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Abstract

Introduction: Protective associations of greenspace with Parkinson’s disease (PD) have been 

observed in some studies. Visual exposure to greenspace seems to be important for some 

of the proposed pathways underlying these associations. However, most studies use overhead-

view measures (e.g., satellite imagery, land-classification data) that do not capture street-view 

greenspace and cannot distinguish between specific greenspace types. We aimed to evaluate 

associations of street-view greenspace measures with hospitalizations with a PD diagnosis code 

(PD-involved hospitalization).

Methods: We created an open cohort of about 45.6 million Medicare fee-for-service beneficiaries 

aged 65 + years living in core based statistical areas (i.e. non-rural areas) in the contiguous US 

(2007–2016). We obtained 350 million Google Street View images across the US and applied 

deep learning algorithms to identify percentages of specific greenspace features in each image, 

including trees, grass, and other green features (i.e., plants, flowers, fields). We assessed yearly 

average street-view greenspace features for each ZIP code. A Cox-equivalent re-parameterized 

Poisson model adjusted for potential confounders (i.e. age, race/ethnicity, socioeconomic status) 

was used to evaluate associations with first PD-involved hospitalization.

Results: There were 506,899 first PD-involved hospitalizations over 254,917,192 person-years of 

follow-up. We found a hazard ratio (95% confidence interval) of 0.96 (0.95, 0.96) per interquartile 

range (IQR) increase for trees and a HR of 0.97 (0.96, 0.97) per IQR increase for other 

green features. In contrast, we found a HR of 1.06 (1.04, 1.07) per IQR increase for grass. 

Associations of trees were generally stronger for low-income (i.e. Medicaid eligible) individuals, 

Black individuals, and in areas with a lower median household income and a higher population 

density.

Conclusion: Increasing exposure to trees and other green features may reduce PD-involved 

hospitalizations, while increasing exposure to grass may increase hospitalizations. The protective 
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associations may be stronger for marginalized individuals and individuals living in densely 

populated areas.

Keywords

Street-View Greenspace; Built Environment; Visual Exposure; Neurological Disorders; 
Parkinson’s Disease

1. Introduction

Exposure to greenspace may protect against several adverse health outcomes, such as 

cardiovascular disease and mortality (Fong et al., 2018; Twohig-Bennett and Jones, 2018). 

Some studies have also found protective associations with neurological disorders, including 

Parkinson’s Disease (PD) (Yu et al., 2021; Yuchi et al., 2020; Klompmaker et al., 2022; Jung 

et al., 2022; Zhu et al., 2023). Several pathways could explain these associations: greenspace 

can help to reduce stress and restore attention; it provides a setting for physical activity and 

social interactions; and may reduce exposure to harmful environmental exposures (e.g., air 

pollution, noise) (Fong et al., 2018; Markevych et al., 2017). These mechanisms could in 

turn reduce PD risks (Wang et al., 2018; Fang et al., 2018; Kasdagli et al., 2019).

Visual exposure to greenspace is hypothesized to be important for some of the proposed 

pathways underlying the health effects of greenspace, such as stress reduction and attention 

restoration (Larkin and Hystad, 2018). However, prior epidemiologic studies that examined 

associations of greenspace with PD have relied on satellite imagery or land-classification 

data to assess greenspace (Yu et al., 2021; Yuchi et al., 2020; Klompmaker et al., 2022; 

Jung et al., 2022; Zhu et al., 2023). A major limitation of these indicators is that they are 

overhead-view measures and likely differ from people’s visual greenspace perception, i.e., 

the most common view people have of greenspace is from a street-view perspective (Larkin 

and Hystad, 2018). Overhead- and street-view measures may differently capture greenery, 

such as vertical greenspace (e.g., trees) obscuring buildings or the other way around and 

façade greenery, especially in dense built environments (Helbich et al., 2021). In addition, 

most overhead-view measures do not differentiate between types of greenspace. Conversely, 

street-view images capture visual exposures at street-level, similar to how individuals 

experience the environment, and can be used to detect specific greenspace features such 

as grass, trees, and plants. Hence, measuring greenspace from a street-view perspective may 

better capture an individual’s visual greenspace exposure and could help to reveal relevant 

greenspace features that may influence PD.

We previously reported protective associations of satellite- and land-classification data-based 

nature exposures (greenness, park cover, and blue space) with hospitalization with a PD 

diagnosis code (hereafter referred to as PD-involved hospitalization) in a cohort of Medicare 

beneficiaries (Klompmaker et al., 2022). For this study, we assessed greenspace exposure 

based on Google Street View (GSV) images. We obtained approximately 350 million 

street-view images across all core based statistical areas (CBSAs) in the contiguous US 

and applied deep learning algorithms to segment specific greenspace features. CBSAs 

refer to micropolitan and metropolitan statistical areas that contain a large population or 
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urban area (Office of Management and Budget. Federal Register ::, 2020). Our aim was 

to evaluate associations of specific street-view greenspace features with first PD-involved 

hospitalization in a cohort of about 45.6 million Medicare beneficiaries (2007–2016).

2. Methods

2.1. Study population

We created an open cohort including all fee-for-service (FFS) Medicare beneficiaries 65 + 

years living in ZIP codes in CBSAs in the contiguous US from January 1, 2007, through 

December 31, 2016. Medicare is the US government’s near-universal health insurance 

program for individuals 65 + years. In 2010, about 78 % of all US residents (~240 million 

individuals) lived in CBSAs (US Census Bureau, 2023). For all beneficiaries, we obtained 

data on sex, age, race/ethnicity (White, Black, Other), Medicaid eligibility (a proxy for 

low income), and ZIP code of residence. Information on race/ethnicity in Medicare was 

primarily obtained from the US Social Security Administration (Filice and Joynt, 2017). 

Information on ZIP code of residence was annually updated. For each Medicare FFS 

beneficiary, follow-up started on January 1, 2007, or January of the year after first Medicare 

enrollment between 2008–2016, whichever was earlier. We followed each beneficiary until 

first hospitalization, or until they were censored (e.g., left FFS, emigrated), reached the end 

of the follow-up time (December 31, 2016), or died, whichever occurred first.

2.2. Outcome definition

Our outcome of interest was first hospital admission with any discharge diagnosis 

code of PD (“PD-involved hospitalization”; International Classification of Disease, Ninth 

Edition (ICD-9): 332.0 332.1; ICD-10: G20, G21.11, G21.19, and G21.8). We excluded 

beneficiaries known to have had their first PD hospitalization before the start of the 

follow-up period (i.e. 2000–2006). Hospitalization with any discharge diagnosis code of 

PD differs from PD onset. PD does not require hospitalization for diagnosis or treatment; 

hospitalization likely occurs at more advanced disease stages and potential associations 

should be interpreted as a measure of accelerated or slower disease progression or increased 

or decreased susceptibility (Klompmaker et al., 2022).

2.3. Exposure assessment

We created a 100 m street network grid for all CBSAs in the contiguous US. Next, we 

obtained all GSV images from 2007 through 2020 within each street network grid. We 

opted to source the images from Google’s platform due to its relative consistency and 

prior completion of quality checks by Google. We exclusively utilized images captured by 

Google’s street view cars to ensure a uniform standard of camera quality and positioning 

across all images, which is crucial for maintaining data integrity and facilitating accurate 

analysis. The majority of the GSV images (~78 %) were collected from April-October. 

For each image location, we used four GSV images with different orientations to capture 

horizontal street-level vision. To process all GSV images, we applied the pyramid scene 

parsing network (PSPNet), a deep learning approach pre-trained on the ADE20K dataset 

(Zhao et al., 2017). The ADE20K dataset is a dataset that contains 150 pre-defined classes 

of objects and parts of objects (Table S1) and is described in detail elsewhere (Zhou et 
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al., 2017; Bolei et al., 2017). PSPNet utilizes a convolutional neural network (Long et al., 

2015; Hu et al., 2015; Nogueira et al., 2017) and also incorporated local (i.e., nearby pixels) 

and global (i.e., full image) contextual cues to make the final pixel-level predictions more 

reliable. PSPnet has a good model performance with an overall pixel accuracy of 80.88 % 

(Zhao et al., 2017).

Using the PSPNet, we segmented the following greenspace features down to the pixel level: 

trees, palm trees, grass, plants, fields, and flowers. We calculated percent coverage scores for 

each feature (e.g., % pixels of trees in an image). Examples of GSV images with different 

coverage scores are shown in Fig. 1. For each year, we averaged the percent coverage scores 

of images to a 100 m resolution raster for the contiguous US. If a cell within a CBSA 

had no value in a specific year (e. g., because GSV vehicles did not drive in that cell in 

that year), we used the cell value closest in time if available (about 45 % of the cells were 

from the corresponding follow-up year ± 1 year and about 72 % of the cells were from 

the corresponding follow-up year ± 3 years). Illustrative maps for Detroit, MI; Nashville, 

TN; and Portland, OR are shown in Figure S1. For each greenspace feature, we calculated 

the mean value across all GSV images in each ZIP code for each year using Google Earth 

Engine (Gorelick et al., 2017). For this study, we focused on 1) trees (tree + palm tree), 2) 

other green (plant + field + flower), 3) grass, and 4) total green (trees + grass + other green). 

Maps of ZIP code-level trees, other green and grass in ZIP codes in CBSA in the contiguous 

US are shown in Figure S2. The average (standard deviation (SD)) area of ZIP codes within 

CBSAs (in 2016) is about 214 km2 (567 km2) and the average (SD) number of GSV grid 

cells per ZIP code is about 1,085 (1,116).

2.4. Covariates

We created ZIP code-level socioeconomic status (SES) indicators from the US Census and 

American Community Survey, similar to those used in our previous study (Klompmaker et 

al., 2022). We linked ZIP code-level percent Hispanic, percent Black, population density, 

median home value, median household income, percent of the population with less than a 

high school degree, percent below the poverty level, and percent of owner-occupied housing 

units. In addition, we derived county-level smoking status from the nationwide Behavioral 

Risk Factor Surveillance System (BRFSS). We also linked US census regions (n = 4) and 

divisions (n = 9) to be able to account for regional differences.

We obtained daily maximum temperature, relative humidity, total precipitation data (4 

km spatial resolution) from the Gridded Surface Meteorological dataset for every year 

(Abatzoglou, 2013). Daily nitrogen dioxide (NO2) and fine particulate matter (PM2.5) 

concentrations (1 km spatial resolution) based on spatiotemporal ensemble models for every 

year were also linked (Di et al., 2019; Di et al., 2019). For each ZIP code for each year, we 

estimated the ZIP code-level annual average maximum temperature, relative humidity, total 

precipitation, PM2.5, and NO2.

We also linked overhead-view nature exposures (greenness, park cover and blue space) that 

we have used previously (Klompmaker et al., 2022). Greenness was estimated for every year 

of follow-up using the Normalized Difference Vegetation Index (NDVI) based on satellite 

images from Landsat 7 and Landsat 8 (June 1 − August 31, 30 m spatial resolution). 
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Before estimating ZIP code-level NDVI, negative NDVI values were set to zero as they 

correspond to water. Park cover is based on cross-sectional data from the USGS Protected 

Areas Database of the US (PAD-US) V2.1. For each ZIP code for each year, we calculated 

the mean NDVI and park cover. Blue space was based on the Joint Research Centre’s Global 

Surface Water Dataset (30 m spatial resolution) (Pekel et al., 2016). In line with our previous 

study, (Klompmaker et al., 2022) we calculated the mean blue space cover of ZIP codes with 

a 1000 m buffer, as ZIP codes areas do not always include adjacent water bodies.

2.5. Statistical analyses

We used a Cox-equivalent re-parameterized Poisson approach (Shi et al., 2020) to examine 

associations of street-view greenspace with PD-involved hospitalization. For each follow-

up year, we aggregated all beneficiaries by 2-year age categories at study entry, sex, 

race/ethnicity (White, Black, Other), Medicaid eligibility, calendar year and ZIP code of 

residence. For each aggregated cell, we also counted the corresponding number of PD-

involved hospitalizations and person-time. We assigned annual ZIP code-level exposures 

and potential confounders to the corresponding ZIP codes and calendar years based on the 

ZIP code of each beneficiary’s residence. To examine associations, we used Poisson models 

with count of PD-involved hospitalization as the dependent variable and total person-time of 

beneficiaries as the offset. This approach is mathematically equivalent to a time-varying Cox 

proportional hazard model under an Anderson-Gill representation. An m-out-n bootstrap 

method (sampling a smaller number (m) out of the original sample size (n)) (Bickel et al., 

1997) using ZIP code units was applied to calculate statistically robust confidence intervals 

(CIs). This method is used to account for within ZIP code unit observations across years, 

and is described in detail elsewhere (Shi et al., 2020). We excluded beneficiaries living in 

ZIP codes with less than 1 % area coverage (street view pixels / ZIP code area) or less 

than 100 pixels in total (~2.4 % of beneficiaries) as the limited number of images within 

these ZIP codes is unlikely to accurately capture or represent the average GSV greenspace 

exposure.

Our minimally-adjusted model included calendar year, census region, an offset for total 

person-time and strata for all possible combinations of age, sex, race, Medicaid eligibility, 

and follow-up year to allow for flexible strata-specific baseline rates. Our fully-adjusted 

model was additionally adjusted for the ZIP code-level SES indicators and smoking status as 

described above. In our models, we included percent coverage of street-view trees, grass and 

other green simultaneously, and total green individually. We used natural splines to examine 

the shape of the exposure–response curves. We performed stratified analyses by sex, age, 

race/ethnicity, Medicaid eligibility, and race/ethnicity-by-Medicaid eligibility terms. We 

focused on White (the largest racial group in the US) and Black beneficiaries because Black 

Americans comprise the second largest racial or ethnic group of Medicare beneficiaries and 

are uniquely burdened by structural racism (Bailey et al., 2017; Beech et al., 2021). We 

acknowledge that all non-White racialized groups in the US are marginalized in distinct 

ways, however, research on other subpopulations enrolled in Medicare is complicated 

by substantial misclassification of other racial and ethnic identities in the data (Jarrín et 

al., 2020). Further, we performed stratified analyses by tertiles of ZIP code-level median 

household income, population density, NO2, PM2.5 and annual average temperature.
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For sensitivity analyses, we additionally adjusted our main model for air pollution (PM2.5 

and NO2); for meteorological indicators (annual average temperature, relative humidity and 

precipitation); for overhead-view nature measures (NDVI, park cover and blue space cover 

(binary indicator: <1% vs. ≥ 1 %)); and for US census division instead of US census region. 

We also ran single-exposure models for trees, other green and grass. Hazard ratios (HRs) for 

trees, grass, other green and total green are expressed per IQR increase.

We used R version 4.2.2 software (R Project for Statistical Computing) on the Harvard 

Faculty of Arts and Science Secure Environment cluster supported by Harvard University. 

This study was approved by the Human Subjects Committee of the Harvard TH Chan 

School of Public Health and was exempt from informed consent requirements as a study of 

existing administrative data. The use of GSV images for this study was approved by the data 

provider.

3. Results

In our cohort of 45,607,879 Medicare beneficiaries, we found 506,899 first PD-involved 

hospitalizations in 254,917,192 person years. Most of the beneficiaries were White, between 

65–74 years of age at study entry, and not eligible for Medicaid (Table 1). The median 

and interquartile range (IQR) was larger for trees than for grass and other green exposures 

(Table S2). Trees, grass and other green were weakly correlated (Spearman rho: −0.12 – 

0.29, Figure S3), while total green was strongly correlated with trees (0.89) and grass (0.61).

We observed approximately linear associations between all street-view greenspace 

exposures and PD-involved hospitalization (Figure S4). In the minimally-adjusted model, 

we observed negative associations of trees and other green as well as of total green with 

PD-involved hospitalization (Table 2). In the fully-adjusted model, we found a HR (95 %CI) 

of 0.95 (0.94, 0.96) per IQR increase for trees, a HR of 0.97 (0.96, 0.97) per IQR increase 

for other green and a HR of 0.98 (0.96, 0.99) per IQR increase for total green. Conversely, 

grass was positively associated with PD-involved hospitalization (HR: 1.06 (1.04, 1.07) 

per IQR increase). Associations of trees, other green, and grass were generally similar in 

models additionally adjusted for air pollution, climate indicators, and overhead-view nature 

measures; in models adjusted for division instead of region; and in single-exposure models 

(Table S3).

In general, effect modification by race/ethnicity showed that the protective associations 

of trees, other green, and total green were stronger for Black individuals than for White 

individuals (Fig. 2, numeric results in Table S4). Associations of trees (protective) and of 

grass (harmful) were stronger for Medicaid-eligible (i.e., low income) individuals than for 

individuals not eligible for Medicaid. In subgroups defined simultaneously by Medicaid 

eligibility and race/ethnicity, we found stronger protective associations of trees and other 

green for high income Black, low income Black, and low income White individuals than 

for high income White individuals. No clear patterns of effect modification by age and 

sex were observed (Table S4). Associations of trees were stronger in areas with lower 

median household income, higher population density, and higher NO2 concentrations (Fig. 

Klompmaker et al. Page 7

Environ Int. Author manuscript; available in PMC 2024 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3, numeric results in Table S5). The harmful associations of grass were weaker or absent in 

areas with lower population density and lower NO2 concentrations.

4. Discussion

Using 350 million street-view images, a deep learning algorithm to identify greenspace 

features, and a cohort of 45.6 million Medicare beneficiaries, we observed that some 

greenspace features may be protective for PD-involved hospitalizations, while others may 

not be. Specifically, we observed protective associations of street-view trees and other green, 

but harmful associations with grass. Total green, a combination of trees, grass and other 

green, was also protectively associated with PD-involved hospitalization. Associations of 

trees were generally stronger for marginalized individuals and individuals living in densely 

populated areas.

We are not aware of any prior study that has examined associations of street-

view greenspace with PD-involved hospitalizations. We previously reported protective 

associations of NDVI and park cover with PD-involved hospitalization in a cohort of 

Medicare beneficiaries from 2000 to 2016 (Klompmaker et al., 2022). Studies in Canada, 

China and South Korea showed protective associations of NDVI with PD incidence, 

consistent with our findings for PD-involved hopsitalization (Yu et al., 2021; Yuchi et al., 

2020; Jung et al., 2022; Zhu et al., 2023). We found protective associations of trees and other 

green, and harmful associations of grass, indicating differential associations of greenspace 

features on PD-involved hospitalization that would have been obscured by coarse vegetation 

indices like NDVI. Associations of total green were slightly weaker than associations with 

trees, which is likely because total green combines trees, other green (both protective) and 

grass (harmful). We found no clear indications that lower air pollution levels explained the 

protective associations of trees and other green. This could be due to the adjustment for 

population density (an indicator strongly correlated with NO2) in the fully-adjusted models, 

or because of the weak correlations of street-view trees with air pollution.” There are several 

other potential pathways; greenspace may relieve stress and anxiety and create a setting for 

physical activity and social interactions (Fong et al., 2018; Markevych et al., 2017). Studies 

reported that improved mental, physical and social health could affect PD (Wang et al., 

2018; Fang et al., 2018; Tickle-Degnen et al., 2021). The differential associations between 

grass and trees and other green could be due to various reasons. The harmful associations 

with grass may be related to pesticide application. In prior research, a meta-analysis showed 

that long-term exposure to pesticides is positively associated with PD risk (Yan et al., 2018). 

ZIP codes with a high percentage of grass may contain agricultural or private land where 

pesticides are used or may be close to agricultural land. Grass may also lead to higher pollen 

concentrations, which could affect the immune system and increase PD hospitalization 

risk (Awaya and Kuroiwa, 2022). In addition, grass may be linked to more urban sprawl, 

private yards, and less walkable environments and thereby negatively affecting PD. Trees 

are generally perceived as calming (Mullaney et al., 2015) and may also represent more 

biodiverse areas.

Stratified analyses indicated that the protective associations were stronger for marginalized 

individuals (Medicaid eligible beneficiaries, Black beneficiaries, beneficiaries living in ZIP 
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code with a lower median household income). These findings are consistent with the 

“equigenesis” theory that posits that greenspace can decrease health disparities by SES, 

because greenspace-health associations are stronger in lower SES individuals (Mitchell and 

Popham, 2008; Rigolon et al., 2021). A review also reported stronger protective associations 

of public greenspace for racial/ethnic minorities than for White individuals (Rigolon et al., 

2021). The stronger associations could be due to structural racism, social exclusion, or less 

material wealth that puts more stress on marginalized individuals. This may make them 

more susceptible to the benefits of greenspace because of its stress-reducing and attention-

restoration capacity or because greenspaces are freely accessible and can be used for 

physical/social activities. In addition, associations might be stronger because marginalized 

individuals may spend more time in their direct neighborhood than other individuals. We 

previously reported stronger associations of NDVI with PD-involved hospitalization among 

marginalized individuals (Klompmaker et al., 2022). This study suggests that these stronger 

protective associations of greenspace for marginalized individuals are driven by trees and 

other green, while associations of grass may increase health disparities.

Associations with trees were strongest in areas with higher population density and 

NO2 concentrations. These findings are consistent with a review that reported stronger 

associations of greenspace with health outcomes in more urban areas (Browning et al., 

2022). This could be because urban dwellers experience more attentional demands and 

stressors than rural dwellers (Krabbendam et al., 2021; Lederbogen et al., 2011). Further, 

greenspace in urban areas is more likely to be developed for access and use and therefore 

provides better opportunities for physical activity, social interactions, stress reduction, and 

attention restoration than greenspace in non-urban areas (Browning et al., 2022). We also 

note that differences in associations between environmental and SES strata could be due 

to differences in symptom awareness, providers recognition and documentation of PD, and 

health care seeking behaviors (Mantri et al., 2019).

A major strength of this study is that greenspace exposure was based on 350 million 

street-view images covering all CBSA across the contiguous US from 2007 to 2020. Using 

a deep learning approach, we were able to differentiate between specific greenspace features 

and evaluate their independent associations. This provides valuable information and can 

help policy makers and urban planners to create specific health-beneficial interventions. 

Correlations of street-view greenspace features with the commonly used NDVI and 

park cover were low to moderate, and associations remained after adjustment for these 

overhead-view greenspace measures. This finding indicates that GSV greenspace features 

represent different aspects of the natural environment. Other studies also showed protective 

associations of street-view greenspace with other health outcomes (Wang et al., 2019; 

Helbich et al., 2019; Nguyen et al., 2021; Xiao et al., 2021). Because visual exposure seems 

to be important for stress reduction, attention restoration, and other potential pathways, 

street-view greenspace might better capture potential health benefits than overhead-view 

greenspace measures. However, we note that we used street-view images only from streets 

and therefore did not capture greenspace within parks or areas where cars cannot drive. GSV 

images were taken in different months, but we have no reason to believe that there is any 

systematic bias to how or when images were collected that might influence the observed 

findings. If GSV values were not available in a specific year, we used GSV values closest in 
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time if available, and assumed that greenspaces did not change rapidly over time. We believe 

that this is a reasonable assumption. We have not included information about the quality and 

perception of greenspaces, the amount of time individuals spend in their ZIP codes, or other 

street view-level urban indicators that may affect health.

Our study has several strengths and some limitations. Our cohort included about 45.6 

million Medicare beneficiaries living in CBSAs in the contiguous US. The study population 

is a fairly representative sample of individuals aged 65 + years in CBSAs in the contiguous 

US. However, our results may not be generalizable to rural populations. We did not have 

information on the exact residence of each Medicare beneficiary and therefore assessed ZIP 

code exposures. The race/ethnicity indicator that we used was based on administrative data 

and may not accurately capture the complexity of racial and ethnic identity (Jarrín et al., 

2020; Josey et al., 2023). In addition, we had limited information on individual-level SES 

and no information on individual-level lifestyle factors, however, we adjusted multiple ZIP 

code-level SES indicators and performed several sensitivity analyses. We did not take into 

consideration the competing risk posed by death. We also note that residential self-selection 

could explain observed associations between greenspace and greenspace. However, studies 

indicated that greenspace residential self-selection was not a major source of bias in other 

US populations (James et al., 2015; Gailey, 2022). PD does not require hospitalization 

for diagnosis or treatment; hospitalization likely occurs at more advanced disease stages. 

Hence, associations should be interpreted as accelerated/slower PD progression. We could 

not test whether the protective associations were due to differences in potential mechanisms 

of physical activity, social interactions, or reduced stress.

5. Conclusions

This study shows that exposure to street-view measured trees and other green may be 

protective for PD-involved hospitalization, while exposure to grass may be harmful. The 

protective associations were generally stronger for marginalized individuals and individuals 

living in densely populated areas. Increasing trees and other green coverage may help to 

prevent PD-involved hospitalization.
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Fig. 1. GSV images with different coverage scores for trees, grass and other green.
a a For trees Q1: <12.5 %; Q2: 12.5 %−19.4 %; Q3: 19.4 %−26.2 %; Q4: 26.2 %<. For 

grass Q1: <4.5 %; Q2: 4.5 %−8.9 %; Q3: 8.9 %−11.9 %; Q4: 11.9 %<. For other green 

Q1: <1.3 %; Q2: 1.3 %−2.0 %; Q3: 2.0 %−3.5 %; Q4: 3.5 %<. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 2. Associations of ZIP code-level GSV-derived greenspace measures with PD-involved 
hospitalization stratified by Medicaid eligibility and race/ethnicity.
a a The models included Trees, Other green, Grass simultaneously and Total green 

individually. The models included calendar year, region, ZIP code-level percent Hispanic, 

percent Black, population density, median home value, median household income, percent 

of the population with less than a high school degree, percent below the poverty level, 

percent of owner-occupied housing units, county-level smoking status, an offset for total 

person-time and strata for all possible combinations of sex, race, Medicaid Eligibility, age 

at study entry (2-year categories), and follow-up year. Effect modification models did not 

include a strata for the specific effect modifier. Associations are expressed per IQR increase 

of the full cohort (IQR Trees = 13.7 %, IQR Other green = 2.3 %, IQR Grass = 7.4 %, IQR 

Total green = 15.9 %).
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Fig. 3. Associations of ZIP code-level GSV-derived greenspace measures with PD-involved 
hospitalization stratified by ZIP code-level neighborhood and environmental indicators.
a, ba The models included Trees, Other green and Grass simultaneously and Total green 

individually. The models included calendar year, region, ZIP code-level percent Hispanic, 

percent Black, population density, median home value, median household income, percent 

of the population with less than a high school degree, percent below the poverty level, 

percent of owner-occupied housing units, county-level smoking status, an offset for total 

person-time and strata for all possible combinations of sex, race, Medicaid Eligibility, 

age at study entry (2-year categories), and follow-up year. For effect modification by ZIP 

code-level median household income, models did not include ZIP code-level median home 

value, median household income, percent of the population with less than a high school 

degree, percent below the poverty level, percent of owner-occupied housing units. For effect 

modification by ZIP code-level population density, models did not include ZIP code-level 

population density. Associations are expressed per IQR increase of the full cohort (IQR 

Trees = 13.7 %, IQR Other green = 2.3 %, IQR Grass = 7.4 %, IQR Total green = 15.9 

%).b Inc = ZIP code-level median household income, Popd = ZIP code-level population 

density, NO2 = ZIP code-level NO2, PM2.5 = ZIP code-level PM2.5, Temp = ZIP code-level 

temperature.
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Table 1

Descriptive statistics of the full study population and by tree categories a.

Individual-level variables (at study entry)
Full cohort Trees Q1 Trees Q2 Trees Q3

N (% or pyrs b) N (% or pyrs b) N (% or pyrs b) N (% or pyrs b)

Sex

Male 20,515,179 (45.0) 6,129,575 (45.9) 7,497,902 (44.5) 6,887,702 (44.7)

Female 25,092,700 (55.0) 7,224,240 (54.1) 9,360,195 (55.5) 8,508,265 (55.3)

Age

65–74 years 32,356,955 (70.9) 9,593,437 (71.8) 11,859,521 (70.3) 10,903,997 (70.8)

75–84 years 9,419,694 (20.7) 2,671,502 (20.0) 3,558,792 (21.1) 3,189,400 (20.7)

85 + years 3,831,230 (8.4) 1,088,876 (8.2) 1,439,784 (8.5) 1,302,570 (8.5)

Race/ethnicity

White 38,070,881 (83.5) 10,642,095 (79.7) 14,030,625 (83.2) 13,398,161 (87.0)

Black 4,018,028 (8.8) 962,037 (7.2) 1,768,992 (10.5) 1,286,999 (8.4)

Other 3,518,970 (7.7) 1,749,683 (13.1) 1,058,480 (6.3) 710,807 (4.6)

Medicaid eligibility

Ineligible 38,860,594 (85.2) 10,800,643 (80.9) 14,467,998 (85.8) 13,591,953 (88.3)

Eligible 6,747,285 (14.8) 2,553,172 (19.1) 2,390,099 (14.2) 1,804,014 (11.7)

Region

Midwest 10,279,607 (22.5) 2,775,028 (20.8) 5,001,333 (29.7) 2,503,246 (16.3)

Northeast 9,027,370 (19.8) 1,301,453 (9.7) 2,934,139 (17.4) 4,791,778 (31.1)

South 17,456,677 (38.3) 3,644,368 (27.3) 6,816,887 (40.4) 6,995,422 (45.4)

West 8,844,225 (19.4) 5,632,966 (42.2) 2,105,738 (12.5) 1,105,521 (7.2)

ZIP code-level aggregated variables Median (IQR) Median (IQR) Median (IQR) Median (IQR)

% below the poverty level 8.2 (7.7) 9.4 (9.6) 8.5 (7.0) 7.0 (6.6)

Population density (persons/mile2) 803.8 (3155.3) 889.7 (4422.8) 1423.0 (3690.9) 455.8 (1828.6)

Median home value ($10,000) 16.6 (16.8) 16.4 (16.4) 15.8 (13.8) 18.5 (19.7)

% Black 4.6 (14.4) 3.1 (9.8) 6.5 (17.7) 4.8 (16)

Median household income ($10,000) 51.0 (26.9) 49.5 (23.0) 49.3 (23.9) 55.4 (34.8)

% owner-occupied housing units 69.8 (22.6) 66.7 (26.1) 67.1 (22.2) 75.1 (18.1)

% Hispanic 6.5 (15.8) 16.4 (35.4) 6.4 (12.7) 3.8 (6.3)

% with less than a high school degree 20.2 (17.5) 22.4 (21.8) 20.9 (15.7) 17.6 (16.1)

% ever smoked 45.5 (8.7) 43.4 (9.2) 46.0 (8.2) 46.7 (7.7)

PM2.5 (μg/m3) 8.9 (2.9) 8.8 (3.3) 9.1 (2.8) 8.7 (2.8)

NO2 (ppb) 15.3 (11.8) 16.2 (13.2) 15.9 (11.5) 13.7 (10.9)

Annual temperature (°C) 19.7 (8.2) 22.2 (8.6) 19.3 (7.9) 18.7 (7.0)

Annual relative humidity 86.3 (7.9) 83.7 (13.5) 86.8 (7.2) 87.2 (5.9)

Annual precipitation (mm, daily total) 2.9 (1.3) 2.0 (2.2) 3.0 (1.0) 3.2 (0.9)

NDVI summer 0.40 (0.17) 0.34 (0.29) 0.51 (0.21) 0.62 (0.14)

% Park cover 8.0 (15.5) 6.5 (15.7) 7.8 (13.2) 9.6 (17.4)

% Blue space cover (1000 m buffer) 0.6 (3.4) 0.3 (2.5) 0.7 (4.2) 0.8 (3.4)
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a
Trees Q1: < 14.8 %; Q2: 14.8 % – 23.8 %, Q3 23.8 %<.

b
pyrs = person years.
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Table 2

Associations of ZIP code-level GSV-derived greenspace measures with PD-involved hospitalization. a.

Exposure (IQR) PD-involved hospitalization (cases = 506,899, pyrs b = 254,917,192)

Minimally-adjusted Model Fully-adjusted Model

HR (95 % CI) HR (95 % CI)

Trees (13.7 %) 0.96 (0.95, 0.97) 0.96 (0.95, 0.96)

Other green (2.3 %) 0.96 (0.95, 0.96) 0.97 (0.96, 0.97)

Grass (7.4 %) 1.02 (1.01, 1.03) 1.06 (1.04, 1.07)

Total green (15.9 %) 0.97 (0.96, 0.98) 0.98 (0.97, 0.99)

a
The minimally- and fully-adjusted models included Trees, Other green and Grass simultaneously and Total green individually. The minimally-

adjusted model included calendar year, region, an offset for total person-time and strata for all possible combinations of sex, race, Medicaid 
Eligibility, age at study entry (2-year categories), and follow-up year. The fully-adjusted model was additionally adjusted for ZIP code-level percent 
Hispanic, percent Black, population density, median home value, median household income, percent of the population with less than a high school 
degree, percent below the poverty level, percent of owner-occupied housing units and county-level smoking status. Associations are expressed per 
IQR increase.

b
pyrs = person years.
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