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ABSTRACT OF THE DISSERTATION

Machine Learning-Assisted Resource Management in Edge Computing Systems

by

Zhihui Shao

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2021

Dr. Shaolei Ren, Chairperson

The widespread adoption of the Internet of Things and latency-critical applica-

tions has fueled the burgeoning development of edge colocation data centers (a.k.a., edge

colocation) - small-scale data centers in distributed locations. For such data centers, optimal

resource management is crucial for system efficiency and security. In this dissertation, we

explore machine learning-assisted approaches to optimize resource management. Firstly, we

propose battery-assisted power management in edge data centers considering the computing

performance and thermal behavior under significant workload fluctuations. In particular,

the workload fluctuations allow the battery to be frequently recharged and made available

for temporary capacity boosts. But, using batteries can overload the data center cooling

system which is designed with a matching capacity of the power system. We design a novel

power management solution, DeepPM, that exploits the UPS battery and cold air inside the

edge data center as energy storage to boost performance. DeepPM uses deep reinforcement

learning (DRL) to learn the data center thermal behavior online in a model-free manner and

uses it on-the-fly to determine power allocation for optimum latency performance without
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overheating the data center. Next, we study the vulnerability and thermal attack opportuni-

ties from the mismatch between power load and cooling load in edge colocation data centers.

We discover that the sharing of cooling systems also exposes edge colocations’ potential vul-

nerabilities to cooling load injection attacks (called thermal attacks) by an attacker which, if

left at large, may create thermal emergencies and even trigger system outages. Importantly,

thermal attacks can be launched by leveraging the emerging architecture of built-in batter-

ies integrated with servers that can conceal the attacker’s actual server power (or cooling

load). We consider both one-shot attacks (which aim at creating system outages) repeated

attacks (which aim at causing frequent thermal emergencies). For repeated attacks, we

present a foresighted attack strategy which, using reinforcement learning, learns on the fly

a good timing for attacks based on the battery state and benign tenants’ load. Finally, we

investigate the general combinatorial optimization problems, focusing on robust solutions

utilizing machine learning-assisted methods. Combinatorial optimization is commonly used

in many applications , but in general very challenging to solve due to its NP-hard nature.

The robust combinatorial optimization is even more difficult, which can be formulated as a

minimax problem. To solve the minimax problems efficiently, we propose a novel machine

learning-assistant method — RobustPN, leveraging the actor-critic platform and learning

to optimize techniques. To verify the performance of RobustPN, we perform simulations on

two combinatorial optimizations: a synthesis problem with three variables and a workload

offloading problem in edge computing. Our result shows that the proposed RobustPN can

provide robust solutions for combinatorial optimization efficiently.
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Chapter 1

Introduction

The widespread adoption of the Internet of Things (IoT) and latency-critical appli-

cations has fueled the burgeoning development of edge co-location data centers (a.k.a., edge

co-location) - small-scale data centers in distributed locations. Due to limited resources and

demand for low latency, we conduct several explorations for resource management in edge

computing systems using machine learning methods, including both the physical resources

(e.g, power and battery) and the computing resources. Besides, we tack the resource man-

agement from the perspective of both data center operators and users (attack vulnerability).

In this chapter, we will first introduce the resources for an edge computing system.

Then, brief background knowledge of machine learning methods is presented in section 1.2,

such as deep reinforcement learning. Finally, we summarize the main contribution of this

thesis in section 1.3.
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Cloud Data Center

Edge Data Centers

Edge Devices

Figure 1.1: Edge computing system.

1.1 Edge Data Center Resources Management

With the recent development of faster internet speed (e.g., 5G), smart devices, and

the Internet of Things, edge computing has experienced great growth as a complementary

to cloud computing. According to [63], the edge computing market size accounts for $3.5

billion in 2019 2020, and the edge computing demands largely increase during the outbreak

of COVID-19. With huge edge computing demands, the edge data center is becoming a

new core component in a modern computing system, handling hundreds of millions of user

requests and providing ultra-low latency services for latency-critical applications, such as

virtual reality and autonomous driving.

Figure 1.1 shows a typical architecture for mobile edge computing system. Here,

the cloud data center is usually deployed far away with huge computing capacity (e.g.,

Google Datacenter). The cloud data center can provide powerful computing resources but

with a large servicing time. Serving as complements, the edge data centers are usually dis-

tributedly installed closer to users (near the internet edge) in the urban region. Comparing

2



with the cloud data center, the edge data centers can provide much lower latency, which is

significantly important for current user-interactive applications and stream video services.

However, constrained by the limited space, the edge data center is usually quite small,

housing only several physical servers. Hence, the resources in edge data centers are both

precious and vulnerable. To improve the service quality and availability, it is important to

explore and manage the limited resources in a graceful manner.

In this section, we introduce the general resource allocation problems in edge

computing system: including physical resources management (section 1.1.1) and computing

resources allocation (section 1.1.2).

1.1.1 Physical Resources Management

An edge data center typical represents a set of servers and the respective physical

control system, such as power control/supply system and cooling system. The physical

servers provide ubiquitous computing services to users, whereas the power and cooling

system deliver indispensable resources to servers for their normal operation. For instance,

the power supply system provides the required energy to power up the servers and protect

short-term utility power outages using the pre-installed battery. The detailed architecture

and physical resources are shown in Figure 1.2 for a small edge data center.

As shown in Figure 1.2, an edge data center is installed with a power supply system

and a cooling system. The power system drains AC energy from the power utility, which is

converting to DC power by an AC-DC converter. Then, the power is delivered to servers

through power distributed units (PDU), using the pre-installed battery as an energy buffer
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Figure 1.2: Power supply and cooling system in an edge data center.

to handle emergencies. Also, a power metered is usually installed to monitor and control

the power consumption of servers. During normal operation, servers consume energy from

the power supply system and most of the power energy is converted to heat. Then, the

cooling system works to remove the heat to ensure a lower temperature in the server room.

Typically, the cooling system includes an air-conditioner (AC) and some accessories, such

as air ducts and fans. More detailed information about the cooling and power system can

be found in Chapter 2 and Chapter 3.

In an edge data center, the dilemma of power management arises from the mis-

match between huge arriving workloads and limited designed power capacity. To increase

the utilization, power oversubscription is widely adopted in edge data centers. The power

oversubscription implies that only partial workload can be processed at the edge data center

and the rest will be either offloaded to the cloud or dropped. For a better service, the pre-

installed battery unit is widely used to provide extra power for peak shaving [7,25]. Then,

the general power management problem is to decide the power consumption of servers or

the charge/discharge of the battery unit. The detailed problem formulation can be found

in Chapter 2, where we consider the power management under power oversubscription and
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thermal constraints. According to our literature reviews, Chapter 2 is the first work that

considers power management with data center level thermal constraints.

As an extension of the power management problem, we explore the security of an

edge data center, from the perspective of thermal vulnerability. In contrast to the power

management with batteries, here we consider the dangers of pre-installed batteries, which

can serve as a weapon by generating thermal attacks. The detailed problem formulation

and experiment verification can be found in chapter 3. In this part, the novelty arises from

the thermal vulnerability of the current power and cooling system. Also, we solve repeated

thermal attack problems via reinforcement learning.

1.1.2 Computing Resources Allocation and Workload Assignment

As shown in Figure 1.1, the computational workloads of edge devices are offloading

edge or cloud data center and processed by respective physical servers. Specifically, one

workload can be offloaded to multiple servers and one server may also provides services to

multiple users. Due to the space limitations, the computation resources (e.g., CPU) are

often in shortage under the ever-increasing computation requirement from edge devices.

Also, the resource capacity differs and varies for edge data centers, relying on their physical

location and surrounding environment. Therefore, an operator policy is required to manage

the dynamic computing resources and in modern computing systems with multiple users

and multiple physical servers.

In general, we consider an computing system, housing N eligible physical edge

servers and providing serves for edge devices (e.g., vehicular applications). The target

is to determine the N -dimensional offloading action a = (a1, a2, ...aN )T given the side

5



information x = (x1, x2...xN )T of each server-workload pair, in order to maximize the overall

performance. The performance can be presented as U = F (x,a), where F is the utility

function. Note that F may be non-convex and non-concave function. Typically, an optimal

policy can be obtained by solving the respective optimization problem in (1.1), where A is

the eligible action space. Since the offloading actions are discrete (binary) variables, the

problem (1.1) can be also considered as a combinatorial optimization problem.

π(x) = argmax
a∈A

F (x,a) (1.1)

Combinatorial optimization is a notorious NP-hard problem, which is difficult to

solve within polynomial time. Previously, greedy algorithms are designed for the combi-

natorial problems, such as traveling salesman problem (TSP) [59, 161]. However, these

greedy algorithms cannot guarantee a good approximation to the optimal solution. For-

tunately, some recent researches attempt to solve the combinatorial optimization, utilizing

deep learning techniques. For instance, [31] proposes to learn an heuristic for the TSP

problem using policy gradient, and [13] approximates the optimal policy for TSP using

reinforcement learning.

However, these works are usually focusing on the optimization problems with an

accurate parameter x, such as the distance between each cities in TSP. In edge comput-

ing, the optimization parameter x is usually estimated with a prediction model, and then

optimization is applied based on estimated x. This framework is denoted “Predict, then

Optimize” [34]. For example, the total serving time or success rate of edge offloading is

typically estimated with historical data. Due to estimation errors, the parameter x is in-

6



accurate, resulting in performance degradation. Considering these inaccuracies, a robust

policy is required for the resource management and workload assignment. Hence, we focus

on the robust combinatorial optimization and solve it leveraging machine learning-assisted

method.

π(x) = argmax
a∈A

min
δ∈∆(x)

F (x + δ,a) (1.2)

In general, the robust combinatorial optimization can be formulated as a mini-max

problem in Eqn (1.2). Here, ∆(x) is the error space relevant to x, which is defined by the

respective robust constrains and the error budget. For instance, under L2 norm constrain, it

can be represented as |δ|2 ≤ ε and ε is the respect error budget. More detailed information

about robust optimization is presented in chapter 4.

1.2 Machine Learning Preliminaries

With increasing computation capacity and data, machine learning is widely used

in many industry areas, such as computer vision, control system, etc [50]. In this thesis,

we propose to leverage machine learning for resource management problem in computing

systems. This part firstly introduces the preliminary knowledge and machine learning tech-

niques used in this dissertation. Specifically, we first present a discussion on the Markov

decision process (MDP), which is the fundamental theory for reinforcement learning. Then,

we introduce two popular reinforcement learning algorithms — Q learning and Deep-Q-

Network (DQN). Finally, a machine learning-assisted optimization method, called ‘learning

to optimize’ (L2O) is presented for general resource management problems in section 1.2.4.
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1.2.1 Markov Decision Process

In edge computing systems, many resources, such as battery energy, are correlated

in the time domain. Specifically, the change of battery energy due to allocation decisions

will have impacts on its future energy. So, it is difficult to solve the allocation problem

directly. Fortunately, MDP can be utilized to model such resource allocation problems with

time correlation, where the resource is modeled as the state. The general MDP formulation

can be summaries as four parts:

• System state: s ∈ S

• Action: a ∈ A(s)

• State transition probability: P (s, a, s′)

• Reward function: r = R(s, a, s′)

Here, s is the observed state, and S is the respective domain. Then, a is the

target action variable, whereas A(s) is the eligible action space based on the current state.

Importantly, the tuple (s, a, a′) means the state transition from s to a new state s′ when

action a is take. Respectively, P defines the transition probability of the tuple and R

represents the reward from this transition. Note that P and R depend on the system

environment, which is hard to model directly.

In MDP, given a fixed policy π(s), a sequence (s0, a0, r0, s1, a1, r1, s2. . . ) can be

recorded based on environment models, where s0 is the initial state . The objective of MDP

problem is to find a policy π∗ to maximize the long-term reward
∑

t[γ
t ·rt], where γ ∈ (0, 1)

is the discount factor. A typical diagram for MDP is shown in Figure 1.3.
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Figure 1.3: General MDP problem.
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𝑅(𝑠, 𝑎)

Figure 1.4: Simplified MDP without state transition.

Additionally, there is a special situation for resource allocation, where the actions

have a small or nearly no impact on states. In this thesis, we denote it as a simple state

MDP. Since the state is not correlated with action, we omit the state transition P and the

reward is defined as R(s, a). For instance, in the workload-offloading problem, the arriving

workloads usually have no or small relation with allocation results. Hence, we handle the

‘computing resources allocation problem’ using simple state MDP.

Similarly, the objective is to find a policy π∗ to maximize the total reward over

the entire state distribution S : π∗ = argmaxπ
∑

s∈S [R(s, π(s))] . With an unknown reward

function R(s, a), it can also be treated as the multi-arm bandit problem. When the reward

function R(s, a) is known and defined in advance, it can be solved as optimization problems.

In this disertation, we are focusing on the problem with a known reward function, leveraging

machine learning to solve the optimization problem. A typical diagram for simple state

MDP (optimizations) is shown in Figure Figure 1.4.
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1.2.2 Reinforcement Learning

With correlations among states and actions, the general MDP problem is hard

to solve directly using conventional optimization algorithms. Reinforcement learning (RL)

is a category of algorithms widely used to solve MDP problem [74, 138]. There are two

sub-groups of RL: model-based RL and model-free RL. Model-based RL solves MDP with

known or learned environment models, whereas model-free RL does not require any models

on P or R and learns the policy directly. Since the environment is unknown and hard to

model in edge computing systems, this thesis will focus on model-free RL for the physical

resource allocation problem. For instance, Q-learning is one popular model-free RL algo-

rithm [58,162]. In model-free RL, an agent learns a policy through the interaction with the

environment, including four steps as following:

• Observe current system state s;

• Provide an action based on the trade-off between exploration and exploitation;

• Observe new system state s′ and the instant reward r;

• Update the policy based on the bellman equation (1.3).

In model-free RL, the action strategy is very important, considering the trade-off

between exploration and exploitation. For instance, ε-greedy is one exploration method

used in this thesis. Besides, there are two methods when updating the policy: on-policy

and off-policy. For instance, Q-learning is a popular off-policy model-free RL algorithm,

while ‘SARSA’ is an on-policy model-free RL [140]. Here, on policy means that the Q
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value is updated using the most-updated policy rather than the current action strategy

with explorations.

The representation and update rules of learned policy depend on the specific RL

method. In the context of Q learning, the policy is represented as a discrete table — Q

table. It stores the values for all available state-action pairs and the policy is extracted as

the action with the highest Q value. As for the policy update, the bellman equation and

off-policy rules are used to update Q values as shown in Eqn (1.3). In summary, we focus

on a model-free off-policy reinforcement learning algorithm — Q learning — for physical

resource management in this thesis.

Q(s, a) = Q(s, a) + α[r + max
a

Q(s′, a)] (1.3)

1.2.3 Deep Reinforcement Learning

Q learning is well-developed for traditional model-free MDP problems with small

discrete state-action space. Since the policy is stored in a finite Q table, Q learning cannot

directly handle the scenario when state-action space is large or continuous. For instance,

the power management problem in Chapter 2 contains continuous action and state space,

resulting in an infinity Q table. According to [91], we can utilize deep reinforcement learning

(DRL) techniques to address the continuous state-action space issues.

In DRL, a feed-forward neural network is used to approximate an infinity Q table,

providing a non-linear mapping from state-action pair to the respective Q value. This

neural network is called Deep-Q-network(DQN), which combines traditional Q learning
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Figure 1.5: (a) Policy illustration for Q learning. (b) Policy illustration for Deep-Q-Network.

with powerful deep neural networks [102]. Figure 1.5 illustrates the policy diagrams for

RL and DRL. Similar to Q learning, the DQN can be presented as Q(s, a|θ), where θ

is the learnable weights. The policy can be calculated as π(s) = maxaQ(s, a|θ). The

weight parameters θ can be trained using gradient descent optimizing by minimizing the

loss function in Eqn (1.4), where D is the training dataset collected and updated in the

online process. The more detailed training process and other techniques in DRL (e.g.,

replay buffer) are discussed in Chapter 2.

L(θ) =
1

|D|
∑

(s,a,s′)∈D

(y −Q(s, a|θ))2 (1.4)

y = R(s, a, s′) + γ ·max
a∈A

Q(s′, a|θ)

Besides DQN, there are many other DRL algorithms for continuous state-action

space, including policy gradient, deterministic policy gradient (DPG), Deep Deterministic

Policy Gradients(DDPG), DQN with double q learning, etc [92,110,129,149]. In this thesis,

we focus on designing an effective DQN algorithm and other algorithms are left as a future

exploration for resources allocation problems in computing systems.
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1.2.4 Learning to Optimize (L2O) and Policy Gradient

Besides RL algorithms for MDP, there are other algorithms designed for simple-

state MDP, which target at maximizing the total rewards
∑

s∈S [R(s, a)]. Typically, these

problems can also be considered as general optimization problems. Some optimization

problems can be easily solved with commercial solvers (e.g., scipy.optimize package) when

reward function R is convex and action a is continuous variable. However, it is non-tractable

to solve the combinatorial optimization problems, where action a is discrete and reward

function R is non-convex. For instance, the workload offloading in vehicular edge computing

belongs to the combinatorial optimization problems.

‘Learning to Optimize’ (L2O) represents a set of algorithms, focusing on learning

a solver for the combinatorial optimizations. In L2O, the solver is implemented with a deep

neural network (DNN), which provides a direct mapping from optimization parameter (e.g.,

state s) to the respective solution (e.g., action a). Figure 1.6 shows the general learning

architecture for L2O, where the estimated utility(reward) is directly utilized to train the

DNN (optimization) model. Note that the optimization can be represented as a = M(s|θ),

where θ is the learnable weights. In L2O, θ is learned with gradient descent by maximizing

the utility or reward over the training dataset as shown in Eqn (1.5). In the inference phase,

an optimal solution can be directly provided by the optimization model.

L(θ) =
∑
s∈S

[R(s,M(s|θ))] (1.5)
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Figure 1.7: Actor-critic architecture with randomly sampling for discrete action space.

Typically, previous L2O architecture is focusing on the continuous optimization

problem because the gradient descent requires a differentiable function for back-propagation.

However, an innovative method should be considered for discrete action space. In this

thesis, we turn to the policy gradient method using an actor-critic framework. Figure 1.7

illustrates the typical architecture for actor-critic framework, including a policy model and

a critic module. Actor-critic is firstly developed for reinforcement learning problem, where

the actor and critic model are trained alternately due to state correlation [80]. When

convergent, the actor servers a policy model and the critic can be used as a value model.

More information about actor-critic for RL problems are described in [80,116].

In our problem, the critic model can be directly replaced with the utility function

without training. Then, the actor model can be trained with policy gradient. According

to [139], the training gradient of the actor model can be calculated as Eqn (1.6), where

J(θ) is the loss function and θ is the trainable weights for actor model πθ. For a faster
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convergence, we utilize the reinforced policy gradient, by subtracting a baseline value

b(x) from V (x, a) [120]. More detailed implementations can be found in Chapter 4.

∇θJ(θ) = Ex[(V (x, a)− b(x)) · ∇θ lnπθ(a|x)] (1.6)

However, the solution from L2O may be not optimal or robust, especially when

the parameter x is estimated or measured with errors. Hence, we need a robust solution as

discussed before. In Chapter 4, we propose a innovative robust learning for optimization

algorithm, called — RobustPN. According to our literature reviews, our work is the first one

that solves robust optimization problems with machine learning-assisted methods. Briefly

speaking, the critic module is replaced with a robust-critic neural networks, providing worst-

case rewards under a specific uncertainty budget. In RobustPN, we first pre-trained the critic

module using the traditional L2O method. Then, the actor model is trained using the policy

gradient algorithm with feedback from the critic model. Finally, the actor model and the

critic model can be combined to provide more robust solutions (polices). More explanations

and results can be found in Chapter 4.

1.3 Thesis Contributions

In this dissertation, we focus on resource management in edge computing systems,

including physical resource management using reinforcement learning and robust computing

resources allocation using ‘learning to optimize’ method.

In Chapter 2, we target power management in an edge-computing system us-

ing reinforcement learning. Specifically, we propose battery-assisted power management
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in edge co-location data centers, considering the computing performance and thermal be-

havior. Due to significant workload fluctuations, edge data centers built in distributed

locations suffer from resource underutilization and require capacity underprovisioning to

avoid wasting capital investment. The workload fluctuations, however, also make edge data

centers more suitable for battery-assisted power management to counter the performance

impact due to underprovisioning. In particular, the workload fluctuations allow the battery

to be frequently recharged and made available for temporary capacity boosts. But, using

batteries can overload the data center cooling system which is designed with a matching

capacity of the power system. In this chapter, we design a novel power management solu-

tion, DeepPM, that exploits the UPS battery and cold air inside the edge data center as

energy storage to boost performance. DeepPM uses deep reinforcement learning (DRL) to

learn the data center thermal behavior online in a model-free manner and uses it on-the-fly

to determine power allocation for optimum latency performance without overheating the

data center. Our evaluation shows that DeepPM can improve latency performance by more

than 50% compared to a power capping baseline while the server inlet temperature remains

within safe operating limits (e.g., 32�).

Complementary to power management, we study the vulnerability and thermal

attack opportunities in Chapter 3. Firstly, we explore the thermal vulnerability from

the mismatch between power load and cooling load in edge data centers. Specifically,

we consider edge co-location data centers (a.k.a., edge co-locations), proving services for

latency-critical applications. In an edge co-location, multiple entities/tenants house their

physical servers together, sharing the power and cooling infrastructures for cost efficiency
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and scalability. In this part, we discover that the sharing of cooling systems also exposes

edge co-locations’ potential vulnerabilities to cooling load injection attacks (called thermal

attacks) by an attacker which, if left at large, may create thermal emergencies and even

trigger system outages. Importantly, thermal attacks can be launched by leveraging the

emerging architecture of built-in batteries integrated with servers that can conceal the

attacker’s actual server power (or cooling load). Then, we consider both one-shot attacks

(which aim at creating system outages) repeated attacks (which aim at causing frequent

thermal emergencies). For repeated attacks, we present a foresighted attack strategy which,

using reinforcement learning, learns on the fly a good timing for attacks based on the battery

state and benign tenants’ load. We also combine prototype experiments with simulations

to validate our attacks and show that, for a small 8kW edge co-location, an attacker can

potentially cause significant losses. Finally, we suggest effective countermeasures to the

potential threat of thermal attacks.

Besides physical resources (e.g, battery and power), we further investigate the com-

puting resources management problem in Chapter 4. In edge computing systems, most

resource allocation problems (e.g., workloads assignment) can be formulated as combina-

torial optimization problems with discrete actions and predicted optimization parameters,

which is NP-hard in nature. Due to the prediction error, a robust solution is required

for combinatorial optimization. Hence, we target solving robust combinatorial optimiza-

tion utilizing machine learning. Firstly, we formulate the robust CO problem as a general

minimax optimization problem. To solve the minimax problems efficiently, we propose a

novel machine learning-assistant method — RobustPN, leveraging the actor-critic platform
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and learning to optimize technique. To evaluate the performance of RobustPN, we perform

simulations on two robust CO problems: a synthesis toy problem and a workload offloading

problem with different error budgets for robustness. Our results show that a robust policy

(solution) can be retrieved fast and accurately from well-trained policy and critic DNN

models, verifying the efficiency and effectiveness of the proposed RobustPN.

To summarize, in this chapter, we briefly introduce the edge computing system and

the respect resource management problems, including physical resources (e.g., power and

battery) and computing resources. These problems can be formulated as either a Markov

decision process (MDP) problem or a combinatorial optimization (CO) problem. Then,

Reinforcement learning algorithms are presented for the MDP problems while ‘learning to

optimize’ methods are discussed for CO and robust CO problems. Finally, the contribution

of each chapter is summarized in the last section.
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Chapter 2

DeepPM: Efficient Power

Management in Edge Data Centers

using Energy Storage

2.1 Introduction

With the emerging Internet of Things (IoT), 5G network and embedded artificial

intelligence, computation workloads are gradually moving from the cloud toward Internet

edge [23]. Edge data centers can provide computing services with ultra-low latencies, offering

great opportunities for latency-critical applications, such as smart cities, augmented reality

and intelligent video acceleration [61,126]. According to Cisco’s report [24], approximately

30% of internet workloads will be processed in edge data centers by 2022.
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To achieve user proximity and provide low latency computing services, edge data

centers are geographically spread to many locations. However, due to the loss of multiplex-

ing at the aggregate (i.e., random fluctuations canceling out each other), it also results in

more workload fluctuations in the edge data center as compared to that of a large central-

ized one. As an example of typical edge data center workload, we look at Uber’s rideshare

requests in ten different regions of the Boston area [146]. The rideshare requests in each

region in the Uber data set can be seen as the typical workload pattern of an edge data

center dedicatedly serving the regional users. Fig. 2.1(a) shows the rideshare request for a

single region (Haymarket Square) as well as the average for all the regions normalized to

the single region peak. Here we see a staggering variation in regional user requests (i.e.,

workload) compared to the aggregated of the entire area. Fig. 2.1(b) further shows that the

variation in the workload decreases as we combine more regions together.

These rapid workload fluctuations can have a detrimental effect on efficient data

center management. It leads to resource underutilization and wasted power and cooling

capacities when the edge data center is sized to meet the peak demand [70]. Consequently,

resource underprovisioning (i.e., allocating less capacity than the peak demand) has been

widely adopted in modern data centers to improve efficiency [12,43]. However, underprovi-

sioning requires power capping to avoid infrastructure overloads when the demand exceeds

the capacity. But, since power capping may also adversely affect the latency performance,

we need a graceful dynamic power management to facilitate underprovisioning without

severely affecting the response latency [12,43].
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Figure 2.1: (a) Normalized Uber rideshare requests in a single region vs average of all
regions in the Boston area [146]. (b) Change in variance and average number of requests
with region aggregation.

In this work, we identify that the rapid fluctuations in edge data center workloads

are particularly suitable for employing capacity-constrained energy storage devices such as

batteries to temporarily increase the infrastructure capacity during overloads and counter

the performance impact due to power capping. More specifically, in edge data centers, the

workload spikes are short-lived (Fig. 2.1(a)) which, if done judiciously, allows the battery to

be frequently recharged between overload events and be made available for supplementing

the data center capacity. The same, however, is not applicable for larger data centers where

slowly changing workload results in extended capacity overloads (e.g., tens of minutes)

that the battery cannot sustain (i.e., running out of energy due to the lack of recharging

opportunity).

In particular, we aim at using the batteries in data center’s uninterruptible power

supply (UPS) unit which provides backup power during utility power outages [53,54]. The

main idea here is to store energy (i.e., recharge) in the UPS battery when the power demand

is low and use (i.e., discharge) it later at a suitable time, for example when the demand

exceeds the capacity. While prior works have also studied using UPS battery for data

center power management, a key unwanted pitfall of cooling system overload has been
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mostly overlooked [53, 54]. Data center cooling system is typically designed with capacity

matching that of the power system. Hence, using the extra power from the UPS battery

also drives the corresponding server heat generation beyond the cooling system’s capacity.

When overloaded, the cooling system cannot remove all the heat generated, leading to

rapid temperature build-up inside the data center due to heat accumulation. According

to [95], the server inlet temperature may increase by more than 10◦C if the cooling system

is overloaded for 10 minutes. Such cooling system overloads and the ensuing temperature

increase can lead to automatic server shutdown to avoid permanent damage and fire hazard.

For instance, Dell EMC server will perform a protective shutdown once the server inlet

temperature exceeds the threshold of 32◦C [37].

Our contributions. In this chapter, we develop a novel power management

solution for edge data centers to use UPS batteries to boost capacity while also keeping

the data center cool. While we exploit the rapid fluctuations and short-lived spikes of edge

data center workloads to utilize UPS batteries, we tackle the cooling system overload by

exploiting the cold air inside the data center as a heat buffer that absorbs transient heat

spikes. Concretely, we use the cold supply air (e.g., at 27◦C) within the data center as an

energy storage by exploiting its temperature difference from the server safe operating limit

(e.g., 32◦C) to temporarily hold the extra heat generated due to the battery usage.

However, developing a power management solution that effectively exploits both

the data center cold air and UPS battery is challenging. First, both the energy stored

in the batteries and the temperature of the cold air have memories. That is, using the

battery now to supplement the power capacity diminishes the available battery for future
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use. Similarly, an increase in cold air temperature due to absorbing heat spike will leave

less room for temperature increase to handle future heat spikes without overheating (e.g.,

temperature exceeding 32◦C). Hence, our power management incorporating the battery

and cold air needs to consider future demand in its decisions. Second, to allow safe heat

spikes due to battery usage, we also need to accurately predict the impact of heat spikes on

cold air temperature by extracting the data center’s thermal dynamics. However, thermal

modeling for every edge data centers individually is impractical due to their large number

and diverse physical locations and operating environments. Not to mention, such thermal

models need to be updated every time there is a change in the data center environment

(e.g., data center/server layout).

To solve the aforementioned challenges, we propose a deep reinforcement learning

(DRL) based algorithm — DeepPM. We are motivated to use a DRL based solution since it

can autonomously learn and incorporate both the future requirements (e.g., capacity boosts

from the battery) and dynamics of the data center environment (e.g., temperature change)

in its decisions. Moreover, using DRL’s model-free approach we can capture greater details

of our problem and overcome simplifying assumptions made in existing model-based data

center management approaches [143]. In DeepPM, we formulate the power management

problem as a Markov decision process (MDP) where the power demand for incoming work-

load, battery energy, and cold air temperature at the server inlet constitute different MDP

states while the action space is the total power allocation. We formalize a parameterized

reward function that penalizes for the increase in latency, cold air temperature, and battery

energy usage. We use deep Q-learning with long short-term memory (LSTM) network to
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Figure 2.2: (a) Edge data center power delivery system. (b) Edge data center cooling system
with cold and hot aisle containment. 1O: server inlet temperature Tin, 2O: server outlet
temperature Tout.

learn the optimum action at each MDP state. Our MDP formulation together with the

LSTM network allows DeepPM to make a decision based on only the current state (i.e.,

power demand, battery energy level, and cold air temperature), while the deep Q-learning

allows us to learn and utilize on-the-fly the data center thermal dynamics in a model-free

manner.

To evaluate DeepPM, we compare it with three other baseline algorithms. Our

results show that DeepPM can effectively exploit the data center cold air and the UPS

battery to provide more than 50% improvement in latency performance while keeping server

inlet temperature within 32◦C. We also conduct a sensitivity study to see how different

settings affect DeepPM’s performance.

2.2 Preliminaries

Power infrastructure. A typical edge data center’s capacity ranges from a

few kilowatts to a few tens of kilowatts. The data center connects to the power utility and
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typically also has a backup generator that serves as a secondary power source. An automatic

transfer switch (ATS) reroutes the data center power connection from the utility to the

generator during a power outage. However, it may take few tens of seconds to a few minutes

to bring the generator online [53]. Hence, to support uninterrupted operation during the

power switchover, the data center is equipped with a UPS with battery backup. The server

racks get power from a power distribution unit (PDU). For small edge data centers, the

PDU can be collocated with the UPS and ATS. Finally, the power the distributed to each

server form their respective rack PDUs. We show a generic power infrastructure hierarchy

for an edge data center in Fig. 2.2.

Cooling infrastructure. Data centers need dedicated cooling systems to remove

the heat generated by servers. Since almost the entire power consumption of the servers

converts into heat, data center cooling systems are provisioned with capacity matching the

power infrastructure capacity. Due to smaller size, edge data center usually uses a computer

room air conditioner (CRAC) as the cooling system. Fig. 3.3 illustrates a typical CRAC

cooling system in edge data centers. Here, the CRAC supplies cold air at temperature Tin

to the server inlet and collects hot exhausting air at temperature Tout from the server outlet.

To improve CRAC’s efficiency, the hot and cold aisle containment can be installed to avoid

heat pollution (i.e., hot air mixing with the cold air) [106]. The hot air from the hot aisle

is recirculated through the CRAC unit which removes the heat and cool it down to supply

cold air to the cold aisle at temperature Tin. For improved cooling efficiency, the server

inlet temperature is typically conditioned at 27◦C, as recommended by ASHRAE [134].
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2.3 Power Management using DeepPM

2.3.1 Problem Definition

In this work, we focus on an edge data center hosting multiple server racks, a UPS

with battery backup, and a CRAC cooling system. We consider the data center has a total

power capacity of C0. The cooling system capacity is provisioned for the designed power

capacity and can supply cold air at temperature T0 (e.g., 27◦C) when the data center power

consumption does not exceed C0. The UPS battery has a maximum recharge rate of Rmax

which is imposed to safeguard against damaging the battery cells. We consider the data

center capacity C0 can be supplemented by discharging the UPS battery using techniques

similar to prior work [53,54].

We use a discrete-time model with a time step ∆t (e.g., 10 seconds) where the

power management decisions are updated at the beginning of each time step. The server

power allocation decision is made based on the power demand from the incoming work-

loads/requests and the available energy in the battery. Whenever the power allocation is

lower than the power demand, the data center utilizes power capping to curb the server

power consumption. The decision also takes into account the server inlet temperature to

avoid overheating the data center. At time step t, we denote the power demand as ptD, the

power allocation as pta, battery energy level as bt, and server inlet temperature as T tin.

Objective. The target of the data center operator is to dynamically allocate

power to improve the data center’s overall performance (e.g., latency/response time) with-

out overheating the data center. We formalize the power management as the following
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optimization problem OPA (Optimum Power Allocation).

OPA : minimize
pta

∑
t

L(ptD, p
t
a) (2.1)

subject to T t+1
in (pta, T

t
in) ≤ Tth (2.2)

pta − C0 ≤ bt (2.3)

Here, L(ptD, p
t
a) is the total latency increase due to a power allocation pta against a demand

of ptD and Tth is the overheating threshold for server inlet temperature. Constraint (2.2)

restricts data center from overheating and constraint (2.3) limits using the battery beyond

its current energy. In addition, whenever the power allocation is less than the capacity, the

battery is recharged at the rate of min(Rmax, C0 − pta).

Challenges. Solving OPA is challenging because the battery energy and the cold

air temperature both have memories. Specifically, the change in battery energy and/or cold

air temperature due to the power allocation decision made in the current time slot affect the

available battery and/or heat absorption capacity of cold air in future time slots. Further,

constraint (2.2) requires that we estimate the server inlet temperature T t+1
in in the next

time slot based on power allocation (pta) and server inlet temperature (T tin) of the current

time slot. However, modeling the edge data center’s thermal behavior using techniques like

computational fluid dynamics (CFD) is exhaustive since it requires CFD analysis of a large

number of edge data centers operating in diverse environments. Not to mention the update

required every time the data center’s environment (e.g., server layout) changes.

In what follows, we formulate our problem using a MDP followed by a deep Q-

learning based algorithm to solve OPA in a model-free manner.
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2.3.2 MDP Formulation

As the foundation of reinforcement learning-based solution, we first model our

problem using a discrete-time MDP where the entire time horizon is divided into time slots

t = 0, 1, · · · ,∞. Our system state st at time t includes the power demand ptD, battery state

bt, and the server inlet temperature T tin while the action is defined by the power allocation

pta. The MDP formulation of our problem can be summarized as follows:

• System state: st = (ptD, b
t, T t) ∈ S

• Action: pta ∈ A(st)

• State transition probability: P (st, pta, s
t+1)

• Reward function: rt = R(st, pta, s
t+1)

• Discount factor: γ ∈ (0, 1)

Here, the action spaceA is determined by the current state st. The tuple (st, pta, s
t+1)

means that the system transitions from state st to st+1 when action pta is taken. State tran-

sition probability function P (st, pta, s
t+1) describes the probability that the system state

moves from st to st+1 given action pta is taken at st. The reward function R(st, pta, s
t+1)

defines the immediate reward under state-action tuple (st, pta, s
t+1).

Action Space. In our MDP formulation, we consider a continuous action space

for power allocation with two distinct cases. First, when the power demand is below the

data center power capacity, we allocate power for the entire demand, i.e., pta = ptD. Second,

when the demand exceeds capacity, we may supplement the power allocation with battery
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up to its maximum available capacity, i.e., pta ≤ C0 + min(ptD − C0, b
t). The eligible action

space A for the current system state st can be defined as

A =


pta = ptD, when ptD ≤ C0

pta ≤ C0 + min(ptD − C0, b
t), when ptD > C0

(2.4)

State transitions and Markovian assumptions. For our problem, the battery

level bt and server inlet temperature T tin both evolve based on the power allocation action

taken. The battery level bt perfectly follows the Markovian process since it changes only

when the power allocation action pta exceeds the capacity C0 and requires battery supple-

ment for catering the demand. However, since the temperature change is a slow process, the

time granularity ∆t in our problem formulation needs to be sufficiently large for temper-

ature changes to take place to satisfy the MDP assumption. Nonetheless, such restriction

on ∆t can be lifted at the expense of a larger state-action space by using an augmented

multi-level MDP where the next state depends on both the current and recently visited

states and actions [62].

The changes in the power demand ptD, on the other hand, mainly depends on user

behavior and may not correlate with the current state and action, thereby violating the

MDP assumption. To facilitate the MDP formulation, we consider that the power demand

of next time slot pt+1
D is known at time t through workload estimation [33]. This enables our

solution to determine the next state based on current state and action. We add an LSTM

network in our design to automate the power demand estimation process.
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Figure 2.3: Reinforcement learning system: the agent observes system state, makes action,
and receives reward from the environment.

Reward function. To attain the optimization goals of OPA, we devise our

reward function as follows:

rt = R(st, pta, s
t+1) =− L(ptD, p

t
a)− β1(T t+1

in − Tth)+

− β2(bt − bt+1)

(2.5)

where (T t+1
in − Tth)+ = max(T t+1

in − Tth, 0) is the temperature violation, bt − bt+1 is the

battery usage in time slot t, and β1 and β2 are wight parameters.

In (2.5) a decrease in latency is positively rewarded as in OPA’s optimization

objective. Also, since the battery energy and cold air temperature both have memories, we

penalize for battery usage and temperature violation to incorporate their impacts on future

decisions. In addition to acting as unit conversion coefficients1, values of β1 and β2 can be

tuned to change the emphasis of the optimization goal. For instance, larger values of β1

will be more restrictive of the temperature violation while increasing β2 will result in more

conservative use of the battery. Note that, the power allocation constraints (2.3) is satisfied

by our action space A(st). The objective of the MDP problem is to find the optimal action

policy A∗ for maximizing the long term reward
∑

t γ · rt with a discount factor γ ∈ (0, 1).

The discount factor γ is introduced here to have a tractable problem.

1Units of battery level and temperature violation are converted to the unit of latency by multiplying with
β1 and β2, respectively.
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2.3.3 Reinforcement Learning and DeepPM

Reinforcement learning is a widely used approach to solve MDP problems. Q-

learning is one of the reinforcement learning algorithms for solving problems with an un-

known environment [144,163]. Fig. 2.3 shows the building blocks for reinforcement learning

in the context of data center power management. Here, the reinforcement learning agent

takes input from the environment to determine its current state which evolves based on

the action taken and arriving workload. Next, we briefly discuss Q-learning and then in-

troduce the DRL based power allocation algorithm DeepPM which is implemented with a

deep neural network [103].

Q-learning. It is an off-policy reinforcement learning algorithm that can solve

model-free MDP problems. In other words, Q-learning can effectively learn the optimal

strategy without any prior knowledge of the environment. The learned strategy is repre-

sented as a discrete Q value table, which stores Q values for all possible state-action pairs.

Then the Q policy πQ can be extracted as choosing an action with the highest Q value in

Eqn. (2.6).

πQ(st) = argmax
pta∈A(st)

Q(st, pta) (2.6)

The critical task for Q-learning focuses on the estimation of Q values from the

environment response. Typically, the Q values can be trained offline with a fixed-point

iteration of Bellman equation (Eqn. (2.7)) for MDP with a known environment. Then, the

conventional Q-learning with a learning rate α can be presented as

Q(st, pta) = Q(st, pta) + α[rt + γQ(st+1, π
Q(st+1))] (2.7)
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Other methods (e.g., batched Q-learning [167]) have also been investigated to solve

specific model-free MDP problems and accelerate the convergence of Q-learning. Usually,

Q-learning works well with a small state-action space. It becomes intractable when the

state-action space is large or continuous because of either ultra-large Q table or rarely

visited state-action pairs. In our power allocation problem, both the states (ptD, bt, T tin)

and action (pta) occupy a continuous space, resulting in an infinitely large Q table. Since

the purpose of the Q table is to provide the Q values for a given action, the Q table can be

replaced by a deep neural network that acts as an estimator for the Q values.

DeepPM. The basic idea of DeepPM is shown in Fig. 2.4 where a feed-forward

neural network is used to approximate the Q table. The neural network takes the three

state parameters (power demand ptD, battery state bt, and server inlet temperature T tin) and

the action (power allocation pta) as the input. Now, as discussed in Section 2.3.2, the power

demand ptD depends on the incoming user request and may well evolve independently from

the state and action. To circumvent the non-MDP nature of the power demand changes,

we add an LSTM layer in the feed-forward neural network with a vector ht that encodes

the history states [33]. We initialize h0 to an all-zero vector. The LSTM layer acts as

a predictor for future power demand using history ht−1 and allows DeepPM to navigate

the state transitions for its actions. In the implementation of DeepPM, we have one fully-

connected layer with 500 hidden neurons, one LSTM layer with 50 hidden neurons, one

fully-connected layer with 50 hidden neurons and one fully-connected layer with Q value as

the output.
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Figure 2.4: DeepPM using deep neural network. Here, FC stands for fully-connected layer,
LSTM stands for Long Short-Term Memory cell, and ht is the history states of LSTM. It
takes the state and action as input and provides the corresponding Q value.

Algorithm 1 DQN Training Algorithm

Input: Greedy exploration parameter ε, and mini-batch size B, M , and N .

Randomly initialize DQN network Q(s, pa|θ) with weights θ.

Initialize an empty replay buffer R.

For Epoch = 1 to M:

Randomly initialize the battery state b1 and server inlet temperature T 1.

For t=1 to N:

1. Select one power allocation pta based on current system state st according to

ε-greedy policy

a) randomly select pta ∈ A(st) with probability ε.

b) otherwise, select pta such that pta = argmaxpa∈A(st)Q(st, pa|θ)

2. Update battery state bt+1 and server inlet temperature T t+1 from sensors.

3. Calcuate reward rt based on Eqn. 2.5.

4. Store the simulation experience (st, pta, r
t, st+1) into replay buffer R.

5. Randomly sample B experience from replay buffer R as the training dataset D.

6. Update the DQN network θ via minimizing total loss L(θ) in Eqn. 2.8.

Return DQN network with learned weights θ.
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The deep neural network is also called Deep-Q-Network (DQN), which can estimate

the Q value as Q(s, pa|θ), where θ is the weight parameters. Owing to the significant recent

developments in deep learning, we can learn the weight parameters θ with high precision

using a well-developed gradient descent optimizer (e.g., Adam optimizer [78]). The input

of DQN includes the state and action where the output of DQN provides the corresponding

Q value. According to (2.7), the loss functions of DQN are defined in (2.8) and (2.9), on

training data set D.

L(θ) =
1

|D|
∑

(st,pta,s
t+1)∈D

(
yt −Q(st, pta|θ)

)2
(2.8)

yt = rt + γ max
pta∈A(st)

Q(st+1, pta|θ) (2.9)

To calculate the network target yt for each gradient descent training iteration,

we need to find the optimal action pta (i.e., power allocation) for new state st+1. We can

calculate the optimal action pta for the discrete action space using, for example, exhaustive

comparison. However, continuous action space is challenging to deal with because of its

complexity in finding the action to maximize Q values. One straightforward approach is to

discretize the continuous action space and apply standard DQN. An alternative approach,

called Deep Deterministic Policy Gradients(DDPG), is to use a critic-actor policy [93] with

two neural networks – a DQN and a deterministic policy gradient (DPG) network. DQN

approximates the Q function Q(s, pa), with state-action as the input and Q value as the

output. Whereas DPG approximates the policy function pa = µ(s), with states as the input

and actions as the output. DDPG is typically applied with high dimensional continuous

action space. Since we have only one continuous action variable pa, we use the discretiza-
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tion approach and split the power allocation into 200 discrete values with reasonably high

precision for our problem.

On the other hand, to ensure fast convergence during the DQN training we use

experience replay buffer, mini-batch gradient descent, and ε-state-action exploration. The

experience replay buffer stores all history state-action pairs and can be used in DQN train-

ing. Instead of using the entire replay buffer, a smaller subset of transitions is used by the

mini-batch gradient descent to minimize the loss in Eqn (2.8). This is done to avoid using

strongly correlated transitions which make the training process unstable [33]. In addition,

since the LSTM model is being updated continuously, we cannot directly use saved history

hi−1 for each picked transition i. Instead we use all the historical states leading up to tran-

sition i as input to our LSTM model to get the correct hi−1 [33, 133]. For action selection,

ε-greedy exploration policy is utilized to balance the dilemma between exploration and ex-

ploitation. Specifically, with a probability of ε, a random power allocation pta ∈ A(st) is

chosen. Otherwise, the action is chosen following (2.6).

In our implementation, we initialize an empty replay buffer R at the beginning

of training. Then the agent explores a preset number of state-action pairs with a greedy

parameter ε at each time slot t, observes the environment responses, and then stores the

experiences (st, pta, r
t, st+1) into the replay buffer R. In contrast to traditional Q-learning,

the agent of DRL updates weight parameter θ with a mini-batch sampling from the replay

buffer R. The detail of the DQN learning algorithm is presented in algorithm 1.

2.4 Evaluation Methodology
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In this section, we present our default edge data center settings, thermal dynamics,

battery energy model, and performance model. We then describe the implementation and

parameters for DeepPM. We finally introduce three benchmark algorithms for the evaluation

of DeepPM.

2.4.1 Settings

Due to limited access to a real edge data center, we resort to a simulation-based

evaluation for DeepPM where the power management decisions are updated every 10 sec-

onds.

Data center infrastructure. We consider an edge data center with two server

racks each with 20 servers and a designed capacity (C0) of 8kW. The data center has a UPS

backup with battery capacity (CB) of 0.2kWh which can provide 1.5 minutes of backup

power at its maximum discharge rate of 8kW. The maximum recharging rate of the battery

(Rmax) is set to 0.5kW. The data center is cooled using a CRAC (computer room air

conditioning) system with a matching designed capacity of 8kW. The CRAC can supply

cold air at T0 = 27◦C when the data center power consumption remains within its capacity

of 8kW. We set the threshold temperature (Tth) to 32◦C. We also consider the data center

employs hot aisle containment to improve cooling efficiency and avoid heat recirculation.

Workload trace. We use real-world traces to perform training and evaluation

of DeepPM. We use the number of requests from two popular rideshare applications, Uber

and Lyft, in the Boston, Massachusetts area as our workload [146]. Because of their large

geographic service areas, customer requests from such rideshare applications are good ex-

amples of edge data center workloads. We convert the number of requests to power demand
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Figure 2.5: (a) 2-hour snapshot of workload/power demand trace. (b) CFD simulation
model 1O Air conditioner (AC). 2O Supply air duct. 3O Heat containment. 4O Server racks.
5O Server room.

using the server power consumption model of [148] and scale the power trace to have a peak

demand of 12kW. Fig. 2.5(a) shows a 2-hour snapshot of the workload trace used in our

simulation.

2.4.2 Environment Models

For training and evaluation of DeepPM agent, we simulate the edge data center

which is accessed by the DRL for learning the state transitions for its state-action pairs.

Thermal model. We use CFD which is one of the most widely used approaches

to analyze the thermal behaviors of data centers (e.g., Google [51]). However, transient

CFD simulation is slow and computationally exhaustive. Hence, as outlined in [143], we

adopt a short-term CFD approach using Autodesk CFD where the thermal environment is

modeled using impulse response by creating power spikes. The 3D model used in Autodesk

CFD is shown in Fig. 2.5(b). As an illustration, in Fig. 2.6(a), we show the temperature
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change for our data center with a 1.5kW cooling overload for 10 minutes using our thermal

model.

Battery Energy Model We consider a liner battery charging/discharging model

where the battery energy state bt is adjusted by subtracting discharge power and adding

recharge power as follows:

bt+1 =


bt + min(C0 − pta, Rmax), for pta < C0

bt − (pta − C0), otherwise

(2.10)

Note that, a nonlinear battery model incorporating charging/discharging loss and leakage

can also be considered in the state transition without loss of generality.

2.4.3 Latency Model

We determine the latency increase due to the power capping based on web search

application experiments in [70]. Specifically, we run the web-search benchmark from Cloud-

Suite [45] for different workload levels and CPU speeds (using DVFS) and collect the 99-th

percentile response times.Then, considering the power consumption at full CPU speed as the

power demand for a given workload, we model the performance impact (change in response

time/latency) for change in the power allocation as a percentage of the power demand. We

show the performance for different power allocations in Fig. 2.6(b) where the response time

is normalized to that of without any power capping. Note that, here we use web-search as

an example of performance-power trade-off while many other applications also have similar

performance-power relationship [70]. Hence, our proposed approach can be used for a wide

range of applications.
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Figure 2.6: (a) Thermal model illustration with 10-minute cooling overload. (b) Latency
model for partially satisfied power allocation.

2.4.4 DRL Parameters

For DRL, we implement the DQN training algorithm using “Tensorflow” [39].

The DQN (Q(s, a|θ)) is implemented with a four-layer fully-connected feed-forward neural

network, which includes 500 nodes in the first hidden layer, and 50 nodes in the second and

third hidden layer. The “ReLU” is utilized as the activation function for the three hidden

layers to achieve nonlinearity.

For the training process of DQN, we use Adam optimizer with a learning rate of

α = 0.001, and the mini-batch size is set at B = 1024. The discount factor is set at γ = 0.9.

The weight factors in reward Eqn. (2.5) are set as β1 = 100 and β2 = 0.1 for the penalty of

overheating and battery usage, respectively. We perform 6000 training epochs for DQN.

2.4.5 Benchmark Policies

We evaluate DeepPM against three benchmark policies – PowerCap, Greedy, and

GreedyT, described as follows.

PowerCap. It does not utilize the UPS battery. When demand exceeds the ca-

pacity, it caps the power at capacity (i.e., pta = C0 < ptD). Otherwise, it allocates power for
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Figure 2.7: Convergence curve for DQN training: (a)Average training loss. (b) 2-norm of
Q values.

the full demand (i.e., pta = ptD). In our evaluation, PowerCap is the baseline policy since it

does not employ any performance improvement strategy such as utilizing the UPS battery.

Greedy. It uses the battery greedily without considering its impact on tempera-

ture. When demand exceeds the capacity, it uses the battery to cover the deficit amount

up to the available energy in the battery, i.e., pta − C0 ≤ bt.

GreedyT. It has the same power allocation strategy as Greedy, except, it only uses

the battery if he server inlet temperature is less than 31.5◦C.

When the power demand is lower than the capacity, both Greedy and GreedyT

satisfy the demand. They also recharge the battery with the unused capacity, C0 − ptD.

2.5 Evaluation Results

In this section, we present results from DQN training and compare DeepPM with

the three benchmark algorithms. Then we conduct sensitivity studies on DeepPM.
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Figure 2.9: Performance evaluation with different algorithms.

2.5.1 DQN Training

We use the Uber and Lyft workload traces and utilize the thermal model to train

DeepPM for 20,000 epochs (∼ 55 hours or little over 2-days with 10 seconds time slots). We

use three different learning rates: α = 0.01, α = 0.001, and α = 0.0001 with a mini-batch

approach. We sample the average loss for every ten epochs and show the convergence curves

of in Fig. 2.7(a). We also show the evolution of 2-norm of the Q values in Fig. 2.7(b). We

can see that while training does not converge for α = 0.01, it converges after ∼2000 epochs
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(∼ 6 hours) for α = 0.001 and ∼13,000 epochs (∼ 36 hours) for α = 0.001. We chose

α = 0.001 as our default learning rate since it results in a earlier convergence.

2.5.2 Illustration of Power Allocation

We show a 4-hour snapshot of the power allocation under the three different policies

(Greedy,GreedyT, and DeepPM) in Fig. 2.8. We include the power demand due to the

incoming workloads, the power allocation, battery energy level, and server inlet temperature

variation. The snapshot starts with a fully charged battery with 100% energy and a server

inlet temperature of 27◦C. Whenever the power allocation is above the capacity of 8kW,

the data center uses its battery power and the server inlet temperature goes up due to the

extra heat generated beyond the cooling capacity. A gap between demand (blue line) and

allocation (red lines) indicates that the power allocation does not meet the power demand,

resulting in processing latency.

First, we look at Greedy policy which allocates power from battery whenever the

demand is higher than the capacity. It disregards the temperature increase and ends up with

server inlet temperature going over 32◦C many times (e.g., multiple times near 0.5 hours).

For DeepPM, on the other hand, we see that it does not allocate power for the full demand

when the server inlet temperature approaches the threshold of 32◦C, for example near 0.5

hours. Restricting itself within the temperature limit is the cause of a slight increase in

latency performance for DeepPM.

We also see in Fig. 2.8 that the battery energy is frequently replenished due to the

rapid fluctuations in power demand. Also, DeepPM uses the batteries more conservatively
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Figure 2.10: Impact of peak power demand on DeepPM.

and can maintain a high battery level most of the time while Greedy nearly depletes it

around 0.5 hours.

2.5.3 Performance Evaluation

Here we evaluate DeepPM for a period of 24-hours with a trained DQN discussed

in Section 2.5.1.

Average Latency. We calculate the latency following our latency model in Sec-

tion 2.4.3 and normalize to that of PowerCap. We take the average latency performance

for the overload time slots to emphasize the true impact of DeepPM. We show the average

latencies for the four policies in Fig. 2.9(a). We see that DeepPM, as compared to the

baseline PowerCap, achieves more than 50% lower latency. Greedy and GreedyT also enjoy

over 30% performance improvements because they use the battery. Nonetheless, both have

a significantly less improvement since they greedily consumes the limited battery capacity,

as opposed to DeepPM which takes the future needs into account.

Server inlet temperature. Next, we look at the maximum server inlet temper-

ature resulting from the different policies in Fig. 2.9(b). We see that both DeepPM and

GreedyT manage to maintain a server inlet temperature below the threshold limit of 32◦C
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Figure 2.11: Effects of weight parameters β1.

as opposed to Greedy which results in a maximum inlet temperature of more than 35◦C.

This is because Greedy does not take the temperature into account during power allocation.

PowerCap, on the other hand, has the lowest inlet temperature as it never uses the battery.

Battery usage. Next, we look at how the three battery using policies utilize the

battery. We show the CDF of battery energy levels in Fig. 2.9(c). We see that nearly 20%

of the time both Greedy and GreedyT run without any available battery to supplement the

power allocation. DeepPM, on the other hand, barely drops below a 40% energy level and

therefore retains the battery energy to use when the power demand exceeds the data center

capacity

2.5.4 Sensitivity Analysis

Here we examine the impacts of peak power demand and weight parameters in the

reward function on DeepPM.
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Figure 2.12: Effects of weight parameters β2.

Impact of power demand

We vary the peak power demand from 8kW to 14kW by scaling the data center

dynamic power. We keep the data center power and cooling capacity at 8kW and the

battery capacity at 0.2kWh. The results are shown in Fig. 2.10 where we omit PowerCap

which does not use the battery.We see in Fig. 2.10(a) that at power demand of 8kW, the

latency of all three benchmark algorithms are the same as PowerCap since there is no need

for a capacity boost. However, as the demand increases, using the battery becomes useful

in improving the latency performance. In Fig. 2.10(b) we see that the maximum server

inlet temperature increases as the peak demand increases while both DeepPM and GreedyT

maintain a temperature below 32◦C. Finally, Fig. 2.10(c) shows that at 8kW peak demand

(i.e., no underprovisioning) no battery is used while the battery usage increases with peak

demand. Interestingly, the battery usage goes down for 14kW peak demand. This is because

of the limited recharge opportunity due to higher power demand.

Impact of weight parameters β1 and β2

The weight parameters in DeepPM’s reward function (2.5) play important roles

since they determine how much DeepPM emphasizes on using the battery and violating the
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temperature constraint as opposed to allowing an increase in latency due to power capping

during overloads.

First, we vary β1 from 1 to 1000 while β2 is kept constant at its default value

0.1. Since β1 determines the relative weight of the data center temperature violation, a

lower value allows DeepPM to violate the temperature constraint more and vice versa.

Consequently, we see in Fig. 2.11(b) that the the maximum inlet temperature increases

with decreasing β1. Likewise with the temperature violation constraint relaxed at lower

values of β1, DeepPM uses more battery and can result in lower latency (Fig. 2.11(a)).

Next, we vary β2 from 0.01 to 10 while β1 is kept constant at its default value of

100. Since, β2 is the weight for battery usage, increasing β2 results in a decrease in the

battery usage and vice versa. We see in Fig. 2.12(a) that the latency performance β2 has

marginal impact of latency performance. On the other hand, as shown in Fig. 2.12(b), the

decrease in battery usage with the increase in β2 leads to reduction in server maximum inlet

temperature.

The take away from our evaluation is that, edge data center operation can be

supplemented with UPS batteries for significantly improving performance by exploiting the

rapid fluctuations in workloads and cold air as a thermal buffer.

2.6 Related Work

Data center management. Managing the data center infrastructure with

limited resources has received significant attention from the research community in the

past decade. Various techniques have been proposed to aid data center management such
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as improving the energy proportionality [94, 101], jointly managing servers and non-IT

support infrastructure (e.g., power/cooling) [94, 101], and exploiting geographical diversity

to minimize data center operation cost [113]. Likewise, infrastructure oversubscription is

exploited in other works to improve the data center utilization [165]. [97, 176] use energy

storage devices to temporarily increase the data center power capacity. Such performance-

boosting techniques allow the power consumption to temporarily exceed the data center

capacity to offer a performance lift. Constrained by the thermal design power (TDP), [42]

proposes temporary power/performance boosts at the microprocessor level by utilizing phase

change material and heat absorption of thermal packages. As opposed to prior works, we

focus on emerging edge data centers and, instead of exploiting microprocessor-level thermal

inertia, utilize the data center level thermal mass in coordination with the UPS battery and

propose a DRL-based solution.

Reinforcement learning for resource management. The autonomous learn-

ing and online decision capability make reinforcement learning a prime choice for solving

data center resource management problems. Due to the recent advances in deep neural

network-based learning, recent works focus on DRL based approaches. For instance, [172]

proposes a DRL based algorithm to schedule compute-intensive workloads for energy min-

imization, while [22] designs a task scheduler and resource provisioning system for large

cloud service providers. In [98], DRL is used for the job and virtual machine allocation in

the cloud data center and [33] uses DRL to capture user behavior for profit maximization of

a cloud service provider. Our key novelty is that we focus on edge data centers with rapidly
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fluctuating workloads, for which energy storage – both thermal and battery – is exploited

for performance maximization subject to capacity constraints.

2.7 Conclusion

In this work, we developed a novel power management algorithm, DeepPM, for

edge data centers that exploits the data center cold air and workload fluctuations to use

UPS batteries for capacity boosting without overheating the data center. We used DRL

to estimate the data center thermal behavior in a model-free manner and utilized it for

deciding power allocation to improve latency performance while keeping server inlet tem-

perature within safe operating limits. We showed that DeepPM can achieve a performance

improvement of more than 50% compared to the power capping baseline.
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Chapter 3

Heat Behind the Meter: A Hidden

Threat of Thermal Attacks in Edge

Colocation Data Centers

3.1 Introduction

In the wake of the Internet of Things and ubiquitous computing demand, edge

computing has recently emerged as a game-changing paradigm that brings computation to

the Internet edge, thereby enabling ultra-low latencies for many critical applications such

as augmented reality and assisted driving [127]. Consequently, the rise of edge computing

spurs the burgeoning development of multi-tenant edge colocation data centers (a.k.a., edge

colocation). An edge colocation is a small-scale shared colocation data center built at nu-

merous distributed locations for hosting latency-ultrasensitive workloads such as assisted
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driving [28]. In such a colocation, the operator provides power and cooling resources to

multiple entities (i.e., tenants) for housing their own physical servers. Thus, this funda-

mentally differs from a multi-tenant cloud platform where users/tenants share the cloud

resources without owning the physical servers.

Edge colocations have become the preferred choice for edge service providers. For

example, Vapor IO, an edge colocation operator, is rolling out thousands of edge colocations

in partnership with wireless tower companies [150]. Moreover, a recent Uptime Institute

survey [147] shows that more than 75% of the respondents will use edge colocations to house

their physical servers and deploy edge applications.

The criticality of hosted applications, such as assisted driving [150], clearly man-

dates a high level of security for edge colocations. While securing servers and networks from

cyber attacks remains a key issue, recent research has also identified critical vulnerabilities

in data center physical infrastructures. More concretely, the practice of infrastructure over-

subscription exposes data centers to well-timed power load attacks that aim at overloading

the power capacity and compromising the data center availability [68,69,71,169]. Likewise,

data center cooling system removes server heat to avoid overheating and hence is also cru-

cial for service uptime. If not properly managed, malicious workloads can create more hot

spots that expose servers to an adverse thermal environment and thus more thermal emer-

gencies [48]. Importantly, cooling system has emerged as a leading root cause for downtime

incidents in state-of-the-art data centers (e.g., Microsoft’s) [73,111].

To meet the power capacity constraints and avoid outages [67, 158,165], the colo-

cation operator has power meters to continuously monitor tenants’ server power usage.
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Figure 3.1: An attacker uses its built-in batteries to stealthily inject additional heat to
overload the cooling system.

Meanwhile, power meters are also used as a proxy to measure servers’ cooling loads,1 ensur-

ing that the designed cooling capacity is not violated. The reason is that nearly 100% server

power is eventually converted into heat or cooling load [69,100,130]. Therefore, with proper

heat dissipation, meeting the power capacity constraints also implicitly means meeting the

cooling capacity constraints [100].

Contributions. In this part, we study an under-explored threat of thermal at-

tacks — injecting additional cooling loads to overload the cooling system — in an edge

colocation. While edge colocations have been generally considered as secure due to ten-

ants’ full control of their own servers, we discover that the way tenants’ cooling loads are

measured (i.e., using power meters as proxies) is potentially vulnerable to thermal attacks.

More concretely, as illustrated in Fig. 3.1, an attacker can tap into the emerging architecture

of built-in battery units and generate additional cooling loads (i.e., heat), yet without vio-

lating the power capacity enforced by the colocation operator. If left neglected, successful

thermal attacks may create significant damages: (1) service outage for benign tenants due

1Heat generated by servers is “cooling load” for the cooling system.
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to overheating (which we call one-shot attack); or (2) more frequent thermal emergencies

that result in tenants’ performance degradation (which we call repeated attacks). While

various defenses (e.g., measuring servers’ outlet temperatures and air flows) are readily

available, they have yet to be included in standard practices for many data centers. As

such, despite non-trivial efforts needed by thermal attacks, our study serves as a precaution

for strengthening cooling system management in edge colocations.

A common practice in today’s colocations is to tightly monitor tenants’ power

usage as well as their server inlet/outlet temperature. Nonetheless, if other effective defense

mechanisms (in Section 3.7) are not properly implemented, built-in batteries integrated

with servers’ power supply units can assist an attacker with launching thermal attacks that

are difficult to trace. To provide better energy efficiency and reliability [6,81,137], vendors

have begun to integrate built-in batteries with servers’ power supply units (e.g., Supermicro

BBP [137]). Such built-in batteries can conceal the attacker’s actual cooling load from the

operator’s power meters — by discharging built-in batteries to supply additional power,

the attacker’s servers can consume more actual power and hence generate more heat than

the operator measures using power meters. Moreover, this additional cooling load may

not be promptly pinpointed by only monitoring the servers’ inlet and outlet temperatures.

Consequently, indiscernible additional cooling loads can be injected by an attacker to exceed

the shared cooling capacity, thus triggering thermal emergencies. While we focus on edge

colocation data center, such thermal attacks may be mounted against larger colocation data

centers as well, albeit the attacker needs to commit more resources.
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Meanwhile, before automatic system shutdown [67, 77], handling thermal emer-

gencies require tenants’ power/cooling load reduction through clock rate throttling and/or

workload re-routing to other unaffected data centers, which can adversely affect tenants’

performance in terms of application response time.

While successful thermal attacks can create an adverse environment for hosting

servers in edge colocations, they need non-trivial efforts. As a prerequisite for a good timing,

the attacker needs to estimate benign tenants’ power/cooling loads based on a voltage

side channel [68]. For a one-shot attack with the goal of shutting down an entire edge

data center, the attacker can install a large built-in battery and inject sufficient cooling

loads continuously, resulting in overheating and triggering automatic system shutdown.

For repeated attacks that aim at benign tenants’ performance degradation, the attacker

needs to repeatedly trigger thermal emergencies by charging and discharging its battery at

appropriate times. We propose a foresighted policy based on batch Q-learning that learns

on the fly a good timing for repeated attacks based on the battery state and benign tenants’

load: thermal attacks are launched only when both the benign tenants’ loads are sufficiently

high and the remaining battery energy is more than a threshold.

We run prototype experiments to validate the potential threat of thermal attacks.

To evaluate the effectiveness of our proposed repeated attack strategies, we run year-long

simulations based on computational fluid dynamics (CFD) analysis. Our results demon-

strate that for an 8kW edge colocation, an attacker subscribing 10% of the capacity can

cause thermal emergencies for more than 3% of the year, degrading benign tenants’ per-

formance. Finally, while the existing practices may render edge colocations vulnerable,
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battery-assisted thermal attacks can be fairly easily detected and nullified using a reasonable

amount of efforts. We discuss such defense strategies in Section 3.7.

In conclusion, while batteries have been exploited (such as for smoothing power

demand [157]), our study makes a novel contribution by leveraging servers’ built-in batteries

for an under-explored malicious purpose — thermal attacks that can potentially result in

service outage or performance degradation in edge colocations — and serves as a precaution

despite its futility when proper defensive measures are enforced.

3.2 Preliminaries on Edge Colocations

Colocations represent a critical segment and account for nearly 40% of the total

energy consumption by data centers [67], serving almost all industry sectors. To complement

their own megascale data centers that are typically built in rural areas, even top-brand

companies like Google and Microsoft rely on third-party colocations for better performances

due to close proximity to end users [141]. Importantly, in the context of edge computing,

colocations play an even more crucial role, as it is not economical for individual companies

to fully manage small-scale data centers in numerous locations [29].

The data center capacity includes both power and cooling capacities. Power ca-

pacity is quantified by the amount of UPS-protected power (a.k.a. critical power) that is

delivered to the servers, excluding other power consumption such as UPS power losses and

cooling system power. As nearly 100% server power consumption (except for fan power) is

converted into heat or cooling load, the cooling system capacity is often sized based on the

colocation’s power capacity and usually also measured in kilowatt [100,130,131]. The data
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Figure 3.2: An edge colocation data center with an attacker.

center design may also leave some “headroom” in the cooling capacity to handle, if any,

irregular heat generation and/or hot spots due to certain servers generating more heat than

expected. In such cases, the cooling system utilization may sometimes still be high because

of the increasingly common practice of power oversubscription for capital cost saving in

modern data centers (e.g., Facebook aggressively oversubscribes its power capacity by 47%

on average) [85,99,119,165].

The colocation operator provides non-IT infrastructure support (i.e., power and

cooling systems), while each tenant brings and controls its own physical servers.2 The non-

IT infrastructure is expensive and/or time-consuming to construct, taking nearly 60% of

the total cost of ownership over a 10-year lifespan for a colocation operator [67, 130, 157].

Thus, like network bandwidth, the operator’s power and cooling infrastructure capacity is

a limited resource carefully sized based on the tenants’ demand.

3.2.1 Power Infrastructure

2A tenant can share fraction of a rack space with other tenants.
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As illustrated in Fig. 3.2, typically, an edge colocation data center uses a tree-

type power hierarchy with total capacity in the range of a few kilowatts to a few tens of

kilowatts shared by multiple tenants. Utility power first enters the data center through

an uninterruptible power supply (UPS). Then, the UPS-protected power goes into a power

distribution unit (PDU), which distributes the power to its downstream servers.

3.2.2 Cooling Infrastructure

While various cooling methods (e.g., computer room air conditioner, chiller, and

“free” outside air cooling) are available [40], an edge colocation usually uses a computer room

air conditioner to remove servers’ heat due to its small size and often rugged deployment

(e.g., outdoor with a wireless tower). Fig. 3.3 illustrates a typical cooling system in an edge

colocation. For the best cooling efficiency, today’s edge colocations also implement hot/cold

aisle containment to prevent the hot air from mixing with the cold air [29,52].

There are four different notions of temperature in a data center: supply air tem-

perature Tsup, server inlet temperature Tinlet (i.e., temperature of cold air entering a server),

server internal temperature Tinternal (e.g., CPU temperature), and server outlet tempera-

ture Toutlet (i.e., temperature of hot air exiting a server). With heat containment installed,

all the servers’ inlet temperature is nearly identical to the supply air temperature. Thus,

supply air temperature and server inlet temperature are the lowest and baseline, whose

increase will lead to increases in server internal and outlet temperatures. Server outlet

temperature is typically elevated by 10+◦C compared to the inlet temperature while server

internal temperature is the highest and regulated by servers’ internal fans. Hence, with
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Figure 3.3: Overview of a cooling system in an edge colocation.

heat containment, we have the following [104,109,142]:

Tinlet ≈ Tsup < Toutlet < Tinternal. (3.1)

In a data center, server inlet temperature is the most important thermal metric

[134, 142], because servers’ internal temperature control uses the inlet temperature as a

reference [30]. For example, in modern data centers, server inlet temperature is conditioned

at 27◦C for cooling efficiency, as recommended by ASHRAE [5,134]. Also note that, while

server heat is responsible for increase in internal and outlet temperatures, neither Tinternal

nor Toutlet is a reliable indicator for a server’s cooling load since they depend on the server’s

internal heat management (e.g., fan speed) and air flow rate.

3.3 Thermal Attack

The main focus of this section is to present the potential threat of battery-assisted

thermal attacks (when concealed cooling loads are behind the meter and not promptly

detected) and help strengthen edge colocations. As a precursor, we first introduce our

threat model that outlines the scenario considered for thermal attacks. We then present the

57



potential impacts on edge colocations. Finally, we introduce two possible attack strategies

followed by discussions on their feasibility.

3.3.1 Threat Model

We consider an edge colocation data center with a total power/cooling capacity of

C, housing a few racks of servers owned by multiple tenants. There exists a malicious tenant

(i.e., attacker) that runs artificial workloads without real values and has bad intentions.

What the attacker can do. The attacker houses its own physical servers in the

edge colocation, sharing the power and cooling infrastructures with benign tenants. As

illustrated in Figs. 3.1 and 3.4(a), the attacker’s server power supply units has built-in

battery units, which can conceal the attacker’s actual server power/cooling load from the

operator’s power meters. Fig. 3.4(a) shows an overview of the attacker’s server.

The attacker subscribes a data center capacity of ca from the colocation operator

and keeps its power drawn from the operator’s PDU below ca at all times (even during an

attack), in order to meet the operator’s requirement.

When launching a thermal attack, the attacker runs power-hungry applications

(e.g., intensive computation) to increase its actual server power consumption to pa > ca

where ca amount comes from the operator’s PDU and the rest from its built-in battery.

In practice, when running at the peak load, a single server equipped with multiple CPUs

and/or GPUs can easily consume several hundred watts, even more than 1kW [17]. Thus,

the attacker can inject an additional cooling load of pb = pa − ca beyond its subscribed

capacity by discharging built-in battery units (which can be achieved by a dual-source
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Figure 3.4: (a) Attacker’s server with built-in batteries. (b) Supermicro’s power supply
[137]. The built-in battery module is highlighted in a red circle.

power supply that can simultaneously draw power from the PDU and the battery units

[55,75,97,156,157].)

The attacker uses a voltage side channel, as proposed in [68], to estimate benign

tenants’ real-time total server load with a high accuracy (Fig. 3.5(b)).

What the attacker cannot do. We do not consider naive attacks, such as self-

explosion and tampering with the physical infrastructures, which are beyond the scope

of our work. Moreover, other attacks, such as network DDoS attacks, are also orthogonal

to our focus.

3.3.2 Impact of Thermal Attacks

Although non-trivial efforts are needed in the threat model, a successful thermal

attack can overload a data center’s cooling system and possibly increase the server inlet

temperature to a dangerous level, triggering frequent performance degradation and even

system outages [30,96].
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Performance degradation

Before system shutdown, a preventative mechanism is to temporarily cap the data

center-wide cooling load (i.e., server power) below the cooling capacity [64,77]. Specifically,

when the server inlet temperature exceeds a threshold (e.g., 32◦C) for a certain amount

of time [77], it is considered that a data center exception, called thermal emergency, has

occurred and servers are forcibly put in a low power state. The wait-time between inlet

temperature violation and thermal emergency declaration depends on operator’s risk man-

agement policy. The temperature threshold for a thermal emergency is set lower than the

server’s automatic shutdown temperature to proactively handle an emergency. For example,

in a Google-type data center, disk speeds and/or CPUs are throttled to lower the server

power load (i.e., cooling load) in the event of a thermal emergency [77,114]. Similar mech-

anisms also exist in multi-tenant colocations to handle a thermal emergency. Concretely,

without controlling tenants’ servers, the operator sends signals to tenants’ own server man-

agement systems such that tenants can cap power loads below a certain level (a.k.a. power

capping). The actual amount and duration of power capping can be either pre-determined

based on SLA terms [5] or decided at runtime through a dynamic coordination mecha-

nism [67,174].

Nonetheless, handling a thermal emergency by capping tenants’ server power

(through, e.g., CPU throttling) inevitably results in performance degradation, which can

in turn cause user dissatisfaction, revenue loss, and/or SLA violation [6,67,155,165]. Some

workloads may be re-routed to other unaffected data centers for service continuity, but this
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comes at a higher latency since otherwise those workloads would have been processed in

the preferred site to achieve the best performance without being re-routed.

System outage

In order to prevent permanent hardware damage, if the server inlet temperature

continues rising despite cooling load capping, automatic system shutdown may occur, lead-

ing to a system outage (e.g., the shared PDU can power off when the inlet temperature

reaches 45◦C) and service interruptions [134]. Such system outages can cause loss of working

data sets, and also suffer from long restart waiting time. Financially, a system outage can

cost thousands of dollars every minute [111]. For latency-critical applications, an outage

event may cause even more catastrophic consequences such as decreased safety in edge-

assisted driving [10].

We also run a prototype experiment to demonstrate the potential impact of ther-

mal attacks on benign tenants, and the results are in Appendix 3.3.5.

3.3.3 Attack Strategies

We introduce two possible strategies for battery-assisted thermal attacks with

different goals.

One-shot attack. It aims at creating a system outage by increasing the server

inlet temperature beyond the safety limit (e.g., 45◦C [134]). It can also be coordinated across

multiple edge colocations for a wide-area service interruption. Even successfully launched

only once, the caused damage may be significant, especially for safety-critical applications

(e.g., edge-assisted driving) [10].
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Repeated attacks. Instead of aggressively overheating and shutting down the

entire edge colocation, repeated attacks aim at frequently degrading performance of be-

nign tenants’ latency-sensitive applications over a long period (e.g., one year) by triggering

thermal emergencies and cooling load capping. Thus, repeated attacks compromise the

long-term cooling system availability in edge colocations.

In general, one-shot attack requires a higher battery capacity to support more

intense attack loads (which may still be feasible as shown in Section 3.6). On the other

hand, repeated attacks require relatively less (still a considerable amount of) resource, but

they require more sophisticated timing of the attacks and can be easy to detect.

3.3.4 Feasibility of Thermal Attacks

Motivation for thermal attacks. One-shot attack is as motivating as tradi-

tional DDoS attacks, as it can potentially create service outages. Likewise, repeated attacks

can result in frequent performance degradation for latency-sensitive applications, which in

turn causes user dissatisfaction, revenue loss, and/or SLA violation. Thus, although the

cost barrier is non-trivial, battery-assisted thermal attack might still be inviting for poten-

tial attackers, such as the target colocation’s ill-intentioned competitor or state-sponsored

attackers.

Attacker’s malicious cooling load. In recent years, vendors have integrated

built-in batteries into servers’ power supply units as an emerging backup power solution

(e.g., Supermicro BBP [137] shown in Fig. 3.4(b)). Thus, an attacker can discharge built-

in batteries to supply additional power to its servers, generating malicious cooling loads

without being monitored by the colocation operator’s power meters. Moreover, without air
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flow meters, temperature sensors that only monitor server inlet/outlet temperature cannot

reliably locate the malicious cooling load. Consequently, if left neglected, thermal attacks

can be launched behind the meter. This is also illustrated in Fig. 3.1: an attacker generates

300W cooling load, but the colocation operator only measures 200W from the power meter

and the additional 100W load is supported by the attacker’s internal batteries.

Availability of off-the-shelf hardware. Servers with built-in batteries are

commercially available (e.g., Supermicro [137]). The current battery energy density is

enough to fit into servers and supply sufficient additional power to mask the attacker’s

malicious cooling loads [4], even for an one-shot attack that requires more attack loads than

repeated attacks. Moreover, servers with large peak-to-average ratios are also available

for generating a large amount of heat during an attack. For example, Dell manufactured

PowerEdge R740/R740xd servers can be equipped with up to three Nvidia Tesla GPUs each

with 225W peak and 20W idle power [3, 18].

Voltage side channel to time thermal attacks. Due to time-varying loads,

the attacker needs to find a good timing for successful attacks (especially for repeated

attacks) when benign tenants’ aggregate power load (or cooling load) is high. The attacker

can utilize a side channel — voltage side channel in our study — to estimate benign tenants’

power draw from the shared PDU. The voltage side channel is robust against changes in the

environment and provides high accuracy due to its wired signal [68]. Utilizing the voltage

side channel requires one analog-to-digital converter (ADC) that can fit on a server’s power

supply unit (as demonstrated in an orthogonal study for USB-powered IoT devices [86]). As
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Figure 3.5: (a) Server voltage carries the servers’ load information. (b) Load estimation
error of the voltage side channel.

shown in Fig. 3.4(a), the ADC taps into the server’s input voltage to sample the PDU-level

voltage.

For the readers’ understanding, we show in Fig. 3.5(a) the fundamental principle

behind the voltage side channel as recently proposed in [68]. The key idea is that because

of the voltage drop along the shared power cable, the total load information (proportional

to current) is contained in the voltage signal, e.g., V1, entering any servers connected to

the PDU. Meanwhile, all today’s servers have power factor correction (PFC) circuits that

generate high-frequency voltage ripples, whose amplitude is strongly correlated with the

server load. Thus, the attacker can sense the incoming voltage signal, extract the voltage

ripples, and estimate the total load at runtime.

We run a 24-hour real-world workload trace in our prototype and collect the voltage

signal using a NI digital data acquisition (DAQ) as an ADC proxy to extract the servers’

total power load. We plot in Fig. 3.5(b) the probability distribution of load estimation

errors, confirming that the voltage side channel can be leveraged for precisely timing thermal

attacks.
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Possibility of being detected. Detection of battery-assisted thermal attacks is

not difficult, but contingent upon the edge colocation operator’s practice of environment

monitoring. Specifically, if the operator solely relies on power meters for monitoring tenants’

loads and temperature sensors for conditioning the thermal environment, thermal attacks

may possibly remain undetected until they cause damages. A service outage (due to one-

shot attack) or more frequent thermal emergencies (due to repeated attacks) can trigger a

thorough inspection, thus exposing the attacker. In order to proactively prevent such dam-

ages in advance, as discussed in Section 3.7, the operator can install additional monitoring

apparatus such as server outlet air flow meters, which are not widely used in many data

centers. Thus, although thermal attacks do not have a high degree of stealthiness, there is

a need of attention to potential thermal attacks.

Relationship to power attacks. Power attacks exploit oversubscribed power

capacity and can be launched without the need of battery [47, 68, 69, 71, 169]. On the

other hand, our proposed thermal attacks are launched with the help of built-in battery for

concealment of malicious cooling loads. Moreover, for repeated attacks, thermal attacks are

stateful due to battery charging/discharging that results in temporal correlation of battery

states, whereas power attacks are stateless and can be launched at any time without being

constrained by the available battery energy. Thus, our thermal attacks are complementary

to power attacks and present a potential threat by leveraging servers’ built-in battery for a

malicious purpose.
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3.3.5 Prototype Demonstration of Thermal Attacks

To see the impact of thermal attacks, we run experiments on a rack of 14 Dell

PowerEdge servers in a scaled environment with hot-cold aisles to mimic an edge colocation.

The cooling system can support up to a cooling load of 3kW. We inject an additional 1.5kW

load to overload the cooling system and measure the server inlet temperature. As shown

in Fig. 3.6(a), the inlet temperature rises to nearly 40◦ C within minutes. Our experiment,

albeit on a small scale, demonstrates the rapid increase of server inlet temperature due to

a overloaded cooling system. This is also corroborated by other studies that demonstrate

rapid temperature rises in data centers due to cooling malfunction [96]. We follow the

ASHRAE safety limit and do not further overload our system [134].
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Figure 3.6: Experiment in our server rack. (a) Server inlet temperature increases due to a
cooling capacity overload by 1.5kW. (b) Latency performance is compromised due to server
power capping for handling an emergency.

0.6 0.7 0.8 0.9 1.0
Normalized Power

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

R
es

po
ns

e 
Ti

m
e

800 users
1000 users

(a) Web Service

0.6 0.7 0.8 0.9 1.0
Normalized Power

0.0
0.5
1.0
1.5
2.0
2.5

N
or

m
al

iz
ed

R
es

po
ns

e 
Ti

m
e

300 req/s
400 req/s

(b) Web Search

Figure 3.7: Performance degradation due to power capping.
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We implement the ClouSuite Web Service benchmark [2] in a set of 4 servers with

a workload of 600 requests/s and show the impact of power capping on the 95-percentile

response time, which is the key performance metric [57]. An x-percentile response time

means that x% of the requests have a latency less than this response time. For illustration,

we throttle the CPU speed to cap the total server power to 60% of the peak power. We see

from Fig. 3.6(b) that during the emergency, the response time jumps nearly four times to

400ms. We also extend our experiments to Web Search implementation from CloudSuite

[2]. We show the 95-th percentile response time normalized to the service level agreement

(100ms) for two different numbers of users for Web Service in Fig. 3.7(a) and two different

request rates for Web Search in Fig. 3.7(b), respectively. The server power consumption

is normalized to the peak. We see that when the server power consumption decreases, the

response times for both applications increase for any given workload level. This reveals

the degree of performance degradation faced by tenants when they reduce their power

consumption while the workload remains unchanged.

3.4 Learning an Attack Policy

An one-shot attack is a special case of repeated attacks if the attacker sets a

sufficiently high threshold on benign tenant’s load (above which an attack is launched) and

greedily use up its large built-in battery energy. Thus, we now study a general repeated

attack policy, Foresighted, by formulating it as a discrete-time Markov decision process

(MDP) and using reinforcement learning. The repeated attack policy has a structural
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property: attack when both the benign tenants’ server load and the battery energy level are

sufficiently high.

3.4.1 MDP formulation

We divide the entire time horizon into time slots (e.g., 1 minute each) indexed by

k = 0, 1, 2, · · · ,∞, and present our MDP formulation below.

• System state: s = (b, u) ∈ S

• Action: a(s) ∈ A(s)

• State transition probabilities: P (s, a, s′)

• Reward function: R(s, a, s′)

• Discount factor: γ ∈ (0, 1)

The tuple (s, a, s′) means that, given an action a, the system state evolves from s

to s′. In our problem, the system state includes two sub-states: battery state (the amount

of remaining energy b in the batter units) and the attacker’s estimated benign tenants’

load state u (using a voltage side channel in Section 3.3.4 [68]). Note that we consider the

estimated load as part of the system state, because the true value of servers’ total load is

not available to the attacker. We consider three actions: (1) charging the battery units; (2)

launching a thermal attack by running the servers at peak power and discharging batteries;

and (3) standby, i.e., running dummy workloads without charging or discharging batteries.

The battery’s charging rate is fixed at the vendor recommended value, while the effective

discharging rate (i.e., power actually delivered to servers, excluding battery losses) is set to
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pb which, if combined with the attacker’s subscribed capacity ca, can support the attacker’s

total server power consumption pa for thermal attacks. The state transitions are governed

by benign tenants’ load that is exogenous to the attacker and the battery energy evolution

which is controlled by the attacker’s charging/discharging decision.

We define the attacker’s reward function as follows:

R(s, a, s′) = w · [T (s, a)− T0]+ − β(a), (3.2)

where T (s, a) is the resulting server inlet temperature, T0 is the server inlet temperature

conditioned by the operator without attacks, β(a) is a cost term, and the operator [·]+

means max(·, 0). Note that the attacker can easily sense the resulting inlet temperature

T (s, a), because today’s servers have built-in temperature sensors to monitor the server

inlet temperature for safety reasons (i.e., if the server inlet temperature is too high, the

server may shut down by itself [30]). Clearly, after discharging batteries, the attacker

needs to recharge them, which hence draws more energy from the operator’s PDU than

otherwise. To account for this, we add a normalized cost term: β(a) = 1 during an attack

and β(a) = 0 otherwise. The cost is normalized to 1, because the attacker discharges a fixed

amount of energy for each attack. The weight w ≥ 0 governs the tradeoff between server

inlet temperature increase and total battery usage (or attack time): the larger w, the more

importance of server inlet temperature increase and hence more attacks.

In a standard MDP, the goal is to find an optimal policy π∗ : S → A (i.e., deciding

an optimal action given each system state) which maximizes the total discounted reward∑∞
k=0 γ

kR(sk, ak, sk+1). The discount factor γ ∈ (0, 1) is imposed to ensure the convergence

of summation and implies in practice that future rewards are relatively less important than
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immediate rewards [145]. Nonetheless, the resulting server inlet temperature T (s, a) is an

involved function that also depends on external factors such as the edge colocation layout,

and the dynamics of benign tenants’ power usage is unknown to the attacker. Thus, we

need an online learning approach to identify the optimal policy π∗ on the fly.

3.4.2 Batch Q-learning

Reinforcement learning can effectively assist an agent with finding optimal actions

in an unknown environment. The cooling load state is essentially uncontrollable and exoge-

nous to the attacker. On the other hand, the battery state is fully controllable and, with

simplification, can be approximated as bk+1 = min(bk + ek, B̄), where ek is the charged en-

ergy during one time slot (a negative value means battery discharging for attacks) and B̄ is

the total battery capacity. Thus, we adopt batch Q-learning [168], by extending the widely-

used standard Q-learning [145,168]. Concretely, by introducing an intermediate state (also

called post state s̃k), we have two state transition processes: from sk to s̃k, we only update

the battery state whose transition, according to the attacker’s action, is fully determined;

then, from s̃k to sk+1, we will update the cooling demand state based on observations. More

specifically, for each time slot k, our proposed batch Q-learning works as follows:

ak ← arg max
a∈A(sk)

[Q(sk, a) + θV (s̃k(sk, a))] (3.3)

s̃k(sk, ak)← f(sk, ak) (3.4)

Q(sk, ak)← (1− δ)Q(sk, ak) + δR(sk, ak, sk+1) (3.5)

C(sk) = max
a

[Q(sk, a) + γV (s̃k)] (3.6)

V (s̃k) = (1− δ)V (s̃k) + δC(sk+1) (3.7)
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where δ ∈ (0, 1) is the learning rate, and only the battery state is updated based on the

attacker’s charging/discharging action when setting the post state s̃k(sk, a) in Eqn. 3.4.

Unlike standard Q-learning, three different value matrixes are used for batch learn-

ing: state-action value Q(sk, ak), post-state value V (s̃k), and normal state value

C(Sk). First, after observing the system state sk, the attacker makes an action a based on

Q(sk, a) and post-state value V (s̃k(sk, a)) according to Eqn. 3.3. Then, post state sk can be

obtained based on attacker’s action. Next, the reward Rk is obtained based on attacker’s

observed server inlet temperature and its reward function in Eqn. (3.2). Meanwhile, the

next state sk+1 is obtained by estimating the cooling state through a voltage side channel

as discussed in Section 3.3.4. Thus, the three value matrixes can be updated recursively

according to Eqns. (3.5), (3.6) and (3.7), respectively, making the learning process converge

more quickly.

3.5 Evaluation Methodology

In this section, we first present the default simulation settings and evaluation

metrics, and then validate our simulation model.

3.5.1 Settings

It is practically challenging, if possible at all, to evaluate different thermal attack

strategies over a timescale of years. Thus, we resort to a simulation-based approach based

on the well-established computational fluid dynamics (CFD) analysis [51, 69, 109, 142] to

simulate thermal dynamics. This is also the state-of-the-art methodology in data center-
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Table 3.1: List of parameters with the default values.

Parameter Value

Data Center Capacity 8 kW

Number of Tenants 4

Number of Servers 40

Number of Server Racks 2

Attacker’s Capacity (ca) 0.8 kW

Attacker’s Total Battery Capacity (B̄) 0.2 kWh

Attack Thermal Load from Battery 1 kW

Charging Rate of the Battery 0.2 kW

Temperature Threshold for Emergency (Tth) 32◦C

Q-learning Discount Factor (γ) 0.99

Q-learning Learning Rate (δ(t)) 1/t0.85

scale research [69, 142, 158, 165]. Prior to simulations, we will also validate our simulation

model with real experiments on our scaled-down prototype of 14 servers. We list the default

simulation parameters in Table 3.1.

Edge colocation infrastructure. We consider a containerized modular data

center design, which is particularly suitable for edge colocations due to its self-contained

design. We follow the specification of the Vertiv SmartMod container data center with two

server racks, each holding 20 servers [151]. We consider there are four tenants (including the

attacker) with a total subscribed power (i.e., the power capacity) of 8kW, where each server’s

maximum power consumption is 200W. The attacker has 4 servers with a total subscribed

capacity of 0.8 kW while the other three benign tenants each subscribe to 2.4kW. The

attacker’s servers are shown in red shades in Fig. 3.8(a). Note that, while we place the

attacker’s servers at the bottom of the rack, their location within the rack does not play

any significant role in the attack since the cooling load is determined by server power. The

data center employs heat containment for the hot exhaust air returning to the AC. The AC
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supplies cold air at 27◦C, with a cooling capacity of 8kW. Fig. 3.8(a) shows the layout used

in our experiment.

Thermal environment. The CFD analysis provides the most detailed thermal

dynamics of a data center (e.g., even Google uses CFD analysis to predict thermal dis-

tributions [51]). However, it is computationally exhaustive to run transient CFD analysis

for long experiments (e.g., a year) [142]. Therefore, following the literature [69, 142], we

model the data center’s heat flow using a heat distribution matrix, for which we only need

to obtain the matrix parameters using shorter CFD analysis. Specifically, to extract the

heat distribution matrix, we test the data center with a heat spike from each server and

measure the resulting temperature impact for 10 minutes. We repeat the process for all

servers to completely build the matrix. We use the 10-minute window to allow the heat

convection through the air and capture the gradual temperature build-up from sustained

server heat generation. We limit the CFD analysis of each heat spike to 10 minutes since

we find no measurable impact beyond this time horizon. The accuracy of CFD analysis and

the heat distribution model has been extensively verified with real systems [142, 159], and

will also be validated against our prototype in Section 3.5.2. Because of the well-insulated

environment, we do not incorporate the impact of outside temperature. Even with low

outside temperature, if overloaded, data center’s cooling system cannot remove all server

heat.

Attacker. The attacker has built-in batteries integrated with the servers’ power

supply units. While the capacity of each server subscribed from the operator is 200W, each

of the attacker’s servers can run at a peak power of 450W by discharging built-in batteries
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Figure 3.8: (a) Data center layout. 1O Server racks. 2O Heat containment. 3O Air condi-
tioner. 4O Supply air duct. (b) 24-hour snapshot of the power trace.

to supply the additional 250W. Thus, the attacker can inject up to 1kW cooling load for

repeated attacks. When recharging, the built-in batteries have a total charging rate of 0.2

kW. We use battery specification of [4] with a suitable size for placing inside a server and

set the attacker’s default total battery capacity to 0.2kWh with 0.05kWh (i.e., 200W for

15 minutes) per server. If the attacker aims at an one-shot attack, each of its four servers

has a peak power of 950W, resulting in a total attack load of 3KW. This can be achieved

by using multiple power hungry GPUs (e.g., Nvidia RTX 3080, each with a full power of

320W [107]) in each server. The current battery energy density [4] is enough to support the

additional load for an one-shot attack, as each attack only lasts a few minutes.

Thermal emergency and system outage. A thermal emergency is considered

to arise when the server inlet temperature exceeds 32◦C for at least 2 minutes. We consider

32◦C as the threshold temperature, because it is the maximum allowed temperature based on

the ASHRAE guideline for data centers with enterprise-grade servers and storage [134]. To

handle a thermal emergency, each server (including attacker’s servers) is required to cap its

power below 120W (60% of capacity) to prevent more serious impacts. As a precaution, load
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capping lasts for 5 minutes for each thermal emergency. If the inlet temperature continues

rising to reach 45◦C, automatic shutdown occurs (e.g., the shared PDU can power off),

creating a system outage and service interruptions [134].

Power trace. For the three benign tenants, we use workload traces from Facebook

and Baidu [158,165], and generate a year-long synthetic power trace from request-level log

using server power models validated in real systems [43, 44, 108]. The total power usage

is scaled to have a 75% average utilization in our 8kW data center. We show a 24-hour

snapshot of the power trace in Fig 3.8(b). To demonstrate its robustness across different

load patterns, we also run an alternate power trace and show in Fig 3.15 in Section 3.6.6.

Application performance. For delay-sensitive workloads, high-percentile la-

tency is the most critical metric [57]. Here, we consider 95-percentile response time as the

performance metric and model the tenants’ performance based on experiments on our small

cluster (Fig 3.7 in Appendix 3.3.5).

Q-learning parameters. Following the literature [41], we set the default discount

factor γ = 0.99 and a dynamic learning rate that is updated everyday using δ(t) = 1/t0.85,

where t is the number of days elapsed. We use one minute as each time slot, and show the

other parameters when presenting the results in Section 3.6. To initialize the table of Q

values, we use random power traces offline based on an initial attack policy. Our results

show that during the online learning stage, the action policy can converge quickly (often

within 1-4 weeks).

Evaluation metrics. For the adverse thermal environment, we consider the

average server inlet temperature increase, the probability distribution of the temperature,
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Figure 3.9: Experimental validation of our simulation model.

and the total emergency hours due to repeated thermal attacks. For benign tenants, we

examine their performance degradation. We also study the average response time during

the emergency periods normalized to that of without any emergencies.

3.5.2 Experimental Validation of Our Simulation Model

While simulation-based evaluation is widely used in data center research [48, 69,

157], we validate our simulation model using real experiments on our prototype consisting of

14 servers and a 600VA CyberPower UPS battery. We look into the two important aspects

of our simulation model — thermal dynamics and battery charging/discharging model.

Temperature dynamics. We place our server rack in a sealed environment

with a comparable dimension to an edge data center. The rack is cooled by the building’s

central cooling system and has air vents on the top. We create an additional 1.5kW thermal

overload beyond the limit that can be handled by the top air vents. We obtain the heat

distribution model based on CFD analysis. In Fig. 3.9(a), we show the monitored server inlet

temperature change along with our temperature change simulated using our model. We see
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that both the heat distribution model and temperature sensor readings exhibit very similar

dynamics. This is expected since we adopt well-established CFD-based simulation [69,142].

Battery energy dynamics. In our Q-learning and the simulation, we need to

validate that the linear battery model bk+1 = min(bk + ek, B̄), where bk is the battery

level at time k, is accurate to model the battery energy changes with respect to the charg-

ing/discharging decisions. For this, we connect two Dell desktops with a total load of

∼175W to our UPS battery. We connect a power meter between the UPS and the AC

power outlet to measure the total power consumption of the battery and the desktops. We

connect another power meter between the UPS and the desktops to record the total power

of the two desktops. Subtracting the later from the former gives the total power consump-

tion of the UPS. To demonstrate the battery dynamics, we first run the UPS on the battery

discharging mode by unplugging it from the AC outlet. After 10 minutes, we reconnect the

UPS to the AC outlet, which puts it in the battery charging mode. We show the battery en-

ergy levels in Fig. 3.9(b). In our experiment, the charging rate is lower than the discharging

rate, because of the additional UPS loss to power the running desktops. This experiment

conforms to our choice of a linear battery energy model. While even more complicated and

detailed battery models (e.g., impact of ambient temperature) may be adopted [60], it does

not offer much additional insight for our purpose and our observations still hold.

To sum up, our simulation methodology (i.e., using CFD-based analysis for model-

ing temperature dynamics and using a linear charging/discharing model for battery energy

dynamics) matches well with the real-world observations and hence can be used to evaluate

thermal attacks with a good confidence.
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3.6 Evaluation Results

We first show an example of one-shot attack. Then, for repeated attacks, we

compare Foresighted with another attack policy, Myopic, that launches thermal attacks in

a greedy manner whenever there is enough energy in the battery and the benign tenants’

aggregate load is sufficiently high. Besides Myopic and Foresighted, we also consider Random

as a benchmark, where the attacker randomly launches thermal attacks whenever it has

enough battery energy without considering benign tenants’ power loads.

3.6.1 Thermal Attack Demonstration

One-shot attack

We consider a 30-minute snapshot and demonstrate an one-shot attack in Fig. 3.10

where the attacker injects 3kW of intense attack load at around the 18th minute, causing

the server inlet temperature to rise quickly. At around the 21st minute, a thermal emer-

gency is triggered and power capping is applied, limiting the total metered load below 5KW.

Nonetheless, the attack load remains to keep the server inlet temperature high enough be-

yond the safety threshold of 45◦C [134], successfully resulting in a system outage. This is

also consistent with other orthogonal studies that demonstrate a very quick rise of inlet

temperature in case of a cooling system malfunction [96]. If the one-shot attack is coordi-

nated across multiple colocations, a service interruption may occur and create significant

damages.
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Figure 3.10: Demonstration of a one-shot attack.

Repeated attacks

We illustrate how repeated attacks create emergencies under different attack poli-

cies in Fig. 3.11 by considering a four-hour snapshot when the total power/cooling load is

relatively higher. In our illustration, Random launches attacks for 8% of the times, Myopic

sets the attack threshold at 7.4kW, while Foresighted uses a weight w = 14. These settings

are chosen to yield similar attack times (i.e., 8% of the time) across different attack policies.

The total power drawn from the operator’s PDU is shown as “Metered Power”, while the

actual server power consumption also includes the contribution from the attacker’s batter-

ies (“Attack Load”) and hence is larger than the metered power during the attacks. On

the other hand, the actual server power is smaller than the metered power during battery

charging. The discrepancy between the metered power and actual server power highlights

the attacker’s “behind-the-meter” cooling loads that are not monitored by the operator.

We see in Fig. 3.11 that thermal attacks using Random, which remains oblivious of

the high cooling load, fail to create any thermal emergencies. Note that, Random’s attacks

look sparser in Fig. 3.11 since they are more spread over time while Myopic and Foresighted’s

attacks are concentrated in the high power/cooling load periods. Myopic exploits the voltage

side channel [68] to detect benign tenants’ high power loads and launches thermal attacks

between hours 0 and 1. Since the power/cooling load remains at a high level, attacks con-
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Figure 3.11: 4-hour snapshot of thermal attacks.

tinue until the operator announces a thermal emergency. At that point, attacks are stopped

and the power consumption is capped to oblige to the operator’s emergency handling pro-

tocol. The power returns to a normal level after being capped for 5 minutes to handle the

thermal emergency.

While it also launches thermal attacks between hours 0 and 1, Foresighted does

not launch a series of unsuccessful short-duration attacks like Myopic. Instead, it waits

to regain the battery energy and launches a sustained thermal attack to trigger a second

thermal emergency near hour 2. This shows the benefits of reinforcement learning which

considers the impact of its actions on the future for maximizing the long-term benefits.

Note that, even if Myopic only launches long-duration attacks with fully charged batteries,
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Figure 3.12: Attack policy learnt by Foresighted.

unlike Foresighted, these attacks will more likely occur at the wrong times due to the lack

of learning and accounting for battery level dynamics.

3.6.2 Attack Policy Learnt by Foresighted

We show in Fig. 3.12 the structural property of our repeated attack policy learnt

by Foresighted: attack when both the benign tenants’ server load and the battery energy level

are sufficiently high. For illustration, we consider two different values of w (the larger w,

the more weight on creating temperature increases and hence more attacks). For w = 9

in Fig. 3.12(a), attacks are launched only when the estimated power load (including the

attacker’s subscribed power capacity) is above 7.5kW and more than 60% of battery energy

is left. For w = 14, we see that attacks are launched even for 40% remaining battery energy

when the power is above 7.5kW. Meanwhile, Foresighted launches attacks at a lower power

of 7kW when it has more than 80% battery energy.

3.6.3 Cost Estimate
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Figure 3.13: (a) Overload time required to exceed the temperature limit of 32◦C. (b) Average
temperature increase vs. attack time. (c) Total attack-induced emergency vs. attack time.
(d) Tenants’ performance during emergencies.

Benign tenants’ cost. With an one-shot attack, benign tenants can suffer from

service outages, which may be costly or even indirectly cause fatal damages (e.g., decreased

safety for assisted driving [10]); with repeated attacks, tenants can potentially experience

more frequent performance degradation. The monetary impact of thermal attacks is gener-

ally difficult to estimate. To offer an approximate point of reference, we provide a ballpark

estimate for repeated attacks following prior studies [46, 67, 111] that calculate the cost

impact resulting from the increased 95-percentile latency. Under our setting, Foresighted

causes a total performance cost of roughly $60+K/year to benign tenants in our 8kW edge

colocation (roughly 80% of benign tenants’ total rental costs plus amortized server costs),

noting that the actual cost highly depends on the affected tenants’ applications and can

include additional indirect cost such as business reputation.
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Attacker’s cost. The attacker’s cost involves the power capacity subscription

cost, electricity cost, and server purchase cost: 150$/kW/month power subscription cost,

0.1$/kWh energy cost, and $4500 for each server [67]. It is on a par with the cost for other

related attacks [48,68,69,71,169], and can be affordable for institutional or state-sponsored

attackers.

3.6.4 Impact of Thermal Attacks

For repeated attacks, we first show in Fig. 3.13(a) how long it takes for the server

inlet temperature to exceed the 32◦C threshold. Naturally, the temperature exceeds the

threshold sooner with increased cooling overload. Similarly, when the data center is already

running hotter (i.e., higher supply temperature Ts), its temperature reaches the limit faster.

We see that it takes less than four minutes to increase the data center temperature from

27◦C to 32◦C with one kW of additional cooling load, demonstrating the potential danger

of thermal attacks.

We then vary the total attack energy injected into the edge colocation (i.e., total

attack time), while keeping the attack load from the battery fixed at 1kW. We vary the

attack probability for Random from 0% to 15%, the load threshold (including the attacker’s

own power subscription) for launching an attack under Myopic from 6.5kW to 8.0kW, and

the weight parameter for Foresighted from w = 0 to w = 30. Figs. 3.13(b) and 3.13(c)

show the average server inlet temperature increase (∆T ) beyond 27◦C and the amount of

attack-induced emergencies (measured in % of the total time) given different average daily
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Figure 3.14: Sensitivity of Foresighted. (a) Battery capacity. (b) Load estimation due
to random noise in side channel. (c) Attack load. (d) Average utilization of data center
capacity. (e) Required battery capacity for extra cooling capacity.

attack times, respectively. In Fig. 3.13(c), we exclude Random because it fails to create any

thermal emergency.

Temperature increase. We see in Fig. 3.13(b) that with more attacks, the tem-

perature increase caused by Random also rises. For Myopic and Foresighted, the temperature

increase rises very fast initially, when attacks are conservatively launched. However, as more

attacks are launched, the temperature increase for Myopic peaks at around attack time of

1.1 hours per day and then starts to decrease. This is because Myopic launches premature

attacks which deplete the battery energy and hence miss future attack opportunities. We

see a similar impact on the annual thermal emergency time in Fig. 3.13(c) where Myopic’s

performance starts to deteriorate around attack time of 1.5 hours per day.
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Foresighted takes the future into account and hence retains both the average tem-

perature increase and annual emergency time increase with more thermal attacks. However,

beyond an attack time of 1.5 hours per day, Foresighted cannot create further higher tem-

perature increases nor more thermal emergencies. This is mainly because the total available

attack opportunities are limited (i.e., benign tenants do not always have high power loads)

and recharging batteries takes time. Nonetheless, given any amount of thermal attacks,

Foresighted can create higher server inlet temperature increases and more thermal emergen-

cies than Myopic.

Attack-induced thermal emergencies. In Fig. 3.13(c), we see that the attack-

induced thermal emergencies for both Myopic and Foresighted are close to zero at low attack

time. This is because the operator declares a thermal emergency when the data center

temperature exceeds 32◦C and stays there for at least two minutes. Hence, at low attack

time which also corresponds to low average temperature increases in Fig. 3.13(b), there are

almost no thermal emergencies due to attacks.

Performance impacts. We normalize the tenants’ 95-percentile response time

to that of without any emergencies. We take the average of the normalized response time

during the emergency periods and show the result in Fig. 3.13(d). We see that Myopic has a

slightly higher average performance impact than Foresighted. This is because Myopic mainly

captures the most prominent attack opportunities while Foresighted intelligently picks up

even the subtle opportunities with relatively lower impact, resulting in a lower average

performance impact. Nonetheless, since Foresighted seizes both the prominent and subtle
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attack opportunities, it results in more frequent thermal emergencies, thus resulting in a

greater cost impact.

3.6.5 Sensitivity Study

We now study how the battery capacity, side channel accuracy, attack load, and

data center average utilization affect the resulting thermal attacks. We also study the im-

pact of additional cooling capacity on attacker’s battery capacity requirement. We exclude

Random from our study here since it fails to create any thermal emergency.

Battery capacity. Considering repeated attacks, we vary the battery capacity

from 0.1 kWh to 0.4 kWh, and show the annual duration of thermal emergencies due to the

attacks in Fig. 3.14(a). Naturally, a larger battery provides greater flexibility in launching

thermal attacks. Hence, we see the annual thermal emergency time increases with battery

capacity. We also see the difference between Myopic and Foresighted decreases with a larger

battery as the battery is more likely to be available whenever Myopic needs it, like in

Foresighted.

Load estimation accuracy. To test robustness against voltage side channel

errors, we add varying degrees of random errors to the estimated loads of benign tenants

and show our results in Fig. 3.14(b). As expected, the thermal emergency time decreases

for both Myopic and Foresighted when there is more noise in the side channel. Nonetheless,

Foresighted can still create a significant amount of thermal emergency, even using a noisy

voltage side channel.

Attack load. The attack load determines how much additional cooling load is

injected during each attack. We show the results in Fig. 3.14(c) where we keep the attacker’s
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subscribed capacity at 0.8kW and scale the thermal attack load from 0.5kW to 2kW. We

see that the annual emergency time greatly increase with a higher attack load and that

Foresighted consistently outperforms Myopic by a great margin.

Capacity utilization. We study the impact of average data center utilization

on the thermal attack by scaling the power trace of all the servers while maintaining the

peak power at 8kW. Fig. 3.14(d) shows that the total thermal emergency time increases

with increased capacity utilization. This is intuitive since an increased utilization means

the data center more frequently operates close to its capacity, thus leading to more thermal

attack opportunities.

Extra cooling capacity. We study the impact of the operator’s extra cooling

capacity on Foresighted’s battery requirement to maintain similar impact (i.e., 2.3% emer-

gency). In Fig. 3.14(e), we see that the extra cooling capacity mandates higher battery

capacity. Specifically, the increase in battery capacity for 10% extra cooling capacity is

about ∼0.3kWh, which can still be feasible given today’s battery energy density. Note,

however, that upgrading an existing data center cooling system to add extra cooling capac-

ity is non-trivial due to constraints such as space limitation, data center uptime, etc. Thus,

as discussed in Section 3.7, other defenses are more effective and cost-efficient, especially

for an existing data center that has limited cooling capacity.

3.6.6 Results with an Alternate Power Trace

We conduct our year long evaluation with an alternate power trace to demonstrate

that Foresighted is effective regardless of the benign tenants’ load patterns. We use the

Google cluster trace from [97] as the alternate total power trace. We show a 24-hour
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Figure 3.15: Results with an alternate power trace. (a) A 24-hour snapshot of the alternate
power trace. (b) Tenants’ performance during emergencies.

snapshot of the alternate power trace in Fig. 3.15(a). Like in the default setting, we scale

the power trace to have a 75% average utilization in our 8kW edge colocation. We keep the

same default settings as in Section 3.5 for Myopic and Foresighted. Fig. 3.15(b) shows that,

with the alternate power trace, benign tenants suffer from similar performance degradation

as in our earlier results. While we omit detailed discussion for space limitation, these

findings are consistent with our earlier results.

3.7 Defense Mechanism

Tenants generally expect reliable power and cooling supplies (subject to contrac-

tual terms) from the colocation operator which manages non-IT systems. Thus, we offer

possible defenses from the operator’s perspective. We first discuss defenses that aim at

preventing potential thermal attacks, followed by defenses that detect thermal attacks.

3.7.1 Prevention

The following defense strategies are proactive measures to inhibit potential thermal

attacks.
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Infrastructure resilience. A straightforward defense against thermal attacks is

to reinforce an edge colocation’s physical infrastructure for handling thermal overloads. For

this, the operator can deploy a cooling system with additional redundancies. This approach,

however, can increase the capital cost [49, 131] and be particularly challenging for existing

systems. Alternatively, the operator can lower its server inlet temperature set point (to 20◦C

instead of the recommended 27◦C) to have more margins for triggering thermal emergencies.

The drawback is the increased cooling energy cost [130, 142]. Thus, while oversubscribing

data center cooling capacity [100,130,131] and increasing temperature set point [142] have

been suggested for cost efficiency, they should be carefully exercised, balancing the benefit

versus risk to potential thermal attacks.

Rigorous move-in inspection. The colocation operator can employ a more

rigorous background check and move-in inspection process for all tenants’ servers to detect

and remove integrated batteries. Note that without built-in batteries, the attacker cannot

have additional power sources to support thermal attacks behind the meter or overload

the shared cooling capacity, unless the data center cooling capacity is oversubscribed as

suggested by recent studies [100, 130, 131]. Besides, the operator can also enforce on-site

power load tests to ensure that the server power is consistent with the tenant’s data center

capacity subscription. The operator should be particularly careful about the servers’ peak

power.

Degrading physical side channels. The colocation operator may increase the

attacker’s uncertainties about timing attacks by degrading/eliminating the physical side

channel. For example, it can add jamming noise signals into the colocation power networks
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and/or use power line noise filters. Additionally, the operator may also prohibit unusual sen-

sors (e.g., microphones) on tenants’ servers in order to prevent an attacker from exploiting

other possible but unknown side channels.

3.7.2 Detection

Detection strategies can be implemented to catch an attacker that may circumvent

prevention approaches.

Detecting behind-the-meter cooling loads. The same power reading can

result in different cooling loads and server inlet/outlet temperature, depending on whether

malicious thermal attacks are launched or not. Thus, by using anomaly detection algorithms

(e.g., cross-checking readings by temperature sensors and power meters), the operator can

detect an irregular thermal environment possibly due to thermal attacks.

Identifying attacks from impacts. One-shot attacks can be easily identified

through a thorough inspection if a system outage occurs. By contrast, repeated-attacks that

inject milder loads to trigger more frequent thermal emergencies can require more efforts.

Since precise temperature management is difficult with open airflow cooling, there can

be occasional thermal emergencies in colocations even without thermal attacks; colocation

operators often offer a long-term temperature SLA (e.g., the inlet temperature is conditioned

below 27◦C for 99% or more of the time) [38,65]. This may potentially allow an attacker to

hide behind the statistics for a longer time. Thus, advanced algorithms can be implemented

to monitor SLA metrics to early detect the presence of thermal attacks.

Improved data center monitoring. While the aforementioned approaches can

detect thermal attacks, pin-pointing the attacker’s servers — the source of the injected
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cooling load — is still needed to hold the attacker accountable. Thus, to monitor the

servers’ actual cooling loads, the operator can measure each server’s outlet temperature as

well as the hot air flows. Alternatively, thermal cameras may be employed to identify the

servers that are running extra hot. Likewise, microphone arrays can be used along with the

thermal camera to pinpoint servers with fans spinning at a high speed (needed by servers

that have higher cooling loads) [71]. While these monitoring apparatuses are not used in

all data centers, they are readily available and can be easily installed by data centers to

identify malicious cooling loads.

To sum up, there exist readily-available defenses, such as move-in inspection to

disallow built-in batteries, advanced anomaly detection, and installation of monitoring ap-

paratuses to locate the attacker. Given the potential threat of thermal attacks that are

currently neglected, the edge colocation operator can implement one or more of the sug-

gested defenses to safeguard its thermal environment for tenants.

3.8 Related Works

Power and thermal management. The common practice of aggressive ca-

pacity oversubscription can create occasional capacity overloads when the demand peaks

[6, 67, 81, 157, 158, 165]. To safely ride through power emergencies, numerous graceful

power capping techniques have been proposed, such as throttling CPU frequencies [165],

migrating/deferring workloads [155, 158], and discharging batteries to boost power sup-

ply [6, 81, 157]. Likewise, managing server loads to handle thermal emergencies are equally

crucial [77,100,114]. These studies, however, are not applicable for colocations whose oper-
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ators have no control over tenants’ servers. Moreover, they do not consider an adversarial

setting. More recent works [66,67] propose market approaches to coordinate tenants’ power

demand in colocations, but they assume that tenants are all benign without any malicious

intentions.

Data center security and thermal fault attacks. Securing data centers

against cyber attacks, such as network DDoS [173] and data/privacy breach [175], has

been extensively investigated. Prior studies have also considered malicious thermal load

attacks on a single device [132]. More recently, data center power and cooling system secu-

rity has been emerging as a crucial concern [47,48,68,69,71,87,169]. However, these works

focus on overloading the power infrastructure (i.e., power attack) of large data centers with

multi-level redundancy or creating hot-spots (i.e., thermal attack) in Amazon-type cloud

with frequent VM shuffling. In contrast, we focus on novel battery-assisted thermal attacks

in a shared edge colocation. Moreover, our repeated battery-assisted thermal attacks are

stateful whereas prior attacks are stateless as the current attack does not depend on any

past/future attacks.

Battery management and others. The prior studies have exploited batteries

for various purposes, such as better energy capacity [60], concealing a household’s electricity

usage information from the utility for better privacy [171], smoothing data center power

demand [6, 81, 157], among many others. To our knowledge, however, our study is the first

to leverage batteries for a malicious purpose — one-shot or repeated thermal attacks in

edge colocations — which highlights the need of attention to the potential threat.
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3.9 Conclusion

In this chapter, we discovered that the sharing of cooling systems may expose

edge colocations’ potential vulnerabilities to both one-shot and repeated thermal attacks

assisted with built-in batteries. For repeated attacks, we presented a foresighted attack

policy which, using reinforcement learning, learns on the fly a good timing for thermal

attacks. We also ran simulations to validate our attacks and showed that, for an 8kW edge

colocation, an attacker can cause performance degradation for affected tenants. Finally,

we suggested effective countermeasures against potential thermal attacks that are currently

neglected in many data centers.
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Chapter 4

Learning for Robust Combinatorial

Problems: Algorithms and

Applications in Computing

Systems

In this chapter, we explore the robust solutions for combinatorial optimization

problem leveraging machine learning-assisted methods. Specifically, we are focusing on

the dynamical resource allocation problem in edge computing. A novel machine learning-

assistant method —RobustPN, is proposed for the general robust optimization problem.

Then, simulations are performed on a toy example and the workload assignment problems

in vehicular edge computing, verifying the effectiveness and robustness of proposed method.
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4.1 Introduction

With the development of the internet of things (IoT), the last decades have wit-

nessed a huge growth of computations in edge users, such as mobile or vehicular appli-

cations [128]. To improve the service quality and user experience, the computation is

gradually moving toward computing edge — edge computing. Meanwhile, most modern

devices are installed with powerful local computing resources. Then, the surplus com-

puting resources on each edge device can be considered as “data center serves”. As a

complementary to traditional edge computing, some researchers contribute their efforts to

device-as-a-resource [36, 170]. For instance, vehicles with extra computation resources can

provide distributed computing to other edge devices — called vehicular edge computing

(VEC) system.

Due to the continuous-changing environment (e.g, device’s locations or resource

status), the computing resources and respective service quality typically exhibit significant

fluctuations, especially for VEC system [20]. Hence, an operator needs to dynamically

and efficiently allocate the computing resources and assign workloads to respect servers.

Normally, the resource allocation problems can be formulated as combinatorial optimization,

which is very challenging to solve due to its NP-hard nature.

Without any doubt, an optimal solution can be achieved with the ‘brute-force’

method. But it often required factorial time, which is intolerable for the instant resource

allocation settings. For faster solutions, most previous researches are focusing on greedy

algorithms, which can handle the combinatorial problem in polynomial time but with sub-

optimal solutions [59, 161]. Recently, machine learning-assistant approaches are proposed
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Figure 4.1: General architecture for “Predict, then optimize”.

to directly learn the optimization solution with data or prior knowledge, such as ‘neu-

ral reinforcement learning’ for TSP problem or ‘learning to optimize’ for wireless channel

assignment [14,88].

However, the optimization parameters of combinatorial problems are usually

estimated by some upstream models especially for the real-world system, such as edge

computing. For instance, the job success probability, in edge computing, is estimated from

the context information, including wireless network and computation conditions. The entire

system can be treated as a “Predict, then optimize” architecture [35], as shown in Figure 4.1.

Here, the estimation model can be either an empirical model or a DNN model pre-trained

using supervised learning. As for the learning to optimize methods we are focusing on, the

optimization model is also implemented with neural networks but trained with actor-critic

approaches. Since the prediction error of optimization parameters may have strong impacts

on respective actions and result in poor performance, we should consider a robust solution

that provides solutions with acceptable performance even under the worst-case estimation

results. In summary, the performance and its robustness should be considered when solving

the respect optimization problems.
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Our contributions. In this chapter, we propose a novel machine-learning assis-

tant approach —RobustPN, to solve the robust combinatorial optimization problem. Lever-

aging the actor-critic platform and learning to optimize technique, two sets of DNN models

are trained, which together can provide fast and robust solutions to CO problems. The key

novelty of RobustPN is the introduction of machine learning for robust CO problems, while

all previous works focus on CO problems without considering the robustness.

However, it is challenging to solve the robust CO problem directly using conven-

tional machine learning(ML) methods, such as supervised learning. Firstly, ML algorithms

usually require supervision labels, which are time-expensive to collect (calculate) for CO

problems and even harder for robust CO problems. For instance, exponential computation

time O(aN ) is required to solve a single CO problem with N -dimensional actions. Besides,

the ML algorithms usually require at least > 10k labeled samples for training. Secondly,

the robust CO problem can be formulated as a minimax problem (Eqn 4.2), which includ-

ing two optimization processes. The Conventional ‘learning to optimize’(L2O) method is

developed for a single optimization process (e.g, minimization or maximization). Hence,

L2O can not directly be applied to robust CO problems. Finally, the robust CO problem

is formulated with two optimization variables: action a and robust error δ. While error

δ is a continuous variable, a locates in a discrete space, which is another challenge when

developing our machine learning-assistant algorithms.

To solve the aforementioned challenges, we propose a machine learning framework

utilizing the policy gradient and L2O. This framework is motivated by the actor-critic

architecture in reinforcement learning (RL), where the actor provides actions to the critic
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and then gets respect feedback. Similarly, the RobustPN algorithm is comprised of two

blocks: a policy model as the actor and a worst-case block as the critic. The policy model

provides action probabilities given the respect problem parameters, while the robust relevant

feedback (e.g, utility) is retrieved from the critic block. To solve the discrete action space

issues, the reinforced policy gradient is utilized for policy model training, which doesn’t

require any labels. Note that there are some key differences between the proposed RobustPN

and actor-critic of RL. 1). the actor and critic models are trained alternatively in RL due to

the state correlation. However, the critic models can be pre-trained in RobustPN, because

the worst-case error only is independent of the policy model. 2). our critic model is trained

with L2O method which also doesn’t require any labels, further reducing the labeling efforts.

Hence, the proposed RobustPN learning framework is suitable to solve robust CO problems.

To verify the performance of RobustPN, we perform experiments on two CO prob-

lems: a synthesis toy problem with a small action space and a task offloading problem in

vehicular edge computing systems. We evaluate the respect robust performances by com-

paring with other baseline algorithms and oracle solutions. Firstly, we validate that a robust

solution is required for CO problems. Then, our results show that a robust policy can be

obtained from well-trained DNN models (including policy and worst-case models), verifying

the effectiveness of the proposed RobustPN. Additionally, we also investigate the impacts

of the error budget on performance. The results demonstrate that the proposed RobustPN

sacrifices true performance for robustness. With a smaller error budget, RobustPN can

provide better performance on both true object values and robust values.
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The rest of this chapter is organized as follows. Firstly, Section 4.2 introduces

the general CO and Robust-CO problems. Then, the proposed RobustPN is described in

section 4.3. To validate its effectivess, we run experiments on two applications in sec-

tion 4.4 and section 4.5. The related works are presented in section 4.6. Finally, we make

a conclusion in section 4.7.

4.2 Problem Formulation

We first show the formulation for general combinatorial optimization(CO), and

then present the robust CO problem that we are focusing on.

4.2.1 Combinatorial Optimization

Combinatorial optimization (CO) problems widely exist in scientific and engineer-

ing applications, such as network resource allocation, scheduling, and planning. Typically,

the goal of CO is to find an optimal selection out of a finite set. Many integer programming

problems can also be viewed as CO. In general, a CO problem can be formulated as follows:

min
a∈A

f(x.a) (4.1)

where a is the decision variable, A is the eligible action space defined by the other con-

straints, f(·, ·) indicates the optimization object function with parameter x. Specifically,

the optimization target is to find actions that minimizing the object f under a parameter

x. Note that both x and a are presented as high-dimensional vectors in an CO problem.

Usually, problem (4.1) can be directly optimized by classic convex optimization

methods when the object f is continuous and differentiable on a. But, the CO problem is

99



hard to solve optimally in polynomial time because of discrete action space and the non-

convex object function. Therefore, most combinatorial problems (e.g, TSP) are solved by

greedy algorithms as an approximation, which can provide greedy solutions within poly-

nomial time [59, 161]. With the development of deep learning techniques, some machine

learning-assisted methods are proposed recently, which can provide a better solution than

heuristic methods with fast speed. A survey is provided in Section 4.6.

4.2.2 Robust Combinatorial Problem

For real-world applications, the optimization parameter x may not always be ac-

curate, resulting in performance degradation. Naturally, a robust policy is desired for the

combinatorial problem (4.1). For instance, a workload assignment policy is desired for lower

latency and better user experience in edge computing systems. A real-time workload de-

mand is required for the assignment policy, serving as the policy parameters. Since the

workload demand is usually estimated from historical user demand, the parameter uncer-

tainty is inevitable, resulting in the robustness concerns.

In this work, we consider a robust combinatorial problem that can be viewed as

an extension of problem (4.1). Specifically, we targeting at a robust policy that achieves

the best performance under the worst-case parameter x′, considering a fixed error budget

∆ of the true parameter x. Then, the robust combinatorial problem can be formulated as

a minimax problem:

min
a∈A

max
δ∈∆

f(x+ δ, a) (4.2)
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where x is the uncertain parameter, δ denotes the parameter error, and ∆ is respective error

space defined with error budget. For instance, an L2-norm error space with ε-bounded can

be represented as ∆ = {δ, |δ|2 ≤ ε}.

To achieve a robust policy, we need to solve the minimax problem (4.2), which is

much harder than the general combinatorial problem due to the combination of minimax

and discrete actions space. In the next section, we propose a machine learning-assisted

algorithm — Robust Policy Network (RobustPN) — to approximate the optimal robust

solution of Eqn (4.2) within polynomial time. Specifically, a set of deep neural networks

{µi} are trained with policy gradient, which accepts an inaccurate/estimated parameter

x and provides a probability distribution pi(a) for the respective action variable a. More

detailed algorithm designs are presented in section 4.3.

4.3 Methodologies

In this section, we present the machine learning-assisted method for solving the

CO and robust CO problem, including the architecture design and the respective learning

algorithms. First, the policy gradient method is introduced to solve the general CO prob-

lem. Then, a robust learning framework is presented on top of the policy gradient and

robust critic modules. In addition, some advanced techniques are utilized, including model

ensemble and learning to optimize.
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Figure 4.2: Policy gradient network architecture for combinatorial optimization problems.

4.3.1 Policy Gradient

The idea of policy gradient originates from reinforcement learning, targeting at

modeling and optimizing the policy directly [110]. As a simplified version of reinforcement

learning, policy gradient methods are also applicable for combinatorial problems when con-

sidering the objective function as the critic model. Here, we intend to model the policy with

a parameterized neural network πθ(a|x), where θ represents the model weight, which can

be learned using machine learning methods. The respect learning framework is illustrated

in Figure 4.2, including a policy model (implemented with neuron network), a sampling

module, and a utility model as the critic.

As shown in Figure 4.2, the policy model accepts the optimization parameters x

and directly provides a probability distribution p(a) over the action space A. A well-trained

policy model should assign high probabilities to actions that minimizing the utility. For CO

problems, the action space is significantly large (e.g, factorial O(mn)). For instance, 10-

dimensional x with 5 possible integer values will result in 510 ' 9.5e13 actions. Hence, it is

hard to build a traditional policy network, where each node in the output layer represents

a single action. Instead, we design the policy network with n output groups and each

group includes m nodes, as shown in Fig. 4.2. Here, we assume the combined action as
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a = [a1, a2, ...an]T , where ai ∈ {1, 2...m} indicates the values for ith action component.

For neuron network design, the softmax activation function is applied within each group of

output nodes, producing a set of probabilities pi. Using the chain rule, we can factorize the

final action probability as Eqn (4.3).

Pθ(a|x) =

n∏
i=1

pθ(ai|x) (4.3)

Conventionally, the neural networks are trained by supervised learning methods

with well-labeled training datasets. However, it is hard to obtain the solutions (true labels)

for (robust) CO problems. Hence, we turn to learn weight θ with the policy gradient

method, which doesn’t require any labels. Here, we use one popular method — Monte-Carlo

reinforced policy gradient — to update the policy parameter θ . The learning gradient can

be summarized as Eqn (4.4), where J(θ) is the loss function, V (x) represents the average

value for parameter x, and Pθ indicates the action probability. Specially, we compute the

probability distribution Pθ(a|x) through forward pass. Then, an action as is sampled and

fed into the critical module. With the returned value for as, the gradient information can

be calculated from back-propagation, using for model training.

∇θJ(θ) = Ex [−(f(x, a)− V (x))∇θPθ(a|x)] (4.4)

In Monte-Carlo reinforced policy gradient, action net benefits f(x, a)) − V (x) is

used for gradient calculation, instead of the absolute object f(x, a). This can reduce the

variance of gradient estimation and accelerate the training process [110]. Here, we calculate

V (x) as the average object of randomly sampled actions V (x) = 1/|S|
∑

as∈S [f(x, as)],
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Algorithm 2 Policy Gradient Baseline Algorithm.

Training dataset {xi ∈ DT }, training epochs T , batch size B, sampling size |S|.

Initialize: policy network parameters θ

For t = 1, 2...T

For i ∈ 1, 2, ...B

Sample the input parameter xi from DT .

Predict probability distribution Pθ(a|xi) according to Eqn. (4.3).

Randomly sample a prediction action a based on the probability Pθ(a|xi).

Calculate the action’s objective f(x, a).

Uniformly sampling |S| actions from A.

Compute the baseline value as V (x) = 1/|S|
∑

as∈S [f(x, as)].

Compute gradient gi = ∇θJ(θ) in Eqn (4.4).

Compute the batch gradient gθ = 1/B
∑B

i=1 gi.

Update parameters θ ← ADAM(θ, gθ).

Return θ.

where as is random action and |S| indicates the sampling size. The detailed learning process

for reinforced policy gradient is summarized in Algorithm 2. Note that, Algorithm 2 will

be considered as the baseline method(PN) in following parts.

4.3.2 Robust Policy Gradient

To solve the robust CO problem in Eqn 4.2, we proposed a Robust Policy Net-

work (RobustPN) algorithm, based on conventional policy gradient method and actor-critic
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Figure 4.3: RobustPN architecture to solve robust combinatorial optimization problems.

platform. The RobustPN is comprised of two parts: a policy model and a worst-case critic

module. The overall architecture for RobustPN is illustrated in Fig. 4.3. Here, the policy

model can be viewed as actors, while the worst-case module can be treated as the critic.

The detailed functionality for each module is presented as follows.

Policy Model. The policy module accepts the potentially erroneous optimization

parameter x and provides the respective probability p for action candidates. Additionally,

sampling modules are appended to the policy model, mapping the output probability p to

action a. Then, sampled action can be further feed into critic modular for utility evaluation.

To improve the model performance, a set of policy models can be trained independently and

simultaneously without any modification for the current platform. The training algorithm

for each policy model is summarized as Algorithm 3.

Worst-case Critic Module. The worst-case critic module targets generating

the worst-case rewards for the actor (policy model). It comprises two parts: a set of worst-

case deep neural networks (DNN) and a robust reward calculation module. The worst-case

DNN models provides worst-case error δ, given the the input parameter x and action a.

Mathematically, the worse-case DNN focuses on the inner constrained optimization of the
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Algorithm 3 Robust Policy Algorithm

Input: Training dataset (xi) ∈ DT , number of training epochs T , batch size B, sampling

size S, number of policy networks M = 1, number of worst-case networks N , input param-

eter uncertainty bound ε, and object function f(x, a).

Output: Policy network parameters θpi and worst-case network parameters θwj .

Initialize: policy network parameters θpi , ∀i = 1, 2...M

Generate greedy action ag = Pg(x) on training dataset DT .

For i = 1, 2...N

Initialize worst-case network parameters θwj ,∀i = 1, 2...N

Pre-train worst-case network on datasets DT with greedy action ag by minimizing loss

function in Eqn (4.6).

For t = 1, 2...T

Randomly sample batched optimization parameter x ∈ DT .

For i = 1, 2...M

Calculate the baseline value V (x) with Algorithm 4.

Predict the variable candidates distribution Pi = Pθi(a|x) from policy networks.

Randomly sample an prediction action ai based on the probability Pi.

For j = 1, 2...N

Predict worst-case error δji for current action xi using worst-case network with θwj .

Calculate the robust objective value gi = maxNj=1 f(x+ δji , ai).

Apply gradient descent with ∇θpi J = − [gi − V (x)]∇θpi Pθpi (ai|xi).

Return: policy network parameters θpi and worst-case network parameters θwj .
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robust CO problem in Eqn (4.2). We can formulate the target of worst-case DNNs into

problem 4.5. For simplicity, we assume a L2-norm constraint in the following discussions.

max
δ

f(x+ δ, a) (4.5)

s.t. |δ|2 ≤ ε

where ε is the L2-norm error budget. According to ‘L2O method’ and ‘Lagrange multiplier

method’, the worst-case DNN models can be directly trained by minimizing the respect loss

function in Eqn (4.6), which doesn’t requires supervised labels.

L(x, a, δ) = −f(x+ δ, a) + λ [|δ|2 − ε]+ (4.6)

where [·]+ = max(·, 0), and λ is a hyper-parameter of Lagrange multiplier indicating the

cost of constraint violation. Since the error δ only relies on (x, a), the worst-case networks

can be pre-trained separately. Note that, some state-of-the-art (SOTA) methods (e.g., scipy

optimization package [154]) can be also be applied when developing worst-case critic module.

Besides worst-case DNNs, a calculation model is implemented to provide feed-

back for policy models. The calculation model can provides the worst-case objective of

current action a, by comparing the objects of all worst-case errors δ1, ...δN . Specifically, the

worst-case object can be calculated as g = maxj f(x + δj , a). Besides, the baseline value

V (x) can be estimated with critic model, which is summarized as Algorithm 4.

To summarize, in the training phase, we first design the worst-case module and

pre-train the respective worst-case networks using the ‘learning to optimize’. Then, the

policy model (maybe ensembled) can be trained using the policy gradient and worse-case
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Algorithm 4 Baseline Estimation Algorithm

Input: Input parameter x, variable probability Pi, worst-case network parameter θwj

∀j ∈ 1, 2, ...N , sampling size S, object f(x, a).

Output: Estimated Baseline Value V (x).

For s = 1, 2...S

Sample action as according to Pi.

For j = 1, 2...N

Predict the worst-case error δjs from worst-case network j with paramter θwj .

Obtain worst-case object gs(x) = maxNj=0 f(x+ δjs, as)

Calculate the baseline value V (x) = 1/|S|
∑S

s=1 gs(x).

Return: Baseline Value V (x).

modules. In the inference phase, given an optimization parameter x, we first obtain the

action probability pa. Then, a set of candidate actions {a} can be sampled and selected

based on the critic model. The complete algorithm is shown in Algorithm 3.

4.4 Application I: A Toy Example

In this section, we show an illustrative example to validate the effectiveness of

RobustPN. Specifically, the combinatorial problem under consideration is formulated as

follows:

f(x, a) = −
3∑
i=1

[
√
xi ·

a2
i

1 +
∑

j 6=i aj

]
(4.7)
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where xi ∈ [0.5, 1] is the problem parameter, ai is the discrete optimization variable (denoted

as action), and A represents the constrained discrete action space ai ∈ {0, 0.25, 0.5, 0.75, 1}.

This function is abstracted from a simple discrete power control problem in interference

channels with three users: ai represents the transmit power level for user i, and
√
xiai is

the respect scaling factor.

In this toy experiment, we consider a set of problems formulated in Eqn. (4.7),

and target at solving the optimization problem with parameter x. Additionally, a robust

solution is required, considering the uncertainty of optimization parameters x. Here, we

consider a simple additive-noise uncertainty model for x — f(x+δ, a) with a L1-norm error

constraints ‖δ‖1 ≤ 0.2.

4.4.1 Setup

In this part, we introduce the baseline benchmarks and experiment setup details.

All the experiments are executed in Python and Tensorflow.

Baselines. We propose three baseline algorithms for comparison: Random, Greedy,

and PN. The Random benchmark selects random actions ai from eligible space A. The

Greedy method obtains a solution by solving the optimization problem in a greedy fashion

over ai. Initially, the actions variables are set to zero. Then, we solve the problem in

three steps. For each step, we optimize the ai from the remaining variables,by minimizing

Eqn. (4.7) with the previously optimized variables. The detailed implementation of Greedy

is summarized in Algorithm 5 . Additionally, we propose another baseline algorithm —

called PN. The PN learns a baseline policy via policy gradient as shown in Algorithm 3.

Here, a similar policy network is used for PN.
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Datasets. Considering the toy problem, we generate three datasets: a training

dataset with 10k samples for policy training, a validation dataset with 5k samples for hyper-

parameter tuning, and a test dataset with 5k samples for performance evaluation. Note that

all samples are uniformly generated with xi ∈ [0.5, 1] and each sample can be viewed as a

single minimax problem with different parameters.

Policy model and training. The policy network is implemented with neural

networks with a shared embedding layer, an LSTM layer with 100 hidden nodes, and a

fully-connected output layer with 5 nodes and the softmax activation function. The model

is trained by Adam optimizer [79] as shown in Algorithm 3. To avoid gradient explosion,

exponentially decreasing learning rate and gradient capping are employed. To be specific,

the learning rate is initialized as 1e−3 and decreases by a factor of 0.9 for every 20 epochs.

In the inference phase, 200 actions are sampled based on the output probability Pθ, and

an optimal action is reported by the action selection module according to Fig 4.3. For

simplicity, we only train one policy network (M = 1) for the toy example. Note that the

PN is also implemented with a similar network architecture but trained with a critic module

with the original objective (e.g., f(x, a)).

SOTA method and worst-case networks. The worst-case module involves a

SOTA algorithm and several ensemble neural network models, which accepts the parameter-

action pair (x, a) and outputs the worst-case error δ. Since f is continuous on δ ∈ R3, we

implement the SOTA with exhaustive search with a step size of 0.002. For high dimensional

δ, the SOTA algorithm can be implemented using the constrained-minimization algorithm

provided by the SciPy package [154].
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Algorithm 5 Greedy Algorithm

Inputs: parameters x, number of action variables L = 3, and object function f(x, a).

Outputs: greedy action a.

Initialization: actions a = [0, 0, 0], undetermined action set S = {a1, a2...aL}.

While S is not empty

Initialize best variable index b = null.

Initialize best action value avalue = null.

Initialize best current object fb =∞.

For ai ∈ S

For ai in {0, 0.25, 0.5, 0.75, 1}

If f(x, a) < fb

b = i, avalue = xi, and fb = f(x, a).

a[b] = avalue, S = S\ai.

Return: action a.

Additionally, we pre-train four worst-case networks, to serve as a complementary

of SOTA. Specifically, four networks are implemented with feed-forward neural networks

with two hidden layers and 100 hidden nodes. The input of the worst-case network involves

parameters x and actions a, while the output represents the worst-case error δ. Note that

four models are optimized on the training dataset with the same parameters x but actions

a from different baselines. The worst-case networks are trained by directly minimizing the

loss function in Eqn. (4.6), with Adam optimizer (lr = 1e−4) over 400 epochs [79]. The

respective hyper-parameter λ is selected on the validation dataset for each model. Note that

the exhaustive search SOTA can provide nearly-optimal worst noise but require extensive
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Figure 4.4: Distribution of objective values on test dataset for Random, Greedy and Optimal.
(a) without noise (δ = 0). (b) noise δ from SOTA.

computations. Here, we use worst-case network in the training phase and SOTA algorithm

in the result evaluation phase. Note that the resulting δ from the worst-case network will

be normalized to L1(δ) = 0.2 if and only if L1(δ) > 0.2.

4.4.2 Experiment Result

In this part, we first present the robust performance of baseline policies. For

comparison, the optimal solution is also provided by the exhaustive search. Then, we

discuss the performance of pre-trained worst-case networks. Finally, the object function

values are evaluated on the test dataset under machine learning-assisted methods.

Benchmark evaluation. The object values of different baselines are shown in

Figure 4.4(a). The result demonstrates that the Greedy algorithm presents a much better

solution than the Random policy. Then, for each policy action, we calculate the worst-case

noise δ under L1 norm ||δ||1 ≤ 0.2. The worst-case performance is presented in Fig. 4.4(b),

respectively. Although the optimal solution obtains smaller f , it is not robust to the SOTA
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Figure 4.5: Performance of the worst-case networks compared with the SOTA algorithm
on test dataset with 20 randomly selected actions. (a) Distribution of objective values.
(b) Distribution of objective value difference between the SOTA algorithm and ensemble
networks.
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Figure 4.6: Performance of the worst-case networks compared with the SOTA algorithm on
test dataset with greedy actions. (a) Distribution of objective values. (b) Distribution of
objective value difference.
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Figure 4.7: Performance of the worst-case networks compared with the SOTA algorithm on
test dataset with optimal actions. (a) Distribution of objective values. (b) Distribution
of objective value difference between the SOTA algorithm and ensemble networks.

noise, resulting in significant performance degradation. This clearly provides the motivation

to develop a policy that is robust to the SOTA noise.
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Worst-case network performance. Here, we evaluate the performance of

worst-case noise, produced by pre-trained neuron networks and SOTA, on the test dataset

with random actions. Specifically, we randomly sample 20 available actions for each param-

eter x. Then, the worst-case δ is generated from pre-trained ensemble worst-case networks

and SOTA algorithm separately. Finally, we visualize the histogram distribution of respec-

tive object values under different noise δ, as shown in Fig. 4.5(a). Additionally, the object

difference when using SOTA’s δ and ensemble networks’ δ is presented in Fig. 4.5(b). Be-

sides, the object distribution and the object difference between SOTA and ensemble networks

are presented in Fig. 4.6 for Greedy actions and Fig. 4.7 for Optimal actions.

Since the SOTA outputs the optimal δ for input (x, a), the difference is always a

positive value, indicating the performance loss of using the ensemble worst-case networks.

The closer this value is to zero, the better for the worst-case networks. The results show

that Optimal actions are very sensitive with SOTA noise, with the largest performance

degradation among all actions, which further validates the necessity of robust actions for

the combinatorial problem. Also, the results successfully verify that ensemble networks can

provide a near-optimal worse-case noise δ. Although they have similar performance, we

note that the ensemble networks can provide worst-case noise much faster than SOTA.

Performance of the learned robust policy. Now, we present the performance

of RobustPN, including for the objective with no noise (δ = 0) and with SOTA δ. Specifi-

cally, the objects f(x+δ, a) are calculated on the 5k test dataset and the average values are

presented in Table 4.1 for each method, respectively. For better comparison, we also present

the optimal results: Optimal method for best policy under δ = 0 and Robust Optimal method
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Methods f(x, a) for δ = 0 f(x, a) for SOTA δ

Random -0.5197 -0.4763
Greedy -0.8631 -0.8212
Optimal -0.9342 -0.8220
Robust Optimal -0.9158 -0.8469

PN -0.9143 -0.8308
RobustPN -0.8966 -0.8390

Table 4.1: Performance of learned policies: the average objective values under different δ.

for best robust policy under SOTA δ. Note that both Optimal and Robust Optimal are calcu-

lated by exhaustively searching over the entire eligible action space A. In Robust Optimal,

given input parameter x, we first calculate the SOTA robust object f(x+δ, a) for all eligible

actions a, where δ is the SOTA noise given (x, a). Then, the best action for Robust Optimal

is selected with the lowest robust object.

The results in Table 4.1 show that the proposed RobustPN provide better perfor-

mance than Random and Greedy when the true parameter information is provided (δ = 0).

The average objective value of RobustPN is slightly worse than PN and Optimal for δ = 0,

which is often observed for a robust solution. Meanwhile, RobustPN can learn a robust pol-

icy that obtains smaller (better) objective values than other baselines under SOTA noise.

Note that although Optimal can provide the best performance under δ = 0, RobustPN is the

best solution under the SOTA noise δ.

Additionally, we plot the histogram distribution of objective values in Figures 4.8(a)

and 4.9(a) for zero noise and SOTA noise, respectively. For better visualization, we fur-

ther plot the objective differences, as shown in Figures 4.8(b) and 4.9(b). Note that the

Optimal policy is utilized as the base values to calculate the differences in Figure 4.8(b),
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Figure 4.8: Distribution of objective values on test dataset for all methods(δ = 0).
(a)Objective values. (b)Objective value differences. The difference is calculated between
respective policy and the Optimal policy.

−1.00 −0.75 −0.50 −0.25 0.00
Object f(x, a) with SOTA noise

0

100

200

300

Sa
m

pl
e 

C
ou

nt Random
Greedy
Optimal
Robust Optimal
PN
Robust-PN

(a)

−1.00 −0.75 −0.50 −0.25 0.00
Object difference f(x, a) under SOTA δ

0
100
200
300
400
500

Sa
m

pl
e 

C
ou

nt Random
Greedy
Optimal
PN
Robust-PN

(b)

Figure 4.9: Distribution of objective values on test dataset for all methods(SOTA noise).
(a)Objective values. (b)Objective value differences. The difference is calculated between
respective policy and the Robust Optimal policy.

while the Robust Optimal policy is utilized to calculate the differences with SOTA noise

in Figure 4.9(b). For the objective differences, the closer to zero, the better. Then, Fig-

ure 4.10 illustrates the cumulative distribution function (CDF) for all policies with/without

noise. Figure 4.10(a) shows that learned policies (PN and RobustPN) achieve better per-

formance than other baselines without noise. Then, Figure 4.10(b) shows that RobustPN

performs better than PN and other baselines with SOTA noise. Hence, the histograms and

CDF plots further demonstrate that RobustPN can provide near-optimal performance under

SOTA noise and at the same time maintain good performance under δ = 0.
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Figure 4.10: CDF plots for objective values on test dataset for all methods. (a) without
noise (δ = 0). (b) with noise δ from the SOTA algorithm.

In summary, we successfully apply the proposed RobustPN to a toy example for

resource allocation problem shown in Eqn. (4.7). The corresponding results demonstrate

that the RobustPN is an effective and alternative approach for the minimax problem with

discrete actions. By using machine learning-assisted methods, the proposed RobustPN can

provide fast and robust solutions for general combinatorial problems. In next section, we will

apply the proposed RobustPN to the replicated task offloading problem in edge computing.

4.5 Application II: Vehicular Computing Resource Alloca-

tion

Besides the toy example, the proposed RobustPN method is applied to the repli-

cated task offloading problem in a vehicular edge computing (VEC) system. In this section,

we firstly introduce the respect optimization problem existing in the current VEC system.

Then, RobustPN is utilized for a robust solution. The robustness is discussed with two error

budgets. Finally, the respective results are presented and discussed, further validating the

effectiveness of the proposed RobustPN.
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Figure 4.11: VEC system diagram and the offloading illustration.

4.5.1 Replicated Task Offloading in VEC

With the development of the internet of things (IoT), many modern mobile devices

(e.g., smart vehicles, smartphones, etc.) are equipped with powerful computing resources,

such as multi-core CPUs. Therefore, vehicular clouds are emerging as a promising edge

computing architecture, as complementary to conventional edge computing. Vehicular cloud

treats vehicles as data centers, providing computing services using extra resources [36].

Specifically, we consider a VEC system with a road-side-unit (RSU) and N vehic-

ular clouds. The RSU is installed at a fixed location, which gathers computing tasks from

edge devices and then offloads them to nearby vehicular clouds via wireless communication

networks. Usually, the total service delay d is comprised of two parts: the data transmission

delay dt and service computing delay dc in the respective vehicular cloud. By default, each

task arrives with a deadline time (Lt) and the task fails when the service delay excesses Lt.

Due to the unstable environment (e.g., fast-changing distance), the success rate

of each offloading is hard to estimate. To achieve a higher success rate, each arriving task
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is replicated and offloaded to multiple vehicular clouds [20, 170]. Figure 4.11 illustrates

a typical diagram for a VEC system with replicated offloading. Here, we are focusing on

designing a robust policy for the RSU offloading process, considering the overall success rate.

We define the success probability of each replication as xi when offloading to vehicular cloud

vi. Then, the overall task success rate can be calculated via the At-Least-One rule as shown

in Eqn (4.8), where ai represents the offloading action.

P (x,a) = 1−
N∏
i=1

(1− xiai) (4.8)

Besides the success rate, we need to consider the cost of each replication. Here,

we denote ηi as the unit cost for replication i. To simplify, we assume that the cost is

the same for each vehicular cloud. The expected reward given the selected clouds can be

formulated as Eqn (4.9). The optimal offloading policy can be obtained by solving the

respect optimization: maxa∈A U(µ,a), where A is the eligible action space.

U(x,a) =

[
1−

N∏
i=1

(1− xiai)

]
−

N∑
i=1

ηiai (4.9)

where xi ∀i ∈ {1, 2...N} is the problem parameter (success rate for vehicle i) and ai repre-

sents the respect binary offloading decision.

The optimization object (4.9) is a non convex function. And the expected total

rewards is not a simple addition on each individual reward (xi−η). Instead, the first term of

object is a sub-modular function [84]. Additionally, the problem(4.9) is even harder because

of the discrete action space A. Actually, it belongs to combinatorial optimization problems,

which are NP-hard and cannot directly solved by conventional convex optimization method.
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In Eqn (4.9), the success rate xi for each replication is usually predicted by a

estimation model based on other environment conditions. We denote these factors as context

information ci, which includes the distance l to vehicular cloud’s, the CPU speed cpu of

cloud server, and task’s deadline time t. The entire system can be treated as a “Predict,

then optimize”. According to [35], the prediction errors may have huge impacts on the

final performance. Similarly, we will consider a robust optimization (mini-max problem) in

Eqn (4.10), where ∆ is the error budget of the prediction model. Here, we consider a L2-

norm budget, which can be represented as ∆(xtrue) = {x, ∀|x− xtrue|2 ≤ ε}. Respectively,

we evaluate and discuss the performance using proposed RobustPN and other baselines for

large and small error budget.

argmax
a∈A

min
δ∈∆(x)

U(x + δ,a) (4.10)

4.5.2 Setup and Error Budgets

Under the “Predict, then optimize” platform, the error budget depends on the

upstream prediction model. In a real-world application, the selection of prediction models

is determined by the trade-off between interpretability and accuracy. For example, an

empirical model is usually explainable but with a high error, whereas the elusive DNN

model can provide low error prediction. In this part, we simulate the context dataset for

replicated task offloading problem and discussed the error budget of two prediction models:

linear regression and residual model implemented with DNN.
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Figure 4.12: Success rate simulation result for different deadline time L.

Latency simulation model. The replicated task vi successes when the compu-

tation is finished within the deadline time L: d = dt + dc ≤ L. Here, the transmission time

dt can be calculated based on the wireless model in Eqn (4.11) [20].

dt =
Sdata

W · log2

(
1 + P ·(d)−α

σ2+It

) (4.11)

where Sdata is the offloading data size, P is the transmission power, α is the channel gain

factor with respect to distance, σ2 is the random noise and It indicates the interference

noise. Then, the cpu relevant computation time is simulated and obtained based on the

M/M/1 queue model [112] using the dataset [124]. Our computation latency model can be

simulated as dc = a
b−cpu +noise ' 0.227

2.15−cpu + 0.007 ·N (0, 1). As for the transmission model,

we set the parameter as followings: Sdata = 3Mb, W = 10M ,P = 10dBm,σ2 = −172dBm,

It ∈ [−10,−30]dBm and α = 1.8 in our simulation. Besides, the distance measurement

error of vehicles is set as 3% (10m) according to the recent GPS manual [1].

Dataset. Utilizing the above latency model, we can generate the context dataset

with the resulting success rate. The success rate of each offloading is as the average over

1000 simulation rounds. The respect simulation results are illustrated in Figure 4.12 for
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Figure 4.13: Success rate estimation models.

different context information. In total, we generate a training dataset with 15k instances,

a validation dataset with 4k instances, and a test dataset with 6k instances. Since N = 20

is considered in offloading problem, each instance includes the information for 20 vehicles,

indicating the context and respective success rate.

Estimation Models. We propose two estimation models, which predict the suc-

cess rate x based on the context: x = Mp(d, cpu, t). The empirical model in Figure 4.13(a),

is implemented with linear regression x̂ = wdd+wcpucpu+wLL+ bias, which is easy to un-

derstand. Besides, we also provide a residual model, including the pre-trained linear model

and a parallel residual block. The residual block is implemented with a neural network, to

learn the residual error. The detailed architecture of the residual model is illustrated in

Figure 4.13(b).

In the training phase, both empirical and residual model is trained with the same

training dataset. The empirical model is trained by ‘LinearRegression’ module in scikit-

learn package. Then, the residual model is implemented and trained using ‘keras’ and

‘tensorflow’ packages. Specifically, the residual block includes two hidden layers with 20
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Figure 4.14: Success rate estimation error and its L2-norm for linear and residual model.

neurons and ‘relu’ activation function. The residual block is trained by minimizing the

‘mean squared error’ loss function using the Adam optimizer (learning rate lr = 1e− 4).

Prediction error and discussion. The predicted success rate of the linear model

is denoted as x̂l, while x̂r represents the result of the residual model. Then, two errors

are investigated: the individual error x̂i − xi and the l2-norm distance of 20 predictions

(
∑

i |x̂i − x|2) for each instance. The estimation errors on the test dataset are summarized

in Figure 4.14 for individual error and l2-norm distance, respectively. The results validate

that the residual model indeed reduces the estimation error. Therefore, we will consider the

robust offloading problem with both a large error budget and a small error budget. Here,

we consider the 99% percentile as the error budget for robustness, which is 0.71 for the

empirical model and 0.27 for the residual model.

4.5.3 Results with A Large Error Budget

Firstly, we investigate the robustness of replicated task offloading with a large

prediction error budget ∆ = {|δ|2 ≤ 0.71}, when an empirical linear model is used for

success rate prediction.
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Setup. We generate three datasets from the linear prediction model: a 15k train

dataset, a 5k validation dataset, and a 5k test dataset. One data sample includes 20 items,

which represents the information for N = 20 eligible offloading vehicular clouds, including

the context information ci, true success rate xi, and predicted success rate x̂i. Similar to the

toy example, three baseline algorithms are used for comparison: Random Greedy and PN.

The detailed implementation is presented in section xx. Besides, we proposed two oracle

benchmarks using the brute-force method, which is time and computationally expensive

(exponential time O(2N )). The Weak Oracle provides actions based on predicted parameter

x̂, while the Oracle use the true parameter x.

Evaluation metrics. Considering the robustness, we define three evaluation

metrics. The estimated utility is calculated with the predicted parameter x̂, denoted as

U(x̂, â). Then, the true utility is U(x, â), where x is the true parameter value. Finally, the

worst-case utility is represented as minδ U(x̂+δ, â), which can be solved using our worst-case

module or the python optimization package.

Robustness demo. To verify the robustness concern in replicated task offload-

ing, we perform a demo simulation for Myopic and Weak Oracle offloading policies on the

test dataset. The respect histogram plots of evaluation metrics are shown in Figure 4.15.

The results demonstrate that the true utility is lower than the estimation, because of the

prediction errors. Then, the performance seriously degrades under the worst-case x, which

further motivates the design of the robustness offloading policy.

Worst-case models. Additionally, we pre-train four worst-case models, to solve

the inner worst-case part in Eqn (4.10). Specifically, the worst-case model provides a map-
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Figure 4.15: Robustness demo for Greedy and Weak Oracle policies.

ping from parameters action pair x, a to the worst-case error δ. According to Eqn (4.9),

utility is only impacts by δi with ai = 1. Hence, we design the worst-case model using

the feed-forward neural networks shown in Figure xx, including two hidden layers with 400

neurons and one customized production layer. The worst-case model is directly trained with

the L2O method by minimizing the loss in Eqn 4.10. Note that four models are trained

on the same training dataset but different λ. Besides, we validate our worst-case models

using the solver in scipy.optimize package [154]. The worst-case results are presented in

Figure 4.17 for Oracle policy. Figure 4.17(a) shows the utility with worst-case parameter x,

and Figure 4.17(b) is the utility difference between ensemble method and solver method.

The near-zero differences demonstrate that our ensemble worst-case model can approximate

the solver. Since the solver is much slower (∼70X) than the worst-case models, the ensemble

worst-case networks are used for the model training and the performance evaluation in the

following parts.

Policy Model. The robust optimization model (RobustPN) can be directly

trained with the policy gradient method on the actor-critic architecture shown in Figure xx.
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Figure 4.17: Worst-case networks performance on test dataset with Oracle policy.

Here, the policy model is implemented with neural networks with a shared embedding layer,

an LSTM layer with 100 hidden nodes, and a fully connected output layer with 20 neurons.

The ‘sigmoid’ activation function is used in the output layer. Similarly, the policy model is

trained by Adam optimizer (lr = 1e−4) [79] using the Algorithm 3. When using the policy

model, 1000 actions are randomly sampled on the output probability Pθ, and an optimal

action is reported by the action selection module according to Fig 4.3. Note that the PN is

also implemented with the same architecture.

Performance evaluation. We first present the performance of RobustPN for all

the evaluation metrics, comparing with other benchmarks. The average performances on

test dataset are summarized in Table 4.2. Here, we are focusing on the true utility (3rd

column) and worst-case utility (4th column). The results show that the proposed RobustPN
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Method Estimated x True x Worst-case x

Random -0.0314 -0.0716 -0.3237
Greedy 0.4554 0.3704 -0.2325

PN 0.5494 0.4719 -0.1347
RobustPN 0.3319 0.3054 0.0467

Weak Oracle 0.5568 0.4798 -0.1113
Oracle 0.5319 0.5347 -0.1765

Table 4.2: Performance of different algorithms under a large error budget.
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Figure 4.18: Histogram visualization of utilities under a large error budget. (a) True
utilities. (b) The worst-case utilities.

provides the best performance among all benchmarks (including the oracle methods) under

the worst-case condition, demonstrating the robustness of RobustPN. Meanwhile, the true

utility of RobustPN degrades comparing to PN. This is because RobustPN is focusing on

worst-case robustness under a large error budget. As a side-product, the PN can provide

near-optimal actions compared with Weak Oracle, validating that L2O can be used to solve

combinatorial optimization problems.

Besides the average value, we visualize the respect distribution in Figure 4.18(a)

for true utilities and 4.18(b) for worst-case utilities. For better visualization, Figure 4.19

illustrates the cumulative distribution function (CDF) for all methods. These results show

that the PN methods can provide near-optimal results considering the true utility, but a
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Figure 4.19: CDF plots of utilities under a large error budget. (a) True utilities. (b) The
worst-case utilities.

Method Estimated x True x Worst-case x

Random -0.067 -0.0716 -0.1597
Greedy 0.4236 0.4167 0.2383

PN 0.5321 0.5216 0.3442
RobustPN 0.5078 0.5008 0.3727

Weak Oracle 0.5393 0.5290 0.3594
Oracle 0.5336 0.5347 0.3501

Table 4.3: Performance of different algorithms under a small error budget.

performance gap exists between PN and Oracle because of the large error budget. Hence,

we will evaluate the performance with a small error budget in the next section. Further,

the RobustPN can provide better robust performance than oracle algorithms.

In summary, the proposed RobustPN is applied to replicated task offloading prob-

lems, considering the robustness. The results validate that RobustPN is an effective method

to solve robust combinatorial problems.

4.5.4 Results with A Small Error Budget

As shown in Table 4.2, the true utility degrades a lot for proposed RobustPN

methods due to the large error budget. Now, we turn to investigate the performance under
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Figure 4.20: Histogram visualization of utilities under a small error budget. (a) True
utilities. (b) The utilities under the worst-case x.

a small prediction error budget ∆ = {|δ|2 ≤ 0.27}, according to the prediction result of the

residual model.

Setup. The baselines and oracle policies are calculated based on the predicted

x̂ from the residual model. A large error budget is utilized for the training of worst-case

models and the calculation of robust evaluation metrics. All the other settings, such as

datasets and model architectures, are the same as section 4.5.3.

Performance evaluation. The performance of RobustPN is evaluated under

small error budget, comparing with other algorithms. Table 4.3 summarizes the average

utility under different scenarios, including different polices and different x. Similarly, the

respect histogram plots are shown in Figure 4.20 and the cumulative distribution function

(CDF) is illustrated in Figure 4.21.

Comparing to the results in the last section, the proposed RobustPN can still

provide a more robust solution than other benchmarks including the oracle ones. But, the

performance under true success rate x is much closer to oracle algorithms, because of the
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Figure 4.21: CDF plots of utilities under a small error budget. (a) True utilities. (b) The
utilities under the worst-case x.

shrinkage of error budget ∆(x). This also demonstrates that our method with a smaller

error budget can guarantee both the real performance and the robust performance.

Currently, we explore the offloading problem with the same cost η. In a real-world

scenario, the η may be different across vehicular clouds. But, the cost η is usually a pre-

known parameter, which will not have a big impact on our simulation results and be left as

a research topic for future exploration.

4.6 Related Works

With advanced deep learning techniques, data-driven machine learning-assisted

methods (e.g., deep neural network) are directly applied to the decision-making and resource-

planning processes, such as combinatorial optimization and Markov decision process. In this

section, we summarize the recent related works on these machine learning-assisted methods

and their usage for various optimization problems.

Machine learning for combinatorial optimization. In general, combinatorial

optimization (CO) can be formulated as a minimize optimization problem with discrete

constraints (e.g, integer). Due to the huge search space, CO problem often requires a large
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amount of time to solve directly [16, 83]. For instance, the traveling salesman problem

(TSP) requires O(2nn2) time to be fully solved, using the best dynamic programming

algorithm. Hence, many heuristic algorithms are proposed to achieve near-optimal solutions

in polynomial time. With deep learning’s remarkable success in various industry areas,

machine learning-assisted methods are proposed to solve CO problems directly. Overall,

machine learning-assisted methods for CO problem falls into two main categories according

to the learning techniques: supervised learning and reinforcement learning [16].

The supervised learning methods concentrate on approximating some heuristic

policies by using DNN models, to alleviate the computation burden - called learning by

imitation. For instance, [117] introduces cross-entropy (CE) method for CO problem, where

the data is collected based on a specified policy. Also, [153] proposes Pointer Networks for

the TSP problem, and the pointer network is trained with labels collected from an optimal

or heuristic method. [76] designs a machine learning framework to approximate a well-

performing but time-expensive branch&bound method — called “strong branching” — for

mixed-integer problems. However, there are two obvious drawbacks to these supervised

learning methods. Firstly, a large amount of labels is required for DNN model training.

It is usually time-expensive to calculate the labels. Also, the DNN model’s performance

heavily depends on the labels (or the labeling algorithm). In general, the models learned by

supervised learning cannot discover better solutions than the original labeling policy [15].

For the reinforcement learning method, the policy model is instead trained with

the supervision rewards from the critic module/function [115]. Directly supervised by the

rewards, we may discover better policies than supervised methods using the conventional
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heuristic labels. For the TSP problem, a neural combinatorial network is proposed in [15]

by using reinforcement learning and sampling, which achieves close to optimal perfor-

mance. Besides, [32] introduces policy gradient to CO problem with attention mechanism.

In [82], the author proposes an attention model reinforced with greedy baselines for CO. Be-

sides, [11] applies reinforcement learning framework to Maximum Cut problem. [26] propose

a novel graph embedding and reinforcement learning architecture to tackle CO problems

over graphs, including Minimum Vertex Cover, Maximum Cut problems, etc. [152] use deep

reinforcement learning to solve CO problem on graphs for networking applications. Al-

though better policies can be trained, these works assume perfect input context information

without considering the policy robustness, which is unrealistic for real-world applications.

In contrast, we consider the combinatorial problem with imperfect parameters and target

a robust policy by using machine learning-assisted methods.

Learning to optimize (L2O). Recently, many data-driven methods are proposed

to train a parameterized model for general optimization problems — called L2O, where the

model parameters are learned from well-prepared data using machine learning methods.

Particularly, L2O targets solving similarly or repeated problems quickly via machine learn-

ing. [136] train a DNN model for wireless resource management problems via supervised

learning. The DNN model is trained by minimizing the mean square error, and the labels

are calculated from the WMMSE method [125]. [90] also proposes L2O for the resource

management, but the allocation model is directly trained using an unsupervised method

without labels. Since no labeled data is required, such unsupervised learning can be applied

to the problem, where the correct labels are hard to collect. Similarly, [135] introduce unsu-
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pervised deep learning method to wireless communication problems with quality-of-service

(QoS) different constraints. Note that the worst-case networks are trained in a similar

method in DeepPM, and an advanced ensemble model is explored for better performance.

Besides, some L2O works concentrate on learning an optimizer for continuous opti-

mizations. This idea is firstly proposed simultaneously in [8] and [89], where a reinforcement

learning framework is utilized to train DNN models as optimizers for unconstrained contin-

uous optimization. The optimizer model is implemented with a feed-forward neural network

in [89], while an RNN model is proposed in [8]. Then, [21] extend RNN L2O optimizer to

black-box function without using the derivative information. [164] introduces a modified

RNN architecture trained with ensemble losses, minimizing the per-parameter overhead for

optimizer training. In [19], the ensemble LSTM models and attention mechanisms are uti-

lized to train L2O optimizers, particularly for Bayesian swarm optimization. These L2O

works mainly focus on a continuous optimization problem, but our work targets the discrete

optimization problem, which usually is a harder one. Additionally, L2O has been introduced

to adversarial training problems, specifically for the noise generation process [72,166]. Here,

the noise generation process is similar to the worst-case critic module in DeepPM. But our

proposed method focuses on robust discrete optimization, which also includes the policy

learning for outer minimize process besides the worst-case noise generation.

Mini-max optimization. The robust resource allocation can be formulated as a

mini-max optimization problem, which is an NP-hard problem. To solve it, many optimiza-

tion algorithms are proposed including conventional methods and machine learning-assisted

methods. The conventional methods are usually developed based on the gradient descent
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method. [105] proposes a gradient descent and gradient ascent (GDA) method, by alterna-

tively optimize the min function and max function. Due to the convergence and oscillation,

more stable GDA algorithm are proposed, including K-Beam [56], optimistic-GDA [27,118],

and Follow-the-Ridge [160]. K-Beam provides stable performance by simultaneously track-

ing K candidate solutions. But more computations are required when K increases.

Due to either low performance or high computation cost, machine learning-assisted

methods are emerging as a new solution for mini-max problems. [9] proposes a “learning

to optimize” method to solve mini-max problem — called Twin-L2O. In [9], two DNN

models are trained with reinforcement learning, serving as optimizers for alternative gradient

descent and gradient ascent. Specifically, the author trains two LSTM models using a self-

defined reward function. And each LSTM model accepts the current variable location (x

or y) and provides the respective gradient information (∆x or ∆y).

Although our work also focuses on mini-max problems with machine learning-

assisted methods, several key differences exist compared to Twin-L2O. Firstly, we mainly

focus on mini-max for robust combinatorial problems, while Twin-L2O is designed for con-

tinuous mini-max problems. Note that combinatorial problems are harder than continuous

mini-max problems, because of the discrete constraints on optimization variables. Addi-

tionally, we propose a different learning method — ensemble policy gradients — to directly

solve the mini-max problem, while Twin-L2O focuses on optimizer training with rewards.

Finally, Twin-L2O focuses on optimizer training, which provides results with several itera-

tions. But our algorithm focus on policy networks, conditional on parameters of mini-max,

which can directly output the solutions to the mini-max problem.
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4.7 Conclusion

In this chapter, we investigate the robust combinatorial optimization problems

in computing systems. A learning-based algorithm — called RobustPN, is proposed to

achieve fast and robust solutions for combinatorial problems. The key novelty of RobustPN

is the introduction of machine learning for robust CO problems. By utilizing the actor-

critic framework and learning to optimize techniques, RobustPN can be trained directly by

minimizing the customized loss function, where no supervision labels are required. The

results on two applications further validate that a robust solution can be well trained by

the proposed learning framework.
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Chapter 5

Conclusions

To conclude this dissertation, we provide innovative machine learning-assisted so-

lutions for efficient resource management in edge computing systems. Previously, artificial

policies are deployed for resource allocation problems in computing systems. However, they

are not suitable to manage multiple resources simultaneously, considering the fast environ-

ment fluctuations in edge computing systems. Leveraging the powerful machine learning

techniques, more efficient and robust policies are obtained than previous methods. The

thesis can be summarized as two parts: part I provides the management of battery and

cooling resources using reinforcement learning, which is presented in Chapters 2 and 3; part

II is focusing on the general resource allocation problem and its robustness concerns, which

are investigated in Chapter 4.

The key challenge for battery and cooling resources management is the correlation

between resource state and policy actions. This is because these resources have memories.

Hence, we tackle the respect management problem from the perspective of MDP and rein-
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forcement learning. For better power efficiency and capacity utilization, the pre-installed

battery and cooling resources are utilized as a benefit to boosting the performance of the

edge data center in Chapter 2. A deep reinforcement learning method —DeepPM, is pro-

posed to estimate the data center thermal behavior in a model-free manner and utilized

it to manage the battery resources while keeping server inlet temperature within safe op-

erating limits. Then, the battery resource can be used in a malicious way, as a weapon

by injecting thermal attacks, which is investigated in Chapter 3. The results validate that

thermal attack is possible for edge co-location data centers, emphasizing the respect for

thermal security concerns and the urgent requirement of a dedicated thermal management

in edge data centers.

As for the combinatorial optimization problem in edge computing, the key chal-

lenges are rising from its NP-hard nature, the discrete action space, and the robustness

concerns. We propose a machine learning framework — RobustPN, solving the robust CO

problem efficiently. Here, the discrete action is handled by the policy gradient method with

an actor-critic platform. The robust combinatorial optimization is first formulated as a

minimax problem and then solved by training ensemble worst-case models with ‘learning to

optimize’. According to our experiment results on two applications, the proposed RobustPN

can generate a robust policy for combinatorial optimization efficiently.

Finally, we hope that this dissertation can motivate readers to explore more on

the following topic in the future:

• Currently, our proposed DeepPM is focusing on centralized battery management for

performance boosting, considering only one tenant. A possible future study is to

137



extend the DeepPM algorithm to the multi-tenant data center, where a distributed

resource management problem should be considered.

• We explore the thermal vulnerability in edge co-location data centers, which provides

a peek at the security problem of data center cooling systems. Then, how to manage

the cooling resources and identify the malicious tenant still require more investigation.

• Our thesis verifies that the machine learning methods guide to solve the general op-

timization problems. However, current methods don’t utilize the prior knowledge of

the previous study. Hence, knowledge-based learning for the robust combinatorial

problem is one promising topic for future exploration.

• Besides, our RobustPN is designed for general optimization problem without state

memories. Then, learning robust solutions for MDP problems would be another

promising but difficult topic for future exploration
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