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Abstract. According to a model of the turbulent boundary layer proposed by 
the authors, in .the absence of external turbulence the intermediate region between 
the viscous sublayer and the external flow consists of two sharply separated self
similar structures. The velocity distribution in these structures is described by. 
two different scaling laws. The mean velocity u in the region adjacent to the vis
cous sublayer is described by the previously obtained Reynolds-number-dependent 
scaling law <P = uju* = A7]o:, A= )J lnReA + ~' a= 21n1eA, 1] = u.yjv. (Here u. is 
the dynamic or friction velocity, y is the distance from the wall, v the kinematic 
viscosity of the fluid, and the Reynolds number ReA is well defined by the data) 
In the region adjacent to the external flow the scaling law is different: <P = B77/3. 
The power fJ for zero-pressure-gradient boundary layers was found by processing 
various experimental data and is close (with some scatter) to 0.2. 

We show here that for non-zero-pressure-gradient boundary layers, the power fJ 
is larger than 0.2 in the case of adverse pressure gradient and less than 0.2 for 

favourable pressure gradient Similarity analysis suggests that both the coefficient 

B and the power (J depend on ReA and on a new dimensionless parameter P 
proportional to the pressure gradient Recent experimental data of Perry, Marusic 

and Jones (1)-(4) were analyzed and the results are in agreement with the model 

we propose. 
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1 Introduction 

The model of the turbulent boundary layer at large Reynolds number proposed by Clauser 
(5) and Coles (6) is widely accepted and used .. This model is based on the assumpation that 
the transition from the wall region described by the Karman-Prandtl (7)-(8) universal loga
rithmic law to the external flow is smooth. On the basis of our analysis of experimental data 
published over the last 30 years we arrived at a different model (see (9)-(11)). According to 
our model, if the intensity of turbulence in the external flow is low, then the intermediate 
region between the viscous sublayer and the external flow consists of two self-similar struc
tures separated by a sharp boundary. In particular, when the the bilogarithmic coordinates 
lg¢, lg77 are used, where¢= uju*, 17 = u*yjv, the mean velocity profile in the intermedi
ate region has a characteristic form of a broken line ('chevron') (Figure 1). In part I of the 
intermediate region the scaling law for the mean velocity distribution takes the form: 

u 
[1] 

In part II one finds a different scaling law: 

[2] 

The constants A, a, B, j3 can be determined with sufficient accuracy by processing the ex
perimental data. According to our model the expressions for A and a are identical to those 
in smooth pipes once the Reynolds number is defined correctly: 

3 
a= . 

2lnReA 
[3] 

Here ReA is an effective Reynolds number for turbulent boundary layer, different from 
the usual Reynolds number Re8 based on momentum thickness which is arbitrarily though 
widely used in turbulent boundary layer studies. The test of the validity of our model is 
the closeness of two values of ln ReA, ln Re1 and ln Re2 , obtained by solving separately the 
two equations [3] with parameters A and a obtained from experimental data. Differences 
of less than 2-3% were obtained in all cases (see (10),(11) for previous data processing), and 
therefore we proposed to take ln ReA as half the sum ~(In Re1 + ln Re2 ). 

In region II the power j3 in the scaling law [2] for the zero-pressure-gradient boundary 
layer was found to be close to 0.2 (with some scatter). In cases of non-zero-pressure-gradient 
boundary layers the values of j3 were found to be significantly different from 0.2. In the 
present Note we perform the similarity analysis for non-zero-pressure-gradient turbulent 
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boundary layer. We find that both the coefficient B and the power {3 depend on ReA and 
on a new similarity parameter P = VOxP j pu;. We compare the results of this analysis with 
high quality experimental data by Marusic and Perry(1), Marusic (2}, Jones, Marusic and 
Perry (3), Jones (4), and come to the instructive conclusions. 

2 The model and the similarity analysis 

According to our model the turbulent boundary layer at large Reynolds numbers consists of 
two separate layers I and II. The structure of the vorticity fields in the two layers is different 
although both are self-similar . In layer I the vortical structure is the one common to all 
developed wall-bounded shear flows and the mean flow velocity is described by relations [1] 
and [3]. In these relations ReA = U Ajv, where A is a characteristic length (12) close to 1.6 
of the height of layer I. 

The influence of viscosity is transmitted to the main body of the flow via streaks sep
arating from the viscous sublayer. 1 The remaining part of the intermediate region of the 
boundary layer is occupied by layer II where the relation [2] holds. It is well known (see 
in particular instructive photographs in Van Dyke's Album ofFluid Motions (13)) that the 
upper boundary of the boundary layer is covered with statistical regularity by large scale 
'humps' and that the upper layer is influenced by the external flow via the form drag of these 
humps as well as by the shear stress. We have shown in earlier work that the mean velocity 
profile is affected by the intermittency of the turbulence, and as the humps affect intermit
tency it is natural to see two different scaling regions. On the basis of these considerations 
we have to determine a set of parameters that determine the coefficient B and the power 
{3 in [2]. One of these par~meters must be the effective Reynolds number ReA which deter
mines the flow structure in the layer I and is affected in its turn by the viscous sublayer and 
by layer II. The following parameters should also influence the flow in the upper layer: the 
pressure gradient8xP ( x is the longitudinal coordinate reckoned along the plate; its origin 
is immaterial), the dynamic (friction) velocity u*, and the fluid's kinematic viscosity v and 
density p. The dimensions of governing parameters are as follows 

M 
[8xP] = £2T2 ' 

M 
[p] = £3 . (4] 

The first three have independent dimensions so that only one dimensionless governing pa-

1 We note that this mechanism for the molecular viscosity affecting the main body of the flow was proposed 
by L. Prandtl in his discussion of Th. von Karman's lecture (8). It is rather astonishing that this idea was 
never repeated in Prandtl's subsequent publications. 
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rameter can be formed: 
p = v8xP 

pu~ 

Thus the parameters B and {3 should depend on two the parameters ReA and P: 

B = B(ReA, P) , 

3 Comparison with experimental data 

[5] 

[6] 

The data for non-zero-pressure-gradient flows are substantially less numerous than data 
for zero-pressure-gradient flows, and do not allow us yet to construct surfaces B(ReA, P), 
{J(ReA, P). However the high quality data obtained by Marusic and Perry [(1), recently 
brought to completion via the internet] and Jones, Marusic and Perry [(2), also completed 
on the internet] allowed us to come to some instructive conclusions. The experiments of 
Marusic and Perry (1) were performed for two external flow velocities U: 10m/sand 30 
mfs. The experiments of Jones, Marusic and Perry (3) were performed for three external flow 
velocities U: 5 mjs, 7.5 m/s, and 10 mfs. The results of the processing of the experimental 
data are presented in Table 1. Here x and Reo are given by the authors of the experiments, 
and L). = 2jln Re1 - ln Re21/(lnRe1 + ln Re2). 
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Table 1 

x, m Reo A {3 B lnRe1 lnRe2 lnReA ~ 
I.Marusic data 

U = 10 m/s 
1.20 2,206 0.143 8.53 0.203 6.18 10.44 10.51 10.48 0.7 
1.80 3,153 0.150 8.30 0.227 5.45 10.05 10.03 10.04 0.2 
2.24 4,155 0.156 8.15 0.269 4.34 9.79 9.88 9.84 0.9 
2.64 5,395 0.171 7.54 0.345 2.87 8.73 8.77 8.75 0.5 
2.88 6,358 0.167 7.63 0.408 2.00 8.89 8.98 8.93 1.1 
3.08 7,257 0.169 7.57 0.450 1.64 8.78 8.88 8.83 1.2 

U = 30 m/s 
1.20 6,430 0.140 8.45 0.190 6.08 10.30 10.72 10.51 3.9 
1.80 8,588 0.145 8.41 0.207 5.63 10.24 10.32 10.28 0.8 
1.24 10,997 0.145 8.44 0.247 4.31 10.29 10.32 10.31 0.4 
2.64 14,208 0.147 8.39 0.306 2.91 10.20 10.20 10.20 0.1 
2.88 16,584 0.148 8.38 0.346 2.23 . 10.19 10.17 10.18 0.2 
3.08 19,133 0.145 8.45 0.388 1.71 10.31 10.35 10.33 0.4 

M.B. Jones data 
U = 10 m/s 

0.18 . 855 0.144 8.39 0.20 6.36 10.21 10.45 10.33 2.4 
0.40 1,122 0.144 8.37 0.176 7.11 10.17 10.40 10.29 2.2 
0.60 1,314 0.146 8.28 0.168 7.41 10.01 10.25 10.13 2.4 
0.80 1,466 0.148 .8.19 0.166 7.47 9.86 10.11 9.98 2.5 
1.00 1,616 0.144 8.38 0.160 7.68 10.19 10.44 10.31 2.5 
1.20 1,745 0.145 8.35 0.156 7.84 10.13 10.38 10.25 2.4 
1.40 1,888 0.142 8.44 0.153 7.99 10.29 10.55 10.42 2.5 
1.60 2,039 0.142 8.45 0.150 8.10 10.28 10.53 10.41 2.4 
1.80 2,150 0.143 8.41 0.148 8.18 10.23 10.50 10.36 2.6 
2.00 2,299 0.141 8.49 0.144 8.35 10.37 10.62 10.50 2.4 
2.20 2,411 0.144 8.37 10.17 10.43 10.30 2.5 
2.40 2,489 0.139 8.57 10.52 10.78 10.65 2.4 
2.60 2,574 0.145 8.32 10.08 10.36 10.22 2.7 
2.80 2,683 0.142 8.47 10.34 10.60 10.47 2.5 
2.92 2,728 0.145 8.31 10.06 10.33 10.19 2.7 
3.04 2,819 0.149 8.15 9.79 10.06 9.92 2.8 
3.16 2,832 0.147 8.24 9.94 10.20 10.07 2.6 
3.28 2,946 0.149 8.14 9.77 10.05 9.91 2.8 
3.40 2,987 0.142 8.46 10.32 10.60 10.46 2.7 
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x, m Reo a A {3 B lnRe1 lnRe2 lnReA Ll 
3.48 3,026 0.145 8.33 10.11 10.38 10.24 2.7 
3.54 3,032 0.146 8.29 10.03 10.30 10.16 2.7 
3.58 3,100 0.146 8.27 9 . .99 10.28 10.13 2.9 
3.62 3,029 0.147 8.20 9.88 10.20 10.04 3.2 

For our subsequent analysis we will use the seriescorresponding to U = 30 m/s of (2) 
and U = 10 m/s of ( 4) for the following reasons: in spite of a considerable variation in the 
usual parameter Reo, the effective Reynolds number ReA obtained by the the procedure we 
introduced remains nearly constant and close, for U = 30 m/s (2), to a constant ln ReA = 

10.3, and for U = 10 m/s (4) to a constant lnReA = 10.2. The mean velocity distribution 
in bilogarithmic coordinates for both series is presented in Figure 2. Thus, we are able to 
obtain, with some approximation, cross-sections of the surfaces B(ReA, P), {3(ReA, P). The 
results corresponding to lnReA = 10.3 (adverse pressure gradient) are presented in Figures 
3(a) and 3(b); results corresponding to ln ReA = 10.2 (favourable pressure gradient) are 
presented in Figures 3(c) and 3(d). Note that for large values of the favourable pressure 
gradient we were unable to reveal the second self-similar region. The situation is reminiscent 
of the disappearance of the second self-similar region in flows with an elevated level of free
stream turbulence. We found such a situation previously (10) when we processed the results 
of the remarkable experimental work of P.E. Hancock and P. Bradshaw (14). 

In the papers (1)-(4) the results concerning pressure were presented through a coefficient 

p- Poo 
Cp = ~pU2 

where Poo is a constant reference pressure. Therefore we calculated the parameter P using 
the relation 8xP = ~pU28xCp where the density p cancelled out; the values of all the other 
parameters are available in (2),(4). The values of the parameter P for U = 30 m/s (2) and 
for U = 10 m/s (4) are presented in Table 2: 
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Table 2 

" / I.Marusic 
Reo 6,430 8,588 10,997 14,208 16,584 19,133 

p * 103 0 1.75 2.86 4.2 5.79 7.04 
lnReA 10.5 10.3 10.3 10.2 10.2 10.3 

M.B.Jones 
Reo 855 1,122 1,314 1,466 1,616 . 1,745 

-P * 103 1.8 2.36 2.69 2.78 2.76 2.8 
lnReA 10.3 10.3 10.1 10.0 10.3 10.2 

Eliminating the parameter P from relations [6], we obtain: 

B = B(ReA, {3) . [7] 

This relation is presented in Figure 4 in the fo~m of a dependence of B on ~·. We see that 
this dependence is close to linear: 

B = 
1

;
5

- 2.80 [8] 

for the data by Marusic ( 2) (adverse pressure gradient) and 

1 
B = :3 + 1.43 [9] 

for the data by Jones ( 4) (favourable pressure gradient) 
For layer I there is also a linear relation between the coefficients A and .l, but contrary . a 

to B = B ( ~) this relation is universal. The coefficients in the relation B = B ( ~) should in 
principle depend on ReA. 

4 Conclusion 

A new similarity parameter is obtained for the flow in the upper self-similar region of a 
developed non-zero-pressure-gradient turbulent boundary layer. Comparison with experi
mental data for nearly constant effective Reynolds numbers revealed simple (close to linear) 
Reynolds number-dependent relations between the parameters of the scaling law for the 
mean velocity distributions in the upper self-similar layer. 

The investigation performed in the present Note and the papers (9)-(12) demonstrated 
that the Reynolds number-dependent scaling law for the velocity distribution across the shear 
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flow obtained initially for flows in pipes is valid (with the same values of the constants) for 
the developed turbulent boundary layer flows. This allows us to expect that this scaling law 
reflects a universal property of all developed shear flows. The Reynolds number entering the 
law cannot be selected arbitrarily, for example, as Re8 : it is uniquely determined by the 
flow itself. The simple procedure for the determination of the appropriate Reynolds number, 
which we proposed earlier, has been further validated in the present Note. 

We expect that the same approach will work for more complicated flows: mixing layers, 
jets and wall jets. However, the delicate task of investigating such flows requires high quality 
experimental data which are still lacking. 

The concepts of incomplete similarity and vanishing viscosity asymptotics which we used 
for shear flows lead to plausible results for the local strucxture of developed turbulent flows. 
Here, however, high quality experimental data are very rare, specially for the higher order 
structure functions, where we have conjectured that divergences may occur. 

Acknowledgement. The authors express their gratitude to Professor Ivan Marusic for 
clarification of experimental results. The work was supported by the Applied Mathematics 
subprogram of the U.S. Department of Energy under contract DE-AC03-76-SF00098. 
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Figure Captions 

Figure 1. Schematic representation of the mean velocity profile in developed turbulent 
boundary layer in bilogarithmic coordinates lg ~ , lg ~ . u. v 

Figure 2. (a) The mean velocity profiles in bilogarithmic coordinates in the series of exper-
iments of Marusic for U = 30 mj s; adverse pressure gradient . 

(1) Re0 = 19, 133 (2) Reo= 16,584, 
(3) Re0 = 14,208 (4) Re0 = 10,997, 
(5) Reo = 8, 588 (6) Reo = 6, 430. 

The 'chevron' structure of the profiles is clearly seen and regions I and II are clearly 
distinguishable. 

(b) The mean velocity profiles in bilogarithmic coordinates in the series of experiments 
of Jones for U = 10 mjs; favourable pressure gradient . 

(1) Re0 = 855 (2) Reo= 1, 122, 
(3) Re0 = 1,314 (4) Reo= 1,616, 
(5) Reo= 2, 728 (6) Reo= 3, 032. 

The 'chevron' structure of the profiles is clearly seen for the curves ( 1 )-( 4), where 
{3 >a. 

Figure 3. (a) Cross-section of the surface {3(ReA,P), for ReA rv 10.3; (2). 

(b) Cross-section of the surface B(ReA, P), for ReA~ 10.3; (2). 

(c) Cross-section of the surface {3(ReA,P), for ReA~ 10.2; (4). 

(d) Cross-section of the surface B(ReA,P), for ReA~ 10.2; (4). 

Figure 4. (a) The dependence B(~) for ReA~ 10.3; 
the straight line corresponds to 1. 75/ (3 - 2.8. 

(b) The dependence B(~) for ReA rv 10.2; 
the straight line corresponds to 1/ (3 + 1.43. 
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