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Abstract

Inverse Optimization, Incentive Design, and Healthcare Policy

by

Auyon Siddiq

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun (Max) Shen, Co-Chair
Professor Anil Aswani, Co-Chair

This dissertation presents mathematical models and algorithms that draw from optimiza-
tion and statistics and are motivated by practical problems in operations management. We
discuss theoretical properties of the proposed models as well as their relevance to practice. In
particular, we focus on the role these models can play in addressing challenges in healthcare
operations and policy.

In Chapter 2, we address the problem of building models of agent behavior from observa-
tional data regarding the agent’s decisions. Concretely, we consider the inverse optimization
problem, which refers to the estimation of unknown model parameters of a convex optimiza-
tion problem from observations of its optimal solutions. First, we provide a new formulation
for inverse optimization, which takes the form of a bi-level program where the optimality con-
ditions of the lower level program are expressed using strong duality. In contrast to existing
methods, we show that the parameter estimates produced by our formulation are statistically
consistent under appropriate conditions. Second, we propose two solution algorithms based
on our duality-based formulation: an enumeration algorithm that is applicable to settings
where the dimensionality of the parameter space is modest, and a semiparametric approach
that combines nonparametric statistics with a modified version of our formulation. These
numerical algorithms are shown to maintain the statistical consistency of the underlying for-
mulation. Lastly, using both synthetic and real data, we demonstrate that our approach
performs competitively when compared with existing heuristics.

In Chapter 3, we employ an inverse optimization approach to redesign a class of Medi-
care contracts. We formulate the existing contract between Medicare and a provider as a
principal-agent model. We then propose an alternate contract, which we show to dominate
the status quo contract under reasonable conditions by producing a strictly higher expected
payoff for both Medicare and the provider. We then propose an estimator based on inverse
optimization for estimating a model of provider behavior, using a dataset containing the fi-
nancial performance of a group of Medicare providers that account for 7 million beneficiaries
and over $70 billion in Medicare spending. We estimate a performance improvement – in
terms of savings accrued by Medicare – of 40% under the alternate contract, which suggests
significant room for improvement in the status quo.

In Chapter 4, we propose a data-driven modeling approach to facility location in a setting
where the location of demand points is subject to uncertainty. The model is motivated by
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the problem of placing automated external defibrillators in public locations in anticipation
of sudden cardiac arrest. We propose a distributionally robust optimization approach where
the demand distribution is continuous in the plane and uncertain. We propose a solution
technique based on row-and-column generation that exploits the structure of the uncertainty
set and allows us to solve practical-sized instances of the defibrillator deployment problem.
Using real cardiac arrest data, we conduct an extensive numerical study and find that hedg-
ing against cardiac arrest location uncertainty can produce defibrillator deployments that
outperform a intuitive sample average approximation by 9 to 15%. Our findings suggest
that accounting for cardiac arrest location uncertainty can lead to improved accessibility
of defibrillators during cardiac arrest emergencies and the potential for improved survival
outcomes.
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Chapter 1

Introduction

This dissertation presents a collection of mathematical models at the intersection of optimiza-
tion, statistics, and operations management. Particular emphasis is given on the application
of these models to contemporary challenges in healthcare operations and policy. We focus
on analyzing the theoretical properties of the proposed models as well as their practical rele-
vance to related policy areas. While each of the three main chapters of this dissertation can
be digested as an independent study, they are unified in their emphasis on the application of
data analytics and optimization for the purposes of improving healthcare policy and practice.
In this section, we provide a brief summary of the main ideas contained within each chapter,
including their main contributions to the operations management literature.

In Chapter 2, we propose a new method for inverse optimization, which refers to the
estimation of unknown parameters of a convex optimization problem from (potentially noisy)
observations of its optimal solutions. This work is motivated by the recognition that a signifi-
cant share of real world data represents decisions made by individuals or firms. This observed
“decision data” can often be characterized as approximate solutions to suitably defined op-
timization problems. Accordingly, estimating the parameters of these latent optimization
problems can shed insight into the agent’s behavior, and also enable the design of contracts
or mechanisms that induce desirable behavior from the agent.

Our key contribution is a new estimator for inverse optimization in the setting where ob-
servations of the optimal solution are noisy. We show that our approach produces parameter
estimates that attain two statistical properties, which we call risk consistency and estimation
consistency. In short, risk consistency refers to asymptotically optimal out-of-sample pre-
dictive performance, and estimation consistency refers to accurate inference of the unknown
model parameters. While the formulation achieves these valuable statistical properties, it also
takes the form of a bi-level program, which are in general non-convex and therefore difficult
to solve to optimality. Therefore, our secondary contribution in Chapter 2 is to propose two
algorithms for solving the bilevel formulation, both of which leverage a novel duality-based
reformulation. We also prove that existing convex formulations for inverse optimization from
the literature are statistically inconsistent, which implies that these approaches will gener-
ate parameter estimates that converge to incorrect values. This is perhaps not unexpected,
because we also prove that the problem of inverse optimization with noisy data is NP-hard.

Additionally, we propose a novel reformulation for bilevel programs that contains a convex
subproblem. This convex structure is absent if standard approaches (i.e., Karush-Kuhn-
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Tucker conditions) are used to describe the lower-level problem. In particular, we propose
to upper bound the objective function by its dual, which enforces a zero duality gap and
therefore describes an optimal solution. The benefit of our optimality condition is it has
convexity properties that support the design of our solution algorithms.

In Chapter 3, we consider the data-driven redesign of a class of contracts currently
in use by the Centers for Medicare and Medicaid Services, known as the Medicare Shared
Savings Program (MSSP). The MSSP is a voluntary program that aims to control costs by
incentivizing Medicare providers to reduce healthcare spending through increasing the effi-
ciency of healthcare delivery. Providers are assigned financial benchmarks based on their
historical spending and are given bonus payments for reducing spending to below their fi-
nancial benchmark. A key step in our analysis is to build a model of provider behavior from
financial data from the MSSP. We leverage the key idea from Chapter 2 by formulation an
estimator for provider behavior as an inverse optimization problem.

Our specific contributions in Chapter 3 are as follows. First, we prove that, under rea-
sonable conditions, introducing a performance-based subsidy to the MSSP can increase total
Medicare savings, despite the additional payments that must be made to the provider. Since
the provider always benefits from subsidy payments, this result implies the existence of a
subsidized contract that dominates all possible contracts within the current program. In
other words, we show that introducing a subsidy can boost Medicare savings in addition to
increasing provider payments, making the MSSP more attractive to providers. We also show
that providers that are ineffective at generating savings may drop out of the MSSP under
the current contract, which provides further support in favor of introducing a subsidy to the
MSSP.

Second, based on our structural estimation, we find that optimizing the shared savings
rate of the existing MSSP contract results in minimal improvements to Medicare savings.
Moreover, optimizing the shared savings rate has the undesirable effect of decreasing provider
payments, which can further jeopardize provider participation. By contrast, we estimate that
under the proposed contract, Medicare savings and provider payments may increase by 43%
and 8%, respectively, which supports the dominance result discussed above, and provides
evidence in favor of incorporating provider investment subsidies into a revised MSSP contract.
We also find that the proposed subsidized contract performs favorably in comparison to a
fully non-parametric contract, which represents the theoretical best performance that can be
expected under the estimated model.

Third, our estimation also reveals that providers with high benchmark expenditures are
more likely to be effective at generating savings than providers with low benchmarks. On
average, we find that providers with benchmark expenditures of less than $10,000 per ben-
eficiary were unable to generate savings on a per beneficiary basis, whereas providers with
benchmarks greater than $14,000 reduced spending by $260 per beneficiary. This dispar-
ity in provider performance may be explained by the fact that the financial benchmarks
are calculated based on the provider’s historical spending. As a consequence, an provider
with historically high spending may have relatively more “room for improvement” than an
provider that has historically been cost efficient. Since provider payments are proportional to
savings, our finding suggests that providers with low benchmarks are at an increased risk of
abandoning the MSSP, which highlights a need for adjusting the benchmarking methodology.

In Chapter 4, we consider a more localized healthcare policy problem: improving sur-
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vival outcomes from public location cardiac arrest by equipping bystanders with automated
external defibrillators (AED) and empowering them to act as “lay responders”. Our contri-
butions in Chapter 4 are as follows. First, we present a robust optimization model for AED
deployment that accounts for uncertainty in the spatial distribution of cardiac arrests. Our
model permits cardiac arrests to arrive anywhere within a continuous service area, which we
approximate through a fine discretization. We use historical cardiac arrest data to construct
a distributional uncertainty set that consists of a set of generally-shaped uncertainty regions,
where only the probability of the next cardiac arrest event occurring within each uncertainty
region is known. We also present an auxilliary result that shows that our choice of uncer-
tainty set and parameters unifies the canonical p-median and p-center problems, as well as
their robust analogues.

Second, we present a bound on the approximation error induced by the discretization of
the service area, which depends on the granularity of the discretization and the configura-
tion of the uncertainty regions. The bound can be used to quantify the suboptimality of
the solutions produced by our discretized model with respect to the underlying continuous
problem.

Third, we propose a new row-and-column generation algorithm for solving the robust
AED deployment problem. Our proposed algorithm operates by exploiting the structure of
the uncertainty set, which allows it to substantially outperform a standard Benders-based
algorithm and a single-stage MIP reformulation. Notably, our algorithm decouples the size
of the master problem from the number of scenarios used to discretize the service area, which
allows us to efficiently solve problems where the discretization is extremely fine. Combined
with the bounds on the discretization error, the row-and-column generation algorithm allows
us to efficiently obtain provably near-optimal solutions to the underlying continuous problem.

Lastly, we present results from an extensive numerical study on the placement of public
AEDs using real cardiac arrest data from Toronto, Canada. Our results demonstrate that
accounting for uncertainty in cardiac arrest locations can decrease the distance between
cardiac arrest victims and the nearest AED by 9-15%, under both typical and worst-case
realizations of the uncertainty.
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Chapter 2

Inverse Optimization with Noisy
Data

2.1 Background and motivation

An appreciable share of real-world data represents decisions by individuals or firms, which
can often be characterized as the solutions of correspondingly-defined optimization prob-
lems. Estimating the parameters of these latent optimization problems has the potential to
enable the prediction of future decisions and support the design of data-driven mechanisms.
Examples of domains where this is important include health systems engineering (Aswani
et al., 2016), energy systems engineering (Ratliff et al., 2014a), and marketing (Green and
Srinivasan, 1990), where such estimation may lead to new approaches that enable the in-
dividualization of products and incentives. For example, consider a single homeowner who
each day observes an electricity price and weather forecast and then adjusts the tempera-
ture set-point for their home’s air-conditioner. By modeling this homeowner’s decision as
being generated from an optimization problem, we can directly estimate the price elasticity
of comfort – as measured by a standardized function of the temperature set-point and the
outside temperature (ASHRAE, 2013) – for this particular homeowner. This information is
valuable for designing personalized incentive bonus schemes that encourage participation in
demand-response programs (Aalami et al., 2010) or promote energy-efficiency (Aswani and
Tomlin, 2012).

This chapter considers the problem of estimating unknown model parameters of an op-
timization problem based on noisy measurements of its optimal solutions, which is often
referred to as inverse optimization. In particular, we provide the first statistical inference
perspective on the inverse optimization problem. This is important because real-world de-
cision data is noisy, either because (i) the data collection process introduces measurement
noise, (ii) the decision-maker deviates from optimal decisions – phenomena often referred to
as bounded rationality (Tversky and Kahneman, 1981), or (iii) there is mismatch between the
parametric form of the model and the true underlying decision-making process.

Noisy data make inverse optimization challenging because noise in the solution data can
preclude the existence of a single set of model parameters that renders all observed solutions
exactly optimal. In this setting, the goal of inverse optimization is to find a set of model
parameters that achieves a good “fit” with respect to the solution data. More specifically, we
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are interested in two statistical questions. First, how can we generate estimates of unknown
model parameters that asymptotically provide the best possible predictions from the chosen
parametric form of the model? In statistics, this property is known as risk consistency
(Bartlett and Mendelson, 2002, Greenshtein and Ritov, 2004, Chatterjee, 2014). Second,
when the chosen model matches the true model that is is generating the solution data, how
can we generate estimates that asymptotically converge to the true value of the unknown
parameters? In statistics, this property is known as consistency (Wald, 1949, Jennrich,
1969, Bickel and Doksum, 2006). We will use the term estimation consistency to distinguish
this concept from risk consistency. Note that estimation consistency generally implies risk
consistency.

Restated, a risk consistent estimate asymptotically achieves the lowest possible prediction
error (out of all possible predictions permitted by the class of models considered). Hence,
risk consistency and estimation consistency allow us to be confident that prediction and
estimation accuracy, respectively, will generally improve with additional data. By contrast,
an estimator that fails to be risk consistent (so-called inconsistent estimators) may yield poor
predictions, even if a large amount of data is available. Proving consistency of an estimator
is an important topic in the theory of statistical inference (cf. Wald (1949), Jennrich (1969),
Bartlett and Mendelson (2002), Greenshtein and Ritov (2004), Bickel and Doksum (2006),
Chatterjee (2014), Aswani (2015)), and consistency is considered to be a minimal requirement
for an estimator (Bickel and Doksum, 2006).

We provide an overview of the main sections of this chapter. In Section 2.3, we describe the
statistical and computational challenges of inverse optimization with noisy data. The section
begins by formally defining a (convex) forward optimization problem and its corresponding
inverse optimization problem. We specifically formulate the inverse optimization problem
such that its solution has the desired statistical consistency properties. Our approach is
conceptually similar to least squares regression in the sense that we also employ a sum-of-
squares loss function to fit a parametric model to noisy data. The substantive difference
is that inverse optimization involves estimating the (possibly multi-valued) solution set of
a general convex optimization problem, whereas regression typically involves estimating a
(single-valued) function which has a closed form expression. Due to these differences, much
of the classical statistical theory on least-squares regression (Jennrich, 1969) is invalid in
the inverse optimization setting, and thus new analysis is required. We also note that our
approach is not restricted to the use of an `2 norm: Results similar to those in this chapter
can be proved for other loss functions, such as absolute deviation or a likelihood function,
but we do not consider those extensions in this work.

In Section 2.4, we prove that our inverse optimization formulation produces statistically
consistent estimates of the unknown model parameters. The key technical difficulty in prov-
ing these results is dealing with continuity issues. In particular, the risk measures are not
continuous in the general case, but are rather lower semicontinuous. As alluded to above,
this precludes the use of the typical statistical machinery used to prove consistency results
(namely the uniform law of large numbers (Jennrich, 1969) and related uniform bounds
(Bartlett and Mendelson, 2002, Greenshtein and Ritov, 2004)). To circumvent this difficulty,
we define a regularized version of the inverse optimization problem that smooths out any
discontinuities. We show that the regularization parameter can be adjusted to approximate
the original inverse optimization problem to arbitrary accuracy. The regularized version of
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our formulation enables us to prove the desired statistical consistency results.
Section 2.5 provides two numerical algorithms for solving our formulation of the inverse

optimization problem. The first numerical algorithm is an enumeration algorithm that is
applicable to settings where the dimensionality of the parameter space is modest (i.e., at
most four or five parameters). The second numerical algorithm is a semiparametric approach
that combines nonparametric statistics with a modified version of our formulation of the
inverse optimization problem. The statistical consistency of these two numerical algorithms
are shown using the results from Section 2.4. Lastly, in Section 2.6, we use synthetic and
real data to demonstrate the competitiveness of our approach when compared to existing
heuristics (Keshavarz et al., 2011, Bertsimas et al., 2015).

2.2 Related literature

Existing inverse optimization models differ based on their specification of the loss function,
and the different models can be broadly categorized into either (i) deterministic settings,
or (ii) noisy settings. The work in the deterministic setting has primarily focused on single
observation situations, wherein a single optimal solution is observed and then used to esti-
mate parameters of the optimization problem. However, in the noisy setting past work has
considered situations with either a single observation and multiple observations.

We begin by describing some of the work in the deterministic setting: Ahuja and Orlin
(2001a) consider the estimation of objective function coefficients of general linear programs
given a single optimal solution. The feasible region of the inverse problem is formulated
using the constraints of the dual program and complemetary slackness conditions. Since the
observed solution is assumed to be optimal, feasibility of the inverse problem is guaranteed.
Iyengar and Kang (2005) and Zhang and Xu (2010) extend inverse optimization to certain
conic forward problems using conic duality theory. Inverse optimization models have also
been studied in the context of integer programs (Schaefer, 2009, Wang, 2009) and network
problems (Burton and Toint, 1992, Hochbaum, 2003, Zhang and Liu, 1996). With respect
to applications, inverse optimization models has been employed in many different domains,
including healthcare (Erkin et al., 2010, Chan et al., 2014), energy (Ratliff et al., 2014b, Saez-
Gallego et al., 2016), finance (Bertsimas et al., 2012), production planning (Troutt et al.,
2006), demand management (Carr and Lovejoy, 2000, Bajari et al., 2007), auction design
(Beil and Wein, 2003), telecommunication (Faragó et al., 2003) and geoscience (Burton and
Toint, 1992). We refer the reader to Heuberger (2004) for a survey of inverse optimization
methods.

The noisy setting has been less studied. Chan et al. (2014) propose a generalized approach
to inverse optimization for linear programs where the (single) observed solution may be
suboptimal or infeasible. Instead of complementary slackness, the authors use dual feasibility
and strong duality to formulate the inverse problem. To accommodate noise, the strong
duality constraint is relaxed to guarantee feasibility of the inverse problem. Saez-Gallego
et al. (2016) also consider inverse optimization for linear programs, and formulate the inverse
problem using KKT conditions. Keshavarz et al. (2011) formulates the inverse problem using
the KKT conditions of the optimization problem. To accommodate noise, the KKT conditions
are relaxed by introducing slack variables to allow the data to “approximately” satisfy the
KKT conditions. Similarly, Bertsimas et al. (2015) consider inverse problems where the
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observed data are assumed to be in an equilibrium. The authors enforce optimality conditions
using a variational inequality, and similarly relax the optimality conditions by introducing
slack variables to allow the data to “approximately” satisfy the variational inequality.

Our work in this chapter is most closely related to the noisy setting with multiple ob-
servations that has been previously considered by Keshavarz et al. (2011) and Bertsimas
et al. (2015). The key distinction between our work and these two previous approaches is
in the choice of the loss function. In (Keshavarz et al., 2011) and (Bertsimas et al., 2015),
the loss function is measured by the amount of slack required to make the measured data
satisfy an approximate optimality condition (either the KKT conditions (Keshavarz et al.,
2011) or a variational inequality describing optimality (Bertsimas et al., 2015)). In contrast,
our approach is to jointly estimate (i) the parameters of the optimization problem, and (ii)
the denoised versions of the measured data (i.e. the true underlying optimal solutions). By
performing this joint estimation, we are able to define our loss function to be the average
discrepancy between the measured data and the (estimated) denoised data. As we will show,
this difference in loss function leads to significantly improved statistical performance. A sec-
ondary distinction is that we propose the use of a novel optimality condition: specifically, we
upper bound the objective function of a convex optimization problem by its dual – thereby
enforcing a zero duality gap and guaranteeing optimality. An important benefit of using this
alternate optimality condition is that it has favorable convexity and continuity properties
(which are not available when using KKT conditions or variational inequalities to represent
optimality) that enable design of numerical algorithms for solving the inverse optimization
problem.

Lastly, we note here that the work in this chapter coincides with the paper by Aswani
et al. (2018b).

2.3 Model

This section begins by formalizing the notation for the forward problem, before defining the
noisy inverse optimization problem. For the case where we have access to data (rather than
the underlying distributions), we formulate a related sample average approximation of the
inverse optimization problem. We show that both these inverse problems are NP-hard. We
conclude by showing that existing heuristic approaches for solving the inverse optimization
problem are statistically inconsistent, meaning that in the limit of infinite data, these heuristic
approaches converge to incorrect estimates of the unknown model parameters and produce
sub-optimal estimates with respect to the expected prediction error.

We briefly summarize some of the less usual aspects of our notation. We use ‖·‖ to denote
the `2-norm. The indicator function 1(p) is defined to be

1(p) =

{
1, if condition p is satisfied

0, otherwise
(2.1)

The notation [r] = {1, . . . , r} refers to sequential set. The Kuratowski limit superior of a
sequence of sets Cν ⊆ Rd is defined as

lim supν(Cν) = {x ∈ Rd : lim infν dist(x, Cν) = 0}, (2.2)
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where dist(x, C) = inf{‖x− c‖ | c ∈ C}. We similarly define dist(B, C) = inf{dist(x, C) | x ∈
B}.

2.3.1 Forward optimization problem

Let x ∈ Rd be the decision variable, u ∈ Rm be the external input variable, and θ ∈ Rp be
the parameter vector. Then the forward optimization problem is given by

min
x
{f(x, u, θ) | g(x, u, θ) ≤ 0}, FOP

where f : Rd × Rm × Rp → R is a function and g : Rd × Rm × Rp → Rq is a vector-
valued function. The solution set of FOP is the set-valued function given by S(u, θ) =
arg minx{f(x, u, θ) | g(x, u, θ) ≤ 0}. The value function of FOP is given by

V (u, θ) = min
x
{f(x, u, θ) | g(x, u, θ) ≤ 0},

and the feasible set is defined as Φ(u, θ) = {x ∈ Rd : g(x, u, θ) ≤ 0}.

2.3.2 Inverse optimization problem

Suppose (u, y) ∈ Rm × Rd is a vector-valued random variable that is distributed according
to some unknown but fixed joint distribution P(u,y). Let U × Y ⊆ Rm be the support of
this distribution, meaning the smallest set that satisfies the property P(u,y)(U ,Y) = 1. If we
define the function

Q(θ) = E
(

min
x∈S(u,θ)

‖y − x‖2
)
, RISK

then the inverse optimization problem is given by

min {Q(θ) | θ ∈ Θ}, IOP

where Θ ⊆ Rp is a known set. We make the following assumptions:

A1. The functions f(x, u, θ) and g(x, u, θ) are continuous in x, u, θ and convex in x for fixed
u, θ.

A2. The set Θ is convex.

These assumptions are fairly mild. A1 is equivalent to stating that FOP is a convex op-
timization problem. Although A2 is necessary for the semiparametric algorithm presented
in Section 4 (because it ensures polynomial time computability of the algorithm), it is not
necessary for our main results regarding statistical consistency because these results only
require that Θ is well-posed. Hence, A2 is one way to ensure Θ is well-posed. An alternative
assumption under which our statistical consistency results can be shown to hold is if Θ is
discrete-valued and finite.

When the joint distribution P(u,y) is unknown, we cannot solve IOP without additional
information. Fortunately, we can leverage the iid measurements (ui, yi) for i ∈ [n]. In
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principle, we can solve IOP using the following sample average approximation:

min {Qn(θ) | θ ∈ Θ}, IOP–SAA

where

Qn(θ) = min
xi

1

n

n∑
i=1

‖yi − xi‖2

s.t. xi ∈ S(ui, θ), ∀i ∈ [n]

RISK–SAA

In the context of a decision-making agent, ui may be interpreted as an external signal the
agent responds to and yi as a noisy observation of the corresponding decision of the agent.
Note that in the expression RISK, the variable x is constrained to be an optimal solution of
the forward problem. Similarly, we may interpret xi as representing an underlying optimal
solution (unperturbed by noise) of FOP in the ith instance. Note also that while the ui and θ
are both parameters of FOP, they are different in that the ui are known and may vary across
the n observations, whereas θ is unknown and is fixed across all instances.

For a concrete example, consider the numerical experiments presented in Section 5.4,
where we estimate an individual’s utility function capturing the tradeoff between maintaing a
comfortable indoor temperature versus the amount of energy consumption (and implicitly the
air conditioning energy costs) required to cool the room. In that example, the u represents
the outside air temperature, θ1 captures the decision-maker’s (unknown) tradeoff between
comfort and energy consumption, θ2 parameterizes their (unknown) preferred temperature
(i.e., the preferred temperature is θ2 +u), x represents the true optimal temperature setpoint
(for the given u and θ), and y represents the temperature set-point that we observe.

2.3.3 NP-hardness

Although all the functions and sets involved in FOP and IOP are convex, solving IOP is
NP-hard.

Theorem 2.1. If A1 and A2 hold, then IOP is NP-hard.

Inapproximability results for IOP can be shown under the setting where Θ is allowed to be
a discrete set (i.e, A1 holds, but A2 does not hold). In particular, there is a straightforward
reduction from the shortest vector problem. This implies that IOP is NP-hard to approximate
to within any factor up to 2(log d)1−ε , for any ε ≥ 0 (Haviv and Regev, 2012).

Polynomial-time solvability of IOP is possible in very specific settings. For instance,
if FOP is a QP with the solution set S(u, θ) = arg minx{x2 − 2(θ + u) · x} = θ + u or
an LP with the solution set S(u, θ) = arg minx{x : x = θ + u} = θ + u, then IOP is a
QP: minθ∈Θ {E((y − θ − u)2)}, and its minimizer is θ∗ = E(y − u). If FOP is a general
linear program, then the inverse problem IOP takes the form of a quadratic bilevel program,
which are generally NP-hard (Audet et al., 1997). Branch-and-bound algorithms have been
proposed for solving such bilevel programs (Bard and Moore, 1990). In general, since S(ui, θ)
is the optimal solution sets to FOP under input ui, the problem IOP–SAA is a bilevel program,
which are usually difficult to solve (Dempe et al., 2015). In fact, IOP–SAA is also NP-hard
to solve.
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Corollary 2.1. If A1 and A2 hold, then IOP–SAA is NP-hard.

Polynomial-time solvability of IOP–SAA is possible in very specific settings. For instance,
the constructions in Remark ?? lead to instances of IOP–SAA that are quadratic programs.

2.4 Consistent estimation in inverse optimization

We begin with two statistical definitions of consistency: risk consistency and estimation con-
sistency. These definitions are stated in order of increasing stringency, meaning that risk
consistency is necessary (in situations with sufficient continuity) for estimation consistency.
The first definition relates to the best predictions possible using the given forward optimiza-
tion problem.

Definition 2.1 (Risk consistency). An estimate θ̂n ∈ Θ is risk consistent if

Q(θ̂n)
p−→ min {Q(θ) | θ ∈ Θ}. (2.3)

We should interpret the function Q(θ) as the expected prediction error when the parameter
values are θ, where the prediction is the solution set S(u, θ). And so the above definition is
stating that an estimator θn is risk consistent if the expected prediction error of the estimate
θn converges in probability to the minimum prediction error possible when we use the forward
optimization model described by FOP and constrain θ to belong to Θ. In other words, an
estimator is risk consistent if it asymptotically provides the best predictions possible.

The second statistical definition relates to the situation where the forward optimization
model described by FOP is correct and there is a true parameter. In particular, it applies
to situations where the below identifiability condition is satisfied. Briefly summarized, the
identifiability condition is satisfied when FOP is such that two different parameter values θ1

and θ2 lead to two different distributions for measurements of the decision data yi. More
details and clarifying examples are found in Appendix 2.4.4.

IC. There exists a unique θ0 ∈ Θ such that the following three sub-conditions hold: (i)
y = ξ+w, where ξ ∈ S(u, θ0), E(w) = 0, E(w2) < +∞, and u, ξ are independent of w, (ii) for
all θ ∈ Θ \ θ0 there exists U(θ) ⊆ U such that P(u ∈ U(θ)) > 0 and dist(S(u, θ),S(u, θ0)) > 0
for each u ∈ U(θ), and (iii) for each fixed θ ∈ Θ we have P({u : S(u, θ) is multivalued}) = 0.

The first sub-condition of the identifiability condition is stating that the solution data yi is a
noisy measurement (with noise random variable w) of a point that belongs to the solution set
S(ui, θ0), and the second sub-condition is stating that when θ is different from θ0 then this
leads to different solution sets. This second sub-condition is necessary, because otherwise we
could not distinguish the predictions of FOP when the parameters θ differ from θ0. The third
sub-condition eliminates pathological cases that occur when the solution set at a fixed θ is
so large that it approximately encompasses all possible solutions. Note that this third sub-
condition is mild, and examples where it is satisfied include when (i) FOP is strictly convex,
or when (ii) FOP is a linear program with random coefficients drawn from a continuous
distribution; it holds for other examples as well. The second statistical definition is related
to this identifiability condition.

10



Definition 2.2 (Estimation consistency). Suppose IC holds. An estimate θ̂n ∈ Θ is estima-
tion consistent if

θ̂n
p−→ θ0. (2.4)

Stated in words, an estimate θ̂n is estimation consistent if it converges in probability to the
true parameter values θ0. This is the classical notion of consistency of a statistical estimator
(Bickel and Doksum, 2006).

Though these statistical notions of consistency are quite natural, it is the case that existing
heuristic approaches for solving the inverse optimization problem are statistically inconsistent.
We will use VIA to refer to the variational inequality method of Bertsimas et al. (2015), and
we refer to the KKT conditions approach of Keshavarz et al. (2011) as KKA.

Proposition 2.1. Suppose A1,A2 and IC hold. Then VIA (Bertsimas et al., 2015) and
KKA (Keshavarz et al., 2011) are not estimation consistent.

Corollary 2.2. Suppose A1,A2 hold. Then VIA (Bertsimas et al., 2015) and KKA (Ke-
shavarz et al., 2011) are not risk consistent.

The intuition for why VIA and KKA are statistically inconsistent is that they are minimiz-
ing an incorrect measure of error: These approaches generate an estimated set of parameters
that minimizes the level of suboptimality of the measured solution data. However, this leads
to biased estimates because suboptimality is measured by (i) deviations in the value of the
objective function of FOP and (ii) the amount of constraint violation of FOP, whereas noise
directly perturbs the solution data. This is in contrast to our approach (as exemplified by
IOP-SAA) which generate an estimated set of parameters that minimizes the deviation be-
tween predicted and measured solution data. This distinction between suboptimality and
deviations in the solution data becomes most apparent (and critical) in problems with con-
straints.

Given the statistical inconsistency of existing heuristics, we propose to solve the noisy
inverse optimization problem by instead solving SAA-IOP. First, we will need to impose a
regularity condition to ensure that FOP and IOP–SAA are numerically well-posed:

R1. For each u ∈ U and θ ∈ Θ, the feasible set Φ(u, θ) is closed, bounded, and has a
nonempty interior (i.e., int(Φ(u, θ)) 6= ∅). The feasible set Φ(u, θ) is also absolutely bounded,
meaning there exists M > 0 such that ‖x‖≤M , for all x ∈ Φ(u, θ), u ∈ U , and θ ∈ Θ.

Condition R1 is equivalent to requiring FOP to have a strictly feasible point (i.e., Slater’s
condition holds), and that the feasible set of FOP is closed and bounded. The first sub-
condition requiring the feasible set be closed and bounded is needed to ensure the existence
of well-posed primal and dual solutions, and it could be replaced by more general conditions.
For instance, we could have instead assumed FOP satisfies the uniform level-boundedness
condition (Rockafellar and Wets, 1998). We use the above for simplicity of stating the results.
The condition that Φ(u, θ) has a nonempty interior1 is needed to ensure continuity of S(u, θ)
through application of the Berge Maximum Theorem (Berge, 1963).

1

1R1 can be relaxed to requiring a nonempty relative interior if the affine constraints of FOP are of the
form Mx + ζ(u, θ) = 0, where M is a matrix and ζ is a continuous function. The reason is that our proofs
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The simplest case of statistical consistency of SAA-IOP occurs when the function f(x, u, θ)
is strictly convex, because of the following result:

Proposition 2.2. Suppose A1,A2 and R1 hold. If f(x, u, θ) is strictly convex in x for fixed
u ∈ U and θ ∈ Θ, then Qn(θ) is continuous.

In this case, we can prove risk and estimation consistency using standard arguments
(Jennrich, 1969, van der Vaart, 2000, Bickel and Doksum, 2006) from statistics that use the
uniform law of large numbers (Jennrich, 1969). However, this approach cannot be applied to
the more general case where f(x, u, θ) is not strictly convex. In particular, when f(x, u, θ) is
not strictly convex, the function Qn(θ) will not generally be continuous. And so a different ar-
gument is required because the uniform law of large numbers does not apply to discontinuous
functions.

Our approach will be to use a statistical consistency result originally due to Wald (1949)
that uses a one-sided bounding argument. The advantage of this approach is that it only
requires lower semicontinuity, which we show always holds for Qn(θ). However, this result
only implies the estimates θ̂n converge in probability to the set of minimizers of Q(θ). This
cannot imply risk consistency in the general case because Qn(θ) is lower semicontinuous,
which means that Q(θ̂n) can remain bounded from the minimum Q(θ). And so for the
general case, we will show that a weak risk consistency result holds.

To develop the statistical consistency results for the most general case, we will develop
a regularized version of RISK–SAA that is guaranteed to be continuous. The first step of
this construction involves proposing a new reformulation for bilevel programs that we call
a duality-based reformulation. Next, we use this reformulation to construct a regularized
version of RISK–SAA and prove its continuity. We use this regularized version to prove
statistical consistency results about IOP–SAA and a regularized version of IOP–SAA.

2.4.1 Duality-based reformulation

One approach to solving bilevel problems (such as IOP–SAA) is to reformulate the problem
as a normal (i.e., single level) optimization problem by replacing the constraints xi ∈ S(ui, θ)
with an optimality condition (Dempe et al., 2015). One possibility is to replace xi ∈ S(ui, θ)
by the KKT conditions of FOP, and another possibility is to upper bound the objective
function using the value function f(xi, ui, θ) ≤ V (ui, θ). Unfortunately, these approaches
often encounter numerical difficulties. The KKT approach leads to a nonlinear program
with combinatorial complexity, because of the complimentary slackness in KKT. The value
function approach is difficult to implement because closed-form expressions for the value
function are not available except for very special cases.

Here, we present a new optimality condition. Given the numerical difficulties of existing
approaches, we propose to solve bilevel programs (such as IOP–SAA) by using the Lagrangian
dual function to upper bound the objective function. The following proposition shows that
our idea of using the dual as an upper bound represents a novel optimality condition.

make use of a result (Example 5.10 of Rockafellar and Wets (1998)) on the continuity of parametrized convex
constraints with a nonempty interior, and this result can be generalized for the above case through minor
modifications (using corresponding results on relative interiors from Section 2.H of Rockafellar and Wets
(1998)) to ensure continuity of the feasible set of FOP with a nonempty relative interior. Generalizing Example
5.10 of Rockafellar and Wets (1998) or our results to cases with more complex affine constraints will require
further study.

12



Proposition 2.3. Suppose A1 and R1 hold. Then x ∈ S(u, θ) if and only if there exists a
corresponding λ ∈ Rq for which x, λ satisfy the inequalities

f(x, u, θ)− h(λ, u, θ) ≤ 0

g(x, u, θ) ≤ 0

λ ≥ 0

(2.5)

where h(λ, u, θ) is the Lagrangian dual function of FOP.

Proposition 2.3 is a consequence of strong duality for convex optimization problems. We
can now exactly reformulate RISK–SAA as the following optimization problem:

Qn(θ) = min
xi,λi

1

n

n∑
i=1

‖yi − xi‖2

s.t. f(xi, ui, θ)− h(λi, ui, θ) ≤ 0, ∀i ∈ [n]

g(xi, ui, θ) ≤ 0, ∀i ∈ [n]

λi ≥ 0, ∀i ∈ [n]

DB–RISK–SAA

It should be noted that the formulation DB–RISK–SAA requires the Lagrangian dual function
h(λ, u, θ) to be computable in closed form, which is the case for a large class of convex (e.g.,
linear, quadratic, conic) optimization problems that arise in practice (Boyd and Vanden-
berghe, 2009). In cases where the dual function does not have an analytical representation,
we may still solve DB–RISK–SAA by developing an algorithm that computes h(λ, u, θ) nu-
merically, although designing such an algorithm is beyond the scope of this work.

One important feature of this reformulation is that it is a convex optimization problem
for fixed values of θ.

Proposition 2.4. Suppose A1 and R1 hold. Then DB–RISK–SAA is a convex optimization
problem for fixed θ.

Proposition 2.4 follows directly from A1 and the concavity of the dual function in λ.

2.4.2 Regularized formulation

Recall that Qn(·) is generally not continuous even when A1,A2, and R1 hold. Consequently,
we develop a regularized version of the duality-based problem that is guaranteed to be con-
tinuous. We define the ε-regularized version of the duality-based problem to be

Qn(θ; ε) = min
xi,λi

1

n

n∑
i=1

‖yi − xi‖2

s.t. f(xi, ui, θ)− h(λi, ui, θ) ≤ ε, ∀i ∈ [n]

g(xi, ui, θ) ≤ ε, ∀i ∈ [n]

λi ≥ 0, ∀i ∈ [n]

R–DB–RISK–SAA
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We associate this to a regularized version of the sample average approximation of the inverse
optimization problem:

min{Qn(θ; ε) | θ ∈ Θ}. R–IOP–SAA

The idea of this regularization is that we relax the optimality conditions to allow points xi
to be an ε-optimal solution. Recall that a point

xε ∈ ε- arg min{f(x) | g(x) ≤ 0}, (2.6)

if f(xε)− f∗ ≤ ε and g(xε) ≤ ε, where f∗ = min{f(x) | g(x) ≤ 0}.
Proposition 2.5. Suppose A1 and R1 hold. Then a point x is an ε-optimal solution if and
only if there exists a corresponding λ ∈ Rq for which x, λ satisfy the inequalities

f(x, u, θ)− h(λ, u, θ) ≤ ε
g(x, u, θ) ≤ ε
λ ≥ 0

(2.7)

where h(λ, u, θ) is the Lagrangian dual function of FOP.

Proposition 2.5 follows from continuity of f(x, u, θ) and g(x, u, θ). One benefit of this
regularization is that it ensures convexity of R–DB–RISK–SAA when θ is fixed.

Proposition 2.6. Suppose A1,A2 and R1 hold. Then R–DB–RISK–SAA is a convex opti-
mization problem for fixed θ.

Proposition 2.6 follows immediately from the convexity of FOP and concavity of the
dual function h(λ, u, θ) in λ. Though the above propositions show that the regularization is
equivalent to replacing optimality conditions with ε-optimality conditions while maintaining
convexity for fixed values of θ, the main benefit of the regularization is that it ensures the
function Qn(θ; ε) defined in R–DB–RISK–SAA is continuous in θ, ε for any ε > 0.

Proposition 2.7. Suppose A1,A2 and R1 hold. Then the function Qn(θ; ε) is jointly con-
tinuous in θ, ε for any ε > 0.

A point of note is that within the above proof, we show that the set of ε-optimal solu-
tions of a parametric convex optimization problem S(ui, θ; ε) is continuous with respect to
the parametrization θ; this is in contrast to the solution set of a parametric convex opti-
mization problem S(ui, θ), which is in general only upper hemicontinuous with respect to
the parametrization θ. The case of a parametric strictly convex optimization problem is the
exception, which as shown in the proof of Proposition 2.2 has a continuous (with respect to
the parametrization θ) solution set.

The function Qn(θ; ε) will not be jointly continuous in θ, ε at ε = 0. However, it satisfies
another property that is useful for solving IOP–SAA:

Proposition 2.8. Suppose A1,A2 and R1 hold, and let εν > 0 be a monotone decreasing
sequence with εν → 0. Then we have min{Qn(θ; εν) | θ ∈ Θ} → min{Qn(θ) | θ ∈ Θ} and

lim supν(arg min{Qn(θ; εν) | θ ∈ Θ}) ⊆ arg min{Qn(θ) | θ ∈ Θ}. (2.8)
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If zν > 0 is a monotone decreasing sequence with zν → 0, then we also have

lim supν(zν- arg min{Qn(θ; εν) | θ ∈ Θ}) ⊆ arg min{Qn(θ) | θ ∈ Θ}. (2.9)

Corollary 2.3. Suppose A1,A2 and R1 hold. Given any d > 0, there exists E,Z > 0
such that if θ̂n ∈ z- arg min{Qn(θ; ε) | θ ∈ Θ} for any 0 ≤ z ≤ Z and 0 ≤ ε ≤ E, then
dist(θ̂n, arg min{Qn(θ) | θ ∈ Θ}) < d.

Note that Corollary 2.3 is simply a restatement of Proposition 2.8. These results say that
approximately solving R–IOP–SAA is equivalent to approximately solving IOP–SAA.

2.4.3 Statistical consistency

In order to prove statistical consistency, we will need to impose an additional regularity con-
dition that ensures expectations of corresponding random variables exist.

R2. The set Θ is closed and bounded, and E(y2) < +∞.

This regularity assumption ensures that the law of large numbers (Wald, 1949, Jennrich,
1969, van der Vaart, 2000) holds in our setting. The above expectation condition holds in
many situations, including when Y is bounded or when y has a sub-exponential distribution
(Vershynin, 2012). This allows for settings where IC holds with measurement noise that is
Gaussian, Bernoulli, bounded support, Laplacian, Exponential, and many other distributions.

Our first statistical consistency result is that solving R–IOP–SAA is risk consistent. To
state the result, we must formally define the regularized version of the inverse optimization
problem. The regularized risk is

Q(θ; ε) = E
(

min
x∈S(u,θ;ε)

‖y − x‖2
)
, R–RISK

where S(u, θ; ε) = {x ∈ Rd : f(x, u, θ) ≤ V (u, θ) + ε, g(x, u, θ) ≤ ε} is the set of ε-optimal
solutions to FOP. For given ε > 0, we define the regularized inverse optimization problem to
be

min{Q(θ; ε) | θ ∈ Θ}. R–IOP

The first statistical consistency result specifically concerns nearly-optimal solutions of R–
IOP–SAA. We say that a sequence of solutions θ̂n is nearly-optimal for R–IOP–SAA with fixed
ε > 0 in probability if for any δ > 0 we have

lim
n→∞

P
(

dist(θ̂n, arg min{Qn(θ; ε) | θ ∈ Θ}) > δ
)

= 0. (2.10)

Theorem 2.2. Suppose A1,A2 and R1,R2 hold. Given any fixed ε > 0, if θ̂n is nearly-
optimal for R–IOP–SAA in probability, then we have Q(θ̂n; ε)

p−→ min {Q(θ; ε) | θ ∈ Θ}.

This result says that if we choose any ε > 0 and solve R–IOP–SAA to generate an estimate
θ̂n, then the predictions given by the ε-optimal solutions to FOP (i.e., S(u, θ̂n; ε)) are asymp-
totically the best possible set of predictions when the error of predictions is measured using
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R-RISK. A stronger risk consistency result is not possible in the general setting because Q(θ)
is typically discontinuous, and so the above result can be interpreted as a weak consistency
result.

A stronger risk consistency result is possible in the case where f(x, u, θ) is strictly convex.
We say that a sequence of solutions θ̂n is nearly-optimal for IOP–SAA in probability if for
any δ > 0 we have

lim
n→∞

P
(

dist(θ̂n, arg min{Qn(θ) | θ ∈ Θ}) > δ
)

= 0. (2.11)

Theorem 2.3. Suppose A1,A2 and R1,R2 hold. If f(x, u, θ) is strictly convex in x (for
fixed u ∈ U and θ ∈ Θ) and θ̂n is nearly-optimal for IOP–SAA in probability, then we have

Q(θ̂n)
p−→ min {Q(θ) | θ ∈ Θ}.

This result says that when FOP is a strictly convex optimization problem and we solve
IOP–SAA to generate an estimate θ̂n, then the predictions given by the solutions to FOP (i.e.,
S(u, θ̂n)) are asymptotically the best possible set of predictions when the error of predictions
is measured using RISK. The reason it is possible to show risk consistency in this case is that
Q(θ) will be continuous in this setting. Our final statistical consistency result is that solving
IOP–SAA is estimation consistent when IC holds.

Theorem 2.4. Suppose A1,A2 and R1,R2 and IC hold. If θ̂n is nearly-optimal for IOP–
SAA in probability, then we have θ̂n

p−→ θ0.

2.4.4 Identifiability in inverse optimization

Estimation consistency in any statistical setting (including inverse optimization with noisy
data) requires that an identifiability condition holds, and such identifiability conditions can
be stated under a variety of different mathematical formulations (Wald, 1949, Jennrich, 1969,
Bartlett and Mendelson, 2002, Greenshtein and Ritov, 2004, Bickel and Doksum, 2006, Chat-
terjee, 2014, Aswani, 2015). The intuition for these different formulations is the same: Es-
sentially, an identifiability condition states that the output of the model is different for two
distinct sets of model parameters. It is important to note that identifiability is a statistical
property of the model and the error metric used. Consequently, it is possible for an estimator
to be statistically inconsistent, even when an identifiability condition holds (see for instance
Proposition proposition:estincon). In the context of inverse optimization with noisy data, we
define an identifiability condition IC.

Showing that IC holds is complicated by the presence of constraints in FOP. To illustrate
this, consider two related instances of FOP with x ∈ R and θ ∈ [0, 2]. The first min(x− θ)2

is FOP-I, and the second min{(x − θ)2 | x ≤ 1} is FOP-II. Since these two problems are
strictly convex, their minimizers are unique. Next, suppose we would like to estimate θ given
a (noiseless) measurement yi of the minimizer. Observe that FOP-I is identifiable because we
must have θ = yi. However, FOP-II is not identifiable because if yi = 1, then we may have
any θ ∈ [1, 2]. Thus, the constraint x ≤ 1 renders FOP-II unidentifiable, and precludes the
possibility of IC holding for FOP-II.

2Note that this notion of near-optimality is defined with respect to IOP–SAA, whereas the definition of
near-optimality given in (15) is with respect to the regularized formulation R–IOP–SAA.
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Though FOP-II is not identifiable, a related problem is identifiable because of external
inputs. In particular, consider an FOP-III with x ∈ R and θ ∈ [0, 2] that is given by min{(x−
θ − u)2 | x ≤ 1}. This problem is strictly convex, and so its minimizer is unique for each
fixed value of u. In fact, the minimizer is given by yi = min{(θ + ui), 1}. And so a sufficient
condition for identifiability of FOP-III is if P(ui ≤ −1) > 0. For instance, if ui = −1 then
yi = θ − 1 and so θ is uniquely determined by yi. The presence of the input parameter u
ensures identifiability of FOP-III.

2.5 Solution methods

Solving IOP–SAA with Qn(θ) as formulated in DB–RISK–SAA is still difficult because it is a
nonconvex problem even under A1,A2,R1. We will propose two approaches to solving this
problem. The first is an enumeration algorithm that is applicable to situations where p is
modest (i.e., the θ ∈ Rp parameter has between 1 to 5 dimensions). The second approach
we describe is a semiparametric algorithm, and it can be used in cases where θ ∈ Rp is
higher-dimensional and the noise term w has a specific distribution. For both algorithms, we
will prove that the estimates computed by these methods satisfy the conditions required for
statistical consistency.

The difference in the two algorithms is how they trade-off computational and statistical
performance. The enumeration algorithm requires computation exponential in p, while the
semiparametric algorithm needs computation polynomial p computation. But the statistical
performance of the methods will be the opposite. The estimates and risk of the enumeration
algorithm are anticipated to converge at faster rate (with respect to the number of data
points) than those of the semiparametric algorithm. The reason is that the semiparametric
algorithm makes use of a nonparametric step (via the L2NW estimator), which is well-
known to generally converge at a slower rate than a fully parametric approach. Precisely
characterizing the statistical convergence rates of the two algorithms is left open for future
work.

Though the enumeration algorithm needs exponential in p computation, it is still prac-
tical for many real-world problems. Many principal-agent problems (e.g. Zhang and Zenios
(2008), Crama et al. (2008)) use models where the parameter set is modest in dimensionality
(i.e., utility functions with 2 or 3 type parameters). We demonstrate the practicality of the
enumeration algorithm in Section 5 through an energy-related example using real data.

2.5.1 Enumeration algorithm

The main idea of this algorithm is that computing Qn(θ) and Qn(θ; ε) for fixed values of
θ can be done in polynomial time since DB–RISK–SAA and R–DB–RISK–SAA are convex
optimization problems by Propositions 2.4 and 2.6, respectively. This approach enumerates
over different fixed values of θ and solves a series of polynomial time problems. However, Θ
is a continuous set since because it is convex by A2. To enable enumeration, we discretize
Θ using a δ-net of Θ, which we will call T (δ). (Here, we define this to mean that T (δ) is a
finite set such that maxθ∈Θ mint∈T (δ)‖t− θ‖≤ δ.) We then compute Qn(θ; ε) for all θ ∈ T (δ).

And our approximate solution is finally given by θ̂n = arg min{Qn(θ; ε) | θ ∈ T (δ)}.
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Algorithm 1: Enumeration Algorithm

Data: fixed δ > 0 and ε ≥ 0
Result: estimate θ̂n

1 set T (δ) to be δ-net of Θ;
2 foreach θ ∈ T (δ) do
3 compute Qn(θ; ε) by solving R–DB–RISK–SAA;

4 set θ̂n ∈ arg min{Qn(θ; ε) | θ ∈ T (δ)};

This approach requires continuity of Qn(θ; ε) because otherwise performing an enumera-
tion via the δ-net T (δ) may not get sufficiently close to the optimal value. However, Qn(θ; ε)
is only guaranteed to be continuous at ε = 0 when f(x, u, θ) is strictly convex for fixed u, θ
by Proposition 2.2 and since Qn(θ; 0) = Qn(θ) by definition. Hence, we require ε > 0 for
cases where f(x, u, θ) is not strictly convex to ensure continuity of Qn(θ; ε) by Proposition
2.7. Of course, when f(x, u, θ) is strictly convex we can set ε = 0 and maintain continuity of
Qn(θ; ε).

This approach is formally presented in Algorithm 1. Importantly, it can be shown that
this enumeration algorithm generates nearly-optimal solutions of IOP–SAA and R–IOP–SAA.
This means the solutions computed by this algorithm satisfy the conditions in Theorems 2,
3, and 4 that are needed for statistical consistency. In practice, ε is chosen to be ε = 0 when
FOP is strictly convex, and otherwise ε is chosen to be a small positive value that controls
the desired precision of the resulting estimate. An appropriate approach to choose ε and δ is
to use cross-validation, which is a standard data-driven approach from statistics for choosing
such parameters (Hastie et al., 2009).

Theorem 2.5. Suppose A1,A2 and R1 hold. Given any d > 0, there exists E,∆ > 0 such
that if θ̂n is computed using the enumeration algorithm (i.e., Algorithm 1) for any 0 < ε ≤ E
and 0 < δ ≤ ∆, then dist(θ̂n, arg min{Qn(θ) | θ ∈ Θ}) < d.

Theorem 2.5 states that the estimate obtained using the enumeration algorithm will be
at most a distance of d from the set of optimal solutions to IOP-SAA. It immediately follows
that for small d, the solution of the enumeration algorithm will retain the desirable statistical
properties of the solutions to IOP-SAA. As mentioned above, in the special case where FOP
is a strictly convex optimization problem we can simplify the algorithm by setting ε = 0. We
have a corresponding result about the correctness of the algorithm in this case.

Theorem 2.6. Suppose A1,A2 and R1 hold. If f(x, u, θ) is strictly convex in x (for fixed
u ∈ U and θ ∈ Θ), then given any d > 0 there exists ∆ > 0 such that if θ̂n is computed using
the enumeration algorithm for ε = 0 and any 0 < δ ≤ ∆, then dist(θ̂n, arg min{Qn(θ) | θ ∈
Θ}) < d.

2.5.2 Semiparametric algorithm

Our second approach to solving IOP–SAA is a semiparametric approach. We will need to
make an additional assumption about the structure of the problem, as well as impose two
more regularity conditions, in order to be able use this approach. We begin with the addi-
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tional assumption.

A3. The constraint function g(x, u, θ) is independent of θ, meaning it can be written as
g(x, u, θ) = g0(x, u). The objective function f(x, u, θ) is affine in θ, meaning it can be written
as

f(x, u, θ) = f0(x, u) +

p∑
j=1

θjfj(x, u). (2.12)

Independence of the constraint g from θ is required because the semiparametric approach
relies on fully knowing the feasible region of the forward problem. We note that this is not
a particularly strong assumption, since in utility estimation settings one would expect the
unknown parameters to appear in the objective function of the forward problem. Keshavarz
et al. (2011) and Bertsimas et al. (2015) also assume that the feasible region of the forward
problem is independent of the unknown parameters. The second part of A3 ensures that the
Lagrangian dual function h(λ, u, θ) is concave in θ. This will enable efficient computation
in our semiparametric approach. Next, we describe the two additional regularity conditions.
The first is

R3. The objective function f(x, u, θ) is strictly convex in x (for fixed u ∈ U and θ ∈ Θ)
and twice continuously differentiable in x, u, θ, and the constraints g(x, u, θ) are continuously
differentiable in x, u, θ.

Condition R3 ensures smoothness in the objective function and constraints. The reason we
also include a strict convexity assumption is that it acts as a regularity condition: Strictly
speaking, we require uniqueness of solutions to FOP (which is needed for the de-noising step
in our semiparametric algorithm) and a second-order growth condition

f(x, u, θ) ≥ V (u, θ) + c · [dist(x,S(u, θ))]2, (2.13)

for some c > 0 and all x ∈ Φ(u, θ) (which ensures Hölder continuity of the solution set
S(u, θ) with degree 1/2 (Bonnans and Shapiro, 2000)). Unfortunately, this growth condition
can be difficult to directly check even though it has been completely characterized for convex
optimization problems (Bonnans and Ioffe, 1995b). Fortunately, strict convexity with Slater’s
constraint qualification (which holds under R1) implies both uniqueness of solutions to FOP
and this second-order growth condition (Bonnans and Ioffe, 1995a). Hence R3 is sufficient
for proving statistical convergence using our algorithm. We also note that our results could
be extended to the case where the problem satisfies the first-order growth condition

f(x, u, θ) ≥ V (u, θ) + c · dist(x,S(u, θ)), (2.14)

for some c > 0 and all x ∈ Φ(u, θ). Under this alternate growth condition, the solution set
is Hölder continuous with degree 1 (instead of 1/2). This affects the bound expression in
Proposition 2.9 slightly, but otherwise does not qualitatively change our results.

R4. The noise random variable w has a sub-exponential distribution, meaning there exists
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c > 0 such that P(|w|> t) ≤ exp(1− t/c). Also, the probability density function µ(u) of u is
continuously differentiable and is bounded from zero (i.e., minu∈U µ(u) > 0).

This regularity condition ensures the distribution of the random variables w, u are not ex-
treme. Most commonly used heavy-tailed noise distributions are sub-exponential distribu-
tions, and so R4 is satisfied by Gaussian, Bernoulli, bounded support, Laplacian, Exponen-
tial, and many other distributions (Vershynin, 2012). Also, the regularity condition on µ(u)
implies U is bounded.

The idea behind the semiparametric approach is the observation that R–DB–RISK–SAA
is convex in θ for fixed x when A3 holds. However, because the yi are measured with noise,
we cannot simply make the substitution xi = yi. To overcome this difficulty, we first de-noise
the yi using a nonparametric estimator. Specifically, we define the `2-regularized Nadaraya-
Watson (L2NW) estimator (Aswani et al., 2013) as

xi =
γ−m · 1

n

∑n
j=1 yj ·K(

uj−ui
γ )

σ + γ−m · 1
n

∑n
j=1K(

uj−ui
γ )

, (2.15)

where γ > 0 is the bandwidth parameter, σ > 0 is the `2-regularization parameter, and
K : Rm → R is a kernel function that satisfies the following properties (i) K(u) ≥ 0, (ii)
K(u) = 0 for ‖u‖> 1, (iii) K(u) = K(−u), and (iv)

∫
K(u)du = 1. A common example of a

kernel function is the Epanechnikov kernel, which is defined as the function

K(u) =

{
3
4 · (1− ‖u‖2), if ‖u‖≤ 1

0, otherwise
(2.16)

The L2NW estimator (2.15) is computed in polynomial time, and it serves to de-noise the xi
in the manner described by the following proposition.

Proposition 2.9. Suppose A1 and R1–R4 hold. If γ = O(n−2/(8m+1)) and σ = O(γ), then
S(u, θ) consists of a single point, and for sufficiently large n we have we have

P
(

max
i∈[n]
‖xi − S(ui, θ0)‖ > n−1/(18m)

)
≤ k1 exp

(
− k2n

1/4
)
, (2.17)

where k1, k2 > 0 are constants. In particular, this implies maxi∈[n] ‖xi − S(ui, θ0)‖ p−→ 0.

Before we present our algorithm, we need one more result that provides additional un-
derstanding for the semiparametric approach. Consider the following optimization problem

min
θ

max
ε≥0
{Qn(θ; ε) | θ ∈ Θ}, ROBUST–IOP–SAA

Proposition 2.10. Suppose A1,A2 and R1 hold. Then the solution sets in θ of ROBUST–
IOP–SAA and IOP–SAA are equivalent, and the optimal value of ROBUST–IOP–SAA occurs
at ε = 0.

Proof . Let Cn(θ, ε) be the feasible set of R–DB–RISK–SAA. As shown in the proof for
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Algorithm 2: Semiparametric Algorithm

Data: fixed γ > 0 and σ > 0
Result: estimate θ̂n

1 foreach i ∈ [n] do
2 compute xi using using (2.15);

3 compute θ̂n using SP–IOP–RISK–SAA;

Proposition 2.8, the feasible set satisfies

Cn(θ, 0) ⊆ Cn(θ, ε), (2.18)

for all ε ≥ 0. As a result, we must have that Qn(θ; 0) ≥ Qn(θ; ε) for all ε ≥ 0. This means that
maxε≥0Qn(θ; ε) = Qn(θ; 0). The result holds because Qn(θ; 0) = Qn(θ) by definition.

Given the above relationship that the optimal value of ROBUST–IOP–SAA occurs at ε = 0,
we propose to solve the inverse optimization problem using the following formulation:

θ̂n ∈ arg min
1

n

n∑
i=1

εi

s.t. f(xi, ui, θ)− h(λi, ui, θ) ≤ εi, ∀i ∈ [n]

λi ≥ 0, ∀i ∈ [n]

SP–IOP–RISK–SAA

where the xi are as defined in (2.15). This is a convex optimization problem.

Proposition 2.11. Suppose A1–A3 and R1 hold. Then SP–IOP–RISK–SAA is a convex
optimization problem.

We now have the elements to construct our semiparametric algorithm, which is a two-step
approach. In the first step, we de-noise the yi data using the L2NW estimator given in (2.15).
This de-noising step produces an estimate of the true underlying optimal solution, which we
represent by x̄i. While the estimates x̄i are asymptotically (in n) optimal (cf. Proposition
2.9), they may be suboptimal at finite n. Therefore, in the second step, we solve SP–IOP–
RISK–SAA, which produces a parameter estimate θ̂n that minimizes the suboptimality of
x̄i. This approach maintains statistical consistency because the x̄i are denoised, and it is
formally presented in Algorithm 2. Importantly, it can be shown that this semiparametric
algorithm generates nearly-optimal solutions of IOP–SAA. This means the solutions computed
by this algorithm satisfy the conditions in Theorems 2, 3, and 4 that are needed for statistical
consistency. In practice, the values of σ and γ can be can be chosen using cross-validation,
which is a standard data-driven approach from statistics for choosing such parameters (Hastie
et al., 2009).

Theorem 2.7. Suppose A1–A3 and R1–R4 and IC hold. If σ = O(n−2/(8m+1)), λ = O(σ),
and θ̂n is computed using the semiparametric algorithm (i.e., Algorithm 2) ; then θ̂n is nearly-
optimal for IOP–SAA in probability.

Theorem 2.7 states that the semiparametric algorithm produces estimates that are sta-
tistically consistent under the appropriate conditions. In the next section, we present several
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numerical experiments which validate our theoretical results as well as the performance of
the enumeration and semiparametric algorithms.

2.6 Numerical results

We present numerical results that demonstrate the statistical consistency of our algorithms
for inverse optimization with noisy data, and the results show our algorithms perform com-
petitively against KKA (Keshavarz et al., 2011) and VIA (Bertsimas et al., 2015). We begin
by conducting two types of tests using synthetic data. The first type is where the model is
kept fixed and the number of data points increases, and the purpose is to demonstrate either
estimation consistency or risk consistency of our algorithms. The second type is where the
number of data points is kept fixed and the number of the parameters in the model increases,
and the purpose is to demonstrate the feasibility of using our algorithms on large-scale prob-
lems. We then apply our framework to a real data set, where we estimate a utility function
that describes the tradeoff made between occupant comfort and energy consumption when
setting a thermostat temperature setpoint for air-conditioning.

2.6.1 Enumeration algorithm with synthetic data

In the first experiments, we generate data using a given FOP and then use the same set of
equations in SAA-IOP. In other words, the first set of experiments are situations where the
model whose parameters are being identified exactly match the model that generates the
data. As a result, this setting consists of situations where IC is satisfied. The first example
is where: (i) FOP-A is min{(θ + u) · x | x ∈ [−1, 1]}, (ii) u has a uniform distribution with
support [−1, 1], (iii) the measurement noise w has a normal distribution with zero mean and
unit variance, (iv) the data is generated with θ0 = 1, and (v) the enumeration algorithm (i.e.,
Algorithm 1) was applied with ε = 0.001, δ = 0.01, and Θ = [−1, 1]. The second example
is where: (i) FOP-B is min{x2 − (θ + u) · x | x ∈ [0, 1]}, (ii) u has a uniform distribution
with support [0, 2], (iii) the measurement noise w has a normal distribution with zero mean
and unit variance, (iv) the data is generated with θ0 = 1

2 , and (v) the enumeration algorithm
(i.e., Algorithm 1) was applied with ε = 0, δ = 0.01, and Θ = [0, 2].

The results averaged over 100 repetitions of sampling n ∈ {10, 30, 50, 100, 300, 500, 1000}
data points and then estimating the parameter θ are summarized in Table 2.1. We label
the enumeration algorithm (i.e., Algorithm 1) as ENA in the table. These results display
estimation consistency of the enumeration algorithm since estimation error is decreasing to
zero. To further illustrate estimation consistency, we conducted an experiment with the
two examples above where the data was generated with a θ0 that was randomly chosen
from a uniform distribution with support [−1, 1] and [0, 2] for the first and second examples,
respectively. A plot comparing the estimates θ̂n to the true parameter θ0 for the first situation
when n = 1, 000 is shown in Figure 2.1, and a plot comparing the estimates θ̂n to the true
parameter θ0 for the second situation when n = 10, 000 is shown in Figure 2.2. Consistent
estimates should line up along the diagonal, and hence these plots demonstrate the estimation
consistency (inconsistency) of the enumeration algorithm (KKA and VIA). Recall from the
discussion in Section 2 that KKA and VIA are inconsistent because they minimize an incorrect
measure of error, and this discrepancy is most significant for points where the optimal solution
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Table 2.1: Estimation error |θ̂n − θ0| of enumeration algorithm (ENA) and benchmark
algorithms (KKA and VIA) on two synthetic instances (n increasing, p = 1).

n 10 30 50 100 300 500 1000

Data: FOP-A
Model: FOP-A

ENA 0.2616 0.0926 0.0380 0.0211 0.0055 0.0030 0.0009
KKA 0.8686 0.8293 0.8182 0.8257 0.8130 0.8231 0.8170
VIA 0.5552 0.4976 0.4829 0.4887 0.4807 0.4846 0.4780

Data: FOP-B
Model: FOP-B

ENA 0.4577 0.2481 0.1510 0.0501 0.0222 0.0123 0.0063
KKA 0.5065 0.2281 0.1595 0.0751 0.0398 0.0342 0.0238
VIA 0.9488 0.7051 0.6344 0.4284 0.3145 0.3810 0.2962
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Figure 2.1: Scatter plot comparing estimated parameter θ̂n versus true parameter θ0 as
computed by ENA, KKA and VIA algorithms at n = 1, 000, when the data and model are
both FOP-A.

of FOP lies on the boundary of the feasible set. KKA and VIA perform more poorly for FOP-
A than for FOP-B because FOP-A is a linear program, which has almost all of its optimal
solutions on the boundary of the feasible set, whereas FOP-B is a quadratic program, which
has more optimal solutions within the strict interior of the feasible set.

In the second set of experiments, we generate data using a given model that is dif-
ferent than the FOP used to formulate SAA-IOP. In other words, this set of experiments
are situations where the model whose parameters are being identified does not match the
model that generates the data. As a result, this setting consists of situations where IC
is not satisfied. The first example is where: (i) the data is generated by FOP-C which is
min{3

2 ·x2− (1 +u) ·x | x ∈ [0, 1]}, (ii) the model estimated by IOP-SAA is FOP-B, (iii) u has
a uniform distribution with support [0, 5], (iv) the measurement noise w has a normal distri-
bution with zero mean and unit variance, and (v) the enumeration algorithm (i.e., Algorithm
1) was applied with ε = 0, δ = 0.01, and Θ = [0, 2]. The second example is where: (i) the data
is generated by the statistical model SQR-1 given by yi = min{max{√ui, 0}, 1}+wi, (ii) the
model estimated by IOP-SAA is FOP-B, (iii) u has a uniform distribution with support [0, 5],
(iv) the measurement noise w has a normal distribution with zero mean and unit variance,
and (v) the enumeration algorithm (i.e., Algorithm 1) was applied with ε = 0, δ = 0.01, and
Θ = [0, 2].

The results averaged over 100 repetitions of sampling n ∈ {10, 30, 50, 100, 300, 500, 1000}
data points and then estimating the parameter θ are summarized in Table 2.2, and these
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Figure 2.2: Scatter plot comparing estimated parameter θ̂n versus true parameter θ0 as
computed by ENA, KKA, VIA and SPA algorithms at n = 10, 000 when the data and model
are both FOP-B.

Table 2.2: Normalized prediction error Q(θ̂n)− var(w) of enumeration algorithm (ENA) and
benchmark algorithms (KKA and VIA) on two synthetic instances (n increasing, p = 1).

n 10 30 50 100 300 500 1000

Data: FOP-C
Model: FOP-B

ENA 0.0216 0.0184 0.0162 0.0150 0.0065 0.0046 0.0017
KKA 0.0168 0.0124 0.0128 0.0151 0.0150 0.0150 0.0132
VIA 0.0249 0.0185 0.0196 0.0149 0.0089 0.0072 0.0042

Data: SQR-1
Model: FOP-B

ENA 0.0294 0.0217 0.0152 0.0110 0.0073 0.0041 0.0024
KKA 0.0394 0.0389 0.0398 0.0440 0.0504 0.0525 0.0518
VIA 0.0343 0.0287 0.0243 0.0187 0.0122 0.0084 0.0072

results are normalized by subtracting var(w). The reason for this normalization is that the
prediction error E((y − ξ(u))2)) of the prediction ξ(u) of the true model (either FOP-C or
SQR-M, respectively) is var(w) because y = ξ(u) + w here. The enumeration algorithm
has lower prediction error because it is risk consistent, whereas KKA and VIA are not risk
consistent.

2.6.2 Semiparametric algorithm with synthetic data

We now examine the performance of the semiparametric algorithm (Algorithm 2) in four
sets of experiments. In the first set of experiments, we generate data using a given FOP
and then use the same equations in SAA-IOP. These experiments are situations where the
model whose parameters are being identified exactly matches the model that generates the
data. As a result, this setting consists of situations where IC is satisfied. We consider three
different formulations for FOP. The first example is where: (i) FOP-D is min{x′x − (θ +
u)′x | x ∈ [0, 1]p}, (ii) u has a uniform distribution with support [0, 2]p, (iii) the measurement
noise w has a jointly Gaussian distribution with zero mean and identity covariance, (iv)
the data is generated with p = 10 and θ0 ∈ Rp such that θ0k = 1

2 for all k ∈ [p], and (v)
the semiparametric algorithm (i.e., Algorithm 2) was applied with γ, σ chosen using cross-
validation (Hastie et al., 2009) and Θ = [0, 2]. The second example is where: (i) FOP-E
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is

min
{
−∑p

k=1 θk · log(xk + uk)− log(xp+1 + up+1) | xk ≥ 0,
∑p+1

k=1 xk = 1
}
, (2.19)

(ii) u has a uniform distribution with support [1, 2]p+1, (iii) the measurement noise w has
a jointly Gaussian distribution with zero mean and identity covariance, (iv) the data is
generated with p = 10 and θ0 ∈ Rp such that θ0k = 1 for all k ∈ [p], and (v) a modified
version of the seimparametric algorithm (i.e., Algorithm 2) was applied with γ, σ chosen
using cross-validation and Θ = [1

2 , 2]. The modification to Algorithm 2 is that we calculate

x̃i = minx{‖xi − x‖ | xk ≥ 0} and then compute θ̂n using SP–IOP–RISK–SAA with the x̃i
replacing the xi. The x̃i are the projection of the xi onto the nonnegative orthant, and it
turns out this projection does not affect our theoretical results. In particular, a short proof
using the continuous mapping theorem (van der Vaart, 2000) and the boundedness of the

feasible set in R1 gives that maxi∈[n] ‖x̃i − S(ui, θ0)‖ p−→ 0. The projection is needed for
this particular example because otherwise the inverse formulation would contain logarithms
of negative numbers, which are complex-valued. More generally, a projection of xi onto the
feasible set of FOP will not affect our theoretical results, and can be added as a step in our
semiparametric algorithm.

In Table 2.3, we present estimation results for the first and second examples, averaged
over 100 repetitions for each value of n ∈ {10, 30, 50, 100, 300, 500, 1000}. We label the
semiparametric algorithm (i.e., Algorithm 2) as SPA in the table. These results display
estimation consistency of the semiparametric algorithm since it has lower estimation error as
the data increases. To further illustrate estimation consistency, we conducted an experiment
with the two situations above where the data was generated with p = 1 and a θ0 that was
randomly chosen from a uniform distribution with support [0, 1] and [1

2 , 2] for the first and

second situations, respectively. A plot comparing the estimates θ̂n to the true parameter
θ0 for the first situation when n = 1, 000 is shown in Figure 2.2, and a plot comparing the
estimates θ̂n to the true parameter θ0 for the second situation when n = 1, 000 is shown
in Figure 2.3. Consistent estimates should line up along the diagonal, and hence these
plots demonstrate the estimation consistency (inconsistency) of the semiparametric algorithm
(KKA and VIA). It is worth comparing the results of the semiparametric and enumeration
algorithms. As mentioned above, the semiparametric algorithm will generally have higher
estimation error than the enumeration algorithm – this can be observed in these plots because
the semiparametric algorithm estimates have a larger variation about the diagonal than the
estimates of the enumeration algorithm.

In the second set of experiments, we generate data using a given model that is dif-
ferent than the FOP used to formulate SAA-IOP. In other words, this set of experiments
are situations where the model whose parameters are being identified does not match the
model that generates the data. As a result, this setting consists of situations where IC
is not satisfied. The first setting is where: (i) the data is generated by FOP-C which is
min{3

2 · x′x − (1 + u)′x | x ∈ [0, 1]10}, (ii) the model estimated by IOP-SAA is FOP-D with
p = 10, (iii) u has a uniform distribution with support [0, 5]10, (iv) the measurement noise w
has a jointly Gaussian distribution with zero mean and identity covariance, and (v) the semi-
parametric algorithm (i.e., Algorithm 2) was applied with γ, σ chosen using cross-validation
(Hastie et al., 2009) and Θ = [0, 2]. The second setting is where: (i) the data is generated

25



Table 2.3: Estimation error ‖θ̂n − θ0‖ of semiparametric algorithm (SPA) and benchmark
algorithms (KKA and VIA) on two synthetic instances (n increasing, p = 10).

n 10 30 50 100 300 500 1000

Data: FOP-D
Model: FOP-D

SPA 2.4618 1.7025 1.2543 0.8535 0.4754 0.3750 0.2573
KKA 2.2569 1.5513 1.2229 0.9281 0.6107 0.5435 0.4447
VIA 3.3829 3.2603 3.1937 3.1501 3.0292 3.0324 2.9208

Data: FOP-E
Model: FOP-E

SPA 0.9189 0.7982 0.7500 0.7487 0.6639 0.6070 0.5783
KKA 1.6687 1.5850 1.5813 1.5865 1.5828 1.5806 1.5811
VIA 1.9299 1.6781 1.6826 1.6132 1.6001 1.5973 1.5843
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Figure 2.3: Scatter plot comparing estimated parameter θ̂n versus true parameter θ0 as
computed by different algorithms at n = 1, 000 when the data and model are both FOP-E.

by the statistical model SQR-P given by yi = min{max{√ui, 0}, 1} + wi, (ii) the model es-
timated by IOP-SAA is FOP-D with p = 10, (iii) u has a uniform distribution with support
[0, 5]10, (iv) the measurement noise w has a jointly Gaussian distribution with zero mean
and identity covariance, and (v) the semiparametric algorithm (i.e., Algorithm 2) was ap-
plied with γ, σ chosen using cross-validation (Hastie et al., 2009) and Θ = [0, 2]. The results
averaged over 100 repetitions of sampling n ∈ {10, 30, 50, 100, 300, 500, 1000} data points and
then estimating the parameter θ are summarized in Table 2.4, and these results are normal-
ized by subtracting E(w′w). The reason for this normalization is that the prediction error
E(‖y − ξ(u)‖2)) of the prediction ξ(u) of the true model (either FOP-C or SQR-M, respec-
tively) is E(w′w) because y = ξ(u)+w here. The enumeration algorithm has lower prediction
error because it is risk consistent, whereas KKA and VIA are not risk consistent.

In the third set of experiments, we generate data using the previous four settings. The
difference in this set of experiments is that we fix n = 1, 000 and vary p ∈ {1, 3, 5, 10, 30}.
The results when the data/model are given by FOP-D/FOP-D and FOP-E/FOP-E, averaged
over 100 repetitions and then estimating the parameter θ, are summarized in Table 2.5.
These results show that the semiparametric algorithm has lower estimation error than KKA
and VIA on these examples. The results when the data/model are given by FOP-C/FOP-B
and SQR-M/FOP-B, averaged over 100 repetitions and then estimating the parameter θ, are
summarized in Table 2.6. These results show that the semiparametric algorithm has lower
prediction error than KKA and VIA on these examples.
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Table 2.4: Normalized prediction error Q(θ̂n) − E(w′w) of semiparametric algorithm (SPA)
and benchmark algorithms (KKA and VIA) on two synthetic instances (n increasing, p = 10).

n 10 30 50 100 300 500 1000

Data: FOP-C
Model: FOP-D

SPA 0.2319 0.1972 0.1744 0.1501 0.1029 0.0844 0.0529
KKA 0.1584 0.1308 0.1314 0.1349 0.1452 0.1497 0.1481
VIA 0.3438 0.3407 0.3360 0.3205 0.2950 0.2816 0.2811

Data: SQR-M
Model: FOP-D

SPA 0.4180 0.3497 0.3195 0.2470 0.1572 0.0998 0.0658
KKA 0.3645 0.3885 0.3987 0.4537 0.5115 0.5114 0.5214
VIA 0.3468 0.2784 0.2737 0.2524 0.2405 0.2458 0.2599

Table 2.5: Estimation error ‖θ̂n − θ0‖ of semiparametric algorithm (SPA) and benchmark
algorithms (KKA and VIA) on two synthetic instances (n = 1, 000, p increasing).

p 1 3 5 10 30

Data: FOP-D
Model: FOP-D

SPA 0.0601 0.1464 0.1907 0.2794 0.4701
KKA 0.1178 0.2349 0.3038 0.4619 0.7978
VIA 0.4943 1.2254 1.8099 2.9522 5.7737

Data: FOP-E
Model: FOP-E

SPA 0.0251 0.1258 0.2571 0.5890 0.5576
KKA 0.5000 0.8660 1.1174 1.5804 2.7377
VIA 0.5000 0.8691 1.1231 1.5966 2.7628

Table 2.6: Normalized prediction error Q(θ̂n) − E(w′w) of semiparametric algorithm (SPA)
and benchmark algorithms (KKA and VIA) on two synthetic instances (n = 1, 000, p in-
creasing).

p 1 3 5 10 30

Data: FOP-C
Model: FOP-D

SPA 0.0064 0.0171 0.0403 0.0628 0.2048
KKA 0.0538 0.1553 0.2619 0.5252 1.5712
VIA 0.0078 0.0175 0.0745 0.2602 0.9654

Data: SQR-M
Model: FOP-D

SPA 0.0056 0.0194 0.0319 0.0606 0.1568
KKA 0.0148 0.0471 0.0761 0.1523 0.4394
VIA 0.0055 0.0273 0.0821 0.2848 1.2896
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Table 2.7: Estimation error ‖θ̂n − θ0‖ of semiparametric algorithm (SPA) and benchmark
algorithms (KKA and VIA) on synthetic instance (n = 1, 000, p increasing).

p 5 10 20 50 100

Data: FOP-F
Model: FOP-F

SPA 0.5535 0.8530 1.1522 2.0020 2.7205
KKA 2.1753 4.6199 8.4599 12.4102 17.8112
VIA 1.1825 1.8689 3.7320 5.9003 8.1874

Table 2.8: Normalized prediction error Q(θ̂n) − E(w′w) of semiparametric algorithm (SPA)
and benchmark algorithms (KKA and VIA) on synthetic instance (n = 1, 000, p increasing).

p 5 10 20 50 100

Data: FOP-F
Model: FOP-F

SPA 0.2539 0.5117 0.9307 2.9423 5.8644
KKA 8.2329 22.5149 60.4496 145.2210 302.1124
VIA 2.3475 3.7495 10.8325 26.5713 48.3217

2.6.3 High-dimensional nonlinear forward problem with stochastic con-
straints

We now consider a setting where FOP is high dimensional, contains a logarithmic objective,
and has an exponential stochastic constraint (i.e. the constraint depends on u). Specifically,
we consider the following setting: (i) FOP-F is

min
{
−∑p

k=1 θk · u
(1)
k · log(xk) | 1

p

∑p
k=1 e

xk+u
(1)
k − u(2)

k ≤ 0, xk ≥ 0
}
, (2.20)

(ii) u(1) has a uniform distribution with support [1, 2]p and u(2) has a uniform distribution
with support [50, 100]p, (iii) the measurement noise w has a jointly Gaussian distribution
with zero mean and identity covariance, (iv) the data is generated with θ0 ∈ Rp+ such that∑p

k=1 θ0k = p, and (v) a modified version of the seimparametric algorithm (i.e., Algorithm 2)
is applied where Θ = {θ ∈ Rp+|

∑p
k=1 θk = p} and γ, σ is selected using cross-validation. We

set n = 1, 000 and repeat the sampling and estimation procedure 100 times for each value
of p ∈ {5, 10, 20, 50, 100}. The average estimation and prediction errors are summarized in
Tables 2.7 and 2.8, respectively, which show that the semiparametric algorithm is competitive
with existing methods in this setting as well. Note that the magnitude of the errors is expected
to increase with p, since we do not normalize the error for the number of parameters being
estimated.

2.6.4 Empirical data: Estimating an energy-comfort utility function

We next apply our inverse optimization framework to the problem of estimating a utility
function that describes the tradeoff made between occupant comfort and the amount of
energy consumption when setting a thermostat temperature setpoint for air-conditioning.
The data we use is collected from Sutardja Dai Hall on the Berkeley campus, which was used
as part of the BRITE-S testbed in our past experiments (Aswani et al., 2012a,b,c) concerning
robust learning-based optimization (Aswani et al., 2013) of heating, ventilation, and air-
conditioning (HVAC) systems. Specifically, this building is equipped with a commercial
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Table 2.9: Prediction errorQ(θ̂n) of enumeration algorithm (ENA) and benchmark algorithms
(KKA and VIA) on temperature preference dataset. (n increasing, p fixed).

n 10 30 50 100 300 500 1000

Data: SDH-E
Model: FOP-S

ENA 1.3656 1.3308 1.3255 1.3169 1.3112 1.3099 1.3090
KKA 2.2439 2.2528 2.2508 2.2351 2.2225 2.2220 2.2200
VIA 2.2975 2.2538 2.2472 2.2277 2.2163 2.2166 2.2138

web application (Building Robotics, 2016) that allows occupants to change the thermostat
temperature setpoints in real-time, and so the setpoints are changed throughout the year by
occupants in response to factors like the outside weather.

When a room is being cooled, a lower temperature setpoint requires increased energy
consumption since the air-conditioner must provide more cold air; however, the purpose of
air-conditioning is to improve comfort by lowering the room temperature. And so individuals
must tradeoff comfort and energy consumption when choosing the setpoint. A simplified
utility function model (expressed as minimization of the negative of the utility function) that
captures this tradeoff is FOP-S:

min
x
{θ1 · (x− 76)2 + (x− θ2 − u)2 | x ∈ [70, 76]}, (2.21)

where x ∈ R is the thermostat temperature setpoint in units of degrees Fahrenheit (◦F),
and u ∈ R is the current outside temperaure in degrees Fahrenheit (◦F). The term (x −
θ2 − u)2 indicates a preference for a temperature setpoint that is a fixed amount θ2 above
the outside temperature u (i.e., the preferred temperature is θ2 + u), and the reason for
this term is that individuals prefer a higher indoor temperature as the outside temperature
increases (ASHRAE, 2013). The term θ1 ·(x−76)2 indicates a preference for a higher setpoint
because of energy considerations, and the number 76 is used because 76◦F–78◦F is a relatively
high setpoint temperature that is often recommended for saving energy. The parameter θ1

quantifies the tradeoff between the preference for a higher setpoint to save energy versus
the desired indoor temperature θ2 + u. Lastly, the constraints x ∈ [70, 76] indicate observed
setpoint limits.

The results averaged over 100 repetitions of sampling n ∈ {10, 30, 50, 100, 300, 500, 1000}
data points and then estimating the parameters θ are summarized in Table 2.9. The data
set (which we label SDH-E in the table) used consists of outside temperature measurements
(i.e., the u variable) and the chosen temperature set point (i.e., the x variable) of a single
thermostat in Sutardja Dai Hall. In each repetition, the full data set was randomly split
into a 1,000 point training data set and a 14,500 point testing data set. The n data points
were randomly chosen from the training data set, and the prediction error of the estimated
parameters were computed using the testing data set. To evaluate the statistical significance
of the computed results, a bootstrap hypothesis test (Efron and Tibshirani, 1994a) was
conducted. The computed p-value was less than 0.01, which indicates that the improved
performance of the enumeration algorithm is statistically significant.
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Chapter 3

Data-Driven Incentive Design via
Inverse Optimization

3.1 Background and motivation

The United States spends more on healthcare than any other high-income nation in the world,
both on a per capita basis and as a share of its GDP. In 2014, total healthcare spending in
the U.S. exceeded 3 trillion dollars, equivalent to 17% of the U.S. GDP (OECD, 2015). Ap-
proximately 20% ($600b) of U.S. healthcare spending is through Medicare, the United States’
federally-funded health insurance program for seniors and other qualifying individuals (CMS,
2016b). An additional 17% of healthcare spending is through Medicaid, which is targeted at
low-income individuals and those with disabilities. Combined, government programs there-
fore account for 37% of all healthcare spending. Despite enormous spending on healthcare,
the US underperforms its international peers on many indicators of health quality (Starfield,
2000, McGlynn et al., 2003), which suggests that high costs may be a consequence of ineffi-
ciencies in the healthcare system (Berwick and Hackbarth, 2012, Garber and Skinner, 2008,
Wennberg et al., 2002). Moreover, although costs are already high, total healthcare spending
– including Medicare – is projected to continue to climb at a rate of 5% per year over the
next decade, and outpace GDP growth by over 1% (CMS, 2016b).

The growing cost of healthcare presents a significant challenge for Medicare. The issue
is further complicated by a misalignment of incentives between Medicare and providers:
while Medicare bears the cost of healthcare delivery for its beneficiaries, providers may be
disincentivized from delivering efficient, high quality care under existing payment models
(Rosenthal et al., 2004). For example, under traditional fee-for-service payment – where
providers receive payments in proportion to the volume and intensity of services provided –
it may be profitable for a provider to overutilize diagnostic imaging (such as CT scans) to
generate additional Medicare payments, even if doing so does not necessarily improve patient
outcomes (Hendee et al., 2010). Due to the potential impact on total Medicare spending,
correcting adverse incentives in healthcare delivery has become one of the central issues of
healthcare reform (Milgate and Cheng, 2006, Miller, 2009, Wilensky, 2013). As a consequence,
Medicare payment models and provider incentive programs have recently received significant
attention within the operations management community, with several studies focusing on
analyzing and improving the efficacy of specific Medicare programs (Bastani et al., 2016,
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Adida et al., 2016, Guo et al., 2016, Zhang et al., 2016a, Andritsos and Tang, 2015, Gupta
and Mehrotra, 2015, Lee and Zenios, 2012, Ata et al., 2012).

The Medicare Shared Savings Program is a voluntary program that offers providers bonus
payments for reducing the cost of providing care for Medicare beneficiaries, subject to satis-
fying certain quality standards. The MSSP has attracted significant attention in the health
policy community due to its potential impact on total spending, and, as of 2017, accounts
for one-sixth of the Medicare population. However, the financial performance of providers
enrolled in the MSSP indicate mixed results. To that end, our focus in this chapter is to
propose an alternate contract for the MSSP, and show that our proposed contract can lead
to improved outcomes for both Medicare and participating providers.

The goal of the MSSP is to correct the misalignment of incentives between Medicare and
providers by making it financially viable for providers to improve the efficiency of healthcare
delivery. To participate in the MSSP, a group of Medicare providers are required to form
an a cooperative entity referred to as an Accountable Care Organization (ACO). In contrast
to the common practice of disaggregated providers treating patients independently, ACOs
represent a shift towards an integrated care model wherein a group of Medicare providers
coordinate care for a well-defined beneficiary population, and are held jointly responsible for
the quality of care delivered (Berwick, 2011, Crosson, 2011). The main focus of the ACO
model of healthcare delivery is thus to improve the overall efficiency of providing healthcare
through better coordination (e.g., by avoiding duplication of health services), with the aim
of reducing healthcare spending while maintaining a high standard of care. As an example,
Akira Health, Inc. is an ACO based in Northern California that consists of 31 independent
primary care providers (e.g. individual physicians or clinics), which together deliver care
to 8,900 Medicare beneficiaries and account for $135 million in Medicare spending (Akira
Health, Inc., 2017).

The defining feature of the MSSP is the establishment of financial benchmarks for each
ACO, which are calculated based on the ACO’s historical spending and are risk-adjusted
based on attributes of the ACO’s beneficiary population (Federal Register, 2011). An ACO
whose annual Medicare spending is less than its financial benchmark is eligible for a shared
savings payment, which is a bonus payment made to the ACO in addition to the usual
Medicare fee-for-service payment. The shared savings payment is proportional to the savings
generated by the ACO (i.e., the difference between the benchmark and actual spending), so
to encourage the ACO to maximize savings. As of 2016, the Shared Savings Program has
enrolled 477 ACOs, which together serve a total of 9 million Medicare beneficiaries, equivalent
to one-sixth of the total Medicare population (CMS, 2016b).1

Despite significant interest from providers, the MSSP faces two notable challenges. First,
financial data released by the Center for Medicare and Medicaid Services (CMS) suggests
that ACOs have struggled to cut costs: out of the 392 ACOs participating in the MSSP as

1Note that the MSSP is distinct (but not mutually exclusive) from the Bundled Payments for Care Improve-
ment (BPCI) Initiative, another recently established Medicare program that incentivizes providers to reduce
the cost of healthcare delivery (CMS, 2017). The BPCI offers Medicare providers a single reimbursement for
“bundles” of healthcare services received by a beneficiary during a single episode of care, in lieu of reimbursing
the provider for each individual service provided. In contrast to the MSSP, participation in the BPCI does
not require the formation of an ACO, or include financial bonuses in the form of shared savings payments.
Unlike the MSSP, the BPCI is relatively well-studied in the operations management literature (Gupta and
Mehrotra, 2015, Adida et al., 2016, Guo et al., 2016).
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of 2015, only one-third generated enough savings to qualify for a shared savings payment
(CMS, 2016e). As a result, the reduction in total Medicare spending has been modest. In
2015, the total savings across all ACOs was approximately $430 million, which represents
a 0.6% decrease in Medicare spending (CMS, 2016e). Second, the low success rate among
ACOs has made continued participation in the MSSP unattractive for many providers. A
recent survey found that two-thirds of ACOs are uncertain if they will continue participating
in the Shared Savings Program, with less than 10% certain that they will remain enrolled
(National Association of ACOs, 2014). Since the success of the MSSP depends on voluntary
participation by ACOs and a reduction in Medicare spending, these challenges raise serious
questions regarding the sustainability of the MSSP in its current form. Moreover, a major
barrier that ACOs face with respect to cutting healthcare costs is the significant investment
that must be made in order to improve the efficiency of healthcare delivery (Haywood and
Kosel, 2011). For example, an ACO may need to invest in new information technology to
better coordinate care for its patients (Moore et al., 2011), or invest to increase the quality
of care delivered so that costly readmissions are minimized (Anderson and Steinberg, 1984).
ACOs thus face a delicate balancing act: in order to cut costs and receive shared savings
payments from Medicare, they must also increase spending to achieve the necessary efficiency
gains.

In this chapter, we take a predictive analytics approach to redesigning the MSSP contract,
with the goal of addressing the challenges currently faced by the MSSP. Specifically, we pro-
pose a new type of contract that includes a performance-based subsidy to partially reimburse
the investment of an ACO if it successfully reduces spending. The intention of the subsidy
is twofold: First, to encourage ACOs to generate additional savings by offsetting the cost of
efficiency improvements, and second, to boost total payments so to make the MSSP more
attractive to current and prospective ACOs. Our analytical and empirical results suggest
that the proposed subsidy scheme achieves both of these desirable outcomes.

Our analysis unfolds in two parts. First, we place the MSSP within a principal–agent
framework and consider properties of the optimal contract. In the model, the ACO (agent)
has the ability to make an investment to reduce spending on healthcare delivery, and in
turn earn bonus payments that depend on both the savings generated and parameters of the
MSSP contract. The space of feasible contracts that Medicare may select from is defined
by two parameters: a shared savings rate, which is the fraction of savings that the ACO
receives as bonus payment, and a subsidy rate, which is the fraction of the ACO’s investment
that is reimbursed by Medicare. The solution to Medicare’s optimal contracting problem
is not obvious. A generous contract may provide a strong incentive for the ACO to reduce
spending, but will also increase Medicare’s total payments to the ACO. Conversely, if the
bonus payment offered to the ACO is too low, then the ACO may be insufficiently incentivized
to generate any appreciable savings.

In the second part of our analysis, we design a new contract guided by financial perfor-
mance data from 392 ACOs currently enrolled in the MSSP. We propose an estimator to
infer parameters of the principal-agent model from the ACO data. In contrast to previous
work on data-driven incentive design, which uses approaches like linear or logistic regression
(e.g. Lee and Zenios (2012), Yamin and Gavious (2013)), our estimation procedure is in the
spirit of inverse optimization, which refers to the inference of optimization model parameters
from noisy solution data (Aswani et al., 2018b, Bertsimas et al., 2015). Our approach is also
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distinguished from previous papers in that the key model primitive that we aim to estimate
is itself a probability distribution. Using the estimated principal-agent model, we then solve
for the optimal MSSP contract, which we formulate as a pure-integer optimization problem,
under both the current (non-subsidized) and proposed (subsidized) contracts. Finally, we
estimate the potential improvement in savings due to the subsidy by simulating ACO perfor-
mance under both contracts. The remainder of the paper is organized as follows. In Section
3.2, we review related literature. In Section 3.3, we formulate the principal-agent model for
the MSSP, provide an overview of the existing contract, and propose our alternate contract.
In Section 3.4, we formulate Medicare’s optimal contracting problem and present our key
analytical results. In Section 3.5, we present an inverse-optimization based estimator for the
principal-agent model and outline our empirical method. In Section 3.6, we present results
from the structural estimation and discuss their policy implications with respect to the MSSP.
In Section 3.7, we consider extensions to the model and show that our main findings persist
under several robustness checks.

3.2 Related literature

This chapter builds on a recent and growing body of work on healthcare contracts in the
operations management literature. We also contribute to the health policy literature on
accountable care organizations and the broader literature on incentive design.

Healthcare contracts. Incentive problems in healthcare delivery have received signifi-
cant attention in the operations management literature recently, in part due to the focus on
healthcare reform in the United States. A large share of this work has focused on principal-
agent settings where the principal (e.g. Medicare) is required to design a payment model for
an agent (e.g. provider) that yields socially beneficial outcomes, such as improvements to
patient health or a reduction in healthcare spending. One of the first papers in the opera-
tions management literature to consider a healthcare contracting problem is by So and Tang
(2000), who consider a setting where the principal reimburses an agent for drugs prescribed to
patients. The authors focus on analyzing the agent’s response to changes in a reimbursement
policy that is tied to patient outcomes. Fuloria and Zenios (2001) consider a general problem
where an agent determines the intensity of treatment for a patient and the principal reim-
burses the agent for the services provided. Jiang et al. (2012) consider an optimal contracting
problem in a general healthcare setting where the agent’s decision is to allocate outpatient
service capacity to different groups of patients, and the principal wishes to minimize service
cost subject to constraints on agent performance. A common conclusion in all three of these
papers is that linking provider reimbursement to patient health can lead to improved health
outcomes. The contract we consider in this work is different in that it depends primarily on
the financial performance of the provider instead of the quality of healthcare delivered.

Several previous works have analyzed specific Medicare programs. Ata et al. (2013) con-
sider Medicare’s payment policies for hospice care. They highlight adverse incentives in the
existing policies and propose an alternative payment model which corrects the misalignment
of incentives. Gupta and Mehrotra (2015) formulate a game theoretic model for the Bundled
Payments for Care Improvement Initiative, which is a new payment model in which Medi-
care providers receive a single payment for a collection of services provided to a beneficiary.
Adida et al. (2016) and Guo et al. (2016) also analyze bundled payment models, and compare
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their performance with traditional fee-for-service payment. Zhang et al. (2016a) propose a
game theoretic model to study the behavior of hospitals under the recently created Hospital
Readmissions Reduction Program, which is a mandatory program that penalizes hospitals
that do not reduce readmissions below target levels. Their main result is a set of condi-
tions under which a hospital would rather pay penalties than reduce readmissions. Andritsos
and Tang (2015) compare the effect of different Medicare payment models (e.g. fee-for-
service vs performance-based payment) on hospital readmissions in a setting where service
is co-produced by both the provider and patient. Bastani et al. (2016) propose a general
principal-agent framework for pay-for-performance contracts, and examine three Medicare
programs as special instances. Jiang et al. (2016) and Savva et al. (2016) also consider the
realignment of provider incentives in a more general setting, and focus on the role of com-
petition in reducing costs. To the best of our knowledge, the only existing work to consider
the MSSP is by Zhang et al. (2016b), who analyze the impact of the MSSP on the use of
computed tomography. This work is different in that we consider the impact of investment
subsidies on the financial performance of ACOs, and use observational data from the MSSP
to estimate our model.

We are aware of two other papers which take a data-driven approach to designing incen-
tives in a healthcare setting. The first is by Lee and Zenios (2012), who consider the problem
of designing a payment model for Medicare’s End Stage Renal Disease Program (ESRD). A
key methodological distinction with our work is that the formulation of the agent problem in
Lee and Zenios (2012) lends itself naturally to the use of linear regression for estimating the
model parameters. By contrast, the agent problem in this work is a more general optimization
problem and has no closed form solution, which makes the use of linear regression nonviable.
Instead, we take a maximum likelihood estimation approach, which results in requiring us to
solve an inverse optimization problem (Aswani et al., 2018b). A second distinction is that
Lee and Zenios (2012) consider a linear contract, whereas the current MSSP contract that we
analyze is piecewise linear and discontinuous in the agent’s output. The second related work
is by Yamin and Gavious (2013), who consider incentives offered to patients to encourage
them to receive influenza vaccinations. The authors formulate the vaccine problem within
a game theoretic framework and use logistic regression to estimate the size of the incentive
required to optimally vaccinate the population, using phone survey data. The context in
the vaccine problem is markedly different than ours since the incentive is offered directly
to patients, rather than healthcare providers, and the payment is provided as a lump-sum,
rather than being a function of agent output or effort.

Health policy. While the Medicare Shared Savings Program is relatively recent (the first
cohort of ACOs enrolled in 2012), it has received significant attention in the health policy
literature due its potential impact on healthcare spending. However, to date, quantitative
analyses of ACO performance and the MSSP has been limited. McWilliams et al. (2016)
analyze early ACO performance data and find that ACOs achieve minimal savings in their
first year, suggesting a transition phase for ACOs once they enroll in the MSSP. They also
find that ACOs consisting of independent primary care groups tend to save more than those
integrated with hospitals. The authors carry out a similar analysis in McWilliams et al.
(2015) and McWilliams et al. (2013). Eddy and Shah (2012) develop a simulation model
for ACO performance within the MSSP, and find that the existing rules of the MSSP offer
little incentive to ACOs to improve the quality of care delivered. Liu and Wu (2014) per-

34



form a simulation study that considers ACOs and patients as individual agents, and focuses
specifically on congential heart failure. There has also been significant qualitative discussion
around the rules of ACO formation (Fisher et al., 2012, Lieberman and Bertko, 2011) and the
MSSP benchmarking methodology (Douven et al., 2015, Chernew et al., 2014). This work
contributes to the literature on ACOs by analyzing the MSSP from a modeling perspective
and by being the first to examine the potential impact of ACO subsidies.

Incentive design. This chapter builds on a rich and extensive literature on incentive
design and principal-agent problems. For an overview of foundational work in the economics
literature, we refer the reader to work by Mirrlees (1974), Hölmstrom (1979), Grossman and
Hart (1983) and Hart and Holmström (1986). An overview of principal-agent problems is
given by Gibbons (1998) and Laffont and Martimort (2009). Incentive design problems have
also recently received significant attention in the operations management literature. Plam-
beck and Zenios (2000) propose a general framework for dynamic principal-agent problems
based on a Markov decision process. Incentive problems have been considered in wide va-
riety of contexts in addition to healthcare, including software development (Whang, 1992),
finance (Grinblatt and Titman, 1989, Raghu et al., 2003), sales (Chen, 2000, DeHoratius and
Raman, 2007, Khanjari et al., 2013), project management (Chen et al., 2015), manufacturing
(Balasubramanian and Bhardwaj, 2004) and supply chain management (Khouja and Zhou,
2010, Guajardo et al., 2012, Lariviere, 2015, Chen and Lee, 2016). There is also a growing
literature on the use of subsidies by a central planner in attaining socially desirable outcomes.
Most of this work has focused on the use of subsidies to encourage product adoption, such
as influenza vaccines (Chick et al., 2008, Arifoglu et al., 2012, Mamani et al., 2013), malaria
drugs (Taylor and Xiao, 2014, Levi et al., 2016), and renewable energy technologies (Ata
et al., 2012, Chemama et al., 2014, Cohen et al., 2015a,b). We consider subsidies in a slightly
different context, where they are used to offset the cost of agent effort, rather than reduce
the price of a product.

Lastly, we note here that the work in this chapter coincides with the paper by Aswani
et al. (2018a).

3.3 Model

We begin by developing the principal-agent model for the MSSP, which we formulate as
a single-period sequential game between Medicare and a single ACO. The ACO provides
healthcare to a beneficiary population at a cost that is entirely incurred by Medicare. The
interaction proceeds in four steps. First, Medicare selects a contract that depends on the
ACO’s savings and investment. The ACO then observes the contract and makes an invest-
ment (i.e. exerts effort) to reduce spending. Next, the actual savings generated by the ACO
is realized. Finally, Medicare observes the actual savings and investment and pays the ACO
according to the selected contract.

3.3.1 Preliminaries

The ACO is defined by two attributes: µ and θ. We refer to µ as the ACO’s benchmark,
which is known to Medicare, and θ as the ACOs type, which represents the ACO’s private
information and is unknown to Medicare. The benchmark serves as the primary reference
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point for determining whether the ACO has generated savings (if spending is less than µ)
or losses (if spending is greater than µ). The benchmark is calculated based on the ACO’s
historical spending in the years prior to joining the MSSP, and is inflation-adjusted to serve as
an estimate of the cost of providing healthcare to the beneficiary population (Federal Register,
2011). The type parameter θ governs the ACO’s ability to generate savings. Let the interval
Θ = [θ, θ̄] denote a continuum of possible ACO types. To reflect uncertainty in the ACO’s
type, let θ be a random variable supported on Θ, where F (·|µ) and f(·|µ) are the distribution
and density, respectively, of an ACO with benchmark µ. We assume that F and f are known
to Medicare. Note that the type distribution depends on the ACO’s benchmark, meaning
the ACO’s ability to generate savings may depend on its historical Medicare spending. We
will often suppress dependence on µ in the notation. A type θ ACO can reduce spending by
x by investing c(x, θ) into efficiency improvements, where x ∈ [0, x̄]. The upper-bound x̄ is
included for technical purposes and is without loss of generality. In general, if θ is large, we
say the ACO is effective at generating savings and is a “high-type” ACO; conversely, if θ is
small, then the ACO is ineffective at generating savings and is “low-type”. This notion is
formalized in Assumption 3.1.

Assumption 3.1. Let the following assumptions hold.

1. c(0, θ) = 0 for all θ,

2. c(x, θ) is strictly convex and increasing in x,

3. c(x, θ) and (∂/∂x)c(x, θ) are decreasing in θ, and lim
θ→0

c(x, θ) =∞ for any x.

The assumption that c(x, θ) is strictly convex and increasing in x implies diminishing returns
on investment, since the marginal cost of generating an additional unit of savings increases
with x. The assumption that c(x, θ) is decreasing in θ implies that high-type ACOs are
more efficient at generating savings than low-type ACOs. Similarly, the assumption that
(∂/∂x)c(x, θ) is decreasing in θ implies that the rate at which the return in investment
diminishes is lower for high-type agents, which is consistent with the notion that high-type
agents are more effective at generating savings. Examples of functional forms that satisfy
Assumption 3.1 are x2/θ and (x/θ) log(x + 1). Due to variations in the precise healthcare
needs of the population, there may be uncertainty in the exact cost of delivering care. We
account for this uncertainty through a random shock to the ACO’s spending, denoted by
ξ. Let G(·) and g(·) be the distribution and density of ξ, respectively. We now impose the
following conditions on the shock.

Assumption 3.2. Let the following assumption hold.

i) E[ξ] = 0, E[ξ2] = σ2 <∞.

ii) The shock density g is continuous, almost everywhere differentiable, unimodal and sym-
metric around 0.

iii) There exists constants ḡ, ḡ′ < ∞ such that g(ξ) ≤ ḡ, g′−(ξ) ≤ ḡ′, and g′+(ξ) ≤ ḡ′ for all
ξ, where g′−(ξ) and g′+(ξ) are left and right derivatives of g, respectively.
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Assumption 3.2 is fairly mild and admits a large class of probability distributions, such as the
Gaussian, Laplace and logistic distributions. Statement iii) simply means that the density
and its derivative are bounded, and is stated with respect to the left and right derivatives of g
to permit distributions that are not differentiable everywhere (e.g. the Laplace density). Note
that the shock distribution is independent of the ACO’s benchmark. This assumption allows
us to avoid overfitting by reducing the number of parameters in our estimation procedure
(discussed in Section 3.5). We note that we obtain a strong model fit despite this simplifying
assumption.

We can now define the ACO’s actual spending on delivering healthcare, or the delivery
cost, as D = µ − x − ξ. It may be convenient to interpret D as demand for healthcare that
must be satisfied by the ACO. Since in our setting, demand represents the healthcare needs of
the patient population, we model it as being exogenous to costs. Note that since E[ξ] = 0, the
expected delivery cost if the ACO makes no investment (implying x = 0 by Assumption 3.1)
is given by E[D] = µ. We can now define the savings generated by the ACO as the difference
between the benchmark and actual delivery cost as y = µ−D. Since D = µ− x− ξ, we can
write the savings equivalently as

y = x+ ξ.

Therefore, the actual savings generated by an ACO is equal to its reduction in spending plus
an exogenous shock. Let H(·|x) and h(·|x) denote the distribution and density of savings,
respectively, given the ACO’s action x. Note that the actual savings y is random due to
the shock, and that E[y] = x. We also assume throughout that P[µ − x̄ − ξ < 0] = 0,
meaning the demand is always non-negative. This assumption can be ensured by truncating
the distribution of the shock variable ξ (and holds trivially in practice, given that healthcare
costs cannot be driven to 0). Next, we define the contract that determines the ACO’s shared
savings payment, which depends on the realized savings, y.

3.3.2 Baseline contract: Shared savings

In the MSSP, an ACO enters a “one-sided” contract for an initial agreement period (usually
three years), after which it is transitioned to a “two-sided” contract. The one-sided contract
is risk-free for the ACO: it receives payments from Medicare for generating savings, but is
not penalized if spending exceeds the benchmark. The one-sided contract depends on three
parameters: the shared savings rate α ∈ A, a minimum savings threshold h, and a fixed
savings cap, Cu. The shared savings payment received by the ACO in the one-sided contract
is then given by

r+(y, α) =


0, y ∈ (−∞, h],

αy, y ∈ (h,Cu],

αCu, y ∈ (Cu,∞).

(3.1)

The shared savings rate α represents the fraction of savings that the ACO receives as payment
if the realized savings y is positive. The threshold h is the minimum savings required for
the ACO to receive a payment from Medicare. The minimum savings threshold accounts for
natural variation in healthcare costs by ensuring that any observed savings are “real”, i.e.,
due to ACO effort and not chance (Federal Register, 2011). The savings cap Cu reduces the
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Figure 3.1: Shared savings payment functions under one-sided and two-sided contracts.

risk to Medicare due to the shock and the information assymmetry, by protecting Medicare
from making an excessively large shared savings payment to the ACO.

In the two-sided contract, both savings and losses are shared with Medicare. In addition
to receiving a shared savings payment for generating positive savings, the ACO pays a penalty
of (1 − α)y to Medicare if y < −h, that is, if the excess spending above the benchmark is
greater than the threshold h. Similar to the one-sided case, the maximum penalty that can
be paid by the ACO is capped at (1−α)C`. Writing the penalty terms as negative payments,
the payment received by the ACO in the two-sided contract is then given by

r(y, α) =



(1− α)C`, y ∈ (−∞, C`],
(1− α)y, y ∈ (C`,−h],

0, y ∈ (−h, h],

αy, y ∈ (h,Cu],

αCu, y ∈ (Cu,∞).

(3.2)

Figure 3.1 shows a schematic of the one-sided and two-sided contracts of the MSSP. We largely
focus on the two-sided contract in this work, since it is the intended long-term contract of
the MSSP. The one-sided contract is most relevant in Section 3.5, since the financial data
that we use for estimation corresponds to ACO performance under the one-sided contract.

3.3.3 Proposed contract: Shared savings + performance-based subsidy

The MSSP in its current form is entirely performance-based, in that it rewards the ACO for
generating savings but is otherwise agnostic to the ACO’s investment. The presence of the
random shock under this payment model is risky for the ACO, since it may be penalized for
exceeding the benchmark, despite investing in efficiency improvements. Here, we define a new
contract which partially mitigates the ACO’s risk by providing a subsidy for the investment
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in addition to the the existing shared savings payment. In this sense, our proposed contract
is both effort-based and performance-based. Further, as discussed in Section 1, our inclusion
of a subsidy component in the MSSP contract is related to evidence that suggests that the
investments required by ACOs to improve efficiency can be a barrier to the generation of
savings (CMS, 2016c). Moreover, our approach of contracting on both the agent’s action as
well as its performance is inspired by a well-established body of literature that suggests that
contracting on both action and outcome can improve outcomes (Shavell, 1979a,b, Harris and
Raviv, 1979, Hölmstrom, 1979). As we discuss later in this section, the key consequence of
our proposed is that, under reasonable conditions, it can dominate the existing contract by
generating a higher payoff for both Medicare and the ACO. Under our proposed contract,
Medicare observes the ACO’s investment and provides a subsidy proportional to the invest-
ment, in addition to the shared savings payment. Let β ∈ B be the subsidy rate selected by
Medicare. The subsidy payment is then given by

s(y, β) =

{
0, y ∈ (−∞,−h),

βc(x, θ), y ∈ (h,∞).
(3.3)

Note that like the shared savings payment, the subsidy payment is also performance-based,
in the sense that the ACO only receives it if the savings is positive and exceeds the minimum
savings threshold h. Note that since the subsidy payment βc(x, θ) depends on the private
information θ, which is a priori unknown to Medicare. Following standard mechanism design
theory, in Section 3.4.2 we will formulate Medicare’s optimal contracting problem in a manner
that incentivizes ACOs to truthfully report their type θ, which enables Medicare to contract
directly on the ACO’s investment.

We also highlight here that the subsidy scheme presented in this work is different from
the the ACO Investment Model that was recently created by the CMS (CMS, 2016c). The
most significant difference is that the subsidy payments offered to ACOs through the AIM
are later deducted from shared savings payments, which effectively makes the AIM a loan
program. We instead consider an entirely separate incentive that exists in addition to the
shared savings payment. Further, the AIM is targeted at a subset of ACOs that meet a
well-defined criteria (e.g. those that are in rural areas and exclude hospitals), whereas we
consider a more general program that can apply to any ACO.

3.3.4 Discussion of modeling assumptions

Before analyzing Medicare’s contracting problem, we first discuss some of the key assumptions
of our model.

Quality. One might reasonably expect that an ACO could decrease the quality of health-
care delivered (e.g., by cutting services) as a way to reduce spending and generate bonus
payments within the MSSP. However, we assume throughout our analysis that quality of
care is fixed, and that the ACO only decides on the size of the investment. In other words,
our model does not permit the ACO to decrease quality of care to generate savings. This
assumption is supported by ACO performance data and the existing regulations of the MSSP.
Data released by the CMS shows that quality has actually improved under the MSSP – for
example, the average ACO quality score increased by approximately 15% from 2014 to 2015
(CMS, 2016a). Moreover, the regulations of the MSSP require Medicare to verify that any
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savings generated by an ACO are not due to quality reductions. Medicare upholds quality
through close monitoring of ACOs, e.g., to ensure that they do not avoid at-risk patients or
underuse health care services (CMS, 2016d), and failure to meet quality standards or com-
ply with Medicare monitoring may jeopardize an ACOs participation in the MSSP (Federal
Register, 2011). As a consequence, ACOs have neither the incentive nor the ability to use
quality as a lever to generate shared savings payments. We therefore focus our analysis on
the ACO’s investment behavior.

Benchmark independence and ACO size. In our model the ACO’s optimal savings x(θ)
depends explicitly on α, β and θ, but does not depend on the benchmark µ when θ is
held fixed. To capture the effect of ACO benchmark on the savings generated, we allow
the distribution over the parameter θ to depend on the ACO’s benchmark in our empirical
analysis in Section 3.5. We also do not explicitly incorporate ACO size (i.e. number of
assigned beneficiaries) into the model, and instead perform our analysis at the beneficiary
level. This normalization does not change the analytical results presented in this section, but
is useful for simplifying the estimation in Section 3.5. A cursory look at the data suggests a
weak relationship between ACO size and savings (a correlation coefficient of ρ = 0.08), which
supports this normalization. While we normalize for beneficiaries for estimation purposes,
we explicitly incorporate ACO size when estimating ACO performance under the proposed
contract in Section 3.5.

Single ACO. Although the MSSP includes many participating ACOs, for our analytical
results we consider the interaction between Medicare and a single ACO. This is because an
ACO’s payment depends only its own savings, benchmark and investment, and does not de-
pend on the performance of other ACOs. Moreover, ACOs are prohibited by legislation from
colluding or sharing information with each other (Federal Register, 2011). As a consequence,
the key insights can be obtained by focusing on the contracting problem between Medicare
and one ACO.

Single period. In practice, the financial benchmark for ACOs are updated annually, based
on the ACO’s most recent three years of spending and the growth rate in national healthcare
spending. The MSSP might therefore be viewed as a multi-period problem with dynamically
updating spending benchmarks. However, since our aim in this work is to analyze the po-
tential impact of investment subsidies, it suffices to restrict our attention to a single period
model. We note here that additional insights may be gained by considering a multi-period
model for the MSSP. We take a first step toward this extension in Appendix 3.7.1.

3.4 Model analysis

In this section, we consider the ACO’s investment behavior and Medicare’s optimal con-
tracting problem under the existing and proposed MSSP contracts. We examine the ACO’s
problem in Section 4.1 and Medicare’s contracting problem in Section 4.2. In Section 4.3, we
present analytical results regarding the optimal contract structure.

3.4.1 ACO’s Investment Problem

We begin our analysis by consdering the investment problem faced by the ACO. Medicare
providers typically generate profit from delivering healthcare to beneficiaries. Let the profit
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associated with spending D be γD, where γ > 0 is the profit margin. The expected service-
related profit is then given by E[γD] = γ(µ − x). Since µ is a constant, we focus on the
ACO’s profit loss due to a reduction in spending, which is simply γx.2 The ACO’s expected
payoff associated with a savings level of x can now be written as

u(x, α, β, θ) =

∫ ∞
−∞

(r(y, α) + s(y, β))h(y|x)dy − γx− c(x, θ) (3.4)

The payoff function u(x, α, β, θ) is the sum of the expected shared savings and subsidy pay-
ments from Medicare, minus the profit loss and investment. We assume that the ACO wishes
to maximize expected payoff. The ACO’s optimal savings is then given by

x(θ) = argmax
x∈[0,x̄]

u(x, α, β, θ) (3.5)

where x̄ is the maximum savings the ACO can achieve (e.g. x̄ can be trivially set to µ).
In general, x depends on α, β and σ as well, although we suppress dependence on these
parameters for conciseness when it is clear from context. For convenience, we also define
U(α, β, θ) = u(x(θ), α, β, θ) to be the ACO’s optimal profit. We assume that the ACO
participates in the MSSP if U(α, β, θ) ≥ 0.3 The model naturally generalizes to account for a
fixed cost associated with enrolling in the MSSP, which can be represented by subtracting a
constant from u(x, α, β, θ). Including this fixed cost does not fundamentally alter our results,
so we assume it to be 0. We now turn our attention to analyzing the ACO’s behavior, starting
with the following assumption.

Assumption 3.3. The inequality

ᾱ(hḡ′ + ḡ) + 2β̄ḡ(∂/∂x)c(x, θ) ≤ (1− β̄)(∂2/∂x2)c(x, θ).

holds for all x ∈ [0, x̄] and θ ∈ Θ.

We now make the following observation.

Lemma 3.1. Under Assumption 3.3, the ACO payoff function u(x, α, β, θ) is strictly concave
over [0, x̄].

Assumption 3.3 is a technical condition that faciliates our analysis by guaranteeing that the
ACO’s payoff function has a unique maximizer, and can be shown to hold under parameter
values from our data set (see Appendix 3.7.2). We emphasize that strict concavity in the
ACO’s payoff function is not crucial, and our results remain valid for any payoff function
with a unique maximizer (i.e. non-convex unimodal functions). We now define a quantity
that will be useful in the remainder of this section.

2To keep the the model tractable and amenable to estimation, we assume that the provider’s service-
related profit decreases with its cost reduction efforts, but the profit margin itself remains constant at γ. This
is supported by the notion that the MSSP aims, in part, to generate savings by reducing the total number of
healthcare services provided, meaning the average per-service profit margin will not necessarily be impacted
by the provider’s operational decisions.

3In general, we assume that the ACO participates if its payoff is non-negative. In our analysis, however,
we shall use a stronger constraint to guarantee that the ACO’s payoff is no less than it would be under the
existing MSSP contract (i.e. strictly positive). We impose this stronger condition to restrict attention to
contracts that improve Medicare savings without leaving the ACO worse off.
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Definition 3.1. Define θα,β = inf{θ ∈ Θ|x(θ) > 0 under α, β}.

The threshold θα,β represents the lowest type ACO that would generate a strictly positive
savings given the shared savings rate α and subsidy rate β (note that θα,0 may not exist if
α is is very small; in general, we assume that the minimum shared savings rate in A is large
enough such that θα,0 exists for all α ∈ A). We now introduce two lemmas that characterize
the ACO’s behavior and will be useful for our main results in the next section. The first of
these relates the savings generated by an ACO to its type.

Lemma 3.2. For any α ∈ A and β ∈ B, the ACO’s optimal savings x(θ) is non-decreasing
over Θ and strictly increasing over [θα,β, θ̄].

Lemma 3.2 states that an ACO with high investment efficacy will generate higher savings.
This is not a surprising result – since it is less costly for a high-type ACO to achieve a fixed
savings level x, one might expect that it would be optimal for a high-type ACO to save more
than a low-type ACO. The parameter θα,β is the threshold beyond which ACO savings are
guaranteed to be strictly increasing in type. This threshold exists because for low-type ACOs
where x = 0, a small increase in investment efficacy may not be sufficient to make it profitable
for the ACO to generate positive savings, and thus x may remain at 0. However, if x > 0,
then even slight improvements in the ACO’s investment efficacy will lead to higher savings.
The next result shows that offering a subsidy can boost ACO payoff while also incentivizing
the ACO to generate higher savings.

Lemma 3.3. For any α ∈ A and θ ∈ Θ, the ACO’s optimal savings x(θ) and payoff U(α, β, θ)
are non-decreasing in β. For any α and θ ∈ [θα,0, θ̄], the savings x(θ) and U(α, β, θ) are
strictly increasing in β.

Intuitively, the subsidy effectively increases the ACO’s investment efficacy, since it makes
it less costly for the ACO to generate a fixed saving of x. As a consequence, the ACO’s
investment and optimal savings level increases with β. Further, the ACO’s optimal payoff
U(α, β, θ) also increases with β. This suggests that introducing a subsidy may help improve
participation by boosting total ACO payments.

3.4.2 Medicare’s optimal contract

For a given ACO type θ, Medicare’s total expected spending is given by the sum of the
delivery cost and the shared savings and subsidy payments made to the ACO. Since the
expected delivery cost is E[D] = µ − x, and µ is a constant, we can formulate Medicare’s
problem equivalently as one of maximizing savings. We thus write Medicare’s savings as the
ACO’s savings minus the payments made to the ACO:

v(x, α, β, θ) = x−
∫ ∞
−∞

(r(y, α) + s(y, β))h(y|x)dy. (3.6)

For convenience, let V (α, β, θ) = v(x(θ), α, β, θ) be Medicare’s savings under the ACO’s
optimal savings level x(θ). We consider the contracting problem in two settings: a full
information case, where the ACO’s type is known to Medicare, and a partial information
case, where type is unknown. We refer to the optimal contracts obtained under the full and
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partial information cases as the first-best and second-best contracts, respectively. In practice,
the first-best contract cannot be implemented due to the information assymetry between
Medicare and the ACO. Note that the full information case represents the case where the
ACO’s optimal investment is observable, since the ACO’s optimal investment level under a
given contract is encoded by the type parameter θ. Similarly, the partial information case
where θ is private information represents the case where the ACO’s optimal investment level
is unobservable by Medicare. In general, we will assume that the partial information case
represents the reality of the MSSP, where the ACO’s investment is not known to Medicare,
but can be elicited by designing the contract appropriately.

Full information (First-best). In the full information case, the optimal contract may
depend on the ACO’s type, since it is fully known by Medicare. For a known ACO type θ,
the first-best contract to offer a type θ ACO is given by the solution to

maximize
α,β

∫
Θ

(
x(θ)−

∫ ∞
−∞

(r(y, α) + s(y, β))h(y|x(θ))dy

)
f(θ)dθ (3.7a)

subject to

∫ ∞
−∞

(r(y, α) + s(y, β))h(y|x(θ))dy − γx(θ)− c(x(θ), θ) ≥ ū(θ), (3.7b)

α ∈ A, (3.7c)

β ∈ B. (3.7d)

The constraint (3.7b) is a participation constraint that ensures the ACO receives a payoff
of at least ū(θ). Participation contraints are standard in the mechanism design literature,
and are also referred to as individual rationality constraints (e.g. see Laffont and Martimort
(2009) and Borgers et al. (2015)). This constraint is particularly important in the context
of the MSSP because voluntary participation by a large number of ACOs is crucial for the
success of the program (Rosenthal et al., 2011). Since our focus is on the impact of the
subsidy payment on improving payoffs for both Medicare and ACOs, in our analysis we set
ū(θ) equal to the expected payoff that a type θ ACO receives under the existing contract.
This allows us to restrict attention to subsidy contracts that leaves both Medicare and the
ACO better off.

Partial information (Second-best). We now consider the contracting problem where
the ACO’s type is unknown by Medicare. In particular, we assume that the the parameter θ
is only known to be drawn from the distribution f(θ). In this setting, Medicare’s contracting
problem is to maximize savings by designing a menu of contracts (α(θ), β(θ)), θ ∈ Θ, where
α(θ) ∈ A and β(θ) ∈ B. An ACO that reports its type to be θ then receives a contract
parameterized by α(θ) and β(θ). The second-best optimal contract is given by the solution
to

maximize
α(θ),β(θ)

∫
θ∈Θ

V (α(θ), β(θ), θ)f(θ)dθ (3.8a)

subject to U(α(θ), β(θ), θ) ≥ ū(θ), θ ∈ Θ, (3.8b)

U(α(θ), β(θ), θ) ≥ U(α(θ), β(θ), θ′) θ, θ′ ∈ Θ, (3.8c)

α(θ) ∈ A, θ ∈ Θ, (3.8d)

β(θ) ∈ B, θ ∈ Θ. (3.8e)
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Let (α∗(θ), β∗(θ)), θ ∈ Θ denote optimal contract parameters attained at a solution to (3.8).
The objective function (3.8a) represents Medicare’s expected savings, where the expectation
is taken over both the shock and type. As in the full information problem (3.7), we include a
participation constraint to ensure that the ACO’s expected payoff is at least ū(θ). Constraints
(3.8c) are incentive compatibility constraints which enable Medicare to accurately elicit the
ACO’s private information θ (Laffont and Martimort, 2009). The interpretation of constraint
(3.8c) is that the payoff that the ACO enjoys from truthfully reporting its type θ to Medicare
must be at least as high as the payoff it receives from declaring any other type θ′. These
constraints ensure that the feasible set of contracts is restricted to those that allow the ACO’s
type θ, and thus its investment c(x(θ), θ), to effectively be observable by Medicare. Note also
that Medicare’s optimal contracting problems (3.7) and (3.8) are bi-level programs, since the
constraint sets depends on the optimal solution of the ACO problem x(θ) (see Dempe (2002)
for an overview of bi-level programming). Bi-level programs are typically non-convex, and
so uniqueness of α∗(θ) and β∗(θ) is generally not guaranteed. We now present three results
related to the structure of the optimal contract. First, let the following assumption hold in
the remainder of this section.

Assumption 3.4. The inequality (∂/∂x)R(x, α) < 1 holds for all x ∈ [0, x̄].

This assumption is relatively mild and required for technical purposes. Intuitively, we would
expect Assumption 3.4 to hold at larger values of x, because the expected shared savings
payment is sub-linear at higher savings levels (due to α < 1). However, there can exist values
of h and σ such that Assumption 3.4 is violated for small x, due to the discontinuity of the
shared savings payment at y = h. This assumption is validated by our dataset (see Appendix
3.7.2). Our first result regarding the optimal contract focuses on low-type ACOs.

Proposition 3.1. There exists ψ > 0 and θ0 > 0 such that if Cu ≥ ψ and |C`|≥ ψ, then
α∗(θ) ≥ 1/2 and β∗(θ) = 0 for all θ ≤ θ0.

The condition that Cu and |C`| be sufficiently large simplifies the analysis but is not restric-
tive.4 To further illustrate Proposition 3.1, recall that the optimal savings x(θ) of a very
low-type ACO will be small (Lemma 3.2). As a consequence, the shared savings rate α must
be sufficiently large to guarantee the ACO a non-negative payoff. From the ACO performance
data, we observed that the average quality-adjusted shared savings rate that ACOs received
in 2015 was 0.55, with approximately 15% of ACOs receiving a shared savings rate of less
than 0.5. In light of Proposition 3.1, this suggests that a large share of ACOs may be at risk
of dropping out of the MSSP once they transition to the two-sided contract. The next result
characterizes the dependence of optimal contract parameters α∗(θ) and β∗(θ) on θ.

Proposition 3.2. Suppose Θ = {θL, θH}, where θH > θL > 0. There exists δ > 0 such that
if θH − θL ≥ δ, then α∗(θL) ≥ α∗(θH) and β∗(θL) ≤ β∗(θH).

Proposition 3.2 states it is optimal for Medicare to offer a high-type ACO a higher subsidy
rate and a lower shared savings rate compared to a low-type ACO. The condition that the

4In practice, the parameters Cu and |C`| are large relative to typical ACO savings. Based on existing
MSSP guidelines, C` and Cu are set at 15% and 20% of the ACO’s benchmark, respectively (Federal Register,
2011), whereas data released by the CMS shows that the majority of ACO savings and losses are within 5%
of the benchmark.
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ACO types be sufficiently far apart (as represented by the condition that θH−θL ≥ δ for some
δ > 0) is included because the generality of g(ξ) and c(x, θ), in addition to the absence of a
closed form expression for x(θ), precludes obtaining stronger monotonicity results regarding
α∗(θ) and β∗(θ). To see the intuition behind Proposition 3.2, note that a very high-type
ACO can generate a large savings with a relatively small investment. Note also that the
resulting subsidy payment associated with a subsidy rate of β is proportional to the ACO’s
investment. As a result, it is worthwhile for Medicare to provide a large subsidy rate to a
high-type ACO, since the actual subsidy payment will be small relative to the increase in
savings generated by the ACO. The converse is true for low-type ACOS. Our final result in
this section compares the outcomes of the optimal non-subsidized5 and subsidized contracts.

Proposition 3.3. Let U∗0 (θ) and U∗s (θ) be a type θ ACO’s payoff under the optimal non-
subsidized and subsidized contracts, respectively. Let V ∗0 (θ) and V ∗s (θ) be the associated Medi-
care savings. Then there exists θs > 0 such that U∗s (θ) > U∗0 (θ) and V ∗s (θ) > V ∗0 (θ) for all
θ ≥ θs.

Proposition 3.3 states that for sufficiently high-type ACOs, the subsidized contract dominates
the existing shared savings only contract, in the sense that it produces a strictly higher payoff
for both Medicare and the ACO. The condition that the ACO type is at least θs is necessary to
ensure the ACO is effective enough at generating savings for it to be worthwhile for Medicare
to provide an additional payment in the form of a subsidy. Conversely, if the ACO type
is too low, then it may be the case that the additional savings generated by the ACO are
less than the subsidy payment itself, which would make it suboptimal for Medicare to offer
a subsidy of any size. From our numerical results, we find that this type threshold θs is
relatively low (see Section 4.6). To illustrate the need for Assumption 3.4 in Proposition
3.3, recall that increasing β from 0 to a positive value increases the ACO savings x (Lemma
3.3), and thus increases the expected shared savings payment as well. Now consider the case
where σ is very close to 0, so that y ≈ x. Since r(y, α) contains a jump discontinuity at
y = h, a small increase in x may lead to a relatively large increase in r(y, α) if x is close to h
before the subsidy. Assumption 3.4 ensures that the increase in the expected shared savings
payment is not greater than the increase in x itself. The key implication of Proposition 3.3 is
that Medicare can generate additional savings using the subsidy without jeopardizing ACO
participation through lower payments. In the remainder of the paper, we outline an empirical
approach for estimating Medicare’s potential savings under the proposed subsidized contract.

3.5 Estimation

Typically, in the mechanism design literature, the distribution over agent types is common
knowledge to the principal. In practice, however, this distribution is unlikely to be known
a priori. Our aim in this section is to use ACO financial data made available by the CMS
to estimate the type density f(θ), which is an important input to identifying the optimal
MSSP contract.6 We also estimate the variance of the shock, σ2 from the data. We then

5By “optimal non-subsidized contract”, we mean the existing MSSP structure under the optimal shared
savings parameters α(θ), where β(θ) = 0 for all θ ∈ Θ.

6Note that because we have only a single observation for each ACO, we cannot estimate the type parameter
θ for each individual ACO in the dataset. We therefore focus on estimating the distribution over ACO types
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use these estimates to solve for the optimal parameters α(θ) and β(θ) under the proposed
contract. Lastly, we estimate the performance of ACOs in the MSSP under the existing and
proposed contracts, which allows us to estimate the improvement in Medicare savings that
might result from introducing a performance-based subsidy to the MSSP.

3.5.1 Data

We use a dataset made publicly available by the Centers for Medicare and Medicaid Ser-
vices (CMS, 2016e). The dataset contains the number of Medicare beneficiaries, benchmark
expenditures, actual expenditures, and quality score for 392 ACOs participating within the
Medicare Shared Savings program in 2015. A summary of the dataset is given in Tables
1 and 2. The ACOs in our dataset represent 7.27 million Medicare beneficiaries across the
United States. In 2015, this group of ACOs were assigned an aggregate spending benchmark
of $73.30 billion, and had an actual spending of $72.87 billion, representing a $430 million net
reduction in total Medicare spending. Although the total savings was $430 million, the total
shared savings payments earned by ACOs was $645 million, resulting in a net loss of $215
million for Medicare. This loss is due to the fact that as of 2015, all participating ACOs were
under an initial three-year agreement in which the one-sided contract was in effect, meaning
ACOs were rewarded for generating savings but not penalized for exceeding their assigned
benchmarks. Note that the mean per-beneficiary savings by an ACO in the study cohort
was $101, which is approximately 1% of the mean benchmark. The standard deviation of the
per-beneficiary ACO savings was $680, suggesting substantial variation in ACO performance.
Figure 3.2 illustrates the distribution in the number of beneficiaries, spending benchmarks
and savings for all 392 ACOs.

Let µi, bi, yi and θi represent the benchmark, number of beneficiaries, actual savings
and type of the ith ACO, respectively. In practice, µi, bi and yi are directly observed by
Medicare, but θi represents private information. To maximize Medicare’s savings, we would
ideally estimate θi, . . . , θn from the data, and then solve problem (3.7) to identify the first-best
contract to offer to each of the n ACOs, based on their types. However, this approach is not
viable since limited data is available for each ACO (in many cases only a single year). As a
consequence, the type parameters θi, . . . , θn cannot be estimated directly. Under appropriate
assumptions, however, we may instead estimate the distribution over ACO types, f(θ), which
equips us to identify the optimal second-best contract. For our numerical experiments, we
select a random subset of 275 ACOs (70% of the data) to estimate the model, and validate
the resulting model fit against an out-of-sample dataset containing the performance of the
remaining 117 ACOs (30% of the data).

3.5.2 Model parameterization

We have so far imposed minimal assumptions on the ACO type and spending shock distri-
butions. Our goal now is to estimate these distributions from the ACO performance data
in a manner that is both tractable and captures the dependence of an ACO’s type on its
benchmark. Here, we outline a parameterization of our model to be used in the estimation.

in aggregate. However, it may be possible to estimate the exact type parameter for each ACO given multiple
observations of the same ACO over several years. We note this as a potentially fruitful direction for future
analyses of the MSSP.
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Table 3.1: Performance of ACOs in Medicare Shared Savings Program in 2015 under one-
sided contract.

Variable Value

ACOs 392
Total Medicare beneficiaries 7.27 million
Total benchmark expenditures $73.30 billion
Total actual expenditures $72.87 billion
Total savings $430 million
ACO shared savings payments $645 million
Medicare savings −$215 million

Table 3.2: ACO summary statistics.

Mean (SD) Median IQR Range

Beneficiaries (per ACO) 18,547 (18,508) 12,545 7,954 – 21,286 513 – 149,633
Benchmark ($ per beneficiary) 10,403 (2,360) 9,863 8,827 – 11,357 5,548 – 22,777
ACO savings ($ per beneficiary) 101 (680) 13 −252 – 394 −3,136 – 2,586

The model primitives to be specified are the ACO conditional type distribution f(θ|µ), the
shock distribution G(ξ), and the ACO’s investment function c(x, θ). We assume ACO types
are distributed on the type interval Θ = [1, 1×104] according to a mixture of (truncated) ex-
ponential distributions. Each mixture component corresponds to an ACO benchmark group
(e.g. ‘low’ or ‘high’ benchmark), which allows us to capture the dependence of ACO type
on benchmark in a semi-parametric manner. Although our approach can be extended to
alternate choices for the type distribution, we choose the exponential distribution based on
the observation that most ACOs generate minimal savings, which suggests that ACO types
are concentrated at lower values of the type parameter. Moreover, use of the exponential
distribution requires us to estimate only a single parameter for each mixture component,
which limits the complexity of the model and prevents overfitting. Let m be the number of
mixture components, indexed by j. Then let M1, . . . ,Mm, be a disjoint partitioning of the
positive real line, where each intervalMj represents a set of ACO benchmarks. With a slight
abuse of notation, let f(θ|λj) denote the exponential distribution with parameter λj . We
assume that the ith ACO’s type is drawn from f(θ|λj) if the ACO’s benchmark µi belongs
to Mj . For the shock distribution, we assume that the variable ξ is distributed according
to the zero-mean Laplace distribution G(ξ|σ), where σ is the standard deviation. Note that
this specification of the shock distribution satisfies Assumption 3.2. Based on this parame-
terization, the quantities to be estimated are the m shape parameters, λ1, . . . , λm, and the
shock parameter σ. Note that we are not required to determine which mixture component to
assign each observation to, since the assignment depends only on the benchmark µi, which
is known from the data. Lastly, for the investment function, we set c(x, θ) = x2/θ, which
satisfies Assumption 3.1.
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Figure 3.2: Distribution of number of Medicare beneficiaries, spending benchmarks and sav-
ings for 392 ACOs participating in the MSSP in 2015.

3.5.3 Model idenfiability and maximum likelihood estimation

The parameters (λ1, . . . , λm, σ) can show to be statistically identifiable under an additional
condition that is relatively mild. This condition is formalized in Proposition 3.4.

Proposition 3.4 (Identification). If the condition∫
Θ
e−
√

2x(θ)/σ
(
f(θ|λ)− f(θ|λ̃)

)
6= 0 (3.9)

holds for all σ ∈ Σ, and all λ, λ̃ ∈ Λ such that λ 6= λ̃, then the model parameters (λ1, . . . , λm, σ)
are identifiable.

Corollary 3.1. If Λ and Σ are finite sets and θ̄ is sufficiently large, then the identification
condition (3.9) holds.

The identification condition (3.9) ensures that there cannot exist multiple values of the shape
parameter λ that give rise to the same savings distribution, for a given benchmark group.
Identifiability of the model can be guaranteed by placing appropriate assumptions on Λ,
Σ and Θ. Corollary 3.1 provides one such set of assumptions. Note that the conditions in
Corollary 3.1 are mild, since one can construct finite sets Λ and Σ by discretizing a continuous
parameter space to an arbitrarily fine degree. Additionally, assuming that θ̄ is very large does
not materially change the model or estimation approach, since it simply expands the space
of possible ACO types.

We now outline a maximum likelihood estimation approach for the parameters (λ1, . . . , λm, σ).
Obtaining maximum likelihood estimates for our principal-agent model requires us to solve an
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inverse optimization problem, which refers to the estimation of optimization model parame-
ters from (potentially noisy) solution data (Aswani et al., 2018b, Bertsimas et al., 2015, Ahuja
and Orlin, 2001b). The MLE problem takes the form of an inverse optimization problem since
the observed savings data represent noisy observations of the ACO’s optimal decision (recall
y = x+ ξ). We first require the following assumption.

Assumption 3.5. The data (µi, bi, yi, θi), i = 1, . . . , n, are drawn independently from a
common distribution.

Assumption 3.5 states that the benchmark, number of beneficiaries, type and savings of
an ACO is independent of other ACOs. This assumption is reasonable given that each
ACO operates independently, and is necessary for tractability of the estimator. Note that
Assumption 3.5 permits dependence between the attributes of a given ACO. We now formalize
the estimation problem. Let Λ1, . . . ,Λm and Σ denote the parameter sets for λ1, . . . , λm and
σ, respectively.

Proposition 3.5. The maximum likelihood estimate of (λ1, . . . , λm, σ) is given by

(λ̂, σ̂) = argmax
λ∈Λ,σ∈Σ

n∑
i=1

log

(∫
Θ
g (yi − x(θ)|σ, θ) f(θ|λ(µi))dθ

)
x(θ) = argmax

x≥0

∫ ∞
−∞

r+(y, α)h(y|x)dy − γx− c(x, θ)

where λ(µi) = λj if µi ∈Mj.

In Proposition 3.5, x(θ) refers to the optimal savings of a type θ under the contract that
generated the data. Note that since our dataset contains the performance of ACOs under the
one-sided contract, we use the one-sided shared savings function r+ (given in (3.1)) in the
ACO’s problem in Proposition 3.5. If the dataset represented ACO performance under the
two-sided contract, then we would simply replace r+ with the two-sided payment function r,
given in (3.2).7

Maximum likelihood estimators are often difficult to solve to global optimality due to the
likelihood function being non-convex. As a result, estimation approaches which find local
maxima of the likelihood function (e.g. expectation maximization) are typically used (Hastie
et al., 2005). However, since the number of parameters is relatively small in our setting
(assuming m is not too large), we obtain an approximately optimal solution to the MLE
problem as follows. Let Λ, Σ and Θ be discrete sets. First, we numerically solve the ACO’s
problem to obtain x(θ) for each (t, σ) ∈ Θ× Σ (note that the ACO’s problem depends on σ
as well as θ). Then, for each σ ∈ Σ, we evaluate the likelihood function given in Proposition
3.5 for each (λ1, . . . , λm) ∈ Λ1 × . . .×Λm, and select the parameter vector (λ1, . . . , λm) with
the largest likelihood.

7Note that we estimate the type distribution f(θ) by using the normalized, per-beneficiary savings of each
ACO. In other words, to reduce model complexity we do not explicitly account for variation in ACO size in
the estimator. We instead capture variation in ACO size when simulating contract performance, by sampling
the number of beneficiaries along with other ACO attributes in the bootstrap.
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3.5.4 Specification of parameters

Mixture distribution. Note that if the ACO type distribution is defined by a large number
of mixture components, then the resulting model may overfit to the training data and thus
not be generalizable outside of the sample. Thus, two additional modeling decisions that
remain are the number of benchmark groups (i.e., mixture components), and the range of
ACO benchmarks covered by each group. We tuned these additional parameters by using
k-means clustering to identify the endpoints of the intervals corresponding to each of k
benchmark groups, and by using 10-fold cross validation (on the training data) to identify the
optimal number of benchmark groups. For the cross validation step, we fit the model specified
above using maximum likelihood estimation (described in Section 4.5.2) and evaluated model
performance by computing the likelihood function for the validation set. We performed the
cross validation by varying the number of benchmark groups from one and six, and found
the optimal number of mixture components to be three. The associated benchmark groups
implied by the clustering were M1 = [0, 1.03 × 104], M2 = (1.03 × 104, 1.43 × 104] and
M3 = (1.43× 104,∞).

ACO profit function. To solve the MLE problem, we must also specify the parameters
in the ACO’s profit function, u(x, α, β, θ). We set α = 0.46 to represent the “effective”
shared savings rate, which we observed from the ACO data to be the average shared savings
rate that ACOs received after quality adjustments (a maximum rate of 0.5 multiplied by the
average quality score of 92%). Although the quality scores vary from one ACO to the next, we
assume a fixed score of 92% across all ACOs to reduce model complexity during estimation.
We find that we obtain a strong model fit despite this simplifying assumption. We explicitly
incorporate quality scores in our estimate of ACO performance under the optimal contract
by sampling each ACOs quality in the bootstrapping procedure, where it is used to adjust
the nominal shared savings rate.

The remaining parameters to be defined are the payment cap Cu, the penalty cap C`,
the minimum savings and losses threshold h, and the ACO’s Medicare profit margin γ. We
set Cu = 2, 000 and C` = −1, 500 based on MSSP guidelines (Federal Register, 2011). We
set h = 200, since the minimum savings and losses threshold is mandated to be 2% of the
ACO’s benchmark, and the average benchmark in the dataset was $10, 403 per beneficiary.
Lastly, we set the ACO’s Medicare profit margin as γ = 0.03, based on a recent report by
the Medicare Payment Advisory Commission (Miller, 2013).

3.5.5 Estimation of contract performance

Using the parameter estimates obtained from Section 3.5, we solve for the optimal second-best
subsidized contract, which we label II-S. The space of possible shared savings and subsidy
rates is given by A = {0, 0.05, . . . , 0.9} and B = {0, 0.05, . . . , 0.9}, respectively. By also letting
the type space be discrete, i.e., by setting Θ = {1, 100, 200, . . . , 5000}, we can formulate and
solve a discrete counterpart to the contracting problem (3.8) as an integer optimization model.
The formulation is given in Appendix 3.5.7. Given the importance of ACO participation, our
focus is on identifying a contract that improves both Medicare savings and the ACO’s payoff.
Therefore, for each θ ∈ Θ, we set ū(θ) equal to the expected ACO payoff under the existing
two-sided contract. This restricts the set of feasible contracts in problems (3.8) to those that
produce at least as high of a payoff for the ACO as the current MSSP contract. To maintain
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our focus on the impact of the subsidy on the performance of the MSSP, we do not adjust the
minimum savings threshold h or the savings and losses cap Cu and C` as part of the contract
optimization. Moreover, since our aim is to examine the effect of introducing a subsidy to
the MSSP as it exists currently, we keep the parameters h, Cu and C` at the values specified
by the existing MSSP regulations.

Using the estimated model parameters, we simulate ACO performance under the existing
MSSP contract and our proposed contract using a standard non-parametric bootstrapping
procedure (see Efron and Tibshirani (1994b) for a comprehensive overview of bootstrapping
techniques). In particular, for each ACO we sample its benchmark spending, actual spending,
quality score, and the number of beneficiaries, which allows us to estimate the total savings
under each contract. We also compute 95% confidence intervals for the savings under each
contract, and perform bootstrap hypothesis tests to assess the statistical significance of the
estimated improvement in contract performance due to the investment subsidy.

3.5.6 Non-parametric contract

As a point of reference, we also consider a non-parametric contract that does not involve
separate shared savings or subsidy payments, but instead assigns a single payment to each
ACO type. This contract can be viewed as the most flexible possible contract for the MSSP,
since it involves constructing general functions which, for each θ ∈ Θ, map a payment ρ(x)
to each savings level x. By the well-known revelation principle (Myerson, 1981) it suffices
to restrict attention to designing a menu of contracts (ρ(θ), x(θ)), θ ∈ Θ. Under incentive
compatibility, an ACO that reports type θ finds it optimal to generate savings x(θ), for which
it receives payment ρ(θ). Therefore, the ACO’s profit is given by ρ(θ) − γx(θ) − c(x(θ), θ).
Medicare’s savings associated with a type θ ACO is then given by x(θ) + ξ − ρ(θ), which,
in expectation, is simply x(θ) − ρ(θ). As with the subsidized contract, Medicare’s optimal
contracting problem can be formulated as an integer optimization problem (see Appendix
3.5.7). The structure of this contracting problem, which designs a menu of reward-action
pairs over all possible agent types is standard in the mechanism design literature (Laffont
and Martimort, 2009). For optimization purposes, we assume that for each θ, Medicare selects
ρ(θ) from the set R = {0, 20, 40, . . . , 2000} and x(θ) from the set X = {0, 20, 40, . . . , 2000}.

3.5.7 Integer optimization models for Medicare’s contracting problem

This section presents the formulations for Medicare’s optimal contracting problem. We con-
sider a discrete counterpart to the contracting problem given in (3.8), which allows us to
formulate the contracting problem as an integer optimization model. Let {α1, α2, . . . , α|I|} be
the set of shared savings rates, {β1, β2, . . . , β|J |} be the set of subsidy-rates, and {θ1, θ2, . . . , θ|K|}
be the set of ACO types. Let u(αi, βj , θk) be the optimal payoff of a type θk ACO under
contract parameters αi and βj , which is a parameter that can be computed numerically in
advance. Similarly, let v(αi, βj , θk) be Medicare’s savings under parameters (αi, βj , θk). As
in formulation (3.8), let ū(θk) be the minimum pay-off for a type θk ACO. Let p(θk) be the
probability that an ACO is type θk, where p(θk) can be computed by discretizing the type
distribution estimated in Section 3.5. The key decision variable in the integer optimization
model is the binary variable z(αi, βj , θk), which is equal to 1 if the contract parameters αi
and βj are mapped to a type θk ACO, and 0 otherwise. The optimal contracting problem
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can then be formulated as

maximize
z

∑
i∈I

∑
j∈J

∑
k∈K

v(αi, βj , θk) · z(αi, βj , θk) · p(θk) (3.10a)

subject to
∑
i∈I

∑
j∈J

u(αi, βj , θk) · z(αi, βj , θk) ≥ ū(θk), k ∈ K, (3.10b)

∑
i∈I

∑
j∈J

u(αi, βj , θk) · z(αi, βj , θk) ≥
∑
i∈I

∑
j∈J

u(αi, βj , θk) · z(αi, βj , θk′), k, k′ ∈ K,

(3.10c)∑
i∈I

∑
j∈J

z(αi, βj , θk) = 1, k ∈ K, (3.10d)

z(αi, βj , θk) ∈ {0, 1}, i ∈ I, j ∈ J , k ∈ K. (3.10e)

The optimal contract in the non-parametric setting can be formulated in a similar manner.
Let {ρ1, ρ2, . . . , ρ|L|} be the set of possible payments, {x1, x2, . . . , x|M|} be the set of ACO
savings levels, and {θ1, θ2, . . . , θ|K|} be the set of ACO types. By the revelation principle
(Myerson, 1981), it suffices to restrict attention to incentive-compatible contracts that map
a payment ρ and savings x to each ACO type θ. The decision variable in the non-parametric
formulation is thus w(ρl, xm, θk) which is equal to 1 if the payment-savings pair (ρl, xm) is
assigned to a type θk ACO. The integer optimization model for the optimal non-parametric
contract is then given by

maximize
w

∑
l∈L

∑
m∈M

∑
k∈K

v(ρl, xm, θk) · w(ρl, xm, θk) · p(θk)

subject to
∑
l∈L

∑
m∈M

u(ρl, xm, θk) · z(ρl, xm, θk) ≥ ū(θk), k ∈ K,∑
l∈L

∑
m∈M

u(ρl, xm, θk) · w(ρl, xm, θk) ≥
∑
l∈L

∑
m∈M

u(ρl, xm, θk) · z(ρl, xm, θk′), k, k′ ∈ K,∑
l∈L

∑
m∈M

w(ρl, xm, θk) = 1, k ∈ K,

w(ρl, xm, θk) ∈ {0, 1}, l ∈ L, m ∈M, k ∈ K.

Both formulations can be solved using off-the-shelf optimization solvers (e.g. Gurobi). Note
that the optimal subsidized and non-parametric contracts can be recovered from the optimal
assignment vectors z∗ and w∗, respectively.

3.6 Results and discussion

For validation purposes, we estimate the model parameters using data from a random subset
of 275 ACOs (70% of the data), and validate it against an out-of-sample dataset containing
the performance of the remaining 117 ACOs (30% of the data). Table 3.3 presents the
parameter estimates for each of the three benchmark groups, where λ̂ is the estimated shape
parameter of the exponential distribution, and σ̂ is the estimated standard deviation of the
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Table 3.3: Maximum likelihood parameter estimates for three benchmark groups.

Benchmark # of ACOs λ̂ E[θ] σ̂ E[x(θ)]

< $10, 300 228 1 1 550 $1
$10, 300− $14, 300 140 1.1× 10−3 900 550 $140

> $14, 300 24 6.7× 10−4 1500 550 $260

random shock. Note that σ̂ is the same for all three benchmark groups, since we estimate
only a single shock distribution to avoid overfitting. The estimated mean of the exponential
distributions is given by 1/λ̂, which we may interpret as the average ACO type for the given
benchmark category. Since the parameter estimates in Table 3.3 are difficult to interpret
directly, we also report the expected optimal savings, Et[x(θ)], under the MSSP’s current
one-sided contract.
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Figure 3.3: Estimated ACO type distributions for low (<$10,300), intermediate ($10,300-
$14,300) and high (>$14,300) benchmark groups.

To validate our model, we simulated the savings that would be generated under the current
contract using the parameter estimates given in Table 3.3. Figure 3.4 shows the empirical
savings distribution for both the in-sample and out-of-sample datasets and the simulated
CDF from our fitted model (with 10,000 samples). We performed a Kolmogorov-Smirnov
test to assess the goodness-of-fit of our model with respect to the empirical savings data.
The KS-statistic (i.e. the maximum vertical distance between the empirical and simulated
CDFs) on the out-of-sample dataset was 0.076, with an associated p-value of p > 0.2. This
p-value implies a failure to reject the null hypothesis that the two CDFs were generated under
different statistical models at a confidence level of 80%, suggesting a strong model fit.

Our results show that, in general, ACOs with high benchmarks are more likely to be high-
type, and thus more likely to generate positive savings. As shown in Table 3.3, we estimated
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(a) In-sample.
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(b) Out-of-sample.

Figure 3.4: Empirical and simulated savings under one-sided contract, for in-sample and
out-of-sample data.

the expected per-beneficiary savings of low (< $10, 300), intermediate ($10, 300 − $14, 300)
and high (> $14, 300) benchmark ACOs to be $1, $140 and $260, respectively. Figure 3.3
provides an accompanying visualization which shows the estimated type distribution for each
benchmark group. Observe that the type distribution for low benchmark ACOs is concen-
trated near θ = 0, whereas the distributions for the intermediate and high benchmark groups
place mass across a range of values of θ. As one might expect, the parameter estimate λ̂j for
the intermediate benchmark group falls in between the low and high benchmark values. We
numerically found the type threshold θs discussed in Section 3.4.2 to be approximately 80 for
our choice of the ACO investment function. As can be seen from Figure 3.3, ACOs in the
intermediate and high benchmark groups have a high probability of being above this type
threshold, suggesting that the subsidy may be useful in boosting savings from these groups.
In contrast, since low benchmark ACOs are low-type, the subsidy may not be effective in
improving savings from low benchmark ACOs.

The observation that high benchmark ACOs tend to save more may be a consequence
of the benchmark calculation methodology that is currently employed by the MSSP. As dis-
cussed previously, an ACO’s benchmark is largely determined by its historical spending.
Since there are multiple factors that may contribute to an ACO’s historical spending, such
as regional variations in healthcare costs and the exact needs of the beneficiary population,
it is difficult to pinpoint exactly why a particular ACO has high historical spending. How-
ever, our results suggest that ACOs with high benchmark expenditures may have an easier
time reducing spending because they were historically cost inefficient, and thus have “more
room” for improvement. By contrast, an ACO with a low benchmark may be less able to
generate savings because it has historically been cost efficient, and thus additional reductions
in spending are more difficult to attain. Based on this result, we propose that it may be
beneficial for the CMS to revisit the benchmark calculation methodology, so that ACOs with
low benchmarks are not inadvertently penalized for good historical performance.

Figure 3.5 shows the optimal contract parameters of the first-best and second-best sub-
sidized contracts. Note that the right panel of Figure 3.5 exhibits the behavior predicted by
Proposition 3.1, where low type ACOs are assigned a shared-savings rate where α(θ) ≥ 1/2.
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Additionally, the results shown in Figure 3.5 align with Proposition 3.2, where high-type
ACOs are assigned relatively higher subsidy rates and lower shared savings rates, with the
converse holding true for low-type ACOs.
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(a) Full information.
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(b) Partial information.

Figure 3.5: Optimal contract parameters for subsidized MSSP in full and partial information
settings.

Table 3.4 shows the estimated ACO payoff, Medicare savings, and total welfare under the
optimal second-best subsidized contract. For comparison purposes, we simulate the perfor-
mance of the 392 ACOs once they enter the current two-sided contract of the MSSP, and
report the results under the ‘Baseline’ column. We also report the difference between the
baseline and optimal contracts, denoted by ∆, as well as a one-sided p-value to test the sig-
nificance of the difference (see Efron and Tibshirani (1994b) for an overview of hypothesis
testing with the bootstrap). We also report the 95% confidence intervals for the payoff es-
timates under the baseline contract, subsidized contract, and their relative performance gap
∆. We note here that although we held quality constant throughout our analysis thus far,
for simulation purposes we also sample quality scores for each ACO in the bootstrap, and
calculate the savings based on the quality-adjusted value of the shared savings parameter α.

Table 3.4: Bootstrap estimates for subsidized contract (in millions).

Baseline II-S ∆

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I. p

ACOs $282 ($188, $382) $316 ($216, $423) $34 ($22, $49) <0.01

Medicare $146 ($39, $260) $207 ($97, $328) $62 ($48, $79) <0.01

Total $427 ($234, $642) $523 ($320, $741) $96 ($78, $118) <0.01

In the subsidized contract (II-S), the ACOs and Medicare both experience an improvement
compared to the baseline. This finding aligns with the result in Proposition 3.3. Specifically,
ACO payoff increases by 12% ($282 to $316 million) and Medicare savings increases by 43%
($146 to $207 million), relative to their baseline levels. Note also that the increase in total
welfare (the sum of ACO payoff and Medicare savings) is 22% under the subsidized contract.
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As an intermediate step in our analysis, we also solved for the optimal non-subsidized contract
where β is held fixed at 0 and the contracting problem is solved over α(θ) only to identify the
optimal set of shared savings rates. The improvement in Medicare savings from optimizing
over the shared savings rate alone was found to be negligible (results omitted). This result
suggests that in the absence of a subsidy, Medicare cannot boost savings by adjusting the
shared savings rate without compromising ACO payoff, and therefore their participation in
the MSSP. While it has been suggested that the MSSP should increase the shared savings
rate to strengthen incentives for ACOs (Chernew et al., 2014), our analysis suggests that
doing so will only further reduce Medicare savings, due to the associated increase in ACO
payments.

In Section 3.4.2, we showed that subsidizing the investments made by ACOs to reduce
healthcare spending can improve both Medicare savings and ACO payoff. This result is
validated by our empirical analysis and the findings in Table 3.4. Further, we note that the
vast majority of ACOs in the MSSP remain under the initial one-sided contract, and are
therefore not penalized for accruing losses. However, out of the 392 ACOs in our dataset, 28
attained quality scores that would result in an effective shared savings rate that is less than
0.5 in the two-sided contract. In light of Proposition 3.1, these ACOs are particularly at risk
of dropping out of the MSSP once they transition to the two-sided contract. Our results
suggest that subsidizing ACO investments may be useful in mitigating this risk.

Table 3.5: Bootstrap estimates for non-parametric contract (in millions).

Baseline II-NP ∆

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I. p

ACOs $282 ($188, $382) $301 ($265, $346) $19 (−$73, $109) >0.1

Medicare $146 ($39, $260) $237 ($92, $381) $91 ($30, $152) <0.01

Total $427 ($234, $642) $538 ($325, $745) $110 ($82, $122) <0.01

For comparison purposes, Table 3.5 shows the estimated performance of the optimal
non-parametric contract. The optimal contract parameters are shown in Figure 3.6. Due
to its generality, this contract represents the theoretical best possible performance of any
MSSP contract (given the estimated type distribution). Under the non-parametric contract,
Medicare’s total savings increases from $146 to $237 million, which represents a 63% increase
in total savings compared to the baseline contract. The non-parametric contract also improves
upon the subsidized contract ($237 vs $207 million). This is unsurprising given the additional
flexibility provided by the non-parametric contract. However, it is worth noting that a
majority of the improvement potential associated with the non-parametric contract ($91
over baseline) is captured by the subsidized contract ($62 million over baseline). This result
suggests that a subsidized contract performs favorably in comparison to the theoretically best
non-parametric contract.

It is unlikely that there is a single solution to the challenges currently faced by the MSSP.
More likely, a multi-faceted restructuring of the existing contract will be required to boost
Medicare savings and increase the appeal of the MSSP to existing and prospective ACOs. Our
analytical and empirical results suggest that ACO investment subsidies have the potential
to play an important role in this restructuring. Moreover, as the MSSP continues and more
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(b) Partial information.

Figure 3.6: Optimal contract parameters for non-parametric contract in full and partial
information settings.

data is collected, a clearer picture of ACO performance within the MSSP will emerge. We
hope the empirical approach developed in this work can serve as a springboard for future
analyses of the MSSP.

3.7 Extensions and sensitivity tests

In this section we consider three extensions to our main model. First, we repeat the empirical
analysis (parameter estimation, contract optimization and bootstrap simulation) under two
alternate parametric forms for the ACO’s investment function c(x, θ), and compare these
results with our findings from Section 4.6. Second, we numerically analyze a setting where
there is inaccuracy in the financial benchmark, i.e., Medicare observes a noisy signal of µ
instead of µ directly. Third, we consider an alternate contract that only depends on the
ACO’s benchmark µ, instead of θ.

Table 3.6 presents the estimated savings under the baseline and optimal contracts for three
different investment functions, including c(x, θ) = x2/θ, which is used in our main analysis in
Sections 3.5. Under the current two-sided contract, we estimate the total Medicare savings
to range from $135 to $146 million. Our estimates of Medicare’s savings under the optimal
subsidy contract range from $187 to $303 million. Given that total spending by this group
of ACOs was approximately $73 billion, these results suggest that our estimates of Medicare
savings under the optimal contract are reasonably robust to the choice of the investment
function.
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In general, we have assumed that the benchmark µ represents the ACO’s expected spend-
ing on healthcare delivery in the status-quo, that is, with no ACO investment. In practice,
the ACO’s expected spending under no investment and the benchmark assigned by Medicare
may be different. We numerically consider a setting where the true benchmark for a given
ACO is µ, which is known to the ACO, but Medicare observes it to be µ + ω, where ω is
a random noise term. We set ω to be a zero-mean uniform random variable with support
[−0.05µ, 0.05µ]. In other words, we consider a setting where Medicare’s observation of each
ACO’s benchmark may be up to 5% higher or lower than the true benchmark. The results
in Table 3.7 indicate that inaccurate estimates of the benchmark can decrease Medicare’s
savings under both the baseline and subsidized contracts. However, the improvement poten-
tial associated with the performance-based subsidy remains fairly constant at $60 million in
both cases. The ACO’s total payoff increases when Medicare’s observation of the benchmark
is noisy, which is unsurprising given the informational advantage that ACOs enjoy in this
setting.

Lastly, we consider a contract that depends only on the ACO’s benchmark, instead of
its type parameter. This contract may be considered be more practical than a menu of
contracts over ACO types, given that the benchmark is a tangible and observable attribute
of each ACO. Specifically, we consider a contract that assigns a single shared savings rate
α and subsidy rate β to each of the three benchmark clusters from Section 4.6. Further,
we assume in this setting that Medicare observes a noisy signal of the ACO’s investment.
We posit that observing the ACO’s investment can be feasible in practice since Medicare
already extensively monitors ACOs within the MSSP, and has a legislated mandate to audit
Medicare providers in general. To reflect the incentive that ACOs have to inflate their
reported investments (so to earn a larger subsidy), we assume Medicare observes the ACO’s
investment to be (1+η)c(x, θ), where η is an exponential random variable with a mean of 0.1.
In other words, we assume Medicare observation of the true investment is always inflated,
with an average inflation of 10% above the true investment.

Figure 3.7 shows the optimal contract parameters for the benchmark-based contract.
The optimal shared savings rate for all benchmark groups was found to be 0.55. This is a
consequence of the the contract being unable to distinguish between ACO types combined
with Proposition 3.1. Note also that the subsidy rate is β = 0 for low benchmark ACOs,
since low benchmark ACOs are all concentrated as low-type ACOs, and thus ineffective at
generating savings (cf. Table 3.3). As a consequence, it is optimal for Medicare to not
offer the investment subsidy to low benchmark ACOs. By contrast, the optimal subsidy
rate for intermediate and high benchmark ACOs is β = 0.3. Table 3.8 shows the simulated
savings under the regular and benchmark-based contracts. Interestingly, the benchmark-
based contract achieves nearly the same level of Medicare savings as the full type-based
contract ($187 vs $207). This is likely due to the fact that the optimal contract parameters
in the type-based contract are relatively insensitive to the ACO type, as shown in Figure
3.5b).

3.7.1 ACO savings over multiple periods

From the perspective of Medicare, it may be ideal for the ACO to behave myopically, that
is, generate as large of a savings as possible each year. However, since the existing MSSP
benchmarking mechanism lowers the benchmark based on the ACO’s savings in the previous
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year, an ACO might find it optimal to strategically curtail investment (and generate lower
savings) in earlier years, in order to receive more favorable benchmarks in later years. In this
section, we address the multiple-period setting where the ACO may behave in this strategic
manner. We briefly discuss relevant literature and potential approaches to modifying the
benchmarking methodology to mitigate the investment distortions that might arise from
such strategic behavior. We also present a result that shows that for a forward looking ACO,
the deviation in savings from the myopic strategy vanishes over time under the existing
benchmarking mechanism.

The notion that an agent might find it optimal to strategically delay effort in multi-period
incentive problems is well documented in the operations literature. Chen (2000) consider a
salesforce compensation contract where agents receive payments based on an annual sales
quota system. The author shows how the “sales-hockey stick” phenomenon, where agent
effort is delayed to the final period of the horizon, can arise in this setting. Sohoni et al.
(2010) also consider threshold-based contracts, and show that adjusting the sales threshold
based on a relevant market signal can mitigate the sales-hockey stick phenomenon. In a
similar vein, Besbes et al. (2016) consider how the presence of debt in a dynamic pricing
setting can lead to price distortions and efficiency losses.

One approach to regulating the strategic underinvestment of a forward-looking ACO
might be to set the financial benchmarks of an ACO according to the spending patterns
of comparable ACOs, rather than setting benchmarks for each ACO individually based on
their historical spending. In a seminal paper, Shleifer (1985) discusses how regulated local
monopolies have little incentive to reduce costs in an environment where the regulator sets
prices according to the firm’s costs. The author proposes a mechanism known as yardstick
competition whereby the regulator sets prices for a firm according to the costs of identical
firms. This mechanism has the effect of inducing competition between firms that serve dif-
ferent markets. With respect to the MSSP, incorporating elements of yardstick competition
when setting the financial benchmarks of ACOs may be useful in disincentivizing strategic
underinvestment. However, while a purely yardstick competition approach to setting the
ACO benchmarks might dampen underinvestment, due to the voluntary nature of the MSSP
contract it may also jeopardize ACO participation if some ACOs find the benchmarks to
be unattainable, which is an undesirable outcome for Medicare. We therefore posit that a
benchmarking methodology that is based on a blend of the ACO’s own historical spending
and yardstick competition might be a more fruitful approach to mitigating strategic delay of
investment, while also encouraging ACO participation, and underline this as a direction for
future work. We also note that yardstick competition for controlling costs is not new to Medi-
care. For example, the Medicare Prospective Payment System (PPS) reimburses providers
based on the costs of comparable hospitals (Fetter, 1991). This program was created pre-
cisely in response to the adverse incentives that arise from purely cost-based reimbursement
systems. For a more recent example, Savva et al. (2016) consider a modification of tradi-
tional cost-based yardstick competition in the context of a queueing system, motivated by
the problem of reducing wait times in emergency departments.

It is also worth noting that like many of the other recent innovations in Medicare provider
payment systems, the MSSP was also created to realign incentives and reduce provider spend-
ing. In contrast to other Medicare programs, however (e.g., the PPS), the MSSP emphasizes
self-improvement of each ACO independently, rather than competition between ACOs. While
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the existing MSSP benchmarking mechanism may allow ACOs to strategically delay invest-
ment, and can potentially be improved upon, our analysis suggests that a revised contract
with performance-based subsidies can still lead to overall cost improvements. In the remain-
der of this section, we consider a simple multi-period model for the MSSP in which the
ACO’s benchmark is updated based on its savings in the previous year. We find that the
ACOs distortion in its optimal savings level relative to a myopic policy diminishes over time.

Consider a single ACO with type θ that faces a multiple-period savings problem with an
infinite horizon, where t = 0, 1, 2, . . . , indexes each period. Let α and β be fixed throughout,
which reflects the fact that the MSSP uses the same shared savings formula each year. We
suppress θ, α and β in the notation. Let µ0, µ1, µ2, . . . , be the benchmarks in each period,
and let x0, x1, x2, . . . , be the ACO’s decision variables, which represents the ACO’s reduction
in spending. We emphasize that xt represents the current-period savings relative to the
relevant benchmark µt. Define st =

∑t
i=0 xi, so that s0, s1, s2, . . . , is the cumulative savings

up to and including period t. We assume that the cost of generating savings xt in period t
is c(st−1 + xt), where c(·) is the single period cost function described in Assumption 3.1. In
other words, the investment required in period t to reduce spending down to a level of µt−xt
is measured with respect to the expected spending in the baseline ”do-nothing” case, which
is given by µ0. We note here that if the investment required to achieve a savings of xt were
c(xt), then it can be shown that the ACO would simply behave myopically each year.

In the MSSP, the benchmarks are updated based on the previous period’s benchmark and
the savings generated by the ACO. The benchmark only decreases if the ACO generates pos-
itive savings, i.e., the benchmark is never increased when ACO spending exceeds it (Federal
Register, 2011). To reflect the MSSP’s current practice, for t ≥ 2 let µt = µt−1 − xt−1. The
initial benchmark, µ0 = µ, is determined based on the ACO’s historical spending (Federal
Register, 2011). Note that st is then given by st = µ0 − µt + xt. Next, let yt = xt + ε be
the realized savings, as in the single period model. The ACO’s total expected payment in
period t is then given by Pt(xt) =

∫∞
−∞ [r(yt, α) + s(yt, β)]h(yt|xt)dyt, and the ACO’s profit

in period t is then ut(xt) = Pt(xt)− γxt − c(st−1 + xt). Let δ < 1 be the discounting factor.
The ACO’s multiple-period optimization problem is then given by

maximize
x

∞∑
t=0

δt (Pt(xt)− γxt − c(st−1 + xt))

subject to st = µ0 − µt + xt, t = 1, 2, . . . ,

µt = µt−1 − xt, t = 1, 2, . . . ,

µ0 = µ,

s0 = 0,

xt ∈ [0, x̄], t = 0, 1, 2, . . . ,

Let the optimal solution to the above problem be (x̃0, x̃1, x̃2, . . . , ). If the ACO were to reduce
spending myopically, then in each period t it would simply solve the single period problem

maximize
xt

Pt(xt)− γxt − c(st−1 + xt)

subject to xt ∈ [0, x̄],
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where st−1 =
∑t−1

i=0 xi. Let the optimal solution to the myopic problem be (x∗0, x
∗
1, x
∗
2, . . .).

We can now interpret |x̃t − x∗t | as the distortion due to the ACOs strategic saving. The
following result shows that the distortion

Proposition 3.6. In the multiple-period setting, the difference in ACO savings under myopic
and forward-looking behavior vanishes, lim

t→∞
|x̃t − x∗t |= 0.

Proposition 3.6 is a straightforward result – it shows that the deviation from the myopic
behavior in a multi-period setting must vanish because the ACO savings itself under both
myopic and forward-looking behavior goes to 0. This result follows from the fact that the
monotonic reduction in the financial benchmarks within the MSSP makes it increasing costly
for ACOs to receive bonus payments. Therefore, while the existing benchmarking mechanism
may allow ACOs to strategically delay investment, this behavior is unlikely to persist in the
long term.

3.7.2 Data-based validation of Assumptions 3.3 and 3.4

Here we show that Assumptions 3.3 and 3.4 are validated by the dataset. First we provide
values of the model parameters based on the data such that Assumption 3.3 holds. Specif-
ically, we wish to show that ᾱ(hḡ′ + ḡ) + 2β̄ḡ(∂/∂x)c(x, θ) ≤ (1 − β̄)(∂2/∂x2)c(x, θ) holds
for all x ∈ [0, x̄] and θ ∈ Θ. We shall consider the model and parameter estimates from
Sections 3.5 and 4.6. Since we use c(x, θ) = x2/θ for the ACO investment function, we have
(∂/∂x)c(x, θ) = 2x/θ and (∂2/∂x2)c(x, θ) = 2/θ. Let ᾱ = 0.55, β̄ = 0.05, x̄ = 1, 000, θ = 1
and θ̄ = 2, 000. Based on the guidelines of the MSSP, the parameter h is approximately 200
(2% of the benchmark). Since the shock density g is assumed to be Laplace distributed with
an estimated standard deviation of σ̂ = 550, this corresponds to ḡ = 1/(

√
2σ̂) = 0.0013 and

ḡ′ = (1/σ̂2) = 2.8× 10−6. Using these parameter values, we can numerically verify that the
inequality holds for all x ∈ [0, x̄] and θ ∈ Θ. Next, for Assumption 3.4, we have

(∂/∂x)R(x, α) = (1− α) (hg(−h− x) +G(−h− x)−G(C` − x))

+ α (hg(h− x) +G(Cu − x)−G(h− x))

< (1− α) (hg(−h− x) + 1/2) + α (hg(h− x) + 1)

≤ (1− α) (hg(−h) + 1/2) + α (hḡ + 1)

The first line is given by the expression for (∂/∂x)R(x, α) given in Lemma A.3. The second
line follows from noting that G(−h−x)−G(C`−x) ≤ 1/2 (since −h−x < 0) and G(Cu−x)−
G(h−x) ≤ 1. The third line follows from the fact that ḡ ≥ g(h−x) and g(−h) ≥ g(−h−x) for
x ≥ 0. For Assumption 4 to hold, we require (1− α) (hg(−h) + 1/2) + α (hḡ + 1) < 1 for all
α ∈ A, which holds if ᾱ ≤ (1−2hg(−h))/(1+2h(ḡ−g(−h))). The inequality can be shown to

hold for ᾱ = 0.55, h = 200 and σ̂ = 550, where ḡ = 1/(
√

2σ̂) and g(−h) = 1/(
√

2σ̂)e
√

2|−h|/σ̂.
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Figure 3.7: Optimal contract parameters in benchmark-only contract.
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Chapter 4

A Distributionally Robust
Optimization Approach to Facility
Location

4.1 Background and motivation

Sudden cardiac arrest is a leading cause of death in North America, and is responsible for
over 400,000 deaths each year (Heart and Stroke Foundation, 2013, Mozaffarian et al., 2016).
Chances of survival have been estimated to decrease by as much as 10 percent with each
minute of delay in treatment (Larsen et al., 1993), making treatment of cardiac arrest ex-
tremely time sensitive. Currently, the probability of survival from an out-of-hospital cardiac
arrest is low, with only 5-10% of out-of-hospital cardiac arrest victims surviving to hospital
discharge (Weisfeldt et al., 2010).

Treatment of cardiac arrest involves cardiopulmonary resuscitation (CPR) and electrical
shocks – known as defibrillation – from an automated external defibrillator (AED). AEDs are
portable devices that can automatically assess heart rhythms and perform defibrillation if nec-
essary, making their use by non-professionals (lay responders) in a cardiac arrest emergency
viable (Gundry et al., 1999). Treatment with a defibrillator following cardiac arrest is vital:
the probability of survival from cardiac arrest has been estimated to be as high as 40-70% if
defibrillation is administered within three minutes of the victim’s collapse (Valenzuela et al.,
2000, Page et al., 2000, Caffrey et al., 2002). As a consequence, there is growing interest in
the development of public access defibrillation (PAD) programs, which are organized efforts
to place defibrillators in public areas, such as malls, coffee shops, restaurants, and subway
stations, with the hopes of improving easy access to defibrillators in the event of a cardiac
arrest emergency. With appropriate positioning, public AEDs can enable lay responders to
treat cardiac arrest victims while awaiting the arrival of professional emergency medical re-
sponders. Indeed, PAD programs have been shown to decrease the time to treatment and
improve survival outcomes (PAD Trial Investigators, 2004), and it is estimated that their
widespread implementation may save between 2,000 and 4,000 lives annually in the United
States (Hazinski et al., 2005). Thus, the strategic positioning of public AEDs has a crucial
role to play in strengthening the overall response to cardiac arrest.

Despite evidence that supports improved chances of survival with PAD programs, AEDs
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are used infrequently. For example, only 8% of public location cardiac arrests in Toronto,
Canada involve the use of an AED by a bystander (Sun et al., 2016). Although the reasons for
this low usage rate are multi-faceted, it is clear that AEDs that are poorly positioned may be
located too far from the locations of cardiac arrest emergencies for them to be accessed and
used by lay responders. Recently, several mobile phone applications have been developed that
aim to improve AED usage during public location cardiac arrests. These applications notify
volunteer lay responders of the location of nearby AEDs so that they can be retrieved and
used quickly (e.g. PulsePoint (2015)). In order to be effective, these emerging technologies –
and public access defibrillation in general – rely critically on AEDs being placed strategically
in public locations. The question of where to place public access AEDs remains relatively
open in the medical literature (Portner et al., 2004, Folke et al., 2009).

In this chapter, we present a data-driven optimization model for deploying AEDs in public
locations. We consider a setting where cardiac arrests occur continuously over a bounded
service area. Our model addresses a key challenge in the AED deployment problem, which
is the uncertainty in the locations of future cardiac arrests during the deployment of AEDs.
Since the chances of survival from cardiac arrest diminish rapidly with each passing minute,
it is critical that witnesses of cardiac arrest are able to quickly retrieve and use nearby AEDs
when needed. Due to this extreme time sensitivity, protecting against cardiac arrest location
uncertainty can help improve survival outcomes by shortening the distance (and thus the
response time) to the nearest AED during a cardiac arrest emergency.

Although cardiac arrests are not uncommon within the general population, they are
extremely rare events for any particular building or geographic location. Thus, any estimate
of the risk of cardiac arrest at a specific location is likely to be subject to considerable
uncertainty. To account for this uncertainty while still leveraging historical data, we take
a distributionally robust optimization approach in which service is optimized for the worst-
case spatial distribution of cardiac arrests. Our approach involves discretizing the continuous
service area into a large set of scenarios, where the probability vector that describes the
probability of the next cardiac arrest arriving at each scenario is only known to reside within
a polyhedral uncertainty set. We construct the uncertainty set by representing the service
area as the union of a set of uncertainty regions, where only the aggregate probability of the
next cardiac arrest arriving in each uncertainty region (i.e., group of scenarios) is known. An
important consequence of modeling uncertainty in this manner is that it induces sparsity in
the worst-case distribution (with respect to the number of scenarios), which we show can be
exploited through an efficient row-and-column algorithm to obtain optimal solutions to the
robust problem.

For a given AED deployment and a set of cardiac arrest locations, one can construct
a distance distribution which describes the histogram of distances between the cardiac ar-
rests and the nearest AED in the given deployment. Inspired by the use of quantile-based
targets in emergency medical services (Pell et al., 2001, Pons and Markovchick, 2002), we
use a conditional value-at-risk (CVaR) objective function to directly optimize the tail of the
worst-case distance distribution, which allows us to mitigate the risk of unacceptably long
distances between cardiac arrest locations and their nearest AEDs. An additional benefit of
a CVaR-based objective function is that it permits more flexibility with respect to selecting
a performance metric to optimize, e.g., we can minimize the mean or tail of the worst-case
distribution by using an appropriate parameterization of the model.
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4.2 Related literature

This chapter primarily contributes to the operations research literature on facility location
under uncertainty and the medical literature on cardiac arrest and public access defibrilla-
tion. We also briefly review the connection between our model and the general literature on
optimization under uncertainty.

Connection to Siddiq (2013). This chapter expands significantly on the work of Siddiq
(2013). That work considers robust analogues to the p-median and p-center problems in a
setting where each demand point is only known to lie within a planar uncertainty region. By
contrast, the model presented in this chapter considers a continuous demand distribution in
the plane and uses polyhedral uncertainty sets to model distributional uncertainty. Indeed,
it can be shown that the model presented in Siddiq (2013) is a special case of the modeling
approach taken in this chapter. Siddiq (2013) also proposes a decomposition algorithm for
solving a two-stage robust optimization problem. However, that approach taken in that work
involves a simple subproblem that can be solved using a sort, whereas the algorithm in this
chapter contains a more general linear programming subproblem. In addition, the algorithm
in Siddiq (2013) does not require the innermost minimization problem of the two-stage robust
optimization model to be dualized due to the special structure of the problem considered.

Public access defibrillation. Most of the literature in the medical community on
AED location has focused on identifying building types that have a high incidence of cardiac
arrest, such as shopping malls (Becker et al., 1998, Engdahl and Herlitz, 2005, Brooks et al.,
2013). However, relying on building type alone to guide AED locations has several drawbacks.
First, it does not account for cardiac arrests that occur outdoors, since these events cannot
be assigned to a building type. Second, a high risk building type in one city may not be high
risk in another. Lastly, identifying high risk buildings does not address the question of how
to optimally deploy a limited number of defibrillators. By contrast, our proposed approach
is guided by historical cardiac arrest data and is agnostic to building type, which makes it
generalizable to any city.

There is a recent but limited body of work on optimization-based approaches to placing
AEDs in public locations (Siddiq et al., 2013, Chan et al., 2013, 2014, Sun et al., 2016).
This work differs from and extends this literature in a few substantive ways. First, previous
approaches have solely optimized over exact historical cardiac arrest locations. While these
approaches serve as a good first step toward improving public access defibrillation, they do not
explicitly account for uncertainty in future cardiac arrest locations. This work is the first to
explicitly incorporate the uncertainty in cardiac arrest locations into the optimization model.
We find that accounting for cardiac arrest location uncertainty leads to improved outcomes
based on several performance metrics, compared to a baseline method of optimizing over
historical locations only. Second, existing AED models focus on maximizing cardiac arrest
coverage, which is the number of cardiac arrests that are within some fixed distance (e.g.,
100m) of an AED. While this approach can be effective for the median cardiac arrest patient,
it can have the adverse effect of neglecting cardiac arrest victims at the tail of the distance
distribution. By contrast, our modeling approach involves a risk-based objective function
(inspired by ambulance response time guidelines), which allows us to mitigate the risk of
unacceptably large distances between cardiac arrest victims and the nearest AED. Lastly,
existing work on AED location has focused on identifying general hotspots for cardiac arrest
within a large service area (e.g., Chan et al. (2014) identify historical clusters of cardiac
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arrests within a city). We complement this work by taking a more tactical approach to the
AED deployment problem, by focusing on the precise placement of AEDs within a small
service area consisting of several city blocks.

Facility location under uncertainty. Facility location problems under uncertainty
have received considerable attention, particularly with respect to uncertainty in demand
node weights and edge lengths (Owen and Daskin, 1998, Snyder, 2006, Baron et al., 2011),
and more recently in the risk of service disruptions at the facilities (Lim et al., 2010, Cui
et al., 2010, Shen et al., 2011). Our model differs from the existing literature in that we
consider the arrival of demand points over a continuous, planar service area, rather than
being restricted to a small set of locations. As a result, we do not aggregate demand into a
small set of known locations, which is a common approach in facility location models related
to emergency response (Cho et al., 2014, Erkut et al., 2008, Brotcorne et al., 2003) and
in general (Francis et al., 2000). Previous work on demand location uncertainty in facility
location problems is limited and has generally focused on the placement of a single facility
(Cooper, 1978, Drezner, 1989, Averbakh and Bereg, 2005).

This work is most closely related to the paper by Baron et al. (2011), who also present
a robust optimization model for facility location. In their paper, demand is again restricted
to a set of known locations, but the vector of demands over all locations is only known to
live within a given uncertainty set. In contrast, we model total demand as being known (i.e.,
normalized to 1), and consider uncertainty in how this demand is distributed in space.

Our work is also related to facility interdiction problems, which focus on protecting against
potential disruptions at facilities. Facility interdiction models, which, like ours, take the form
of min-max optimization problems, were first considered by Church and Scaparra (2007) and
later by Scaparra and Church (2008), Liberatore et al. (2011) and Losada et al. (2012). With
respect to CVaR, the only other work to use it in a facility location context is the mean-excess
model presented in Chen et al. (2006), which focuses on demand level uncertainty.

Optimization under uncertainty. Our main formulation takes the form of a robust
optimization problem in which a large set of scenario probabilities are uncertain and only
known to reside within a given polyhedron. In the special case where there is no uncertainty
(i.e. the uncertainty set is a singleton representing the true distribution), our formulation
simplifies to an extensive form stochastic program with a large set of scenarios (Birge and
Louveaux, 2011). Other papers which model uncertainty in probabilities using polyhedral
uncertainty sets include Chan and Mǐsić (2013), who consider radiation therapy with un-
certainty in patient breathing patterns, and Farias et al. (2013), who consider uncertainty
in consumer choice probabilities. Ben-Tal et al. (2013) present a general framework which
uses φ-divergences to model distributional uncertainty sets, and obtain polyhedral sets as a
special case. For a review of the broader robust optimization literature, we refer the reader
to Ben-Tal et al. (2009) and Bertsimas et al. (2011).

Since the source of uncertainty in our model stems from an unknown discrete probability
distribution, our model can also be interpreted as an instance of distributionally robust
optimization, which refers to optimization problems in which only a partial description of
a probability distribution is available (Scarf et al., 1958, Dupačová, 1980, Birge and Wets,
1987, Shapiro and Kleywegt, 2002, Delage and Ye, 2010, Goh and Sim, 2010, Xu et al., 2012).
Recently, Wiesemann et al. (2014) proposed a canonical framework for distributionally robust
convex optimization, and show that it subsumes well-known robust optimization models. A
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common approach to modeling distributional uncertainty sets is to impose constraints on the
moments of the distribution (e.g., Ghaoui et al. (2003), Delage and Ye (2010)). Since we
instead model distributional uncertainty using polyhedral sets, from a technical perspective
our model is more aligned with the literature on robust linear optimization (e.g., Bertsimas
and Sim (2004)).

Due to our use of a CVaR objective function, our main formulation takes the form of a
two-stage (min-max-min) robust optimization model, where the inner minimization problem
is used to compute CVaR. Gabrel et al. (2014) and Zeng and Zhao (2013) also present two-
stage models for facility location problems, where the focus is on uncertainty in demand
level rather than location. Other settings in which two-stage robust optimization models
have been considered include network flows (Atamturk and Zhang, 2007, Ordonez and Zhao,
2007), power systems (Bertsimas et al., 2015, Zhao and Zeng, 2012), and military applications,
including the defense of critical infrastructure (Brown et al., 2006, Alderson et al., 2011) and
network interdiction (Brown et al., 2009).

Lastly, our modeling approach has some similarities with work by Carlsson and Delage
(2013), in that they also consider a distributionally robust optimization problem in a spatial
setting where demand points arrive in a continuous service area. Assuming the mean and
covariance of the demand distribution is known, they focus on a vehicle routing problem
where the goal is to partition the service area into a set of subregions such that the worst-
case load for any vehicle across all subregions is minimized. By comparison, we assume that
a fixed set of subregions is given, and the only distributional information available is the
probability of an arrival in each subregion.

We note here that the work in this chapter coincides with the paper by Chan et al. (2018).

4.3 Model

Let A ⊂ R2 represent the continuous service area over which cardiac arrests arrive. Let I
be an index set for m candidate sites, and let y ∈ {0, 1}m be a binary vector, where yi = 1
indicates the presence of an AED in the ith candidate site. Let the function d : A×A → R+

measure the distance between two locations in A. With a slight abuse of notation, let
y(a) ∈ A represent the nearest facility to a point a ∈ A, so that d(a,y(a)) is the distance
between a point a ∈ A and its nearest facility.

Let ξ be a random vector representing the location of the next cardiac arrest event within
A, with distribution µ. The distribution µ can be interpretted as describing the risk of a
cardiac arrest event occurring over A. Without loss of generality, we assume Pµ(ξ ∈ A) = 1.
For a set of AED locations y, d(ξ,y(ξ)) represents the distance between the next demand
arrival and its nearest facility. Since d(ξ,y(ξ)) is itself random due to ξ, we shall refer to
the distribution of d(ξ,y(ξ)) as the distance distribution induced by y. We can think of the
distribution of d(ξ,y(ξ)) as fully describing the performance of the AED deployment.

As discussed in Section 1, we wish to place AEDs in a manner that mitigates the risk
of large distances between cardiac arrest victims and the nearest AED. Restated, our goal
is to identify an AED deployment y that controls the right-tail of the distance distribution,
d(ξ,y(ξ). Since placing an AED in every possible candidate site is prohibitively expensive,
we assume throughout that up to P AEDs are available for deployment. If the distribution
µ is known, then the problem of minimizing the CVaR of the distance distribution is given
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by

minimize
y∈Y

CVaRµ[d(ξ,y(ξ))] (4.1)

where

Y =

{
y ∈ {0, 1}m

∣∣∣∣ ∑
i∈I

yi = P

}
.

CVaR is closely related to the value-at-risk (VaR) measure, both of which have origins in the
finance literature (see Rockafellar and Uryasev (2000, 2002)). For a given loss distribution,
β-VaR represents the smallest value α such that the loss does not exceed α with probability
1 − β. By contrast, β-CVaR represents the expected loss conditional on the loss exceeding
β-VaR.

In practice, the distribution of cardiac arrest locations is unlikely to be known precisely.
Since – for a given location – cardiac arrests are low probability events, optimizing AED
locations solely with respect to limited historical data (effectively a sample average approx-
imation) may result in a poor deployment of AEDs. Moreover, any estimate of µ from
historical data is also likely to be subject to uncertainty, especially if a limited amount of
data is available.

To account for this uncertainty, we instead assume that the distribution µ is only known
to belong to an uncertainty set, U . A key question at this juncture is how to structure the set
U . To obtain a formulation that is both tractable and effective at capturing uncertainty in
µ, we take the following approach. Suppose the service area A can be divided into (possibly
overlapping) uncertainty regions A1,A2, . . . ,A|J |, where A = A1 ∪A2 ∪ . . . ∪A|J |. Suppose
now that the only available information about the distribution µ is the probability of the next
cardiac arrest occuring in each of the regions A1, . . . ,A|J |, which we denote by λ1, . . . , λ|J |.
The worst-case CVaR can now be minimized by solving the problem

min
y∈Y

max
¯∈U

CVaRµ[d(ξ,y(ξ))], (4.2)

where
U = {µ | Pµ(ξ ∈ A1) = λ1, . . . ,Pµ(ξ ∈ A|J |) = λ|J |},

is the distributional uncertainty set. Note that since the uncertainty regions are permitted
to overlap, the probabilities λ1, . . . , λ|J | may sum to a value greater than 1. We assume
throughout that the uncertainty regions are given. In practice, the design of the uncertainty
regions Aj should be guided by several considerations such as tractability, availability of
historical data, and model interpretability (we discuss these considerations in greater detail
in Section 4.5).

There are several reasons behind our choice of the uncertainty set U . First, we posit that
obtaining estimates of the cardiac arrest risk at an aggregate (i.e., uncertainty region) level is
less onerous than estimating the distribution µ directly, especially if data on historical cardiac
arrest locations is limited. Estimating the parameters λ1, . . . , λ|J | in lieu of µ itself allows
us to partially capture the underlying distribution while accounting for uncertainty. This
approach is well-aligned with the notion that aggregate forecasts tend to be more reliable
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than point forecasts when dealing with uncertainty (Simchi-Levi et al., 2004, Sheffi, 2005,
Bertsimas and Thiele, 2006, Nahmias and Cheng, 2009). In addition, our choice for the
structure of U lends itself to a tractable mathematical programming formulation of (4.2).
The key to this tractability is the observation that for any y, the worst-case distribution in
U is supported on a relatively small number of locations in A. This sparsity can in turn be
exploited through a decomposition algorithm, which allows us to solve the robust optimization
problem efficiently (see Section 4). Our choice of U also provides a natural generalization
of classical facility location models, which have a rich and extensive history. In particular,
classical models typically assume demand is concentrated at n weighted demand points (e.g.,
a weight of λj for demand point j = 1, . . . , n), which is recovered from our model by simply
shrinking each Aj to a singleton. Thus, a natural interpretation of our distributionally
robust model is as an extension of classical models where each demand point lives in a region
Aj , wherein the true demand location will be realized after facility siting. We discuss the
connection between our model and the classical location literature in more detail in Section
4.3.4. In particular, we show that our model unifies the classical p-median and p-center
problems, as well as their robust analogues.

We note here that our choice of uncertainty set bears similarities to the uncertainty set dis-
cussed in the paper by Wiesemann et al. (2014), who present a canonical modeling approach
for distributionally robust optimization problems. The authors formulate the uncertainty set
using constraints on the probability that a random vector is realized within various convex
sets. They show that within their framework, simply checking the whether the distributional
uncertainty set is empty can be a strongly NP-hard problem, unless the constituent convex
sets satisfy a particular nesting condition. This hardness follows from the generality of the
uncertainty set, which can be shown to subsume integer programming, in the absence of the
nesting condition. Our setting is considerably more structured. By discretizing the service
area into a large number of scenarios, we obtain a representation of U that is polyhedral. As
a consequence, the worst-case distribution can be identified by solving a linear program.

In the remainder of this section, we show how our discretization approach allows us to
formulate the optimization problems (4.1) and (4.2) as tractable mathematical programs. We
then propose a bound on the error introduced by the discretization.

4.3.1 Known demand distribution

For ease of exposition, we first consider the case where µ is known. A standard approach
for formulating stochastic programs is to discretize the outcome space into a finite set of
scenarios and to assign a probability to each scenario. Since in our setting, ξ is the random
location of the next cardiac arrest event, each scenario (i.e., realization of ξ) has a one-to-
one correspondence with a particular geographic location in A. Accordingly, let Ξ ⊂ A be
a discrete set of locations that approximate the continuous service area A, so that Ξ is a
discrete approximation of the outcome space of ξ, and each element of Ξ corresponds to
a distinct location in A. Letting K be an index set for the scenarios in Ξ, we can write
Ξ =

{
ξ1, ξ2, . . . , ξ|K|

}
to represent the set of all possible realizations of ξ. Let uk be the

probability that the next cardiac arrest will occur at location ξk. Since in this discrete
setting the possible cardiac arrest locations are restricted to Ξ, we have

∑
k∈K uk = 1.

Let the parameter dik represent the distance between candidate site i and scenario ξk
based on the distance function d(·, ·). Let zik be an assignment variable that is equal to 1 if
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a cardiac arrest realized at location ξk is assigned to an AED at location i. The feasible set
of assignments is given by

Z(y) =

{
zik ≥ 0, i ∈ I, k ∈ K

∣∣∣∣ ∑
i∈I

zik = 1, k ∈ K; zik ≤ yi, i ∈ I, k ∈ K
}
.

Note that based on the discretization, we have d(ξk,y(ξk)) = minz∈Z(y)

∑
i∈I dikzik. Hence,

for fixed y, CVaRµ[d(ξ,y(ξ))] can be expressed as (Rockafellar and Uryasev, 2000, 2002):

CVaRµ[d(ξ,y(ξ))] ≈ minimize
z,α

α+
1

(1− β)

∑
k∈K

uk max

{∑
i∈I

dikzik − α, 0
}
. (4.3)

Strictly speaking, the quantity in (4.3) is known as β-CVaR−, which is an approximation of
β-CVaR. This is a commonly used approximation for the case of discrete distributions – see
Rockafellar and Uryasev (2000) for further details. The nominal optimization problem (4.1)
for a known distribution can now be written as

minimize
y,z,α

α+
1

(1− β)

∑
k∈K

uk max

{∑
i∈I

dikzik − α, 0
}

(N-AED)

subject to z ∈ Z(y), y ∈ Y,

α ≥ 0,

which is a mixed-integer linear program after linearizing the maximization term in the ob-
jective.

4.3.2 Distributionally robust model for unknown demand distribution

We now extend formulation N-AED to accomodate uncertainty in the distribution µ. Given
the uncertainty regions A1, . . . ,A|J |, we construct scenario sets Ξ1,Ξ2, . . . ,Ξ|J |, where

Ξj = {ξk, k ∈ K | ξk ∈ Aj}

and
⋃n
j=1 Ξj = Ξ. Let Kj index the scenarios in Ξj , and let J index the set of uncertainty

regions. Since in the discretized setting we assume a cardiac arrest arriving in Aj can only be
realized at one of the locations in Ξj , we have Pµ(ξ ∈ Ξj) = Pµ(ξ ∈ Aj) = λj . The worst-case
CVaR of the distance distribution given a feasible y, z is then given by optimal value of the
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following max-min problem:

max
u

min
α

α+
1

(1− β)

∑
k∈K

uk max

{∑
i∈I

dikzik − α, 0
}

subject to
∑
k∈K

uk = 1, (4.4)∑
k∈Kj

uk = λj , j ∈ J ,

uk ≥ 0, k ∈ K,
α ≥ 0.

For conciseness, define

U =

u ∈ R|K|+

∣∣∣∣ ∑
k∈K

uk = 1,
∑
k∈Kj

uk = λj , j ∈ J

 .

Note that the set U may be empty if the parameters λ1, . . . , λ|J | are selected arbitrarily
(e.g., consider two regions A1, A2 where A1 ∩ A2 = ∅ but λ1 = λ2 = 1). However, if
λ is estimated appropriately from historical cardiac arrest data, then nonemptiness of U
is guaranteed (see Proposition 4.3). We discuss the design of uncertainty regions and the
estimation of λ further in Section 4.5.2. Note also that our discretization scheme allows us
to model generally shaped uncertainty regions. This flexibility allows physical obstacles to
be incorporated into the uncertainty regions, such as certain private buildings where public
cardiac arrests cannot occur.

Minimizing the worst-case CVaR over y, z, we now arrive at the following two-stage robust
optimization problem:

min
y,z

max
u

min
α

α+
1

(1− β)

∑
k∈K

uk max

{∑
i∈I

dikzik − α, 0
}

subject to u ∈ U, z ∈ Z(y),y ∈ Y, (R-AED)

α ≥ 0.

With respect to the size of R-AED, in practice we expect K to be large (on the order of
103 or larger), so that our discretization procedure reasonably approximates the underlying
continuous problem. For example, in our case study (Sections 5 and 6), we take |K|= 2, 600.
Similarly, the number of candidate sites |I| in our case study is 120, and the number of
uncertainty regions |J | is 15.

It is worth discussing how formulation R-AED compares to other robust location models
with demand uncertainty. The model closest to ours is the one proposed by Baron et al.
(2011), who consider demand-level uncertainty at each of a fixed set of demand locations.
Our model can also be viewed as modeling demand-level uncertainty, although there are some
key differences with Baron et al. (2011). In formulation R-AED, the discrete uncertainty set
U forces the aggregate demand from the locations Kj to be λj , and normalizes the total
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demand over all locations in K to be 1. This is in contrast to the approach of Baron et al.
(2011), who model the uncertainty by allowing the vector of demands over all locations to
reside within a box or ellipsoidal uncertainty set. This difference in how demand uncertainty
is modeled turns out to be consequential. Based on our choice of the (polyhedral) uncertainty
set, the worst-case distribution in U will generally be supported on a relatively small number
of locations, compared to the total number of scenarios. This means that, in the worst-case
distribution, the demand uk in the vast majority of locations in K will be 0. Moreover,
increasing the size of the scenario K has no effect on the number of locations that support
the worst-case distribution in U. This sparsity and independence from the total number of
scenarios in K is exploited by our row-and-column generation algorithm to obtain solutions
to R-AED (Section 4). By contrast, in Baron et al. (2011), the uncertain demand at each
location typically has a non-zero lower bound, which leads to all locations having non-zero
demand, and thus precludes the application of our decomposition technique.

In the most general case, formulation R-AED can be interpreted as a facility location model
with a single demand point (i.e., the location of the “next” cardiac arrest) and stochastic
edge lengths, where dik gives the length of the edge between the demand point and candidate
site i under scenario k. Under this interpretation, λj represents the probability that one of
the scenarios in the set Kj occurs. Our model differs from the existing literature on stochastic
edge lengths since we assume that the vector of probabilities u is itself uncertain, and only
known to reside within a polyhedral uncertainty set.

Formulation R-AED can also be shown to unify the well known p-median and p-center
location problems, as well as their robust analogues under demand location uncertainty. We
formalize this connection in Section 4.3.4.

4.3.3 Discretization error bounds

The model R-AED is an approximation in the sense that it restricts the continuous demand
distribution to be supported on a discrete set. As a result, the “true” worst-case CVaR in the
continuous setting may be underestimated by the optimal value of formulation R-AED. In this
section, we present bounds on this underestimation, which we refer to as the discretization
error. The discretization error can be interpreted as the optimality gap associated with an
optimal solution of formulation R-AED with respect to the underlying continuous problem
(4.2).

To define and prove the discretization error bounds, we first construct a partition of the
service area A. The partitioning is required for technical purposes only, and can be applied
to any general setting with overlapping uncertainty regions. Note that any configuration of
the uncertainty regions Aj implies a partitioning of the full service area A into potentially
more than n “subregions”. For example, suppose A = A1 ∪ A2, where A1 ∩ A2 6= ∅. Then
we consider three disjoint subregions: A′1 = A1 \ A2, A′2 = A2 \ A1, and A′3 = A1 ∩ A2.
In general, let A′1, . . . ,A′|R| represent these subregions, and let Ξ′1, . . . ,Ξ

′
|R| be the discrete

counterparts to the A′r. Let R be the index set for the subregions and let Kr index the
scenarios in subregion r. Since by definition the A′r form a partition of A, it follows that
Ξ′r ∩ Ξ′r′ = ∅ for all r 6= r′. Note that in the most general case, we may have |R|= 2|J |,
if every uncertainty region partially overlaps with every other uncertainty region. However,
this extreme case is unlikely to arise naturally in the context of AED deployment and other
facility location problems. Note also that if there is no overlap among the Aj , then |R|= |J |.
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(a) Assumption 4.2 satisfied. (b) Assumption 4.2 violated.

Figure 4.1: Examples for Assumption 4.2.

To construct the bound, we first require the following assumptions.

Assumption 4.1. Ξ′r = A′r ∩ L for all r ∈ R, where L is a square lattice in the plane with
a grid spacing of length σ.

Assumption 4.2. The shape of the subregion A′r is such that for any point a ∈ A′r \ Ξ′r, at
least one of the four points in L that define the smallest square containing a is inside A′r.

Assumption 4.1 states that the uncertainty regions are discretized using a square lat-
tice, which simplifies the analysis considerably without loss of generality. Assumption 4.2
is meant to exclude pathologically shaped uncertainty regions relative to the size of the dis-
cretization (see Figure 4.1), and can be satisfied with a sufficiently granular discretization of
the uncertainty region. We now define a parameter `(σ) with the following property:

`(σ) ≥ max
a∈A′r

min
ξ∈Ξ′r

d(a, ξ), for all r ∈ R. (4.5)

Here, `(σ) is an upper bound on the maximum distance between any point in A′r and its
closest scenario location in Ξ′r. To make the expression in (4.5) concrete, we provide some
examples of the parameter `(σ) in Remark 1, depending on the choice of the distance metric.

Remark 4.1. Let Assumptions 4.1 and 4.2 hold. Let ‖·‖1, ‖·‖2 and ‖·‖∞ be the Euclidean,
rectilinear and maximum metric on R2.

1. If d(a, b) = ‖a− b‖1, then `(σ) = 2σ.

2. If d(a, b) = ‖a− b‖2, then `(σ) =
√

2σ.

3. If d(a, b) = ‖a− b‖∞, then `(σ) = σ.

Note that setting `(σ) = 2σ is also valid for any distance function based on a p-norm with
p ≥ 1, since ‖·‖p is non-increasing in p. Let ZD be the optimal value of formulation R-AED,
ZC be the optimal value of the associated continuous problem (4.2), and

∆ :=
ZC − ZD

ZC

be the discretization error. We now present the main bound.
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Theorem 4.1. For any ε > 0, if `(σ) ≤ ε(1− β)ZD, then ∆ ≤ ε.
Theorem 4.1 characterizes how finely the uncertainty regions must be discretized to

achieve a certain discretization error. Since `(σ) vanishes with σ, the discretization error
can be made arbitrarily small by selecting an appropriate value for σ. Thus, we can obtain
near-optimal solutions to the underlying continuous uncertainty problem by solving formu-
lation R-AED with a sufficiently fine discretization (and thus a sufficiently large number of
scenarios). We can also re-arrange the expression in Theorem 4.1 to calculate an upper bound
on ZC as a function of σ and ZD. The upper bound Z̄C is constructed as follows:

ZC ≤ Z̄C = ZD(1 + ε), where ε =
`(σ)

ZD(1− β)
. (4.6)

In the next section, we outline a decomposition technique which enables us to compute a
tight bound Z̄C by solving instances of R-AED with an extremely large number of scenarios.

4.3.4 Unifying the p-median and p-center problems

The p-median and p-center problems are two of the most well-studied location models, having
served as the foundation for a significant portion of the existing facility location literature
(Owen and Daskin, 1998, Snyder, 2006, Melo et al., 2009). In this section, we discuss how
a non-stochastic interpretation of R-AED specializes to robust variants of the p-median and
p-center problems, depending on how β is selected. A straightforward corollary of this result
is that if the Aj are all singletons, then formulation R-AED unifies the classical p-median and
p-center problems (i.e. without any uncertainty).

We begin by defining robust variants of the p-median and p-center problems, and then
prove an equivalence between these problems and formulation R-AED. Let J index a finite
and fixed set of demand points. In the classical p-median problem, one wishes to site P
facilities so to minimize the (weighted) total distance between all demand points and their
nearest facilities. Suppose now that the jth demand point is only known to reside within
an uncertainty region Aj . We formulate a generalization of the p-median problem that aims
to minimize the worst-case total distance. Let each uncertainty region be discretized into
a set of locations Ξj ⊂ Aj , so that the demand point j is only known to be at one of the
locations in Ξj . Let Kj index the locations in Ξj . Let Z(y) and Y retain their definitions
from Section 4.3. Let λj be the usual notion of “weight” placed on demand point j. Now
define X = X1 × . . .×X|J |, where

Xj =

xjk ≥ 0, k ∈ K
∣∣∣∣∣ ∑
k∈Kj

xjk = 1

 , j ∈ J . (4.7)

We can now write the robust p-median problem to minimize the worst-case total distance as

min
y,z

max
x

∑
i∈I

∑
k∈Kj

∑
j∈J

λjdikzikxjk (4.8)

subject to x ∈ X, z ∈ Z(y), y ∈ Y.

In formulation (4.8), the set X can be interpreted as the decision space of an adversary which,
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after observing the facility locations, realizes each demand point within its uncertainty region
at a location that maximizes the distance to the nearest facility. Using the same definitions
as above, we can also define the robust p-center problem, which minimizes the worst-case
maximum distance between a demand point and its nearest facility:

min
y,z

max
x

min
t

t

subject to t ≥
∑
i∈I

∑
k∈Kj

dikzikxjk, j ∈ J , (4.9)

x ∈ X, z ∈ Z(y), y ∈ Y.

We now show that the robust p-median and p-center problems are unified by formulation
R-AED.

Proposition 4.1. Assume that each scenario k belongs to exactly one of the sets K1, . . . ,K|J |,
and λ1 = . . . = λ|J | = 1/n. If β = 0, then formulation R-AED is equivalent to the robust p-
median problem (4.8) with equally weighted demand points. If β ≥ (n−1)/n, then formulation
R-AED is equivalent to the non-weighted robust p-center problem (4.9).

Based on Proposition 4.1, we can interpret formulation R-AED as subsuming a spectrum
of location models with the robust p-median problem at one end (β = 0) and the robust
p-center problem at the other (β close to 1). While the specialization of CVaR to the mean
and maximum of a general discrete distribution is well known, this explicit unification of
the p-median and p-center problems via a CVaR objective does not appear to have been
discussed previously in the facility location literature. We note also that the assumption in
Proposition 4.1 that each k belong to exactly one Kj is needed to ensure the equivalence
between the main formulation R-AED and the intermediate model (A.45) used in the proof.
If this assumption is relaxed, then formulation (A.45) still serves as a unifying model for the
p-median and p-center problems, although the equivalence with R-AED no longer holds. The
ordered median problem (Kalcsics et al., 2002, Nickel and Puerto, 1999) also unifies median
and center problems, but requires an ordering of the demands according to their distance to
the sited facilities so that a set of appropriate parameters can be identified. By contrast, our
approach involves the adjustment of a single parameter and requires no such ordering.

To the best of our knowledge, (4.8) and (4.9) are the first robust formulations of the gen-
eral p-median and p-center problem with non-stochastic uncertainty in the demand location
(i.e., in the spirit of robust optimization rather than scenario-based stochastic optimization).
Previous work in robust facility location has considered only one facility (Averbakh and
Berman, 2000, Averbakh, 2003) or uncertainty in demand level rather than location (Baron
et al., 2011). As discussed in Section 3.2, the formulation in (Baron et al., 2011) is well
equipped to handle uncertainty in the level of demand at each of a set of known demand
points. The robust p-median and p-center formulations presented above may be more appro-
priate in applications where there is continuous uncertainty in future demand locations (e.g.,
emergency response or peer-to-peer ridesharing applications).
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4.4 Row-and-column generation algorithm

It is well known that two-stage robust optimization problems with the structure of (4.11)
can be solved using Benders-based decomposition algorithms (see, for example, Brown et al.
(2006) Brown et al. (2009) Alderson et al. (2011)). These approaches decompose the formula-
tion into a master problem, which is a relaxation of the original problem, and a subproblem,
which generates constraints to be added to the master problem. The master and subprob-
lems are solved iteratively until convergence to a provably optimal solution. However, when
applied to (4.11), the number of constraints and decision variables of the (integer) master
problem using these approaches depends on the number of scenarios |K|. As a consequence,
these decomposition approaches can fail to be tractable if |K| is even moderately sized. We
overcome this issue by proposing an algorithm that decouples the size of the master problem
from the number of scenarios. A key consequence of this decoupling is that the tractability of
the resulting formulation no longer depends on the granularity of the discretization, which,
when combined with the bounds in Section 4.3.3, allows us to approximate the continuous
problem using an extremely large number of scenarios. A similar row-and-column generation
algorithm for solving min-max optimization problems was independently proposed by Zeng
and Zhao (2013). A key difference is that unlike the model in Zeng and Zhao (2013), which
has an integer subproblem, our subproblem is a linear program.

We compare our proposed method with two other solution approaches that are natural
candidates for solving formulation R-AED – a Benders-based row generation algorithm and a
mixed integer programming (MIP) reformulation of R-AED.

4.4.1 Algorithm overview

We now provide an overview of the row-and-column generation algorithm. First, observe
that the inner minimization problem of (4.4) is a linear program. Letting p denote the dual
vector for this linear program, the dual polyhedron – which depends on the distribution u –
can be written as

P(u) =

{
pk ≥ 0, k ∈ K

∣∣∣∣∣ ∑
k∈K

pk ≤ 1, pk ≤ uk/(1− β), k ∈ K
}
. (4.10)

The optimization problem (4.4) can now be reformulated as

min
y,z

max
u,p

∑
i∈I

∑
k∈K

dikzikpk

subject to p ∈ P(u),u ∈ U, (4.11)

z ∈ Z(y),y ∈ Y.
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By introducing the auxilliary variable t, we obtain the following epigraph representation of
(4.11):

minimize
y,z,t

t (4.12a)

subject to t ≥
∑
i∈I

∑
k∈K

dikzikpk, p ∈ P(u),u ∈ U, (4.12b)

z ∈ Z(y),y ∈ Y. (4.12c)

Note that formulation (4.12) is a semi-infinite optimization problem, since the constraint
(4.12b) is enforced over all possible p. To obtain a feasible solution to (4.12), we may instead
solve a relaxation where the constraint (4.12b) is enforced over a finite subset of P. Let
this subset be P|S| = {p1, . . . ,p|S|}, and let S be an index set for the vectors in P|S|. To
obtain a relaxation of (4.12b) with a finite number of constraints, we replace the constraint
set represented by (4.12b) with the following set of |S| constraints:

t ≥
∑
i∈I

∑
k∈K

dikzikp
s
k, s ∈ S. (4.13)

Although replacing the constraint (4.12b) with (4.13) in formulation (4.12) produces a mixed-
integer linear program, the resulting formulation may still be intractably large, due to the
dependence of the number of constraints and variables on the size of the scenario set, K.
Consider now the set

K+ =

{
k ∈ K

∣∣∣∣∣ ∑
s∈S

psk > 0

}
, (4.14)

and note that constraint (4.13) can be written as

t ≥
∑
i∈I

∑
k∈K+

dikzikp
s
k +

∑
i∈I

∑
k∈K\K+

dikzikp
s
k, s ∈ S. (4.15)

Since by definition we have
∑

k∈K\K+
psk = 0 for all s ∈ S, we may drop the second term on

the right hand side of (4.13), which further simplifies the constraint to

t ≥
∑
i∈I

∑
k∈K+

dikzikp
s
k, s ∈ S. (4.16)

Observe that if k /∈ K+, then the value of the corresponding assignment variable zik has no
impact on the objective function, since its coefficient is 0 for all s ∈ S. We can therefore
remove all zik variables and the constraints zik ≤ yi and zik ≥ 0, for k ∈ K \ K+. This leads
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to the following relaxation of (4.12):

minimize
y,z,t

t

subject to t ≥
∑
i∈I

∑
k∈K+

dikzikp
s
k, s ∈ S,

∑
i∈I

yi = P,∑
i∈I

zik = 1, k ∈ K+, (R-AED-MP)

zik ≤ yi, i ∈ I, k ∈ K+,

zik ≥ 0, i ∈ I, k ∈ K+,

yi ∈ {0, 1}, i ∈ I.

The relaxed problem R-AED-MP yields a lower bound on the optimal value of the original
problem (4.11). To tighten the relaxation, we can add a new vector p to P|S| and re-solve
R-AED-MP, with the aim of obtaining an improved lower bound. Let ȳ be a deployment
obtained at a solution of R-AED-MP. We then construct a feasible assignment vector z̄ that
assigns each scenario to its nearest AED as follows. Let i∗(k) = argmin{i∈I|ȳi=1}{dik}, which
represents the closest AED to location k, given the deployment ȳ. Then for each k ∈ K, set

z̄i∗(k),k = 1 and z̄ik = 0 for all i 6= i∗(k). (4.17)

It is straightforward to show that the z̄ given by (4.17) is also optimal for R-AED-MP. To
identify a new p, we then solve the following subproblem, where ȳ, t̄ is obtained as the
incumbent solution to R-AED-MP and z̄ is given by (4.17):

maximize
u,p

∑
i∈I

∑
k∈K

dikz̄ikpk (R-AED-SP)

subject to p ∈ P(u),u ∈ U.

To understand why the construction of z̄ using (4.17) is necessary, note that since R-AED-MP
minimizes CVaR, the optimal assignment variables z obtained at a solution to R-AED-MP
may not assign every location k to its nearest AED, since only the locations in the tail
of the distance distribution affect the optimal objective function value. As a consequence,
solving R-AED-SP using the z̄ obtained directly from R-AED-MP may produce a solution
to R-AED-SP that does not correspond to a worst-case distribution (with respect to the
incumbent deployment y). While in theory, the algorithm converges in finite time without
reconstructing z̄ according to (4.17), in practice we found that including this additional
assignment step results in fewer iterations and a significant speed improvement.

Observe that formulation R-AED-SP is a linear program. Now let u∗,p∗ be an optimal
solution to R-AED-SP, and let ZSP be the optimal value. If t̄ ≥ ZSP, then it follows that t̄ ≥∑

i∈I
∑

k∈K dikz̄ikpk for all p ∈ P(u),u ∈ U, and thus the incumbent solution is certifiably
optimal to the original problem. If t̄ < ZSP, then we introduce the variables zik, k ∈
K∗ to the master problem, as well as the constraints zik ≥ 0, zik ≤ yi, k ∈ K∗ and t ≥
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∑
i∈I
∑

k∈K dikz̄ikp
∗
k, where K∗ = {k ∈ K | p∗k > 0}. We then solve R-AED-MP again to

obtain a new solution ȳ, z̄, t, which begins a new iteration of the algorithm. Since there are
a finite (but possibly large) number of rows and columns that can be generated, convergence
after a finite number of iterations is guaranteed. The algorithm is summarized in Algorithm
3.

Algorithm 3: Row-and-column generation

1 Initialize Set S = {0}, s = 1, and ε > 0. Let K+ = ∅.
2 Solve R-AED-MP to obtain solution (ȳ, t̄) and objective value ZMP.
3 Construct z̄ according to (4.17).

4 Solve R-AED-SP with fixed z̄ to obtain p̄s and objective value ZSP. If
ZSP−ZMP

ZSP
≤ ε,

terminate and return optimal deployment ȳ and worst-case CVaR t̄. else

i) Construct index set
K∗ = {k ∈ K \ K+ | p̄sk > 0}

and set K+ ← K+ ∪ K∗.

ii) Add variables zik, i ∈ I, k ∈ K∗ to master problem R-AED-MP.

iii) Add constraints

t ≥
∑
i∈I

∑
k∈K+

dikzikp̄
s
k,

zkij ≤ yi, i ∈ I, k ∈ K∗,∑
i∈I

zkij = 1, k ∈ K∗,

to master problem R-AED-MP.

iv) Set S ← S ∪ {s}. Increment s and return to step 2.

The intuition behind the algorithm is as follows. At a given iteration, the master problem only
includes the subset of scenarios that are assigned a non-zero probability mass in the worst
case distribution for at least one of the previous iterations. Based on the incumbent solution,
the subproblem then identifies the worst-case distribution using the entire scenario set. The
scenarios which support the worst-case distribution (obtained by solving the subproblem) are
then added to the master problem on an as needed basis, along with the relevant assignment
variables and related constraints. Due to this decomposition, at any iteration of the algorithm
the size of the master problem R-AED-MP depends only on the number of candidate sites,
|I|, and the size of the restricted scenario set, K+, which may be substantially smaller than
K. In fact, due to the structure of the uncertainty set U, the size of the restricted scenario
set K+ can be shown to depend only on the configuration of the uncertainty regions and the
number of iterations completed by the algorithm, and is otherwise independent of the total
number of scenarios in K. This result is formalized in the following proposition.
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Proposition 4.2. Assume that for any k and k′ such that k 6= k′, we have dik 6= dik′ for all
i ∈ I. Then the number of constraints and variables in the master problem R-AED-MP in the
sth iteration of Algorithm 1 is O(|I|(|J |+1)s).

The assumption that k 6= k′ implies dik 6= dik′ for all i ∈ I is mild, and ensures that for any
candidate site i, there are no exact ties for the closest location in K (indeed, this assumption
can be relaxed if we instead assume that the solution to R-AED-SP is always a basic feasible
solution, which is the case if the simplex method is used to solve R-AED-SP). It is worth
noting that the size of the master problem R-AED-MP may still depend indirectly on K if
the total number of scenarios is small (i.e., if |R|s > |K|). Additionally, Proposition 1 only
guarantees that the size of the master problem in any given iteration is independent of K,
but does not guarantee that the total number of iterations required will be independent of K.
However, our numerical results indicate that increasing the number of scenarios generally has
a minimal impact on the performance of the row-and-column generation algorithm, because
the worst-case distribution is generally sparse with respect to K. Note that unlike the master
problem, the subproblem R-AED-SP still depends on the size of K. However, the subproblem
is a linear program with |K| decision variables, and we found that it can be solved efficiently
for practically sized problems, even if the set K is quite large.

4.4.2 Benchmark solution approaches

We compare the performance of the row-and-column generation algorithm to two benchmark
approaches: a mixed-integer linear programming reformulation of (4.2) and a standard row
generation algorithm for min-max problems.

Mixed-integer linear programming reformulation

By formulating the dual problem of the inner maximization problem in (4.11), we obtain the
following mixed-integer linear program:

minimize
y,z,w,η,α,fl

η + α+
∑
j∈J

λjwj

subject to α+ γk ≥
∑
i∈I

∑
k∈K

dikzik, k ∈ K,

η − γk
1− β +

∑
{j|k∈Kj}

wj ≥ 0, k ∈ K, (4.18)

z ∈ Z(y), y ∈ Y,

γk ≥ 0, k ∈ K,
α ≥ 0.

If K is relatively small, then the MIP formulation (4.18) can be solved using standard integer
programming solvers. However, this formulation can become computationally intractable if
a large number of scenarios are used to discretize the uncertainty regions.
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Row generation

A well known approach to solving min-max problems like (4.2) is to use a Benders-based
row generation algorithm (Brown et al., 2006, 2009, Alderson et al., 2011). The row genera-
tion algorithm is conceptually similar to our row-and-column generation method outlined in
Section 4.4.1, in that it also decomposes the problem into a master and subproblem which
provide lower and upper bounds, respectively. However, a key difference with our approach
is that the row generation algorithm carries the full set of columns (i.e., all scenarios in K)
in the master problem in each iteration. The number of variables and constraints in the
master problem of the row generation algorithm in the sth iteration is thus O(|I||K|) instead
of O(|I||R|s). As a result, the row generation algorithm may have poor performance if |K|
is large.

4.4.3 Comparison of solution approaches

To demonstrate the performance of the row-and-column generation algorithm, we generated
and solved several random problem instances using rectangular uncertainty regions and a
square lattice for the discretization. We use Euclidean distances for all parameters. We
solve each of these instances using the three solution methods discussed above, and focus on
the impact that the number of scenarios has on the total solution time. All problems were
implemented in MATLAB R2011a using YALMIP as the modeling language and CPLEX
12.1 with default parameter settings as the solver, on a 2.4 GHz quad-core CPU.

In Table 4.1, we report numerical results on how the solution times of the MIP formulation
(MIP), row generation algorithm (Row) and row-and-column generation algorithm (R+C)
are impacted by the number of scenarios. We report results only for the cases where β = 0
and β = 0.9, and note that similar trends were observed for other values of β. We also
compute the error bound ε and the associated upper bound on the continuous problem, Z̄C ,
using (4.6). Note that the error bounds for the β = 0.9 cases are larger than the β = 0 case,
which is expected based on the bound expression given in (4.6).

Unlike the MIP and row generation algorithm, the performance of the row-and-column
generation algorithm scales extremely well with the number of scenarios, and in many cases
outperforms the benchmark approaches by one to two orders of magnitude with respect to
the solution time. Note that the performance improvement is most pronounced at larger
values of |K|, due to the poor scalability of the MIP and row generation approaches. These
results suggest that, when using the row-and-column generation algorithm, if a problem can
be solved to optimality using a small number of scenarios, then the problem tends to remain
tractable when using a fine discretization and an extremely large number of scenarios (e.g.,
just under 100,000 scenarios are used in the final row of Table 4.1).

Figure 4.2 depicts an example of the total number of scenarios generated in the master
problem R-AED-MP and the associated optimality gap at each iteration of the row-and-
column generation algorithm. The plot corresponds to the instance given in the second-last
row of Table 1 (I = 100, J = 20, P = 20, K = 24, 743).
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Figure 4.2: Example of total number of scenarios generated (blue squares) and optimality
gap (green circles) for each iteration of the row-and-column generation algorithm (|I|= 100,
|J |= 20, P = 20, |K|= 24, 743).
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4.5 Case study setup

In this section, we discuss the setup of our numerical study on the placement of AEDs in
public locations, including an overview of the data used, calibration of the uncertainty set,
benchmark models, and a simulation-based validation method to evaluate the performance
of the AED deployments produced by each model.

4.5.1 Data

Historical cardiac arrests. We consider the AED location problem in a densely populated
region in the downtown core of Toronto, Canada, which roughly corresponds to the city’s
financial district. We obtained a cardiac arrest dataset through the Resuscitation Outcomes
Consortium (ROC), which is a collaborative network of research institutions across the United
States and Canada that collects cardiac arrest data for the purpose of improving clinical
practice (Morrison et al., 2008). The ROC dataset contains the geographic coordinates of all
cardiac arrests in the City of Toronto from January 2006 to April 2013. During this period, a
total of 43 cardiac arrests occurred in public locations within the study region. These cardiac
arrest locations are used to estimate the λj parameters in formulation R-AED.

Candidate sites. We constructed a set of candidate sites for AED placement by ran-
domly selecting 120 public spaces (restaurants, cafes, shops, etc.) within the downtown region
we consider. The addresses of these public spaces were obtained through the City of Toronto
Employment Survey (City of Toronto, 2010), which collects data on all Toronto businesses on
an annual basis. We use publicly accessible buildings such as restaurants and cafes since they
represent the type of location where one might reasonably expect an AED to be accessible to
the public through a public access defibrillation program. Figure 4.3 provides a visualization
of the study region, historical cardiac arrests and the candidate sites for AED placement.

Distance parameters. To calculate the distance parameters, we converted the addresses
of the candidate sites into Universal Transverse Mercator (UTM) coordinates. Coordinates
in the UTM system are given in units of meters (unlike latitude and longitude coordinates),
which allows for straightforward calculation of distances within the study region. We con-
structed the scenario set K by intersecting the study region with a square grid with a spacing
of 20 meters, which resulted in approximately 2,600 scenarios. We generated the dik param-
eters by calculating the Euclidean distance between each candidate site and scenario pair.
Although the Euclidean distance is only an approximation of the one-way distance a lay
responder would have to travel to retrieve an AED, previous studies have shown Euclidean
distance to be highly correlated with actual road distance, especially in urban areas where the
road network is relatively dense (Bach, 1981, Jones et al., 2010, Boscoe et al., 2012). More-
over, the use of Euclidean distances is particularly justified in the context of AED placement,
since the typical distance between a cardiac arrest and the nearest AED is low enough that
lay responders can often take shortcuts that do not necessarily appear on the road network
(e.g., through buildings, unmarked pedestrian paths, or parking lots).

As a robustness check, we repeat a subset of experiments using rectilinear distances
and actual walking distances. The walking distances are obtained using the Google Maps
Distance Matrix Application Programming Interface (API), implemented in Python. The
Distance Matrix API is a query tool that accepts pairs of locations as input (as latitude-
longitude coordinates or street addresses) and returns the distance between the two locations
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for a given mode of transportation (e.g., walking or driving) (Google, 2016).

Figure 4.3: Locations of historical cardiac arrests and candidate sites for AED placement.

4.5.2 Estimation of uncertainty set parameters

One of the key modeling decisions in our approach is to construct a set of uncertainty regions
from the full service area. One simple approach is to partition the service area into a set of
identically shaped cells and allow each cell to represent an uncertainty region. We propose
that in the context of public access defibrillation, it may be most intuitive from a policy
making perspective to use pre-existing geographic divisions within the city, such as city
blocks, postal/zip codes, or census tracts. Further, in settings where historical cardiac arrest
data is unavailable, one may have to rely on alternate demographic information that are
only recorded in aggregate as a proxy for cardiac arrest incidence. For example, the City of
Toronto collects socio-economic data at the neighbourhood level for planning purposes (City
of Toronto, 2016), which naturally implies a set of uncertainty regions.

Once a set of uncertainty regions is selected, the corresponding probabilities λ1, . . . , λ|J |
must be estimated from historical cardiac arrest data. We propose the following approach,
which produces consistent (i.e., asymptotically optimal) estimates of the uncertainty region
probabilities.

Proposition 4.3. Let a1, . . . , an ∈ A be the locations of n cardiac arrest events, and assume
that a1, . . . , an are drawn i.i.d. from the distribution µ. For each j ∈ J , let

λ̂nj =
1

n

n∑
c=1

1{ac ∈ Aj}. (4.19)

Then |λ̂nj − λj |−→ 0 as n −→∞ almost surely. Further, if the sets Ξ′1, . . . ,Ξ
′
|R| are all non-

empty, then the uncertainty set U constructed from λ̂nj , j ∈ J is guaranteed to be non-empty.

The estimator in Proposition 4.3 is simply the fraction of cardiac arrest events that have
occurred in each uncertainty region. Since the uncertainty regions are fixed, the convergence
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result in Proposition 4.3 follows directly from the strong law of large numbers (to be precise,
note that the arrival of cardiac arrests in each region can, with some modification, be modeled
as a multinomial trials process, which has a well-known maximum likelihood estimator (Bickel
and Doksum, 2015)). The assumption that the cardiac arrest locations are drawn i.i.d. from a
common distribution is a standard statistical assumption, and can be interpreted as requiring
the probability of a cardiac arrest event in different parts of the city to be stable over time.
Fortunately, cardiac arrests in Toronto have been observed to exhibit this temporal stability
(Chan et al., 2014).

Note also that these properties hold for any chosen configuration of the uncertainty re-
gions. In other words, once the uncertainty regions are selected, the estimate λ̂n is guaranteed
to converge to the true arrival probabilities. This convergence is generally known as statisti-
cal consistency, which is considered a fundamental requirement for an estimator (Bickel and
Doksum, 2015).

In addition to estimating the arrival probabilities, we can also use the Wilson score method
as a heuristic to estimate an associated 95% confidence interval for each arrival probability
(Wilson, 1927). These confidence intervals can also be used to guide the design of the uncer-
tainty regions. For example, we might require that the uncertainty regions be selected such
that estimation error of each of the arrival probabilities λ1, . . . , λ|J | is no greater than some
threshold δ with 95% confidence. We emphasize, however, that the Wilson score method
is only a heuristic for estimating the confidence intervals, meaning the estimation error is
not always guaranteed to be less than δ with 95% confidence. As an alternative, we also
note that the problem of designing uncertainty regions based on data is closely related to
the well-studied problem in statistics of optimally selecting histogram bin widths (e.g., Wand
(1997)), although we do not formally explore that connection in this work.

The service area in our numerical study spans only two census tracts and three postal
codes zones. Since using too few uncertainty regions may fail to capture important aspects
of the cardiac arrest distribution, we instead identified uncertainty regions by using the
road network to divide the study area into 15 approximately equal-area uncertainty regions.
The estimates of the arrival probabilities for the 15 uncertainty regions obtained using this
approach are reported in Table 4.5.2, along with their approximate 95% confidence intervals,
calculated using the Wilson score method (Wilson, 1927).

4.5.3 Benchmarks: Sample average approximation and ex-post models

We compare the performance of the AED deployment produced by the robust formulation
R-AED with two benchmark models. The first benchmark is a nominal model, which opti-
mizes only over historical cardiac arrest locations without taking uncertainty into account.
The nominal model represents the the sample average approximation approach to the AED
problem, since it optimizes directly with respect to a historical sample. The nominal model
is given by formulation N-AED, where the scenarios {ξ1, . . . , ξ|K|} are given by the historical
cardiac arrest locations, and uk = 1/|K| for all k ∈ K. The second benchmark is an ex-post
model, which optimizes directly over a set of simulated cardiac arrests, and thus has perfect
foresight. The ex-post model is also given by formulation N-AED, except instead of optimiz-
ing over historical cardiac arrest locations, the ex-post model optimizes the AED deployment
with respect to a simulated set of cardiac arrest locations, which we also evaluate the perfor-
mace of the nominal and robust models against. The ex-post model can be thus interpreted
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Table 4.2: Estimates of probabilities λ1, . . . , λ|J | and approximate 95% confidence intervals
for 15 uncertainty regions.

j λ̂j 95% C.I.

1 0.12 (0.05, 0.24)

2 0.16 (0.07, 0.30)

3 0.09 (0.03, 0.22)

4 0.12 (0.04, 0.25)

5 0.07 (0.01, 0.19)

6 0.05 (0.01, 0.15)

7 0.05 (0.01, 0.15)

8 0.02 (0.00, 0.12)

9 0.02 (0.00, 0.12)

10 0.09 (0.03, 0.22)

11 0.02 (0.00, 0.12)

12 0.02 (0.00, 0.12)

13 0.07 (0.01, 0.18)

14 0.05 (0.01, 0.15)

15 0.05 (0.01, 0.15)

as the “best possible” model we could solve if the locations of all future cardiac arrests were
known a priori. In all instances, we set β = 0.9 and the number of AEDs (P ) to 30. All
instances for all models were implemented using MATLAB R2011a via YALMIP, and solved
using CPLEX 12.1 with default parameter settings on a single node of a computing cluster
with a 2.9 GHz quad-core CPU.

4.5.4 Model validation

To assess the performance of the AED deployments produced by R-AED and N-AED, we used
simulation to generate hypothetical cardiac arrest events, and computed various performance
metrics associated with the distance distribution induced by each AED deployment and the
set of simulated cardiac arrests. We then solve the ex-post model based on the simulated
cardiac arrest locations, to gain insight into the best-possible deployment, for the given model
parameterization and objective function.

To construct the validation sets, we first used kernel density estimation to estimate the
underlying demand density, which is a well known semi-parametric technique for estimating
a probability density function from a finite sample (Sheather and Jones, 1991, Terrell and
Scott, 1992). Intuitively, kernel density involves centering a continuous density function (the
kernel) at each data point, and then aggregating and normalizing all kernel functions to obtain
a single probability density function. Kernel density estimation requires the specification
of a kernel function as well as a parameter h, known as the bandwidth, which is typically
proportional to the standard deviation of the kernel distribution. In short, the bandwidth
represents the degree to which the data set is smoothed to obtain the estimated density,
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(a) h = 50m. (b) h = 100m.

Figure 4.4: Locations of 1,000 simulated cardiac arrests based on kernel density estimation
using bandwidths of 50m and 100m.

with a higher bandwidth resulting in more aggressive smoothing. We note that using kernel
density estimation to estimate the distribution of future cardiac arrests is supported by the
fact that cardiac arrest locations in Toronto have been shown to exhibit temporal stability
(Chan et al., 2014).

To assess model performance under different values of the bandwidth parameter h, we
constructed four different validation sets. Specifically, we used Gaussian kernels with h = 10,
50, 100 and 150 meters to estimate four demand densities, each of which is used to simulate
a separate validation set. The case where h = 10 can be interpretted as a “low uncertainty”
environment, since the low bandwidth causes a majority of simulated events to fall near a
historical cardiac arrest location. Conversely, the case where h = 150 can be interpretted as
a “high uncertainty” environment, since the larger bandwidth leads to some cardiac arrests
being simulated far from any historical location. By varying the bandwidth parameter from
10 to 150, we are able to evaluate the performance of the AED deployment under a variety of
possible demand distributions. For each of the four estimated densities, we simulated a total
of 50 validation sets containing 100 cardiac arrests each. We do not impose any constraints on
where cardiac arrests may be simulated (i.e., a small fraction may occur beyond the service
area). Figure 4.4 illustrates the effect of the bandwidth on the estimated demand density.
Note that the distribution of the simulated cardiac arrests is notably more uniform for a
bandwidth of 100 meters compared to the distribution for a bandwidth of 50 meters, due to
increased smoothing.

4.6 Results

The numerical results are organized as follows. In Section 4.6.1, we compute the average value
(over 50 validation sets) of four performance metrics: the mean, VaR, CVaR and maximum
of the distance distribution induced by each AED deployment. We also report worst-case
performance of each deployment, which is given by the maximum value of each performance
metric over 50 validation sets. In Section 4.6.2, we evaluate the models using a different but
related measure of AED deployment performance, known as cardiac arrest coverage. Lastly,
in Section 4.6.3 we do a robustness check by presenting results under alternate distance
measures, namely, actual walking distances obtained via Google Maps and the rectilinear
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distance metric.

4.6.1 Performance metrics

Figure 4.5 shows the mean, VaR, CVaR and maximum value of the distance distribution
for the nominal, robust and ex-post models (note that the y-axis differs between the plots).
The performance metrics are computed for each of the four demand distributions (i.e., four
bandwidth parameters), and are averaged over 50 validation sets. Since Figure 4.5 shows the
average value of each performance metric, we can interpret it as depicting the performance
of each model under “typical” cardiac arrest locations.

In the cases where h = 10, the AED deployments produced by all three models perform
similarly. This is not a surprising observation, since in the h = 10 case, which represents
a low uncertainty environment, the vast majority of simulated cardiac arrests occur within
the vicinity of one of the 43 historical cardiac arrest locations. However, it is worth noting
that the robust solution performs at least as well as the nominal solution in the h = 10 case.
In other words, the performance of the robust model does not appear to suffer when the
level of uncertainty is low, despite optimizing AED locations to protect against uncertainty.
Moreover, in the cases where h ≥ 50, the robust solution substantially outperforms the
nominal solution on all four performance metrics. For example, in the case where h = 100,
the robust solution outperforms the nominal solution on the mean distance metric by 9%
(86m vs 95m) and on the CVaR metric by 15% (223m vs 189m). The performance difference
between the robust and nominal models was found to be statistically significant (p < 0.05)
in all comparisons where h ≥ 50. Examples of AED deployments under each model for β = 0
and β = 0.9 are given in Section 4.6.4.

Note that the ex-post model achieves the best performance in all instances, which is
expected since it optimizes the AED deployment directly over the simulated cardiac arrest
locations (note that the ex-post model is solved independently for each of the 50 trials,
since it takes the simulated cardiac arrest locations as input). The gap in performance
between the nominal and ex-post models may therefore be interpreted as the degradation in
performance due to the uncertainty in cardiac arrest locations. Figure 4.5 shows that the
robust deployment substantially closes this performance gap in many cases. For example, for
the CVaR metric with h = 100, using the robust deployment decreases the performance gap
with the ex-post model from 44 meters (223m vs 179m) down to 10 meters (189m vs 179m),
representing a gap improvement of 77%. In this setting, it may be convenient to think of
the performance gap as being analogous to the usual notion of optimality gap. However,
we emphasize that the ex-post solution represents a theoretical lower bound on performance
only for the CVaR metric, since all models optimize for CVaR only. For the remaining three
performance metrics, it is possible for the nominal or robust model to outperform the ex-post
model by chance.

Table 4.3 shows the performance gap achieved by the nominal and robust deployment
with respect to the ex-post deployment. For example, the first row and column of Table
4.3 indicates that the performance of the nominal solution on the mean distance metric in
the h = 10 case is within 12% of the performance achieved by the ex-post solution, whereas
the gap from the robust solution is within 7% (averaged over 50 trials). The difference in
performance between the nominal and robust solutions is most pronounced at the tail of the
distribution, which is unsurprising since the models optimize for CVaR. Note that for the
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Figure 4.5: Average performance over 50 validation sets of nominal, robust and ex-post
solutions under increasing kernel bandwidth (β = 0.9).
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Table 4.3: Average performance gap of nominal and robust solutions with respect to ex-post
solution.

Mean VaR CVaR Max

h Nom. Rob. Nom. Rob. Nom. Rob. Nom. Rob.

10 12% 7% 8% 5% 3% 3% 1% 1%

50 18% 11% 21% 13% 20% 8% 18% 2%

100 15% 6% 23% 9% 20% 5% 17% 3%

150 12% 1% 19% 4% 16% 4% 12% 3%

Table 4.4: Worst case performance gap of nominal and robust solutions with respect to
ex-post solution.

Mean VaR CVaR Max

h Nom. Rob. Nom. Rob. Nom. Rob. Nom. Rob.

10 30% 24% 28% 19% 10% 7% 6% 6%

50 29% 20% 34% 29% 31% 19% 41% 20%

100 29% 17% 40% 26% 27% 16% 31% 24%

150 20% 10% 31% 20% 24% 12% 26% 26%

CVaR and maximum distance metrics, the performance gap of the robust solutions is at most
8%, whereas the gap of the nominal solution can be as high as 20%.

We also consider the worst-case performance of each model by computing the maximum
value of each performance metric over the 50 trials. As shown in Figure 4.6, the robust model
generally outperforms the nominal model in the majority of high uncertainty instances (h ≥
50), and performs no worse than the nominal model in the low uncertainty instances (h = 10).
Table 4.4 presents the worst-case performance gaps, which are obtained by computing the
maximum relative gap in performance over 50 trials. As in Table 4.3, the robust solution
substantially closes the worst-case performance gap in the vast majority of instances. For
example, on the CVaR metric with h = 100, the worst-case performance gap is improved by
41% (27% down to 16%).

4.6.2 Cardiac arrest coverage

An alternate but related measure of performance in public access defibrillation is cardiac
arrest coverage, which is the fraction of cardiac arrests that occur within a given distance of
at least one AED (Chan et al., 2013). Figure 4.7 shows the cardiac arrest coverage under the
nominal, robust and ex-post solutions at all distances between 0 and 250 meters, for each of
the four bandwidths. The curves shown in Figure 4.7 are obtained by computing the average
coverage at each distance over all 50 trials. Note that in the case where h = 10, all three
models attain similar coverage at all distances, which is consistent with the results shown in
Figure 4.5. Note that the robust solution dominates the nominal solution at all bandwidths,
in the sense that it achieves a higher coverage level at all distances. Moreover, the coverage
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Figure 4.6: Worst-case performance of nominal, robust and ex-post solutions on four distance
metrics under increasing kernel bandwidth.
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(b) h = 50.
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(d) h = 150.

Figure 4.7: Cardiac arrest coverage for nominal, robust and ex-post solutions under four
kernel bandwidths.

of the robust model is very close to the coverage obtained by the ex-post model, especially for
high bandwidths. The improvement of the robust deployment over the nominal deployment
appears most pronounced at higher distances (≥ 100m), which is expected behavior since the
AED locations are optimized for the tail of the distance distribution.

4.6.3 Alternate distance measures

We repeated a set of experiments using two alternate distance measures: the rectilinear
distance, and actual walking distances based on city roads and walking paths. Table 4.5
shows the performance of each model when Euclidean, rectilinear and walking distances are
used to compute the distances (for both the dik parameters and the performance metrics).
When measured using actual walking distances, the robust and nominal deployments perform
similarly on the mean distance metric. However, the robust model attains a lower VaR and
CVaR, indicating improved performance by the robust deployment at the tail of the distance
distribution. Table 4.6 provides the accompanying average and worst-case performance gaps
of the nominal and robust solutions with respect to the ex-post solution. We found the results
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to be consistent with our main finding in Section 4.6.1: the AED deployments produced by the
robust model outperform the nominal model on all four performance metrics, both on average
and in the worst-case realization of cardiac arrest locations. On the CVaR performance metric
(which we emphasize is the most relevant point of comparison since all three models optimize
for CVaR), the robust model cuts the performance gap in half, compared to the nominal
model. It should be noted that the walking distances from the Google Maps API are likely
conservative estimates of the actual distance a lay responder would have to travel, since
it constrains the lay responder to walk on recognized pedestrian paths. In practice, a lay
responder may be able to take shortcuts that are unmarked in Google Maps (e.g., parking
lots, buildings, unmarked crosswalks). We therefore expect the actual lay responder distance
to be somewhere between the Euclidean and Google Maps distances.
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Table 4.6: Average and worst-case performance gap of nominal and robust solutions with
respect to ex-post solution under alternate distance measures.

Mean VaR CVaR Max

Nom. Rob. Nom. Rob. Nom. Rob. Nom. Rob.

Euclidean 15% 6% 23% 9% 20% 5% 17% 3%

Average Rectilinear 17% 6% 24% 13% 21% 10% 18% 8%

Walking 12% 11% 13% 8% 9% 5% 7% 3%

Euclidean 29% 17% 40% 26% 27% 16% 31% 24%

Worst-case Rectilinear 28% 18% 41% 27% 32% 20% 41% 23%

Walking 21% 20% 31% 24% 20% 12% 24% 22%

As an additional check to compare Euclidean and actual walking distances, we performed
the following experiment. We randomly generated 1,000 pairs of locations within the down-
town region of the City of Toronto, which includes the service area in our study. For each
pair of locations, we computed the Euclidean distance (based on the UTM coordinates of
the locations) and the walking distance (via the Google Maps Distance Matrix API). We
then performed an ordinary least squares regression on the distance data, which yielded the
following model:

DistWalk = 1.341×DistEuclid + 21.1.

The R2 coefficient of this model was 0.904, suggesting a strong linear relationship between
Euclidean and actual walking distances. Both coefficients were statistically significant (p <
0.05). This finding is consistent with previous studies that have also found very high corre-
lation between Euclidean and road network distances (Bach, 1981, Jones et al., 2010, Boscoe
et al., 2012). These results suggest that Euclidean distances serve as a reasonable (constant
factor) approximation for actual walking distances.

4.6.4 Visualization of defibrillator deployments

Figure 4.8 depicts an instance of the AED deployments produced by the nominal (SAA),
robust and ex-post models, along with a set of simulated cardiac arrests (corresponding to
the ex-post deployment) and the 43 historical cardiac arrest locations. Note that in this
instance, the nominal model produces small “clusters” of AEDs, whereas the robust and ex-
post models appear to position AEDs more efficiently with respect to the simulated cardiac
arrests. This behavior is expected, since the nominal model only optimizes the tail of the
empirical distance distribution, whereas the robust model accounts for potential deviation of
the simulated cardiac arrests from the historical locations. Note also that the ex-post model
achieves the most effective deployment of AEDs with respect to the simulated cardiac arrests,
since it optimizes directly with respect to the simulated data.
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(a) Nominal.

(b) Robust.

(c) Ex-post.

Figure 4.8: Example of nominal, robust and ex-post AED deployments (P = 30, h = 100,
β = 0.9).
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4.7 Discussion

Interestingly, our results indicate that the robust deployment performed better than the
nominal deployment under typical demand realizations (Figure 4.5), in addition to the worst-
case realizations (Figure 4.6). This might seem like a counterintuitive result, given that robust
optimization models can perform poorly in typical realizations of the uncertainty due to their
emphasis on optimizing a worst-case objective function. However, in the context of AED
deployment (and facility location more generally), the observed performance gap between
the robust and nominal models can likely be attributed to the nominal model overfitting to
the set of historical cardiac arrest locations. In other words, the nominal model represents a
naive sample average approximation in which AED placement is optimized only with respect
to a small set of historical cardiac arrest locations. Our results suggest that if there is a
nontrivial amount of uncertainty in the locations of future cardiac arrest, a sample average
approximation based on limited historical data can lead to AED deployments that perform
poorly when measured against out-of-sample cardiac arrests. On the other hand, our robust
formulation produces an improved deployment by accounting for the possibility of cardiac
arrests occuring in new locations not reflected in the historical data.

Survival outcomes. Our results suggest that a robust approach to AED deployment can
improve cardiac arrest response by improving bystander accessibility to AEDs, especially for
those patients who collapse far away from the nearest defibrillator. While a rigorous analysis
of survival outcomes is beyond the scope of this work, the time sensitive nature of cardiac
arrest treatment suggests that even modest improvements in AED accessibility (through
shorter distances) can have a significant impact on survival outcomes. We also emphasize
that all numerical results presented in Section 4.6 are with respect to the one-way distance
to the nearest AED. However, since retrieval of an AED by a lay responder likely requires a
round-trip, decreasing the distance between the cardiac arrest victim and the nearest AED
by 30 meters implies that the trip made by the lay responder is shortened by 60 meters,
which can have a material impact on the total time between collapse and treatment.

Comparison to best practices. Historically, best practices for AED deployment (e.g,
as prescribed by the American Heart Association) have been purely retrospective, and do not
account for the uncertainty in future cardiac arrest locations, which our results suggest can
help improve the accessibility of AEDs. Existing guidelines also emphasize the importance
of identifying building types that are at risk of cardiac arrest, and placing AEDs in those
locations. Our proposed approach is markedly different from the current AHA recommen-
dations. We instead focus on characterizing the distributional uncertainty in cardiac arrest
locations, and optimally deploying AEDs in a manner that does not depend on building type,
as long as the AED can be accessed by a lay responder. We also note that placing AEDs in
a small set of high risk buildings ignores the shape of the distance distribution, and may lead
to AED deployments where a large number of cardiac arrests occur far away from any AED.
In contrast, our approach considers the entirety of the (worst-case) distance distribution,
and allows the modeler to directly optimize various aspects of the distribution via the CVaR
objective function.

Crowdsourcing lay responders. The existing focus on identifying high-risk buildings
for AED placement is partially due to the current low rate of bystander intervention during
cardiac arrests, and a prevailing belief that an AED must be located at the precise location of
a cardiac arrest in order to be used. However, recent advances in mobile phone applications
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show promise in recruiting lay responders (who may be up to 500m away) to perform CPR on
victims of cardiac arrest (Ringh et al., 2015, Brooks et al., 2016, 2014). This “crowdsourcing”
approach to cardiac arrest interventions can be extended to incorporate AEDs as well, by
notifying lay responders of the locations of both the cardiac arrest victim and a nearby AED.
We posit that in a setting where lay responders are recruited to intervene during a cardiac
arrest, it is even more critical that AEDs are tactically located throughout an urban area,
so that they can be quickly located and transported to a victim of cardiac arrest by a lay
responder. Thus, our approach to strategically deploying AEDs can work synergistically with
other innovations in the chain of survival to improve the overall response to cardiac arrest.

Risk measures in public access defibrillation. Our model also highlights the poten-
tial role that risk measures like CVaR can play in public access defibrillation. While VaR-
based response time targets are common in ambulance dispatching (Pons and Markovchick,
2002), no similar guidelines exist in public access defibrillation. Given the potential impact
on survival of protecting against large distances between cardiac arrest victims and nearby
AEDs, it may be worthwhile to explicitly incorporate risk-based targets in the decision mak-
ing process when determining AED locations. this work formally introduces the notion of
risk to the AED deployment problem, by allowing decision makers to emphasize the tail of
the distance (or response time) distribution when planning AED locations.

Future work. We highlight a few potential directions for future work. First, we have
assumed throughout this paper that the set of uncertainty regions is given. It may be fruitful
to investigate data-driven approaches to identifying an effective configuration of the uncer-
tainty regions. Similarly, we note that the uncertainty set proposed in this paper can be
generalized to permit the arrival probabilities to be uncertain as well. For example, we might
allow each λj to reside within a 95% confidence interval that is also estimated from the
data, which would retain the polyhedral structure of the uncertainty set. Our model can
also be extended to incorporate additional considerations in public access defibrillation, such
as lay responder behavior. However, we expect that our main finding in this paper – that
accounting for cardiac arrest location uncertainty improves AED accessibility – would persist
under such modifications to the model. Lastly, the main features of our modeling approach
– a distributional uncertainty set that induces sparse worst-case distributions coupled with
an efficient row-and-column generation algorithm – may find relevance in other applications
with a similar problem structure as well.
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Chapter 5

Conclusion

In this work we presented a new set of data-driven models and algorithms with practical
applications to problems in healthcare operations and policy. We briefly summarize the key
contributions of each chapter here.

In Chapter 2, we developed and analyzed a formulation for inverse optimization in the
setting where noisy measurements of the optimal points of a convex optimization problem
are available. Our approach requires solving a bilevel program, and we defined a new duality-
based reformulation to convert this bilevel program into a single level program. We showed
that our formulation as a bilevel program leads to statistical consistency, in contrast to ex-
isting heuristics. Although our formulation is NP-hard to solve, we provided two numerical
algorithms that maintain the statistical consistency of our formulation. Finally, we demon-
strated that our approach improves upon existing methods for inverse optimization through
a series of numerical experiments using both synthetic and empirical data.

In Chapter 3, we proposed a new type of contract to address the challenges faced by the
Medicare Shared Savings Program (MSSP). In addition to the shared savings payment, we
proposed that the MSSP incorporate direct subsidies to partially reimburse ACO investments
toward efficiency improvements. We showed that selecting the shared savings and subsidy
rates appropriately yields a contract that dominates all possible contracts within the cur-
rent, non-subsidized program, in the sense that it boosts both Medicare savings and ACO
payments. We also quantified the improvement potential through structural estimation of
the principal-agent model, and found that switching to the proposed contract can increase
both Medicare savings and ACO payments. By contrast, optimizing the shared savings rate
within the current, non-subsidized MSSP contract will decrease ACO payments substantially,
with minimal benefits to Medicare. We also found that the proposed contract performs well
in comparison to a non-parametric contract that represents the theoretical best performance
that can be expected from the MSSP, under the estimated agent model. We also found that
ACOs with low benchmarks face difficulties in generating savings. The average savings of
an ACO with a benchmark greater than $14,300 per beneficiary was estimated to be $240
(≈2%), whereas the average savings of an ACO with a benchmark of less than $10,300 per
beneficiary was estimated to be effectively zero. We believe these findings provide support-
ing evidence in favor of redesigning the benchmarking methodology. One possible approach
may be to develop benchmarks partially based on regional averages, so that historically cost
efficient ACOs are not inadvertently penalized through the assignment of a lower financial
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benchmark.
In Chapter 4, we developed a data-driven optimization approach for deploying auto-

mated external defibrillators (AEDs) in public spaces while accounting for uncertainty in
the locations of future cardiac arrests. Our approach involves constructing a distributional
uncertainty set that consists of several uncertainty regions, where the parameters of the un-
certainty set are calibrated based on historical cardiac arrest data. To approximate the arrival
of cardiac arrests in continuous space, we discretize the service area into an extremely large
set of scenarios, and develop a row-and-column generation algorithm that exploits the struc-
ture of the uncertainty set and scales gracefully in the number of scenarios. As an auxilliary
result, we show that our formulation subsumes a large class of facility location problems, and
unifies the classical p-median and p-center problems, as well as their robust analogues. Our
numerical results suggest that hedging against cardiac arrest location uncertainty can lead
to improved AED accessibility under both typical and worst-case realizations of the uncer-
tainty. In particular, we found that our robust AED deployment outperformed a nominal
(sample average approximation) deployment by between 9-20% with respect to AED retrieval
distances, depending on the performance metric and underlying demand distribution. Fur-
ther, we found that in many cases, the robust deployment performed nearly as well as an
ex-post model with perfect foresight, and in many instances improved the performance gap
with respect to the ex-post model by 40-70%. This finding suggests that our robust approach
manages to avoid the performance loss due to uncertainty that is suffered by the sample
average approach.
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Dupačová, J. (1980). On minimax decision rule in stochastic linear programming. Studies in
Mathematical Programming, pages 47–60.

Eddy, D. M. and Shah, R. (2012). A simulation shows limited savings from meeting quality
targets under the Medicare shared savings program. Health Affairs, 31(11):2554–2562.

Efron, B. and Tibshirani, R. (1994a). An Introduction to the Bootstrap. Chapman &
Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis.

Efron, B. and Tibshirani, R. J. (1994b). An introduction to the bootstrap. CRC press.

Engdahl, J. and Herlitz, J. (2005). Localization of out-of-hospital cardiac arrest in göteborg
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Faragó, A., Szentesi, Á., and Szviatovszki, B. (2003). Inverse optimization in high-speed
networks. Discrete Applied Mathematics, 129(1):83–98.

Farias, V. F., Jagabathula, S., and Shah, D. (2013). A nonparametric approach to modeling
choice with limited data. Management Science, 59(2):305–322.

Federal Register (2011). Medicare Shared Savings Program: Accountable Care Organizations.
Final rule. Federal Register, 76(212):67802.

110



Fetter, R. B. (1991). Diagnosis related groups: understanding hospital performance. Inter-
faces, 21(1):6–26.

Fisher, E. S., Shortell, S. M., Kreindler, S. A., Van Citters, A. D., and Larson, B. K. (2012). A
framework for evaluating the formation, implementation, and performance of accountable
care organizations. Health Affairs, 31(11):2368–2378.

Folke, F., Lippert, F., Nielsen, S., Gislason, G., Hansen, M., Schramm, T., and Sorensen,
R. (2009). Location of cardiac arrest in a city center strategic placement of automated
external defibrillators in public locations. Circulation, 120(6):510–517.

Francis, R., Lowe, T. J., and Tamir, A. (2000). Aggregation error bounds for a class of
location models. Operations research, 48(2):294–307.

Fuloria, P. C. and Zenios, S. A. (2001). Outcomes-adjusted reimbursement in a health-care
delivery system. Management Science, 47(6):735–751.

Gabrel, V., Lacroix, M., Murat, C., and Remli, N. (2014). Robust location transportation
problems under uncertain demands. Discrete Applied Mathematics, 164(1):100–111.

Garber, A. M. and Skinner, J. (2008). Is American health care uniquely inefficient? Technical
report, National Bureau of Economic Research.

Ghaoui, L. E., Oks, M., and Oustry, F. (2003). Worst-case value-at-risk and robust portfolio
optimization: A conic programming approach. Operations research, 51(4):543–556.

Gibbons, R. (1998). Incentives in organizations. Technical report, National bureau of eco-
nomic research.

Goh, J. and Sim, M. (2010). Distributionally robust optimization and its tractable approxi-
mations. Operations research, 58(4-part-1):902–917.

Google (2016). Google maps distance matrix api.

Green, P. E. and Srinivasan, V. (1990). Conjoint analysis in marketing: new developments
with implications for research and practice. The Journal of Marketing, pages 3–19.

Greenshtein, E. and Ritov, Y. (2004). Persistence in high-dimensional linear predictor selec-
tion and the virtue of overparametrization. Bernoulli, 10(6):971–988.

Grinblatt, M. and Titman, S. (1989). Adverse risk incentives and the design of performance-
based contracts. Management Science, 35(7):807–822.

Grossman, S. J. and Hart, O. D. (1983). An analysis of the principal-agent problem. Econo-
metrica: Journal of the Econometric Society, pages 7–45.

Guajardo, J. A., Cohen, M. A., Kim, S.-H., and Netessine, S. (2012). Impact of performance-
based contracting on product reliability: An empirical analysis. Management Science,
58(5):961–979.

111



Gundry, J. W., Comess, K. A., DeRook, F. A., Jorgenson, D., and Bardy, G. H. (1999). Com-
parison of naive sixth-grade children with trained professionals in the use of an automated
external defibrillator. Circulation, 100(16):1703–1707.

Guo, P., Tang, C. S., Wang, Y., and Zhao, M. (2016). The impact of reimbursement policy
on patient welfare, readmission rate and waiting time in a public healthcare system: Fee-
for-service vs bundled payment. Working paper, London Business School.

Gupta, D. and Mehrotra, M. (2015). Bundled Payments For Healthcare Services: Proposer
Selection and Information Sharing. Operations Research, 63(4):772–788.

Harris, M. and Raviv, A. (1979). Optimal incentive contracts with imperfect information.
Journal of economic theory, 20(2):231–259.

Hart, O. D. and Holmström, B. (1986). The theory of contracts. Department of Economics,
Massachusetts Institute of Technology.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning.
Springer-Verlag, 2nd edition.

Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. (2005). The elements of statistical
learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–
85.

Haviv, I. and Regev, O. (2012). Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. Theory of Computing, 8(1):513–531.

Haywood, T. T. and Kosel, K. C. (2011). The ACO model – a three-year financial loss? New
England Journal of Medicine, 364(14):e27.

Hazinski, M. F., Idris, A. H., Kerber, R. E., Epstein, A., Atkins, D., Tang, W., and Lurie,
K. (2005). Lay rescuer automated external defibrillator (public access defibrillation) pro-
grams lessons learned from an international multicenter trial: Advisory statement from the
american heart association emergency cardiovascular committee; the council on cardiopul-
monary, perioperative, and critical care; and the council on clinical cardiology. Circulation,
111(24):3336–3340.

Heart and Stroke Foundation (2013). Statistics.

Hendee, W. R., Becker, G. J., Borgstede, J. P., Bosma, J., Casarella, W. J., Erickson, B. A.,
Maynard, C. D., Thrall, J. H., and Wallner, P. E. (2010). Addressing Overutilization in
Medical Imaging. Radiology, 257(1):240–245.

Heuberger, C. (2004). Inverse combinatorial optimization: A survey on problems, methods,
and results. Journal of Combinatorial Optimization, 8(3):329–361.

Hillar, C. and Lim, L.-H. (2013). Most tensor problems are np-hard. J. ACM, 60(6):45:1–
45:39.

Hochbaum, D. S. (2003). Efficient algorithms for the inverse spanning-tree problem. Opera-
tions Research, 51(5):785–797.

112
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Appendix A

Proofs

A.1 Proofs from Chapter 2

Proof of Theorem 2.1. We prove this by showing a reduction from the problem of com-
puting the best rank-1 approximation of an order 3 tensor (which is NP-hard (Hillar and
Lim, 2013)) to IOP. Consider any ψ ∈ Rr1×r2×r3 , where r1, r2, r3 ∈ Z+. This defines ψ to
be an order 3 tensor. We define ρ = r1 + r2 + r3, and suppose the parameter vector is given
by θ = (a, b, c) ∈ Θ = Rρ, where a ∈ Rr1 , b ∈ Rr2 , and c ∈ Rr3 . Also define the discrete set
U = [r1] × [r2] × [r3], and suppose that u = (α, β, γ) is uniformly distributed over U . Fur-
thermore, suppose y is a random variable given by ψα,β,γ , which means that y is dependent
on u since u = (α, β, γ). Then we define the following forward optimization problem

S(u, θ) = arg min
x

(
x− aα · bβ · cγ

)2
. (A.1)

This forward optimization problem is a quadratic program (QP) when (u, θ) is fixed, and so
the solution set is S(u, θ) = aαbβcγ . Note that the solution set consists of a single point.
Next, observe that

min
θ∈Θ

Q(θ) = min
θ∈Rρ

1

ρ

r1∑
α=1

r2∑
β=1

r3∑
γ=1

(
ψα,β,γ − aα · bβ · cγ

)2
, (A.2)

where we have converted the expectation into a weighted sum using the fact that u is uni-
formly distributed over U . Observe that (A.2) is the problem of computing the best rank-1
approximation to an order 3 tensor (Hillar and Lim, 2013).

Proof of Corollary 2.1. We show this result using the same construction used to prove
Theorem 2.1. In particular, observe that if {u1, . . . , un} = U , then IOP–SAA is equivalent to
IOP , which is NP-hard by Theorem 2.1. Finally, note that the condition {u1, . . . , un} = U
occurs with nonzero probability since the set U is finite and since the ui are sampled uni-
formly from U .

Proof of Proposition 2.1. We show this using a counterexample. Suppose FOP is min{x2−
(θ + u) · x | x ∈ [0, 10]}, and note its solution set S(u, θ) = min{u+θ

2 , 10} is single-valued.
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Assume the distribution of u is

u =

{
0, with probability (w.p.) 1

2

20, w.p. 1
2

(A.3)

and that the distribution of w is

w =

{
−1, w.p. 1

2

+1, w.p. 1
2

(A.4)

Finally, suppose y = S(u, θ) + w, Θ = {θ ∈ R : 0 ≤ θ ≤ 10}, and θ0 = 10. By construction,
this problem satisfies A1,A2,IC. Also, observe that the joint distribution of (u, y) is

(u, y) =


( 0, 4), w.p. 1

4

( 0, 6), w.p. 1
4

(20, 9), w.p. 1
4

(20, 11), w.p. 1
4

(A.5)

We show that both VIA and KKA are not estimation consistent for this problem. We begin
with VIA. This approach solves

min
θ∈Θ

1
n

∑n
i=1 ε

2
i

s.t. ∇f(yi, ui, θ) · (xi − yi) ≥ −εi,∀xi ∈ [0, 10], ∀i ∈ [n]
(A.6)

The constraint

∇f(yi, ui, θ) · (xi − yi) ≥ −εi,∀xi ∈ [0, 10] (A.7)

is a variational inequality, and VIA exactly reformulates this using linear duality. We operate
with the original variational inequality since the reformulation in VIA is exact and does not
change the solution. If yi = 4, then a straightforward calculation gives that (A.7) is equivalent
to the constraint: εi ≥ 4 · (8 − θ) if θ ≤ 8, and εi ≥ −6 · (8 − θ) if θ > 8. If yi = 6, then
(A.7) is equivalent to the constraint εi ≥ 6 · (12 − θ). If yi = 9, then (A.7) is equivalent
to the constraint εi ≥ 2 + k. Finally, if yi = 11, then (A.7) is equivalent to the constraint:
εi ≥ 11 · (2− θ) if θ ≤ 2, and εi ≥ 2− θ if θ > 2. Next, we solve the problem min{ε2i | (A.7)}
for each possible value of yi and θ. If yi = 4, then the minimum is 16 · (8− θ)2 if θ ≤ 8, and
36 · (8− θ)2 if θ > 8. If yi = 6, then the minimum is 36 · (12− θ)2. If yi = 9, then minimum
is (2 + θ)2. If yi = 11, then the minimum is 121 · (2− θ)2 if θ ≤ 2, and 0 if θ > 2. Thus, we
have

4 · E(ε2i ) =


36 · (12− θ)2 + (2 + θ)2 + 121 · (2− θ)2 + 16 · (8− θ)2, if θ ≤ 2

36 · (12− θ)2 + (2 + θ)2 + 16 · (8− θ)2, if θ ∈ (2, 8]

36 · (12− θ)2 + (2 + θ)2 + 36 · (8− θ)2, if θ > 8

(A.8)

Finally, we solve the optimization problem min{E(ε2i ) | θ ∈ [0, 10]}. A simple calculation
gives that the minimum occurs at θ∗ = 718

73 ≈ 9.8356. However, the minimizer of (A.6) will
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converge in probability to θ∗, because (i) we can exactly reformulate (A.6) as

min
θ∈Θ

1
n

∑n
i=1 ε

2
i

s.t. ε2i =


16 · (8− θ)2 · 1(θ ≤ 8) + 36 · (8− θ)2 · 1(θ > 8), if yi = 4

36 · (12− θ)2, if yi = 6

(2 + θ)2, if yi = 9

121 · (2− θ)2 · 1(θ ≤ 2), if yi = 11

∀i ∈ [n]
(A.9)

which (ii) implies we can apply the uniform law of large numbers (Jennrich, 1969) since
ε2i as defined in (A.9) is a continuous function, and thus (iii) we get convergence of the
minimizer from a standard consistency result in statistics (see for instance Theorem 5.7 in
(van der Vaart, 2000) or Theorem 5.2.3 in (Bickel and Doksum, 2006)). This shows VIA is
not estimation consistent, since θ0 = 10. Next, we consider KKA. This approach solves

min
θ∈Θ

1
n

∑n
i=1‖εi‖2

s.t. ∇f(yi, ui, θ)− λi1 + λi2 = εi1

− λi1 · yi = εi2

λi2 · (yi − 10) = εi3

λi ≥ 0

(A.10)

We first solve the problem (A.10), with n = 1, for each possible value of yi and θ. If yi = 4,
then the minimum is 16

17 · (8 − θ)2 if θ ≤ 8, and 36
37 · (8 − θ)2 if θ > 8. If yi = 6, then the

minimum is 36
37 · (12 − θ)2. If yi = 9, then the minimum is 1

2 · (2 + θ)2. If yi = 11, then the
minimum is 121

122 · (2− θ)2 if θ ≤ 2, and 1
2 · (2− θ)2 if θ > 2. Thus, we have

4 · E(‖εi‖2) =


36
37 · (12− θ)2 + 1

2 · (2 + θ)2 + 121
122 · (2− θ)2 + 16

17 · (8− θ)2, if θ ≤ 2
36
37 · (12− θ)2 + 1

2 · (2 + θ)2 + 1
1 · (2− θ)2 + 16

17 · (8− θ)2, if θ ∈ (2, 8]
36
37 · (12− θ)2 + 1

2 · (2 + θ)2 + 1
2 · (2− θ)2 + 36

37 · (8− θ)2, if θ > 8

(A.11)

Finally, we solve the optimization problem min{E(‖εi‖2) | θ ∈ [0, 10]}. A simple calculation
gives that the minimum occurs at θ∗ = 12080

1833 ≈ 6.5903. However, the minimizer of (A.10)
will converge in probability to θ∗, because (i) we can exactly reformulate (A.10) as

min
θ∈Θ

1
n

∑n
i=1‖εi‖2

s.t. ‖εi‖2=


16
17 · (8− θ)2 · 1(θ ≤ 8) + 36

37 · (8− θ)2 · 1(θ > 8), if yi = 4
36
37 · (12− θ)2, if yi = 6
1
2 · (2 + θ)2, if yi = 9
121
122 · (2− θ)2 · 1(θ ≤ 2) + 1

2 · (2− θ)2, if yi = 11

∀i ∈ [n]

(A.12)

which (ii) implies we can apply the uniform law of large numbers (Jennrich, 1969) since
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‖εi‖2 as defined in (A.12) is a continuous function, and thus (iii) we get convergence of the
minimizer from a standard consistency result in statistics (see for instance Theorem 5.7 in
(van der Vaart, 2000) or Theorem 5.2.3 in (Bickel and Doksum, 2006)). This shows that KKA
is not estimation consistent, since θ0 = 10.

Proof of Corollary 2.2. It suffices to show that risk consistency is necessary for estimation
consistency in the counterexample given in the proof of Proposition 2.1. First note that the
risk function

Q(θ) = E
(
‖y −min{u+θ

2 , 10}‖2
)

= 1
4 ·
(

(4− θ
2)2 + (6− θ

2)2 + (9− 10)2 + (11− 10)2
)

(A.13)

is continuous since Θ = {θ ∈ R : 0 ≤ θ ≤ 10}. Now suppose a sequence θ̂n is estimation

consistent. Since θ̂n
p−→ θ0, by continuity of Q(θ) and the continuous mapping theorem

(van der Vaart, 2000), we have Q(θ̂n)
p−→ Q(θ0). Since arg min{Q(θ) | θ ∈ Θ} = 10 = θ0,

and θ̂n −→ θ0 we have that θ̂n converges to a minimizer of Q(θ). Hence θ̂n is risk consis-
tent.

Proof of Proposition 2.2. Because the feasible set Φ(u, θ) is convex for fixed u, θ by A1
and has a nonempty interior by R1, this means Φ(u, θ) is continuous in θ by Example 5.10
from (Rockafellar and Wets, 1998). Thus, we can apply the Berge Maximum Theorem (Berge,
1963) to FOP. This implies S(u, θ) is upper hemicontinuous in θ for fixed u ∈ U . However,
S(u, θ) consists of a single point for fixed u ∈ U and θ ∈ Θ, because the objective function
is strictly convex and since R1 holds. Consequently, S(u, θ) is a continuous single-valued
function for fixed u ∈ Θ (see for instance Theorem 2.6 in (Rockafellar and Wets, 1998)).
Thus, we can apply the Berge Maximum Theorem to RISK–SAA, and this implies that Qn(θ)
as defined in RISK–SAA is continuous.

Proof of Proposition 2.7. The solution set S(u, θ) is nonempty under A1,R1 (see for
instance Theorem 1.9 of (Rockafellar and Wets, 1998)). Pick any xi ∈ S(ui, θ), and let λi be
such that xi, λi satisfy (2.5) – this λi exists by Proposition 2.3. Next, consider the sets

S(ui, θ; ε) = {x : f(x, ui, θ)− h(λi, ui, θ) ≤ ε, g(x, ui, θ) ≤ ε}
S(ui, θ; ε) = {x : f(x, ui, θ)− h(λ, ui, θ) ≤ ε, g(x, ui, θ) ≤ ε, λ ≥ 0} (A.14)

and note that S(ui, θ; ε) = S(ui, θ; ε), since by optimality of λi with respect to the dual prob-
lem we have h(λ, ui, θ) ≤ h(λi, ui, θ) for all λ ≥ 0. Observe that the functions f(xi, ui, θ), g(xi, ui, θ)
are continuous and convex from A1, and the point xi belongs to the interior of S(ui, θ; ε)
since it satisfies (2.5). Thus, we can apply Example 5.10 from Rockafellar and Wets (1998):
This yields that S(ui, θ; ε) is continuous in θ, ε for any ε > 0, and so we also get conti-
nuity of S(ui, θ; ε) by its equality to S(ui, θ; ε). Since R–DB–RISK–SAA can be written as
Qn(θ; ε) = minxi{ 1

n

∑n
i=1‖yi − xi‖2 | xi ∈ S(ui, θ; ε), ∀i ∈ [n]}, we are able to apply the

Berge Maximum Theorem (Berge, 1963). This implies continuity of Qn(θ; ε) in θ, ε for any
ε > 0.

124



Proof of Proposition 2.8. Let Cn(θ, ε) be the feasible set of R–DB–RISK–SAA, and define
(X,Λ) = {xi, λi,∀i ∈ [n]}. Suppose (X,Λ) ∈ Cn(θ, α), where α ≥ 0. Then for any β ≥ α we
must have (X,Λ) ∈ Cn(θ, β) by the definition of the constraints in R–DB–RISK–SAA. This
means that

Cn(θ, ε1) ⊇ Cn(θ, ε2) ⊇ · · · (A.15)

As a result, the set Dn(θ, εν) = {θ,X,Λ : θ ∈ Θ and (X,Λ) ∈ Cn(θ, εν)} is also monotone
nonincreasing:

Dn(θ, ε1) ⊇ Dn(θ, ε2) ⊇ · · · (A.16)

Also, the feasible set Φ(u, θ) is convex for fixed u, θ by A1 and has a nonempty interior
by R1. This means Φ(u, θ) is continuous in θ by Example 5.10 from (Rockafellar and Wets,
1998), and so we can apply the Berge Maximum Theorem (Berge, 1963) to FOP. This implies
S(u, θ) is upper hemicontinuous in θ for fixed u ∈ U . By Remark 3.2 of (Dempe et al., 2015),
this means Qn(θ) is lower semicontinuous. Thus, by Proposition 7.4.d of (Rockafellar and
Wets, 1998) we have that the extended real-valued function {Qn(θ; εν) | θ ∈ Θ} epiconverges
to the extended real-valued function {Qn(θ) | θ ∈ Θ}. The result then follows from Exercise
7.32.d and Theorem 7.33 of (Rockafellar and Wets, 1998).

Lemma A.1. Suppose R4 holds. Then for t > c1 · γ we have

P
(
|γ−m · 1

n

∑n
j=1K(

uj−ui
γ )− µ(ui)| > t

)
≤ 2 exp

(
− 2c2nγ

2m · (t− c1 · γ)2
)
, (A.17)

where c1, c2 > 0 are constants.

Proof . Recall µ(u) is the probability density function of u, and note that

|µ(ui)− E[γ−mK(u−uiγ )|ui]| = |µ(ui)− γ−m
∫
Rm K(u−uiγ )µ(u)du|

= |µ(ui)− γ−m
∫
Rm K(s)µ(ui + γs)γmds|

= |µ(ui)−
∫
Rm K(s)(µ(ui) + γ∇µ(ui + βγs)T s)ds|

= |
∫
Rm K(s)∇µ(ui + βγs)T sds| · γ

≤ c1 · γ,

(A.18)

where the second line follows from a change of variables s = (u−ui)/γ, the third line follows
from the multivariate form of Taylor’s Theorem with some β ∈ [0, 1], the fourth line follows
because a Kernel function has the property

∫
K(u)du = 1, and the fifth line follows by

setting c1 = maxu∈U |
∫
Rm K(s)∇µ(u)T sds|. Note this c1 term is finite because (i) a kernel

function has the property that its support is finite (i.e., K(u) = 0 for ‖u‖> 1), and (ii)
µ(u) is a continuously differentiable probability density function by R4. Next, note that by
Hoeffding’s inequality (Vershynin, 2012) we have for t > 0 that

P
(
|γ−m · 1

n

∑n
j=1K(

uj−ui
γ )− E[γ−mK(u−uiγ )|ui]| > t

)
≤ 2 exp

(
− 2c2nγ

2mt2
)
, (A.19)

where c2 = (maxuK(u))2. Combining (A.18) and (A.19) gives the desired result.
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Lemma A.2. Suppose A1 and R1–R4 hold. Then for t > c3 · γ1/2 + c4 · γ we have

P
(
‖γ−m · 1

n

∑n
j=1 yj ·K(

uj−ui
γ )− µ(ui)S(ui, θ0)‖ > t

)
≤ 2 exp

(
− 2c5nγ

2m · (t− c3 · γ1/2 − c4 · γ)
)
.

(A.20)

where c3, c4, c5 > 0 are constants.

Proof . First, note that S(u, θ) consists of a single point from the strict convexity assumption
in R3. Next, note that having A1 and R1–R4 means that Proposition 4.41 of (Bonnans
and Shapiro, 2000) holds: This means for γ > 0 sufficiently small we have

‖S(u, θ0)− S(ui, θ0)‖≤ α · γ1/2, (A.21)

where α > 0 is a constant, whenever ‖u− ui‖≤ γ. Next, recall that yi conditioned on ui has
distribution S(ui, θ0) + wi under IC. Moreover, we have

E[γ−myK(u−uiγ )|ui] = E[γ−mS(u, θ0)K(u−uiγ )|ui], (A.22)

since E(wi) = 0 and wi is independent of ui. Thus, we have

‖µ(ui)S(ui, θ0)− E[γ−myK(u−uiγ )|ui]‖
= ‖µ(ui)S(ui, θ0)− γ−m

∫
Rm K(u−uiγ )µ(u)S(u, θ0)du‖

= ‖µ(ui)S(ui, θ0)− γ−m
∫
Rm K(s)µ(ui + γs)S(ui + γs, θ0)γmds‖

= ‖µ(ui)S(ui, θ0)−
∫
Rm K(s)(µ(ui) + γ∇µ(ui + βγs)T s)(S(ui, θ0)+

S(ui + γs, θ0)− S(ui, θ0))ds‖
= ‖

∫
Rm K(s)µ(ui)(S(ui + γs, θ0)− S(ui, θ0))ds+

∫
Rm K(s)γ∇µ(ui + βγs)T sS(u, θ0)ds‖

≤ c3 · γ1/2 + c4 · γ,
(A.23)

where the second line follows from a change of variables s = (u−ui)/γ, the third line follows
from the multivariate form of Taylor’s Theorem with some β ∈ [0, 1], the fourth line follows be-
cause a Kernel function has the property

∫
K(u)du = 1, and the fifth line follows from (A.21)

and by setting c3 = α·maxu∈U |
∫
Rm K(s)µ(u)ds| and c4 = maxu∈U (|

∫
Rm K(s)∇µ(u)T sds|·‖S(u, θ0)‖).

Note the c3, c4 terms are finite because (i) a kernel function has the property that its support is
finite (i.e., K(u) = 0 for ‖u‖> 1), (ii) µ(u) is a continuously differentiable probability density
function by R4, and (iii) S(u, θ0) is bounded by R1. Next, note that y is a sub-exponential
random variable (Vershynin, 2012) since (i) S(u, θ0) is a bounded random variable by R1,
and (ii) w is sub-exponential by R4. Hence, by Hoeffding’s inequality for sub-exponential
random variables (Vershynin, 2012) we have for t > 0 that

P
(
‖γ−m · 1

n

∑n
j=1 yj ·K(

uj−ui
γ )− E[γ−myK(u−uiγ )|ui]‖ > t

)
≤ 2 exp

(
− 2c5nγ

2mt
)
, (A.24)

for some c5 > 0. Combining (A.23) and (A.24) gives the desired result.

Proof of Proposition 2.9. The first part follows from the strict convexity assumption in
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R3, and the third part follows directly from the second part. And so we focus on proving the
second part. We will prove this using a truncation argument (see for instance (Tao, 2012)).

First, note that the function ψ(x, y) = x/y over the domain (x, y) ∈ [−M,M ]× [σ, σ+ 1]
is Lipschitz continuous with constant L1 =

√
(M2 + (σ + 1)2)/σ2. Suppose we choose M =

maxu∈U‖µ(u)S(u, θ0)‖+1. As a result, using Lemma A.1 and Lemma A.2 we have

P
(
‖xi − µ(ui)S(ui,θ0)

σ+µ(ui)
‖ > t

)
≤ P

(
|γ−m · 1

n

∑n
j=1K(

uj−ui
γ )− µ(ui)| > t/L1

)
+ P

(
‖γ−m · 1

n

∑n
j=1 yj ·K(

uj−ui
γ )‖ > M

)
+

P
(
‖γ−m · 1

n

∑n
j=1 yj ·K(

uj−ui
γ )− µ(ui)S(ui, θ0)‖ > t/L1

)
≤ 2 exp

(
− 2c2nγ

2m · (t/L1 − c1 · γ)2
)

+ 2 exp
(
− 2c2nγ

2m · (1− c1 · γ)2
)

+

2 exp
(
− 2c5nγ

2m · (t/L1 − c3 · γ1/2 − c4 · γ)
)
,

(A.25)

for t > max{c1 · γ, c3 · γ1/2 + c4 · γ}. Next, observe that the function ψ(x, y) over the domain

(x, y) ∈ [min
u∈U

µ(u)S(u, θ),max
u∈U

µ(u)S(u, θ)]× [min
u∈U

µ(u),max
u∈U

µ(u)], (A.26)

is Lipschitz continuous with some constant L2 > 0 since (i) the denominator of ψ is bounded
away from zero because of R4, and (ii) the numerator of ψ is bounded by R1,R4. Thus, we
have

P
(
‖xi − S(ui, θ0)‖ > t

)
≤ P

(
‖xi − µ(ui)S(ui,θ0)

σ+µ(ui)
‖ > t− σ/L2

)
, (A.27)

for t > σ/L2. Suppose we choose γ = O(n−2/(8m+1)), σ = O(γ), and t = n−1/(16m+2). Then
combining (A.25) and (A.27) gives that for sufficiently large n we have

P
(
‖xi − S(ui, θ0)‖ > n−1/(16m+2)

)
≤ c6 exp

(
− c7n

1/2
)
, (A.28)

where c6, c7 > 0 are constants. And so combining the union bound with (A.28) gives

P
(

max
i∈[n]
‖xi − S(ui, θ0)‖ > n−1/(16m+2)

)
≤ nP

(
‖xi − S(ui, θ0)‖ > n−1/(16m+2)

)
≤ c6 exp

(
− c7n

1/2 + log n
)
.

(A.29)

The final implication of the result follows by noting that n−2/(8m+1) → 0 and c6 exp(−c7n
1/2+

log n)→ 0 as n→∞.

Proof of Theorem 2.2. Proposition 2.7 gives continuity of Qn(θ; ε). Thus, we can apply
the uniform law of large numbers (Jennrich, 1969), which gives

supθ∈Θ |Qn(θ; ε)−Q(θ; ε)| p−→ 0. (A.30)
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Consider any θ0 ∈ arg min{Q(θ; ε) | θ ∈ Θ} and any θ1 ∈ arg min{Qn(θ; ε) | θ ∈ Θ}. By
assumption Qn(θ1; ε) ≤ Qn(θ0; ε), and so we have

Q(θ̂n; ε) +Qn(θ̂n; ε)−Q(θ̂n; ε) +Qn(θ1; ε)−Qn(θ̂n; ε) ≤ Q(θ0; ε) +Qn(θ0; ε)−Q(θ0; ε).
(A.31)

Rearranging terms gives

Q(θ̂n; ε)−Q(θ0) ≤ |Qn(θ̂n; ε)−Q(θ̂n; ε)|+|Qn(θ1; ε)−Qn(θ̂n; ε)|+|Qn(θ0; ε)−Q(θ0; ε)|.
(A.32)

Recall (i) Q(θ0; ε) ≤ Q(θ̂n; ε) by definition of θ0, (ii) Qn(θ; ε) is continuous, and (iii) θ̂n is
nearly-optimal for R–IOP–SAA in probability. Thus, combining these facts with (A.30) and

(A.32) gives that Q(θ̂n; ε)−Q(θ0; ε)
p−→ 0. This is the desired result.

Proof of Theorem 2.3. Proposition 2.2 gives continuity of Qn(θ). The remainder of the
proof is identical to Theorem 2.2.

Proof of Theorem 2.4. Because the feasible set Φ(u, θ) is convex for fixed u, θ by A1 and
has a nonempty interior by R1, this means Φ(u, θ) is continuous in θ by Example 5.10 from
(Rockafellar and Wets, 1998). Thus, we can apply the Berge Maximum Theorem (Berge,
1963) to FOP. This implies S(u, θ) is upper hemicontinuous in θ for fixed u ∈ U . By Re-
mark 3.2 of Dempe et al. (2015), this means Qn(θ) is lower semicontinuous. Thus, we can
apply Theorem 5.14 of (van der Vaart, 2000). The result follows from the conclusion of
Theorem 5.14 of (van der Vaart, 2000) if we can show (i) θ0 ∈ arg min{Q(θ) | θ ∈ Θ}, and
that (ii) θ0 is the unique solution. First, note Q(θ) = E(minx∈S(u,θ)‖ξ − x‖2) + E(w2), since
ξ, x is almost surely independent of w because by IC we have that (i) ξ, u are independent
of w, and (ii) S(u, θ) is almost surely single-valued. Since by IC we have ξ ∈ S(u, θ0),
this means that Q(θ0) = E(w2) and that θ0 ∈ arg min{Q(θ) | θ ∈ Θ}. Next, consider any
θ ∈ Θ \ θ0. Then by IC we have E[minx∈S(u,θ)‖ξ− x‖2 | u ∈ U(θ)] > 0 since ξ ∈ S(u, θ0) and
dist(S(u, θ),S(u, θ0)) > 0 for each u ∈ U(θ). Because P(u ∈ U(θ)) > 0 from IC, this means
E(minx∈S(u,θ)‖ξ − x‖2) > 0 for any θ ∈ Θ \ θ0. Consequently, we have Q(θ) > Q(θ0) for any
θ ∈ Θ \ θ0.

Proof of Theorem 2.5. By Corollary 2.3, there exists E,Z > 0 such that if

θ̂n ∈ z- arg min{Qn(θ; ε) | θ ∈ Θ}

for any 0 ≤ z ≤ Z and 0 ≤ ε ≤ E, then dist(θ̂n, arg min{Qn(θ) | θ ∈ Θ}) < d. Suppose we
choose z = Z. Because Qn(θ; ε) is continuous in θ by Proposition 2.7, there exists ∆ > 0
such that for any 0 < δ ≤ ∆ we have

min {Qn(θ; ε)−Qn(θ0; ε) | θ ∈ T (δ)} < z, (A.33)

3Technically, this theorem applies to maximizing upper semicontinuous functions, but the results and proof
trivially extend to the case of minimizing lower semicontinuous functions.
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where θ0 ∈ arg min{Qn(θ; ε) | θ ∈ Θ}. By construction, we have

arg min{Qn(θ; ε) | θ ∈ T (δ)} ⊆ z- arg min{Qn(θ; ε) | θ ∈ Θ}. (A.34)

Next, note the enumeration algorithm returns a solution θ̂n ∈ arg min{Qn(θ; ε) | θ ∈ T (δ)},
which also satisfies θ̂n ∈ z- arg min{Qn(θ; ε) | θ ∈ Θ}. The result follows from applying the
first line of the proof.

Proof of Theorem 2.6. By Corollary 2.3, there exists E,Z > 0 such that if

θ̂n ∈ z- arg min{Qn(θ; ε) | θ ∈ Θ}

for any 0 ≤ z ≤ Z and 0 ≤ ε ≤ E, then dist(θ̂n, arg min{Qn(θ) | θ ∈ Θ}) < d. Suppose we
choose z = Z and ε = 0, and note that Qn(θ; 0) = Qn(θ) by their definitions. Because Qn(θ)
is continuous in θ by Proposition 2.2, there exists ∆ > 0 such that for any 0 < δ ≤ ∆ we
have

min {Qn(θ)−Qn(θ0) | θ ∈ T (δ)} < z, (A.35)

where θ0 ∈ arg min{Qn(θ) | θ ∈ Θ}. By construction, we have

arg min{Qn(θ) | θ ∈ T (δ)} ⊆ z- arg min{Qn(θ) | θ ∈ Θ}. (A.36)

Next, note the enumeration algorithm returns a solution θ̂n ∈ arg min{Qn(θ) | θ ∈ T (δ)},
which also satisfies θ̂n ∈ z- arg min{Qn(θ) | θ ∈ Θ}. The result follows from the first line of
the proof.

Proof of Theorem 2.7. Note that min{−h(λ, u, θ) |λ ≥ 0} = −f(S(u, θ), u, θ) by strong
duality (which holds because of A1,R1 (Bonnans and Shapiro, 2000)). Next, consider the
function

R(θ) = E
(

min
λ≥0

f(S(u, θ0), u, θ)− h(λ, u, θ)
)

= E
(
f(S(u, θ0), u, θ)− f(S(u, θ), u, θ)

)
,

(A.37)

its sample average approximation

Rn(θ) =
1

n

n∑
i=1

(
min
λi≥0

f(S(ui, θ0), ui, θ)− h(λi, ui, θ)
)

=
1

n

n∑
i=1

(
f(S(ui, θ0), ui, θ)− f(S(ui, θ), ui, θ)

)
,

(A.38)

and its semiparametric approximation

Rn(θ) =
1

n

n∑
i=1

(
min
λi≥0

f(xi, ui, θ)− h(λi, ui, θ)
)

=
1

n

n∑
i=1

(
f(xi, ui, θ)− f(S(ui, θ), ui, θ)

)
.

(A.39)

Note that min{Rn(θ) | θ ∈ Θ} is simply a reformulation of SP–IOP–RISK–SAA. Next, observe
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that E[f(S(u, θ0), u, θ)−f(S(u, θ), u, θ)|u ∈ U(θ)] > 0 since (i) f(x, u, θ) is twice continuously
differentiable in x by R3, and (ii) dist(S(u, θ),S(u, θ0)) > 0 for each u ∈ U(θ) by IC.
Consequently, we have R(θ) > 0 for θ ∈ Θ \ θ0. As shown in the proof for Proposition 2.2,
S(u, θ) is continuous in θ. And so Rn(θ) and Rn(θ) are continuous because (i) f(x, u, θ)
is twice continuously differentiable in x, θ by R3. Next, recall that U is bounded by R4,
Θ is bounded by R2, f(x, u, θ) is twice continuously differentiable in x, θ by R3, and the
feasible set of FOP is absolutely bounded by R1. This means there exists L > 0 such
that for all θ ∈ Θ we have maxi∈[n]|f(x, ui, θ) − f(S(ui, θ0), ui, θ)|≤ Ln−1/(18m) whenever

maxi∈[n]‖xi−S(ui, θ0)‖≤ n−1/(18m) (which occurs with probability at least 1−k1 exp(−k2n
1/4)

by Proposition 2.9). Thus, we have that supθ∈Θ|Rn(θ) − Rn(θ)| p−→ 0. Now consider any

θ̂n ∈ arg min{Rn(θ) | θ ∈ Θ}, and note that the estimate θ̂n returned by the semiparametric
algorithm satisfies this property by construction. By definition we have Rn(θ̂n) ≤ Rn(θ0),
which can be rewritten as

Rn(θ̂n) +Rn(θ̂n)−Rn(θ̂n) ≤ Rn(θ0) +Rn(θ0)−Rn(θ0). (A.40)

Thus, we have

Rn(θ̂n) ≤ Rn(θ0) + |Rn(θ̂n)−Rn(θ̂n)|+|Rn(θ0)−Rn(θ0)|. (A.41)

We have thus shown all the conditions required to apply Theorem 5.14 of (van der Vaart,

2000), which gives θ̂n
p−→ θ0. Now let θn ∈ arg min{Qn(θ) | θ ∈ Θ}. By Theorem 2.4, we

have θn
p−→ θ0. This means that |θn − θ̂n| p−→ 0.

A.2 Proofs from Chapter 3

For the purposes of this section, let the expected shared savings payment be

R(x, α) = E[r(y, α)] =

∫ ∞
−∞

r(y, α)h(y|x)dy

and let the expected subsidy payment be

S(x, β) = E[s(y, β)] =

∫ ∞
−∞

s(y, β)h(y|x)dy

We first present a lemma which is useful in the proofs to follow.

Lemma A.3. The derivative of the expected shared savings payment with respect to x is

(∂/∂x)R(x, α) = (1− α) (hg(−h− x) +G(−h− x)−G(C` − x))

+ α (hg(h− x) +G(Cu − x)−G(h− x)) .

The derivative of the expected subsidy payment with respect to x is

(∂/∂x)S(x, β) = β ((∂/∂x)c(x, θ)(1−G(h− x)) + c(x, θ)g(h− x)) .
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Proof. Consider the shared savings term first. Integrating over the piecewise expression
given in (3.2), we have

R(x, α) =

∫ ∞
−∞

r(y, α)h(y|x)dy

= (1− α)C`

∫ C`

−∞
h(y|x)dy + (1− α)

∫ −h
C`

yh(y|x)dy

+ α

∫ Cu

h
yh(y|x)dy + αCu

∫ ∞
Cu

h(y|x)dy.

Since y = x+ ξ, we may apply a change of variables and write the expression above equiva-
lently as

R(x, α) = (1− α)C`

∫ C`−x

−∞
g(ξ)dξ + (1− α)

∫ −h−x
C`−x

(x+ ξ)g(ξ)dξ

+ α

∫ Cu−x

h−x
(x+ ξ)g(ξ)dξ + αCu

∫ ∞
Cu−x

g(ξ)dξ.

Applying Leibniz’s rule to each of the four terms above yields

(∂/∂x)R(x, α) =− (1− α)C`g(C` − x) + (1− α)(hg(−h− x) + C`g(C` − x)

+G(−h− x)−G(C` − x)) + α(−Cug(Cu − x) + hg(h− x)

+G(Cu − x)−G(h− x)) + αCug(Cu − x)

= (1− α) (hg(−h− x) +G(−h− x)−G(C` − x))

+ α (hg(h− x) +G(Cu − x)−G(h− x)) ,

where the second line is obtained by canceling out terms. For the subsidy term, we integrate
over the expression given in (3.3) to obtain

S(x, β) = βc(x, θ)

∫ ∞
h

h(y|x)dy = βc(x, θ)

∫ ∞
h−x

g(ξ)dξ.

Applying the chain rule to this expression yields

(∂/∂x)S(x, β) = β

(
(∂/∂x)c(x, θ)(1−G(h− x)) + c(x, θ)(∂/∂x)

(∫ ∞
h−x

g(ξ)dξ

))
= β ((∂/∂x)c(x, θ)(1−G(h− x)) + c(x, θ)g(h− x)) .

Proof of Lemma 3.1. To show that u(x, α, β, θ) is strictly concave over [0, x̄] for any θ, it
suffices to show that (∂/∂x)u(x, α, β, θ) < 0 for all x ∈ [0, x̄] and θ ∈ Θ. Pick some x and θ
so that (∂2/∂x2)u(x) exists (note that (∂2/∂x2)u(x) may be undefined for certain values of
x due to the possible non-differentiability of the density g(ξ) at some points. In these cases
we may consider the left and right derivatives of u(x, α, β, θ) and apply a similar argument).
By twice differentiating the expression for u(x, α, β, θ) given in (3.4), we have

(∂2/∂x2)u(x) = (∂2/∂x2)R(x, α) + (∂2/∂x2)S(x, β)− (∂2/∂x2)c(x, θ).
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We consider each of the three terms in this equation in sequence. For the shared savings
term, (∂2/∂x2)R(x, α), differentiating the expression for (∂/∂x)R(x, α) given in Lemma A.3
yields

(∂2/∂x2)R(x, α) = (1− α)
(
−hg′(−h− x)− g(−h− x) + g(C` − x)

)
+ α

(
−hg′(h− x)− g(Cu − x) + g(h− x)

)
.

Since g is increasing over (−∞, 0) and C` ≤ −h, we have g(C` − x) ≤ g(−h − x) for all
x. Further, we have g′(−h − x) ≥ 0 and thus −hg′(−h − x) ≤ 0 for all x. It follows that
(1−α)(−hg′(−h−x)− g(−h−x) + g(C`−x)) ≤ 0. Hence we may drop the first term in the
expression for (∂2/∂x2)R(x, α) above to obtain

(∂2/∂x2)R(x, α) ≤ α
(
−hg′(h− x)− g(Cu − x) + g(h− x)

)
.

Now by dropping the negative term −g(Cu − x) and noting that −hg′(h − x) ≤ hḡ′ and
g(h− x) ≤ ḡ, we have (∂2/∂x2)R(x, α) ≤ ᾱ(hḡ′ + ḡ). For the subsidy term (∂2/∂x2)S(x, β),
we differentiate the expression for (∂/∂x)S(x, β) given in Lemma A.3 to obtain

(∂2/∂x2)S(x, β) = β
(
(1−G(h− x))(∂2/∂x2)c(x, θ) + 2g(h− x)(∂/∂x)c(x, θ)− c(x, θ)g′(h− x)

)
,

≤ β̄
(
(∂2/∂x2)c(x, θ) + 2ḡ(∂/∂x)c(x, θ)

)
,

where the inequality follows by noting that 1−G(h− x) ≤ 1 and g(h− x) ≤ ḡ. Combining
the bounds for (∂2/∂x2)R(x, α) and (∂2/∂x2)S(x, β), we can now write

(∂2/∂x2)u(x) ≤ ᾱ
(
hḡ′ + ḡ

)
+ β̄

(
(∂2/∂x2)c(x, θ) + 2ḡ(∂/∂x)c(x, θ)

)
− (∂2/∂x2)c(x, θ)

= β̄
(
hḡ′ + ḡ

)
+ 2βḡ(∂/∂x)c(x, θ)− (1− β̄)(∂2/∂x2)c(x, θ),

< 0,

where the final strict inequality follows from Assumption 3.3.

Proof of Lemma 3.2. Let α and β be fixed. We first prove that x(θ) is strictly increasing
over [θα,β, θ̄]. We wish to show that (d/dθ)x(θ) > 0 for any θ ∈ [θα,β, θ̄]. Pick any such θ.
Since x(θ) > 0, it follows that x(θ) is a solution to the first order condition

(∂/∂x)u(x, α, β, θ) = (∂/∂x)R(x, α) + (∂/∂x)S(x, β)− γ − (∂/∂x)c(x, θ) = 0.

By the Implicit Function Theorem, we have

(d/dθ)x(θ) = −(∂2/∂x∂θ)u(x, α, β, θ)/(∂2/∂x2)u(x, α, β, θ).

Since R(x, α) and S(x, β) do not depend on θ, we have

−(∂2/∂x∂θ)u(x) = (∂2/∂x∂θ)c(x, θ) < 0,

where the inequality follows from part (iii) of Assumption 3.1. Further, by Proposition 3.1,
we also have (∂2/∂x2)u(x, α, β, θ) < 0, and thus (d/dθ)x(θ) > 0 over [θα,β, θ̄]. It remains to
show that x is non-decreasing over [θ, θα,β], which follows immediately from the definition of
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θα,β and the observation that x is bounded below by 0.

Proof of Lemma 3.3. The proof proceeds in a manner similar to Lemma 3.2. Pick some
α ∈ A and θ ∈ [θα,0, θ̄]. Now pick any β ∈ [β, β̄]. Since θ ≥ θα,0, we have x(β) > 0. It follows
that x(β) is a solution to the first-order condition

(∂/∂x)R(x, α) + (∂/∂x)S(x, β)− γ − (∂/∂x)c(x, θ) = 0.

By the Implicit Function Theorem, we have

(d/dβ)x(θ) = −(∂2/∂x∂β)u(x, α, β, θ)/(∂2/∂x2)u(x).

Since R(x, α) and c(x, θ) do not depend on β, we have

−(∂2/∂x∂β)u(x) = −(∂2/∂x∂β)S(x, β) = −(∂/∂x)c(x, θ)(1−G(h−x))+c(x, θ)g(h−x) < 0.

Further, by Lemma 3.1, we have (∂2/∂x2)u(x, α, β, θ) < 0. It follows that (d/dβ)x(θ) > 0.
To show that u(x(θ)) is increasing in β, note that S(x, β) is strictly increasing in β, and
therefore so is the ACO’s payoff u(x) for any x. It follows that the ACO’s optimal payoff
u(x(θ)) must be strictly increasing in β as well.

Proof of Proposition 3.1. We first show that lim
θ→0

x(θ) = 0 for any α. Pick some α, and

suppose that for ε > 0 we have x(θ) > ε for all θ > 0. Clearly, the shared savings term
R(x(θ), α) is bounded above by x(θ). The ACO’s optimal payoff can then be bounded above
by

u(x(θ)) ≤ x(θ)− γx(θ)− (1− β)c(x(θ), θ).

Since x(θ) > ε for all θ > 0, and since by Assumption 3.1 c(x, θ) is increasing in x, we have
c(ε, θ) ≤ c(x(θ), θ) for all θ > 0. Also by Assumption 3.1, we have c(ε, θ) −→ ∞ and thus
lim
θ→0

c(x(θ), θ) = ∞. It follows that lim
θ→0

u(x(θ)) = −∞. However, it is straightforward to

show that u(0, θ) is bounded from below, which yields a contradiction. We conclude that
lim
θ→0

x(θ) = 0. We now show that there exists θ′0 > 0 such that β(θ) = 0 is an optimal subsidy

rate for θ ≤ θ′0. This follows immediately from the fact that

lim
θ→0

v(α, 0, θ) = −R(0, α) ≥ −R(0, α)− lim
θ→0

βc(x(θ), θ) = lim
θ→0

v(α, β, θ)

for any β > 0 and α > 0. We now show that there exists θ0 such that α(θ) ≥ 1/2 for all
θ ≤ θ0, for sufficiently large Cu and |C`|. Using the expression for R(x, α) given in Lemma
A.3, we have

lim
Cu→∞

lim
C`→−∞

lim
θ→0

R(x(θ), α) = (1− α)

∫ −h
−∞

ξg(ξ)dξ + α

∫ ∞
h

ξg(ξ)dξ

= (1− α)E[ξ|ξ ≤ −h] + αE[ξ|ξ ≥ h]

= (2α− 1)E[ξ|ξ ≥ h].

Note that u(x) ≤ R(x, α) for all x ≥ 0. Therefore, for Cu and |C`| sufficiently large, we have
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lim
θ→0

u(x(θ)) ≤ lim
θ→0

R(x(θ), α) < 0 if (2α− 1) < 0. Since the participation constraint requires

u(x(θ)) ≥ ū(θ) ≥ 0, it follows that α(θ) ≥ 1/2 for sufficiently small θ.

Proof of Proposition 3.2. Let θL > 0 be fixed. We first show that β∗(θH) ≥ β∗(θL) for
sufficiently large θH . It suffices to show that for any α ∈ A, lim

θ→∞
(d/dβ)v(x(θ), β, θ)|β=β∗(θL) >

0. Taking the total derivative of v with respect to β yields

(d/dβ)v(x(θ), β, θ) = (∂/∂x)v(x, β, θ)(d/dβ)x(θ) + (∂/∂x)∂v(x, β, θ).

First, expanding the term (∂/∂x)v(x, β, θ), for all x ∈ [0, x̄] we have

(∂/∂x)v(x, β, θ) = 1− (∂/∂x)R(x, α)− (∂/∂x)S(x, β)

= 1− (∂/∂x)R(x, α)− β ((∂/∂x)c(x, θ)(1−G(h− x)) + c(x, θ)g(h− x))

≥ 1− (∂/∂x)R(x, α)− β ((∂/∂x)c(x, θ) + c(x, θ)ḡ)

≥ δ − β ((∂/∂x)c(x, θ) + c(x, θ)ḡ)

where in the final inequality we have δ = 1− (∂/∂x)R(x, α) > 0 for all x ∈ [0, x̄] and α ∈ A
by Assumption 3.4. Since by Assumption 3.1 the functions c(x, θ) and (∂/∂x)c(x, θ) are both
decreasing in θ, it follows that

lim
θ→∞

((∂/∂x)c(x, θ) + c(x, θ)ḡ) = 0

for all x ∈ [0, x̄]. Hence
lim
θ→∞

(∂/∂x)v(x, β, θ)|β=β∗(θL) > 0

for all x ∈ [0, x̄]. Further, since by Proposition 3.3, (d/dβ)x(θ) > 0 for sufficiently large θ, it
follows that

lim
θ→∞

(∂/∂x)v(x, β, θ)(d/dβ)x(θ)|β=β∗(θL) > 0.

Now note that for the second term, we have

lim
θ→∞

(∂/∂β)v(x, β, θ) = lim
θ→∞

c(x, θ)(1−G(h− x)) ≤ lim
θ→∞

c(x̄, θ) = 0.

It follows that
lim
θ→∞

(∂/∂β)v(x(β), β, θ)|β=β∗(θL) > 0.

Thus β∗(θH) ≥ β∗(θL). We now show that α∗(θH) ≤ α∗(θL). Suppose α∗(θH) > α∗(θL).
Since the ACO’s payoff u(x) is strictly increasing in α and β, if β∗(θH) ≥ β∗(θL) and
α∗(θH) > α∗(θL), then a type θL ACO could earn a higher payoff by reporting its type to be
θH instead of θL, which violates incentive compatibility. Therefore, α∗(θH) ≤ α∗(θL).

Proof of Proposition 3.3. We first establish two supporting results. For conciseness, we
suppress dependence of x(·) on α and β and dependence of v(·) on α. First, we show that
Medicare’s savings function v(x(θ), β, θ) is continuous in β. Note that v(x, β, θ) is continuous
in x and β. By the Berge Maximum Theorem, x(θ) is upperhemicontinuous in β. Since by
Lemma 3.1 the optimal savings x(θ) is unique, x(θ) is also continuous in β. Hence v(x(θ), β, θ)
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is continuous in β.
Next, we show that for all α ∈ A and θ ∈ Θ, there exists βs > 0 such that (∂/∂x)∂v(x, β, θ) >

0. Pick some α and θ. Now define δ = 1 − (∂/∂x)R(x, α) > 0, where the inequality follows
from Assumption 3.4. Following the proof of Proposition 3.2, we have

(∂/∂x)v(x, β, θ) ≥ δ − β ((∂/∂x)c(x̄, θ) + c(x̄, θ)ḡ) .

Since δ > 0, (∂/∂x)v(x, β, θ) > 0 for sufficiently small β.
We now prove the main result. We wish to show that there exists some θs > 0 such that

for any θ ≥ θs and α ∈ A, there exists β̃ > 0 such that v(x(θ), 0, θ) < v(x(θ), β̃, θ). Since
v(x(θ), β, θ) is continuous in β, for any β̃ we can apply the Mean Value Theorem to write

v(x(θ), β̃, θ) = v(x(θ), 0, θ) + β̃ · (d/dβ)v(x(θ), β, θ)|β=ηβ̃

for some η ∈ [0, 1]. Therefore, to show v(x(θ), 0, θ) < v(x(θ), β̃, θ) for each θ ≥ θs and β̃, it
suffices to show that

β̃(d/dβ)v(x(θ), β, θ)|β=ηβ̃ > 0

for sufficiently large θ and an associated β̃ and η ∈ [0, 1]. We do so by showing that there
exists θs such that for all θ ≥ θs, there exists a constant β̃ such that (d/dβ)v(x(θ), β, θ) > 0
for all β ∈ [0, β̃] and α ∈ A. Pick β̃ = βs. Taking the total derivative yields

(d/dβ)v(x(θ), β, θ) = (∂/∂x)v(x, β, θ)(d/dβ)x(θ) + (∂/∂β)v(x, β, θ).

Note that (∂/∂x)v(x, β, θ) > 0 for all α ∈ A if β ≤ βs from the earlier argument, and by
Lemma 3.3, (d/dβ)x(θ) > 0 for all β if θ ≥ θα,0. It follows that

(∂/∂x)v(x, β, θ)(d/dβ)x(θ) > 0

for any α ∈ A, θ ≥ θα,0 and β ∈ [0, βs]. We also have (∂/∂β)v(x, β, θ) = −c(x, θ)(1−G(h−x)),
which, by Assumption 3.1, can be made arbitrarily small by picking θ to be large. It follows
that for all α ∈ A, β ∈ [0, βs], lim

θ→∞
(d/dβ)v(x(θ), β, θ) > 0. Thus there exists θs such that

for all θ ≥ θs and α ∈ A, there exists β̃ such that v(x(θ), 0, θ) < v(x(θ), β̃, θ). It follows that
V ∗s (θ) > V ∗0 (θ). Since for any x > 0, the ACO’s payoff u(x) is strictly increasing in β, it
follows that U∗s (θ) > U∗0 (θ) as well.

Proof of Proposition 3.4. We prove that the model is identifiable for a single benchmark
group, since the proof extends in a straightforward manner to multiple benchmark groups.
Let µ be fixed. We wish to show that if h(y|µ, λ, σ) = h(y|µ, λ̃, σ′) for all y, then we must have
λ = λ̃ and σ = σ′ (Bickel and Doksum, 2015). Suppose there exists parameters (λ, σ) and
(λ̃, σ′) such that (λ, σ) 6= (λ̃, σ′) and h(y|µ, λ, σ) = h(y|µ, λ̃, σ′) for all y. Thus h(y|µ, λ, σ) =
h(y|µ, λ̃, σ′) for all y ≥ x(θ̄) as well. Writing h(y|µ, λ, σ) in terms of the shock and type
densities, we have h(y|µ, λ, σ) =

∫
Θ g(y − x(θ)|σ, θ)f(θ|λ)dθ. Since g is the Laplace density,

135



we have∫
Θ

(1/(2σ))e
√

2(y−x(θ))/σf(θ|λ)dθ =

∫
Θ

(1/(2σ′))e
√

2(y−x(θ))/σ′f(θ|λ̃)dθ for all y ≥ x(θ̄).

(A.42)

We consider two cases: σ 6= σ′ and σ = σ′. First suppose σ 6= σ′. For conciseness, define

C =

∫
Θ

(1/(2σ))e−
√

2x(θ)/σf(θ|λ)dθ

and

C ′ =

∫
Θ

(1/(2σ′))e−
√

2x(θ)/σ′f(θ|λ̃)dθ.

Note that C and C ′ are constant with respect to y. Equation (A.42) then implies

Ce
√

2y/σ = C ′e
√

2y/σ′

for all y ≥ x(θ̄). Taking the natural logarithm of both sides and rearranging yields(√
2/σ −

√
2/σ′

)
y + lnC − lnC ′ = 0

for all y ≥ x(θ̄). This linear equation is zero over all y ≥ x(θ̄) only if
(√

2/σ −
√

2/σ′
)

= 0,

which yields a contradiction. Now consider the case where σ = σ′. Then we must have λ 6= λ̃.
Cancelling out the common (1/(2σ))e

√
2y/σ terms on both sides of (A.42) and rearranging,

we have ∫
Θ
e−
√

2x(θ)/σ
(
f(θ|λ)− f(θ|λ̃)

)
dθ = 0,

which violates the assumption in the proposition statement.

Proof of Corollary 3.1. Note Θ = [θ, θ̄]. Let θ be fixed. Pick some (λ, λ̃, σ) ∈ Λ× Λ× Σ
such that λ 6= λ̃, and suppose the following equality holds:∫

Θ
e−
√

2x(θ)/σ
(
f(θ|λ)− f(θ|λ̃)

)
= 0 (A.43)

We first show that if (A.43) holds, then θ̄ is unique. Since e−
√

2x(θ)/σ and f(θ|λ) are both
strictly positive, the equality∫

[θ1,θ2]
e−
√

2x(θ)/σ
(
f(θ|λ)− f(θ|λ̃)

)
dθ = 0

can only hold for an interval [θ1, θ2] ⊂ R+ if f(θ|λ) and f(θ|λ̃) intersect at some point in
(θ1, θ2). Further, since f(θ|λ) and f(θ|λ̃) are exponential densities, they can intersect at most
once over any interval (θ1, θ2). Now suppose there exists multiple values of θ̄ such that (A.43)
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holds. Let θ̄1 and θ̄2 be two such values, where θ̄1 < θ̄2. Then we have∫
[θ,θ̄1]

e−
√

2x(θ)/σ
(
f(θ|λ)− f(θ|λ̃)

)
dθ = 0

and ∫
[θ,θ̄2]

e−
√

2x(θ)/σ
(
f(θ|λ)− f(θ|λ̃)

)
dθ = 0

which implies ∫
[θ̄1,θ̄2]

e−
√

2x(θ)/σ
(
f(θ|λ)− f(θ|λ̃)

)
dθ = 0.

It follows that f(θ|λ) and f(θ|λ̃) intersect in both (θ, θ̄1) and (θ̄1, θ̄2), a contradiction. Thus,
there is at most one value θ̄ such that (A.43) holds. Let this parameter be θ̄(λ, λ̃, σ).
Since Λ and Σ are discrete, there are a finite number of such θ̄(λ, λ̃, σ). Selecting θ̄ >
supλ,λ̃∈Λ,σ∈Σ θ̄(λ, λ̃, σ) implies (A.43) cannot hold for any (λ, λ̃, σ) ∈ Λ×Λ×Σ, which yields
the result.

Proof of Proposition 3.5. For conciseness let λ = (λ1, . . . , λm) in what follows. Let
h(y|µ, λ, σ) be the savings density for an ACO with benchmark µ, given λ and σ. Letting
L(λ, σ|µ, y) be the likelihood function, we can write

L(λ, σ|µ, y) =

n∏
i=1

h(yi|µi, λ, σ)

=

n∏
i=1

∫
Θ
h(yi|µi, λ, σ, θ)f(θ|µi, λ, σ)dθ

=

n∏
i=1

∫
Θ
g(yi − x(θ)|µi, λ, σ, θ)f(θ|µi, λ, σ)dθ

=

n∏
i=1

∫
Θ
g(yi − x(θ)|µi, λ(µi), σ, θ)f(θ|λ(µi))dθ

=

n∏
i=1

∫
Θ
g(yi − x(θ)|σ, θ)f(θ|λ(µi))dθ

The first line follows by definition of the likelihood function and the independence assumption
given in Assumption 3.5. The second line follows from conditioning on θ. The third line
follows from noting that y = x(θ) + ξ and re-writing the savings distribution in terms of
the shock density g. The fourth line follows from noting that f(θ|µi, λ, σ) = f(θ|λ(µi)),
since λ(µi) fully defines the type density of an ACO. The final line follows by observing that
yi − x(θ) depends only on σ and θ (in addition to α and β, which are fixed throughout).
Taking the logarithm of both sides, we obtain

logL(λ, σ|µ, y) =
n∑
i=1

log

(∫
Θ
g (yi − x(θ)|σ, t) f (t|λ(µi)) dθ

)
,
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as desired.

Proof of Proposition 3.6. It suffices to show that for any ε > 0, there exists T̄ > 0
such that |x̃t − x∗t |< ε for all t ≥ T̄ . First we show that for any ε, there exists T̃ such that
x̃t ≤ ε for all t ≥ T̃ . Suppose there exists ε > 0 and a subsequence x̃tk such that x̃tk > ε
for all k ≥ 0. Let k(t) = sup{k ≥ 0|tk ≤ t}. Since x̃t ≥ 0 for all t ≥ 0, for any t we have∑t

i=0 x̃i ≥
∑k(t)

k=0 x̃tk . Then we have

lim
t→∞

st = lim
t→∞

t∑
i=0

x̃i ≥ lim
t→∞

k(t)∑
k=0

x̃tk ≥ lim
t→∞

k(t)∑
k=0

ε =∞.

Since c(st) is strictly increasing by Assumption 3.1, it follows that lim
t→∞

ut(x̃t) = −∞, which

cannot be optimal. Therefore, there must exist T̃ > 0 such that x̃t ≤ ε for all t ≥ T̃ . By a
parallel argument, for any ε > 0 there exists T ∗ such that x∗t ≤ ε for all t ≥ T ∗. The result
follows by taking T̄ = max{T ∗, T̃}.

A.3 Proofs from Chapter 4

We first present two lemmas that are helpful in the proof of Theorem 4.1.

Lemma A.4. Let y be fixed. Define U∗ = argmax
µ∈U

CVaRµ[d(ξ,y(ξ))]. Then for any set of

facility locations y, there exists a worst-case distribution µ̃ ∈ U∗ supported on a1, . . . , a|R|,
where ar = argmax

a∈A′r
d(a,y(a)), for all r = 1, . . . , |R|.

Proof. For any Ā ⊂ A, define

λ(µ, Ā) = Pµ(ξ ∈ Ā) =

∫
Ā
fµ(ξ)dξ, (A.44)

where fµ is the density function associated with distribution µ. Pick a distribution µ∗ ∈ U∗.
Now construct µ̃ to be the distribution with mass λ(µ∗,A′1), . . . , λ(µ∗,A′|R|) placed at the
locations a1, . . . , a|R|. We now show that µ̃ is also in U∗. We do so by first showing that µ̃ is
in U , and then by showing that the CVaR of the distance distribution under the constructed
µ̃ is at least as large as the CVaR under µ∗. For the first step, let Rj index the subregions
that comprise Aj . Now note that for each j ∈ J , we have

Pµ̃(ξ ∈ Aj) =
∑
r∈Rj

Pµ̃(ξ ∈ A′r) =
∑
r∈Rj

λ(µ̃,A′r) =
∑
r∈Rj

Pµ∗(ξ ∈ A′r) = Pµ∗(ξ ∈ Aj) = λj .

The first equality is due to the fact that
⋃
r∈Rj A′r = Aj . The second equality follows from

the definition of λ(µ, Ā) in (A.44). The third equality follows by the construction of µ̃. The
fourth equality is again due to

⋃
r∈Rj A′r = Aj . The final equality holds since µ∗ ∈ U .

Since from the above equations, Pµ̃(ξ ∈ Aj) = λj , we have µ̃ ∈ U . It remains to show that
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CVaRµ∗ ≤ CVaRµ̃. Writing CVaR explicitly, we have

CVaRµ∗ [d(ξ,y(ξ))] = min
α

α+
1

1− β

∫
A

[d(ξ,y(ξ))− α]+fµ∗(ξ)dξ

= min
α

α+
1

1− β
∑
r∈R

∫
A′r

[d(ξ,y(ξ))− α]+fµ∗(ξ)dξ

≤ min
α

α+
1

1− β
∑
r∈R

∫
A′r

[d(ar,y(ar))− α]+fµ∗(ξ)dξ

= min
α

α+
1

1− β
∑
r∈R

[d(ar,y(ar))− α]+
∫
A′r
fµ∗(ξ)dξ

= min
α

α+
1

1− β
∑
r∈R

[d(ar,y(ar))− α]+λ(µ̃,A′r)

= CVaRµ̃[d(ξ,y(ξ))].

The first line follows from the definition of CVaR. The second line is due to the fact that
the subregions A′r, r ∈ R form a partition of A. The third line follows from the definition
of ar as a point in A′r that maximizes distance to the nearest AED. The fourth line follows
since [d(ar,y(ar)) − α]+ is constant with respect to the variable ξ. The fifth line follows
from the definition of λ(µ̃,A′r) as the total probability mass in A′r. The final line follows by
construction of µ̃ and the definition of CVaR.

For the second lemma, define zC(y) = maxµ∈U CVaRµ[d(ξ,y(ξ))] to be the worst-case
CVaR under the solution y in the continuous case. Similarly, let zD(y) be the worst-case
CVaR in the discrete case (i.e., the optimal value of (4.4) given y). The next lemma bounds
the difference between the the worst-case continuous and discrete CVaR, for a given deploy-
ment y. Note that Lemma 1 is used in the proof.

Lemma A.5. For any y, zC(y)− zD(y) ≤ `(σ)/(1− β).

Proof. Let µ∗ be a worst-case continuous distribution with mass λ′1, . . . , λ
′
|R| on the

locations p1, . . . , p|R| (cf Lemma A.4). Construct a discrete distribution by placing mass
λ′1, . . . , λ

′
|R| on the locations ξ1, . . . , ξ|R|, where ξr = argmin

ξ∈Ξ′r

d(ξ, pr) for all r. We can now
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write

zC(y)− zD(y) =

(
min
α

α+
1

1− β
∑
r∈R

λ′r[d(ar,y(ar))− α]+

)
− zD(y)

≤
(

min
α

α+
1

1− β
∑
r∈R

λ′r[d(ξr,y(ξr)) + `(σ)− α]+

)
− zD(y)

≤
(

min
α

α+
1

1− β
∑
r∈R

λ′r[d(ξr,y(ξr))− α]+

)
+

1

1− β
∑
r∈R

λ′r`(σ)− zD(y)

= zD(y) +
1

1− β
∑
r∈R

λ′r`(σ)− zD(y)

=
`(σ)

1− β

The first line follows from the definition of zC(y). The second line follows from the triangle
inequality and since d(ξr, ar) ≤ `(σ) by definition of `(σ). The third line follows from pulling
`(σ) out of the CVaR expression. The fourth line follows by definition of zD(y). The fifth
line follows from cancelling out zD(y) terms and noting that

∑
r∈R λ

′
r = 1.

Proof of Theorem 4.1. Note that zD(y) ≤ zC(y) for any y, since Ξ′r ⊂ A′r for all r ∈ R.
Now define yC ∈ argmin

y
zC(y) and yD ∈ argmin

y
zD(y). Using Lemma A.5, we can now

write

zD(yD) ≤ zD(yC) ≤ zC(yC) = ZC ≤ zC(yD) ≤ zD(yD) + `(σ)/(1− β) = ZD + `(σ)/(1− β),

which implies ZC − ZD ≤ `(σ)/(1− β). Since ZD ≤ ZC , we have

∆ =
ZC − ZD

ZC
≤ ZC − ZD

ZD
≤ `(σ)

ZD(1− β)
.

It follows that if `(σ) ≤ ε(1− β)ZD, then ∆ ≤ ε.

Proof of Proposition 4.1. Since each scenario k belongs to exactly one set Kj , in the
context of formulation R-AED this implies that the uncertainty regions are disjoint. The
set U is then separable in j, meaning the uncertainty in the discrete distribution u can
be interpretted equivalently as uncertainty in |J | conditional distributions of u – one for
each uncertainty region. We may now interpret xkj as the unknown probability that the
next cardiac arrest arrives at location k, conditioned on the event {ξ ∈ Ξj}. Note that
due to our choice of the uncertainty set U , each vector xj is only known to reside in the
|Kj − 1|-dimensional probability simplex, which is given precisely by the sets X1, . . . ,X|J |.
Also, since each scenario k only belongs to one of the sets K1, . . . ,K|J |, it follows that uk =∑

j∈J λjxjk, for each k ∈ K. By substituting
∑

j∈J λjxjk for uk, we can write formulation
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R-AED equivalently as

min
y,z

max
x

min
α

α+
1

(1− β)

∑
j∈J

∑
k∈Kj

λjxjk max

{∑
i∈I

dikzik − α, 0
}

subject to x ∈ X, z ∈ Z(y),y ∈ Y, (A.45)

α ≥ 0.

Due to the separability of the scenario sets in j, we may take the xjk terms inside the max
operator in the objective to obtain another reformulation of R-AED:

min
y,z

max
x

min
α

α+
1

(1− β)

∑
j∈J

λj max

∑
i∈I

∑
k∈Kj

dikzikxjk − α, 0


subject to x ∈ X, z ∈ Z(y),y ∈ Y, (A.46)

α ≥ 0.

We now show equivalence of (A.46) and the robust p-median problem. Let (y∗, z∗,x∗) be
an optimal solution for formulation (A.46). Let Z(α) be the objective value of (A.46) for
the solution (y∗, z∗,x∗, α). Since the feasible sets of (A.46) and (4.8) are identical, all that
remains is to show that their optimal values are equal. For conciseness define g(xj , zj) :=∑

i∈I
∑

k∈Kj dikzikxjk. We first observe that for β = 0 and any α ≤ min
j∈J

g(x∗j , z
∗
j ), the

objective value of (A.46),

Z(α) = α+
∑
j∈J

λj
(
g(x∗j , z

∗
j )− α

)
= α+

∑
j∈J

λjg(x∗j , z
∗
j )−

1

n
(nα)

=
∑
j∈J

λjg(x∗j , z
∗
j )

=
∑
i∈I

λj
∑
j∈J

∑
k∈Kj

z∗ikdikx
∗
jk,

is equivalent to the objective value of (4.8). Note that in the second equality above we use
the fact that λj = 1/n for all j ∈ J . Thus to show equivalence in the optimal values of
formulations R-AED and (4.8) when β = 0, it suffices to show that an optimal α∗ satisfies
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α∗ ≤ min
j∈J

g(x∗j , z
∗
j ). Suppose that α∗ > min

j∈J
g(x∗j , z

∗
j ). Then,

Z(α∗) = α∗ +
∑
j∈J

λj max
{
g(x∗j , z

∗
j )− α∗, 0

}
> α∗ +

∑
j∈J

λj
(
g(x∗j , z

∗
j )− α∗

)
=
∑
j∈J

λjg(x∗j , z
∗
j )

=
∑
i∈I

∑
j∈J

∑
k∈Kj

λjz
∗
ikdikx

∗
jk,

which contradicts the optimality of α∗. For the robust p-center problem, let (y∗, z∗,x∗) again
be an optimal solution to formulation (A.46). Let Z(α) be the objective value of (A.46) for
the solution (y∗, z∗,x∗, α). If α = max

j∈J
{g(x∗j , z

∗
j )}, then the objective of formulation (A.46),

Z(α) = α+
1

(1− β)

∑
j∈J

λj max
{
g(x∗j , z

∗
j )− α, 0

}
= max

j∈J
{g(x∗j , z

∗
j )}+

1

(1− β)

∑
j∈J

λj max

{
g(x∗j , z

∗
j )−max

j∈J
{g(x∗j , z

∗
j )}, 0

}
= max

j∈J
{g(x∗j , z

∗
j )}

= max
j∈J

∑
i∈I

∑
k∈Kj

z∗ikdikx
∗
jk

 ,

is equivalent to the objective of (4.9). We now wish to show that an optimal α∗ satisfies α∗ =
max
j∈J
{g(x∗j , z

∗
j )} for β > (n− 1)/n. We do so by showing that neither α∗ > max

j∈J
{g(x∗j , z

∗
j )}

nor α∗ < max
j∈J
{g(x∗j , z

∗
j )} can hold. First, suppose α∗ > max

j∈J
{g(x∗j , z

∗
j )}. Then,

Z(α∗) = α∗ +
1

(1− β)

∑
j∈J

λj max
{
g(x∗j , z

∗
j )− α∗, 0

}
= α∗

> max
j∈J
{g(x∗j , z

∗
j )},

which contradicts the optimality of α∗. Now suppose α∗ < max
j∈J

{g(x∗j , z
∗
j )}, and let δ =

max
j∈J

{g(x∗j , z
∗
j )} − α∗. It follows that

∑
j∈J max{g(x∗j , z

∗
j ) − α∗, 0} ≥ δ. Since λj = 1/n for
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all j ∈ J , we can write

Z(α∗) = α∗ +
1

(1− β)n

∑
j∈J

max
{
g(x∗j , z

∗
j )− α∗, 0

}
≥ α∗ +

1

(1− β)n
δ

= α∗ + δ +
1

(1− β)n
δ − δ

= max
j∈J
{g(x∗j , z

∗
j )}+

(
1

(1− β)n
− 1

)
δ

> max
j∈J
{g(x∗j , z

∗
j )},

where the final strict inequality follows from β > (n − 1)/n. Again, this contradicts the
optimality of α∗.

Proof of Proposition 4.2. Note that the number of variables in the master problem formu-
lation R-AED-MP is |I|(|K+|+1)+1, and the number of constraints is (2|I|+1)|K+|+|I|+|S|+2.
Hence the number of variables and constraints in iteration s is O(|I||K+|). It remains to show
that |K+|≤ (|J |+1)s in the sth iteration of the row-and-column generation algorithm. Since
the new variables and constraints that are added to R-AED-MP in iteration s correspond di-
rectly to non-zero elements of the vector ps obtained at a solution to R-AED-SP (cf Algorithm
1), it suffices to show that any p obtained at a solution to R-AED-SP contains at most |J |+1
non-zero elements. We first prove that any u obtained at an optimal solution to R-AED-SP
is also an optimal solution to the following problem:

maximize
u

∑
k∈K

dikz̄ikuk

subject to
∑
k∈K

uk = 1, (A.47)∑
k∈Kj

uk = λj , j ∈ J ,

uk ≥ 0.

By way of contradiction, suppose a solution p,u is optimal to R-AED-SP but u is suboptimal
to (A.47). Then there exists k1 and k2 such that

∑
i∈I dik2 z̄ik2 >

∑
i∈I dik1 z̄ik1 . Further,

there must exist ε > 0 and a vector ũ ∈ U such that ũk1 = uk1 − ε, ũk2 = uk2 + ε, and
ũk = uk for all k ∈ K \ {k1, k2}. Let p̃ be the solution obtained by solving R-AED-SP with ũ
as a parameter. Now note in R-AED-SP, since

∑
i∈I dik2 z̄ik2 >

∑
i∈I dik1 z̄ik1 , the constraints

pk2 ≤ uk2/(1−β) and p̃k2 ≤ ũk2/(1−β) must be binding (otherwise we could slightly increase
pk2 while slightly decreasing pk1 by the same amount to improve the objective function, with
an identical argument applying to p̃k2). Since pk2 = uk2/(1 − β) and p̃k2 = ũk2/(1 − β), by
the construction of ũ it follows that p̃2 − p2 ≥ ε/(1 − β) and p1 − p̃1 ≤ ε/(1 − β). Since
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∑
i∈I dik2 z̄ik2 >

∑
i∈I dik1 z̄ik1 , the solution p̃, ũ improves the objective by(∑

i∈I
dik2 z̄ik2 −

∑
i∈I

dik1 z̄ik1

)
ε

1− β > 0

over the solution p,u, which contradicts the optimality of p,u with respect to R-AED-SP.
Hence u must be optimal to (A.47) as well.

Since (A.47) is a standard form linear program with |J |+1 equality constraints and |K|
variables, at most |J |+1 elements of a basic feasible solution to (A.47) can be non-zero
(Bertsimas and Tsitsiklis, 1997). Further, since by assumption there are no ties in the dik
parameters, every optimal solution to (A.47) must be a basic feasible solution. It follows
that every u obtained at a solution of R-AED-SP has no more than |J |+1 non-zero elements.
Since pk > 0 implies uk > 0 for any feasible p,u, it follows that any p obtained at a solution
to R-AED-SP cannot have more than |J |+1 non-zero elements.

Proof of Proposition 4.3. Let the subregions A′1, . . . ,A′|R| be the partitioning of A
implied by the uncertainty regions A1, . . . ,A|J |. Let λ′r = P (ξ ∈ A′r) for all r ∈ R under the
true distribution. Since the subregions are disjoint, the number of historical cardiac arrests
that fall in each of the regions A′1, . . . ,A′|R| is simply the outcome of n independent trials

from a multinomial distribution with parameters λ′1, . . . , λ
′
|R|. Now define

λ̂′r =
1

n

n∑
c=1

1{ac ∈ A′r}, r ∈ R,

is a maximum likelihood estimator of λ′1, . . . , λ
′
r, and that |λ̂′r − λ′r|−→ 0 with probability

1 as n −→ ∞ (e.g., Example 1.6.7. in Bickel and Doksum (2015)). Now let Rj be the set

of subregions that comprise region Aj . We now have λ̂j =
∑

r∈Rj λ̂
′
r, and thus |λ̂j − λj |=

|∑r∈Rj (λ̂
′
r − λ′r)|≤

∑
r∈Rj |λ̂′r − λ′r| for each j ∈ J , which implies |λ̂j − λj |−→ 0 with

probability 1 for each j ∈ J as n −→ ∞. To see that λ̂ ensures that U is non-empty,
construct a distribution u ∈ U as follows. First, assign each of the cardiac arrest locations
a1, . . . , an to the nearest scenario location within the same subregion. Then for each k ∈ K,
set uk equal to the proportion of cardiac arrests that are assigned to location k. Thus u is
non-negative and

∑
k∈K uk = 1 by construction. Lastly, for each r ∈ R,

∑
k∈K′r uk is equal to

the proportion of cardiac arrests within subregion A′r, which is also equal to λ̂′r by definition.
Thus ∑

k∈Kj

uk =
∑
r∈Rj

∑
k∈K′r

uk =
∑
r∈Rj

λ̂′r = λ̂j .
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