Nullstellensatz proof of q from F would make the analogy with LK proofs complete.

However, it seems fundamental to Nullstellensatz proofs that the exact structure of

the gi’s is not explicitly known. The complexity of the expression for the gi’s is not

what a Nullstellensatz proof measures, only the final degree. Seemingly, part of the

power of Nullstellensatz proofs comes from this fact. Thus the possibility of case

(2) rules out non-logical initial polynomials.

It might be hoped that case (2) never arises in a proof of Theorem 4.3.1

where polynomials expressing the totality of QΨ are added as non-logical initial

polynomials. However, because M is a Turing reduction there would be multiple

such Nullstellensatz non-logical initial sequents corresponding to the multiple calls

to QΨ by M . Since the calls to QΨ by M are related, different answers to a QΨ

query can lead to different QΨ queries later, it would be expected that these initial

sequents would have to interact as in case (2). In fact, this is exactly what happens

when attempting to alter the proof of Theorem 4.3.1 in this manner.

A complication to this discussion is Theorem 13 of [9] which is a Nullstellen-

satz analogue to Theorem 3.3.1, assuming the model extension property and only a

many-one reductionM between QΦ and QΨ. The model extension property makes

it possible to assume that M makes its first, and only, call to QΨ, by enlarging

the domain of all possible QΨ calls to one common size. This fact imposes enough

structure onM to ensure that the dependence of the gi’s is known, so that case (2)

can be dealt with in an easy manner when it arises.

One might consider overcoming the difficulties presented by case (2) by

expanding reworking Nullstellensatz proofs to use inference rules, obtaining a

system similar to the polynomial calculus. However, trying to tailor a proof system

for a particular result leads to rules which seem artificial at best. In addition, this
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approach leads to a blending of Nullstellensatz into propositional LK. For instance,

adding inference rules to Nullstellensatz adds height to the proofs, which more

similar to LK proofs. Having an analogue to Theorem 3.3.1 is balanced against the

desire to have a distinct natural proof system. We choose to keep Nullstellensatz

proofs defined as above, and settle for a Nullstellensatz version of Corollary 3.3.2

but not Theorem 3.3.1.

Given this choice, it is still possible to prove separations using Theorem 4.3.1

with existing upper and lower bounds on the degree of Nullstellensatz refutations.

The separations (a) and (b) were shown by direct methods in [2]. The separations

(c) and (d) are new; they were previously known only with respect to many-one

reducibility [9].

Corollary 4.3.2. (a) PIGEON 6≤T OntoPIGEON. [2]

(b) PIGEON 6≤T LONELY. [2]

(c) ITER 6≤T OntoPIGEON.

(d) ITER 6≤T LONELY.

Proof. It is shown in [2] that FPIGEON,n requires polynomial degree (in 2n) degree

Nullstellensatz refutations and [10, 16] shows the same for FITER,n. On the

other hand, [9] shows that FOntoPIGEON,n has polylogarithmic degree Nullstellensatz

refutations over any field and that FLONELY,n has polylogarithmic degree Nullstel-

lensatz refutations over fields with characteristic 2. Thus the separations hold by

Theorem 4.3.1.

Note that since OntoPIGEON ≤T LONELY one could also prove ITER 6≤T

OntoPIGEON from ITER 6≤T LONELY. It is still unknown whether ITER is

many-one or Turing reducible to LeftPIGEON or PIGEON. A partial result along

this line is shown in [9].

4.4 Proof of Theorem4.3.1

The proof of Theorem 4.3.1 closely follows the proof of Theorem 3.3.4.

Suppose M : QΦ ≤T QΨ and that the type-1 input to M is α and the size
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parameter is n. For each query QΨ(β, 0
m) that M makes, there is a corresponding

substitution σ defined by the (α, n)-decision trees for the β(~w)’s. In the context

of LK proofs, σ was replaced x~w,y with a big (size 2n
O(1)

) disjunction of small (size

nO(1)) conjunctions of x~u,v’s. Now σ replaces the polynomial x~w,y with λ~w,y, a sum

of polynomials of degree nO(1) (note that this sum will have exponentially many

terms, even though there is no notion of a “big” sum in Nullstellensatz proofs).

Lemma 4.4.2 proves that the substitution is total, namely that for each ~w ∈ Um,
(
∑

y∈Um

λ~w,y − 1

)
σ ∈ 〈FΦ,n, n

O(1)〉.

Lemma 4.4.3 proves a corresponding result about the functionality of the substitu-

tion. These two lemmas are analogous to Lemma 3.5.1. The main technical result

needed to prove 4.3.1 involves traces and is shown in Lemma 4.4.4 and is analogous

to Lemma 3.5.2; Theorem 4.3.1 is just the special case of Lemma 4.4.4 applied to

the trace to the root.

In Chapter 3, branches in (α, n)-decision trees corresponded to conjunctions;

they are now associated with polynomials.

Definition 4.4.1. If P is a branch in an (α, n)-decision tree, then we identify P

with the product
I∏

i=1

x~ui,vi ,

where {α(~ui) = vi}
I
i=1 is the set of α values set by the edge labels in P .

A family of (α, n)-decision trees, T = {T~w|~w ∈ Um}, induces a substitution

σT in much the same manner as in Chapter 3. Let λT , ~w,y be

∑

P∈bry(T~w)

P.

Given a polynomial p(x~w1,y1 , x~w2,y2 , . . .) in the variables {x~w,y}~w,y∈Um the polynomial

pσT is the polynomial p(λT , ~w1,y1 , λT , ~w2,y2 , . . .).

Lemma 4.4.2. Let QΦ and QΨ be basic first-order TFNP2 problems. Let T =

{T~w|~w ∈ Um} be a family of (α, n)-decision trees such that each T~w ∈ T has height

at most d. Then (TotΨ,m)σT ⊆ 〈FΦ,n, d〉.
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Proof. We begin by proving the following claim:

Claim: For any (α, n)-decision tree T of height at most d,
∑

P∈br(T ) P − 1 ∈

〈TotΦ,n, d〉.

The proof of the claim proceeds by induction on the structure of T . For

the base case, if T is a single node then there is only one empty branch. Since the

empty branch corresponds to the polynomial 1, the result is trivial.

Otherwise, pick a node µ of T labeled α(~u) whose children are leaves and let

T ′ be T with µ’s children pruned. Then by the induction hypothesis,
∑

P ′∈br(T ′) P
′−

1 ∈ 〈TotΦ,n, d
′〉, where d′ is the height of T ′. Let P ′

µ be the branch in T ′ that ends

at µ. The branches in T and T ′ coincide except the branch P ′
µ in T ′ is replaced by

the branches P ′
µx~u,v in T for each v ∈ Un. Thus

∑

P∈br(T )

P − 1 =
∑

P ′∈br(T ′)
P ′ 6=P ′

µ

P ′ + P ′
µ

∑

v∈Un

x~u,v − 1 =

∑

P ′∈br(T ′)
P ′ 6=P ′

µ

P ′ +

(
P ′
µ(
∑

v∈Un

x~u,v − 1) + P ′
µ

)
− 1 =

∑

P ′∈br(T ′)

P ′ − 1 + P ′
µ(
∑

v∈Un

x~u,v − 1).

Thus
∑

P∈br(T ) P − 1 is in

〈TotΦ,n, d
′〉+ 〈TotΦ,n, |P

′
µ|+ 1〉 ⊆ 〈TotΦ,n,max{d, d′}〉

since |P ′
µ|+ 1 ≤ d. The claim follows since d′ is bounded by the height of T .

To prove the lemma let p ∈ (TotΨ,mi
)σT be

∑
y∈Un

∑
P∈bry(T~w) P − 1; note

that p is equal to
∑

P∈br(T~w) P − 1. The claim implies p ∈ 〈TotΦ,n, d〉, since the

height of T~w is at most d. The lemma follows since TotΦ,n ⊆ FΦ,n.

Lemma 4.4.3. Let QΦ and QΨ be basic first-order TFNP2 problems. Let

T = {T~w|~w ∈ Um} be a family of (α, n)-decision trees and m be nO(1). Then

(FuncΨ,m)σT ⊆ 〈FΦ,n, n
O(1)〉.

Proof. Any polynomial in (FuncΨ,m)σT is a sum of monomials of the form P1P2,

where P1 ∈ bry(T~w), P2 ∈ bry′(T~w), and y 6= y′. Since P1 and P2 have different

branches in the same decision tree, there is a first query where they differ, say it is

α(~u). Then x~u,v is a factor of P1 and x~u,v′ is a factor of P2, for some v 6= v′. Thus

P1P2 ∈ 〈FuncΦ,n, n
O(1)〉, and the result follows.
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Recall the definition of a trace in Definition 3.4.3. If Λ is a trace, then

identify Λ with the polynomial
∏

x~u,v∈Λ
x~u,v.

Lemma 4.4.4. Let QΦ and QΨ be basic first-order TFNP2 problems, and suppose

M : QΦ ≤T QΨ. Let µ be a node in TM,n, and let Λ be a trace to µ. If

1 ∈ 〈FΨ,m,m
O(1)〉, then Λ ∈ 〈FΦ,n, n

O(1)〉.

Proof. The proof proceeds in a manner similar to the proof of Lemma 3.5.2. Define

Λ to be contradictory if it contains two factors x~u,v and x~u,v′ where v 6= v′. If Λ is

contradictory, then Λ ∈ 〈FuncΦ,n, n
O(1)〉 ⊆ 〈FΦ,n, n

O(1)〉.

For traces that are not contradictory, the result is proved by induction on

the depth hµ of µ in the decision tree TM,n. Specifically, the induction hypothesis is

that if µ is in TM,n and Λ is a trace to µ, then Λ ∈ 〈FΦ,n, n
O(1)(1 + hµ)〉; the lemma

follows since hµ is nO(1).

For the base case let µ be a leaf of TM,n and Λ be a trace to µ. As in the

proof of Lemma 3.5.2, when the execution of M reaches µ, M deterministically

produces an output ~a that satisfies a disjunct φj(~a) of φ(~a). Consider p = p~a(¬φj).

Since φj(~a) is true, p is not the zero polynomial, thus p is a product of x~u,v’s. Each

factor x~u,v of p must be a factor of Λ since otherwise the value of α(~u) could be

set to some v′ 6= v that is consistent with the other values of α specified by Λ.

But this would imply that φj(~a) is not true, which cannot happen since M is a

correct Turing reduction. Since each factor of p is a factor of Λ, it follows that

Λ ∈ 〈p, nO(1)〉 ⊆ 〈FΦ,n, n
O(1)〉.

Now let µ be an internal node. There are two cases based on the label of µ.

Suppose µ is labeled α(~u). Let µ′ be a child of µ with the edge from µ to µ′ labeled

α(~u) = v. By the induction hypothesis, Λx~u,v is in

〈FΦ,n, n
O(1)(1 + hµ′)〉.

Rewrite Λ as

Λ
∑

v∈Un

x~u,v + (1−
∑

v∈Un

x~u,v)Λ.

Thus, Λ ∈ 〈FΦ,n, S〉 + 〈TotΦ,n, n
O(1)〉, where S is the maximum of nO(1)(1 + hµ′)

taken over all children µ′ of µ. Since S + nO(1) is

nO(1)(max{1 + hµ′ |µ′ is a child of µ}+ 1) = nO(1)(1 + hµ),
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the result follows.

Now let µ be labeled QΨ(β, 0
m). Let β be computed by a Turing machine

M ′, so thatM ′ generates a family of (α, n)-decision trees T . Let σ be σT .

Let µ′ be a child of µ such that the edge from µ to µ′ is labeled (j,~a). Let

p = p~a(¬ψj) ∈ FailureΨ,m and suppose p is
∏I

i=1 x~wi,yi . Then Λ(pσ) is

Λ
I∏

i=1

∑

Pi∈bryi (T~wi
)

Pi =
∑

P1∈bry1 (T~w1
)

· · ·
∑

PI∈bryI (T~wI
)

Λ
I∏

i=1

Pi.

By induction each term of this sum is in 〈FΦ,n, n
O(1)(1 + hµ′)〉. As j and ~a range

over all possible values, p ranges over all member of FailureΨ,m. Thus

Λ(pσ) ∈ 〈FΦ,n, n
O(1)(1 + hµ′)〉 (4.1)

for all p ∈ FailureΨ,m. (If p is 0 then the induction fails as then there would be no

trace to µ′. However, in this case Λ(pσ) = 0 and is trivially in 〈FΦ,n, n
O(1)(1+hµ′)〉.)

Note that 1 ∈ 〈FΨ,m,m
O(1)〉 implies 1 ∈ 〈(FΨ,m)σ,m

O(1)+nO(1)〉 by treating

the λT , ~w,y’s as variables. Write

1 =
∑

gi∈TotΨ,m∪FuncΨ,m

fi(giσ) +
∑

pi∈FailureΨ,m

qi(piσ). (4.2)

By Lemmas 4.4.2 and 4.4.3, the first summation in (4.2) is in 〈FΦ,n, n
O(1)〉. Since

m = nO(1), multiplying both sides of (4.2) by Λ and making use of (4.1) yields

Λ ∈ 〈FΦ,n, n
O(1)〉+ 〈FΦ,n, S〉 ⊆ 〈FΦ,n, n

O(1) + S〉,

where S is the maximum of nO(1)(1 + hµ′) taken over all children µ′ of µ. The

induction is finished since

S + nO(1) = nO(1)(max{1 + hµ′ |µ′ is a child of µ}+ 1) = nO(1)(1 + hµ).

This chapter contains material from the paper “Propositional proofs and

reductions between NP search problems” which is currently accepted for publication

by the Annals of Pure and Applied Logic. This paper is co-authored by the

dissertation author and Samuel R. Buss.



Chapter5

PropositionalLKReversal

5.1 Discussion

This chapter proves a converse of Theorem 3.3.4, namely, that a Turing

reduction between NP search problems can be extracted from proofs of the sequents

(a), (b), and (c) of Theorem 3.3.4. For convenience during this discussion, these

sequents are:

(a) (
∧
TotΦ,n)→ (

∧
TotΨ,mi

) σi, for each i = 1, . . . , r,

(b) (
∧

FuncΦ,n)→ (
∧

FuncΨ,mi
) σi, for each i = 1, . . . , r,

(c)
∧r

i=1 (
∨

SolnΨ,mi
) σi, FΦ,n→GΦ,n.

In fact, the reversal is slightly stronger result, since Theorem 5.2.1 uses a weaker

condition (a′) in place of (a), and (b) is omitted altogether.

It is worth explaining why the reversal requires there to be proofs of sequents

(a) and (b) at all. Or, in other words, why Theorem 3.3.4 is reversed and not

Theorem 3.3.1. The following two facts are relevant: First, the substitutions σi

are depth 1.5 and, moreover, map variables x~w,y to big disjunctions of small

conjunctions. Second, the validity of the sequents (a) and (b) means that any

x~w,y can also be expressed as
∧

y′ 6=y x~w,y′ . Thus, σi maps the variables x~w,y to

conditions that are expressible both as disjunctions of small conjunctions and as

conjunctions of small disjunctions. As is well known, this in turn implies that there

63
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are polynomial height (height nO(1)) decision trees for computing the values βi(~w)

of the function βi : U
k
m → Um coded by the formulas x~w,yσi. Having these decision

trees means there are (perhaps non-uniform) algorithms for computing βi(~w), and

this corresponds to the fact that the Turing reduction between the NP search

problems must be polynomial time. (The fact that the LK proofs are uniform will

enable us to remove the non-uniformity of the algorithm.) Theorem 3.3.1 does not

have anything similar to sequents (a) and (b), and thus there are no algorithms

for βi(~w). Without being able to compute values for βi, there is no way to input

functions to a QΨ call, and thus there is no way to build a reduction from QΦ to

QΨ.

We illustrate the interaction of the substitutions σi and sequents (a) and (b)

in a more general setting by defining the notion of a “decision tree substitution”

that applies to arbitrary propositional variables, not just to the variables of the

type x~u,v used above which are required to define a single-valued, total function.1

Suppose we wish to prove Γ→∆ from substitution instances of non-logical sequents

Πj→Λj. A decision tree substitution σ is a pair (σ′, σ′′) of substitutions, such that

the following hold:

(i) Both σ′ and σ′′ are depth 1.5 substitutions. σ′ maps variables to big disjunctions

of small conjunctions, and σ′′ maps variables to big conjunctions of small

disjunctions.

(ii) For each propositional variable x, there is an LK proof of

Γ→∆, xσ′, xσ′′. (5.1)

(iii) For each propositional variable x, there is an LK proof of

Γ→∆, xσ′, xσ′′. (5.2)

Conditions (ii) and (iii) ensure that either Γ→∆ is true, or xσ′ is equivalent to

xσ′′. In particular, when proving Γ→∆, it can be assumed xσ′ and xσ′′ are not

1We never use decision tree substitutions in this general setting, but it should help motivate

the formulation of Theorem 5.2.1.



65

equivalent. That is to say that xσ′ and xσ′′ are equivalent. Since xσ′ and xσ′′ are

disjunctions of small conjunctions, this means there is a small height decision tree

for xσ′.

When the above general notion of decision tree substitution is specialized to

variables that code the graph of a function βi, and when Γ = FΦ,n and ∆ = GΦ,n,

the sequents (5.1) and (5.2), respectively, become

FΦ,n→GΦ,n,
(∧

TotΨ,mi

)
σi (5.3)

and

FΦ,n→GΦ,n,
(∧

FuncΨ,mi

)
σi. (5.4)

To understand this, let the variable x in (5.1) and (5.2) be x~w,y, let its negation x

be
∨

y′ 6=y x~w,y′ , let x~w,yσ
′ be

∨
P∈bry(T~w) P , and let x~w,yσ

′′

∧

P∈bry′ (T~w)

y′ 6=y

P .

Then x~w,yσ
′ ∨ x~w,yσ

′′ is

∨

P∈bry(T~w)

P ∨
∨

P∈bry′ (T~w)

y′ 6=y

P =
∨

P∈br(T~w)

P.

Thus it is easy to derive (5.3) from by (5.1) applying ∨:right and ∧:right inferences.

Similarly, x~w,yσ
′ ∨ x~wy,σ

′′ is

∧

P∈bry(T~w)

P ∨
∧

P∈bry′ (T~w)

y′ 6=y

P .

Similarly, it is easy to derive (5.4) from (5.2) by applying ∨:right and ∧:right

inferences. Note how (5.3) and (5.4) are weaker than the sequents (a) and (b) of

Theorem 3.3.4.

This discussion here and in Section 4.3 is relevant to the lack of a reversal of

the Nullstellensatz translation in Theorem 4.3.1. Lemmas 4.4.2 and 4.4.3 prove the

Nullstellensatz version of the sequents (a) and (b). However, the result which states

if a Boolean formula and its negation have small disjunctive normal forms then the
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formula has a decision tree does not have an analogue with polynomials. If one

were to try to prove such a result for polynomials in the context of a Nullstellensatz

reversal, an immediate problem is the lack of structure in Nullstellensatz proofs.

There is no apparent way to take the coefficient polynomials in a Nullstellensatz

proof and construct a meaningful decision tree from them.

One could try to construct decision trees from Nullstellensatz proofs by

adding inference rules to the Nullstellensatz calculus. This approach was discussed

in Section 4.3 as a way to obtain a Nullstellensatz result analogous to Theorem 3.3.1.

The addition of inference rules to the Nullstellensatz calculus would create a tree

structure to Nullstellensatz proofs, and then a traversal could give rise to relevant

decision trees. However as Section 4.3 explains, such an augmented Nullstellensatz

calculus is unnatural, and so we do not adopt this approach.

In fact, formulating a Nullstellensatz reversal is not even desirable because

of the existence of an LK reversal. To understand why, suppose there were a

sensible Nullstellensatz reversal. Then Nullstellensatz proofs could be reversed to

a reduction, and the LK translation would give equivalent LK proofs. Similarly,

LK proofs could be reversed to give a reduction, and the Nullstellenstaz translation

would give equivalent Nullstellensatz proofs. Defining an extended Nullstellensatz

system in order to get a reversal would, in the end, give a system equivalent

to propositional LK. This would serve no purpose, and so we do not pursue a

Nullstellensatz reversal.

5.2 MainResult andProof

This section states and proves the reversal of Theorem 3.3.4. It is somewhat

stronger than just the converse of Theorem 3.3.4 for several reasons. First, because

sequent (a) is replaced by (a′); second, because sequent (b) is omitted; and, third,

because the substitutions σi may map variables to disjunctions of conjunctions of

literals (as compared to disjunctions of conjunctions of unnegated variables). The

LK proofs are required to be uniform: this has the usual meaning that there is a

polynomial time algorithm which can calculate the structure and syntactic form of
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any formula in any sequent of the proof based on the path taken in the proof tree

from the conclusion of the proof to the sequent.

Theorem 5.2.1. Let QΦ and QΨ be basic first-order TFNP2 problems. Suppose

there are substitutions σ1, . . . , σr such that each σi is a depth 1.5 substitution that

sends each variable to a disjunction of conjunctions of literals. Further suppose

there are polynomial time uniform LK proofs of size 2n
O(1)

and height nO(1) of the

following sequents:

(a′) FΦ,n→GΦ,n, (
∧

TotΨ,mi
) σi, for each i = 1, . . . , r, and

(c)
∧r

i=1 (
∨

SolnΨ,mi
) σi, FΦ,n→GΦ,n.

Finally suppose that the LK proofs are either cut free, or involve cuts only on

formulas of size nO(1). Then there is a Turing reductionM from QΦ to QΨ.

Note that the only negations that occur in sequents (a) and (b) are negated

variables that are introduced by the substitutions σi.

The sequent (b)

(∧
FuncΦ,n

)
→

(∧
FuncΨ,mi

)
σi

of Theorem 3.3.4 can be omitted in Theorem 5.2.1 because of the lack of negated

literals in the definition basic first-order TFNP2 problems. As an example, suppose

Φ is the formula ∃x[f(x) 6= 0 ∨ φ(x)] such that Φ is a total ∃-sentence. Let QΦ′ be

the basic first-order TFNP2 problem equivalent to QΦ constructed in Section 2.4,

so that Φ′ is

∃x, y[(f(x) = y ∧ y 6= 0) ∨ φ(x)].

Suppose a is a solution to QΦ(f, 0
n), and that f(a) = b 6= 0, and suppose φ(a) does

not hold. If f were allowed to be a multifunction, then it is possible to add 0n to

the list of values for f(a), and thus a would no longer solve QΦ(f, 0
n). However, a

still solves QΦ′(f, 0n) even if the graph of f were augmented to be a multifunction,

because there is always one value of f(a) that is not 0n. Since Theorem 5.2.1 involves

basic first-order TFNP2 problems, functionality is not necessary, and sequent (b)
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can be omitted. A similar issue regarding functionality and basic first-order TFNP2

problems appears in the proof of Lemma 8.2.3.

We fix the conventions for the proof of Theorem 5.2.1. Since QΦ is a

basic first-order TFNP2 problem, Φ is a total ∃-sentence over a language with one

uninterpreted function symbol; let α be this function symbol, and let the arity of α

be k. Thus an input to QΦ is of the form (α, 0n). Assume the arity of solutions to

QΦ is s, so that QΦ(α, 0
n) ⊆ U s

n and α : Uk
n → Un. Similarly, Ψ is a total ∃-sentence

over a language with uninterpreted function symbol, call it β, and let the arity of

β be k′. Assume that the arity of solutions to QΨ is s′, so that QΨ(β, 0
m) ⊆ U s′

m

and β : Uk′

m → Um. Let Di, ~w,y be the set of disjuncts of x~w,yσi, so that x~w,yσi

is
∨

P∈Di, ~w,y
P . Note how Di, ~w,y is playing the role that bry(T

i
~w) played earlier;

however, now the P ’s are conjunctions that may contain negated literals and the

P ’s may no longer explicitly correspond to paths in a decision tree.

Theorem 5.2.1 is proved by traversing backwards through the proof of

sequent (c). When the traversal reaches an inference that introduces a (
∨
SolnΨ,m)σi

it queries QΨ. The query to QΨ requires a description of a function βi computed by

a polynomial time Turing machine with access to α; for this, Lemma 5.2.2 shows

how to construct βi by traversing the proof of the sequent (a′). Once βi is defined,

the traversal of the proof of sequent (c) makes queries to α and QΨ(βi, 0
mi) that

make formulas on the left true. Therefore, it must eventually make a formula on the

right true, which must be a member of GΦ,n, which solves QΦ(α, 0
n) and finishes

the reduction.

The proof of Lemma 5.2.2 will define βi in terms of an algorithm that

traverses the proof of sequent (a′) while making queries to α. These queries will

make formulas in the antecedent true. Since the proof is correct, the traversal must

eventually visit a sequent in which a formula A in the succedent is made true. If A

is a disjunct of
∨

~w∈Umi

∨
P∈Di, ~w,y

P , a member of TotΨ,mi
σi, then βi(~w) is defined to

be y. If A is a disjunct of φj ~a, a member of SolnΦ,n, then the computation of βi(~w)

has failed; however, this is not a problem since in this case we have already solved

QΦ(α, 0
n). Lemma 5.2.2 formalizes this intuition by constructing two functions βi

and γi from the proof of sequent (a′) such that if the computation of βi(~w) fails
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then γi(~w) computes a solution QΦ(α, 0
n).

Lemma 5.2.2. Assume there are proofs of (a′) as in Theorem 5.2.1. Then, for

each i = 1, . . . , r, there functions βi : U
k′

mi
→ Umi

and γi : U
k′

mi
→ U s

n computed by

polynomial time Turing machines with access to α with the following properties. Let

~w ∈ Umi
and suppose γi(~w) = ~a 6∈ QΦ(α, 0

n). Then, if βi(~w) = y, the computation

of βi(~w) specifies enough of α to satisfy some P ∈ Di, ~w,y.

Proof. We describe an algorithm that calculates the values βi(~w) and γi(~w)

simultaneously. The algorithm traverses a branch in the proof of (a′) starting

at the endsequent and without backtracking. The traversal is constructed as

mentioned in the preceding paragraph. Let αt be the partial function defined by

the answers to all the α queries the traversal has made after visiting t sequents.

Then αt defines a partial assignment τt, where τt � x~u,v (respectively τt 6� x~u,v) if

αt(~u) = v (respectively αt(~u) = v′ for some v′ 6= v). As the traversal proceeds, the

partial assignment defined by αt will make certain formulas (called “p.s.-settable”)

in the tth sequent true or false:

Definition 5.2.3. A formula appearing in the proof of (a′) is p.s.-settable provided

it is a subformula of one of the following formulas:

•
∨

v∈Un
x~u,v, for ~u ∈ Un. (These are subformulas of FΦ,n.)

• x~u,v ∨ x~u,v′, for ~u, v 6= v′ ∈ Un. (These are also subformulas of FΦ,n.)

• φj ~a, for j ≥ 0 and ~a ∈ Un. (These are subformulas of GΦ,n.)

• P ∈ Di, ~w′,y′, for ~w
′, y′ ∈ Umi

. (These are subformulas of (
∧

TotΨ,mi
) σi.)

• A cut-formula or any ancestor of a cut-formula.

The phrase p.s.-settable means that the formula is settable by specifying a polyno-

mial size (p.s.) part of α. A p.s.-settable formula A is set true (respectively false) by

a partial assignment τ provided each variable x~u,v appearing in A is in the domain

of τ , and under this assignment the value of A is true (respectively false).

The traversal will be defined so that, at the the tth sequent, one of the

following hold:
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(1) Every p.s.-settable formula in the tth antecedent (respectively succedent) is

set true (respectively false) by τt. Furthermore, if a disjunction
∨

j Aj is a

p.s.-settable formula in the tth antecedent, then the traversal knows a j such

that Aj is set true by τt.

(2) The traversal has found j,~a by step t such that φj ~a is set true by τt. The

algorithm then halts, and the value of γi(~w) is defined to be ~a, and βi(~w) is

defined arbitrarily.

(3) The traversal has found y by step t such that P ∈ Di, ~w,y is set true by τt. The

algorithm then halts, and the value of βi(~w) is defined to be y, and γi(~w) is

defined arbitrarily.

The second sentence of (1) applies to subformulas of
∨

v∈Un
x~u,v; for these

formulas the traversal must know the value v of α(~u) and thus know that x~u,v is true.

Note that (1) cannot hold for the initial sequents of the proof, thus the traversal

ends at either case (2) or (3), which defines βi(~w) and γi(~w). Since the proof is

polynomial height and each step of the traversal can be carried out in polynomial

time, the traversal is polynomial time, and hence βi and γi are polynomial time.

From (2) and (3) it is clear that βi and γi have the required properties.

We now describe how to execute a single step in the traversal. The argument

breaks into cases on the type of inference. We show the most interesting cases.

∧:right: Let S be Γ→∆, A ∧ B, let S0 be Γ→∆, A, let S1 be Γ→∆, B, and let

S be derived from S0 and S1 by ∧:right. If A ∧ B is not p.s.-settable, then it is a

subformula of (TotΨ,mi
) σi of the form

∧
~w′∈W

(∨
y′∈Umi

x~w′,y′σi

)
,

where W ⊆ Uk′

mi
. Since we are attempting to define βi(~w), the traversal moves to

S0 or S1 according to which of A or B contains the conjunct

∨
y′∈Umi

x~w,y′σi.

Note that because of this step, the traversal never encounters a p.s.-settable formula

of the form P ∈ Di, ~w′,y′ for ~w
′ 6= ~w.
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Otherwise, A ∧ B is p.s.-settable. By (1) A ∧ B is set false by τt, so the

traversal moves to S0 (respectively S1) if A (respectively B) is set false, and (1) still

holds.

This finishes the proof of the ∧:right case, but to better understand the

intuition behind the traversal we further discuss the case whereA∧B is p.s.-settable.

There are four ways in which A∧B could be p.s.-settable in the succedent: it could

be φj ~a for j ≥ 0 and ~a ∈ Un, P ∈ Di, ~w,y′ for ~w, y
′ ∈ Umi

, a cut-formula, or an

ancestor of a cut-formula. However, we claim that the traversal ends before the

first two cases could ever arise.

To see this, note that φj ~a and P are disjuncts of
∨
SolnΦ,n and

∨
P∈Di, ~w,y′

P ,

respectively. Thus to get to an ∧:right inference that introduced either φj ~a or P

the traversal needs to proceed through a series of ∨:right inferences. However, the

traversal is constructed so that at step t every p.s.-settable formula in the succedent

is set true by τt. So by the time the traversal uncovers φj ~a, τt sets this formula

true, which satisfies (2) and ends the traversal. Similarly, by the time traversal

uncovers P , case (3) holds and the traversal halts.

∨:left: Let S be Γ, A ∨ B→∆, let S0 be Γ, A→∆, S1 be Γ, B→∆, and let S be

derived from S0 and S1 by ∨:left. Then A ∨ B must be p.s.-settable, therefore the

traversal knows that A is set true or B is set true. The traversal moves to S0 in the

former case and S1 in the latter. The condition (1) still holds.

∧:left: Let S be Γ, A∧B→∆, S0 be Γ, A,B→∆, and let S be derived from S0 by

∧:left. The only case with something to show is when A and/or B is p.s.-settable

but A ∧ B is not (we only show the case when A is p.s.-settable and B is not, the

other cases are similar). This can only arise when A is
∨

v∈Un
x~u,v or x~u,v ∨ x~u,v′ , for

some ~u, v, v′ ∈ Un. In either case, the traversal queries α(~u), and keeps track of the

literal that sets A true. Then (1) holds for S0.

∨:right: Let S be Γ→∆, A ∨B, let S0 be Γ→∆, A,B, and let S be derived from

S0 by ∨:right. Again, the only case with something to show is when A and/or B is

p.s.-settable but A ∨B is not (we only show the case when A is p.s.-settable and B

is not, the other cases are similar). This only arises when A is P ∈ Di, ~w,y or is φj ~a.
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Either way, A is polynomial size, and the traversal queries the variables in A. If A

is set true and A is φj ~a, then case (2) holds. If A is set true and A is P ∈ Di, ~w,y,

then case (3) holds. Otherwise, A is set false and case (1) holds for S0.

cut: Let S be Γ→∆, let S0 be Γ→∆, A, let S1 be A,Γ→∆, and let S be derived

from S0 and S1 by a cut. Since A is a cut-formula it is polynomial size, and the

traversal queries all the variables in A. If A is set true (respectively false) move to

S1 (respectively S0). Then (1) still holds.

We now prove Theorem 5.2.1.

Proof of Theorem 5.2.1. The algorithm for the Turing reduction from QΦ to QΨ

traverses the proof of the sequent (c) in a manner similar to the traversal of

Lemma 5.2.2. Let τt be as in the proof of Lemma 5.2.2. Expand the notion of

p.s.-settable to include subformulas of (
∨

SolnΨ,mi
)σi. Note that (

∨
SolnΨ,mi

)σi is

of the form ∨
j,~a
( ψj ~a)σi =

∨
j,~a

∧H

h=1

∨
P∈Di, ~wh,yh

P,

where H = H(j,~a) depends on j and ~a. Extend the notion of setting a p.s.-settable

formula true to include these new types of p.s.-settable formulas. (The notion of

setting a p.s.-settable formula false does not need to be updated since the new types

of p.s.-settable formulas appear only in the antecedent.) A p.s.-settable formula A

is set true by a partial assignment τ providing the following hold: If A is a x~u,v

(resp. x~u,v), then A is set true if τ � A (resp. τ 6� A). If A is
∨

j Aj, then A is set

true by τ if there is a known Aj set true by τ . If A is
∧

j Aj, then A is set true by τ

if each Aj is set true by τ . For example, (
∨
SolnΨ,mi

) σi is set true by τ if and only

if the traversal knows values j,~a and knows disjuncts P1, . . . , PH such that, for each

h, Ph is in Di, ~wh,yh and τ sets Ph true.

If τ sets a disjunction
∨

j Aj true, it is important that the traversal know

which disjunct is set true by τ . That way, when the traversal visits an∨:left inference

that introduces a subformula of either
∨

v∈Un
x~u,v or

∨
j,~a( ψj ~a)σi it knows how to

proceed.

The traversal does a polynomial amount of work at the tth sequent (relative

to α and QΨ) and at each step one of the following holds:
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(1) If A is in the the tth antecedent (respectively succedent) and is p.s.-settable

then A is set true (respectively false) by τt.

(2) The traversal has found values j,~a by step t such that some φj ~a is set true

by τt. The algorithm then halts, and the reduction outputs ~a.

It is clear that (1) cannot hold for the initial sequents of the proof, so the

correctness of the proof implies case (2) must eventually hold, at which point the

reduction outputs ~a.

It remains to show that the traversal preserves (1) and (2). We show only

the ∧:left case, as it is the only case that differs significantly from the cases in the

proof of Lemma 5.2.2.

∧:left: Let S be Γ, A ∧ B→∆, let S0 be Γ, A,B→∆, and let S be derived from

S0 by ∧:left. The new case to consider is when (w.l.o.g.) A is (
∨
SolnΨ,mi

) σi.

Let βi and γi be the functions constructed by Lemma 5.2.2. The traversal queries

QΨ(βi, 0
mi) and receives answer ~a ∈ Umi

. Since ~a is a solution, there is a conjunct

ψj of Ψ such that ψj ~a is made true by the function βi. Since βi is polynomial time

computable and there are only constantly many disjuncts of Ψ, the traversal can

find j in polynomial time. Suppose ψj ~a is

∧H

h=1
x~wh,yh

so that ( ψj ~a)σi is ∧H

h=1

∨
P∈Di, ~wh,yh

P.

Since βi makes ψj ~a true, βi(~wh) = yh for each h ∈ H. The proof is finished if we

can show that either (1) or (2) holds for S. Intuitively, (1) allows the traversal to

continue while (2) solves QΦ.

If we were to show (1), we would need to show that (
∨
SolnΨ,mi

) σi is set

true by the current partial truth assignment τt. We could do this if we could find

disjuncts P1, . . . , PH such that, for each h = 1, . . . , H, Ph ∈ Di, ~wh,yh and Ph is set

true by τt. A complication arises because even though βi(~wh) is computed to be yh,

it could be that this computation does not reveal enough information about α to set
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any Ph ∈ Di, ~wh,yh true. However, in this case (2) holds since γi(~uh) is constructed

to solve QΦ(α, 0
n).

More specifically, the traversal calculates γi(~wh) for each 1 ≤ h ≤ H. If there

is an h such that γi(~wh) = ~a′ ∈ QΦ(α, 0
n), then case (2) holds. This process only

takes polynomial time since H is constant, γi is polynomial time computable, and

solutions to QΦ can be verified in polynomial time. If no such h exists, Lemma 5.2.2

implies that, for each h = 1, . . . , H, βi(~wh) = yh and enough of α has been specified

to make a Ph in Di, ~wh,yh true. Furthermore, the computation of βi(~wh) determines

Ph, so that Ph is known to the traversal. This exactly says that (
∨
SolnΨ,mi

) σi is

p.s.-settable, and thus (1) holds.

This chapter contains material from the paper “Propositional proofs and

reductions between NP search problems” which is currently accepted for publication

by the Annals of Pure and Applied Logic. This paper is co-authored by the

dissertation author and Samuel R. Buss.



Chapter6

EquivalencesBetweenMany-one

andTuringReductions

6.1 Many-one andTuringEquivalences

This chapter shows that for many common TFNP classes Turing reducibility

is equivalent to many-one reducibility. This includes the classes PPAD, PPADS,

PPA, and PLS. Thus making polynomially many queries to OntoPIGEON,

LeftPIGEON, LONELY, and ITER is no more stronger than making one query,

respectively. It is an open question whether Turing reducibility implies many-one

reducibility for the class PPP. In fact, it is open whether just two calls to PIGEON

is stronger than one call.

Theorem 6.1.1. LetQ1 be inTFNP orTFNP2, and letQ2 be any ofOntoPIGEON,

LeftPIGEON, LONELY, or ITER. Then Q1 ≤m Q2 if and only if Q1 ≤T Q2.

As a consequence of Theorem 6.1.1 we get the following corollary.

Corollary 6.1.2. Let Q be any of OntoPIGEON, LeftPIGEON, LONELY, or

ITER, then Cm(Q) = CT(Q).

Therefore, the classes PPAD, PPADS, PPA, and PLS could have been

equivalently defined with respect to Turing reducibility.
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Proof of Theorem 6.1.1. We only consider the case when Q2 is ITER, the others

are similar and are left to the reader. Let M be a Turing reduction from Q1 to

ITER. The intuition is that M makes multiple calls ITER(g, 0m) and that these

can be combined into a single call to ITER(F, 0n
O(1)

), for some appropriate F . The

rest of the proof defines F and shows how to use it in a many-one reduction. For

simplicity we assume that Q1 has no type-1 input.

Without loss of generality, each call to ITER by M has the same size

parameterm, since ITER has the instance extension property of Buresh-Oppenheim

andMorioka [9]. For notational convenience, assume that solutions toQ1 are vectors

of length 1. Finally, let p(n) be a bound on the runtime ofM and let ε be the empty

sequence.

Let ~x be the string input to Q1. The function F depends on ~x, and takes as

input 〈u; y1, . . . , y`; v〉, where u ∈ Un, and y1, . . . , y`, v,∈ Um, and ` ≤ p(n). Since

F must take strings as arguments, we encode F ’s input as

u1y11y2 · · · 1y`0
(m+1)(p(n)−`)v ∈ Un′ ,

where n′ = n + (m + 1)p(n) + m. A 1 in the (n + (m + 1)i + 1)th position

(0 ≤ i < p(n)) indicates that yi+1 is an answer to the (i+1)st query to ITER. A 0 in

the (n+(m+1)i+1)th postition indicates that no (i+1)st query to ITER has been

made yet. The intended meaning for the inputs is as follows: u is either 0n or equals

the output of M ; y1, . . . , y` is a “valid” sequence of answers to the first ` queries

to ITER made by M ; and if y1, . . . , y` determine an (` + 1)st call to ITER(g, 0m)

by M(~x), then v is an element of the domain of g. A sequence y1, . . . , y` is a valid

sequence of answers to the first ` queries to ITER if for all 1 ≤ i ≤ `, y1, . . . , yi−1

determines the ith query to ITER and yi is a valid solution to that query. It is clear

there is a polynomial time procedure to determine if y1, . . . , y` is valid.

If u 6= 0n or y1, . . . , y` not valid, then let F (〈u; y1, . . . , y`; v〉) =

〈u; y1, . . . , y`; v〉. Otherwise, suppose u = 0n and y1, . . . , y` is valid. Define

F (〈u; y1, . . . , y`; v〉) as follows:

1. Suppose answering the first ` calls to ITER with y1, . . . , y` causes M to halt
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and output a ∈ Q1(~x). Then let

F (〈u; y1, . . . , y`; v〉) = 〈a; ε; 0m〉.

2. Suppose answering the first ` calls to ITER with y1, . . . , y` causesM to make

an (`+ 1)st query to ITER. Suppose the query is ITER(g, 0m).

a. If v ∈ ITER(g, 0m) then let

F (〈u; y1, . . . , y`; v〉) = 〈0n; y1, . . . , y`, v; 0
m〉.

b. If v 6∈ ITER(g, 0m) then let

F (〈u; y1, . . . , y`; v〉) = 〈0n; y1, . . . , y`; g(v)〉.

We now give the many-one reduction M ′ from Q1 to ITER using F . On

input ~x ∈ Un, M
′ returns 0n if 0n is a solution to Q1(~x). The reason for this

will be apparent below. Otherwise, M ′ queries ITER(F, 0n
′

) and receives answer

w = 〈u; y1, . . . , y`; v〉.

Claim: u is a solution to Q1(~x).

Assuming the claim, M ′ finishes by outputting u. The rest of the proof

shows that the claim holds.

In general, if z is a solution to ITER on input g and with size parameter p,

then there are three possibilities. Either (1) z = 0p and g(0p) = 0p, (2) g(z) < z,

or (3) g(z) > z and g(g(z)) = g(z). We show that for F and w the first two cases

cannot happen and that in the third case, u is a solution to Q1(~x).

Consider computing F (0n
′

); note the input 0n
′

codes the empty sequence

of oracle calls to ITER. This sequence either leads M to make a call to ITER or

causesM to halt and produce an output a. (Here a 6= 0n sinceM ′ checked if 0n was

a solution before calling ITER(F, 0n
′

).) In the first case, the (n+ 1)st bit of F (0n
′

)

is 1, and in the second case the first n bits of F (0n
′

) are not all zero. Therefore

F (0n
′

) 6= 0n
′

.
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Q2(f1, 0
m1)

Q2(f2, 0
m2)Q2(f3, 0

m3)

u w

Figure 6.1: The decision tree TM,n for a Turing reduction M to Q2. The only
solutions to Q2(f1, 0

m1) that are shown are u and w.

It is straightforward to check that the coding conventions (specifically that

a 1 in the (n+ (m+ 1)i+ 1)th bit indicates a query to ITER) and the fact that 0n

is ruled out as a solution imply that F (w) ≥ w. Thus case (2) is ruled out.

Therefore it must be that F (w) > w and F (F (w)) = F (w).

Let F (〈u; y1, . . . , y`; v〉) = 〈a; b1, . . . , bk; c〉. From the definition of F ,

F (〈a; b1, . . . , bk; c〉) = 〈a; b1, . . . , bk; c〉 if and only if a 6= 0n or b1, . . . , bk is not

valid. Suppose b1, . . . , bk is not valid. Then, by definition of F , there is no string t

such that F (t) = 〈a; b1, . . . , bk; c〉, which is a contradiction since we could take t to

be 〈u; y1, . . . , y`; v〉. Now suppose a 6= 0n. Then F was defined so that in this case a

is a solution to Q1(~x). Thus the claim is proved, and that finishes the proof of the

theorem.

The above proof relativizes easily in the case that Q1 has a type-1 input

α. The main point is that deciding if a sequence y1, . . . , y` is valid can be done in

polynomial time relative to α. The reason for this is that determining the validity

of a sequence essentially simulates M , and M runs in polynomial time relative to

α.

There is a way to easily visualize the construction of F in Theorem 6.1.1.

LetM be a Turing reduction from Q1 to ITER. Suppose that the reductionM has

decision tree TM,n as shown in Figure 6.1, where Q2 is ITER. For simplicity, u and

w are the only two solutions to ITER(f1, 0
m1) that are shown. Figure 6.2 shows the

three possible instances of ITER corresponding to (f1, 0
m1), (f2, 0

m2), and (f3, 0
m3).

The ellipses in each instance indicate that the instance is larger than what is shown.
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0m1

b b b

u

v w

b b b

0m3

0m2

b b b

ITER(F1, 0
m1) ITER(F2, 0

m2)

ITER(F3, 0
m3)

Figure 6.2: An illustration of the construction of one ITER instance from all the
ITER instances in TM,n. The outgoing edges from u and w are crossed out and
replaced by the corresponding dotted edges.

The lines shown indicate the value of the respective fi; in particular f1(u) = v

and f1(v) = w. Suppose that v < u so that f1(u) < u, which implies that u is a

solution to ITER(f1, 0
m1). Also suppose f1(w) > w, and thus w is also a solution

to ITER(f1, 0
m1) since f1(f1(w)) = w. Since the solution u to ITER(f1, 0

m1) leads

M to the query ITER(f2, 0
m2), the line from u to v is removed and a line from u

to 0m2 is added. Since w leads M to ITER(f3, 0
m3), the line from w is changed to

go to 0m3 . Let F be the function constructed by linking the different instances of

ITER in TM,n in this fashion. Then the only instances of ITER in TM,n that still

have solutions correspond to the leaves of TM,n. Therefore solving ITER on F leads

to a solution of an instance ITER that appears as a leaf in TM,n. The leaves of TM,n

encode solutions to Q1 since M is a correct Turing reduction, and hence this one

call to ITER on F solves Q1.

The proof of Theorem 6.1.1 for the cases OntoPIGEON, LeftPIGEON, and

LONELY relies on constructions similar to the one discussed in Figures 6.1 and 6.2.

Take LONELY as an example. Suppose M is a Turing reduction from Q1 to



80

0m1

b b b

u

w

b b b

0m3

0m2

b b b

LONELY(f1, 0
m1) LONELY(f2, 0

m2)

LONELY(f3, 0
m3)

Figure 6.3: An illustration of the construction of one LONELY instance from all
the LONELY instances in TM,n. The dotted lines indicate added pairings.

LONELY, and that TM,n is shown as in Figure 6.1, where Q2 is now LONELY. Let

the instances of LONELY be as in Figure 6.3. For simplicity, an edge in the instance

of LONELY(f1, 0
m1) is shown only if f1(f1(v)) = v and f1(v) 6= u. Otherwise, v

is a solution to LONELY(f1, 0
m1) and no incident edges are shown. There are two

solutions to LONELY(f1, 0
m1) shown in Figure 6.3, they are u and w. Since the

solution u leads M to the LONELY(f2, 0
m2) query, pairing u and 0m2 eliminates

both of them as a solutions. Similarly, w is linked with 0m3 . Then as before, if F

is the function constructed by linking the instances of LONELY in TM,n, the only

unpaired points (other than 0m1) are in instances of LONELY that correspond to

leaves in TM,n. Again as before, since the leaves of TM,n encode solutions to Q1,

one call to LONELY on F solves Q1. This process is carried out for the problems

OntoPIGEON and LeftPIGEON in a similar fashion.

This chapter contains material from the paper “Propositional proofs and

reductions between NP search problems” which is currently accepted for publication

by the Annals of Pure and Applied Logic. This paper is co-authored by the

dissertation author and Samuel R. Buss.



Chapter7

SeparationsBetweenMany-one

andTuringReductions

7.1 Overview

While Chapter 6 showed that the classes PPA, PPAD, PPADS, and PLS

are closed under Turing reductions, Theorem 7.3.1 of this chapter will prove there

are TFNP2 problems Q1, Q2 such that Q1 ≤T Q2 but Q1 6≤m Q2. The difference

between amany-one and Turing reduction is that in the many-one case the reduction

can only query Q2 once, whereas a Turing reduction can make polynomially many

queries to Q2. Thus the separation between many-one and Turing reductions says

that polynomially many calls to Q2 are stronger than one. Theorem 7.3.1 actually

shows the stronger result that using two calls to Q2 is stronger than one. A even

stronger separation is shown in Theorem 7.6.1, which shows that k + 1 calls is

stronger that k calls for all k ≥ 0.

It is worth noting that the relation between many-one and Turing reductions

has been previously studied by Hanika in [20], where problems A and B are

constructed such that A is many-one reducible to B, but if A is Turing reducible

to B then P = NP. A nice feature of this result is that A and B are unrelativized,

which differs from the relativized separation of many-one and Turing reductions

proved in Section 7. However, this result is not applicable to this chapter since A
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and B are not NP search problems; solutions to A and B are not polynomial time

verifiable (unless P = NP).

There are several tools used in the proof of Theorem 7.6.1, including the

introduction of new TFNP2 problems called MODd for d > 1. The problem MODd

expresses the fact that a set of size N 6≡ 0 mod d cannot be partitioned into sets

of size d. This is similar to previously studied principles such as the propositional

formulas Count of [3]. The importance of MODd is the fact that it is a TFNP2

problem, whereas the Count principles are not. However, [3] characterizes the

provability of Count principles from each other. In order to apply this results to the

MODd principles, Section 7.4 shows that the propositional translation of MODd is

equivalent via a constant depth, polynomial size proof to an appropriate instance

of Count. Thus the proof of Theorem 7.6.1 can use both the TFNP2 aspect of the

MODd problems and the provability results involving Count.

The proof of Theorem 7.6.1 combines different MODd principles through

the operators ⊗, &, and `. These operators take TFNP2 problems and create

a new TFNP2 problem and are defined in detail in Section 7.2. The proof of

Theorem 7.6.1 also uses a new kind of reduction called an infinitely-often Turing

reduction. Infinitely-often Turing reductions have to be correct only on infinitely

many size parameters n, and are a type of non-uniform reduction. Despite this non-

uniformity, Section 7.5 explains how the propositional translation of Theorem 3.3.1

extends to infinitely-often Turing reductions.

The structure of this chapter is as follows. Section 7.2 defines k-reducibility

and the ⊗, &, and ` operators. Section 7.3 proves Theorem 7.3.1, one of the two

main results of this chapter, which separates Turing and many-one reducibility.

Section 7.4 defines the modular counting principles MODd and shows they are

equivalent to the Count principles of [3]. Section 7.5 defines infinitely-often Turing

reducibility. Lastly, Section 7.6 uses the ⊗, &, ` operators, the MODd principles,

and infinitely-often Turing reductions to prove Theorem 7.6.1, the other main result

of this chapter, which separates k- and (k + 1)-reducibility.
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7.2 k-reducibility and the⊗,&, and`Operators

The following definition is used throughout this chapter.

Definition 7.2.1. Let Q1, Q2 be TFNP
2 search problems. A Turing reductionM is

a k-reduction from Q1 to Q2 ifM is a Turing reduction from Q1 to Q2 such that on

all inputsM makes at most k queries to Q2. In this case, Q1 is said to be k-reducible

to Q2, and is denoted Q1 ≤k Q2.

Clearly, 1-reducibility and many-one reducibility are equivalent, and a k-

reduction is, in particular, a Turing reduction. Theorem 7.3.1 separates many-one

and Turing reducibility by showing the stronger fact that 2-reducibility does not

imply 1-reducibility. Theorem 7.6.1 generalizes this result by separating k- and

(k + 1)-reducibility.

The main tools used in the proofs of Theorems 7.3.1 and 7.6.1 are the

operators ⊗, &, and ` on TFNP2 problems. The precise definitions are below, but

the intuition is as follows. Fix TFNP2 search problems Q1 and Q2. Then Q1⊗Q2 is

the problem of simultaneously solving both an instance of Q1 and an instance Q2.

A solution to the problem Q1&Q2 is a solution to a user specified choice of one of

Q1 or Q2. That is, there is an extra input which determines which of Q1 or Q2 to

solve. Finally, Q1 `Q2 is the problem of solving an unspecified choice of Q1 or Q2.

In particular, there is no additional input to Q1 ` Q2, the user cannot guarantee

whether Q1 or Q2 is solved. The symbols ⊗, &, and ` are motivated by linear logic.

Γ→A⊗B means Γ has enough resources to solve both A and B; Γ→A&B means

Γ has enough resources to solve a choice of A or B; Γ→A`B means Γ has enough

resources to solve A or B without being able to choose which one.

Definition 7.2.2. Fix an integer k ≥ 1. Suppose Qi(~fi, ~xi) ∈ TFNP2 for i =

1, . . . , k.

Let (
⊗k

i=1Qi)(~f1, . . . , ~fk, ~x1, . . . , ~xk) be the NP search problem “Given

{~xi}
k
i=1, where each ~xi ∈ Uni

, and given {~fi}
k
i=1, where each member of ~fi has

its inputs and output in Uni
, find ~yi ∈ Qi(~fi, ~xi) for each i = 1, . . . , k.”

Let (&k
i=1Qi)(~f1, . . . , ~fk, ~x1, . . . , ~xk, y) be the NP search problem “Given

{~xi}
k
i=1, where each ~xi ∈ Uni

, and given {~fi}
k
i=1, where each member of ~fi has
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its inputs and output in Uni
, and given y ∈ Uk, find yi ∈ Qi(~fi, ~xi) if y = 0i−110k−i

and return 0 otherwise.”

Let (`k
i=1Qi)(~f1, . . . , ~fk, ~x1, . . . , ~xk) be theNP search problem “Given {~xi}

k
i=1,

where each ~xi ∈ Uni
, and given {~fi}

k
i=1, where each member of ~fi has its inputs and

output in Uni
, find yi ∈ Qi(~fi, ~xi) for some i.”

Note that the “specified choice” for & mentioned above arises in the

definition as an additional input string y which determines which problem to solve.

Since the additional input string in absent in`, the choice of which problem to solve

for ` is unspecified. The definitions are stated with the most general conditions,

so that conventions of Chapter 3 do not apply. Namely, each Qi is allowed to have

multiple function inputs, the string inputs are not allowed restricted to be of the

form 0n, and the string inputs are allowed to be of different lengths. Even though

the definitions are stated in the most general form, when used in the proofs below

each Qi has one input function and the size parameters ni are are all equal to one

common size paramter n.

7.3 ASeparationBetween≤m and≤T

The following theorem is the first main result of this chapter.

Theorem 7.3.1. There exist TFNP2 search problems Q1, Q2 such that Q1 ≤T Q2,

but Q1 6≤m Q2.

As mentioned above, the proof will show that, in fact, Q1 ≤2 Q2 but

Q1 6≤1 Q2.

Proof. Let Q1 be LeftPIGEON⊗LONELY and let Q2 be PIGEON&LONELY. We

first show Q1 ≤2 Q2. Note that it is shown in [2] that LeftPIGEON ≤m PIGEON,

let M ′ be this many-one reduction. We now describe a 2-reduction M : Q1 ≤2

Q2. First, M queries Q2 specifying that PIGEON be solved, where the PIGEON

instance for Q2 is the one used by M ′ (the LONELY instance can be arbitrarily

chosen since we chose to solve PIGEON instead). When M receives an answer,

it solves LeftPIGEON by simulating M ′. Next, M queries Q2 specifying that
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LONELY be solved, where the LONELY instance identical to the one in Q1 (now

the PIGEON instance for Q2 can be arbitrarily chosen). The answer to this query

solves the LONELY instance. Thus M has found solutions to LeftPIGEON and

LONELY, and hence has solved Q1.

The separations in [2] are the motivation for the choice of LeftPIGEON,

PIGEON, and LONELY in Q1 and Q2; namely, LONELY 6≤T PIGEON and

LeftPIGEON 6≤T LONELY. The intuition is a many-one reduction to Q2 chooses

to solve exactly one of either LONELY or PIGEON. If LONELY is chosen, then

LeftPIGEON cannot be solved, and if PIGEON is chosen, then LONELY cannot be

solved. While the intuition served as the motivation for looking at these particular

problems, the proof depends on results involving decision trees in [2]. The remainder

of the proof makes this argument precise.

Let f, g be the function inputs to LeftPIGEON and h be the function input to

LONELY. Without loss of generality, assume the size parameter for both problems

is n, fixed sufficiently large. Suppose M is a many-one reduction from Q1 to Q2.

It is enough to show how to specify f, g, h at step i of M ’s computation such that

either a polynomial part of f, g have been specified and the known values for f, g do

not contain a solution to LeftPIGEON, or a polynomial part of h has been specified

and the known values for h do not contain a solution to LONELY. Assuming this,

M is forced to output a solution for both LeftPIGEON and LONELY, even though,

for one of them, there is no solution on the polynomially many known values for the

underlying graph. Therefore, since M returns an answer involving the unspecified

part of the input, the graphs of f, g, h can be suitably altered so thatM ’s answer is

wrong. ThusM is not a correct reduction, which is a contradiction.

The rest of the proof shows how to specify f, g, h at any step i. It is clear how

to do this if the ith step is a query to f , g or h, sinceM can only make polynomially

many queries and there is an exponential search space. So suppose the ith step is a

query to Q2(F,G, 0
m, 0m, y), where y ∈ U2 (the size parameters can be made equal

without loss of generality). Since M is a many-one reduction, M has not made a

previous Q2 query and cannot make another Q2 query. If y is not 01 or 10, then the

Q2 query is answered with 0, without needing to set any more of f , g, or h.
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If y is the string 01, then the Q2 query must solve LONELY on G. The

function G is computed by a polynomial time Turing machine that has oracle access

to f , g, and h. This gives rise to a decision tree Tu for G(u) with internal nodes

corresponding to f , g, or h queries; see Section 3 for the details on constructing

decision trees. Since it is enough to solve the LONELY instance on G without

revealing a solution to LeftPIGEON, arbitrarily fix the entire graph of h, and

shorten each decision tree Tu to only include f and g queries. Theorem 6 of [2]

shows that there is a way to specify a polynomial part of f and g that solves

LONELY(G, 0m) without solving LeftPIGEON(f, g, 0n). This fact is proved by

contradiction. First, the problem is turned into a combinatorial problem, which

in turn is turned into a Nullstellensatz proof of a certain degree d. Then a lower

bound on the degree is proved which is greater than d, which is the contradiction.

Note that fixing the graph of h could letM find a solution to LONELY on h.

However, f, g have been set so that they do not solve LeftPIGEON. Since M can

only query Q2 once, and only queries to Q2 can produce a solution to LeftPIGEON,

if y is 01 thenM never finds a solution to LeftPIGEON on f, g.

Now suppose y is the string 10. Then the query Q2(F,G, 0
m, 0m, y) must

solve PIGEON on F . It is enough to solve PIGEON on F without producing a

solution to LONELY. Let T ′
u be the decision tree for F (u). Arbitrarily fix the graphs

of f and g and shorten each decision tree T ′
u to only include h queries. Lemma 4 of [2]

shows how to specify a polynomial portion of h to correctly answer PIGEON(F, 0m)

without solving LONELY(h, 0n); this result is generalized in Theorem 8.2.5. The

proofs of Lemma 4 and Theorem 8.2.5 both rely on the the fact that if a Boolean

function and its negation can be written in disjunctive normal form with terms of

size at most d, then the function can be represented as a decision tree of height at

most d2. The proof finishes by showing if there is no way to set h to solve PIGEON

without solving LONELY, then there is a bijection between two sets of branches

with different cardinalities. The proof of Theorem 8.2.5 contains the details of this

argument.

It is possible thatM could find a solution to LeftPIGEON when the graphs

of f, g are fixed. But now h is set so as to not solve LONELY, and M can make no
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more Q2 calls. Since Q2 calls are the only way to solve LONELY,M will never find

a solution to LONELY on h when y is 10.

7.4 TheMODdPrinciples

The MODd principles are used in the proof of Theorem 7.6.1. They are

similar to many other modular counting principles, such as the Count principles

of [3] (see Definition 7.4.2 below). The MODd principles are important for the

results of this chapter because they are formulated as TFNP2 problems, whereas

the Count are not even NP search problems. Modular counting has already been

encountered in the form of LONELY which is like counting mod 2; see Section 2.5

for details.

Definition 7.4.1. Let d be an integer with d > 1. If d is not a power of 2, MODd is

QΦ, where Φ is the formula

∃x[
∨

s|d
s 6=d

f (s)(x) = x ∨ f (d)(x) 6= x].

If d = 2k, MODd is QΦ, where Φ is the prenex form of the formula

f(0) = 0 → ∃x[
∨

s|d
s 6=d

(x 6= 0 ∧ f (s)(x) = x) ∨ f (d)(x) 6= x].

The notation s|d indicates that s divides d.

It is clear that solutions to MODd are verifiable in polynomial time, and

hence MODd is an NP search problem for all d. The problem MOD2 appears in [21]

as the Count2(f) axiom.

The intuition behind the MODd principle is that since |Un| = 2n it is

impossible for the orbits of f to partition Un into sets of size d. First consider the

case when d is not a power of 2. To see that MODd is total, suppose for all u ∈ Un

that f (s)(u) 6= u, for all s|d such that s 6= d, and that f (d)(u) = u. Fix u and let

m be the order of the orbit of u under f . The first condition implies it is not the

case that m|d and m 6= d, and and the second condition implies m divides d; hence



88

m = d, so all orbits have size d. It can be checked that the orbits are disjoint, which

is a contradiction since 2n is not a multiple of d.

The above argument fails when d is a power of 2 because |Un| = 2n. The

definition when d is a power of 2 makes the size of the set being partitioned odd

by excluding 0. Specifically, suppose f(0) = 0, f (d)(u) = u for all u ∈ Un, and

f (s)(u) 6= u for all s|d such that s 6= d and all u 6= 0 ∈ Un. Following the argument

of the previous paragraph, the orbit of any u 6= 0 under f has order d, and these

orbits are disjoint. Thus the non-zero elements of Un can be partitioned in orbits

of even size, which is clearly a contradiction since there are 2n − 1 many non-zero

elements of Un. Therefore MODd is also total when d is a power of 2.

Recall that the propositional LK translation of Chapter 3 associates to a

total ∃-sentence Φ a family of sequents FΦ,n→GΦ,n. Here FΦ,n encodes that the

function input to the search problem QΦ is total and functional on Un, and GΦ,n

encodes that there is a solution to QΦ on Un. For convenience, the sets of formulas

FMODd,n andGMODd,n are stated here in the case when d is not a power of 2. TotMODd,n

is the set of formulas {
∨

v∈Un

xu,v : u ∈ Un

}
,

FuncMODd,n is the set of formulas

{xu,v ∨ xu,v′ : u, v, v
′ ∈ Un, v 6= v′},

and FMODd,n is the cedent
∧
TotMODd,n,

∧
FuncMODd,n. The set SolnMODd,n is the union

of {
d−1∧

i=0

xui,ui+1
: u0, . . . , ud ∈ Un, u0 6= ud

}
(7.1)

and {
s−1∧

i=0

xui,ui+1
: u0, . . . , us ∈ Un, u0 = us, s|d, s 6= d

}
, (7.2)

and GMODd,n is the cedent
∨
SolnMODd,n.

Note that the formulas in (7.1) encode the condition that f (d)(u) 6= u and

the formulas in (7.2) encode the condition that f (s)(u) = u.
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The propositional formulasCountNd defined in [3] express equivalent modular

counting principles as the MODd principles (the equivalence is the subject of

Lemmas 7.4.3 and 7.4.4).

Definition 7.4.2 ([3]). Let V be a set of size N . Let [V ]d be the subsets of V of size

d. Then CountNd is the sequent

→
∨

v∈V

∧

e∈[V ]d

e3v

xe ∨
∨

e,f∈[V ]d

e⊥f

xe ∧ xf ,

where e ⊥ f means that e 6= f and e ∩ f 6= ∅. Let Φ be
∨

v

∧
e3v xe and let Ψ be

∨
e⊥f xe ∧ xf so that CountNd can be written as the sequent→Φ ∨Ψ.

The variable xe expresses the membership of the set e to the partition of V .

Thus CountNd expresses the statement that any sets {ei} that attempt to partition

V either do not contain all elements of V or two different sets ei, ej intersect

nontrivially.

An important fact is that the CountNd principles are not NP search problems.

In fact, it is not possible to recognize in polynomial time if some v ∈ V is not

contained in any set of the partition since there are exponentially many sets.

Another way to see this is to note that the
∨
’s in Count correspond to existential

quantifiers and the
∧

corresponds to a universal quantifier, so that Count is

equivalent to a Σ2-sentence.

The fact that the CountNd principles are not NP search problems is the

reason to introduce the MODd principles. However, the CountNd principles have

been studied in detail. In fact, [3] characterizes when there are constant depth,

polynomial size proofs of CountNd from CountN
′

d′ ; in particular, no such proofs exist

when d and d′ are relatively prime. We would like to use both MODd and CountNd ;

the former to define TFNP2 problems, and the latter to prove separations between

the TFNP2 problems.

The crucial fact is that, even though the CountNd principles are not NP

search problems, the propositional formulaCountNd is equivalent via constant depth,

polynomial size proofs to the propositional translation of MODd. This equivalence

is the subject of the following two lemmas.
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Lemma 7.4.3. If d is not a power of 2, then for any n there are constant depth,

polynomial (in 2n) size LK proofs of FMODd,n→GMODd,n from instances of Count2
n

d .

If r is a power of 2, then for any n there are constant depth, polynomial (in

2n) size LK proofs of FMODd,n→GMODd,n from instances of Count2
n−1

d .

Proof. Recall that the MODd principles are defined by cases according to whether

d is a power of 2 or not. The proof only shows the case when d is not a power of

2. The case when d is a power of 2 is similar, with only minor differences arising

since the zero string is effectively eliminated from consideration. The fact that the

zero string is removed accounts for the superscript 2n − 1 in the case when d is not

a power of 2.

Let the set V in Definition 7.4.2 be Un, so that |V | = 2n. Let Φ and Ψ

be as in Definition 7.4.2. The proof shows how to derive FMODd,n, (Φ)σ→GMODd,n

and FMODd,n, (Ψ)σ→GMODd,n, for a substitution σ defined below. The lemma then

follows by an ∨:left inference and a cut.

To define the substitution σ, begin by fixing an e = {e0 < . . . < ed−1} ∈

[Un]
d. Let Sd be the set of permutations on {0, . . . , d − 1}. For π ∈ Sd, let xπ,e be

the conjunction
∧d−2

i=0 xeπ(i),eπ(i+1)
∧ xeπ(d−1),eπ(0)

, and let xπ,e denote the negation of

this conjunction,
∨d−2

i=0 xeπ(i),eπ(i+1)
∨ xeπ(d−1),eπ(0)

. Let xeσ be
∨

π∈Sd
xπ,e.

We first prove the case FMODd,n, (Ψ)σ→GMODd,n. Pick any e = {e0, . . . , ed−1}

and f = {f0, . . . , fd−1} such that e ⊥ f . Let π, ϕ ∈ Sd. Since e ⊥ f , there is a u such

that u = eπ(i) = fϕ(j) but eπ((i+1) mod d) 6= fϕ((j+1) mod d), for some 0 ≤ i, j ≤ d − 1.

It is clear there is a short proof of

xu,eπ((i+1) mod d)
∨ xu,fϕ((j+1) mod d)

, xπ,e, xϕ,f→.

By weakening and ∧:left introduction derive

∧
FuncMODd,n, xπ,e, xϕ,f→.

By using ∨: left in a balanced fashion over all π and then over all ϕ derive

∧
FuncMODd,n,

∨

π∈Sd

xπ,e,
∨

ϕ∈Sd

xϕ,f→.
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Then derive
∧

FuncMODd,n,
∨

e⊥f

(
∨

π∈Sd

xπ,e ∧
∨

ϕ∈Sd

xϕ,f

)
→

by using an ∧:left followed by ∨:lefts in a balanced fashion over all e ⊥ f . The

desired sequent is derived by weakening and an ∧:inferences.

We now prove the case FMODd,n, (Φ)σ→GMODd,n. To derive this sequent, it

is enough to derive, for each v ∈ Un,

FMODd,n,
∧

e3v

∧

π∈Sd

xπ,e→GMODd,n, (7.3)

since (Φ)σ is
∨

v∈Un

∧
e3v

∧
π∈Sd

xπ,e. For the rest of the proof, let xi,j be short for

xfi,fj . For any 0 ≤ i < d and any f0, . . . , fi ∈ Un such that v ∈ {f0, . . . , fi}, denote

the sequent

{xj,j+1}
i−1
j=0,

∧
TotMODd,n,

∧

e3v

∧

π∈Sd

xπ,e→GMODd,n

by Σ(f0, . . . , fi). To derive (7.3) it is enough to derive Σ(f0, . . . , fi) for any 0 ≤ i < d,

since Σ(f0) is easily weakens to (7.3).

Derive Σ(f0, . . . , fi) by downward induction on i, with base case i = d−1. We

first show the induction step. Let i < d− 1 and arbitrarily choose f0, . . . , fi−1 ∈ Un

such that v ∈ {f0, . . . , fi−1}. For each choice of fi ∈ Un the induction hypothesis

gives a derivation of Σ(f0, . . . , fi−1, fi). By ∨:left derive

{xj,j+1}
i−2
j=0,

∨

fi∈Un

xi−1,i,
∧

TotMODd,n,
∧

e3v

∧

π∈Sd

xπ,e→GMODd,n.

Use weakening and ∧:left to transform
∨

fi∈Un
xi−1,i into

∧
TotMODd,n and contract

on the left to derive Σ(f0, . . . , fi−1).

Now consider deriving the base case Σ(f0, . . . , fd−1). Choose f0, . . . , fd−1 ∈

Un such that v ∈ {f0, . . . , fd−1}. First assume that f0, . . . , fd−1 are all distinct, so

that f = {f0, . . . , fd−1} ∈ [Un]
d. Since the definition of σ requires that the fi’s

be in increasing order, pick the ϕ ∈ Sd such that f = {fϕ(0) < · · · < fϕ(d−1)}. In

particular, for any π ∈ Sd, xπ,f is

d−2∧

i=0

xπ(ϕ(i)),π(ϕ(i+1)) ∧ xπ(ϕ(d−1)),π(ϕ(0)),
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and thus xϕ−1,f is
d−2∧

i=0

xi,i+1 ∧ xd−1,0.

Arbitrarily pick w ∈ Un. If w 6= f0, then it is clear there is a short proof of

x0,1, . . . , xd−2,d−1, xd−1,w→GMODd,n. (7.4)

If w = f0, then it is trivial to derive

x0,1, . . . , xd−2,d−1, xd−1,w, xϕ−1,f→. (7.5)

Weaken (7.4) and (7.5) and use ∨:introduction to derive

{xj,j+1}
d−2
j=0,

∨

w∈Un

xd−1,w, xϕ−1,f→GMODd,n.

Apply weakening and ∧:left to derive

{xj,j+1}
d−2
j=0,

∧
TotMODd,n,

∧

e3v

∧

π∈Sd

xπ,e→GMODd,n,

which is the desired sequent.

Now assume that f0, . . . , fd−1 are not distinct. Suppose fi = fj, for some

0 ≤ i < j ≤ d − 1. Without loss of generality, assume fi = fj = f0. If

f0 → f1 → · · · → fj−1 → f0 contains an s cycle, where s|d, then s 6= d and

it is easy to derive

{x`,`+1}
j−1
`=0→GMODd,n,

from which Σ(f0, . . . , fd−1) follows by weakening.

Otherwise, assume f0 → f1 → · · · → fj−1 → f0 only contains cycles whose

lengths do not divide d. Pick a cycle of shortest length from f0 → f1 → · · · →

fj−1 → f0. This implies that starting on f0 and iterating the cycle d times ends at

an element other than f0; that is, fd mod j 6= f0. Specifically, it is clear how to derive

{x`,`+1}
j−1
`=0→

d−2∧

`=0

x` mod j,(`+1) mod j ∧ x(d−1) mod j,d mod j,

since each x`,`+1 that appears on the left appears (perhaps multiple times) on the

right. From this, it is easy to derive

{x`,`+1}
j−1
`=0→GMODd,n,
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and Σ(f0. . . . , fd−1) again follows by weakening. Thus Σ(f0, . . . , fd−1) is derived for

all cases. This finishes the base case, hence the induction, and hence the proof of

the lemma.

It is easy to check the proofs are all polynomial size and constant depth.

Lemma 7.4.4. If d is not a power of 2, then for any n there are constant depth,

polynomial (in 2n) size proofs of Count2
n

d from instances of FMODd,n→GMODd,n.

If d is a power of 2, then for any n there are constant depth, polynomial (in

2n) size proofs of Count2
n−1

d from instances of FMODd,n→GMODd,n.

Proof. As before the lemma is only proved in the case when d is not a power of

2. Define the substitution to be applied to FMODd,n→GMODd,n as follows: Suppose

e ∈ [Un]
d, where e = {e0 < . . . < ed−1}. If u = ei for some 0 ≤ i ≤ d − 1 and

v = ei+1 mod d, then write e(u) = v. Let σ replace xu,v with

∨

e∈[Un]d:
e(u)=v

xe.

Frequently xu,vσ be written
∨

e(u)=v xe to improve readability. Let Φ and Ψ be as in

Definition 7.4.2. If there are constant depth, polynomial size proofs of

(i) →Φ ∨Ψ,
∧
TotMODd,nσ,

(ii) →Φ ∨Ψ,
∧
FuncMODd,nσ , and

(iii) GMODd,nσ→Φ ∨Ψ,

then the lemma follows by cuts.

First consider (i). It is clear that there is a short proof of

∧

u∈Un

∨

e3u

xe→
∧

u∈Un

∨

v∈Un

∨

e(u)=v

xe. (7.6)

Note that ¬
∧

u∈Un

∨
e3u xe is equivalent to

∨
u∈Un

∧
e3u xe, and this latter formula

is exactly Φ. Also recall that
∧
TotMODd,n is

∧
u∈Un

∨
v∈Un

xu,v. Thus derive

→Φ,
∧

TotMODd,nσ
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from (7.6). Weaken and use ∨:right to derive the desired sequent (i).

Now consider (ii). Fix u, v, v′ ∈ Un such that v 6= v′. It is clear there is a

short proof of ∨

e(u)=v

xe ∧
∨

f(u)=v′

xf→
∨

e⊥f

xe ∧ xf .

Since ¬
(∨

e(u)=v xe ∧
∨

f(u)=v′ xf

)
is equivalent to (xu,v ∨ xu,v′)σ, there is a proof of

→Φ ∨Ψ, (xu,v ∨ xu,v′)σ.

Derive→Φ ∨Ψ,
∧

FuncMODd,nσ by applying ∧:lefts in a balanced fashion.

Finally consider (iii). First suppose s|d with s 6= d. Fix u0, . . . us where

u0 = us, so that
∧s−1

i=0 xui,ui+1
σ is a member of the set in (7.2). This formula is

equivalent to
∨

e0(u0)=u1

· · ·
∨

es−1(us−1)=u0

s−1∧

i=0

xei . (7.7)

Claim: Each disjunct of (7.7) contains i 6= i′ such that ei ⊥ ei′ .

If the claim failed, then by the definition of e(u) = v, each ei would contain only

the s elements u0, . . . , us−1, which cannot happen since ei is a subset of d distinct

elements of Un and s 6= d. Thus the claim holds.

Therefore, for any choice of e0, . . . , es−1 such that ei(ui) = ui+1 mod s for

0 ≤ i ≤ s− 1, there is a proof of

s−1∧

i=0

xei→Ψ.

Thus there is a proof of (7.7)→Ψ, which by the previously mentioned equivalence

gives a proof of
s−1∧

i=0

xui,ui+1
σ→Ψ. (7.8)

Now consider
∧d−1

i=0 xui,ui+1
σ, where ud 6= u0, which is a member of the set

in (7.1). This formula is equivalent to

∨

e0(u0)=u1

· · ·
∨

ed−1(ud−1)=ud

d−1∧

i=0

xei . (7.9)
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Claim: Each disjunct of (7.9) contains i 6= i′ such that ei ⊥ ei′ .

Suppose for a contradiction that this is not the case. Note that u0, . . . , ud cannot

all be distinct, since then e0 would contain d + 1 distinct elements of Un, which

cannot happen. Thus uj = uj′ for some 0 ≤ j < j′ ≤ d. Note that it cannot be

that {j, j′} = {0, d} since u0 6= ud, thus |j − j′| < d. But then there is a cycle

uj → uj+1 → · · · → uj′−1 → uj of length strictly less than d. This cannot happen,

otherwise ej would contain strictly less than d elements. Thus the claim holds.

Similar to the previous argument, from the claim there is a proof of

(7.9)→Ψ, and thus of
d−1∧

i=0

xui,ui+1
σ→Ψ. (7.10)

Applying ∨:lefts to the sequents in (7.8) and (7.10) yields a proof of GMODr,nσ→Ψ,

from which GMODr,nσ→Φ ∨Ψ follows easily.

Again, the proofs are easily checked to be constant depth and polynomial

size.

The following lemma states a relation between the MODd principles and the

` operator that will be needed in the proof of Theorem 7.6.1.

Lemma 7.4.5. Let p1, . . . , pr be distinct primes, and let d =
∏r

i=1 pi. Then

MODd ≡m `r
i=1MODpi.

Proof. We only show the proof in the case where pi 6= 2 for i = 1, . . . , r. Allowing

a pi to be 2 does not fundamentally change the proof, but the details must change

to take account of the different definition of MOD2 from other MODpi ’s.

Let S be `r
i=1MODpi . We describe a Turing machineM that solves S with a

single call to an instance of MODd. Suppose the function inputs to S are f1, . . . , fr,

and without loss of generality assume each fi is a function on the universe Un.

Then let F (u1, . . . , ur) = (f1(u1), . . . , fr(ur)). Since F is supposed to be an input

to MODd, it must be a mapping on Um for somem, so treat the vectors (u1, . . . , ur)

and (f1(u1), . . . , fr(ur)) as m = rn bit strings by concatenation. The machine

M simply sets up F , queries MODd(F, 0m), and receives an answer. The following
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shows that no matter what answer is received, the reduction can compute a solution

to S in polynomial time relative to the fi’s.

SupposeM receives u = (u1, . . . , ur) as a solution to the queryMODd(F, 0m).

Suppose for some s|d, s 6= d, and F (s)(~u) = ~u. Then there is a pi such that pi and

s are relatively prime. If f
(pi)
i (ui) 6= ui, then M returns ui as a solution to S.

Otherwise f
(pi)
i (ui) = ui, and the order of ui divides pi. But F (s)(~u) = ~u implies

that f
(s)
i (ui) = ui, and hence the order of ui divides s. Since pi and s are relatively

prime, the order of ui is 1, so fi(ui) = ui. Once again M returns ui. In either case,

M has solved MODpi , and hence has solved S.

Now suppose instead that F (d)(~u) 6= ~u. If f
(pi)
i (ui) = ui for all 1 ≤ i ≤ r,

then F (d)(~u) = ~u, a contradiction. Thus M can try each of the constantly many i

to find a ui such that f
(pi)
i (ui) 6= ui. Again this solves MODpi and hence S.

We now show there is a many-one reduction M from MODd to S. Let f

be the input function to MODd on the universe Un. Let fi(u) = f (si)(u), where

si = d/pi, for i = 1, . . . , r. Then M queries S with the fi’s and gets an answer u.

The following shows that u in fact solves MODd(f, 0n).

By definition of S, u solves someMODpi(fi, 0
n) (exactly which i can be found

by checking the r different possibilities). Suppose fi(u) = u. Then f (si)(u) = u,

in which case u solves MODd(f, 0n). Now suppose f
(pi)
i (u) 6= u. Then u solves

MODd(f, 0n), since u 6= f
(pi)
i (u) = f (sipi)(u) = f (d)(u).

7.5 Infinitely-oftenTuringReductions

A new kind of reducibility that will be needed below in the proof of

Theorem 7.6.1 is infinitely-often Turing reducibility.

Definition 7.5.1. Let Q1(~f, ~x), Q2(~g, ~y) be type-2 TFNP problems. A sequence

(Mn)n of type-2 oracle Turing machines is an infinitely-often Turing reduction from

Q1 to Q2 if there exists d and an infinite set A such that for any ~x ∈ Un and n ∈ A,

when Mn is run on input (~f, ~x), Mn outputs z ∈ Q1(~f, ~x) in time nd relative to

the fi’s and Q2. In this case, Q1 is infinitely-often Turing reducible to Q2, denoted

Q1 ≤
i.o.
T Q2 or (Mn)n∈A : Q1 ≤

i.o.
T Q2. If B is the set of (n,m) such that n ∈ A and
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there is an input (~f, ~x), where ~x ∈ Un, on which Mn makes a query to Q2 with size

parameter m, then this can be denoted (Mn)n∈A, B : Q1 ≤
i.o.
T Q2.

IfM makes only one call toQ2, thenM is infinitely-often many-one reduction

from Q1 to Q2, and any of the notations Q1 ≤i.o.
m Q2, (Mn)n∈A : Q1 ≤i.o.

m Q2, or

(Mn)n∈A, B : Q1 ≤
i.o.
m Q2 will be used based on context.

Instead of using Turing machines, infinitely-often Turing reductions could

have been defined equivalently using polynomial size circuits.

An important fact about infinitely-often Turing reductions is that they allow

for non-uniformity; each size parameter n has its own Turing machineMn for inputs

of size n. Another important note is that infinitely-often Turing reductions relax

the conditions of a Turing reduction is by only requiring the reduction to be correct

for infinitely many size parameters. This fact leads immediately to the following

lemma.

Lemma 7.5.2. If M : Q1 ≤m Q2, then for any infinite set of positive integers A

there exists an infinitely-often Turing reduction (Mn)n∈A : Q1 ≤
i.o.
m Q2.

The lemma is stated with respect to many-one reducibility as it will be

applied in that situation. However, as Mn is exactly M for each n, any property

of the reduction M , such as being a Turing or k-reduction, is inherited by the

infinitely-often Turing reduction (Mn)n∈A.

Note that in the proof of Lemma 7.4.5 if n is the size parameter to MODd,

then the reduction MODd ≤m `r
i=1MODpi queries `r

i=1MODpi with the same size

parameter n. The next corollary follows from this fact and Lemma 7.5.2.

Corollary 7.5.3. Let p1, . . . , pr be distinct primes, and let d =
∏r

i=1 pi. Then for

any infinite set of positive integers A there is an infinitely-often Turing reduction

(Mn)n∈A, D : MODd ≤i.o.
m `r

i=1MODpi, where D = {(n, n) : n ∈ A}.

Another important fact is that the translation of Chapter 3 still applies

to infinitely-often Turing reductions. That is, Theorem 3.3.1 applies when the

condition QΦ ≤T QΨ is relaxed to QΦ ≤i.o.
T QΨ. It is easy to check that the details

of the proof carry over exactly to the infinitely-often Turing reduction case. The
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main point is that the proof of FΦ,n→GΨ,n for size parameter n is built only from

TM,n, and since there is a uniform polynomial bound on the runtime of M , and

hence the height of TM,n is similarly bounded, the non-uniformity of M does not

affect the argument. The resulting propositional LK proofs are non-uniform, but

this fact never arises in the proofs below.

Transitivity for infinitely-often Turing reductions is not the same as for

ordinary Turing reductions. For instance, suppose (Mn)n∈A, B : Q1 ≤i.o.
T Q2 and

(M ′
n)n∈A′ , B′ : Q2 ≤i.o.

T Q3. It is tempting to use the following argument to show

Q1 ≤
i.o.
T Q3. LetM

′′
n on input n ∈ A simulateMn, except that wheneverMn makes

a call to Q2 with size parameter m, M ′′
n instead uses M ′

m to make queries to Q3 to

answer the Q2 query. This argument fails since m may not be in A′, in which case

M ′
m may not return a solution to Q2. The following lemma formulates the analogue

of transitivity for infinitely-often Turing reductions.

Lemma 7.5.4. Let (Mn)n∈A, B : Q1 ≤i.o.
T Q2, (M

′
n)n∈A′ : Q2 ≤i.o.

T Q3, and B2 =

{m|∃n(n,m) ∈ B}. IfB2 ⊆ A′, thenQ1 ≤
i.o.
T Q3. In fact, there are Turing machines

(M ′′
n)n∈A such that (M ′′

n)n∈A, B
′′ : Q1 ≤i.o.

T Q3, where B
′′ is the set of (n,m′) such

that there is an input (~f, ~x), where ~x ∈ Un, on whichMn calls Q2 with size parameter

m, and there is an input (~g, ~y), where ~y ∈ Um, on whichM ′
m calls Q3 with parameter

m′.

Proof. Note that enough assumptions have been added so that the argument of the

previous paragraph is now correct.

7.6 A≤k and≤k+1 Separation

This is the second main result of this chapter, after Theorem 7.3.1. Note

that Theorem 7.6.1 is stronger than Theorem 7.3.1.

Theorem 7.6.1. For each k ≥ 0 there exist TFNP problems Q1, Q2 such that

Q1 ≤k+1 Q2 but Q1 6≤k Q2. In fact, for a sequence of distinct primes p1, p2, . . ., this

statement holds for Q1 =
⊗k+1

i=1 MODpi and Q2 = &k+1
i=1MODpi.
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The remainder of the section proves Theorem 7.6.1. For convenience, assume

each pi > 2. This avoids notational difficulties arising from the difference in the

definition of MODd when d is a power of 2. Also, since the case k = 0 is trivial,

assume that k ≥ 1. As an aside, note the case k = 1 gives a different example than

Theorem 7.3.1 of two problems for which many-one and Turing reducibility are not

equivalent.

Let k ≥ 1, fix distinct primes p1, . . . , pk+1 > 2, let Q1 be
⊗k+1

i=1 MODpi ,

and let Q2 be &k+1
i=1MODpi . It is clear that Q1 ≤k+1 Q2. Specifically, suppose

the function input to each MODpi in Q1 is fi : Uni
→ Uni

. Let M be the Turing

reduction which makes k+1 successive queries to Q2. For the i
th query,M chooses

to solve MODpi on fi. It is clear that, after the k + 1 queries to Q2,M has found a

solution to each MODpi(fi, 0
ni), and hence has found a solution to Q1.

Now suppose for a contradiction thatM : Q1 ≤k Q2. Let the function input

to MODpi be fi, and, without loss of generality, assume that the string input to

each MODpi is 0n. Also assume thatM has the following properties: (1) Queries by

M of the form fi(u) are replaced by the pi many queries fi(u), f
(2)
i (u), . . . , f

(pi)
i (u);

(2) Each Q2 query made by M is in fact a query to an individual MODpi , for some

i ∈ {1, . . . , k + 1}; (3) Whenever M receives an answer to a MODpi query, M

immediately verifies the correctness of the answer. (1) can be assumed without loss

of generality since the number of queries increases by a factor of at most maxi pi,

which is constant in n. (2) also can be assumed because before M makes a Q2

query q it must write a string 0mi , the descriptions of a function Fi from Umi
to

Umi
for each i = 1, . . . , k, and the string y. If y = 0i−110k−i then the query q can

be replaced by a query to MODpi(Fi, 0
mi) (if y is not of this form q can be skipped

entirely). (3) can be assumed because the MODpi ’s are NP search problems and

thus verifying answers adds only polynomial amount of work. Note that assumption

(1) still applies to any queries that arise in the verification process of (3). For a

given n, let TM,n be the decision tree forM on size input 0n (refer to Section 3.4 for

more details) with the following adaptation. Normally, the internal nodes of TM,n

are labeled with queries to an fi or Q2. However, due to assumption (2) the internal

nodes are labeled as queries to the fi’s or the MODpi ’s.



100

The following introduces terminology to be used in the proof. If µ is a

node in TM,n, then Pµ is the path in TM,n from the root to µ (Pµ contains µ). If µ

corresponds to a MODpi query, then µ is at level j if µ is the jth query to any MODpi′

on Pµ. A path Pµ contains a solution to MODpi(fi, 0
n) if the graph fi specified

by the edge labels in Pµ contains an explicit u ∈ Un solving MODpi(fi, 0
n). Now

consider verifying the correctness of an answer u ∈ Um to a MODpi(F, 0m) query.

First note that F is computed by a Turing machine with oracle access to all the

fj’s. Thus the decision trees for F can contain internal nodes labeled “fj(u) =?”

for j 6= i, and thus it is conceivable that verifying that u solves MODpi(F, 0m)

could reveal a solution to MODpj(fj, 0
n) for j 6= i. We say that the verification that

u solves MODpi(F, 0m) contains a solution to MODpj(fj, 0
n) if the portion of the

graph of fj discovered only while verifying the correctness of u contains a solution

to MODpj(fj, 0
n).

Let µ be at level j and correspond to a query MODp(F, 0m). Then let Vµ

be the set of i such that there is an solution to MODp(F, 0m) whose verification

contains a solution to MODpi(fi, 0
n), or Pµ contains a solution to MODpi(fi, 0

n).

Let Wµ be the set of i such that Pµ contains a query to MODpi . A node µ at

level j is regular if Vµ ⊆ Wµ. Thus µ is regular if, for any answer to the query

corresponding to µ, after M verifies the correctness of the response, M has only

solved those MODpi(fi, 0
n)’s for which it has queried some MODpi(F, 0m). A query

q to a MODpi is regular if the node µ corresponding to q in TM,n is regular. The

tree TM,n is regular if it contains no irregular nodes.

Claim: TM,n is irregular for all sufficiently large n.

For a contradiction, assume there exists a large n such that TM,n is regular.

Note that at any point in its computation M has revealed only a polynomial part

of each of the fi’s. Then for queries fi(u) made in the normal execution ofM , that

is not while verifying the correctness of the answer to a MODpi query, it is possible

to set the values fi(u), f
(2)
i (u), . . . , f

(pi)
i (u) to be pi − 1 new points previously unset

by fi such that f
(pi)
i (u) = u. Thus such queries to fi do not reveal any new

solutions to MODpi(fi, 0
n) (or any MODpj(fj, 0

n) for that matter). On the other
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hand, whenever M queries MODpi , since the query is regular, it is possible to set

a polynomial amount of all the fj’s so that M can answer MODpi and verify the

solution while only creating explicit solutions to the MODpj ’s it has queried so

far. Thus the only time M finds a solution to MODpi(fi, 0
n) is during a MODpj

query, and each such query finds a solution to at most one MODpi . Since M only

makes k calls to the MODpi ’s, when M terminates it has solved at most k of the

MODpi(fi, 0
n)’s. Therefore,M must produce an answer u to some MODpi(fi, 0

n)’s

without explicitly knowing fi(u). The values of fi(u), . . . , f
(pi)
i (u) can be set so that

u is not a solution, contradicting the correctness ofM .

So the claim holds and TM,n is irregular for all sufficiently large n. Since there

are infinitely many such n, and only constantly many levels (k in fact), there exists

a level j′ ∈ {1, . . . , k} such that there are infinitely many n where TM,n contains an

irregular node µ at level j′ such that µ is the first irregular node on Pµ. Since Pµ has

only regular nodes before µ, before receiving the answer to query corresponding to µ,

Pµ knows the answer to at most j′− 1 of the MODpi(fi, 0
n)’s. By the irregularity of

µ , after receiving the answer to the query corresponding to µ the machineM knows

solutions to a MODpi(fi, 0
n) that has not been queried. Since there are constantly

many subsets of {p1, . . . , pk+1} of size at most j′ − 1, there exists a constant

j ∈ {1, . . . , k} and distinct primes q, q1, . . . , qj−1, and an infinite set A, such that

when n ∈ A, TM,n has an irregular node µ at level j which corresponds to a MODq

query, Pµ contains explicit answers to only MODq1(f1, 0
n), . . . ,MODqj−1(fj, 0

n),

and for any answer to µ, verifying the answer solves some MODpi(fi, 0
n), where

pi 6∈ {q, q1, . . . , qj−1}. Without loss of generality assume qi = pi for i = 1, . . . , j − 1

and q = pj. Let S be `
k+1
i=j+1MODpi . Note that S is not trivial since j ≤ k. Let

d =
∏k+1

i=j+1 pi. Then S ≡m MODd by Lemma 7.4.5.

Let n ∈ A, and consider the irregular node µ in TM,n described above, so that

the query corresponding to µ is to MODpj . As stated above, M finds an answer to

some MODpi(fi, 0
n) for i > j while verifying the answer to the query corresponding

to µ. The intuition is that it should be possible to build a many-one reduction

M ′ : S ≤m MODpj by simulating the query corresponding to µ and verifying the

response.
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One problem with building M ′ is that the irregular nodes µ appear in

TM,n only when n ∈ A. Another problem is that on input 0n, M ′ would need

the information on Pµ in order to set up the query corresponding to µ. Since

the µ’s (and hence the Pµ’s) are not explicitly constructed, M ′ would have to be

non-uniform. Infinitely-often Turing reductions resolve both of these problems; see

the discussion after Definition 7.5.1.

Claim: There is an infinitely-often Turing reduction (Mn)n∈A : S ≤i.o.
m MODpj .

Proof of Claim: The following constructs a non-uniform family of type-2 Turing

machines Mn, for n ∈ A, such that, on inputs {gi}
k+1
i=j+1 and size parameter n, Mn

runs in polynomial time p(n), makes one query to MODpj , and solves S on {gi}
k+1
i=j+1

and size parameter n.

Fix n ∈ A, let µ be the irregular node in TM,n described above, and let

MODpj(F, 0m) be the query corresponding to µ. The idea of the reduction is as

follows. There is a polynomial time Turing machine MF with access to the fi’s

which computes F . The irregularity of µ guarantees that the verification of any

answer to the query contains a solution to some MODpi(fi, 0
n) such that M has

not yet made any MODpi query; that is, the verification of the answer solves S on

the fi’s. The machine Mn needs to make a query MODpj(G, 0m) for some function

G in order to solve S on the gi’s. The idea is that function G should be defined

by simulating MF and replacing fi queries with gi queries. This approach has

does not quite work for two reasons. The first is that MF uses fi as an oracle for

1 ≤ i ≤ k + 1, whereas there are gi’s only for i > j. The second is that Pµ contains

information about the fi’s, so the gi’s need to be modified in such a way that gi

agrees with fi on the values of fi contained in Pµ.

The functions hi for 1 ≤ i ≤ k + 1 are defined below to resolve these two

problems. Before doing that, note that since M has not solved MODpi for i > j

by the time M reaches µ in TM,n, the values for each fi in Pµ contain only disjoint

orbits of length pi. That is, for each i > j, the partial function fi is one-to-one, and

if fi(u) = v is in Pµ, then v 6= u and f
(2)
i (u), . . . , f

(pi)
i (u) are also in Pµ and distinct

with f
(pi)
i (u) = u. Let fi have `i distinct pi cycles.
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The following is a description ofMn. LetMn begin by running the following

subroutines, one for each j + 1 ≤ i ≤ k + 1. The ith subroutine is an `i stage

algorithm described as follows. Let Vr be the set of unknown values of gi at step

r. At step r, Mn queries gi(u), . . . , g
(pi)
i (u), where u is the minimal element of

Vr. If a solution to MODpi(gi, 0
n) is revealed, Mn outputs that solution and halts.

Otherwise, the graph of gi at the end of stage r consists of exactly r disjoint pi

cycles. If r < `i, thenMn continues to step r + 1, otherwise the algorithm ends.

After running these subroutines Mn has either solved S, or knows values of

gi that form exactly `i disjoint pi cycles, for i > j. If Mn has not solved S, then

there are bijections ϕi, for i > j, on Un such that (1) ϕi is also a bijection between

the values of fi in Pµ and the known values of gi and (2) ϕi preserves the cycle

structure of fi and gi, i.e. gi(ϕi(u)) = ϕi(fi(u)) when fi(u) is in Pµ. For each i > j,

Mn defines hi to be ϕ−1
i ◦ gi ◦ ϕi. For each j ≤ i, let

hi(u) =




v if fi(u) = v is contained in Pµ

0 otherwise
.

Therefore, hi(u) = fi(u) when fi(u) is in Pµ.

Next, Mn sets up a function G computed by a polynomial time Turing

machine with oracle access to the hi’s. Recall that query corresponding to µ is

MODpj(F, 0m), and thereforeM has set up a polynomial time Turing machineMF

with access to the fi’s which computes F . The idea is to compute G by simulating

MF , except that each query to fi(u) is replaced by a query to hi(u). However, hi is

defined in terms of gi for i > j, so this process is described more carefully. Let M
~h
F

simulate MF , except that if MF queries fi(u) for i ≤ j, then M
~h
F instead skips the

query and continues to the subtree where the fi(u) is answered with hi(u). If MF

queries fi(u) for i > j, thenM
~h
F queries g(ϕi(u)) and continues to the subtree where

the query fi(u) is answered with ϕ−1
i (g(ϕi(u)). Let G be the function computed by

M
~h
F .

The final step of Mn is to query MODpj(G, 0m), and verify the correctness

of the answer. Suppose Mn receives x ∈ MODpj(G, 0m). Since the verification of

any answer to MODpj(F, 0m) solves S on {fi}i>j, verifying that x ∈ MODpj(G, 0m)

reveals a solution to S on {hi}i>j by construction of G. Clearly the solution to S
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on the hi’s pulls back to a solution to S on {gi}i>j’s via the ϕi’s. This completes

the definition ofMn, and the proof of the claim.

The following argument concludes the proof of Theorem 7.6.1. The claim,

Corollary 7.5.3, and Lemma 7.5.4 imply that there is an infinitely-often many-one

reduction from MODd to MODpj , where d =
∏k+1

i=j+1 pi. By the discussion in

Section 7.5, Theorem 3.3.1 extends to infinitely-often reductions. Thus for each n

in A, there exists constant depth, polynomial size (in 2n) propositional LK proofs

of FMODd,n→GMODd,n from instances of FMOD
pj ,m→GMOD

pj ,m. By Lemmas 7.4.3

and 7.4.4 there are constant depth, polynomial size proofs of Count2
n

d from instances

of Count2
m

pj
. Since each pi > 2, d and 2 are relatively prime. Thus there is an

0 < i < d such that there are infinitely many n such that there are proofs as

above and 2n ≡ i mod d. Since pj and 2 are also relatively prime, 2m 6≡ 0 mod pj.

Therefore Theorem 3.5 of [3] implies there is a 0 < j < pj with infinitely many N ′,

N ′ ≡ i mod d, a constant ` and a number M = NO(1), M ≡ j mod pj, such that

there exists a (p, pj, `,M)-generic system over a set V of size N ′. However, since d

and pj are relatively prime, Lemma 3.10 of [3] implies there does not exist such a

generic system. This contradiction finishes the proof of Theorem 7.6.1.

This chapter contains material from the paper “Propositional proofs and

reductions between NP search problems” which is currently accepted for publication

by the Annals of Pure and Applied Logic. This paper is co-authored by the

dissertation author and Samuel R. Buss.



Chapter8

TheMODdCountingPrinciples

8.1 Overview

TheMODd counting principles were formulated in Section 7.4, but we restate

them for sake of convenience. Let d be an integer with d > 1. If d is not a power of

2, MODd is QΦ, where Φ is the formula

∃x[
∨

s|d
s 6=d

f (s)(x) = x ∨ f (d)(x) 6= x].

If d = 2k, MODd is QΦ, where Φ is the prenex form of the formula

f(0) = 0 → ∃x[
∨

s|d
s 6=d

(x 6= 0 ∧ f (s)(x) = x) ∨ f (d)(x) 6= x].

The notation s|d indicates that s divides d. Note that the problem LONELY defined

in Section 2.5 is exactly the problem MOD2.

These principles intuitively state that a set V such that |V | 6≡ 0 mod d

cannot be partitioned into sets of size d. As mentioned in Section 7.4, these

principles have been studied outside the context of TFNP2 problems, in particular

the Count formulas of [3]. The MODd principles are of interest because the MODd

principles are NP search problems and the Count formulas are not. The only

modular counting principle previously studied as an NP search problem is the

problem LONELY. The problem LONELY served as the template for generalizing

to the MODd principles.
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For each d, the many-one closure of MODd defines a new class of TFNP

problems called PMODd (for “polynomial d modular argument”); thus PPA is

exactly PMOD2. This chapter begins to resolves the relative complexity of the

PMODd’s with other common TFNP classes. The picture is not complete, and

some the current results require d to be prime while others do not.

The fact that MOD2 is LONELY is a good starting place for resolving the rel-

ative complexity of the MODd principles. In particular, OntoPIGEON ≤m MOD2,

MOD2 6≤T PIGEON, LeftPIGEON 6≤T MOD2 are shown in [2] (Corollary 3.3.2

also shows MOD2 6≤T PIGEON), MOD2 6≤T ITER is shown in Corollary 3.3.2, and

ITER 6≤T MOD2, PIGEON 6≤T MOD2 are shown in Corollary 4.3.2.

We first state the results that generalize to any d > 1. Theorem 8.2.1

proves the generalization OntoPIGEON ≤m MODd and Theorem 8.2.5 proves

the generalization MODd 6≤T PIGEON; the latter separation immediately gives

MODd 6≤T LeftPIGEON. It is shown in [29] that OntoPIGEON 6≤T ITER, so that

MODd 6≤T ITER.

Now let p, q be distinct primes. Theorem 8.2.4 proves the separations

PIGEON 6≤T MODp, ITER 6≤T MODp, and MODp 6≤T MODq by using the degree

p Nullstellensatz refutations of MODp over fields of characteristic p constructed in

Lemma 8.2.3. The only known proof of the first two separations is by this method,

and so it is not immediately clear whether they generalize to composite p; we

conjecture, however, that the first two separations do hold with composite p.

The separation MODp 6≤T MODq has another proof using the LK transla-

tions. This proof uses the characterization of provability between Count formulas

and the equivalence of the Count formulas with the MODd principles. Because the

provability between Count formulas is known even for composite p and q it seems

possible to characterize when MODp 6≤T MODq for composite p and q; however,

this is left as an open question.

Another open question is whether LeftPIGEON is Turing reducible toMODd

for any d. We conjecture that there is no such reduction when d is prime. Most

of the proof method of [2] for the case d = 2 seems to generalize easily to other d.

However, since the proof uses simplifications by using fields with characteristic 2, it
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PPAD

PPADS

PPP

TFNP

PMOD2

PMOD3

PMOD5

Figure 8.1: Some separations and inclusions of TFNP2 classes in a generic
relativized setting. The separation of PPADS from the PMODp is conjectured.

seems that a direct generalization of their proof would require similar simplifications

with characteristic d. This is why we only conjecture a separation in the case when

d is prime; the case for non-prime d is left as an open question.

The above mentioned relations are summarized in Figure 8.1, which is a

picture of TFNP in a generic, relativized world. Figure 8.1 augments Figure 1.1

from Chapter 1 by adding in the classes PMODp for p a prime. The three dots in

Figrue 8.1 indicate that PMOD7,PMOD11, . . . continue the pattern. As mentioned

above the separation of PPADS and PMODp for all p is only a conjecture. The

classes MODd for composite d are left out of Figure 8.1 for clarity, even though

there are results with these classes, since there are too many conjectured and open

separations.
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8.2 Reduction and SeparationProofs

This section proves all the reductions and separations mentioned above.

Theorem 8.2.1. Let d > 1. Then OntoPIGEON ≤m MODd.

Proof. Note that d is allowed to be composite. The proof only considers the case

when d is not a power of 2. The proof carries through when d is a power of 2 with

minor changes to account for the fact that 0 is omitted from the partition.

Recall that OntoPIGEON is the first-order TFNP2 problem defined by the

∃-sentence

g(0) = 0 ∧ f(0) 6= 0 → ∃x[x 6= g(f(x)) ∨ (x 6= 0 ∧ x 6= f(g(x)))].

This is equivalent to the problem SOURCE.or.SINK, which is “Given a directed

graph on Un of in- and out-degree at most 1 such that 0n is source, find a different

source or any sink.” The reduction to SOURCE.or.SINK is given by creating a

graph G where the directed edge (u, v) is in G if and only if f(u) = v and g(v) = u.

It is easy to check that u is a source if f(g(u)) 6= u, and u is a sink if g(f(u)) 6= u.

The intuition for the reduction comes from SOURCE.or.SINK, and we

illustrate the construction in Figure 8.2 in the case d = 3. We want to make d

copies of the graph input to SOURCE.or.SINK. Suppose the size parameter for

SOURCE.or.SINK is n. We create an instance of MODd with size parameter d+n,

which corresponds to 2d copies of the input graph to SOURCE.or.SINK. (Note that

since we want d copies it would be enough for the size parameter to be dlog de+ n;

however, this makes no essential difference since d is constant.) We use the first d

copies, leaving 2d−d extra copies of the input graph, and these extra copies contain

2n(2d − d) individual points. In Figure 8.2 this means that the first three rows are

the ones we are interested in and the last five rows are extra. We would like to

partition the extra rows into disjoint d-cycles so that there is no solution to MODd

there. However, d does not divide 2n(2d − d), since d is not a power of 2. Thus, we

add d − ` of the copies of 0n to the extra rows (leaving ` copies of 0n), where ` is

chosen so that the number of these points is divisible by d. Then these points can

be partitioned into disjoint d-cycles, so that these points are effectively ignored by
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f(2) f(3) f(1) f(0)

Figure 8.2: An example of the construction for Theorem 8.2.1 in the case d = 3,
so there are 2d − d = 5 extra copies of Un. The boxed points are the extra copies of
Un combined with enough copies of 0 to make the number of boxed points divisible
by d. The arrows in the first three rows show the behavior of the function F input
to MODd.

MODd. In Figure 8.2 ` = 1 and the five extra rows and two copies of 0n are boxed

to indicate that they are inconsequential.

We describe the function F input to MODd on the remaining points. The

function F attempts to partition the remaining points into disjoint d-cycles by (1)

collecting the first ` copies of u with the last d− ` copies of f(u), and (2) collecting

the last d− ` copies of u with the first ` copies of g(u). The case (2) does not arise

for u = 0n, since there are no such copies (they were added to extra rows); this

corresponds to the fact that 0n is supposed to be a source. Figure 8.2 illustrates

this behavior. It is implicit in Figure 8.2 that, for example, f(1) = 3, f(2) = 1 and

g(1) = 2, g(3) = 1. Note that if f(u) = v and g(v) = u a d-cycle is formed using

points for the uth and vth columns, for example u = 1 and v = 3 in Figure 8.2.

Thus those points where f and g are inverses of each other do not solve MODd on

F . In fact, we show below that the only ways a d-cycle can fail to be formed is if

(1) or (2) failed to make a d-cycle. Furthermore, the failure of (1) finds a sink and

the failure of (2) finds a source. Note that the source found in case (2) cannot be

0n, and thus this solves OntoPIGEON. The rest of the proof provides the details of
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this argument.

Fix n and let f, g : Un → Un be the inputs to OntoPIGEON. We construct

a many-one reduction M that creates a function F : Ud+n → Ud+n, queries

MODd(F, 0d+n) and returns a solution to OntoPIGEON(f, g, 0n).

The domain of F is Ud+n, and thus can be thought of as 2d copies of Un. A

string w ∈ Ud+n will be written as 〈u, v〉, where u is the first d bits of w and v is the

last n bits of w. We will only need d copies of Un of the 2d total copies in Ud+n. Let

Vu be the set {〈u, v〉 : v ∈ Un} and let ci = 0d−i10i−1 for i = 1, . . . , d. The ith copy

of Un will be associated with Vci .

The remaining copies of Un are Vu where u 6= c1, . . . , cd. Since these copies

are not needed, we would like to define F on W =
⋃

u 6=c1,...,cd

Vu such that F does

contain a solution in W ; that is we want to define F so that its orbits partition

W into sets of size d. However, since W contains 2d − d copies of Un, the size

of W is (2d − d)2n. Since d is not a power of 2, |W | is not a multiple of d. To

resolve this issue, we add enough elements from Vc1 to make |W | divisible by d. Let

` ≡ (2d − d)2n mod d for 0 < ` < d. Let X be the set {〈ci, 0
n〉 : ` < i ≤ d}. Since

|X| = d− ` andW ∩X = ∅, it is clear that |W ∪X| ≡ 0 mod d. Define F in some

arbitrary way on W ∪X so that the orbits of F�W∪X partition W ∪X into sets of

size d. Define F on Ud+n\(W ∪X) as follows:

F (u, v) =





〈ci+1, v〉 if u = ci for 1 ≤ i < d, i 6= `

〈c`+1, f(v)〉 if u = c`

〈c1, g(v)〉 if u = cd

.

Note that the only time F can map a pair 〈u, v〉 6∈ W ∪X to a pair 〈u′, v′〉 ∈ W ∪X

is when u = c`, v = 0n and f(0n) = 0n.

The reductionM first queries f(0n). If f(0n) = 0n, thenM halts and outputs

0n as a solution to OntoPIGEON(f, g, 0n). Otherwise f(0n) 6= 0n, and hence

F (〈u, v〉) 6∈ W ∪X if 〈u, v〉 6∈ W ∪X. Next, M queries MODd(F, 0d+n). Suppose

M receives answer 〈u, v〉. There are two ways that 〈u, v〉 can solve MODd(F, 0d+n):

F (s)(〈u, v〉) = 〈u, v〉 for some s|d such that s 6= d, or F (d)(〈u, v〉) 6= 〈u, v〉. We

claim that the first option does not occur. First, 〈u, v〉 is not in W ∪ X since
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the orbits of F partition W ∪ X into sets of size d. Also, for any w ∈ Un,

F (s)(〈ci, w〉) = 〈c(i+s) mod d, y〉 for some y, since F maps Ud+n\(W ∪ X) to itself.

Therefore, if F (s)(〈u, v〉) = 〈u, v〉 then s = 0 mod d, which is a contradiction.

Therefore, it must be that u = ci for some 1 ≤ i ≤ d, 〈u, v〉 6∈ W ∪X, and

F (d)(〈ci, v〉) 6= 〈ci, v〉. We claim that v is a solution to OntoPIGEON(f, g, 0n). If

1 ≤ i ≤ `, then F (d)(〈ci, v〉) = 〈ci, g(f(v))〉, and thus g(f(v)) 6= v so that v is a

solution. If ` < i ≤ d, then F (d)(〈ci, v〉) = 〈ci, f(g(v))〉, and thus f(g(v)) 6= v. Note

that since 〈ci, v〉 is, in particular, not in X, it must be that v 6= 0n, so that again v

is a solution. The reductionM thus finishes by outputting v.

The following corollary follows from Theorem 8.2.1 and the separation

OntoPIGEON 6≤T ITER proved in [29].

Corollary 8.2.2. Let d > 1. Then MODd 6≤T ITER.

The rest of the section proves the remaining separations involving MODd.

Theorem 8.2.4 proves separations when d is a prime and Theorem 8.2.5 proves a

separation without restriction on d. The next lemma is used to prove Theorem 8.2.4.

Lemma 8.2.3. Let p be a prime. Then MODp has degree p Nullstellensatz

refutations over any field of characteristic p.

Proof. The case p = 2 is shown in [9], so let p > 2. The proof of the case p > 2 is

similar in spirit to the proof of the case p = 2. However, when p > 2 the increased

cycle length adds complications not present when p = 2.

Fix n and let Sk = {(u0, . . . , uk−1)|ui ∈ Un, i = 0, . . . , k − 1}. Elements

(u0, . . . , uk−1) of Sk will be denoted ~u. Let x~u be
∏k−2

i=0 xui,ui+1
and let y~u be

x~uxuk−1,u0 . (If ~u ∈ S1, then x~u = 1 and y~u = xu0,u0 .) Let S be Sp.

Recall that the Nullstellensatz translation defined in Section 4.2 creates

three sets of polynomials for a TFNP2 problem. These polynomials for MODp are

(i) x~uxup−1,up , for any ~u = (u0, . . . , up−1) ∈ S and up ∈ Un such that u0 6= up.

(ii) xu,u, for any u ∈ Un.

(iii)
∑

v∈Un
xu,v − 1, for any u ∈ Un.
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(iv) xu,vxu,v′ , for any u ∈ Un and v, v′ ∈ Un such that v 6= v′.

The polynomials in (iii) and (iv) correspond to the totality and functionality,

respectively, of the function f input to MODp. The polynomials in (ii) enforce

the condition that f(u) 6= u. A polynomial x~uxup−1,up from (i) expresses that

f (p)(u0) 6= up for all up 6= u0. In other words, f (p)(u0) = u0 for all u0. Since p is

prime, these conditions state that the orbits of f partition Un into sets of size p.

Begin by fixing ~u = (u0, . . . , up−1) ∈ S and sum the polynomials in (i) to

obtain ∑

up∈Un

up 6=u0

x~uxup−1,up . (8.1)

Take the polynomial of (iii) for up−1, and multiply by x~u to obtain

x~u(
∑

up∈Un

xup−1,up − 1) =
∑

up∈Un

x~uxup−1,up − x~u. (8.2)

Then subtract (8.2) from (8.1) to obtain

x~u − y~u. (8.3)

Next we claim that we can derive
∑

~u∈S y~u. To do this, divide the vectors

in S into two different groups, singletons and non-singletons. A vector ~u ∈ S is a

singleton if u0 = · · · = up−1. If ~u is a singleton then y~u is derivable from (ii), so it is

enough to look at the sum of y~u over non-singletons ~u ∈ S.

Consider ~u ∈ S. For 0 ≤ i < p, define ~ui to be (ui, . . . , up−1, u0, . . . , ui−1),

a cyclic permutation of ~u. Define an equivalence relation ∼ on vectors in S where

~u ∼ ~v if and only if ~v = ~ui for some i = 0, . . . , p − 1. Note that if ~u ∼ ~v then

y~u = y~v. Let C~u be {~ui|0 ≤ i < p} so that C~u is the set of ~v’s that are equivalent to

~u. Note |C~u| = 1 if and only if ~u is a singleton.

Claim: If |C~u| < p then |C~u| = 1.

Proof. Since ~u0, . . . , ~up−1 are the p possible elements ofC~u, if |C~u| < p, there must be

a 0 < j < p such that ~u = ~uj. Then for all 0 ≤ ` < p, u` = u(`+j) mod p. Fix 0 ≤ ` <

p. Since j is relatively prime to p, the sequence u` mod p, u(`+j) mod p, u(`+2j) mod p, . . .

eventually contains u0. Therefore u` = u0 for all `, and hence ~u is a singleton.
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Since |C~u| ≤ p, each equivalence class [~u] has either 1 or p elements. Then

∑

~u∈S

y~u =
∑

[~u]∈S/∼

∑

~v∈[~u]

y~v =

∑

[~u]∈S/∼
|[~u]|=1

y~u +
∑

[~u]∈S/∼
|[~u]|=p

∑

~v∈[~u]

y~u =
∑

[~u]∈S/∼
~u is a singleton

y~u +
∑

[~u]∈S/∼
|[~u]|=p

py~u.

The first summation of the last expression is derivable since the sum is over

singletons, and the second summation is 0 since we are over characteristic p (this is

the only place where the characteristic plays a role). Derive

∑

~u∈S

x~u (8.4)

by summing (8.3) over all ~u ∈ S and adding
∑

~u∈S y~u.

We now show by downward induction on k how to derive

∑

~u∈Sk

x~u (8.5)

for 1 ≤ k ≤ p. The base case is when k = p and is shown by (8.4).

For the induction step, assume (8.5) holds for k > 1, we show how to derive

it for k− 1. Fix an arbitrary ~u′ = (u0, . . . , uk−2) ∈ Sk−1. Use the polynomial in (iii)

with u = uk−2 and multiply by x~u′ , to obtain

x~u′


 ∑

uk−1∈Un

xuk−2,uk−1
− 1


 =


 ∑

uk−1∈Un

x~u


− x~u′ , (8.6)

where ~u = (u0, . . . , uk−2, uk−1). Then sum (8.6) over all ~u′ ∈ Sk−1 to derive

∑

~u∈Sk

x~u −
∑

~u′∈Sk−1

x~u′ (8.7)

Since (8.5) is derivable by the inductive hypothesis, add it to the negative of (8.7).

The resulting polynomial is exactly (8.5) with k replaced by k − 1, which finishes

the induction.

Now apply (8.5) with k = 1 to obtain
∑

u0∈Un
1 = 2n. Since p 6= 2 is prime,

2n has a multiplicative inverse modulo p, and hence we can derive 1. It is easy to

check that the degree of the polynomials used is always bounded by p.
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The Nullstellensatz refutation never needs to make use of polynomials in

(iv). This differs from the proof of the case p = 2 from [9]. That the functionality

of f is never needed corresponds to the fact that MODp can be expressed as a basic

first-order TFNP2 problem, meaning that in the defining total ∃-sentence formulas

of the form f(~x) = y only occur positively. Thus f not being functional only

admits more solutions. In essence, the transformation to a basic first-order TFNP2

problem assumes functionality, so it is not needed again. An example illustrating

this is shown in Section 5.1. The proof of the case p = 2 from [9] requires the

functionality polynomials since they allow formulas of the form f(~a) 6= b in their

∃-sentences (which is disallowed in a basic first-order TFNP2 problem).

Lemma 8.2.3 combines with Theorem 4.3.1 to give the following three

separations.

Theorem 8.2.4. Let p and q be distinct primes. Then PIGEON 6≤T MODp,

ITER 6≤T MODp, and MODp 6≤T MODq.

Proof. If PIGEON ≤T MODp or ITER ≤T MODp, then by Theorem 4.3.1 and

Lemma 8.2.3 there are nO(1) degree Nullstellensatz refutations of PIGEON and

ITER over any field with characteristic p. But [2, 10, 16] show that constant degree

refutations do not exist, regardless of the base field. It is shown in [11] that MODp

requires linear (in the size of the set being partitioned) degree refutations over

fields with characteristic q - p. Since MODp partitions Un, the degree lower bound

on a Nullstellensatz refutation of MODp over a field with characteristic q is 2n.

However, if MODp ≤T MODq then Lemma 8.2.3 implies that there are nO(1) degree

Nullstellenstaz refutations of MODp over any field of characteristic q, which is a

contradiction.

It is worth noting that the separation MODp 6≤T MODq also follows from

the propositional LK translation. Namely, if there were such a Turing reduction,

then by Theorem 3.3.1 there would be constant depth, polynomial size proofs

of FMODp,n→GMODp,n from instances of FMODq ,m→GMODq ,m. By Lemmas 7.4.4

and 7.4.3, there would be constant depth, polynomial size proofs of CountNp from

instances of CountMq , for appropriately chosen N and M (the choice depends on
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whether p is 2 or not). But the provability results of [3] can be applied as in the

proof of Theorem 7.6.1 to show such proofs cannot exist.

The provability between the Count formulas is completely characterized

in [3], not just in the case when p, q are prime. This suggests that deciding whether

there is a reduction from MODp to MODq for arbitrary p, q can be similarly

characterized. However, the conditions on p, q that are necessary and sufficient to

guarantee the existence of a Turing reduction from MODp to MODq are left open.

The next separation is proved in [2] in the case p = 2. The following

argument extends this result to any d > 1, and closely follows the argument of [2]

Theorem 8.2.5. Let d > 1. Then MODd 6≤T PIGEON.

Proof. Assume for a contradiction that M is a Turing reduction from MODd to

PIGEON. Let the input to MODd be f : Un → Un. We show that, for sufficiently

large n, each oracle query byM can be correctly answered by setting polynomially

new values to f without creating a solution to MODd. Therefore, M is forced to

return an answer involving the unspecified part of f , which can then be set to make

M ’s answer be incorrect. This contradictsM being a correct Turing reduction.

Suppose the ith oracle query byM is to f(u0). Since only a polynomial part

of f has been set, there are d − 1 distinct, unset values u1, . . . , ud−1, and f can be

answered such that f(ui) = ui+1 for all i = 0, . . . , d − 1 and f(ud−1) = u0. Thus

the query is answered without answering MODd(f, 0n).

Before continuing to the case whereM queries PIGEON, we introduce some

terminology. Let u1, . . . , ud ∈ Un be distinct. Then λ = {ui}
d
i=1 is a d-cycle. The

successor of ui is ui+1 if 1 ≤ i < d and is u1 if i = d. Two d-cycles λ and µ are

consistent if (1) λ is a cyclic permutation of µ (in particular, λ and µ must contain

the same elements), or (2) the elements of λ and the elements of µ are disjoint. The

order of the d-cycle is important; if u1, u2, u3 ∈ Un are distinct, then the 3-cycle

u1, u2, u3 is not consistent with the 3-cycle u1, u3, u2. A set of d-cycles {λi} is a

d-matching if for all i 6= j, λi and λj are consistent. Note that at the time when

M queries PIGEON, the values of f known by M form a d-matching, where each

d-cycle is of the form {f (i)(w)}d−1
i=0 .

Now suppose the ith oracle query by M is to PIGEON on input F : Um →
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Um. Let the runtime of F be bounded by k, so that k is nO(1). We want paths in the

decision tree for F to correspond to d-matchings of Un. To accomplish this, alter

F so that whenever its computation queries f(w), it queries f(f(w)), . . . , f (d)(w)

before continuing. Thus when the computation of F queries w, either a solution to

MODd(f, 0n) is revealed or a new d-cycle of f is revealed. Note that the runtime of

the altered F is bounded by dk. Let Tu be the decision tree for F in input u.

Prune Tu as follows. Prune all branches that make two queries to the

same value of f (the answer to such a query is either redundant or contradicts

the previously received value of f). Prune all branches that contain f (d)(w) 6= w.

Therefore, each remaining branch P in Tu induces a d-matching {λi}, where each

d-cycle is of the form w, f(w), f(f(w)), . . . , f (d−1)(w). Two branches are mutually

consistent if they induce consistent d-matchings. The definition of consistency for

d-cycle implies that two mutually consistent branchings must agree on common

queries to f .

There are two ways thatM can answer the PIGEON query without solving

MODd(f, 0n). The first is if there is a u so that br0m(Tu) is not empty, and the

second is if there are mutually consistent paths P ∈ brv(Tu) and P
′ ∈ brv(Tu′) for

u 6= u′. The rest of the proof derives a contradiction from the failure of both cases;

that is, assume for a contradiction that br0m(Tu) is empty for all u and that P and

P ′ are mutually inconsistent for all P ∈ brv(Tu) and P
′ ∈ brv(Tu′) such that u 6= u′.

The first step in deriving a contradiction is to define trees {Sv}v 6=0m which

are intended to be “inverse trees” for the Tu’s. That is, Sv is a tree such that a

leaf label of u indicates that F (u) = v. (Note that there is no S0m since we are

assuming for a contradiction that br0m(Tu) is empty for all u.) The construction of

of Sv is similar to the fact that if a boolean formula φ and its negation can both be

put in DNF form with conjunctions of size d, then φ can be expressed as a Boolean

decision tree of height at most d2.

To construct the Sv’s, we introduce Rv =
⋃

u brv(Tu). An important

property of Rv is that if P, P ′ ∈ Rv and P 6= P ′, then P and P ′ are mutually

inconsistent. To see this, if P and P ′ are from the same Tu they are mutually

inconsistent because they must differ on some value for f . If P ∈ Tu and P ′ ∈ Tu′
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for u 6= u′ then P and P ′ are mutually inconsistent, since this exactly one of the

assumptions from which we are trying to derive a contradiction.

The tree Sv is defined to be the decision tree for the algorithm A(v) defined

as follows (again recall v 6= 0m). The algorithm A(v) attempts to find some u such

that F (u) = v. The idea is that if F (u) = v for some u, then there is a path in

Tu which outputs v that is consistent with the known values of f . The set of all

such paths is a subset of Rv, and contains all possible candidate paths to witness

F (u) = v. The algorithm A(v) iteratively picks a candidate path P and then

checks if P is actually correct by querying f as determined by the vertex labels of

P . If the answers to these queries match the edge labels on P , then P is a path

that witnesses F (u) = v, so A(v) outputs u. Otherwise, P does not witness that

F (u) = v, so A(v) picks a new candidate path that is consistent with the known

values of f (including those values for f just obtained by querying the vertices of

P ); if no such paths remain then A(v) outputs “unmapped” indicating that there

is no u such that F (u) = v.

We describe A(v) in more detail. The algorithm starts with the d-matching

induced by the values of f known by M right before the PIGEON query. It

then picks any path P ∈ Rv consistent with the current d-matching and queries

f on the vertices of P . We do not address the case when the answers to these

queries do not form d-cycles, as this solves MODd(f, 0n). The current d-matching

is updated by adding the new d-cycles these queries to f revealed. If the newly

updated d-matching is consistent with the d-matching induced by P , A(v) outputs

u. Otherwise a new path P ′ is chosen from some brv(Tu′), and the process repeats.

The algorithm A(v) is described by the following pseudocode:

Do

If there is no P ∈ Rv consistent with the current d-matching:

Output “unmapped”.

Else

Pick such a P ∈ Rv and suppose P ∈ brv(Tu). Query f on the

vertices of P , and add the answers to the current d-matching. If P
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is consistent with the current d-matching, output u.

Loop

We claim that A(v) terminates with at most k iterations of the loop (and

hence at most dk2 queries to f). Let mr be the matching during the rth iteration

of the loop. At the beginning of the rth iteration of the loop, A(v) either halts or

picks a P ∈ Rv consistent with mr. Suppose A(v) does not halt, so that it picks a

P ∈ Rv and consider any other P ′ ∈ Rv. Let P and P ′ induce d-matchings {λi} and

{µi}, respectively. Since P and P ′ are mutually inconsistent, these d-matchings

are inconsistent, and is a w ∈ λi ∩ µi′ , such that the successor of w in λi is not

equal to the successor of w in µi′ . After querying the vertices of P , each of the

points in λi belong to some d-cycle of mr+1, and in particular w is assigned to some

d-cycle. If w is assigned to a d-cycle that is not a cyclic permutation of µi′ , then

P ′ in inconsistent with mr+1. If w is assigned to µi′ by mr+1, then the length of P ′

has been shortened by d queries. Therefore, at step r+1 the algorithm either halts

or each remaining branch consistent with mr+1 has its length reduced by d. Since

the branches started with length at most dk, the loop in A(v) runs at most k times.

Since each iteration queries at most dk values of f , A(v) makes at most dk2 queries

to f . Let Sv be the decision tree for A(v). We can ensure Sv has height exactly dk
2

by making dummy queries (these dummy queries are not allowed to reveal solutions

to MODd(f, 0n)).

We now create new trees T ′
u from Tu. Consider the following algorithm:

First compute F (u), suppose this computation outputs v. Then run A(v), recalling

that we do not allow repeated queries to values for f , and let the output of the

entire algorithm be v. Let T ′
u be the decision tree for this algorithm.

Note that a path P0 in T ′
u starts as a path P in Tu followed by a path Q

in some Sv. Since Q is necessarily consistent with P , it must be that Q extends

a path in Rv. Since Rv contains mutually inconsistent paths, Q must extend P

itself. Therefore P0 and Q specify the same d-matching, and thus must have the

same set of dk2 edge labels. Then we can define a mapping ϕ from
⋃

u,v brv(T
′
u)

to
⋃

u,v bru(Sv). Furthermore, ϕ is one-to-one since distinct paths induce distinct

d-matchings.
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Now note that since the Tu’s and Sv’s have the same height and branching,

|
⋃

w brw(Sv)| = |
⋃

w brw(Tu)| for all u and all v 6= 0m (recall there is no tree for

S0m). Then |
⋃

u,v brv(T
′
u)| > |

⋃
u,v bru(Sv)| since v = 0m does not appear in the

second union. Therefore, the pigeonhole principle implies that ϕ is not one-to-one.

But we showed above that ϕ is one-to-one. Thus we have obtained the desired

contradiction, and the proof is finished.
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