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Application of the SVR-NSGAII to Hydrograph
Routing in Open Channels

Mahyar Aboutalebi, A.M.ASCE1; Omid Bozorg Haddad2; and Hugo A. Loáiciga, F.ASCE3

Abstract: Flow routing is used to simulate or predict downstream hydrographs on the basis of the features of upstream flow hydrographs.
This paper combines support vector regression (SVR) and the nondominated sorting genetic algorithm II (NSGAII) into a hybrid hydrologic
routing model called SVR-NSGAII in this paper for the prediction of a downstream flow hydrograph in simple and compound channels. The
SVR-NSGAII hydrologic routing predictions are compared with those from hydraulic models in simple and compound channels. This paper’s
results indicate that the SVR-NSGAII predicts the downstream hydrograph flow in a simple and compound channel, with approximately 94
and 98% accuracy, respectively. DOI: 10.1061/(ASCE)IR.1943-4774.0000969. © 2015 American Society of Civil Engineers.

Author keywords: Flow routing; Open channels; Support vector machine; Nondominated sorting genetic algorithm.

Introduction

Recent publications dealing with newly developed models for the
optimization and simulation of water resources systems have ad-
dressed topics, such as reservoir operation (Ashofteh et al. 2013b,
2015a, c), design operation of pumped-storage and hydropower
systems (Bozorg Haddad et al. 2014b), levee layouts and design
(Bozorg Haddad et al. 2015b), hydrology (Ashofteh et al. 2013a),
qualitative management of water resources systems, (Bozorg
Haddad et al. 2015a), and algorithmic developments (Ashofteh et al.
2015b). However, few of these models have focused on the appli-
cation of support vector regression (SVR) and the nondominated
sorting genetic algorithm II (NSGAII) (SVR-NSGAII) or hydro-
graph routing in open channels.

Flow routing procedures used to simulate or predict a down-
stream hydrograph can be accomplished into hydrologic or hy-
draulic methods. Hydrologic routing methods simulate the flow
hydrograph downstream on the basis of the continuity equation
and functions relating to storage, outflow, and possibly inflow.
In contrast, hydraulic routing methods model the flow hydrograph
on the basis of the continuity and momentum equations, but they
have many parameters that must be calibrated and channel charac-
teristics to be incorporated in the analysis. Recently, artificial
intelligence (AI) algorithms, such as the artificial neural network
(ANN) (Peters et al. 2006), support vector machine (SVM) (Han
et al. 2007), and genetic programming (GP) (Fallah-Mehidpour
et al. 2013) were used to simulate downstream hydrographs on

the basis of the features of upstream hydrographs. These AI
algorithms are classifiable as hydrologic routing methods.

Concerning hydraulic routing methods, Saint-Venant (1871) in-
troduced the dynamic wave equations. These equations have been
widely used for flood forecasting in routing and software packages,
such as MIKE11 and HEC-RAS (Néelz and Pender 2009). How-
ever, these hydraulic equations are nonlinear and require numerical
solutions. Mahmood and Yevjevich (1975) and Montes (1998) pre-
sented a comprehensive investigation on historical developments in
numerical modeling of unsteady open channel flows. Proust et al.
(2009) developed a new one-dimensional (1D) model called the
independent subsections method (ISM) that computes the water
profiles in each subsection of compound channels for uniform flow.
Moreover, Proust et al. (2010) reported on the energy losses under
nonuniform conditions in compound channels. Moghaddam and
Firouzi (2011) developed the dynamic flood wave routing in natu-
ral rivers through the implicit numerical method. They presented a
solution for the full Saint-Venant equations with the Preissmann
implicit finite-difference scheme for hypothetical flood routing
problems in a wide rectangular river and compared the solution
of the developed model with HEC-RAS. Costabile and Macchione
(2012), Tsakiris and Bellos (2014), and Costabile and Macchione
(2015) provide more comprehensive views of hydraulic routing
methods.

Concerning hydrologic routing methods, McCarthy (1938) de-
veloped a flood routing procedure for the Muskingum River in
Ohio, now called the Muskingum method. Software packages, such
as HEC-1 (USACE 1998), apply the Muskingum method, whereby
the outflow hydrograph is calculated for a given inflow hydrograph.
Similar to hydraulic routing models, the parameters of the
Muskingum method must be calibrated by using a set of observed
inflow and outflow hydrograph data. The calibration of Muskingum-
type methods plays a key role in its predictive accuracy. Many re-
searchers, therefore, have addressed the estimation of Muskingum
parameters with various techniques. The genetic algorithm (GA)
(Mohan 2009), particle swarm optimization (PSO) (Chu and Chang
2009), immune clonal selection algorithm (ICSA) (Luo and Xie
2010), Nelder-Mead simplex algorithm (NMSA) (Barati 2011),
harmony search (HA) (Geem 2011), differential evolution (DE)
(Xu et al. 2012), Microsoft Excel solver (Barati 2013), hybrid har-
mony search algorithm (HHSA) (Karahan et al. 2013), metaheur-
istic algorithms (Orouji et al. 2013), GP (Orouji et al. 2014), and
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modified honey bee mating optimization (MHBMO) (Niazkar and
Afzali 2015) have been applied to estimate the Muskingum param-
eters. In spite of such previous studies, increasing the accuracy of
the Muskingum method with a rapid convergence rate remains an
active area of research, to which this paper contributes.

Concerning AI, Savic et al. (1999) asserted the advantages of
GP over ANNs in the flow prediction of the Kirkton catchment,
Dundee, Scotland, and Deka and Chandramouli (2005) relied on
a fuzzy neural network (FNN) to forecast the river flow in the
Brahmaputra River. Peters et al. (2006) evaluated the performance
of ANN in the routing hydrograph with the HEC-RAS results. Han
et al. (2007) applied SVM with a linear and radial base function
(RBF) to rout floods in the Bird Creek catchment. They reported
that selecting the optimal combinations of input variables is a most
challenging problem in the AI tool, such as SVM for flood routing.
Sivapragasam et al. (2008) evaluated the accuracy of nonlinear
Muskingum models in multipeaked hydrographs and proposed
GP as an alternative technique to route single-peaked and multi-
peaked flood hydrographs. Fallah-Mehdipour et al. (2013) applied
GP to rout a stage hydrograph in simple and compound open
channels. They compared the accuracy of the GP hydrologic
routing model to those of the HEC-RAS and the characteristic
dissipative Galerkin procedure in one-dimension (CCDG-1D) hy-
draulic routing models. The results indicated that GP exhibited an
acceptable performance in routing stage hydrographs. Further
discussion about the application of AI in water resources manage-
ment (WRM) is provided by Bozorg Haddad et al. (2013, 2014a),
Garousi-Nejad and Bozorg Haddad (2015), and Aboutalebi and
Garousi-Nejad (2015).

A review of previous publications reveals that hydraulic routing
methods, such as HEC-RAS and CCDG-1D, are more accurate than
hydrological routing methods, but they require lots of information
related to channel geometry and specifications that imply a high
computational burden. In contrast, hydrologic routing methods,
such as the Muskingum method, can calculate the output hydro-
graph with less data than hydraulic methods, but lower accuracy
than the latter methods, and their performance depends strongly
on the proper calibration of their parameters. Recently, Bozorg
Haddad et al. (2015c) proposed a seven-parameter Muskingum
model for flood routing. Increasing the number of the Muskingum
model’s parameter leads to improved predictive accuracy, but raises
the complexity of parameter estimation.

This paper applies SVR-NSGAII, introduced by Aboutalebi and
Bozorg Haddad (2015) and Aboutalebi et al. (2015), to predict the
downstream flow hydrographs on the basis of upstream hydro-
graphs. The SVR predicts the downstream hydrograph in the cur-
rent time on the basis of an upstream hydrograph in the current and
previous times. The SVR-NSGAII combines the features of SVR
and the NSGAII to calibrate routing parameters and choose input
variables for predicting downstream flow hydrographs. The major
advantage of SVR-NSGAII relative to other routing methods is that
it simultaneously generates several models with which to predict
downstream hydrographs in terms of a Pareto frontier while per-
forming autocalibration and parsimonious parameter selection.

Hydraulic Routing Methods

Hydraulic routing methods calculate streamflow as a function of
space and time on the basis of the continuity and momentum equa-
tions for open channels. One of the merits of these methods is their
better accuracy than that of hydrologic routing methods. In con-
trast, one of the disadvantages of hydraulic methods is simulating
flow hydrographs based extensively on data about river geometry,

such as cross-sectional shape, bed form, longitudinal form, and
branching.

HEC-RAS

The United States Army Corps of Engineers developed HEC-RAS.
It is equipped to model the hydraulics of water flow through natural
rivers and other channels. The basic computational procedure
of HEC-RAS for steady flow is on the basis of the solution of
the one-dimensional energy equation. Therefore, HEC-RAS is a
one-dimensional hydrodynamic model. For unsteady flow, HEC-
RAS solves the full, dynamic, 1D Saint-Venant equation using
an implicit, finite-difference method. This paper compares the
HEC-RAS routing results with those obtained with the SVR-
NSGAII hydrologic routing model in a simple channel.

CCDG-1D

Tuitoek and Hicks (2001) modeled unsteady flow in compound
channels with the aim of controlling floods. They developed a
model called CCDG-1D on the basis of the Saint-Venant equations
of flow, with the incorporation of terms to account for the momen-
tum transfer phenomenon to route unsteady flow in compound
channels. Tuitoek and Hicks (2001) provide more information
on the CCDG-1D model. This paper compares the results obtained
from the prediction of flow hydrographs in compound channels cal-
culated with the CCDG-1D hydraulic model and the SVR-NSGAII
hydrologic model. The downstream hydrographs computed with
HEC-RAS in simple channels and with CCDG-1D in compound
channels are used as benchmark data sets for evaluating the perfor-
mance of the SVR-NSGAII.

Hydrologic Routing Methods

Hydrologic routing methods simulate the downstream hydrograph
on the basis of data about the upstream hydrograph and consider the
flow hydrograph as a function of time at a particular river location.

SVM

Vapnik (1995) invented the first version of the SVM theory. The
SVM uses an error and kernel function to recognize patterns that
are used in classification or regression analysis of a given data set
(Bozorg Haddad et al. 2013, 2015a). The regression version of
SVM is called SVR, which is briefly described next.

SVR

Vapnik (1998) modified SVM for a regression analysis involving
the prediction or simulation of time series. The linear form of SVR
is as follows:

fðxÞ ¼ wTr · xþ b ð1Þ
where x = input variables; w = weighting coefficients of input var-
iables; b = bias of wTr · x, with respect to fðxÞ; Tr denotes the
transpose symbol; and fðxÞ = target variable estimated by SVR.

The SVR attempts to minimize the differences between the
observed data and the estimated data. Therefore, SVR minimizes
an optimization problem whose objective function is decreasing
the error function proposed by Vapnik (1998), which is called
e-insensitive loss function. This error function ignores errors for
data that are situated within the epsilon distance (ε) from the fitting
line. The optimization problem is as follows:

© ASCE 04015061-2 J. Irrig. Drain Eng.
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Minimize
1

2
kwk2 þ C

Xm
i¼1

ðξ−i þ ξþi Þ ð2Þ

Subject to ðwi · xi þ bÞ − yi < εþ ξþi ; i ¼ 1; 2; : : : ;m

yi − ðwi · xi þ bÞ ≤ εþ ξ−i ; i ¼ 1; 2; : : : ;m; ξþ; ξ− ≥ 0 ð3Þ
where C = penalty coefficient; m = number of training data sets;
ξ−i , ξþi = violation of the ith training point that is situated out of
the ε distance from the fitting line; and wi, xi, and yi = ith weight
variable, input variable, and observed target variable in the training
data set, respectively.

The variables w and b are calculated by solving Eqs. (2) and (3).
Their calculated values are substituted in Eq. (1), and fðxÞ is com-
puted. By means of several kernel functions that map the data set
to the linear separable space, SVR can be modified to predict or
simulate the nonlinear time series. Therefore, Eq. (1) is rewritten
as follows for this purpose:

fðxÞ ¼ wTr · Kðx; xiÞ þ b ð4Þ

Kðx; xiÞ ¼ exp

�
− jx − xij2

2γ2

�
i ¼ 1; 2; : : : ;m ð5Þ

where Kðx; xiÞ denotes the kernel function, which is RBF in this
study, where γ is the RBF parameter. The most common kernel
function is RBF, which has one parameter called γ. In addition
to the kernel function parameter, there are ε and C as SVR param-
eters. Many researchers, e.g., Han and Cluckie (2004), Cherkassky
and Ma (2004), and Aboutalebi et al. (2015), studied the SVR
parameters and showed that defining the SVR parameters’ values
correctly plays an important role in the accuracy of SVR.

NSGAII

Deb (2001) suggested a multiobjective evolutionary algorithm on
the basis of a nondominated sorting and elitist selection theory
called NSGAII. In the first step, the NSGAII creates a random pa-
rent population and computes the objective functions correspond-
ing to this population. In the second step, the offspring population
is generated on the basis of mating operators, namely, crossover
and mutation, and the objective functions are calculated for the off-
spring population. The number of crossover and mutated popula-
tions is related to the probability of crossover and mutation. After
generating the offspring population, in the third step, the parent and
offspring population are combined and sorted on the basis of a
ranking process called the nondominated sorting theory. Therefore,
the members of the combined population can be shown sets called
Pareto fronts, in which the members with Rank 1 are called Front 1,
i.e., the best front. In the fourth step, the members of each front are
sorted on the basis of the crowding distance measure computed for
these members. Each member of the combined population has two
indexes: one for rank and the other for crowding distance. In the
final step, the combined population is truncated in the same manner
as the parent population, and the new parent population is trans-
ferred to the next iteration for generating new offspring and sorting
processes. These steps are repeated until convergence to an optimal
solution is achieved.

SVR-NSGAII

Aboutalebi and Bozorg Haddad (2015) proposed a new method
called SVR-NSGAII to predict the monthly inflow to a hydropower
reservoir. Aboutalebi et al. (2015) calculated the operation rule of

the hydropower reservoir using SVR-NSGAII. In the SVR-
NSGAII method, NSGAII determines the best input variables
for prediction purposes, and the optimized SVR parameters and
SVR predict or simulate the time series assumed as the target
variable on the basis of the chosen input variables. In this paper,
SVR-NSGAII is used to predict the downstream hydrograph in
open channels on the basis of the features of the upstream hydro-
graph in simple and compound channels. Fig. 1 shows a flowchart
of the SVR-NSGAII.

On the basis of Fig. 1, the downstream hydrographs for simple
and compound open channels are first simulated using HEC-RAS
and CCDG-1D, respectively. Afterward, the simulated hydrographs
are selected as the benchmark observed data for creating the SVR
training and testing data sets. These data sets include the down-
stream discharge and depth hydrographs at the current time and
one to three time intervals prior as the input variables (possible pre-
dictors), and the predicted downstream discharge hydrograph is
considered as the target or output variable. Next, the data set is di-
vided into two categories, namely, the training data set (75% of the
data points on the basis of random selection) and the testing data set
(25% of the data points on the basis of random selection). After-
ward, SVR-NSGAII is applied to the data set while the names of
the input variables and the SVR parameters are considered as de-
cision variables, and minimizing the number of input variables and
errors of SVR in the testing data set are considered as the objective
functions. In other words, first, the decision variables that include
the name of the input variables and SVR parameters are randomly
created as the primary population. After generating the decision
variables, SVR is run and the objective functions are calculated
for each member of the population. Next, the SVR-NSGAII enters
the main loop. In the main loop and in each iteration, the decision
variables are corrected according to the described NSGAII process
(mutation and crossover) and SVR is run on the basis of the cor-
rected decision variables. This process continues until the stopping
criterion is satisfied. Finally, the results are shown as Pareto fronts
or frontiers. Therefore, SVR-NSGAII is a tool in which NSGAII is
tasked with selecting the effective predictors used and providing the
best value of the SVR parameters by minimizing the error function
of SVM [root mean square error (RMSE)] and the number of input
variables according to the parsimonious feature of prediction.

Optimization Model

The SVR-NSGAII optimization model used for predicting dis-
charge hydrographs is as follows:

Min g1 ¼ RMSE½y; fðxÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX 1

n
½y − fðxÞ�2

r
ð6Þ

Min g2 ¼ M ð7Þ

1 < M ≤ 8 ð8Þ

where g1 = accuracy of prediction simulation by SVR on the basis
of RMSE for the testing data set; g2 = number of input variables
(M); n = number of testing data points; y = observed variable,
i.e., simulated hydrograph calculated with HEC-RAS in simple
channels and with CCDG-1D in compound channels; and fðxÞ =
estimated target variable, i.e., predicted downstream discharge
hydrograph by SVR. In addition to the RMSE, one statistical index
is considered to evaluate the accuracy of SVR-NSGAII

© ASCE 04015061-3 J. Irrig. Drain Eng.
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R2 ¼ 1 −
�P ½y − fðxÞ�2P ðy − ȳÞ2

�
ð9Þ

where R2 = determination coefficient.
In this study, the best NSGAII parameters were obtained after a

preliminary sensitivity analysis, with several short runs. These
parameters were used to execute the long runs of the optimization
model. Moreover, the values of the parameters fall within the rec-
ommended ranges suggested in previous studies (Aboutalebi et al.

2015; Aboutalebi and Bozorg Haddad 2015). Table 1 lists the
NSGAII parameters and the ranges of the SVR parameters.

First Case Study

The first case study is hypothetical flow in a wide rectangular
channel 29 km long and 120 m wide, with a 0.00061 bed slope.
Moghaddam and Firoozi (2011) introduced this case study in dy-
namic flood wave routing. They routed the downstream discharge
with the Preissmann implicit scheme (PIS) and then compared the

First Step:  Initialize the training and testing data set

Preparing data set including discharge and stage upstream and 
downstream hydrograph 

Choose input variables used as possible predictors 
(discharge and stage upstream hydrograph with considered 
time intervals) and target variable (discharge downstream 

hydrograph in current time) to implement SVR

Divide the data base into training data set (75%) and testing 
data set (25%) randomly

Second step: Solve the simulation-optimization problem

Start SVR-NSGAII

Specify predictors Specify SVR parameters

Calculate objective functions

Run SVR

First objective function Second objective function

Calculate RMSE of the observed and 
predicted (from SVR) discharge 

downstream hydrograph  

Calculate the number of input variables 
(parameter parsimony feature)

Stopping criteria

Max it =1000

Illustrate Pareto frontiers

End of SVR-NSGA II 

Yes
Modify Population

No

Generate Parent Population (decision variable)

Fig. 1. Flowchart of SVR-NSGAII to predict downstream hydrographs
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results of PIS to the HEC-RAS results (benchmark downstream
hydrograph). Using this case study, Fallah-Mehdipour et al. (2013)
applied GP to predict downstream hydrographs and compared the
GP results to the routed hydrographs computed by the HEC-RAS
model. Fig. 2 shows the upstream and downstream discharge
hydrographs considered in this case study.

To compare the capability of SVR-NSGAII as a hydrologic
routing method with HEC-RAS as a hydraulic method, the current
discharge and stage of the upstream hydrograph with one to three
prior time intervals are the possible predictors and the current dis-
charge hydrograph at the downstream is the target variable. The
following regression model is used to calculate the downstream
discharge hydrograph with SVR-NSGAII:

QDt ¼ fðQUt; : : : ;QUt−3; SUt; : : : ; SUt−3Þ ð10Þ

where QDt = discharge at the downstream section at time t; QUt =
discharge at the upstream section at time t; and SUt = stage at the
upstream section at time t. According to Eq. (10), there are eight
possible predictors considered in the regression model to predict
QDt. After solving the optimization problem with SVR-NSGAII,
the SVR parameters and effective predictors are determined in the
form of a Pareto frontier, as shown in Fig. 3.

Fig. 3 reveals that SVR-NSGAII identified five models to pre-
dict the downstream discharge hydrograph, whereby each model
has its specific predictors, SVR parameters, and accuracy. The
range of g1 (RMSE), which is the error between the hydrographs
calculated by SVR-NSGAII and HEC-RAS, ranges from 0.026 to
0.166, and the range of g2, i.e., the number of input variables, is
from 1 to 5. Therefore, among the eight possible predictors, only
one to five variables were selected by SVR-NSGAII. Also, the ac-
curacy of the proposed model increases, and RMSE is reduced with
the increasing number of effective input variables.

Table 2 lists the values of the decision variables with the objec-
tive functions for each Pareto point. Table 2 shows that the Pareto
solution suggests five points or models (A–E) for predicting the
downstream discharge hydrograph. In other words, this Pareto
solution provides alternative models that can be used to predict
the downstream discharge hydrograph on the basis of the available
variables and accuracy required. Also, the Pareto provides the best
values for the SVR parameters for each suggested model. For ex-
ample, if the analyst decides to use Model D for prediction, the
selected predictors are SUt and QUt and the optimal parameters
for SVR (κ, C, γ) are 0.016, 46, and 4.07, respectively.

Fig. 4 depicts R2, with concern for the accuracy of the suggested
Models A–E using training, testing, and total data sets. According
to Fig. 4, it is obvious that Models A–D have acceptable accuracy
using the testing data set, but the R2 of Model E is inferior to that of
the other suggested models and is under 90% in the testing data set.
Considering these findings, Models A–D are recommended to pre-
dict the downstream discharge hydrograph in simple channels.

Table 1. Ranges of the SVR-NSGAII Parameters

Parameter Range or value

Range of ε (SVR’s parameter) (0, 1)
Range of γ (SVR’s parameter) (0, 10)
Range of C (SVR’s parameter) (0, 100)
Probability of crossover (NSGAII’s parameter) 0.25
Probability of mutation (NSGAII’s parameter) 0.75
Number of individuals of the initial population 100
Maximum number of iterations (stopping criterion) 1,000

Fig. 2. Upstream and downstream discharge hydrographs of first
case study

Table 2. Effective Predictors and the Values of the Objective Functions for Each Model Calculated with SVR-NSGAII in the First Case Study

Model Effective predictors

SVR parameters Objective functions

ε C γ g1 g2

A SUt SUt−1 QUt−3 QUt−2 QUt 0.008 47 5.245 0.026 5
B SUt SUt−1 QUt−2 QUt — 0.010 59 4.957 0.031 4
C SUt QUt−2 QUt — — 0.008 47 5.271 0.041 3
D SUt QUt — — — 0.016 46 4.074 0.046 2
E QUt — — — — 0.079 42 5.357 0.166 1

Fig. 3. Pareto frontier calculated with SVR-NSGAII for first
case study
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Fig. 4. Results of downstream discharge hydrographs routed withHEC-RAS versus discharge hydrographs predicted with SVR-NSGAII for (a) Point
A of frontier in training; (b) Point A of frontier in testing; (c) Point A of frontier in total data set; (d) Point B of frontier in training; (e) Point B of
frontier in testing; (f) Point B of frontier in total data set; (g) Point C of frontier in training; (h) Point C of frontier in testing; (i) Point C of frontier in
total data set; (j) Point D of frontier in training; (k) Point D of frontier in testing; (l) Point D of frontier in total data set; (m) Point E of frontier in
training; (n) Point E of frontier in testing; and (o) Point E of frontier in total data set

Fig. 5. Upstream and downstream discharge hydrographs of second
case study

Fig. 6. Pareto frontier calculated with SVR-NSGAII for second
case study
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Second Case Study

The second case study examines discharge hydrographs in a com-
pound channel. Tuitoek and Hicks (2001) reported the downstream
hydrograph routed with the hydraulic model CCDG-1D. The

length, width, and depth of the main channel are 120 m,
1.25 m, and 0.39 m, respectively, and the left and right floodplains

are 3 and 1.5 m wide, respectively. Manning’s roughness coeffi-

cient for both the main channel and floodplains was set equal to

Table 3. Effective Predictors and the Values of the Objective Functions for Each Model Calculated with SVR-NSGAII in the Second Case Study

Model Effective predictors

SVR parameters Objective functions

ε C γ g1 g2

A SUt SUt−2 QUt−3 QUt−1 QUt 0.0021 16 8.332 0.0046 5
B SUt QUt−3 QUt−2 QUt — 0.0041 12 8.754 0.0048 4
C SUt QUt−1 QUt — — 0.0034 14 8.802 0.0056 3
D QUt−1 QUt — — — 0.0033 17 9.001 0.0067 2
E QUt — — — — 0.0504 11 7.954 0.0240 1
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Fig. 7. Results of downstream discharge routed with CCDG-1D versus discharge predicted with SVR-NSGAII for (a) Point A of frontier in training;
(b) Point A of frontier in testing; (c) Point A of frontier in total data set; (d) Point B of frontier in training; (e) Point B of frontier in testing; (f) Point B
of frontier in total data set; (g) Point C of frontier in training; (h) Point C of frontier in testing; (i) Point C of frontier in total data set; (j) Point D of
frontier in training; (k) Point D of frontier in testing; (l) Point D of frontier in total data set; (m) Point E of frontier in training; (n) Point E of frontier in
testing; and (o) Point E of frontier in total data set
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0.012, and the bed slope is 0.019%. Fig. 5 shows the upstream and
downstream discharge hydrograph of this case study.

To compare the capability of the hydrologic SVR-NSGAII
method with that of the hydraulic CCDG-1D method, the regres-
sion model cited in the first case study was used to calculate the
downstream discharge hydrograph twith SVR-NSGAII. Therefore,
similarly to what was done in the first case study, there are eight
possible predictors to predict the downstream flow QDt in the
compound channel. The routing optimization problem for the com-
pound channel was solved with SVR-NSGAII. Fig. 6 shows the
results, including the SVR parameters and identified predictors,
in the form of a Pareto frontier.

Fig. 6 shows that the SVR-NSGAII identified five models to
predict QDt in the compound channel, and each model features
specific predictors, SVR parameters, and accuracy. The range of
g1 (RMSE), which is the error between the hydrographs calculated
with SVR and CCDG-1D, ranges from 0.0046 to 0.0240, and the
range of g2, i.e., the number of input variables, ranges from 1 to 5 in
the case in this study. Among the eight predictors, only one to five
variables were chosen by SVR-NSGAII. Similar to the first case
study, the accuracy of the proposed models increases and RMSE
is reduced with the increasing number of prediction variables.

Table 3 illustrates the values of the decision variables associated
with the objective functions for each Pareto point. Table 3 shows
that the Pareto solution suggests five points or models (A–E) for
predicting the downstream discharge hydrograph. Fig. 7 shows
the R2 for the suggested Models A–E using training, testing,
and total data sets. It is evident in Fig. 7 that the models have
acceptable accuracy using the training data, but Models A–D
are more accurate with the testing data set than Model E. Therefore,
Models A–D are recommended for predicting the downstream
discharge hydrograph in compound channels.

Concluding Remarks

The hydrologic SVR-NSGAII routing model was used to predict
the downstream discharge hydrograph in simple and compound
channels and was compared with hydraulic methods. The routed
downstream hydrograph was computed with HEC-RAS in simple
channels and CCDG-1D in compound channels and was used as
the benchmark data set for evaluating the SVR-NSGAII method.
The upstream stage and discharge of hydrographs at the current
time and three prior time intervals were the possible predictors,
and the discharge of the downstream hydrograph was the target
variable. The NSGAII selected the combinations of predictors
among eight possible predictors and computed the optimal values
of the SVR parameters. The SVR predicted the downstream hydro-
graph on the basis of the predictors and the SVR parameters’ values
provided by NSGAII. The key merit of SVR-NSGAII is its ability
to identify various models to predict the downstream hydrograph.
Each of these identified models features attractive attributes:
parsimonious parameterization and parameter optimization. The
results of the application SVR-NSGAII in routing downstream
hydrographs have shown that the majority of the models suggested
by SVR-NSGAII have an approximately 96% accuracy in terms of
their R2.
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