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ABSTRACT OF THE DISSERTATION

Essays in Trade and Spatial Economics

by

Nicole Emily Gorton

Doctor of Philosophy in Economics

University of California, Los Angeles, 2022

Professor Jonathan E. Vogel, Chair

This dissertation examines questions in trade and spatial economics.

The first chapter studies how changes in domestic trade costs can cause regions to

decline. The agriculture-intensive states of the American Midwest (the “heartland”)

lost population relative to the rest of the country over the postwar period; at the

same time, the price of shipping agricultural relative to manufactured goods fell

considerably. I outline a simple version of a trade model and derive comparative

statics of the price, production, and population effects of a decline in agricultural

shipping costs to show how these two facts may be linked. I validate the model’s

predictions by studying how a 1963 Supreme Court ruling that sharply reduced the

cost of shipping wheat versus flour affected the flour milling industry. Finally, I

calibrate a multi-sector, multi-location version of the model to the U.S. in 1950 and

find that observed declines in agricultural trade costs can explain nearly 10% of the

postwar population decline in the heartland.

The second chapter is joint work with Pablo Fajgelbaum, Cecile Gaubert, Ed-

ii



uardo Morales, and Edouard Schaal and studies the political economy of transporta-

tion investments. Transport networks are among the largest investments made by

federal and local governments. What determines which projects are implemented?

We study how people’s political preferences and policymakers’ preferences for redis-

tribution or popular approval determined the implementation of California’s High-

Speed Rail. We combine detailed spatial data on votes for the project with a quan-

titative spatial model that captures its economic benefits and use our framework to

estimate the weight of economic and political components in transport users’ pref-

erences. We find that votes are responsive to the expected real-income benefits of

the high-speed rail but that economic benefits explain only a small fraction of the

aggregate vote and the variance in welfare across space is almost entirely explained

by non-economic factors.

The third and final chapter, joint with Elena Ianchovichina, uses a spatial gen-

eral equilibrium framework to construct optimal transport networks and optimal

expansions to existing networks in most Latin American countries, as well as within

MERCOSUR and the Andean Community. The average annual welfare losses due to

inefficient domestic transport networks in Latin America are around 1.6%, ranging

from 2.4% in Argentina to 0.3% in El Salvador. Spatial misallocation of transnational

transport networks is associated with annual welfare losses of 1.8% in MERCOSUR

and 1.5% in the Andean Community. The optimal investments we identify corre-

late relatively well with World Bank infrastructure projects because both prioritize

investments in high population areas. Optimal investments in transnational road

networks benefit the least developed country in each trade bloc most.
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CHAPTER 1

Trade Costs, Supply Chains, and the Decline of

the Heartland

For the past 30 years, our population has also been growing and shifting. The result is

exemplified in the vast areas of rural America emptying out of people and of promise...

— President Richard Nixon, State of the Union, 1970

1.1 Introduction

Over the past century, the spatial distribution of economic activity within many

countries, especially the United States, has changed dramatically. These large shifts

in where people live, where they work, and where goods are produced have welfare

implications for people living in different places. Inevitably, people living in some re-

gions end up better off than those in other regions. Why have some regions prospered

while others have declined? What role have changes in trade costs within countries

played in shaping these welfare gains and welfare losses across locations? To make

progress on these questions, this paper examines a region over a period of significant

decline: the agriculture-intensive states of the American Midwest (the “Heartland”)

1



over the postwar period.1

Between 1950 and 1980, the percent of the U.S. population living in Heartland

states fell by 18%, from 9% to 7% (U.S. Census). By this measure, the Heartland

fared worse than almost any other Census division.2 Figure 1.1 maps the percentage

change in the share of the national population living in each state between 1950 and

1980.3 States colored in (darker) green grew (more) while states in (darker) orange

shrunk (more).4 The Heartland is outlined in black. Four Heartland states – the

Dakotas plus Iowa and Nebraska – made up half of the top eight states in terms of

relative population declines over the period. About one-third of all U.S. counties

experienced net out-migration over the period; of those, 35% were in the Heartland,

even though the Heartland includes less than 20% of all U.S. counties.

The Heartland states are sometimes referred to as the “breadbasket” because

they largely specialize in producing agricultural goods, especially bulk grains like

wheat (Wishart (2004)).5 In 1950, North Dakota and South Dakota led the nation

as the states with the largest share of gross output coming from the agricultural

1I define the Heartland as the set of states in the Census’ West North Central division which
corresponds to the non-Rustbelt Midwestern states. The Midwest follows the U.S. Census classifi-
cation. Following Alder, Lagakos and Ohanian (2014), I define the Rustbelt as: Illinois, Indiana,
Michigan, New York, Ohio, Pennsylvania, West Virginia and Wisconsin. Thus, the non-Rustbelt
Midwest includes Minnesota, Iowa, Missouri, the Dakotas, Nebraska, and Kansas

2There are nine Census divisions. The Middle Atlantic division experienced a percentage decline
in relative population of about the same magnitude (18%).

3Figure 1.12 plots percentage of the U.S. population living in each Census region in each year
between 1900 and 2000. While there was a small decline in the Midwest’s relative population
preceding this period, it accelerated after the war.

4I focus here on state-level data because my eventual model calibration will be at the state level
due to data constraints. However, the pattern is equally striking at the county level.

5Figure 1.13 plots the percentage of exports in agriculture for each state.
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sector while Iowa and Nebraska were close behind. Although Heartland states housed

only 9% of the population in 1950, together they produced nearly a quarter of the

nation’s agricultural output. Population declines in these rural, agriculture-intensive

areas received considerable policy attention during the period. President Nixon’s

1970 State of the Union remarked on the need to “stem the migration to urban

centers”. This rural to urban migration also motivated the passage of the Rural

Development Act of 1972, an early example of a place-based policy, which provided

financial support to rural areas. Its stated purpose was to “foster a balanced national

development” (Rural Development Act, 1972).

Figure 1.1: The Postwar Decline of the Heartland, 1950 to 1980

Note: This figure shows the percentage change in the share of the national population living in
each state between 1950 and 1980. Source: U.S. Census, 1950 and 1980.

This paper proposes, studies, and quantifies the importance of a novel explanation
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for this decline of the American Heartland: changes in the structure of domestic trade

costs.6 Freight rates for bulk (agricultural) goods fell considerably relative to those

for finished (manufactured) products beginning in the 1950s. To document this fact,

I digitized records from the Interstate Commerce Commission (ICC), the regulatory

body for freight transport during the period. The ICC annually published the Freight

Commodity Statistics, from 1928 to 1980, in which it reported aggregate data on

tons shipped and revenue earned by major rail carriers.7 To measure shipping costs

levied by shippers on producers, I compute the revenue per ton earned by railroad

companies for shipments of goods from each commodity class.8

In Figure 1.2, I plot annual real revenue per ton earned by the railroads in each

year, separately for agricultural goods and manufactured goods.9 I find large declines

in the shipping costs of agricultural relative to manufactured goods beginning in the

postwar period.10 Revenue per ton earned in these each of these two sectors was

6This hypothesis, that changes in the structure of trade costs within the postwar U.S. had
important effects on the distribution of economic activity, received some attention among economists
during the period. For example, see Meyer and Morton (1975) who wrote that, “[T]he lower freight
rates for transporting bulk commodities than their fabricated equivalent commonly encourages
manufacturers to substitute the transport of bulk commodities for the movement of the finished
goods.”

7Total revenue is the total payments made by producers to railroad shippers.

8Revenue per ton is a standard measure of shipping costs used in the literature; for example,
see Hyslop and Dahl (1964). However, in addition to the tariff charged by shippers, revenue per
ton may also reflect changes in the underlying distance shipped. I control for this using data on
bilateral trade costs in Section 1.4. Even conditional on distance, the decline in relative shipping
costs is around one-third.

9Figure 1.14 shows the same figure using data on Class I motor carriers (trucks), starting when
these data become available in 1956.

10This figure uses aggregate data. When I quantify the model, I use data on revenue per ton
earned by each state pair for each sector to show that this relative decline in shipping costs holds
up to controlling for origin-destination fixed effects.
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relatively constant until around 1955 at which point it began to fall sharply in the

agricultural sector. By 1967, agricultural revenue per ton was nearly one third lower

than manufacturing revenue per ton. Qualitative evidence suggests that most of

this decline was driven by innovations in the shipment of bulk grain products; new

types of rail cars, like the unit train and the covered hopper car, allowed railroads

to significantly reduce the cost of service on these products particularly over long

distances.11

Figure 1.2: Railroad Shipping Costs Over Time
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Note: This figure shows revenue per ton earned by Class I railroads in each year,
separately for agricultural goods and manufactured goods. Source: Interstate Commerce
Commission’s Freight Commodity Statistics.

How could these changes in trade costs have caused relative population declines

11These new technologies are discussed more in Section 1.3. Panel (a) of figure 1.22 shows the
covered hopper car, which displaced box cars over this period, as shown in panel (b) of the same
figure.
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in the Heartland states? To explore the channels through which these two facts may

be linked, I outline a simple, Armington model of trade between two locations with

three sectors. Labor is mobile across locations, and sectors are connected to each

other through input-output linkages. The mechanics of this simple model are at the

heart of most trade models used in the literature. The key assumption I make is that

one location has a comparative advantage in the production of agricultural goods and

so it relies on imports of agricultural goods from other regions relatively less than the

other location in the model. I use this model to derive analytic comparative statics

describing the response of prices, production, firm locations, welfare, and population

to a decline in the cost of trading agricultural goods.

The model highlights a key channel through which declines in agricultural goods

can cause a population decline of the heartland: the input-output structure of the

economy. Agricultural goods are used by other sectors including food processing,

textile mills, rubber and plastics industries, and apparel industries, as intermediate

inputs (BEA, 1947). Initially, trade costs gave locations that specialized in the

production of agricultural goods a comparative advantage in certain downstream

sectors. But when it becomes relatively cheaper to acquire agricultural goods outside

the heartland, agriculture-intensive locations’ downstream comparative advantage is

weakened and downstream firms move out of the agriculture-intensive location. Plus,

there may be spillover effects from agriculture-intensive manufacturers to other firms

through the input-ouput structure, as well as through external economies of scale in

manufacturing.12

To show that this channel is operating in the data, I take advantage of a natural

12For example, as in the case of Bartelme et al. (2019).
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experiment that affected flour mills in 1963. Studying this natural experiment has a

few key benefits. First, it allows me to narrow in on a single industry for which I have

collected location-specific data on prices for goods, plants, firms, and trade in the

upstream and downstream sectors. Most of these data are not systemically available

for this time period for a broader set of industries. Second, it provides a setting with

a clear and significant change in the cost of shipping the upstream, agricultural good

relative to the downstream, manufactured good, that was caused by an unexpected

change in regulation rather than by changes in patterns of demand or supply that

may also affect prices and production patterns.

Before 1963, wheat and flour, which are flour mills’ agricultural input good and

final manufactured good respectively, were equally costly to ship via rail as a result

of railroad regulation by the Interstate Commerce Commission. Rail car innovations

in the late 1950s and early 1960s reduced the railroad cost of shipping bulk prod-

ucts, but regulation initially prevented railroads from lowering prices accordingly. In

1963, a Supreme Court ruling allowed railroads to significantly reduce the price of

wheat shipments which allowed them to compete more effectively with barges. Other

railroads soon followed, and the result was that the price of shipping wheat fell by

about a third while the price of shipping flour remained the same. I document this

fall in the relative cost of shipping wheat versus flour using an event study design.

I then use newly digitized data and two sources of variation generated by the

Court’s ruling to show how this change in shipping costs affected flour prices, pro-

duction, and firm locations. To estimate the causal effects of the change in trade costs

on outcomes, I use a differences-in-differences strategy. The first source of variation

that I use is variation across time, before and after the ruling. The second source of

variation is variation across locations, as flour mills that were initially located close
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to wheat production were relatively less affected by the change in trade costs since

they did not initially rely heavily on the railroad for wheat shipping.

I find empirical support for the model’s mechanisms using this setting. I find

that, after the ruling, prices of wholesale flour, consumer flour, and bread rose in

the Midwest, which is close to where wheat is produced, as compared with prices in

cities and states farther away from where wheat is produced. Flour milling capacity

and the number of mills fell in areas close to where wheat is produced following

the change in shipping rates relative to areas further away. The relative decline

in the number of flour mills in wheat-producing areas was driven by an exodus of

relatively less productive mills. These results are consistent with the simple model’s

comparative statics.

Finally, I document that, consistent with Figure 1.2, declines in the cost of ship-

ping agricultural products over this period were not limited only to wheat and instead

applied to a broad set of agricultural products. I quantify these changes in the costs

of shipping agricultural goods between each pair of U.S. states over the postwar pe-

riod. I then study the extent to which these observed declines in agricultural shipping

costs can explain the relative population decline of the Heartland over the postwar

period.

To do this, I extend the simple model to a multi-sector, multi-location model of

trade between U.S. states a là Caliendo and Parro (2015). To capture the mechanism,

the model includes labor mobility, trade costs that vary by sector, and input-output

linkages between sectors. I include land as a fixed factor of production to correctly

model the agricultural sector. I digitize data from 1950 on output and trade in order

to calibrate the model. I then feed into the model only changes to the cost of shipping
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agricultural products in order to ask how changes in agricultural trade costs changed

distribution of population across states over the period. I find that this channel can

explain around 8% of the postwar population decline in the Heartland. Nearly half

a million people would have remained in the Heartland had the structure of trade

costs remained at its 1950 level.

This paper makes several contributions to the literature. First, the paper con-

tributes to a broad literature in trade about how changes in trade costs affect different

locations. Glaeser and Kohlhase (2004), Fajgelbaum and Redding (2022), Donaldson

and Hornbeck (2016b) and Donaldson (2016) among others all use historical settings

to study how changes in trade costs shape the distribution of economic activity across

locations within countries. Recent work by Costinot and Donaldson (2016) studies

the gains from market integration within the U.S. Gollin and Rogerson (2010) study

the impact of the transport network on rural to urban migration. Relative to these

papers, this paper proposes and studies a new channel – the changing structure of

domestic trade costs – to explain changes in economic activity across locations.

Second, by proposing and carefully quantifying a new explanation for the decline

of the American Midwest, this paper contributes to a broad literature studying his-

torical patterns of population and production in the United States. Long and Siu

(2018) and Hornbeck (2012) study how the Dust Bowl contributed to out-migration

in some Midwestern counties in the 1930s. Eckert and Peters (2018) study the spatial

implications of structural change within the U.S. over the past century. Caselli and

Coleman II (2001) study the contribution of structural transformation in explaining

the convergence of incomes across regions in the U.S. Kim (1995) explores the chang-

ing spatial distribution of manufacturing in the U.S. Alder, Lagakos and Ohanian

(2014) study how competitive pressure affected the postwar, manufacturing-intensive
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Rust Belt and Autor et al. (2014) study how exposure to import competition affected

manufacturing-intensive locations since the 1990s. Finally, the particular population

patterns I study are documented extensively, though without explanation, by Wilson

(2009).

This paper also contributes to a growing body of literature, both theoretical and

empirical, on supply chains and trade with input-output linkages. Caliendo and

Parro (2015) and Caliendo et al. (2018) embed input-output linkages into a standard

trade, Melitz (2003) style trade model. Recent theoretical work by Grossman and

Helpman (2021), Antras, Fort and Tintelnot (2022), Antras and Helpman (2004)

considers the effects of changes in upstream and downstream trade costs in a world

connected by supply chains. This paper provides novel empirical evidence describ-

ing how downstream prices and production re-allocate in response to changes in

upstream trade costs, and how this can affect population in the long run. While

these mechanisms are at the heart of the models in all of these papers, there is lim-

ited evidence that they operate in the data which this paper provides. Relative to

Cox (2021), I show how changes in trade costs allow supply chains can reallocate

population across space.

Finally, this paper relates to work in agricultural economics on the flour milling

industry over the postwar period. Kim et al. (2001), Nightingale (1967), Hyslop and

Dahl (1964) and Harwood (1991) discuss the existence of the cost shock and speculate

on its potential implications for the locations of flour mills. Babcock (1976) and

Babcock, Cramer and Nelson (1985) use aggregate data to measure which regions

will experience an increase in flour production in response to the shock. Relative to

these papers, I use very granular, plant-level data on flour mills to credibly quantify

the extent to which observed changes in trade costs affected prices and the locations
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of mills.

1.2 Simple Model and Testable Predictions

To explore the channels that link changes in the structure of trade costs with popu-

lation declines, I outline a simple two-state, three-sector model. I use the model to

derive comparative statics which I then test empirically.

1.2.1 Simple Model

In the initial equilibrium, there are two locations, New York, denoted as N , and

Kansas, denoted as K. There are three sectors: an agricultural sector (“wheat”,

W ), a manufacturing sector (“flour”, F ), and an outside manufactured good sector

M . I assume that, initially, N imports more wheat from K than K imports from N ,

so πWNN < πWKK where πWin is the share of wheat imported from i by n. This pattern

will hold if, for example, K has a comparative advantage in the production of wheat

as compared with N .13 This pattern of comparative advantage is the key assumption

that will drive the results.

Agents’ Problem. In each location, there is a common component of utility across

all agents in a location, plus an idiosyncratic component of utility associated with

13Consistent with this assumption, there are strong patterns of comparative advantage in the
production of agricultural goods across states in the U.S., with agricultural exports making up a
particularly large share of the Heartland’s exports. Figure 1.13 shows the share of agricultural
goods in each state’s export bundle in 1949. Appendix proof 1 shows one set of parameters – that
Kansas is sufficiently more productive in growing wheat than New York – that is consistent with
this assumption.
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each agent. Agents have quasi-linear utility over a constant elasticity of substitution

(CES) aggregator of flour, plus the outside good. The outside good is homogenous

and freely traded. Because agents have CES utility over flour types from each loca-

tion, agents love variety; thus, they want to consume flour from every location since

each location is producing its own variety.14 The elasticity of substitution of flour

across origins is σF . Agents in a location i choose to buy flour from each location

cFni and the outside manufactured good from each location cMni to solve:

max
cFni,c

M
ni

[∑
n

cMni

]
+ ln

[∑
n

(cFni)
σF−1

σF

] σF
σF−1


subject to a budget constraint of wi =

∑
n p

M
nic

M
ni + pFnic

F
ni. The common component

of indirect utility is then vi = wi + ln
(

σF
σF−1

)
− ln

(
P F
i

)
− σF

σF−1
P F
i .

The total indirect utility of a worker b in state i is vbi = vi+ εbi where εbi represents

agent b’s idiosyncratic preferences for location i. Agents choose to live in the state

that gives them the largest indirect utility. Assuming that εbn ∼ Gumbel yields the

share of agents living in state n:

λi =
exp

(
wi + ln

(
σF
σF−1

)
− ln

(
P F
i

)
− σF

σF−1
P F
n′

)
∑′

n exp
(
wn′ + ln

(
σF
σF−1

)
− ln (P F

n′)−
σF
σF−1

P F
n′

)
The number of people living in state i is Li = λiL, where L is total population which

I assume to be exogenous.

14This, too, is not divorced from reality. Different regions specialize in different types of flour,
often related to the type of wheat that is locally grown. For example, White Lily flour is generally
associated with the Southern states because it is milled there, and is important in baking biscuits.
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Production. Wheat is produced using labor, Y W
it = TWit L

W
it . The outside good is

also produced using labor, Y M
it = TMit L

M
it . Flour is produced using a CES aggregator

of wheat, Y F
it = T Fit

[∑
n

(
cWni
)σW−1

σW

] σW
σW−1

where σW is the elasticity of wheat across

origins.

Prices. I assume that all markets are perfectly competitive and that wheat and

flour are subject to sector-specific iceberg trade costs, τWin and τFin respectively. Thus,

prices in each sector are pFin = τFinp
F
ii and pWin = τWin p

W
ii where pjii is the price of pro-

ducing goods from sector j in location i. Since the outside manufactured good is

homogenous and freely traded, it is the numeraire good so its price is 1. Wages in

each location will then be set based on productivity in this sector wn = TMi and thus

are exogenously determined.

Extension with Heterogeneous Firms. While a causal link between declines in

agricultural good trade costs and changes in the distribution of population does not

require firms to be present, including firms in the model allows me to derive testable

predictions governing what will happen to firm entry and average productivity of

mills in different locations. The richness of my data will allow me to test these pre-

dictions. In this case, I assume monopolistic competition among flour mills, closely

following Chaney (2008) and Krugman (1980). Each agent chooses cMni and cFni(ω)

where ω ∈ Ω is a flour variety to solve:

max
cMni ,c

F
nit(ω)

[∑
n

cMni

]
+ ln

(∑
k

∫
Ωk

(cFki(ω))
σF−1

σF dω

) σF
σF−1
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s.t. wi =
∑
k

∫
Ωk

pFki(ω)cFki(ω)dω +
∑
n

pMnic
M
ni

From this maximization problem, I obtain the quantity demanded of each flour va-

riety from agents in state i:

cFki(ω) =
(
pFki(ω)

)−σF (P F
i

)σF−1
(1.1)

In terms of production, each mill produces its own flour variety ω, though a

variety is unique conditional on a firm’s productivity, which I index as ϕ. Entry and

exit of flour mills in each state are endogenous and depend on a zero profit condition.

In each market there is some endogenously given mass of potential entrants, Mi and

some share of them will end up entering the market. The number of firms operating

in any period is then M∗
i = Mi · (1 − G(ϕ∗i )) where ϕ∗i is the lowest level of firm

productivity for which profits are non-negative, and G(.) is the distribution of firm

productivities, which I will assume to be Parteo as in Chaney (2008).

The threshold level of productivity above which all firms enter, and below which

no firms will enter, is the productivity for which profits in a market are equal to 0.

Profits made by a firm with productivity ϕ in location i are given by:

πi (ϕ) =
∑
j

cFij(ϕ)

τ̃Fij σF
σF − 1

PW
i

ϕ︸ ︷︷ ︸
pFij(ϕ)

− τ̃Fij
PW
i

ϕ︸ ︷︷ ︸
MCij

− wife

where fe is the fixed cost of entry, denominated in wages, MCij = τ̃Fij
PWi
ϕ

is the

marginal cost of production for a firm of productivity ϕ in state i to produce flour

for state j, and pFij(ϕ) = τ̃Fij
σF
σF−1

PWi
ϕ

is the price charged by firm ϕ in state i for
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flour in state j. There is no fixed cost of exporting; all firms that enter can export

without paying an additional fixed cost. The zero profit condition yields a closed

form solution for the cut-off value of productivity. All firms above this level will

enter the market:

ϕ∗Fn =

(
(σF − 1)1−σF σ

σj
F wnfn

(
cFn
)σF−1∑

i (τ
F
ni)

1−σF QF
i (P F

i )σF

) 1
σF−1

(1.2)

1.2.2 Testable Predictions

I express the model in changes, where x̂ = xpost
xpre

and consider a decline in the cost of

shipping the agricultural good, τ̂W < 1, while holding all other exogenous variable

constant.

Price effects. When the price of shipping wheat falls, flour prices fall everywhere

because wheat is the only input to flour production and prices are set with perfect

competition. Flour prices fall by more in New York than in Kansas; formally, p̂FNN <

p̂FKK < 1. I provide a proof of this result in Theorem 1. This result is driven by the

initial pattern of trade, generated by Kansas’ agricultural comparative advantage,

plus the fact that trade within a state is costless. Because Kansas has a comparative

advantage in wheat production, Kansas is importing relatively less wheat from New

York in the initial equilibrium than New York is importing from Kansas. Thus, a

larger share of wheat imports to New York are affected by the decline in shipping

costs, so the price of importing wheat (and thus of producing flour) falls by more in

New York than in Kansas.

A similar logic holds in the case of consumer flour prices: P̂ F
N < P̂ F

K < 1. Since
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demand is CES, agents are buying flour from all locations in the initial equilibrium.

But since trade across states is costly, agents in New York are initially buying rel-

atively more flour from New York in the initial equilibrium than agents in Kansas

are buying from New York. Thus, flour becomes relatively cheaper for consumers

to buy in New York than in Kansas which I show in Theorem 2. This is how the

cost of living changes across locations as a result of changes in the costs of shipping

agricultural goods.

Production effects. Because producer prices fall everywhere, demand for flour

rises everywhere. However, demand rises by more in New York since the price of

producing falls by more there; as a result, the production of flour rises more in New

York than in Kansas, Ŷ F
N > Ŷ F

K > 1. The proof of this result is in Theorem 3.

Firm location effects. While my baseline model does not include firms, I turn

to the version of the model with monopolistic competition to generate predictions of

the effect of trade costs on firms. In this version of the model, because it becomes

cheaper to produce flour everywhere and especially so in New York, the productivity

threshold for firm entry falls by more in New York than it falls in Kansas. Thus,

more flour milling firms enter in New York and the total number of firms in New

York increases by more as well, as compared with Kansas, M̂F
N > M̂F

K . The proof of

this result is in Theorem 5.

Productivity effects. Since the productivity entry threshold falls by more in New

York, relatively less productive firms can enter the market there. Thus, the new,
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lower-productivity firms drag down the average productivity level in New York, so

average productivity actually falls by more here than in Kansas: ϕ̂∗N < ϕ̂∗K , as per

Theorem 4.

Decline of the heartland. Since wages are exogenous in this model, effects on

welfare in this model operate through changes in the cost of living across locations.

Since consumer prices of flour fall by more in New York, welfare increases by more

in New York. Since relative population is linked to relative welfare, relative popu-

lation thus rises there as well compared with Kansas. Since Kansas the relatively

agriculture-intensive location here as is the Heartland, this effect is the “decline of

the heartland”. The proof of this result is in Theorem 6.

1.3 Empirical Case Study

To test whether these model predictions hold in the data, I study the flour milling

industry following a sudden and sharp decline in the railroad cost of shipping wheat

generated by the outcome of a Supreme Court case in 1963.

1.3.1 Historical Background

Before 1963, railroads charged identical rates for similar movements of flour and

wheat (Babcock (1976), Babcock, Cramer and Nelson (1985), Harwood (1991), Held

(1979), USDA (1964)). This was primarily due to regulation by the Interstate Com-

merce Commission (ICC), which, from its inception in 1887 until rail deregulation

in 1980, controlled to a great extent how railroads could set prices. As noted by
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a 1963 article in the Southwestern Miller, a trade publication for the flour milling

industry, “...the parity between rates of wheat and flour has long been in effect...”

(The Southwestern Miller (1963)).

However, in the 1960s, new innovations in the shipment of bulk commodities

including the covered hopper car and the unit train made it cheaper for railroads

to ship bulk grains like wheat as compared with manufactured goods like flour.15

Shipments of flour were unaffected by these innovations in part because shipments of

wheat tend to be in much larger quantities than shipments of flour; bulk shipments

lend themselves well to both covered hopper cars and unit trains whereas smaller

shipments of more processed goods do not (USDA (1964)). In addition, hygiene

requirements are much stricter among shipments of flour which is a manufactured

good as compared with wheat which is a raw material. This makes flour even more

difficult to ship in vast quantities. A 1965 article in the Minneapolis Tribune quoting

a railroad executive explains: “Unit trains for grain have meant streamlined, high-

speed operation– rapid turnaround and high utilization of equipment that have kept

profits up in spite of lower rates... No one has come to us with any kind of a similar

development for flour. Simply, more grain can be moved faster, per car, than flour”.

The Southern Railroad, one of the first to develop these new technologies, pro-

posed new, lower rates on wheat to the ICC in 1962. By law, the ICC had seven

months to either approve or deny the rate change. After seven months, no decision

was made. In lieu of a ruling, the reduced rates were supposed to go into effect,

but a competing barge company sued. They claimed the rates could not go into

effect until the ICC had made a decision and that the new rates would “irreparably

15For example, see figure 1.22.
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injure their [the barge company’s] respective economic interests”. In the meantime,

the ICC required the Southern to keep its rates at the initial level. In 1963, the

Supreme Court ruled in Arrow Transportation v. Southern Railway Company that

the ICC didn’t have the authority to prevent proposed rates going into effect since

the decision period had lapsed (United States Court of Appeals (1962)).

Once the Southern was allowed to introduce the new technology and offer lower

rates, other railroads followed. Importantly, this change in railroad rates was not

generated by changes in producer locations or characteristics, and thus is plausibly

exogenous to the outcomes I will study. Many trade publications, newspapers, and

economists of the period took note of changing relative trade costs and speculated

on its implications for the spatial distribution of the industry. For example, the cost

shock was described succinctly in the 1964 USDA Farm Index (USDA (1964)):

With recent changes in the grain rate structure, it now costs more to
ship grain products, including flour, by rail from some locations than it
does raw grain. As a result, some millers near the city bakeries and
retail outlets for flour may have new transportation advantage over those
located nearer the production areas.

Local newspapers reveal how Midwest flour millers felt about the changing rates. An

article published on April 30, 1963 in The Southwestern Miller was titled “Kansas

Millers Plea Against Peril to Trade”, and stated that “the Southern Railway rate

cuts would place Kansas flour at a disadvantage of as much as 43c per cwt in com-

parison to wheat” (The Southwestern Miller (1963)). On June 27, 1965, an article

entitled “Minneapolis Mills Fight for Life, Blame Transit Rates” was published in

the Minneapolis Tribune (1965). The article included the following quote, describing

how Minneapolis millers feared for their viability given the advantage that millers
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closer to population centers would face after this change in relative shipping costs:16

A growing controversy is raging over the issue of changing transportation
rates which, the [Minneapolis] millers contend, have given Eastern flour
mills an overpowering competitive advantage over the Midwest. They say
they’re hurt because a disparity between transportation rates on wheat
and flour makes it cheaper to ship wheat east for milling and sale in
the population centers than to mill it here and ship the flour to the
big Eastern markets. The chief target of milling industry criticism are
railroad freight rates which until recently were about the same for wheat
and flour...

This is shipping rate change that I exploit to study the response of prices and down-

stream production locations to a change in the cost of shipping agricultural inputs

relative to manufactured final goods.

1.3.2 Data

Flour mill locations, sizes, flour prices. To identify the changing distribution

of flour mill locations, I digitized records on the locations, sizes, and ownership of

U.S. flour mills from the Northwestern Miller, a trade publication that published an

annual directory of all U.S. flour mills that I obtained from the published, Sosland

Publishing. Figure 1.20 shows two examples of what these directory entries look like.

Given the address of each mill, I geocode mills to latitude and longitude coordinates.

I then combine the coordinates with 2010 U.S. Census county boundaries to create

a panel dataset of counties and years, with variable including the total number of

mills, the total number of mills that belonged to a multi-unit firm, and the total

16Emphasis is added.
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milling capacity. In addition, I use mill names and addresses to track plants over

time and construct a dataset of mill entry and exit.17

Table 1.6 shows annual summary statistics of these data. Some key trends emerge:

over the time period, the total number of mills is falling, but total capacity is rising,

so the average capacity of a mill is rising considerably over the period. The share of

flour produced by the states that are top producers of wheat is also falling, and the

share of mills that are owned by large corporations nearly doubles over the period.

One drawback is that I do not observe actual production of each mill in each year; I

only observe the mill’s capacity which may be a noisy indicator of demand for that

mill’s flour since it is costly to adjust capacity.

I measure producer prices of flour at major markets from The Southwestern

Miller, a trade publication that included averages of flour prices from local mills

for a selection of major milling markets (The Southwestern Miller (1955)). Figure

1.21 shows an example of the price listings for Kansas City. Data were published

every week for many different varieties of flour. I use data from the last week in

October for standard patent flour, except in the case of Portland, Oregon where the

price of standard patent flour is never listed and instead I use family flour. Table 1.7

shows average prices in 1963 and 1966 for each state in my sample, which I obtain

either by using the price listings from a city in that state, or from averaging over

cities (as in the case of Kansas). One drawback of these data is that they are only

available for a small number of cities; in total, only ten states are represented. I

measure the retail prices of flour and bread in a selection of different cities from the

Bureau of Labor Statistics’ Retail Prices in U.S. Cities.

17I detail this matching process in 1.7.3.1.
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Wheat Production and Prices. I obtain county-level data on wheat production

and wheat yields from the United States Department of Agriculture (USDA) and

the Census of Agriculture. 63% of wheat production in 1963 was produced in Mid-

western states; 71% was produced by Midwestern states plus Montana and Idaho

(USDA, 1963).

Transportation Network. I measure transport costs for agricultural products in

1950 among all pairs of counties. To using a map of the 1957 railroad network drawn

by the Army Service Corps of Engineers that I have digitized.18 To measure the cost

of shipping agricultural products one ton-mile along this network, I use the reported

revenue per ton-mile earned by Class I railroads in 1950 for Products of Agriculture

(ICC, 1950).

Railroad Trade. I obtain data on railroad trade of wheat and flour between U.S.

states and major regions from the Carload Waybill Sample Statistics. These data

are a 1% sample of all terminated waybills, which are contracts between railroad

companies and producers. Each observation in the data is of a commodity traded

in a given year between an origin state or region and a destination state or region,

and the data include the volume of goods traded as well as the revenue earned by

the railroad on shipments along that route in that year. I have digitized state level

data are available from 1958 through 1966. Region level data for five major regions

in the U.S. are much coarser but are available for more years, 1950 through 1987,

18The original map is shown in Appendix Figure 1.19.
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with some gaps.

1.3.3 Effects on trade costs

1.3.3.1 Empirical strategy

I first quantify the extent to which the court’s ruling affected the relative cost of

shipping wheat versus flour. To do this, I use railroad trade data at the route-

commodity-year level to estimate the following event study:

ln
(
revenueodct
tonodct

)
=
∑

y 6=1963 βy · 1(t = y) · 1(c = wheat) + γodc + γodt + γot + γdt + εodct (1.3)

where o is an origin region, d is destination region, and c ∈ (wheat, flour) is a

commodity. Standard errors are clustered at the route level, of which there are 25.

revenueodct measures total payments from producers to railroad shippers for goods

of commodity group c shipped along route od in year t. tonsodct measures total tons

of commodity c shipped by railroad companies in year t from o to d. Each event

study coefficient βy measures the relative cost of shipping wheat versus flour in year

y relative to 1963, which is the last untreated year.

I attribute my estimates of βy to the causal effect of the Supreme Court ruling. I

assume that, had the ruling in 1963 not happened, the cost of shipping wheat relative

to the cost of shipping flour would have remained constant over this period. I include

various fixed effects control for factors other than the court’s ruling that may influence

the cost of shipping wheat relative to that of shipping flour. For example, changes

in the compositional quality of wheat or flour being shipped, which would affect its

value, could also affect the relative revenue per ton earned by the railroads. Assuming
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this effect is constant across routes, commodity-time fixed effects control for any such

compositional changes. Similarly, origin-destination-commodity fixed effects control

for any route and commodity-specific differences in the cost of shipping that do not

vary over time. I also include origin-time and destination-time fixed effects.

1.3.3.2 Results

Figure 1.3 shows event study estimates of equation 1.3. While the cost of shipping

wheat was not statistically different than the cost of shipping flour in 1961 and 1962,

as these point estimates are small and not statistically different from zero, there is

considerable wedge between the trade costs for the two commodities by 1966: the cost

of shipping wheat has fallen by about 30% relative to the cost of shipping flour. This

significant and sudden shift in shipping costs provides the ideal scenario to study how

declines in agricultural good trade costs affect production across locations. Finally,

I separately estimate equation 1.3 by commodity. Consistent with the story, the

decline in relative trade costs is driven by a decline in the cost of shipping wheat,

while the cost of shipping flour remained unchanged.

1.3.4 Effects on prices, production, firms

How did flour prices, flour production, and flour mill locations evolve after this change

in shipping costs? Figure 1.4 shows the relationship between initial proximity to

wheat and flour mill locations. Each county is colored based on its wheat market

access which is the inverse distance-weighted average of wheat production in all

surrounding counties.19 Dark orange and red counties are closer to wheat-producing

19This measure is defined formally in Equation 1.5.
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Figure 1.3: Effects of the Ruling on Shipping Costs
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Note: This figure shows event study estimates of equation 1.3, in which I compare the
revenue per ton earned by railroads, a measure of shipping costs, in shipping wheat
versus flour each year, relative to the year of the Court’s ruling.

locations; Each black dot represents a county with at least one flour mill in the

indicated year; dots are sized by the number of mills in that county. Comparing 1961

(the top panel, corresponding to the last pre-shock year for which I have data) to 1975

and 1985, many (but not all) of the mills in North Dakota, Montana, and Kansas have

closed. Many new mills are instead closer to population centers including New York

Cities, New Orleans, Tampa, and Jacksonville. While these maps are suggestive, I

estimate difference-in-differences models to quantify the effects.

1.3.4.1 Empirical strategy

To estimate the causal effects of changes in agricultural shipping costs on outcomes,

I take advantage of two sources of variation. First, I take advantage of variation
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across time induced by the Supreme Court ruling, comparing outcomes before and

after 1963. Second, I take advantage of variation across locations. Places close to

where wheat is produced initially relied less on the railroad for shipping wheat than

places far from where wheat is produced. For example, a flour mill in New York is

far from wheat production and thus must import wheat from the Midwest while a

mill in Kansas is close to wheat production and instead exports finished flour, rather

than importing wheat.

Effects on prices. I first measure how prices of flour and bread evolved differently

in the Midwest, where wheat is produced, versus in other places. I use a differences-

in-differences specification. My estimating equation is:

log (priceit) =
T∑

y 6=1963

βy · 1(y = t) · 1(i ∈Midwest) + γt + γi + εit (1.4)

where i is a city and t is a year. The identifying assumption is that, in lieu of changes

in trade costs, prices would have evolved in the same way in locations within the

Midwest as compared with locations outside the Midwest.

Each event study coefficient βy measures the difference in prices in the Midwest

in year y relative to 1963, versus outside the Midwest. If the predictions of Section

1.2 hold, then we would expect to prices to fall by more outside the Midwest (or, in

other words, rise in the Midwest relative to other locations), so βy > 0 for y > 1963.

There should be no difference in the evolution of prices in the Midwest versus in

other locations, in which case βy = 0 for y > 1963.
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Effects on production and firms. When looking at production and mill locations,

I have data for every county, instead of for a selection of cities as in the case of price

data. This allows me to construct a continuous measure of exposure to the change in

wheat shipping costs. I measure each location’s “wheat market access” WMAi,1959

before the shock:

WMAi,1959 =
∑
n

(τWni )1−σW · Y W
n,1959 (1.5)

where Y W
n,1959 is production of wheat in bushels in 1959 and τWni is the iceberg cost

of shipping wheat from n to i. σW determines the distance decay; I estimate this

parameter to be 13.7 using trade data as described in Section 1.4. My main empirical

specification is:

yit =
T∑

y 6=1961

βy · 1(y = t) · log(WMAi,1963) + γt + γi + εit (1.6)

where i is a location, which will be either a county or a city, and t is a year.20

The first difference is the difference between the pre-1963 and post-1963 periods

while the second difference is that between counties that are relatively better or

worse producers of wheat. My coefficients of interest are each βy. I omit the last

pre-treatment year for which I observe data (1961), so each estimated coefficient is

relative to the 1961 level. Standard errors are clustered at the county-level, of which

there are around 3,000.

Similarly to the price regressions, my identifying assumption is that, in lieu of

changes in trade costs (i.e., if the Supreme Court had ruled in favor of Arrow Trans-

20In robustness checks, I estimate the differences-in-differences version of this specification, which
is: yit = β · 1(t > 1963) · log(WMAi,1963) + γt + γi + εit.
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portation Co. and the new rates had not gone into effect), flour prices, mill locations,

and production would have evolved similarly across locations regardless of that lo-

cation’s initial specialization in wheat production. The event study nature of these

regressions allows me to test, to some extent, this assumption. If this assumption

holds, then we would expect there to be no difference in outcomes across locations

prior to the change in trade costs after controlling for year and location fixed ef-

fects. In later sections, I will also include a series of robustness checks to control for

alternative explanations of my results.

1.3.4.2 Results

Prices. Figure 1.5 plots event study estimates of equation 1.4. In panel (a), the

outcome variable of interest is log(pFii), the log of the producer price of flour. I find

that the producer price of flour rises in the Midwest compared to other locations by

about 3% in the first year following the decline in trade costs. Three years later, the

price remains about 7% higher in the Midwest relative to the rest of the country,

even though there were no differential trends in flour prices between the Midwest and

the rest of the country prior to 1963. In panel (b), the outcome variable of interest is

log(P F
i ), the log of the consumer price of flour. Here, I find a similar result as in the

case of producer prices: by 1965, two years after the change in trade costs, consumer

prices of flour have risen by about 6% and remain at that lower level for the decade.

Panel (c) looks at bread prices and finds an effect of around 10%.21

21Bread pricing reflects the price of flour sold to bakers, which may be priced differently than
flour sold in grocery stores.
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Figure 1.4: Flour Mill Locations and Capacity

(a) 1961

(b) 1975

(c) 1985

Note: Each black dot represents the centroid of a county with at least one flour mill in the indicated year, with the size of the
centroid scaled by the number of mills in that county. The background shading represent access to wheat in 1959, as measured by
wheat market access in equation 1.5, with shades tending towards red representing areas closer to wheat production areas. Source:
The Northwestern Miller, Army Map Service Map of U.S. Railroads (1957), and the Census of Agriculture (1959).
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Production. Figure 1.6 plots event study estimates of equation 1.6. In Panel (a),

the outcome variable is the number of mills in each county in each year. I omit the

year 1961, which is the last year for which I observe data before the 1963 ruling.22

To get a sense of the magnitudes, consider that in 1961, the average county had

0.17 flour mills. The estimated coefficient for 1975 is around −0.01. Thus, moving

from a 25th percentile wheat access location (far from wheat) to a 75th percentile

wheat access location (close to wheat), which is a difference of about five log points,

is associated with a decline of −0.05 mills, or about 30% of the mean.

In Panel (b), I look at the total capacity of mills. Because there are many zeros,

I use an inverse hyperbolic sine transformation which allows me to preserve the

zeros. The pattern of changes in capacity following 1961 is almost the same as in

the case of the number of mills. By 1975, flour milling capacity is about 20% lower

when moving from a location with a 25th percentile wheat access location to a 75th

percentile wheat access location. In Panel (c), I look at the log of the average mill

size where mill size is milling capacity in a county divided by the number of mills

in that county. There appears to be no differential change in mill size by location,

suggesting that changes in milling capacity are driven by changes in the number of

mils, not by changes in mill sizes.

In Figure 1.7, I look at outcomes related to the firms version of the model. While

I do not directly observe firm productivity, I estimate how the changes in trade costs

differently affected plants that were initially part of multi-unit firms versus those that

were initially stand-alone plants. For example, all of General Mills’ plants would be

considered as part of a multi-unit firm. I separately estimate the event study for

22While I use OLS here, I use Poisson and Logit (with an indicator for whether there is a least
one mill) models in robustness checks.
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single-unit plants and multi-unit plants, or plants that are part of larger firms. I

find that the effect on the number of firms is completely driven by a decline in the

number of single-unit plants in initially wheat-intensive locations.

Robustness. I consider some alternative explanations for these results, and address

each in turn. Tables 1.3 and 1.4 show these robustness checks for the number of

mills outcome variable and the flour milling capacity outcome variable respectively.

Column (1) shows the baseline difference-in-differences estimate corresponding to

the event study regressions in equation 1.6 and I add additional controls in each

subsequent column.

To control for state-level policies that may have changed across years, for example,

any tax policies that may have incentivized firms to locate in a certain state, I include

state by year fixed effects in Column (2). Another concern is that technology was

increasing the returns in scale; in fact, the average size of mills grew considerably

over this period (see Table 1.6). This could vary across counties depending on the

initial distribution of mills: for example, a county with smaller mills initially may

see a relative decline in the number of mills not due to changes in trade costs, but

due to the changing returns to operating a large mill. To account for this, column

(3) adds county by year linear time trends to the baseline specification.

An additional explanation of these patterns is that because mills were becoming

larger, they required more labor, and thus moved closer to cities where labor may

have been more easily available. While the labor share of flour milling output is

small, making this story unlikely, I include dummy variables for each year interacted

with a county’s initial population, thus allowing the impact of population on the
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location of mills to vary over time in Column (4).23

Another possibility is that demand for U.S. flour is increasing from the rest of

the world, in which case it may be becoming increasingly attractive for flour mills

to locate near coasts and ports. Since the coasts are far from where wheat is grown,

wheat-intensive areas locations would become relatively less attractive. To control

for this possibility, I introduce dummy variables for each year interacted with the

distance of that county to the coast of the U.S. an additional covariates into my main

regression. This allows the impact of being close to a port to vary by year, as the

level effect of a county’s proximity to the port will be absorbed by the county fixed

effect. These results are in column (5).

Finally, I consider some additional measures of initial proximity to wheat. I use

the Global Agro-Ecological Zones data to measure the potential wheat yield in each

location, given the climate and soil conditions. In this case, I simply replace the

quantity of wheat production in equation 1.5 with the potential yield. I do the same

using the wheat yield in each county, where yield is computed as the ratio of wheat

bushels harvested to the wheat acreage planted based on the Census of Agriculture.

I also consider robustness to the functional form choice of my empirical specifi-

cation. My main results are OLS estimates. In the case of the number of mills, the

outcome variable is a count variable. However, the vast majority (98%) of county-

year observations have either zero or one mill. Thus, my regression in this case is, in

practice, nearly a linear probability model. I consider both Poisson models, a linear

probability model, and a logit model. Table 1.5 shows these estimates for both the

number of mills and the wheat flour capacity.

23In 1947, Flour and meal products’ wage and salary share of total output was 4.7% (Census of
Manufacturers).
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1.4 Quantification

How important were these trade cost changes in shaping the distribution of the

U.S. population? This section outlines and calibrates a full, quantitative model of

intranational trade, which I use to asses the extent to which declining agricultural

trade costs can explain the population decline of the heartland states over this period.

Relative to the simple model, this full model has two key advantages. The first

advantage is that it allows me to quantify the importance of changes in trade costs

in shaping the distribution of population in the U.S. over the period. The second

advantage is that it relaxes assumptions I made in the simple model and allows for

endogenous changes in wages and rental rates.

The model set up closely follows Caliendo and Parro (2015) and Caliendo et al.

(2018), and includes a few key ingredients required to capture the mechanism. First,

there are input-output linkages across sectors. Second, labor is mobile across states.

Third, trade costs vary by sector. Finally, to appropriately model the agricultural

sector, land is an input to production.

1.4.1 Model Setup

Agents’ problem. In each location n, a representative agent chooses consump-

tion of goods Cj
n from each sector j to maximize their utility subject to a budget

constraint:

maxu(Cn) = ΠK
k=1

(
Ck
n

)αkn where
K∑
k=1

αjn = 1 subject to In =
∑
j=1

P j
nC

j
n
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where In = wn+ rn`n/Ln+Dn is per-capita income in location n and αkn is the share

of total income spent on products in sector k. wn is the wage in location n, rn is the

rental rate of land in n, `n is the endowment of land in n, and Dn is the trade deficit

which will be defined later.

This problem yields demand functions of Ck
n = αknIn

Pkn
and an indirect utility func-

tion: vn = InΠK
k=1

(
αkn
Pkn

)αkn
. vn is the common component of utility of agents living

in a location n. In addition, there is an idiosyncratic component of utility, such that

indirect utility of a worker b living in location n is given by vbn = vn + εbn, where

εbn ∼ Gumbell(0, ε), as in Eckert and Peters (2018). From this, I derive the share of

agents living in each location n as λn = exp(ε·vn)∑
n′ exp(ε·vn′ )

. The population of each location

is given by Ln = λnL. Labor and land are both freely mobile across sectors within

a location and not subject to any frictions; hence, there will only be a single wage

and rental rate in each location.

Intermediate goods. A continuum of intermediate goods ωj ∈ [0, 1] is produced

in each sector j. A firm producing good ωj in sector j in location n combines land,

labor and materials via a Cobb-Douglas production function:

qjn(ωj) = zjn(ωj)
((
ljn(ωj)

)1−δjn (Ljn(ωj)
)δjn)γjn K∏

p

(
mp,j
n (ωj)

)γp,jn (1.7)

where ljn(ωj) is land, Ljn(ωj) is labor, mp,j
n (ωj) are composite intermediate goods from

sector p used in the production of intermediate good ωj. γjn is the share of value added

in total output for sector j. γp,jn is the share of sector j total output in location n that

comes from sector p such that
∑K

p=1 γ
p,j
n = 1 − γjn. Given this production function,
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the unit cost of goods from sector k in location n is pjn(ωj) = cjn/z
j
n(ωj) where:

cjn = Γjn · (w1−δjn
n rδ

j
n
n )γ

j
n

K∏
p=1

(P p
n)γ

p,j
n

where Γjn = γjn

((
(δjn)−δ

j
n · (1− δjn)δ

j
n−1
))−γjn

·
∏K

p (γp,j)
−γp,j

. The productivity of

each intermediate good producer zjn(ωj) is distributed Frechet with location param-

eter T jn and shape parameter θj.

Composite goods. Following Caliendo and Parro (2015), composite good pro-

ducers in each sector purchase intermediate goods from each firm producing varieties

ωk within that sector. They substitute across goods within a sector with elasticity

of substitution σk to bundle goods into Qk
n.

Qk
n =

[∫
rkn(ωk)1−1/σkdωj

]σk/(σk−1)

(1.8)

where rkn(ωk) is the demand of intermediate goods ωk from the lowest cost supplier

across all possible origins. These composite goods are then used as materials or as

final consumption. Composite good producers have the following demand for good

ωk:

rkn(ωk) =

(
pkn(ωk)

P k
n

)−σk
Qk
n (1.9)

where P k
n is the unit price of the composite intermediate good:

P k
n =

[∫
pkn(ωk)1−σkdωk

] 1
1−σk

=

[∑
i

T ki
(
cki τ

k
in

)−θk] 1
−θk

(1.10)
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where the second equality follows since the price realized for each good in each sector

is the lowest price available from all locations: pkn(ωk) = mini

[
cki τ

j
in

zki (ωk)

]
where τ jin is

the amount of a good from sector j shipped from i to n that must be shipped for

one unit to arrive. Total expenditure on sector j goods in n is given by Xj
n = P j

nQ
j
n.

Trade. Trade flows along a route in in sector j are defined as Xj
ni = πjni ·Xj

n, where:

πjin =
T ji
(
cjiτ

j
in

)−θj∑
m T

j
m

(
cjmτ

j
mn

)−θj (1.11)

Goods market clearing. Total spending on goods from a sector j in a location n

must be the total amount spent on final good consumption, plus demand for goods

from that sector for all firms in that location for use as intermediate goods:

Xj
n = αjnIn +

∑
k

γj,kn Y k
n (1.12)

Land & labor market clearing. Land used in production equals land avail-

able in each location,
∑

j l
j
n = ln. Labor supply equals labor demand everywhere,

Ln =
∑

j L
j
n.

Trade imbalances. Since there are significant imbalances in trade between U.S.

states, I allow for such imbalances in the model. The trade deficit for each states is

total imports, minus total exports:

Dn =
∑
j

∑
i

Xj
ni −

∑
j

∑
i

Xj
in
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1.4.2 Calibration

To calibrate the model, I express all variables in changes where x̂ = x′/x.24 The

model has N = 48 locations, representing each of the contiguous U.S. states, and

J = 24 sectors. These sectors, which include 16 manufacturing sectors, 6 non-

tradable sectors, and 2 raw material sectors. This set of sectors was chosen based on

data availability.25 The initial period of the model is set to 1950 and the post period

is 1980.

1.4.2.1 Trade, Production, and Parameters

Trade. In the model, outcomes critically depend on trade patterns between states

in the initial equilibrium. To measure these patterns, I use data on railroad trade be-

tween each pair of states for each sector from the Carload Waybill Sample Statistics

in 1949. I created a crosswalk to match CWSS sectors, which use an old style of com-

modity classifications, to the modern commodity groupings used in my model based

on the descriptions of each.26 CWSS commodity classifications are fairly disaggre-

24Appendix 1.8.4 lists the set of equations that characterize the equilibrium of the model in
changes.

25The sectors are: Food or kindred products and tobacco; Textille mill products; Apparel, leather,
finished textile products; Lumber or wood products; Furniture or fixture; Pulp, paper, or allied
products; Chemical or allied products; Petroleum or coal products; Rubber or plastics products;
Clay, concrete, glass, or stone products; Primary metal products; Fabricated metal products; Ma-
chinery, excluding electrical; Electrical machinery, equipment, supplies; Transportation equipment;
Miscellaneous products or manufacturing; Construction, wholesale and retail trade; Finance, in-
surance, real estate; Transportation, communications, utilities; Arts, recreation, accommodation,
repair; Education, legal, health; Other services; Agriculture products; Mining products.

26This is trivial the case of agricultural goods and mining products, as trade is reported for these
aggregate categories. However, I need to separately observe trade patterns for each manufactured
good sector to calibrate the model.
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gated relative to the model’s sector categories: for example, CWSS sectors include

“soap compounds” (mapped to the chemical products sector) and “sugar” (mapped

to food and kindred products sector).

There are two main challenges with this dataset. First, many origin-destination-

sector pairs don’t appear in the data, suggesting zero trade flows. Some fraction of

these zeros may not be “true zeros”; instead there may be small amounts of trade

that are not captured in the 1% sample. In fact, some states that are listed in the

Census of Manufacturers as producing goods from a given sector may appear as in

the trade data as not producing any goods from that sector. Using this raw data

would thus introduce considerable noise into my calibration. The second challenge

is that I do not observe value shipped; instead, I observe revenue earned and tons

shipped along each route. As a result, I cannot directly compute the value of trade

between each location for each sector.

To address both of these issues, I measure gross output by sector and state from

other sources, as I describe below. I then use the trade data to measure the share of

exports from each origin state that are shipped to each destination. To address the

sampling issue, I do not use the raw data. Instead, I use a Poisson model to estimate

the share exported from each origin to each destination. I estimate, separately by

sector:

λjin = γji · exp

(
β0 + β1 · log(distancein) +

∑
l

βl ·X l
in

)

where λjin is the share of sector j goods produced in i exported to n. distancein

is the railroad distance between i and n and X l
in is the lth covariate. I then use

these estimated coefficients to compute predicted export shares. The Poisson model

is consistent with the model: it will never predict that there will be zero trade flows
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between two locations. I use the predicted export shares in my calibration. Observing

export shares, predicted from the trade data, and the total value of exports for each

state and sector allows me to compute the total value shipped between each pair of

locations for each sector.

In addition to distance, I use a number of different covariates to predict export

flows. I use an indicator for whether that observation corresponds to a state shipping

to itself, 1(i = n). I use an indicator for whether the destination is a coastal state,

and for whether the origin and destination are both coastal states. Finally, to capture

the size of the market in the destination state, I use demand for goods from that

sector in the destination n.

Figure 1.17b shows the correlation between the estimated export shares and the

export shares that I observe in the data. Figure 1.17a shows the relationship between

that share of total imports that each state imports from itself and that state’s initial

specialization in agriculture, in both the model and the data. Importantly, import

shares match this pattern of specialization: states that specialize in agricultural pro-

duction import relatively larger shares of agricultural goods from themselves.

Gross output, value added, land shares, IO linkages. I measure input-output

linkages across all sectors γk,j as well as each manufacturing sector’s share of value

added in total output γj from the Bureau of Economic Analysis Input-Output table

in 1950.27 To measure gross output for each location and sector Y j
i , I rely on a

number of different sources. First, I digitize state-level data on value added by each

27These values are not disaggregated by state, so I assume that γjn for manufacturing sectors and
γk,jn = γk,j for all sectors.
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manufacturing sector from the Census of Manufacturers (CMF, 1947).28 When a

sector has a small presence in a state, value added is not be separately reported for

that sector in that state. Instead, all remaining value added is reported in a single

category (“All other major industry groups”). I allocate this remaining amount to

the remaining sectors that are not separately listed based on the employment share

of each omitted sector in the total employment of all unlisted sectors.29 I then use

each sector’s value added share of output from the BEA I-O table to convert value

added, measured from the CMF, to gross output: Y j
i =

V Aji
γj

for every manufactured

sector.. I also use the CMF to measure each state’s share of manufacturing wages in

manufacturing value added and assume that δjn = δn for every manufactured sector.

For the agricultural sector, I measure value added and gross output (total value

of agricultural production) in 1949 by state from the USDA’s Economic Research

Service report on value added. I measure the agricultural value added share as γAgn =

V AAgn /Y Ag
n . It is very high on average, around 75%, ranging from around 45-50% in

Delaware and New Hampshire to above 95% in North Carolina and North Dakota.30

I measure the share of wages in value added δjn by dividing the total amount spent

on hired labor and employee compensation by total value added for each state. I

28Ideally, I would measure gross output as the total value of shipments. However, the total
value of shipments is not reported at the two-digit sector level for each state. There were concerns
about double counting shipments between firms within the same two-digit category. While the total
value of shipments is reported at the four digit industry code, using these figures would require the
digitization of many hundreds of additional figures.

29Given this assumption the only state-sector pairs with zero gross output are those with zero
value added and zero employment. Because this requires granular data on employment by sector,
I rely on the 1940 U.S. Census which is available for all sectors instead of the 1950 U.S. Census
which has not been fully released yet.

30Most of the intermediate inputs used in agricultural sector are from the agricultural sector, and
include feed purchases, seed purchases, livestock purchase, plus a small amount of manufactured
inputs like electricity, fertilizer, fuel, and pesticides (USDA).
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measure value added, gross output, and wage payments for the mining sector from

the 1954 Census of Mineral Industries. The average value added share of output is

also quite high, around 75%, ranging from 52% (Nevada) to 88% (California).

I measure non-tradable gross output using a combination of two data sources.

First, I measure national gross output for each non tradable sector from the BEA

IO table. I then measure the share of output in each sector that is produced in each

state based on each state’s share of national employment in that sector, and use

that to compute total output in each state for each tradable sector. I impose that

γjn = 1, δjn = 1∀j ∈ NT .

The data and methodology described above allow me to measure total gross out-

put for each state and sector; however, because my model is a closed economy, I

need to measure output in each state and tradable sector destined for domestic use.

I adjust for the amount of gross output that each state and sector exports abroad

by using the U.S. Department of Commerce 1966 “State Export Origin Series”. It

reports, for each state and manufacturing sector, total exports and total gross pro-

duction in 1966. I use this to compute the share of production that is exported, and

subtract this amount from gross output. Data are also provided for each state for

agricultural products. For mining, there is no state-specific data, so I measure the

aggregate percent of mining product shipments that are exported (5%) from U.S.

Department of Commerce 1958 report on “U.S. Commodity Exports and Imports as

Related to Output”.31

Productivity dispersion. I measure the dispersion of productivity within each

31Both of these reports are “one-off” and exist only for the years listed here; I assume that export
patterns were similar over the 1950-1966 period.
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sector θj from the trade data and equation 1.11. I assume that trade costs take the

form τ jod = raildistκod ·X where X is a constant.32 Using Poisson to handle the large

quantity of zeros in the raw trade data, I estimate:

πjin = γji · γjn · exp
(
βj · log(raildistin) + εjin

)
(1.13)

where βj = κ · θj and raildistij is the railroad distance in miles between i and j

as computed using the 1957 railroad network. I measure κ, the elasticity of trade

costs with respect to distance, as κ = 0.169 from Donaldson (2016). Table 1.1 shows

estimates of θj for each sector. The median value is 8.3, which falls well within

the range of conventional estimates.33 Precisely estimated values range from 2.91

(electrical machinery) to 18.5 (miscellaneous products).34 I assign the median value

of 8.3 as the elasticities for the non-tradable sectors.

Final Consumption Shares. Following Caliendo and Parro (2015), I solve for

each sector’s share in final consumption in each state, αjn to satisfy the goods market

clearing condition in equation 1.12 in the initial equilibrium. Figure 1.16a shows the

median expenditure share across states for each sector.

Other Parameters. I measure total employment and the share of workers in each

state and state from the 1950 U.S. Census. I measure the land area of each state

32This constant will not affect the estimation of each θj here, but will become important later
on.

33For example, Eaton and Kortum (2002) also estimate a value of around 8.

34Estimates for textile mill products and apparel are very small and nosily measured. In my
calibration, I assign the median value of θj to these sectors.
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Table 1.1: Estimates of Trade Elasticities

Sector θ̂j

Food or kindred products and tobacco 7.48(0.45)∗∗∗

Textille mill products 0.52(1.45)
Apparel, leather, finished textile products 0.97(1.55)
Lumber or wood products 9.93(0.54)∗∗∗

Furniture or fixtures 6.35(0.60)∗∗∗

Pulp, paper, or allied products 7.87(0.53)∗∗∗

Chemical or allied products 9.30(0.64)∗∗∗

Petroleum or coal products 18.58(0.62)∗∗∗

Rubber or plastics products 4.30(1.09)∗∗∗

Clay, concrete, glass, or stone products 19.31(0.63)∗∗∗

Primary metal products 4.62(1.76)∗∗∗

Fabricated metal products 11.18(0.49)∗∗∗

Machinery, excluding electrical 4.38(0.55)∗∗∗

Electrical machinery, equipment, supplies 2.91(1.13)∗∗∗

Transportation equipment 8.73(0.73)∗∗∗

Miscellaneous products or manufacturing 18.50(1.11)∗∗∗

Agriculture products 13.78(0.47)∗∗∗

Mining products 16.86(0.54)∗∗∗

Median 8.30

Note: This table shows estimates of θ̂j from estimating equation 1.13 with Carload
Waybill Sample Statistics data, and railroad distances measured from the 1957 rail
network. I set δ = 0.169 from Donaldson (2016), and report θ̂j = −β̂j/η.
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landn from the Census of Agriculture. I compute the initial rental rate on land as

rn =
∑
j Y

j
nγ

j
n(1−δjn)

`n
. Similarly, wages are wn =

∑
j Y

j
nγ

j
nδ
j
n

Ln
. Finally, the elasticity of

mobility across locations is critical to determining how population will change across

places. I set ε = 2.38, as estimated in the context of the historical United States by

Eckert and Peters (2018).

1.4.2.2 Quantifying changes in trade costs

The key inputs to the model are bilateral changes in agricultural trade costs. To

measure these, I first measure agricultural trade costs between states in the initial

equilibrium. I assume that trade costs between each pair of locations are given by

τAgin = raildistκin ·X where raildistin is the railroad distance between locations i and

n, and X is a constant. I solve for the constant, X, using data on revenue earned,

tons shipped, railroad distance, and costs of goods at the origin, as described in

Section 1.8.4.3.

Then, I estimate changes in trade costs by collecting data on revenue per ton mile

earned by railroads across each pair of states for agricultural goods and manufactured

goods in 1988, which is the first year of bilateral, state-to-state railroad trade data

that is available after 1966. I estimate:

∆1949−1988 log

(
revenueodc
tonsodc

)
= γod + β1 · 1(c ∈ Ag Good) + εodc (1.14)

Results of estimating equation 1.14 are in Table 1.2. In column (1), all observations

are weighted equally; in column (2), I weight observations by the log of the tonnage of

that commodity shipped along that route in 1949. I find that overall, revenue per ton

earned on agricultural products fell by roughly 33% (unweighted) to 37% (weighted).
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I use these differences-in-differences point estimates to estimate the average change

Table 1.2: Changes in Agricultural Shipping Costs, 1949-1988

∆ log(revenue per ton)

(1) (2)

1(c∈ agricultural) -0.329∗∗∗ -0.367∗∗∗

(0.0438) (0.0426)

N 1600 1600
Weighted No Yes
FE Route Route

Note: This table shows estimates of equation 1.14 using data from the 1949 and 1988 Carload
Waybill Sample Statistics. Column (1) shows unweighted estimates; in column (2), I weight
observations by the volume of trade along the route in 1949. Bulk agricultural goods include
soybeans, wheat, corn, sorghum, oats, barley and rye, and rice. Standard errors clustered at the
route level are reported in parentheses.

in revenue per ton earned along each location:

ˆ̃τAgin =
1 + 0.63 · τAgin,1950

1 + τAgin,1950

(1.15)

Figure 1.15 shows ˆ̃τAgin for each pair of states. I assume that there are no changes in

trade costs for shipments within states.35

35In a robustness check, I measure within-state trade costs based on the average distance between
each pair of counties within the state and allow such changes to occur, based on equation 1.15.
However, there is limited data to measure the extent to which trade between states occurs via rail;
as these are shorter distances, goods may be more likely to be transported via trucks. Thus, this
case in which I assume no changes in trade costs within states, is the most conservative choice.
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1.4.3 Results

Changes in population. I use the model to compute the change in each state’s

share of the U.S. population given these declines in the costs of shipping agricultural

goods. Figure 1.8 shows resulting the distribution of changes in population across

states. To measure the extent to which the model can explain the observed popula-

tion decline of the heartland, I construct the model and data implied change in the

heartland’s share of population between 1950 and 1980:

ŝv =

∑
n 1(n ∈ heartland) · l̂vn · ln∑

l̂vn · ln︸ ︷︷ ︸
Heartland’s share in 1980

/∑
n 1(n ∈ heartland) · ln∑

ln︸ ︷︷ ︸
Heartland’s share in 1950

(1.16)

for v ∈ (model, data) where ln is the population state n in 1950 as measured in the

data and l̂vn is the change in state n’s population in either the model or data. To

compute the percentage of ŝdata that can be explained by the model, I construct

ŝmodel

ŝdata
· 100. I find that the observed decline in trade costs for agricultural products

can explain around 8% of population declines in the heartland.

Consistent with the intuition of the simple model, the mechanism operates by

reducing population in locations that initially specialized in agriculture. Figure 1.9

shows the relationship between each state’s initial specialization in agriculture, as

measured by the percentage of employment in agriculture in 1950, and the log of the

change in relative population between 1950 and 1980.36 Panel (a) shows the rela-

tionship in the data and panel (b) shows the relationship as generated by the model.

In both, there is a negative relationship between initial agriculture specialization

36This is computed for state n as log
(
s1980n

s1950n

)
where stn =

poptn∑
i pop

t
n

.
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and the change in relative population, with the most agriculture-intensive locations

losing relatively more people.

In the data, the relationship is only marginally significant overall as some loca-

tions that are initially moderately intensive in agriculture, such as Florida, Arizona,

and Nevada, saw large increases in relative population over this period. Nevertheless,

there is a strong association between these two variables among the seven heartland

states with the most agriculture intensive – the Dakotas, Iowa, and Nebraska – los-

ing more relative population. Using the model, I find that declines in agricultural

shipping costs generate a similar pattern in the model. While there is no strong

correlation overall between the model and data generated changes in population, the

correlation is strong among the heartland states (77%) as the model captures the

observed relative population declines of these states.37

Mechanisms. Figure 1.10 shows how changes in wages and rental rates vary as

a function of a location’s initial specialization in agriculture. Because land is a

fixed factor, and the demand for agricultural products is rising, the rental rate of

land rises by more in more agriculture-intensive locations. Wages, however, move

in the opposite direction, as these locations become less attractive and people move

out, taking with them the consumption of non-tradable goods which are very labor

intensive. Figure 1.11 shows how the composition of gross output in each state

changes. In Panel (a), I plot each state’s change in agriculture’s share of gross output

while Panel (b) plots each state’s change in non-tradables’ share of gross output.

37This is as expected. The model, which incorporates only a single mechanism occurring over a
30 year period, cannot explain population changes across all states, but can correctly replicate the
population decline in the most agriculture-intensive states.
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Places that were initially intensive in agriculture actually become more agriculture-

intensive intensive, as demand for agricultural goods in these places rises. In Panel

(b), we see that agriculture-intensive areas are losing non-tradable output.
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Figure 1.5: Effects of Shipping Cost Changes on Flour and Bread Prices

(a) Flour producer prices
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(b) Flour consumer prices
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(c) Bread consumer prices

-.1

-.05

0

.05

.1

.15

.2

.25

19
59

19
60

19
61

19
62

19
63

19
64

19
65

19
66

19
67

19
68

19
69

19
70

19
71

19
72

19
73

19
74

19
75

Year

Note: These figures show event study estimates of equation 1.6. Each point estimate is the
relative difference each year in prices in Midwestern cities relative to non-Midwestern cities.
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Figure 1.6: Effects of Shipping Cost Changes on Flour Mills

(a) Number of mills

-.016

-.014

-.012

-.01

-.008

-.006

-.004

-.002

0

.002

19
58

19
60

19
62

19
64

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

Year

(b) sinh−1 (Flour milling capacity)
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(c) log(size)
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Note: These figures show event study estimates of equation 1.6. Each point estimate is the
relative difference each year in the outcome variable, based on a location’s initial access to wheat
production.
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Figure 1.7: Effects of Shipping Cost Changes on Multi- & Single-Unit Mills
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Note: This figure show event study estimates of equation 1.6 where the outcome is either the
number of mills that are were part of multi-unit plants (in red) and the number of mills that are
part of single-unit plants (in blue) in the last year before the change in trade costs, or in their
year of entry, whichever is earlier.
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Figure 1.8: Estimated Population Changes Across States

Note: This figure shows model-predicted changes in relative population in each state,
corresponding to the baseline parameterization of the model.
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Figure 1.9: Population Changes and Initial Specialization in Agriculture

(a) Data (b) Model

Note: These figures plot, along the x-axis, the percentage of employment in agriculture in each
state in 1950 and along the y-axis, the change in population as computed in the data in Panel (a)
and in the model in Panel (b). The line is the best linear fit, the slope of which is reported below
the figure.

Figure 1.10: Effects on Factor Prices

(a) Wages (b) Rental Rates

Note: These figures plot, along the x-axis, the percentage of employment in agriculture in each
state in 1950 and along the y-axis, the wages in Panel (a) and in rental rates in Panel (b). The
line is the best linear fit, the slope of which is reported below the figure.
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Figure 1.11: Effects on Sectoral Composition of Gross Output

(a) Agriculture (b) Non-Tradables

Note: These figures plot, along the x-axis, the percentage of employment in agriculture in each
state in 1950 and along the y-axis, the change in agriculture’s share of gross output in Panel (a)
and the change in the non-traded share of gross output in Panel (b). The line is the best linear fit,
the slope of which is reported below the figure.
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1.5 Conclusion

This paper studies the link between the structure of domestic trade costs across

commodities and the spatial distribution of the population within countries. I use a

historical setting – the American Heartland over the postwar period – to document

that changes in the costs of shipping certain commodities relative to others can have

substantial implications for the relative welfare of people living in different regions.

I argue that rail car innovations in the U.S. over this period, which affected only

bulk commodities, drove down the cost of shipping agricultural goods relative to

manufactured goods and reduced the population of America’s agriculture-intensive

areas.

I used a simple model to explore the channels through which this could have

occurred. I find that reductions in agricultural shipping costs reduce prices by more

in locations farther away from where agricultural goods are produced, making other

locations relatively more attractive for manufacturing production as well as for buy-

ing food. To show that this mechanism is operating in the data, I study flour mills

following a sudden, significant, and exogenously generated reduction in the cost of

shipping wheat versus flour. Consistent with the model’s predictions, I find that this

change in trade costs reduced flour and bread prices by more outside of the agricul-

tural Heartland, and that flour milling firms entered at higher rates in locations more

distant from the agricultural Heartland. Finally, I specify and calibrate a model of

trade between U.S. states in 1950 and find that these changes in trade costs played

a considerable role in explaining the population decline of the Heartland.

My findings suggest that how tariffs differ across commodities, and in particular

how they differ between upstream and downstream goods, plays an important role in
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shaping the long run spatial distribution of economic activity. This was certainly the

case in postwar America. As the world becomes increasingly connected via supply

chains and policymakers differently apply tariffs on upstream and downstream goods,

the distribution of economic activity may change substantially.
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1.6 Tables and Figures

1.6.1 Tables

Table 1.3: Number of Mills Robustness Checks: Controls & Exposure Measure

Dependent variable: Number of Flour Mills
(1) (2) (3) (4) (5) (6) (7)

1(t > 1963)× log(WMAi), baseline -0.00969∗∗∗ -0.00310∗ -0.00469∗∗∗ -0.00999∗∗∗ -0.00962∗∗∗

(0.00112) (0.00135) (0.00114) (0.00115) (0.00110)
1(t > 1963)× log(WMAi), GAEZ -0.00393∗∗

(0.00127)
1(t > 1963)× log(WMAi), yield -0.00947∗∗∗

(0.00109)

N 24856 24856 24856 24856 24848 24856 24856
County FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

State × year 7 3 7 7 7 7 7

County Time Trends 7 7 3 7 7 7 7

Population 7 7 7 3 7 7 7

Distance to coast 7 7 7 7 3 7 7

Note: This table shows robustness checks corresponding to estimating Equation 1.6 with a post indicator for all years after the
trade cost shock in 1963. Column (1) shows the baseline result. Column (2) adds state by year fixed effects. Column (3) allows
each county to follow its own time trend. Column (4) includes the baseline population level interacted with an indicator
variable for each year. Column (5) does the same with the distance of that county to the coastline. Column (6) uses a different
measure of exposure; instead of using wheat production when computing WMAi, I use wheat yields. Column (7) uses GAEZ’s
wheat suitability index as the measure of wheat productivity when computing WMAi.
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Table 1.4: Milling Capacity Robustness Checks: Controls & Exposure Measure

Dependent variable: sinh−1 (Flour milling capacity)
(1) (2) (3) (4) (5) (6) (7)

1(t > 1963)× log(WMAi), baseline -0.0352∗∗∗ -0.0111+ -0.0139∗∗ -0.0351∗∗∗ -0.0352∗∗∗

(0.00519) (0.00644) (0.00534) (0.00519) (0.00517)
1(t > 1963)× log(WMAi), GAEZ -0.0121∗

(0.00589)
1(t > 1963)× log(WMAi), yield -0.0344∗∗∗

(0.00514)

N 24856 24856 24856 24856 24848 24856 24856
County FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

State × year 7 3 7 7 7 7 7

County Time Trends 7 7 3 7 7 7 7

Population 7 7 7 3 7 7 7

Distance to coast 7 7 7 7 3 7 7

Note: This table shows robustness checks corresponding to estimating Equation 1.6 with a post indicator for all years after the
trade cost shock in 1963. Column (1) shows the baseline result. Column (2) adds state by year fixed effects. Column (3) allows
each county to follow its own time trend. Column (4) includes the baseline population level interacted with an indicator
variable for each year. Column (5) does the same with the distance of that county to the coastline. Column (6) uses a different
measure of exposure; instead of using wheat production when computing WMAi, I use wheat yields. Column (7) uses GAEZ’s
wheat suitability index as the measure of wheat productivity when computing WMAi.
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Table 1.5: Robustness Checks: Functional Form

Number of Flour Mills Wheat Flour Capacity

(1) (2) (3) (4) (5) (6) (7)
OLS PPML OLS, 1(n ≥ 0) Logit, 1(n ≥ 0) OLS, sin−1 OLS PPML

1(t > 1963)× log(WMAi), baseline -0.00969∗∗∗ -0.0199 -0.00578∗∗∗ -0.152∗∗∗ -0.0352∗∗∗ -3.524 -0.0195
(0.00112) (0.0140) (0.000786) (0.0366) (0.00519) (2.859) (0.0187)

N 24856 3800 24856 2800 24856 24856 3800
County FE 3 3 3 3 3 3 3

Year FE 3 3 3 3 3 3 3

Note: This table shows robustness checks corresponding to estimating Equation 1.6 with a post indicator for all years after the
trade cost shock in 1963.

s
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1.6.2 Figures

Figure 1.12: Distribution of U.S. Population Across Regions, Since 1900

Note: This figure shows the percentage of the U.S. population living in each region in each year.
Within a year, the sum of values across the four regions is 100. Regions are defined based on U.S.
Census designations. Source: Decennial U.S. Census.
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Figure 1.13: Agricultural Goods as a Percentage of Gross Output, by State (1950)

Note: This figure shows percentage of each state’s gross output from the agricultural sector in the initial period.
Source: USDA (1949), Census of Manufacturers (1947), Census of Mining (1954) and author’s calculations.
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Figure 1.14: Annual Revenue Per Ton Earned, Motor Carriers

Note: This figure shows annual revenue per ton earned by Class I motor carriers from agricultural
goods and manufactured goods. Source: Interstate Commerce Commission’s Freight Commodity
Statistics.
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Figure 1.15: Changes in Trade Costs Across States

Note: This figure shows changes in trade costs between each state as fed into the model,
computed from equation 1.15. Source: Carload Waybill Sample Statistics and author’s
calculations.
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Figure 1.16: Key Model Inputs

(a) Sectoral Expenditure Shares

(b) Agriculture Share of Total Output by Sector

Note: Panel (a) shows the median percentage of final expenditure spent on goods from each sector
across all 48 states, as computed from equation 1.12 and data as described in Section 1.4. Panel
(b) shows the agricultural sector’s share of final output for each sector, as computed from the
1949 BLS input-output table. Source: USDA, Census of Manufacturers (1947), Census of Mining
(1954) and author’s calculations.
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Figure 1.17: Agriculture Specialization and Own-Import Shares

(a) Predicted and Observed Own-Import Shares

(b) Predicted and Observed Export Shares

Note: Panel (a) shows the correlation between each state’s own import shares for agricultural
goods and that state’s agricultural percentage of exports in 1950. Panel (b) shows the relationship
between export shares are observed in the data (on the x-axis) and the predicted export shares
that I use in the calibration of the data. Source: Carload Waybill Sample Statistics (1949),
USDA, Census of Manufacturers (1947), Census of Mining (1954) and author’s calculations.
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1.7 Data Appendix

1.7.1 Trade Data

I compile data on trade separately between U.S. states and regions from the Interstate

Commerce Commission. The advantage to the region level data is that it more

complete, while some state to state pairs are omitted if trade flows are too low.

For the quantitative model, I use data on state to state trade flows. In addition to

these data, I obtain aggregate data on railroad revenue earned and tons shipped in

each year from the Freight Commodity Statistics, which cover Class I railroads.38

The sampling process includes selecting all waybills, which are contracts between

producers and shippers, with numbers ending in 1. This sampling procedure is

supposed to result in an unbiased, representative sample of one percent of total

traffic, according to the Interstate Commerce Commission.

1.7.2 Railroad Network

I obtained high resolution images of a 1957 Army Corps of Engineers Railroad Map of

the United States from Stanford University Libraries, which was then hand-digitized

onto a Lambert Conic projection. I use this to measure railroad distances between

the centroids of each county as in Section 1.3 and each state as in Section 1.4.

38Class I railroads are the largest railroad companies; generally, it includes all railroad companies
with annual revenues exceeding a given threshold.
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Figure 1.18: Example of Carload Waybill Sample Statistics, State-to-State Trade
Data

Note: This figure shows a sample of the state to state trade data that I used to estimate changes
in trade costs over time, as well as to calibrate the quantitative model in Section 1.2. Source:
Carload Waybill Sample Statistics.
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Figure 1.19: Sample of 1957 Army Corps of Engineers Railroad Map

Note: This shows the lower right hand corner of the 1957 railroad map that I have digitized and is used throughout the paper.

68



1.7.3 Flour Data

1.7.3.1 Mill Locations

I collected data on the location, capacity, and ownership of flour mills from the

Northwestern Miller ’s annual Directory of U.S. Flour mills, which was compiled and

shipped to their subscribers. Figure 1.20 gives an example of what these directories

look like for two separate years (1985 and 1961 respectively). Figure 1.6 shows

summary statistics describing the key variables obtained from these directories. Over

this period, the number of mills falls roughly in half but total capacity of all mills

rises, due to an increasing average size of the remaining mills. To construct a

Table 1.6: Flour Mill Summary Statistics

Top 5 Top 15
Year # Mills Total Capacity Avg. Size % Capacity % Capacity % Big
1959 580 1072.15 1849 25.65 65.52 25.34
1961 553 1021.30 1847 23.64 60.81 25.32
1965 426 953.88 2239 22.46 60.80 25.12
1967 360 951.71 2644 21.90 60.48 28.33
1971 325 957.02 2945 20.86 59.12 28.00
1975 267 951.78 3565 19.52 59.54 34.46
1985 228 1102.62 4836 17.73 55.61 38.60
1990 207 1198.12 5788 17.49 54.09 43.00
Source: The Northwestern Miller. Note: Top 5 are the top 5 producers of wheat in 1963:
Kansas, North Dakota, Texas, Oklahoma, and Washington which together accounted for
48% of total U.S. wheat production. Top 15 are the top 15 producers of wheat in 1963,
which accounted for 75% of total wheat production. Total capacity is in 1,000 of cwt per
day. Big indicates plants that were part of a multi-unit firm in their first year of entry

county-level panel of mills, and to assign a wheat market access term to each mill,

I use the listed location information and the OpenCageGeocode API in Python to

match plants to latitude-longitude coordinates. I then map these coordinates to

modern-day county FIPS codes. I identify unique plants over time based on the
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Figure 1.20: Milling Directory Examples

following algorithm. First, I sort the data by state, city plant name, and year. Then

I check the following steps:

1. If the state, city, and name fields are the same over time and there are no

duplicates of the year given the state-county-name, then this is a uniquely

identified plant.

2. Suppose the state and city are the same, only one plant is listed, and there are

no duplicates of the year given a state-city, but the plant name changes across

years. Then I check whether there is a secondary owner listed that explains

the name change. For example, if in 1971 the firm is listed as “Alabama Flour

Mills” and as “Conagra” in 1975, but Conagra is listed as the secondary owner
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in 1971, then this is a unique plant observation (and reflects an acquisition by

Conagra).

3. Suppose the state and city are the same, but many plants are listed, and names

change throughout different years. If the addresses match across time, I use

this to uniquely identify plants. If name changes can be connected through

time with information listed on the secondary owner, then I use this to identify

firms. If address information is incomplete across years, I use the firm sizes to

differentiate across firms. For example, it is unlikely a plant quadrupled in size

in a few years.

1.7.3.2 Prices

Producer flour prices. I collected data on flour producer prices from a few differ-

ent sources. My primary source is the Southwestern Miller, which published weekly

flour prices from a sample of flour mills in each major flour market. Because these

are prices reported by mills themselves where they are produced, I consider these

to be producer prices. Table 1.7 lists flour prices in 1962, the last year prior to the

change, and 1966, several years after the shock for each location in the sample. I

was not able to obtain price data after 1968, so that is the last year in my sample.

Minneapolis flour prices are not included in later years; thus, when that series ends,

I use data on flour prices from Minneapolis mills from the USDA as part of the

monthly “Wheat Situation” report.

Consumer flour and bread prices. I digitized data on the annual price of wheat

and flour for every city listed in the BLS’s “Estimated Food Retail Prices by Cities”.
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Figure 1.21: Southwestern Miller Flour Price Data

While the set of cities varies slightly over time, most years include around twenty

cities. Table 1.8 reports bread and flour prices for the set of cities in the sample for

1962 and 1964.

Table 1.7: Flour Producer Price Summary Statistics

State Cities Flour Type Price ($) Price Ratio
1962 1966

Alabama Birmingham Standard Patent 21.90 21.02 0.96

Illinois Chicago Standard Patent 20.33 20.56 1.01

Kansas Wichita, Salina, Arkansas City, Hutchinson Standard Patent 20.92 21.13 1.01

Minnesota Minneapolis Standard Patent 21.82 22.48 1.03

Missouri Kansas City Standard Patent 20.92 21.13 1.01

Nebraska Omaha Standard Patent 19.42 20.09 1.03

New York New York Standard Patent 23.37 22.85 0.98

Oregon Portland Family 27.10 28.49 1.05

Pennsylvania Pittsburgh Standard Patent 21.98 19.66 0.89

Note: This table shows summary statistics of flour producer prices for each location in which I
observe prices. This price data is used in Section 1.3 to estimate the effects of changes in
upstream trade costs on downstream prices. Source: Southwestern Miller and BLS.
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Figure 1.22: The Decline of the Box Car

(a) Covered Hopper Car

(b) Changes in Rail Car Types, 1963-1977
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Source: Bureau of Transport Economics and Statistics, Interstate Commerce Commission, 1979

Note: Panel (a) shows an image of a covered hopper car for transporting grain, from the New
York Times (1964). Panel (b) shows the change in percentage of total cars represented by each
rail car type, from the ICC (1979).
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Table 1.8: Flour Consumer Price Summary Statistics

State City Flour Price ($) Ratio Bread Price ($) Ratio
1962 1964 1962 1964

Georgia Atlanta 1.92 1.90 0.99 0.64 0.62 0.97

Maryland Baltimore 1.83 1.88 1.03 0.68 0.75 1.10

Massachusetts Boston 1.83 1.87 1.02 0.70 0.69 0.99

Illinois Chicago 1.75 1.70 0.97 0.69 0.62 0.90

Ohio Cincinnati 1.75 1.67 0.95 0.64 0.63 0.98

Ohio Cleveland 1.78 1.69 0.95 0.67 0.68 1.01

Michigan Detroit 1.70 1.68 0.99 0.61 0.56 0.92

Texas Houston 1.87 1.87 1.00 0.55 0.57 1.04

Kansas Kansas City 1.67 1.72 1.03 0.67 0.66 0.99

California Los Angeles 2.02 1.85 0.92 0.88 0.92 1.05

Minnesota Minneapolis 1.84 1.82 0.99 0.62 0.59 0.95

New York New York 1.79 1.81 1.01 0.79 0.80 1.01

Pennsylvania Philadelphia 1.86 1.77 0.95 0.74 0.72 0.97

Pennsylvania Pittsburg 1.81 1.73 0.96 0.71 0.68 0.96

California San Francisco 2.11 2.04 0.97 0.84 0.88 1.05

Washington Seattle 2.12 2.07 0.98 0.80 0.80 1.00

Missouri St Louis 1.78 1.79 1.01 0.65 0.63 0.97

District Of Columbia Washington 1.92 1.95 1.02 0.67 0.65 0.97

Note: This table shows summary statistics of flour and bread consumer prices for each location in
which I observe prices. This price data is used in Section 1.3 to estimate the effects of changes in
upstream trade costs on downstream prices. Flour prices are for five pounds of wheat flour and
bread prices are for one pound of bread. All prices are in 1985 dollars. Source: BLS, Estimated
Retail Prices of Food in cities.
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1.8 Model Appendix

1.8.1 Model Setup

1.8.1.1 Flour Demand

Each agent chooses cFni, c
M
ni to solve:

U(cFi , c
M
i ) = cMi + ln

(
cFi
)

where:

cFi =

[∑
n

(cFni)
σF−1

σF

] σF
σF−1

and cMi =

[∑
n

cMni

]
subject to a budget constraint of

wi =
∑
n

pMnic
M
ni + pFnic

F
ni

From this maximization problem we have demand functions for each variety of flour:

cFji = pM
(
pFji
)−σF σF

σF − 1

(
P F
i

)σF−1

Then the total amount of spending on flour by state i is:

∑
j

pFjic
F
ji =

∑
j

pM
(
pFji
)1−σF σF

σF − 1

(
P F
i

)σF−1
= pM

σF
σF − 1

75



This yields flour import shares – the share of flour imported to state i by state j –

of:

πFji =
pFjic

F
ji∑

j p
F
jic

F
ji

=
(
pFji
)1−σF (P F

i

)σF−1

1.8.1.2 Indirect Utility

Next we want to find the indirect utility function in order to compute welfare. First

sum over origins to find aggregate flour consumption:

cFi =

[∑
n

(
pM
(
pFji
)−σF σF

σF − 1

(
P F
i

)σF−1
)σF−1

σF

] σF
σF−1

=
pM

P F
i

σF
σF − 1

Then to find cMi :

wi = pMcMi +
∑
n

pFnip
M
(
pFni
)−σF σF

σF − 1

(
P F
i

)σF−1

cMi =
wi
pM
− σF
σF − 1

(
P F
i

)σF−1
∑
n

(
pFni
)1−σF =

wi
pM
− σF
σF − 1

(
P F
i

)σF−1 (
P F
i

)1−σF =
wi
pM
− σF

(σF − 1)
P F
i

Then, the indirect utility function for a single agents is given by (assuming income

is sufficiently large):

V (P F
i , Ii) = wi + ln

(
σF

σF − 1

)
− ln

(
P F
i

)
− σF
σF − 1

P F
i (1.17)
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1.8.1.3 Labor Mobility

Given the above indirect utility common across all agents in a location, and the

assumption that indirect utility of a worker l in state i is vli = vi + εli:

vli =

(
wi + ln

(
σF

σF − 1

)
− ln

(
P F
i

)
− σF
σF − 1

P F
i

)
+ εln

Agents choose to live in the state that gives them the largest indirect utility. As-

suming that εln ∼ Gumbell, the probability that an agent i chooses a state n is given

by (or the share of agents living in state n):

λi = pr

(
vli ≥ max

n′ 6=n
vln′

)
=

exp(vi)∑
n′ exp(vn′)

=
exp

(
wi + ln

(
σF
σF−1

)
− ln

(
P F
i

)
− σF

σF−1
P F
n′

)
∑′

n exp
(
wn′ + ln

(
σF
σF−1

)
− ln (P F

n′)−
σF
σF−1

P F
n′

)
Given an exogenous level of the country’s population size L, the number of people

living in state i is: Li = λiL

1.8.1.4 Flour Millers’ Problem

Flour millers in state i choose the amount of wheat to import from each state j in

order to minimize costs subject to a level of production:

min
cWni

∑
n

pWni c
W
ni s.t. Y F

it = T Fit

[∑
n

(
cWni
)σW−1

σW

] σW
σW−1
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Then, the first order conditions are:

[cWni ] : pWni − λitT Fit

[∑
n

(
cWni
)σW−1

σW

] 1
σW−1 (

cWni
)−1/σW = 0

Taking the ratio of first order conditions for different origins (holding i fixed):

pWni
pWit

=

(
cWni
cWji

)−1/σW

Solving for cWni : (
pWni
pWji

)−σW
cWji = cWni

Substituting this into the constraint:

Y F
i = T Fi

[∑
n

(
cWni
)σW−1

σW

] σW
σW−1

= T Fi

[∑
n

(
pWni
pWji

)1−σW (
cWji
)σW−1

σW

] σW
σW−1

= T Fi
(
pWji
)σW cWji

[∑
n

(
pWni
)1−σW

] σW
σW−1

Then, solving for consumption of wheat from state j in state i:

cWji =
Y F
i

T Fi

(
pWji
)−σW (PW

i

)σW
which means that total spending on wheat in state i is:

∑
j

pWji c
W
ji =

Y F
i

T Fi

(
PW
i

)σW ∑
j

(
pWji
)1−σW =

Y F
i

T Fi
PW
i
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Then the share of wheat imported from state j by state i, πWji is:

πWji =
pWji c

W
ji

Y Fi
TFi
PW
i

=

Y Fi
TFi

(
pWji
)1−σW (PW

i

)σW
Y Fi
TFi
PW
i

=
(
pWji
)1−σW (PW

i

)σW−1

1.8.2 Proofs of Testable Predictions

1.8.2.1 Main Theorems

If πWNN < πWKK and τ̂W < 1, then the following theorems hold.

Theorem 1 (Flour producer price effect). p̂FNN < p̂FKK

Proof.

p̂FNN < p̂FKK ⇐⇒
P̂W
N

T̂ FN
<
P̂W
K

T̂ FK
⇐⇒ P̂W

N < P̂W
K

Then note that:

τ̂W < 1 ⇐⇒
(
τ̂W
)1−σW > 1 ⇐⇒ πWNN − πWKK >

(
τ̂W
)1−σW (πWNN − πWKK)

since πWNN − πWKK < 0.

⇐⇒ πWNN − πWKK +
(
τ̂W
)1−σW >

(
τ̂W
)1−σW πWNN −

(
τ̂W
)1−σW πWKK +

(
τ̂W
)1−σW

⇐⇒ πWNN + (1− πWNN)
(
τ̂W
)1−σW > πWKK + (1− πWKK)

(
τ̂W
)1−σW

since 1− πWii = πWni :

πWNN + πWKN
(
τ̂W
)1−σW > πWKK + πWNK

(
τ̂W
)1−σW
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⇐⇒
[
πWNN + πWKN

(
τ̂W
)1−σW

] 1
1−σW <

[
πWKK + πWNK

(
τ̂W
)1−σW

] 1
1−σW ⇐⇒ P̂W

N < P̂W
K

Theorem 2 (Flour consumer price effect). If πWNN < πWKK and τ̂W < 1, then P̂ F
N <

P̂ F
K .

Proof. Define a = 1− σF < 0. By proposition (2),

πFKK > πFKN ⇐⇒ πFKK > 1− πFNN ⇐⇒ πFKK + πFNN > 1

Then, applying proposition (3), P̂W
N < P̂W

K ≤ 1 ⇐⇒
(
P̂W
N

)a
>
(
P̂W
K

)a
≥ 1 ⇐⇒(

P̂W
N

)a
−
(
P̂W
K

)a
> 0,

⇐⇒ πFNN

((
P̂W
N

)a
−
(
P̂W
K

)a)
+ πFKK

((
P̂W
N

)a
−
(
P̂W
K

)a)
>
(
P̂W
N

)a
−
(
P̂W
K

)a
⇐⇒ πFNN

((
P̂W
N

)a
−
(
P̂W
K

)a)
−
(
P̂W
N

)a
> πFKK

((
P̂W
K

)a
−
(
P̂W
N

)a)
−
(
P̂W
K

)a
⇐⇒ πFNN

(
P̂W
N

)a
+ (1− πFNN)

(
P̂W
K

)a
> πFKK

(
P̂W
K

)a
+ (1− πFKK)

(
P̂W
N

)a
⇐⇒ πFNN

(
P̂W
N

)a
+ πFKN

(
P̂W
K

)a
> πFKK

(
P̂W
K

)a
+ πFNK

(
P̂W
N

)a
[
πFNN

(
P̂W
N

)a
+ πFKN

(
P̂W
K

)a] 1
1−σF <

[
πFKK

(
P̂W
K

)a
+ πFNK

(
P̂W
N

)a] 1
1−σF ≤ 1 ⇐⇒ P̂ F

N < P̂ F
K

Theorem 3 (Flour production effect). ŶN > Ŷ ∗K

Proof.

Ŷ F
N > Ŷ F

K ⇐⇒ λNN ĉ
F
NN + (1− λNN)ĉFNK > λKK ĉ

F
KK + (1− λKK)ĉFKN
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where λni =
cFni

cFni+c
F
nn

is the share of n’s flour production shipped to i in the initial

equilbirum.

⇐⇒ λNN(P̂W
N )−σF

(
P̂ F
N

)σF−1

+ (1− λNN)(P̂W
N )−σF

(
P̂ F
K

)σF−1

> λKK(P̂W
K )−σF

(
P̂ F
K

)σF−1

+ (1− λKK)(P̂W
K )−σF

(
P̂ F
N

)σF−1

From Proposition 3 we know that: P̂W
N < P̂W

K , and

P̂ F
N < P̂ F

K ⇐⇒
[
πFNN(P̂W

N )1−σF + πFKN(P̂W
K )1−σF

] 1
1−σF <

[
πFKK(P̂W

K )1−σF + πFNK(P̂W
N )1−σF

] 1
1−σF

so then it must be that P̂W
N < P̂ F

N < P̂ F
K < P̂W

K . We claim the following:

* (P̂W
N )−σF (P̂ F

N )σF−1 > (P̂W
K )−σF (P̂ F

K )σF−1 which follows from the inequality,

since
P̂WN
P̂FN

< 1 and
P̂WK
P̂FK

> 1

* (P̂W
N )−σF (P̂ F

K )σF−1 > (P̂W
K )−σF (P̂ F

N )σF−1 which follows immediately.

Since our original inequality is a convex combination of these two conditions added

together, we are done.

Theorem 4 (Pro-competitive effect). ϕ̂∗N < ϕ̂∗K

Proof. First, write ϕ∗i in changes:

ϕ̂∗i = P̂W
i

(
ŵif̂e

) 1
σF−1

(∑
j

λij(P̂
F
j )σF−1

(
τ̂Fij
)1−σF

) 1
1−σF

= P̂W
i

(∑
j

λij(P̂
F
j )σF−1

) 1
1−σF
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Then, proceed:

ϕ̂∗N < ϕ̂∗K ⇐⇒
(

(P̂W
N )1−σFλNN(P̂ F

N )σF−1 + (P̂W
N )1−σFλNK(P̂ F

K )σF−1
) 1

1−σF

<
(

(P̂W
K )1−σFλKK(P̂ F

K )σF−1 + (P̂W
K )1−σFλKN(P̂ F

N )σF−1
) 1

1−σF (1.18)

⇐⇒ (P̂W
N )1−σFλNN(P̂ F

N )σF−1 + (P̂W
N )1−σF (1− λNN)(P̂ F

K )σF−1

> (P̂W
K )1−σFλKK(P̂ F

K )σF−1 + (P̂W
K )1−σF (1− λKK)(P̂ F

N )σF−1 (1.19)

We know that P̂W
N < P̂W

K , and

P̂ F
N < P̂ F

K ⇐⇒
[
πFNN(P̂W

N )1−σF + πFKN(P̂W
K )1−σF

] 1
1−σF <

[
πFKK(P̂W

K )1−σF + πFNK(P̂W
N )1−σF

] 1
1−σF

so then it must be that P̂W
N < P̂ F

N < P̂ F
K < P̂W

K . We claim the following:

* (P̂W
N )1−σF (P̂ F

N )σF−1 > (P̂W
K )1−σF (P̂ F

K )σF−1 which follows from the inequality,

since
P̂WN
P̂FN

< 1 and
P̂WK
P̂FK

> 1

* (P̂W
N )1−σF (P̂ F

K )σF−1 > (P̂W
K )1−σF (P̂ F

N )σF−1 which follows immediately.

Since the last expression is a convex combination of these two conditions added

together, we are done.

Theorem 5 (Flour mill location effect). M̂∗
N > M̂∗

K

Proof. M̂∗
N > M̂∗

K ⇐⇒ M̂N
(1−G(ϕ′N ))

(1−G(ϕ′N )
> M̂K

(1−G(ϕ′K))

(1−G(ϕ′K)
⇐⇒ (1−G(ϕN ϕ̂N ))

(1−G(ϕN )
>

(1−G(ϕK ϕ̂K))
(1−G(ϕK)

. If G(.) is pareto, then 1 − G(ϕ) = Aθiϕθi . Then we need to show

that:
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⇐⇒ AθNϕθNN ϕ̂−θNN

AθNϕ−θNN

>
AθKϕ−θKK ϕ̂−θKK

AθKϕ−θKK

⇐⇒ ϕ̂−θNN > ϕ̂−θKK ⇐⇒ ϕ̂N < ϕ̂K

which we show in Theorem 4.

Theorem 6 (Decline of the Heartland). ∆vN > ∆vK and L̂N > L̂K.

Proof, Welfare.

∆vN > ∆vK ⇐⇒ v′N−vN > v′K−vK ⇐⇒ − ln
(
P̂ F
N

)
− σF
σF − 1

∆P F
N > − ln

(
P̂ F
K

)
− σF
σF − 1

∆P F
K

From Theorem 2 we know that P̂ F
N < P̂ F

K ⇐⇒ − ln
(
P̂ F
N

)
> − ln

(
P̂ F
K

)
. Then

πWNN < πWKK ⇐⇒ PW
N > PW

K ⇐⇒ P F
N > P F

K , P F
N > P F

K ⇐⇒ −P F
N < −P F

K . By

proposition 2, P̂ F
N < P̂ F

K ⇐⇒ P̂ F
N − 1 < P̂ F

K − 1 < 0. Multiplying these together

(since both are negative) yields,

−P F
N (P̂ F

N − 1) > −P F
K (P̂ F

K − 1)

Multiplying through by the positive constant σF
σF−1

and adding to our original con-

dition yields the result.

Proof, Population.

L̂N > L̂K ⇐⇒
exp(v′N − vN)

λNexp(v′N − vN) + (1− λN)exp(v′K − vK)
>

exp(v′K − vK)

λNexp(v′N − vN) + (1− λN)exp(v′K − vK)
⇐⇒

exp(v′N − vN) > exp(v′K − vK)
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which is true by the above welfare result.

1.8.2.2 Auxiliary Propositions

Proposition 1 (Primitives imply condition). Suppose that
TMK
TMN

<
TWK
TWN

. Then, πWNN <

πWKK.

Proof.

πWNN < πWKK ⇐⇒
(
wNT

W
N

)σW−1

(wNTWN )
σW−1

+ (τW )1−σW (wKTWK )
σW−1 <

(
wKT

W
K

)σW−1

(wKTWK )
σW−1

+ (τW )1−σW (wNTWN )
σW−1

⇐⇒
(
wNT

W
N

)σW−1
((
wKT

W
K

)σW−1
+
(
τW
)1−σW (wNTWN )σW−1

)
<
(
wKT

W
K

)σW−1
((
wNT

W
N

)σW−1
+
(
τW
)1−σW (wKTWK )σW−1

)
⇐⇒

(
wNT

W
N

)σW−1
((
τW
)1−σW (wNTWN )σW−1

)
<
(
wKT

W
K

)σW−1
((
τW
)1−σW (wKTWK )σW−1

)
⇐⇒

(
wNT

W
N

)2(σW−1)
<
(
wKT

W
K

)2(σW−1) ⇐⇒
(
wNT

W
N

)σW−1

<
(
wKT

W
K

)σW−1 ⇐⇒ wNT
W
N < wKT

W
K

Then, since wi = 1
TMi

,

⇐⇒ 1

TMN
TWN <

1

TMK
TWK ⇐⇒ TMK

TMN
<
TWK
TWN

which is true by assumption.

Proposition 2. πFKK > πFKN
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Proof. Denote vi = wωi (PW
i )1−ω/T Fi .

πFKK > πFKN ⇐⇒
v1−σF
K

v1−σF
K + (τF )1−σF v1−σF

N

>
(τF )1−σF v1−σF

K

(τF )1−σF v1−σF
K + τFv1−σF

N

⇐⇒ 1

v1−σF
K + (τF )1−σF v1−σF

N

>
(τF )1−σF

(τF )1−σF v1−σF
K + v1−σF

N

⇐⇒ (τF )1−σF v1−σF
K + v1−σF

N >
(
v1−σF
K + (τF )1−σF v1−σF

N

)
(τF )1−σF

⇐⇒ 1 > (τF )1−σF ⇐⇒ 1 < τF

which is true since trade is costly.

Proposition 3. If πWNN < πWKK and τ̂W < 1, then P̂W
N < P̂W

K .

Proof.

τ̂W < 1 ⇐⇒
(
τ̂W
)1−σW > 1 ⇐⇒ πWNN − πWKK >

(
τ̂W
)1−σW (πWNN − πWKK)

since πWNN − πWKK < 0.

⇐⇒ πWNN − πWKK +
(
τ̂W
)1−σW >

(
τ̂W
)1−σW πWNN −

(
τ̂W
)1−σW πWKK +

(
τ̂W
)1−σW

⇐⇒ πWNN + (1− πWNN)
(
τ̂W
)1−σW > πWKK + (1− πWKK)

(
τ̂W
)1−σW

since 1− πWii = πWni :

πWNN + πWKN
(
τ̂W
)1−σW > πWKK + πWNK

(
τ̂W
)1−σW

⇐⇒
[
πWNN + πWKN

(
τ̂W
)1−σW

] 1
1−σW <

[
πWKK + πWNK

(
τ̂W
)1−σW

] 1
1−σW ⇐⇒ P̂W

N < P̂W
K
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1.8.3 Model in Changes: System of Equations

Given parameter estimates for σF and σW , changes in total population L̂, changes

in productivities T̂ Fi , T̂Wi , and T̂Mi , changes in trade costs τ̂Fji , τ̂
W
ji , measures of

the initial import shares for wheat and flour πWji , π
F
ji, the initial export shares for

wheat and flour ΠW
ji ,Π

F
ji, population shares, λi and the initial price of flour, changes

in allocations {∆vi, λ̂i, L̂i, ĉFni, ĉWni , Ŷ F
i , Ŷ

W
i } and in prices {ŵi, p̂Fni, p̂Wni , P̂ F

i , P̂
W
i } are

given by:

ŵi = T̂Mi (1.20)

p̂Wni = ŵn
T̂Wn

τ̂Wni (1.21)

p̂Fij =
P̂Wi
T̂Fi
τ̂Fni (1.22)

P̂ F
i =

(∑
n π

F
ni(p̂

F
ni)

1−σF
) 1

1−σF (1.23)

P̂W
i =

(∑
n π

W
ni (p̂

W
ni )

1−σW
) 1

1−σW (1.24)

L̂i = L̂λ̂i (1.25)

λ̂i = exp(∆vi)∑
n λnexp(∆vn)

(1.26)

∆vi = ∆wi − ln
(
P̂ F
i

)
− σF

σF−1
∆P F

i (1.27)

Ŷ F
i =

∑
j τ̂

F
ijΠF

ij ĉ
F
ij (1.28)

Ŷ W
i =

∑
j τ̂

W
ij ΠW

ij ĉ
W
ij (1.29)

ĉWni =
Ŷ Fi
T̂i

(
p̂Wji
)−σW (P̂W

i

)σW
(1.30)

ĉFji =
(
p̂Fji
)−σF (P̂ F

i

)σF−1

(1.31)
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1.8.4 Quantitative Model

The baseline model is outlined in Section 1.4. Below I define an equilibrium in

changes, where x̂ = x′/x.

1.8.4.1 System of Equations in Changes

Given parameters {ε, θj, γjn, γj,pn , αjn, δ
j
n}, data on {Ln, ln, Pn, λn, wn, rn, Dn, π

j
in}, and

changes in the exogenous variables {L̂, τ̂ kni}, an equilibrium is a set of changes in

allocations

{v̂n, În, ĉkn, π̂kni, L̂n, Xk′
n , Ŷ

k
n , D̂n} and prices {P̂ k

n , ŵn, r̂n} for a total of 6N + 4KN +

KN2 unknowns that are defined by the following set of 6N+4KN+KN2 equations:

N v̂n = În · ΠK
k=1

(
P̂ k
n

)−αkn
(1.32)

N I ′n = ŵnwn + rnr̂nln+D′n
LnL̂n

(1.33)

N L̂n = L̂ v̂εn∑
n λnv̂

ε
n

(1.34)

N2K π̂kin =
(τ̂kinĉ

k
i )−θk∑

i π
k
in(τ̂kinĉ

k
i )−θk

(1.35)

NK ĉjn = ŵγ
j

n r̂
δj
n

∏K
p

(
P̂ p
n

)γp,j
(1.36)

NK Xk′
n = αkLnL̂nI

′
n +

∑K
j=1 γ

k,j
n

∑N
i=1X

j′

i π
j
inπ̂

j
in (1.37)

NK Y k
n Ŷ

k
n =

∑
iX

k′
i π̂

k
niπ

k′
ni (1.38)

N D′n =
∑

k

∑
i π

k
inπ̂

k
inX

k′
n −

∑
k

∑
i π̂

k
niX

k′
i π

k
ni (1.39)

N ŵnwnL̂nLn =
∑

j ω
j
nγ

j
nY

j′
n (1.40)

N r̂nrnln =
∑

j(1− ωjn)γjnY
j′
n (1.41)

NK P̂ k
n =

[∑
i π

k
in

(
ĉki τ̂

k
in

)−θk] 1
−θk (1.42)
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1.8.4.2 Solving the Model

I solve the model using Python’s optimization routines and the following algorithm:

1. Guess values for wages ŵn, rents r̂n, population L̂n, prices, P̂ j
n, and spending

Xj
n.

2. Given the guess for prices, construct ĉjn from equation 1.36.

3. Construct a model-implied value for prices
˜̂
P j
n from equation 1.42.

4. Construct π̂kin from equation 1.35.

5. Construct Y ′n = YnŶn from equation 1.38.

6. Construct trade imbalances D′n from equation 1.39 using the guess for spending.

7. Using population, wage, and rental rate guesses, plus trade imbalance from

above, construct per-capita income in the post period I ′n from equation 1.33.

8. Compute changes in welfare from equation 1.32, and model-implied changes in

population
˜̂
Ln from equation 1.34.

9. Compute a model-implied value of spending X̃k′
n from 1.37.
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10. Form objective function based on:

0 = P̂ j
n −

˜̂
P j
n

0 = L̂n − ˜̂
Ln

0 = X̃k′
n −Xk′

n

0 = r̂n −
∑
j(1−ω

j
n)γjnY

j′
n

rnln

0 = ŵn −
∑
j ω

j
nγ

j
nY

j′
n

wnLnL̂n

where the last two lines come from equations 1.41 and 1.40 respectively. The

optimization procedure then iterates through steps 1 through 10 until all values

of 10 are zero.

1.8.4.3 Quantifying Trade Costs

To feed bilateral changes in trade costs into the model, I want to measure initial trade

costs along each pair of locations. I assume that trade costs between two locations

are the product of the railroad distance of the route and a constant X, which coverts

distance to revenue: τod = kmκ
od · X. If I observed revenue per ton earned along

every route, then I could use that to measure initial trade costs along each pair of

states. However, I do not observe this in the data for every route since there is

no trade in agricultural products along some routes. Aggregating over every route

where revenueod > 0, I can compute total RTM:

RTM =

∑
od revenueod∑

o′d′ tonso′d′ · kmo′d′
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Then, since revenueod = coτodTonod, I can re-write this as:

RTM =

∑
od coτodTonod∑

o′d′ tonso′d′ · kmo′d′
=

∑
od cokm

κ
od ·X · Tonod∑

o′d′ tonso′d′ · kmo′d′
= X

∑
od cokm

κ
od · Tonod∑

o′d′ tonso′d′ · kmo′d′

Setting these two equal to each other and solving for X:

∑
od revenueod∑

o′d′ tonso′d′ · kmo′d′
= X

∑
od co · kmκ

od · Tonod∑
o′d′ tonso′d′ · kmo′d′

=⇒ X =

∑
od revenueod∑

o′d′ tonso′d′ ·kmo′d′∑
od co·kmκod·Tonod∑
o′d′ tonso′d′ ·kmo′d′

I measure co, which is the cost of producing agricultural goods at location o as the

dollar value received for a unit of wheat in state o, measured from the USDA in 1950.

Given this estimate of X, I solve for initial trade costs across all locations.
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CHAPTER 2

Political Preferences and the Spatial Distribution

of Infrastructure: Evidence from California’s

High-Speed Rail

(with Cecile Gaubert, Pablo Fajgelbaum, Eduardo Morales, and

Edouard Schaal)

PRELIMINARY: Click link to updated version

.

2.1 Introduction

Transport networks are among the largest investments made by federal and local

governments. What determines the projects that are implemented? The sheer size

of transport infrastructure projects often makes them a focus of public debate, with

people and politicians taking strong stances on their suitability. These views are

partially driven by distributional considerations, as transportation networks shape

the spatial organization of economic activity and, with it, the distribution of income

across regions or demographic groups. However, as with other forms of government
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spending, people’s preferences over whether a transport project is a good idea de-

pend on more than the usual economic variables that will likely be impacted (such

as access to jobs or house prices, in this case). Instead, they also encompass political

considerations such as preferences for public goods, environmental concerns, or loy-

alty to the political party championing a project. When deciding whether and how

to invest in a large public good such as transport networks, policymakers are likely to

take these extra considerations of constituencies into account alongside motivations

such as their own preferences for redistribution.

In this paper, we study how the preferences of transport users and policymakers

determine the benefits and the design of a large infrastructure project. Specifically,

we ask: how important are the political components in people’s preferences for infras-

tructure, vis-a-vis the more often studied real-income effects? In general, this ques-

tion is hard to answer because preferences are not observed. To make progress, we

choose as our setting the California’s High-Speed Rail (CHSR), an electric high-speed

rail system designed to connect urban centers in California. The CHSR, arguably the

second-largest transport project in US history after the Inter-State Highway System,

presents an ideal setting both because of its importance and because we observe how

Californians voted for or against it: as part of the 2008 general election, Californians

were asked whether they approved of the state issuing bonds worth about 10 billion

USD to finance part of the project. The proposition passed with 52.6% in favor and

93% of presidential election voters casting a vote. Across approximately 8,000 census

tracts in California, we observe voting for or against financing the HSR, as well as

for other ballots in the general election.

To quantify the importance of economic factors in shaping preferences, we first

estimate the rate at which the expected real-income effects of the HSR translate
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into voter approval. Estimating this rate is essential in assigning a real income

equivalent value to proxies for political ideology, such as party affiliation. A central

challenge in this endeavor is that the expected economic returns from the HSR are

not observed. For this, we develop and estimate a quantitative spatial framework

extended to included specific features of the HSR.

The model of economic gains from the HSR builds upon urban models in the style

of Ahlfeldt et al. (2015) and Monte, Redding and Rossi-Hansberg (2018). In these

models, transport infrastructure impacts the commuting decisions that shape the

demand and supply of floor space (for housing and production) and the production

of urban spillovers through efficiency or amenities. We build upon these models to

include specific features of the HSR. First, while some planned segments of the HSR

facilitate commuting, its connections can be used for long-distance non-regular travel

such as business trips or leisure travel. We show that these travel purposes, rather

than regular commuting, are the most likely beneficiaries of the HSR, and incorporate

them into the decisions of households and firms. Second, as the HSR competes with

other travel modes (car, air, and standard rail), we incorporate a transport-mode

decision that accounts for trade-offs between time savings and money by transport

mode.1

Our estimation deals with a number of potential concerns, such as the possi-

bly spurious relationship between the economic benefits of the HSR and political

preferences, and the potentially erroneous predictions of voters about the economic

returns to the HSR. To deal with the former concern, we first introduce a host of

controls including observed votes for other political issues that absorb variation in

1This version of the paper outlines the most general model with all modes of transport. In our
current estimation of the model, we pool all modes together.

93



values. We then construct an instrument for welfare gains from the HSR using the

welfare gains implied by potential, but not implemented, HSR routes and randomly

allocated stations. For the latter, we use an instrumental variables approach that

deals with endogeneity of expectational errors and we implement the analysis under

different assumptions on the sophistication of voters in terms of the economic model

that they use to forecast incomes. We consider the robustness of our results to a

variety of modeling assumptions.

We find that voters are quite responsive to the expected economic impact of the

HSR. Had voters ignored the real-income effects of the HSR, the 2.6% difference

in its favor in the actual vote would have fallen by about 1/3. Still, this economic

component explains only a very small fraction of the variance of votes across space,

with the observed presidential vote absorbing a large fraction of this variance. Over-

all, these results paint a picture where differences across space in people’s attitudes

towards the HSR were shaped more strongly by non-economic considerations, but

where the real income factor is still taken into consideration to a degree that can

influence the aggregate approval of the project.

Our paper contributes to several different literatures. First, we build off of exist-

ing work that studies the real income effects of infrastructure, including Redding and

Turner (2015), Tsivanidis (2019), Donaldson (2018), Faber (2014), Severen (2019),

Bernard, Moxnes and Saito (2019), and Donaldson and Hornbeck (2016b) to es-

timate the real income effects of the high speed rail. The model we develop to

estimate the economic effects of the HSR builds off of existing papers that develop

quantitative spatial equilibrium models including Ahlfeldt et al. (2015), Monte, Red-

ding and Rossi-Hansberg (2018), and Dingel and Tintelnot (2020). Other projects

have also studied the political economy of transportation projects, including work by
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Brueckner and Selod (2006) and Glaeser and Ponzetto (2018). Finally, Van Patten

and Méndez (2022), Holian and Kahn (2015), and Kahn and Matsusaka (1997) use

voting on data to study how individuals’ preferences shape economic outcomes.

2.2 Background on California High Speed Rail

In 1996, the California state legislature established the California High Speed Rail

Authority (CHSRA) to explore the creation of a high speed rail network that would

travel at least 200 miles per hour to connect northern California, including San

Francisco and Sacramento, with southern California, including Los Angeles and San

Diego (U.C. Hastings, 2008). A significant portion of funding for the rail line would

come from state-issued bonds. By law, issuing such bonds requires voter approval

that must be obtained through a successful ballot measure. In August 2008, the

California legislature voted to approve that Proposition 1a would appear on the

ballot in the November 2008 general election, asking California voters to approve the

issuance of nearly $10 billion in bonds to fund the HSR.

According to the legislature’s vote to approve Proposition 1a, the HSR would

be required to meet several criteria. First, it would connect San Francisco to Los

Angeles and Anaheim, and would also include Sacramento, the San Francisco Bay

Area, the Central Valley, Los Angeles, the Inland Empire, Orange County, and San

Diego. Second, it would travel at at least 200 miles per hour, making the trip from

San Francisco to Los Angeles Union Station in at most two hours and 40 minutes.

Third, there would be no more than 24 stations across the entire network. Finally,

the anticipated completion date as of 2008 was 2020. The network planned as of

November 2008 is shown in Figure 2.1a. The first phase of building would focus on
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the LA-SF corridor, while Phase 2 would extend the network north to Sacramento

and south to San Diego. Proposition 1A was one of twelve measures on the ballot in

the November 2008 general election. The ballot text read:

To provide Californians a safe, convenient, affordable, and reliable alter-
native to driving and high gas prices; to provide good-paying jobs and
improve California’s economy while reducing air pollution, global warm-
ing greenhouse gases, and our dependence on foreign oil, shall $9.95 billion
in bonds be issued to establish a clean, efficient high-speed train service
linking Southern California, the Sacramento/San Joaquin Valley, and the
San Francisco Bay Area, with at least 90 percent of bond funds spent for
specific projects, with federal and private matching funds required, and
all bond funds subject to independent audits?

Figure 2.1b hows support for the HSR, as measured by votes on Proposition 1a,

varied across Census tracts in California. Each point is the population centroid of

a tract; in denser areas where tracts are smaller in size, the entire tract is colored.

Bright yellow areas are those that were more supportive; (dark) blue areas are those

that were (less) supportive. San Francisco and LA are more supportive of the HSR

compared with Fresno and Sacramento. Proposition 1a was ultimately approved

with a vote in favor of 52.6%. Participation was high: 94% of voters casting a vote

in the presidential race also cast a vote on Proposition 1a.
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Figure 2.1: HSR Route and Proposition 1a Votes

(a) Planned HSR Route as of November 2008 (b) % Yes on Prop 1a

Note: Panel (a) shows the CHSR network as proposed in the November 2008 CHSR Authority business plan. Panel (b) shows
the percentage of voters in each tract voting in favor of the HSR.
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Planned routes. The route that was ultimately selected was not the only option

considered: the CHSRA identified several potential main routes for the train. The

three main routes are shown in Figure 2.2 below. One route, in navy blue, travels

near the Amtrak line along the California coast, while another, in bright blue, follows

Interstate 5 and a third, in green, tracks State Route 99 through the major cities

of the Central Valley like Fresno and Madera. This map also highlights different

possibilities within each option: for example, the green route along SR-99 shows a

few possible routes from Palmdale to Bakersfield and to LA.

The route that was ultimately selected at the time of the 2008 vote runs through

the Central Valley along SR-99 and is shown in in detail in Figure 2.1a as reproduced

from the CHSR’s 2008 Business plan. While funding constraints and other issues

have forced officials to reconsider what proportion of this line will be built and some

small changes have been made to the set of stations (i.e., with the introduction of

a station in Madera), the route itself has not been materially altered. A variety

of factors affected the CHSRA’s ultimate choice of the SR-99 route in the Central

Valley. One factor was that the coastal route is longer in terms of distance than the

other two routes. The topology of the coastal area also makes it more difficult for

trains to reach top speed and is more costly in terms of building; a high speed train

traveling along this route would not be able to reach the top speeds that a train

traveling in land would be able to reach.

Funding sources. The proposed funding sources for the HSR included funds from

bond issuances, private investors, the federal government, and other local sources

(LA Times, 2007). Specifically, the nearly $10 billion in Proposition 1A bonds were

expected to be coupled with $2-3 billion in local funding, $12-16 billion in federal
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Figure 2.2: Potential HSR Routes (1996)

Note: This figure shows the possible HSR routes as outlined by the 1996 CHSR Commission, and
reproduced in the CHSR Environmental Impact Report (2005).

funding, and $6.7-7.5 billion in public-private partnership funding, which was sup-

posed to be sufficient to build a complete San Francisco to Anaheim system for a

total of $33.6 billion in 2008 dollars (ENO).

Current status. Although construction on the HSR began in 2005, progress has

been slower than anticipated. The estimated cost has risen from the 2008 estimate

of $40 billion to more than $100 billion. Today, construction on 180 miles of the

Central Valley segment has begun, and is expected to be completed between 2023

and 2025 (Fresno Bee, 2022).
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2.3 Framework

This section gives an overview of the theoretical framework. A complete discussion

of equations and derivations is provided in Appendix Section 2.7. We start by pre-

senting voters’ preferences and a model of the voting decision driven by political

and economic considerations. We then zoom in on these economic considerations by

developing a quantitative model of the impact of the CHSR on the distribution of

real incomes across census tracts in California.

2.3.1 Utility and Voting

Preferences. Consider a resident ω of a location i. Her utility uω (s) captures both

her economic and political preferences, which depend on whether an infrastructure

project, in our case the California high-speed rail, is planned to be built (s = B) or

not (s = NB):

uω (s) = E [lnW (i, s) | Ii] + ln a (i, s) + εuω (s) . (2.1)

The first component, E [lnW (i, s) | Ii] measures the average expected real income

of residents of i when the project has status s. It captures economic forces through

which an infrastructure project can impact real income, such as better market access

or higher house prices, and will be discussed in more detail in section 2.3.2. The ex-

pectation on lnW (i, s) is taken over shocks that may affect the economy, including

shocks over fundamental economic characteristics of different locations i and uncer-

tainty about the transportation project itself, conditional on the information Ii of

residents of i. The second component, ln a (i, s), captures the political component
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of preferences on average across residents of i. Finally, the shock εuω (s) captures id-

iosyncratic (mean-zero) variation in utility across residents of tract i stemming from

either economic or political considerations.

Given (2.1), we define the average utility impact of the transport project across

residents of location i as ∆U (i) ≡ Eω [uω (B)− uω (NB)] and get:

∆U (i) = E
[
ln Ŵ (i) | Ii

]
+ ln â (i) . (2.2)

In this expression, Ŵ (i) ≡ W (i,B)
W (i,NB)

measures real income differences between a world

with and without the planned infrastructure project, while â (i) measures the net

political preferences for the project. Both components affect which locations win or

lose from the project (∆U (i) ≷ 0). The existing work on distributional impacts of

infrastructure measures Ŵ (i). One of the central goals in this paper is to measure

the relative importance of Ŵ (i) and â (i) in shaping this distributional impact of a

transport project across locations i.

In practice, neither the real income or the political components are directly ob-

served. To make progress, we impose more structure on the problem. First, we

assume that residents form rational expectations so that:

E
[
ln Ŵ (i) | Ii

]
= ln Ŵ (i)− εW (i) , (2.3)

where ln Ŵ (i) is the value of the real-income gains brought about by the HSR under

the actual realization of shocks and εW (i) is a mean-zero expectational error. In

the next section, we proxy for Ŵ (i) using a range of economic models with varying

degrees of sophistication in the forces that they incorporate.
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Second, the political component â (i) is not directly observed but can be proxied

for with location-specific variables Xk (i) that bear a relationship to people’s polit-

ical ideology, such as people’s party affiliation (we discuss these proxies later on).

Formally, we assume that:

ln â (i) =
K∑
k=1

β̃kXk (i) + εa (i) , (2.4)

where X0 (i) = 1 so that β̃0 captures a common component of ideology across space,

and where εa (i) are additional unobserved determinants of political ideology. Given

our goals, a central question is how to measure the rate β̃k at which a given proxy

(people’s concerns about the environment, say) can be meaningfully compared with

the real-income impacts of a given project. Unlike in the case of ln Ŵ (i), no family of

models exists to translate proxies of values into a welfare metric that is comparable

to real income. To overcome this issue, we turn next to the voting model. We rely on

the simple insight, which we formalize below, that voting outcomes directly reveal

this trade-off between political values and economic gains.

Voting. Faced with a choice between B and NB, households vote in favor of B if

and only if uω (B) > uω (NB). Aggregating over individuals, given utility (2.1), our

setup corresponds to a probabilistic voting model (Dixit and Londregan, 1996), with

the fraction of positive votes in location i defined as v (i) = Pr [uω (B) > uω (NB)].

We assume that these idiosyncratic shocks are Type-I extreme-value distributed

across residents, with shape parameter θV :

Pr (εuω (s) < x) = e−e
−θV x . (2.5)
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As a result, the fraction of voters in i that support building the rail takes the standard

logit form:

v (i) =
eθV (E[ln Ŵ (i)|Ii]+ln â(i))

1 + eθV (E[ln Ŵ (i)|Ii]+ln â(i))
. (2.6)

Combining this expression with (2.3) and (2.4), and re-writing the left-hand side as

the log odds-ratio, we obtain the equation that we will bring to the data:

ln

(
v (i)

1− v (i)

)
= θV ln Ŵ (i) +

K∑
k=1

βkXk (i) + ε (i) , (2.7)

where βk ≡ θV β̃k and where ε (i) ≡ −εW (i) + εa (i) includes the expectational error

and the unobserved components of political ideology.2

Equation 2.7 shows the trade-off between real income and political preferences

in determining votes. The parameter θV is the rate at which real income translates

into votes. Having identified this parameter, we can recover the β̃k’s in (2.4) as

β̃k = βk/θV thus revealing how a given proxy for political preferences translates

into real-income equivalent terms. We can then construct ln â (i) and compute how

much it drives the heterogeneity in ∆U (i). The elasticity of votes to real income θV

does not matter per-se for the average welfare of a tract ∆U (i), but estimating this

parameter is a crucial step to translate ideology proxies into a common real-income

metric.

2While notation has not been introduced for it, this error term also captures that voters may
use an economic model that diverges from the range of models that use to proxy for Ŵ (i). This
source of error, as well as the sources of error that we have previously explicitly specified, bring
about identification concerns that we tackle in the empirical section through various instrumental
variables.
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2.3.2 Real Income Gains from the HSR

2.3.2.1 Model Ingredients

Delayed benefits. The real income impacts of the HSR are twofold: (i) Until the

HSR is built and operational, households expect to pay a tax t to fund the HSR; (ii)

once the HSR is operational, households still pay the tax but also benefit from the

corresponding real income gains. The overall real income effect of the HSR is the

annualized flow combining these two streams.

At the time of voting, in 2008, the HSR business plan stated a specific year in

which the HSR would be operational. To account for the fact that voters may have

doubted that timing, we assume that they expected the HSR to be implemented no

sooner than T years after the vote, and that they attributed a yearly completion

probability equal to p afterwards, conditional on the HSR not being built until then.

We consider a range of scenarios with varying degrees of optimism over p and T .

Assuming a yearly discount rate r, these assumptions imply that the annualized

real-income effects of the HSR, if approved, are a weighted average of ln (1− t) (the

annual real-income change from paying a yearly tax t to finance to the HSR) and

ln Ŵ Y (i) (the yearly real-income change, including taxes, associated with the HSR

being operational for residents of location i). Specifically:

ln Ŵ (i) =

(
1− (1 + r)−T

p

r + p

)
ln (1− t) + (1 + r)−T

p

r + p
ln V̂ (i) . (2.8)

Economic benefits from HSR. We next turn to evaluating the real-income change

associated with the HSR being operational, V̂ (i) for residents of tract i. We follow

a large body of research that uses quantitative spatial models in the style of Ahlfeldt

104



et al. (2015) to estimate the distributional impacts of infrastructure improvement.

We tailor a model from this class to the specifics of the high-speed rail. One may

worry that voters rely on simpler heuristics rather than on the predictions of models

that may include fairly rich spatial interactions. Therefore, as we describe next, we

consider two polar cases of such models with different levels of complexity: a baseline

that only includes the direct economic impacts of the HSR, on time savings and cost

of travel; and a full model with several equilibrium feedback loops. In all versions of

the model, we assume that there is a fixed number NR (i) of residents in location i.

The development of the HSR impacts their commuting and travel choices, but not

their residential choice.

The raison d’être of the HSR is that it allows passengers to save time on their

long-distance travel. At the heart of the model, therefore, is the time saved by

workers on daily commutes (for workers who have especially long commutes) and

on less frequent long-distance leisure trips. The HSR also facilitates long distance

business trips, making firms more productive as they connect with suppliers and

customers (Bernard, Moxnes and Saito, 2019). We augment a commuting model a

la Ahlfeldt et al. (2015) to incorporate these infrequent long-distance trips.

The “baseline model” only captures direct effects of the HSR. Specifically, in each

census tract, a continuum of residents spends income on tradeable goods, housing,

services, commuting, and leisure trips. Each resident receives idiosyncratic preference

shocks for commuting or traveling for leisure to different destinations. Each of these

activities entails a payoff (a salary when commuting or a utility flow when traveling

for leisure) in exchange for a time cost and a monetary cost of travel. Based on these,

residents make discrete choices of destinations for commuting and for leisure trips.

For the latter, they also choose the number of trips taken. When deciding where to
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travel, people incorporate a choice of transport mode (such as car, public transit, air,

or walking/biking), with residents of different locations potentially varying in their

preferences for different travel modes. Building the HSR affects choices and welfare

by lowering travel times and changing the price of travel on some routes. However,

wages, the cost of housing, and costs of services remain constant in this baseline.

As shown below, the real income gains stemming from these forces amount to the

expected time-savings over likely destinations for travel, adjusted by the travelers’

valuation of time and willingness to substitute across destinations.

The “full model” captures, in addition, equilibrium impacts on wages, land rents,

cost of services, amenities, and productivity. First, to the previous setup, this more

complex model adds endogenous wages. Tradeable goods are produced with labor,

land, and business trips while housing uses land and local services use labor. Firm

productivity is impacted by agglomeration spillovers that depend on the (endoge-

nous) spatial distribution of worker density. So, the HSR impacts the productivity

of firms and equilibrium wages through its impact on the time and monetary cost of

business trips and on the employment distribution. Second, spillovers from endoge-

nous labor density also impact the amenity enjoyed by residents and leisure travelers

to a given destination. Third, because producers compete with residents to use land,

land rents respond to the development of the HSR. Land rents capitalize the local

productivity enhancement and the increased demand for productive space. A share

of the residents of each tract are homeowners, and thus benefit from this capitaliza-

tion. Together, changes in land rents and wages capture that the HSR may lead to

local economic development.
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2.3.2.2 Key Equations

We show here the key equations governing the real income impact of the HSR, for-

malizing the discussion above. A full description of the underlying model is discussed

in the Appendix section 2.7. The equations below apply to the full model, and nest

the baseline model under some parameter restrictions.

The annual real-income change for residents of tract i due to the HSR is:

V̂ (i) =

(
ŴC (i)

P̂L (i)µL(i)

)(
B̂ (i)

P̂S (i)µL(i) r̂ (i)µH(i)

)
, (2.9)

The first term in parenthesis includes in the numerator the change in expected in-

come net of commuting costs and in the denominator the change in the price index

for leisure trips (P̂L (i)), adjusted by the spending share of tract i’s residents on

leisure travel (µL (i)). The second term in parenthesis includes in the numerator

the change in residential amenities stemming from urban spillovers (B̂ (i)) and in

the denominator the change in the cost of housing (r̂ (i)) and in the cost of services

(P̂S (i)), adjusted by their respective spending share in tract i (µH (i) for housing and

µS (i) for services). In the baseline model, this second term in parenthesis equals one

by assumption.

The change in income net of commuting cost ŴC (i) captures the expected time

savings by commuters based on their typical commuting patterns, adjusted by the

value of time and augmented by the flexibility to substitute across employment des-
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tinations:

ŴC (i) ≡

∑
j∈J

∑
m∈M

λpreC (i, j,m)

(
Î (i, j,m)

τ̂ (i, j,m)ρC

)θC
 1

θC

. (2.10)

In this expression, Î (i, j,m) is the change in disposable income conditional on com-

muting from one’s residence i to one’s workplace j using transport mode m. This

term depends on the changes in the monetary cost of commuting from i to j as

well as (in the full model only) on the changes in wage at destination and in land

rent income at origin. Second, τ̂ (i, j,m) is the change in travel time from i to j

using m, converted into a dollar-equivalent value by the elasticity ρC . Third, θC

captures the extent to which residents substitute across commuting destinations and

travel modes when the relative appeal of destination or modes changes.3 Finally,

the weights λpreC (i, j,m) on these changes are the fraction of tract-i residents that

commute for work to j through mode m before the HSR is built.

The change in the leisure price index adopts a similar functional form:

P̂L (i) ≡

∑
j∈J

∑
m∈M

λpreL (i, j,m)

(
p̂L (i, j,m) τ̂ (i, j,m)ρL

B̂ (j)

)−µL(i)θL
− 1

µL(i)θL

, (2.11)

where now λpreL (i, j,m) is the fraction of leisure travelers from i choosing destination

j using mode m before the HSR is built, p̂L (i, j,m) is the corresponding change

in cost of the trip including the monetary cost of travel and the cost of services at

destination), B̂ (j) are changes in amenities in the leisure destination j, and (ρL, θL)

3Formally, as detailed in the appendix, this parameter is the inverse of the dispersion in id-
iosyncratic preference draws across residents of i about where to commute and how to commute
there.
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capture respectively the value of time when traveling for leisure and the substitution

across destinations for leisure.4

Our baseline model with only direct effects assumes away endogenous changes

in amenities or land rents in (2.9) (i.e., B̂ (i) = r̂ (i) = 1), assumes that changes

in disposable income in (2.10) stem only from the tax to finance the HSR (i.e.,

Î (i, j,m) ≈ 1 − t),5 and assumes away endogenous changes in amenities in (2.11)

(i.e., B̂ (j) = 1). As a result, in our baseline model where only direct effects are

included, we do not need any additional equations beyond (2.10) and (2.11). In

contrast, the full model with indirect effects generates additional changes in amenities

B̂ (i), land rents r̂ (i), and disposable income Î (i, j,m). The latter is a function of

changes in the entire wage distribution, with changes in wages themselves a function

of agglomeration spillovers and the greater ease of sending workers on business travel.

The full system of equations describing these forces is presented in Appendix 2.7.7.

4When comparing (2.10) and (2.11), one can notice two asymmetries: in (2.10), the monetary
cost enters as a negative additive shifter to disposable income while in (2.11) it enters multiplica-
tively; and the latter is shaped by the intensity of leisure spending µL (i). As detailed in the
appendix, these differences arise due to the non-homothetic nature of spending on commuting :
assuming a fix number of commuting days in the year, travelers spend a fix amount of money in
commuting and the remaining income is divided into consumption, housing, and leisure trips. In
contrast, leisure travelers decide how many trips to make to their preferred destination, with ho-
mothetic preferences (over leisure trips, consumption, and housing) with spending shares possibly
varying across tracts.

5The change in disposable income is defined as the change in after-tax income net of commuting
costs: Î (i, j,m) = (1 + χpre (i, j,m)) (1− t) ŷ (i, j,m)−χpre (i, j,m) p̂C (i, jC ,mC), where ŷ (i, j,m)
is the change in pre-tax income, χpre (i, j,m) is the share of commuting costs in disposable income
for someone traveling from i to j through mode m before the HSR is operational, and p̂C (i, jC ,mC)
is the change in the monetary cost of this commuting route. Because the model with direct effects
assumes no changes in wages and land rents, in that case disposable income changes only with
taxes, meaning that ŷ (i, j,m) = 1− t.
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2.4 Economic Impacts of the High-Speed Rail

In this section, we describe the procedure we follow to estimate the parameters of

the model described in Section 2.3 and present the resulting estimates. In Section

2.4.1, we describe our sources of data, and present some summary statistics on the

key variables entering our analysis. In Section 2.4.2, we describe the estimation of

the parameters of the economic model described in Section 2.3.2.

2.4.1 Data

Voting data. We obtain data on votes and voter registration from the 2006 and

2008 California general elections by precinct, as well as a crosswalk file linking voting

precincts (of which there are around 20k) to Census tracts (of which there are around

8k) from the University of California at Berkeley’s Statewide Database. We use the

provided crosswalk to construct a tract-level dataset of votes.

Travel times. We measure travel times between each pair of Census tracts as the

fastest route through the transport network of a given mode between the centroid

of the origin tract and the centroid of the destination tract for each mode. To

approximate the population center of each tract, the centroid of each tract is defined

as the geographic centroid of the most populous Census block within that tract.

To measure car travel times, we construct the road network based on the 2010

primary and secondary road network in California using a shapefile obtained from

the U.S. Census, and calibrate speeds along rural/urban and primary/secondary road

segments to match observed travel times from Google Maps. Appendix 2.9.2 provides
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more details on this calibration approach.

We allow air travel by assuming that agents will drive to the airport closest to

their Census tract of origin, fly to the airport closest to their tract of destination, and

then drive to their destination tract. We allow air routes operating within California,

based on the Bureau of Transportation’s 2008 airline ticket dataset and flight times

from Google Maps. Thus, total air travel time is the sum of driving time at either

end of the journey, plus flight time. We measure flight times on each route from

Google Maps. In addition, we assume that it takes 45 minutes to move from the

road network to the air network which reflects the time cost associated with moving

through the airport.

We measure walking speeds based on road network distances, assuming people

walk at a speed of 5 km per hour. For public transit travel, we assume that travelers

can either take the bus, which is the road network where speeds are calibrated to

match bus travel times (as detailed in Appendix 2.9.2), or they can drive a car to

the nearest rail network. We impose that travelers will always take the bus along a

route where the closest rail station to the origin tract is the same rail station that is

closest to the destination tract, and that they will take bus if the bus option is faster

than the car plus rail option. Appendix 2.9.2 describes how we use timetables from

each passenger rail network, which includes both intercity networks like Amtrak as

well as intracity networks like Caltrain, within California to construct the existing

pre-HSR rail network.

To estimate travel times when the HSR is available, we obtain a shapefile of the

planned route and stations of the HSR from the University of California at Davis

at the time of the vote in November of 2008. The HSR map as of 2008 includes 26
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Figure 2.3: Planned HSR Travel Speeds (2008)

Note: This figure shows planned travel speeds along each segment of the planned HSR route, as of
the November 2008 CHSR Business Plan. We use these reported speeds to construct travel times
between each pair of Census tracts when the HSR is built.

stations, two of which (Irvine and Tulare) are marked as potential stations and we

exclude them in our baseline analysis. This total of 24 stations is consistent with the

description of the network in the original HSR bill that was passed by the California

legislature earlier in 2008.6

We measure planned travel speeds along each segment of the route from the

6Assembly Bill No. 3034 which officially allowed Proposition 1A to appear on the ballot, was
passed in August 2008 and stated that “[t]he total number of stations to be served by high-speed
trains for all of the corridors described in subdivision (b) of Section 2704.04 shall not exceed 24”.
It also included a number of other stipulations about travel times between stations.
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November 2008 Business Plan as shown in Figure 2.3. Combining travel speeds on

each segment with the distance of each segment allows us to compute travel times

between all pairs of stations. The travel times that we estimate with this approach

closely match those reported between major stations in the November 2008 CHSR

Business Plan. We calibrate the time it takes to transfer between the road network

and the HSR network based on transfers taken within the existing public transit

system, as described in Appendix 2.9.

Travel costs. We measure the cost of traveling between each origin and destination

pair on each mode. For car travel, we assume that the cost is a constant function

of time. To convert minutes to dollars, we assume that the cost of gas is $3.52 per

gallon in 20087, that the fuel economy of the average car is 21 miles per gallon8, and

that the average travel speed is 50 miles per hour. Combining these, we find that

the cost of traveling via car for one minute is $0.17 in 2019 dollars.

For air, we assume that the cost is the sum of the cost of driving to and from the

airport and the cost of the plane ticket. We measure the cost of traveling along each

air route in California from the Bureau of Transportation Statistics. The average

cost is $150, and since there is very little variation in price across routes, we assign

this cost to every air route.

For rail, we assume that the cost is the sum of the cost of driving to and from

the nearest rail station, plus the cost of traveling between the origin and destination

railroad stations which we assume to be a function of time traveled on rail. To

7This figure is obtained from the Los Angeles Almanac at https://www.laalmanac.com/

energy/en12.php.

8This figure is obtained from fueleconomy.gov.
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parameterize this relationship between time and fare on rail, we estimate:

farei = α + β · timei + εi (2.12)

where i is a route. We estimate α̂ = 2.9 and β̂ = 0.17 using data on ticket fares

(farei) and travel times (timei) from the Capitol Corridor, a passenger train in

Northern California operated by Amtrak. The fit of this functional form is quite

good, with an R2 of 94%. We assume that the cost of traveling via bus varies at the

origin county level and measure the cost of a single adult bus ticket for each county

in California from the American Public Transportation Association, supplemented

with data from individual county webpages when data from APTA is missing.9 We

assume that walking is free.

Finally, we measure the cost of traveling per minute HSR using the projected

estimate of a ticket at 77% of airfare, for a total of $115, between the Los Angeles

and San Francisco stations (2 hrs 38 minutes).10 Assuming the fixed cost of traveling

by HSR is the same as that of traveling by rail ($2.92), we obtain a cost per minute

of HSR travel equal to $0.70 which is about four times as expensive as other rail lines.

Commuting flows. The American Community Survey reports tract-to-tract data

on commuting flows as a part of the Census Transportation Planning Products.11

9This procedure is described in more detail in Appendix Section 2.9.2.

10This estimate of the ticket price was one proposal in HSR planning documents:
https://hsr.ca.gov/wp-content/uploads/docs/about/business_plans/BPlan_2008_SRC_

RiderRevenue.pdf.

11The U.S. Census’ Longitudinal Employer-Household Dynamics (LEHD) also reports commuting
flows between each origin and each destination but these tabulations are based on administrative
data linking employees’ home locations (origin) with their employer’s location (destination). We do
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The question asked of respondents to measure workplace location is: “At what lo-

cation did this person work LAST WEEK?”. The question asked to measure mode

of travel is: “How did this person usually get to work LAST WEEK?”. We exclude

workers who work from home, since we cannot correctly measure the wage at their

workplace without any information on where their firm is located.12

Leisure and business trips. To measure the demand for non-commuting travel

across locations, we use the California Household Travel Survey which was adminis-

tered between 2010 and 2012. 18,008 households were asked to record all trips taken

over the eight week survey period that were more than 50 miles long; 68,193 trips

are included in the dataset. The data include information on the origin census tract,

the destination census tract, the residence census tract, the number of people on the

trip, the travel mode, and the purpose of the trip. We classify each trip based on

its stated purpose into either a leisure trip or a business trip; these trips together

account for 84% of all trips taken in data. The remaining trips include combined

business and please trips, medical trips, school-related activities, and trips for which

the purpose is not stated.

We classify leisure trips as those taken for entertainment, vacation, shopping, or

to visit friends and family. The top leisure destinations are Disneyland, Yosemite,

not observe the frequency with which these trips are taken. As such, these origin-destination flows
may not reflect commute flows that are taken regularly, which is why we use ACS data to measure
commute flows separately by each mode of transportation. The differences between commuting
flows measured in the ACS and the LEHD are discussed at length here: https://www2.census.

gov/ces/wp/2014/CES-WP-14-38.pdf. Our own analysis suggests, consistent with this, that the
LEHD may over-represent very long commutes “flows” are based on a workers’ firm location and
residence location even if the worker does not travel to that location on a daily basis. Thus, we use
the ACS to measure commuting flows.

12During this time period, workers working at home made up less than 5% of statewide workers.
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Mission Beach (San Diego), Downtown San Francisco, and Downtown San Diego.

Business trips are those taken for meetings, conventions, and seminars. The top

business destinations are the State Capitol in Downtown Sacramento, Downtown

Los Angeles, Downtown San Francisco, and Downtown San Diego.

Wage data. Our primary sources of data on wages are the 2008 and 2019 samples

of the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Em-

ployment Statistics published by the U.S. Census. The LEHD reports the number

of workers by origin and destination Census tract pair who have monthly earnings

below $1,250, between $1,250 and $3,333, and above $3,333. To construct an average

wage for each tract, we first measure average earnings within each of these three bins

in California using the individual level American Community Survey samples in 2008

and 2019. We use these bins and our estimates of average earnings within each bin

to compute average earnings among workers within tract pair.13

Other covariates. We use data on covariates from a number of different sources.

We measure the share of homes in each tract that are owner-occupied, population,

average income, racial composition, occupational composition, the share of residents

with a college degree, and other demographic covariates at the tract level from the

2006-2010 and 2015-2019 American Community Survey five-year estimates. We mea-

sure population from the 2010 U.S. Census. We measure county-level unemployment

rates from the Bureau of Labor Statistics. We measure average house prices and the

share of floor space used for residential purposes in each tract from Zillow’s ZTRAX

13This procedure is described in detail in Appendix Section 2.9.1.
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data. We measure the share of income spent on leisure travel, and the share of

leisure travel spending on transport from the Bureau of Labor Statistics’ Consumer

Expenditure Survey.

Sample. There are 8,057 census tracts in California. We eliminate tracts from our

sample if they have no residents, have no workers, are on islands off the coast of

the state, or are missing wage data. Our final sample comprises 7,866 census tracts

which together house 98.5% of the statewide population.

2.4.2 Estimation of Parameters of Economic Model

In Section 2.4.2.1, we describe the estimation of the parameter vector (θC , ρC), and

the commuting shares λpreC (i, j,m,NB) for every pair of census tracts (i, j) and

every mode of transport m before the HSR is built (so s = NB) which enter 2.10.

In Section 2.4.2.2, we describe the estimation of the parameter vector (θB, ρB, µB),

and the traveling shares λpreB (i, j,m,NB) for every pair of census tracts (i, j) and

every mode of transport m. In Section 2.4.2.3, we describe the estimation of the

parameter vector (θL, ρL) and µL(i) for every census tract i, and the traveling shares

λpreL (i, j,m,NB) for every pair of census tracts (i, j) and every mode of transport

m. In this version, we specify all equations in the case with different travel modes,

but our estimation pools all modes together.14

14In future versions, we will estimate the parameters for the multi-mode case.
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2.4.2.1 Commuting Equation

We base the estimation of the parameter vector (θC , ρC) on the following model-

implied relationship

λpreC (i, j,m, s) =

(
I(i,j,m)
dC(i,j,m)

)θC
∑

j′
∑

m′∈Mij

(
I(i,j′,m′)
dC(i,j′,m′)

)θC (2.13)

where, as a reminder, λpreC (i, j,m) denotes the share of residents of location i that

commute to location j using mode of transport m in a setting prior to the construc-

tion of the high-speed rail, I (i, j,m) denotes the net income that residents of location

i would have if they were to commute to location j through mode of transport m,

and dC (i, j,m) is the monetary-equivalent cost of the time spent commuting from i

to j through mode m. We assume that

I (i, j,m) = y (i, j)− pC (i, j,m) , (2.14)

where y(i, j) denotes the income of residents of location i who work in location j and

pC (i, j,m) is the monetary cost of commuting from i to j though mode m. We also

assume that

dC (i, j,m, s) = DC (i,m) τ (i, j,m, s)ρ
C

(2.15)

where DC(i,m) is the monetary-equivalent value of an amenity term that residents

of census tract i experience when commuting through model of transport m, and

τ(i, j,m) denotes the commute time between locations iand j when using mode of
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transport m under state s.15

To measure y(i, j) , we equate it to labor income, and assume that it is the product

of an origin-specific component w(i), which accounts for the possiblity that workers

that reside in different locations have different human capital, and a destination-

specific component w(j), which accounts for productivity differences across work-

places. Specifically, we assume that y(i, j) = w(i)w(j), and we estimate these origin-

and destination-specific components using the following estimating equation

wdata (i, j) = exp (ln(w (i)) + ln(w (j)) + ε (i, j)) (2.16)

where wdata (i, j) denotes the observed average wage of workers who reside in i and

work in j , and ε (i, j) accounts for all other factors affecting observed average wages

that cannot be accounted by an origin-specific and a destination-specific fixed ef-

fect.16 We assume that ε (i, j) does not impact workers’ commuting decisions and

is mean-independent of the origin- and destination-specific components; e.g., it cap-

tures measurement error in wages as well as wage shocks unexpected to workers when

making their commuting decisions. For every pair of census tracts i and j and every

mode of transport m, we measure the commuting shares λpreC (i, jC ,m, s), commuting

costs pC (i, j,m) and travel time τ(i, j,m) as indicated in Section 2.4.1. Importantly,

as our information on commuting shares come from a finite sample of residents in

each origin census tract i, we allow for the possibility that the observed commut-

ing shares for every pair of census tracts i and j and every mode of transport m,

15In Appendix 2.8 we show results using an alternative assumption where dC (i, j,m, s) =

DC (i,m) exp (τ (i, j,m, s))
ρC

.

16We take this approach instead of setting y (i, j) = wdata (i, j) because we do not observe
wdata (i, j) for every (i, j) pair.
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λobsC (i, jC ,m), differ from the true commuting share, which we assume is determined

according to equations 2.13 to 2.16, in a term esC(i, j,m, s) that captures sampling

error; i.e.,

λobsC (i, jC ,m, s) = λpreC (i, j,m, s) + esC(i, j,m, s) (2.17)

Given equations 2.13 to 2.17, we rewrite our estimating equation as

λobsC (i, jC ,m, s) = exp(ψC (i,m)+θC ln ((w(i)w(j))− pC (i, jC ,m))−θCρC ln τ (i, j,m, s))+esC(i, j,m, s)

(2.18)

where ψC(i,m) is an origin- and mode-specific effect that accounts both for the denomi-

nator in equation (2.13) and for the term DC(i,m) entering equation (2.15).

When estimating the parameters in this equation, we consider that any of the 7,866 cen-

sus tracts in CA is a potential origin or destination of a commuting trip, and we account for

three possible transportation modes m: car only, public transit, and walking. Given these

choices, we use information on λobsC (i, jC ,m) for every possible triplet (i, jC ,m) (includ-

ing those for which λobsC (i, jC ,m) = 0), treat the terms ψC(i,m) as origin- and transport

mode-specific fixed effects, and compute Poisson Pseudo Maximum Likelihood (PPML)

estimator of these fixed effects and structural parameters θC and ρC .

In this version of the estimation, we pool all modes together.17 We sum across all

modes within an origin-destination pair, and measure travel times along each route as the

fastest time on the transport network. We report in columns (1) to (4) in Table 2.1 the

corresponding estimates both when using data from the years 2008 (i.e., when the vote

on Proposition 1a took place) and in columns (5) to (8) from 2019 (i.e., when the HSR

was expected to be built when the vote on Proposition 1a took place). As esC(i, j,m, s)

is assumed to capture sampling noise, assuming we observe data from a random sample

17Estimation of the full, more general model is in progress.
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Table 2.1: Commuting Equation Estimates

2008 2019

(1) (2) (3) (4) (5) (6) (7) (8)
PPML PPML FS IV PPML PPML FS IV

log(pre-HSR travel time) -3.671∗∗∗ -3.704∗∗∗ -3.741∗∗∗ -3.773∗∗∗

(0.00452) (0.00443) (0.00454) (0.00446)
log(workplace earnings, LEHD, 2008) 2.634∗∗∗ 2.749∗∗∗

(0.00884) (0.118)
log(earnings, ACS, 2006-2010) 0.347∗∗∗

(0.00870)
log(workplace earnings, LEHD, 2019) 3.091∗∗∗ 2.669∗∗∗

(0.00973) (0.108)
log(earnings, ACS, 2012-2016) 0.317∗∗∗

(0.00624)

ρC 1.39 1.35 1.21 1.41
θA 2.63 2.75 3.09 2.67
N 61873956 61873956 7866 7866 61873956 61873956 7866 7865
R2 0.227 0.186 0.291 0.234
F-stat 1600 2600
Destination FE No Yes No Yes

Source: LEHD, 2008 and 2019; ACS, 2006-2010; ACS, 2012-2016.

Note: This table shows PPML estimates of the commuting equation in 2.18. Table 2.6 shows
estimates under a different functional form of the disutility of travel time in 2.15.

of workers residing in each census tract implies this unobserved term has mean zero for

each triplet (i, j,m), and converges to zero as the sample size for each origin tract i goes

to infinity. Therefore, our PPML estimator yields estimates of all parameters entering in

equation 2.18 that converge to their true values as the sample size in each census tract

grows arbitrarily large.18

We estimate ρ̂C , which measures the value of time in commuting, to be around 1.2-

18Assuming that esC(i, j,m, s) accounts exclusively for sampling noise implies that our PPML
estimates converge to their true values even if we use a small set of origin and destination pairs of
census tracts (i, j) and modes of transport m, as long as the sample size in those origin census tracts
we use for estimation grows arbitrairy large. However, in practice, we compute our estimates using
a very large number of possible origin and destination census tracts. This implies that our estimates
of the parameters entering (2.18) will also converge to their true values as long as the error term
esC(i, j,m, s) is mean zero and exhibits weak correlation patterns across destination tracts j for each
pair of origin tracts and modes of transport (i,m). Consequently, our estimation procedure also
yields valid estimates if one interprets the error term in equation (2.18) not as sampling error but
as some unobserved determinant of commuting flows between census tracts iand j through mode
of transport m.
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1.4. We estimate θ̂C , which measures the elasticity of commuting to any given destination

with respect to wages in that destination, to be around 2.7 in both years of data. These

estimates are consistent with the literature. Severen (2019), for example, also computes

a PPML estimator of θC using tract-level data for Los Angeles, and obtains an estimate

of 2.2. Monte, Redding and Rossi-Hansberg (2018) use county-to-county commuting data

covering all of the US, and obtain estimates of θC = 3.3 and ρC = 1.34.

Using the estimates of (θC , ρC) reported in Column (4) of Table 2.1, the estimates of

ψC (i) (since we are pooling all modes together here), and the expression for λpreC (i, j,NB)

in equation (2.18) after setting the sampling noise to zero, we generate model-predicted

values of the share of commuters between every pair of census tracts (i, j). As these

predicted shares are functions of consistent estimators of the parameters of interest, they

are themselves consistent.

2.4.2.2 Business Travelers

Our modelling of business trips implies the following expression for the total number of

business trips that originate in a census tract j, destination in a census tract jB, and are

done using a mode of transit m under state s:

RB (j, jB,m, s) = ψ0 (j)

(
qB (j, jB)A (jB, s)

dB (j, jB,m, s)

)µBθB
pB (j, jB,m)−µBθ

B−1 (2.19)

where ψ0 (j) is an origin effect, qB (j, jB) is a shifter (expressed in monetary units) of the

number of trips done from tract j to tract jB, dB (j, jB,m, s) is the monetary-equivalent

cost of the time spent traveling for business from j to jB through mode m, and pB (j, jB,m)

is the direct monetary cost of traveling for business from j tojB though mode m. A (jB, s)
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is the amenity value of the destination tract jB under state s. We assume

dB (j, jB,m, s) = DB (j,m) τ (j, jB,m, s)
ρB (2.20)

where DB(j,m) is an unobserved shifter affecting the number of business trips that origi-

nate from location j through mode of transportm, and, as a reminder, τ(j, jB,m, s) denotes

the travel time between locations j and jB when using mode of transport m under state

s. Due to limitations in the size of the sample we use to estimate the parameters entering

equation (2.19), we do not treat the shifters qB (j, jB) and DB (j,m) as origin-destination

and origin-mode specific fixed effects, respectively. Instead, we write these shifters as a

function of observable characteristics; specifically, we assume

µBθB(ln(qB (j, jB)A (jB, s))− ln(DB (j,m))) = γB(m)XB(j, jB, s) (2.21)

where γB(m) is a mode-specific parameter, and X(j, jB, s) is a vector of observed char-

acteristics that, in our empirical specification, includes three covariates: (a) a measure of

the similarity in industry composition between tracts j and jB, (b) the share of workers in

management roles in the destination tract jB, and (c) the amenity value of the destination

A (jB, s) as defined in equation (2.51).19 For every pair of census tracts j and jB, a state s,

and every mode of transport m, we measure the number of business trips RB (j, jB,m, s),

travel time τ(j, jB,m, s), and commuting costs pB (j, jB,m) as indicated in Section 2.4.1.

Our measure of RB (j, jB,m, s) for every triplet (j, jB,m) in each state s, which we denote

as RobsB (j, jB,m, s), is based on a small random sample of residents of Califonia and, con-

sequently, we account for the possibility that the number of trips reported in our sample

19We measure the similarity in industry composition between any two tracts j and jB as the
Euclidean distance between the vectors that capture the employment shares by sector in each of

the two tracts: odsim(j, jB) =

(∑
k

(
empjk − emp

jB
k

)2)1/2

, where empjk is the employment share

in census tract j in sector k.
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for any pair of tracts and mode of transport differs from the corresponding true number of

trips; i.e.,

RobsB (j, jB,m, s) = RB (j, jB,m, s) + esB(j, jB,m, s) (2.22)

where esB(j, jB,m, s) denotes the potential sampling error in our measure of RB (j, jB,m, s).

Combining equations (2.19) to (2.22), we rewrite our estimating equation as:

RobsB (j, jB,m, s) = exp(ψB (j) + γB(m)XB(j, jB, s)−

µBθ
BρB ln τ(j, jB,m)− (µBθ

B + 1)pB (j, jB,m)) + esB(j, jB,m)

where ψB (j) ≡ lnψ0(j) is treated as an origin fixed effect in our estimation, and

accounts for the term ψ0 (j) in equation (2.19). Importantly, as RobsB (j, jB,m, s) is obtained

from a survey that restricts the set of business trips collected in the sample to those

involving two census tracts j and jB that are at least 50 miles away from each other, when

estimating the parameters in equation (2.23), we restrict our estimation sample to all

(including those with observed business trips equal to zero) possible pairs of tracts (j, jB)

such that their bilateral distance is at least 50 miles. Concerning the modes of transport,

we consider three feasible modes of transport for business trips: car only, public transit

and airplane.

As the expression in equation (2.23) illustrates, the parameters µB and θB are not sep-

arately identified from this estimating equation alone. We thus calibrate µB, the share of a

firm’s revenue spent on its employees’ business travel, using external data sources. Specif-

ically, we set µB = 0.1 using information from industry reports.20 Given this calibrated

value of µB, we use a PPML estimator to compute the estimates of the remaining param-

eters entering equation (2.23), treating the origin-specific terms ψB (j) for every tract j as

20See https://salestrip.com/insights/5-ways-businesses-can-avoid-wasting-money-on-travel-
expenses/.
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fixed effects.

We report our estimates in column (1) of Table 2.2 in the case where there is a sin-

gle mode of travel. Our estimate of the coefficient on travel time, µBθ
BρB, is approxi-

mately equal to −2. As discussed in Section 2.4.2.1, consistent with our interpretation of

esB(j, jB,m) as sampling noise that is mean zero and whose variance approaches zero as the

sample size increases in census tract i, the estimates of all parameters in equation (2.23)

converge to their corresponding true values as the sample size increases. Alternatively, as

discussed in footnote 18, if we assume that the unobserved terms esB(j, jB,m, s) are mean

zero conditional on all observed covariates entering equation (2.23), and weakly correlated

across the triplets (j, jB,m), our estimates of all parameters in equation (2.23) converge

to their corresponding true values as the set of destination-transport modes introduced

in the analysis grows arbitrarily large.In our baseline estimation approach, we combine

our estimate of the composite parameter µBθ
BρB with our calibrated value of µB and

the assumption that ρB takes the same value as the parameter ρC (i.e., we set ρ̂B = 1.4,

which corresponds to the estimate of ρC reported in column (8) of Table 2.1 to obtain the

estimate θ̂B = 14. We use these parameter estimates to construct model generated shares

of workers in j who take business trips to tract jB via mode mB given state s = NB from

equation (2.47) and use these predicted shares in our quantification.

2.4.2.3 Leisure Travelers

Our model generates an equation for the total number of leisure trips that originate in

census tract i, terminate in census tract jL, and are done using mode of transit m in

state s that has very similar structure to that included in equation (2.19) for business

trips. Specifically, denoting as RL (i, jL,mL, s) the number of leisure trips from ito jL
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Table 2.2: Business and Leisure Trip Estimates

(1) (2)
Business Leisure

log(travel time) -2.022∗∗∗ -1.779∗∗∗

(0.0656) (0.0276)
log(in commuters) 4.019∗∗∗ -2.242∗∗∗

(0.331) (0.0876)
dest. management share 3.128∗∗∗

(0.196)
log(OD industry similarity) 0.0405∗

(0.0175)
dest. log(distance to beach) -0.0705∗∗∗

(0.0109)
dest. has natl park 1.743∗∗∗

(0.123)
dest. hospitality share 6.819∗∗∗

(0.169)
dest. log(population) -0.388∗∗∗

(0.0329)

N 9824665 29375132
θL · µL 1.5
θB · µB 1.3

Source: California Household Travel Survey, 2010-2012.

using mode of transport m under state s, our model predicts that

RL (i, jL,m, s) = ψL0 (i)

(
qL (i, jL)B (jL, s)

dL (i, jL,m, s)

)µL(i)θL

pL (i, jL,m)−µL(i)θL−1 (2.23)

where ψL0 (i) is an unobserved term that is origin specific, qL (i, jL) is a shifter (expressed in

monetary units) that operates as an amenity value for leisure trips that originate in census

tract iand have tract jL as destination, dL (i, jL,m, s) is the monetary-equivalent cost of

the time spent traveling for leisure from i to jL through mode m under state s, B (jL, s)

as the amenity value of jL under state s and pL (i, jL,m) is the direct monetary cost of

traveling for leisure from i to jL though mode m. We assume, similarly to the assumptions

imposed for commuting and business travel, that

dL (i, jL,m, s) = DL (i,m) τ (i, jL,m, s)
ρL (2.24)
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where DL(i,m) is an unobserved shifter and, τ(i, jL,m) denotes travel time. Similarly to

the approach followed when estimating the determinants of business trips in Section 2.4.2.2

we model the impact of the parameters qL (i, jL) and DL (i,m) on the number of leisure

trips between tracts i and jL by mode of transport m as a function of observed covariates;

specifically,

θL (ln(qL (i, jL)B (jL, s))− ln (DL (i,m)) = γL(m)XL(i, jL, s) (2.25)

where γL(m) is a model-specific parameter, and X(i, jL) is a vector that includes the

following covariates: (a) an indicator for whether there is a national park in the destination

jl, (b) the distance of the destination jL to the coastline, (c) the share of employment in

the hospitality sector in the destination jL, (d) the log of the population in the destination

jL and (e) the amenity term B (jL, s) as defined in (2.52).

For every pair of census tracts i and jL, every mode of transport m, and every state

s, we measure the number of leisure trips RL (i, jL,m, s), travel time τ(i, jL,m), and com-

muting costs pL (i, jL,m) as indicated in Section 2.4.1. Allowing for sampling error in our

measure of RL (i, jL,mL, s) for any given triplet (i, jL,mL) in state s, which we denote as

RobsL (i, jL,mL, s), we write

RobsL (i, jL,mL, s) = RL (i, jL,mL, s) + esL(i, jL,mL, s) (2.26)

where esL(j, jB,m) denotes the potential sampling error in our measure of RL (j, jB,m).

Combining equations (2.23) to (2.26), our resulting estimating equation is analogous to

that for business trips in equation (2.23); i.e.,

RobsL (i, jL,mL, s) = exp
(
ψL (i) + γL(m)µL(i)XL(i, jL, s)−

θLρLµL(i) ln τ(i, jL,mL)− (µL(i)θL + 1)pL (i, jL,mL) + esL(i, jL,mL)
)
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We assume that the share of income spent on leisure travel is constant across tracts,

µL(i) = µL. Consistent with information from the Bureau of Labor Statistics, which

reports average annual spending on travel – including on transportation, food away from

home, and lodging – across U.S. households, we calibrate µL(i) = µL = 0.05. When we

bring equation (2.27) to the data, we make the same restriction as in the business case:

consistent with the survey, we exclude destinations that are more than 50 miles from the

origin. We report our estimates of equation 2.23 in column (2) of Table 2.2. Our estimate

of the composite parameter µLθ
LρL equals −1.78. Given our calibrated value of µL, and

setting ρ̂L = ρ̂C = 1.4, we obtain an estimate of θL approximately equal to 26. We use

these estimated coefficients to construct model-implied travel flows for leisure trips for each

pair of tracts and each mode of travel. We then use our estimated parameters to construct

model-implied leisure travel flows between each pair of census tracts as specified in equation

(2.46) and we use these model-implied travel flows to measure travel between each pair of

tracts (i, jL) for each mode mL given state s = NB.

2.4.3 Real-Income Effects of High-Speed Rail

Figure 2.4a shows the welfare gains from the HSR across Census tracts. The aggregate

gain is 0.4%, on average $176 per California voter; this figure falls to $86 in the case that

the cost of implementing the full HSR network reaches the current projection, which is

about 2.5x the original projection. Only a very small share of commuters save time from

the HSR (0.9%), while a much larger share of leisure (12.3%) and business (10%) travelers

save time. The median commuter who saves time saves about 12 minutes, while the median

long distance traveler who saves time saves about 20 minutes.

The distribution of welfare gains across Census tracts is highly skewed. Tracts in the

top decile, ranked by welfare gain and shown in yellow in Figure 2.4b, each gain at least

$1,000 per year. The most significant winner is the Central Valley, where commuters with
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Figure 2.4: Real Income Gains from the HSR

(a) % Economic Gain (b) Top Decile of Gains

initially long commutes traveling north to the San Francisco bay area or south to the LA

area benefit considerably. However, 75% of tracts gain less than $44 per year and many

even lose income due to the costs associated with building the HSR.

Of course, the welfare gains from the HSR vary when the cost of building the rail line

changes. Our baseline estimation assumed the cost of building as stated in 2008, which

was $40 bn. But even as the cost has grown – the current estimate is around $105 bn –

the real income gains remain positive. Only once the total cost exceeds $215 bn is net zero

economic return from building the HSR.

2.5 Voter Preferences

We next describe the procedure we follow to estimate the parameters (θV , β1, . . . , βK) that

enter equation (2.7) and govern the relationship between votes and different components
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of preferences. Importantly, our goal is to recover estimates of the parameters that may

be used to compute the votes on the HSR if the economic or non-economic components of

preferences has more or less impact.

Before turning to the model and estimation, we first present some suggestive evidence of

the role of both economic and other factors in shaping preferences for infrastructure. Figure

2.5a again shows the share of voters voting in favor of the HSR across tracts. Comparing

it with the economic gains as computed in Section 2.3.2 and shown in Figure 2.5b, there

appears to be almost no positive correlation between economic gains and votes: if anything,

there may be a negative correlation, as areas that gain relatively more economic (i.e., in

the Central Valley) seem to be relatively less in favor of the rail line. But then, in Figure

2.5c, we plot, for each tract, the share of voters in each tract voting yes on the HSR minus

the share of voters voting for Obama. Now, a much clearer relationship between votes

and welfare gains appears: areas that were relatively more supportive of the HSR than

of Obama were those who stood to gain economically from its creation. Taken together,

this set of figures suggests a role for both politics (i.e., the tendency for areas to vote for

a given political party) and economics in shaping transport preferences. This is precisely

the relationship we seek to quantify in this section.

2.5.1 Estimation

As discussed in Section 2.3.1, the error term in equation (2.7) is the sum of two unobserved

components. First, a term εW (i) that captures the expectational error the representative

voter living in location i makes when forecasting the difference in the log of the average

expected discounted flow of real-income it will experience depending on whether the high-

speed rail, as described in Proposition 1a, is built. Second, a term εa (i) that captures all

unobserved factors determining the political preferences of residents of census tract i for

the high-speed rail.
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Figure 2.5: Votes, Economic Gains, and Political Values

(a) % Yes on Prop 1a (b) % Economic Gain

(c) % Yes on Prop 1a - % Obama
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The structure of the error term in equation (2.7) implies that defining a procedure

that yields consistent estimates of the parameter of interest θV requires dealing with two

potential sources of endogeneity. First, if voters’ expectations are rational, then, across all

census tracts, the expectational error εW (i) will be correlated with the ex-post realized

values of log real-income differences ln Ŵ (i). Second, if the political body that decided

on the final location of the high-speed railway tracks and stations did so either trying

to maximize the overall support for the project or, for any other reason, trying to favor

census tracts with particular values of the unobserved term εa (i), then this term will

be also correlated with the ex-post realized values of log real-income differences ln Ŵ (i).

While the presence of the expectational error εW (i) in the error term will tend to bias

the OLS estimate of θV towards zero (see Dickstein and Morales, 2018), the presence of

the unobserved term εa (i) in the regression error term may bias the OLS estimates of θV

upwards or downwards.

Addressing the omitted variable bias arising from the correlation between εW (i) and

ln Ŵ (i) requires an instrumental variable estimation approach in which we use as a instru-

ment a function of variables belonging to voters’ information set at the time of the vote

on Proposition 1a (2008). A potential candidate for such instrument is the welfare impact

that voters living in any given census tract would have experienced if the fundamentals had

remained constant at their 2008 values. Given the assumption that voters’ expectations are

rational, this instrument would be mean independent of voters’ expectational error εW (i)

as long as voters knew in 2008 the change in real income they would have experienced if

the proposed high-speed rail had started to operate at that point.

To address the potential omitted variable bias arising from correlation between εa (i)

and ln Ŵ (i), we exploit information on the technically feasible routes described in Section

2.2 and shown in Figure 2.2. As we discuss in this section, engineers from the HSR

authority identified in 1996 three possible routes to connect SF to LA by a high-speed rail.
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The determination of these three routes was based on technical feasibility and cost-saving

consideration and, thus, was not directly impacted by the political preferences that voters

in any given census tract had for the high-speed rail project; i.e., was not directly impacted

by εa (i). We thus would like to build an instrument that exclusively exploits information

on these three planned routes, and that incorporates information neither on the route that

was finally chosen nor on the actual location of the planned stations, as these choices may

have been impacted by the will of political agents to favor particular census tracts.

We construct this instrument by computing the average welfare gain (or loss) of res-

idents of each census tract across 100 simulated high-speed railway networks drawn ran-

domly from the set of all possible networks consistent with the three technically feasible

routes connecting SF to LA. Formally, we construct our instrument as

zi =
1

100

100∑
n=1

log(
ˆ

W fs
i,n) (2.27)

where
ˆ

W fs
i,n is the 2008 change in welfare in location i from a counterfactual high-speed

railway network that has 24 stations randomly allocated among all possible locations along

the three feasible routes described in Section 2.2. This procedure is described in detail in

Appendix 2.9.3.21

The instrumental variable zi defined in equation (2.27) exclusively uses information

available to voters in 2008 and, thus, the assumption that voters expectations are rational

implies that it will be mean independent of the expectational error term εW (i). This

instrumental variable also only uses information on a set of possible high-speed railway

networks defined exclusively by their technical feasibility and, thus, is not a direct function

21Specifically, we first randomly select one of the three feasible routes. Then, we randomly select
a set of 24 points along the randomly selected route to serve as stations. We assume that the train
travels between these randomly allocated stations at a speed that equals the average travel speed
of the actual HSR.
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the unobserved political preferences accounted for by the unobserved term εa (i). We cannot

rule out however that there is a spurious correlation between this unobserved term and the

instrument in equation (2.27); this would be the case if, e.g., residents of the census tracts

located close to any of the three feasible routes identified in 1996 (shown in Figure 2.2)

have on average different values of the term εa (i) than those tracts located far away from

any of these feasible routes.

We report OLS and IV estimates of the parameter vector (θV , β1, . . . , βK) in Tables 2.3

and 2.4, respectively. All throughout, we report Conley (1999) standard errors to account

for spatial correlation in the data.22 In the different columns reported in Table 2.3, we

progressively increase the number of controls we include in our regression specification.

In column (1), we include no controls, obtaining an estimate of θV that is negative but

not statistically significant. In column (2), to control for differences in political ideology

across census tracts, we add a control for the log-odds ratio of the share of voters in each

census tract that were registered democrats at the time of the 2008 election. Relative to

column (1), adding this controls makes the R2 increase from 0.07% to nearly 60%, and

makes the OLS estimate of θV become positive, though still noisily measured. In column

(3), we additionally control for a proxy of the extent to which voters in a location value

the environment – the log-odds of votes in favor of Proposition 10. 23

Column (4) additionally controls for a proxy of general support for transportation

projects – the log share of votes in support of Proposition 1B. 24 Finally, we introduce

in column (5) a series of controls for population density, as the population density of a

22In our baseline results, we use a 25km bandwidth. In robustness checks, we use 50km and
100km bandwidths.

23Proposition 10 was on the ballot in the same election as the HSR proposition and, if passed,
would have allowed the state to issue $5 billion in bonds for alternative fuel projects (Ballotopedia).

24Proposition 1B was on the ballot during the November 2006 Midterm elections, and would have
allowed the state to issue $19.9 billion in bonds for transportation projects (Ballotopedia).
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location likely affected whether a station was placed near it, and is likely correlated with

the support that Proposition 1a obtained for ideological reasons. Specifically, we control

in column (5) for population density in each census tract, which we denote as popdensi, as

well as for an inverse-distance weighted average of population density in the surrounding

tracts, which we denote as avgmai.
25 In the specification with the largest set of controls,

the estimate value of θV equals 5.13.

The first column in Table 2.4 reproduces those in column (5) of Table 2.3, to facili-

tate the comparison of the OLS and IV estimates. Columns (2) and (3) present the first-

and second-stage estimates, respectively, for an IV estimator that uses as instrument the

welfare impact that voters living in any given census tract would have experienced if the

fundamentals had remained constant at their 2008 values. As discussed above, this instru-

ment exclusively address possible endogeneity due to the expectational error term εW (i)

. There is only a small change in the resulting IV estimate of θV relative to the OLS

estimates. Columns (4) and (5) present the first- and second-stage estimates, respectively,

for the IV estimator that uses as an instrument zi as introduced in equation (2.27). The

F-stat associated with the first-stage estimate of the coefficient on the instrument is close

to 30, and the resulting IV estimate of θV equals 5.69. We use this number as our baseline

estimate of θV in the subsequent analysis. While these results use the baseline model,

Tables 2.7 and 2.8 in Appendix 2.8 presents the same results under the full model.

2.5.2 Political versus Economic Preferences for the HSR

How are important are real income gains from the HSR as compared with other factors, like

political preferences, in determining votes for the HSR? To quantify this, we use our model

of voting, plus our estimates of each of the components that determine votes including

25This is computed as: avgmai =
∑
j 1(i 6= i) · τ(i, j,NB)−1 · popdensj .
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Table 2.3: OLS Estimates of Voting Equation

(1) (2) (3) (4) (5)

log(Ŵ ), 2019 -4.617 2.456 2.943 2.834 5.128∗

(4.267) (2.122) (1.800) (1.681) (2.056)

log-odds Reg Dems Share 0.665∗∗∗ 0.462∗∗∗ 0.455∗∗∗ 0.414∗∗∗

(0.0725) (0.108) (0.125) (0.0814)

Environment: log odds Yes on Prop. 10 0.460∗∗∗ 0.430∗∗∗ 0.360∗∗∗

(0.0876) (0.0541) (0.0519)

Transportation: log odds Yes on Prop. 1b 0.0508 -0.00350
(0.156) (0.139)

pop. density 0.0469∗∗∗

(0.0103)

Avg. MA Pop. Dens. 0.0457
(0.127)

Constant 0.203∗ 0.275∗∗∗ -0.0165 0.0145 -0.185
(0.0943) (0.0470) (0.100) (0.0557) (0.294)

R2 0.00753 0.589 0.658 0.659 0.713
N 7866 7866 7866 7866 7866

Note: This table shows OLS estimates of equation 2.7. Proposition 10 was on the ballot in the
same election as the HSR proposition and, if passed, would have allowed the state to issue $5
billion in bonds for alternative fuel projects (Ballotopedia). Proposition 1b, on the ballot in 2006,
allocated funds towards transportation projects including highways.
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Table 2.4: IV Estimates of Voting Equation without Spillovers

2008 IV Random Route IV

(1) (2) (3) (4) (5)
OLS FS IV FS IV

log(Ŵ ), 2019 5.128∗ 4.865∗ 5.686∗∗

(2.056) (2.011) (2.009)

log(Ŵ ), 2008 0.518∗∗∗

(0.00600)

log(Ŵ ), Random Route IV, 2008 0.565∗∗∗

(0.103)

log-odds Reg Dems Share 0.414∗∗∗ -0.0000745 0.414∗∗∗ -0.00121 0.414∗∗∗

(0.0814) (0.0000641) (0.0814) (0.000741) (0.0815)

Environment: log odds Yes on Prop. 10 0.360∗∗∗ 0.0000108 0.360∗∗∗ 0.00202 0.359∗∗∗

(0.0519) (0.0000787) (0.0521) (0.00136) (0.0514)

Transportation: log odds Yes on Prop. 1b -0.00350 0.000105 -0.00318 0.00141 -0.00418
(0.139) (0.0000789) (0.139) (0.000910) (0.138)

pop. density 0.0469∗∗∗ 0.00000981 0.0469∗∗∗ 0.0000613 0.0468∗∗∗

(0.0103) (0.00000761) (0.0103) (0.000107) (0.0102)

Avg. MA Pop. Dens. 0.0457 -0.000398∗ 0.0423 -0.00593∗ 0.0528
(0.127) (0.000160) (0.127) (0.00262) (0.122)

Constant -0.185 0.00305∗∗∗ -0.176 0.0146∗ -0.204
(0.294) (0.000367) (0.293) (0.00569) (0.279)

First stage F-stat 7391.1 29.80
R2 0.713 0.995 0.713 0.560 0.713
N 7866 7866 7866 7866 7866

Note: This table shows IV estimates of equation 2.7. The 2008 IV uses welfare measured using
2008 fundamentals as an instrument for expected welfare, and the random route IV uses an
instrument constructed using fake HSRs, as described in detail in Appendix section 2.9.3.
Proposition 10 was on the ballot in the same election as the HSR proposition and, if passed,
would have allowed the state to issue $5 billion in bonds for alternative fuel projects
(Ballotopedia). Proposition 1b, on the ballot in 2006, allocated funds towards transportation
projects including highways.
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θ̂V , ln(â(i)) and Ŵ (i) to ask counterfactual questions. First, we quantify the aggregate

vote share in favor of the HSR in the case where economic preferences are the only factor

influencing votes; in other words, we ask, if people had been voting only based on the

economic effects of the HSR, ignoring any other preferences, what would the aggregate

vote on the HSR have been?

To implement this, we take our baseline estimate of θ̂V = 5.7 and Ŵ (i) and set

ln(â(i)) = 1 and ε(i) = 0. Thus, the economic effects will be the only factor affecting

votes. In this case, we find that the aggregate vote would have been 50.6%, which is far

lower than the actual vote of 52.6% in favor of the HSR. In fact, the economic component

can explain less than one-quarter of the aggregate vote in favor of the HSR. A large seg-

ment of the vote in favor of the HSR (77%) cannot be explained by economic preferences

alone. In a related but slightly different counterfactual, we ask what the aggregate vote

share would have looked like if agents had voted only on the non-economic component of

preferences. In this case, we set Ŵ (i) = 1 and ε(i) = 0 with ln(â(i)) 6= 1 and we find that

removing the economic component of votes and allowing only the non-economic component

to be a factor has a small effect on the aggregate vote share, which falls from 52.6% to

51.8%. In this case, we find a similar result: the non-economic component can explain

more than two-thirds of the aggregate vote in favor of the HSR.26

We then compute how much of the vote in favor the non-economic preferences compo-

nent can explain, relative to the economic component. To do this, we compute v(â)−50 =

1.8 where v(â) is the aggregate vote when Ŵ (i) = 1 and ε(i) = 0. We then compute the

corresponding term for the only-economic component: v(ŵ) − 50 = 0.8. Dividing these

two terms, we find that the non-economic component can explain 3.2 times more of the

aggregate vote in favor than the economic-only component can explain.

26This figure is computed as: 51.8−50
52.6−50 · 100, and measures the percentage of the aggregate vote

share in favor of the HSR (2.6%) is explained by the non-economic component.
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We consider these outcomes under several different parameterizations of the model in

Table 2.5. In addition to the baseline, no GE case, we consider the case with GE effects.

Instead of assuming a power function for travel costs, we instead assume an exponential

function. To address some potential for model mispecification, we consider a version where

we exclude Census tracts within 5km of the HSR route. In this case, we do not estimate θV

off of Census tracts where we may have failed to capture forces such as the noise disamenity

from living very close to the train tracks. We also consider a “pessimistic” case, where the

costs of the HSR are assumed to be higher and the probability of completion is assumed

to be lower.

Table 2.5: Determinants of Voter Preferences: Alternative Parameterizations

θV Average % Gain Median % Gain Only â Only Ŵ vote v(â)−50
v(ŵ)−50

Baseline 5.69 0.42 0.10 51.84 50.58 3.2

Baseline w/ 5km buffer 5.46 0.42 0.10 53.42 50.56 6.1

Full model 7.63 0.36 0.10 51.73 50.68 2.5

Full model w/ 5km buffer 7.07 0.36 0.10 53.06 50.63 4.9

Baseline+vary ρ 1.53 2.59 0.83 51.50 50.92 1.6

Baseline+no air 12.20 1.12 0.91 48.95 53.53 -0.3

Baseline+pessimistic 10.70 0.21 0.04 51.86 50.55 3.4

Baseline+exponential 2.36 1.80 0.47 51.43 50.98 1.5

Note: This table shows results under different assumptions. “No GE” corresponds to the case
without spillovers and without land. “GE” corresponds to the case with spillovers and land. The
“5km” buffer rows estimate θV excluding tracts within 5km from the HSR tracks.

With the exception of the no air case, in which welfare gains are much larger in mag-

nitude since the initial commute time along many long routes is far higher than when we

allow for air travel, the story is very consistent. The HSR would have have passed even if

voters put no weight on the economic component of the HSR because their non-economic,

including political, preferences, are sufficiently strongly in support of the HSR.
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2.6 Conclusion

This paper uses the setting of California’s High Speed Rail to study how preferences shape

the spatial distribution of transportation infrastructure. To do this, we first build a model

of voters’ choices over whether or not the rail should be built, where the choice depends on

both the economic impacts of the rail and on other factors. To measure the economic gains

in each location, we develop a sophisticated mode which captures not only time saved on

commuting trips, on leisure trips, and on business trips but also the general equilibrium

impacts of the HSR on local development through its impact on land rents and wages. We

estimate the model using granular, tract-level data on commuting patterns, leisure and

business travel patterns, wages, floor space, and votes on the high speed rail, as well as

on other ballot measures. To account for the endogeneity associated with expectational

errors as well as the placement of the actual HSR network, we use an instrumental variables

strategy.

Using this framework, we show that political and other non-economic preferences play

a much larger role than real income gains in determining people’s preferences for infras-

tructure investment. We find that the non-economic component of preferences can explain

around three times as much of the variation in votes across locations as much the eco-

nomic component can explain. Our results have important implications for which transport

projects may ultimately be approved, and suggest that, despite the focus on the literature

on the real income effects of transport, the projects that are ultimately implemented may

not be the ones that maximize real income.
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2.7 Model Appendix

We model an economy with a set J of tracts, each tract i with a fixed resident population

NR (i) and connected to other tracts by various transport modes. Residents consume a

traded good, a non-traded service, floor space and leisure trips. They choose where to

commute to work, where to take leisure trips, how many such trips to make, and what

mode of transportation to use for each of these travel purposes.

Traded good firms produce using labor, floor space, and productivity-enhancing busi-

ness trips with constant returns to scale; and they choose where to send workers to business

trips, how many such trips to make, and what mode of transportation to use. Non-traded

services are produced 1-1 from labor. The HSR network is financed with a fixed invest-

ment with income taxes. The transport sector of the economy operates constant-returns

technologies using the tradeable good as input, with ticket prices covering the price of each

trip.

The discrete choices of destinations and modes are governed by idiosyncratic shocks to

resident’s preferences and tradeable firm’s productivity, and by the heteogeneous appeal

of destination tracts. Specifically, tracts are heterogeneous in terms of their fundamental

productivity, amenities, and stock of floor space. Furthermore, residents living in different

tracts are allowed to be heterogeneous in terms of their preferences over modes of travel

and for specific leisure destinations. They may also differ in their drivers of income, namely

the efficiency units of labor that they supply and their rate of ownership of the local floor

space. The implementation of the HSR endows the economy with an option of making

faster (and possibly more expensive) trips along some routes compared to the status quo.

In the presentation of the model, variables that are indexed by s may change either

endogenously or exogenously based on whether the HSR is built (s = B) or not (s = NB).

141



2.7.1 Preferences

When the HSR status is s, the utility Uω of an individual ω living in tract i who travels to

jC for commuting and to jL for leisure, by transport modes mC and mL respectively, is:

Uω (i, jC ,mC , jL,mL, s) = max
C,H,S,RL

B (i, s)
C1−µL(i)−µH(i)−µS(i)HµH(i)SµS(i)

dC (i, jC ,mC , s)

(
qL (i, jL)B (jL, s)

dL (i, jL,mL, s)
RL

)µL(i)

εCω (jC ,mC) εLω (jL,mL) .

(2.28)

subject to the budget constraint:

C + r (i, s)H + pS (i, s)S + pL (i, jL,mL, s)RL + pR (i, jC ,mC , s)RC = (1− t (s)) y (i, jC , s)

(2.29)

Expression 2.28 indicates that consumers derive utility from the amenities of their place

of residence B (i, s), as well as from the consumption of tradeable commodities C, housing

H, services S, and leisure trips RL, with Cobb-Douglas shares that we allow to be location-

specific. The amenity term may respond endogenously to the local density of economic

activity as detailed below. This heterogeneity captures in a reduced-form way the fact that

workers in different tracts in California may have different spending patterns on leisure trips

and housing, for example due to different demographic characteristics. These workers face

a disutility of daily commuting travel dC (i, jC ,mC , s). The utility they derive from leisure

trips depends negatively on time travelled dL (i, jL,mL, s) and positively on the quality of

the destination visited, which is a composite of an exogenous origin-destination component

qL (i, jL) (capturing, for example, that residents of some locations may on average be more

likely to have relatives in some other specific locations) and the destination-specific amenity

B (jL, s).

In our baseline, the utility cost of travel is a power function of travel time τ (i, j, s,m)
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and depends on travel mode for both commuting (k = C) and leisure (k = L):

dk (i, j, s,m) = D (i,m) τ (i, j, s,m)ρ
k

for k = C,L, (2.30)

where ρk is the elasticity of travel disutility to travel time, and where D (i,m) is a location-

specific preference for traveling through transport mode m. This term captures in a

reduced-form way the fact that workers in different tracts in California may have dif-

ferent tastes for different modes of travel, such as a preference for using cars over public

transit.

The last two terms of (2.28), εCω (jC ,mC) and εLω (jL,mL), are idiosyncratic preference

shocks for commuting and leisure travel to each destination by each travel mode. We

assume them to be IID Type-I extreme value distributed:

Pr
(
εkω (jk,mk) < x

)
= e−e

−θkx
for k = C,L, (2.31)

where θk is the (inverse) of the dispersion of shocks across travel modes and destinations

for travel purpose k.

We turn now to the budget constraint 2.29. On the expenditure side, the price per unit

of tradeable commodities (C) is normalized to 1 and the cost per unit of floor space for

housing (H) is r (i, s). The monetary cost of traveling from i to j through means m in state

s is pR (i, jL,mL, s), regardless of whether the trip is for commuting or leisure. In each

leisure trip, people spend this travel cost and consume cL units of services at destination,

at cost pS (jL, s). Hence, the cost per leisure trip is:

pL(i, j,m, s) = pR (i, jL,mL, s) + cLpS (jL, s) . (2.32)

Regular commuters pay pR (i, jC ,mC , s) per trip from i to jC through mC , with the annual
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cost multiplying this per-trip cost by the annual number of trips (i.e., the working days)

RC .27 Because non-tradeables are produced 1-1 from labor, the cost of each unit of services

is pS (i, s) = w (i, s). The resulting demand system is quasi-homothetic, with homothetic

demand over C, H, S, and RL after spending pC (i, jC ,mC , s) annually on commuting.

The income side of (2.29) equals pre-tax income y (i, jC , s) net of the tax rate t (s) .The

tax equals t if the HSR is approved and 0 otherwise. Pre-tax income is driven by two

sources, labor and home ownership:

y (i, jC , s) ≡ e (i)w (jC , s) + η (i) r (i, s) . (2.33)

The first term measures labor income. We assume that the returns to labor income equal

the efficiency units of residents of tract i, e (i), times the wage per efficiency unit at des-

tination, w (jC , s). So, within an origin tract, commuters to different destinations earn

different wages based on w (jC , s); and, across origin tracts, commuters to the same des-

tination earn different wages based on e (i) . The second term in (2.33) measures returns

to home ownership. η (i) is the share of the floor space per resident in i that is owned

by residents on i. So, an increase in land rents r (i, s) reduces the real income of tract-i

residents through the cost of housing, and increases it through the returns to land as a

function of η (i).

Maximizing out the solutions for consumption C, housing H, services S, and number

27This formulation already imposes that, throughout a year, each invidual ω within a tract
chooses one destination for work and for leisure. This is consistent with assuming that agents
receive idiosyncratic shocks once per year and that the total utility associated with making trips
for a given purpose to multiple destinations is additive across destinations, so that only the best
destination for each purpose is chosen each year.
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of trips R, the solution to (2.28) gives indirect utility:

Vω (i, jC ,mC , jL,mL, s) =
B (i, s)

r (i, s)
µH(i)

pS (i, s)
µS(i)

I (i, jC ,mC , s)

dC (i, jC ,mC , s)

(
qL (i, jL)B (jL, s)

pL (i, jL,mL, s) dL (i, jL,mL, s)

)µL(i)

εCω (jC ,mC) εLω (jL,mL)

(2.34)

where

I (i, jC ,mC , s) ≡ (1− t (s)) y (i, jC , s)− pC (i, jC ,mC , s) . (2.35)

is the disposable income net of taxes and commuting costs.

2.7.2 Welfare

Each resident ω makes discrete choices of destination and transport mode for both com-

muting and leisure that maximizes indirect utility. These choices are represented by the

quadruplet {jC , jL,mC ,mL}. Destinations are chosen from the set of tracts J while the set

of transport modes for travel purpose k = L,C isMk.
28 The average yearly real income of

tract-i residents is defined as the expected value of indirect utility across the realizations

of the εCω and εLω preference shocks, that is:

V (i, s) = Eω
[

max
(jC ,jLmC ,mL)∈J 2×MC×ML

Vω (i, jC ,mC , jL,mL, s)

]
. (2.36)

Using standard properties of the extreme-value distributions for the shocks εCω and εLω

together with (2.34), we can write this average real income simply as:

V (i, s) =
WC (i, s)

PL (i, s)µL(i)

B (i, s)

r (i, s)µH(i) PS (i, s)µS(i)
(2.37)

28In our baseline, transport modes for commuting are MC =
{car,public transit,walking or biking} and for leisure they are ML = {car,public transit,air}.
Introducing the HSR means an upgrade of the public-transit mode.
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where WC (i, s) captures average income net of commuting costs of residents of i:

WC (i, s) =

∑
jC∈J

∑
mC∈MC

(
I (i, jC ,mC , s)

dC (i, jC ,mC , s)

)θC 1
θC

. (2.38)

PL (i, s)is akin to a quality-adjusted price index for leisure trips for residents of i, net of

travel costs:

PL (i, s) =

∑
jL

∑
mL∈ML

(
pL (i, jL,mL, s) dL (i, jL,mL, s)

qL (i, jL)B (jL, s)

)−θLµL(i)
− 1

θLµL(i)

, (2.39)

Finally, average (amenity-adjusted) real income also depends on local amenities B (i, s),

land prices r (i, s), and service prices PS (i, s).

2.7.3 Tradeble Sector Firms

In the tradeable sector, we assume a measure 1 of firms in each tract. Tracts differ in their

productivity A (j, s). Each firm uses foor space HY , labor NY , and business trips RB as

inputs. A firm ω sending workers on a number RB of business trips to destination jB using

transport mode mB produces output according to the Cobb-Douglas production function:

Yω(j, RB , jB ,mB , s) = A (j, s)H
µHY

(j)

Y N
1−µHY

(j)−µB(j)

Y

(
qB (j, jB)A (jB , s)

dB (j, jB ,mB , s)
RB

)µB(j)

εBω (jB ,mB) .

(2.40)

Note first that production functions are allowed to be tract-specific, through heterogeneous

Cobb-Douglas shares. Second, business trips are productivity-enhancing, capturing for

example that they promote new supplier/customer relationships. Specifically, the returns

to business trips depend on the productivity of the destination (A (jB, s)), on an exogenous

origin-destination productivity match qB (j, jB) (capturing that firms in some locations may

on average be more likely to find business partners in some other specific location), and
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negatively on time traveled (captured by dB (j, jB,mB, s)). Finally, the return to business

trips also depend on an idiosyncratic productivity shock εBω (jB,mB) for the destination

and travel mode for these business trips. We assume them to be IID Type-I extreme value

distributed:

Pr
(
εBω (jB,mB) < x

)
= e−e

−θBx , (2.41)

where θB is the (inverse) of the dispersion of shocks across travel modes and destinations

for business travel.

We assume that firms hire labor and floor space before observing realizations of these

idiosyncratic business opportunities, and that they choose the business trip destination

(from the set of locations J ), the mode of transport (from the set of available modesMB),

and the number of trips RB afterwards. Hence, the firm solves the problem:

Π = max
NY ,HY

E
[

max
(RB ,jB ,mB)∈(R+×J×MB)

Yω(j, RB, jB,mB, s)− pR (j, jB,mB, s)RB

]
︸ ︷︷ ︸

≡Y (j,s)

−w (j, s)NY−r (j, s)HY ,

(2.42)

where pR (j, jB,mB, s) is the monetary cost per business trip. Because conditional on floor

space and labor there are decreasing returns to the number of trips, we can solve for the

number of trips RB, plug them back into the expectation and then integrate over realization

of idiosyncratic business shocks using standard properties of the extreme value distribution

defined in (2.41). After these steps, the expected output net of business costs defined in

(2.42) can be written:

Y (j, s) ≡ Ω (j, s)H

µHY
(j)

1−µB(j)

Y N

1−µHY (j)−µB(j)

1−µB(i)

Y , (2.43)

where Ω (j, s) is an endgenous TFP term that depends on both the TFP of the location
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A (j, s) and the distribution of business travel opportunities:

Ω (j, s) ≡ κB (j)A (j, s)
1

1−µB(j)

∑
j′

∑
m∈MB

ij (s)

(
qB (j, j′)A (j′, s)

pB (j, j′,mB, s) dB (j, j′,mB, s)

)θBµB(j)


1

(1−µB(j))θB

,

(2.44)

where we have denoted κB (j) ≡ µB (j)
µB(j)

1−µB(j) (1− µB (j)) .

2.7.4 Travel Choices

The travel decisions of workers and firms imply equations for shares and numbers of trips

taken to a given destination that we use to estimate key parameters of the model. Specif-

ically, using standard properties of the extreme-value distributions for the shocks εCω and

εLω , the solution to (2.36) gives the fraction of residents from i that commute to jC using

transport mode mC ,

λC (i, jC ,mC , s) =

(
I(i,jC ,mC ,s)
dC(i,jC ,mC ,s)

)θC
∑

j

∑
m

(
I(i,j,m,s)
dC(i,j,m,s)

)θC , (2.45)

as well as the fraction of residents from i that travel for leisure to jK through transport

mode mL:

λL (i, jL,mL, s) =

(
qL(i,jL)B(jL,s)

dL(i,jL,mL,s)pL(i,jL,mL,s)

)µL(i)θL

∑
j

∑
m

(
qL(i,j)B(j,s)

dL(i,j,m,s)pL(i,j,m,s)

)µL(i)θL
. (2.46)

Similarly, from the solution to the firm’s problem in 2.42 and using standard properties of

the extreme value shocks εBω , the fraction of firms from j sending workers on business trips
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to jB takes the same functional form as (2.46):

λB (j, jB,mB, s) =

(
qB(j,jB)A(jB ,s)

dB(j,jB ,m,s)pR(j,jB ,mB ,s)

)µB(j)θB

∑
j′
∑

m

(
qB(j,j′)A(j′,s)

dB(j,j′,m,s)pR(j,j′,m,s)

)µB(j)θB
. (2.47)

The last two expressions measure shares of travelers (or firms) making leisure (or busi-

ness trips) to a destination. In the data, we observe the number of trips to each destination

by travel purpose. In the model, the number of leisure trips from i to jL through means

mL depends not only on the fraction of travelers but also on the intensity of travel. Adding

up the optimal choice of number of trips across residents of i, we obtain that the number

of leisure trips from i to jL to mL is:

RL (i, jL,mL, s) = λL (j, jL,mB, s)µL (i)
NR (i) I (i)

pL (i, jL,mL, s)
, (2.48)

where I (i) is the average income net of commuting expenditures of location i’s residents,

itself a function of where they commute for work:

I (i) ≡
∑
jC

∑
mC

λC (i, jC ,mC , s) I (i, jC ,mC , s) . (2.49)

Similarly, from the solution for RB from (2.42), the total number of business trips from

j to jB through mode mB is:

RB (j, jB,mB, s) = λB (j, jB,m, s)
µB (j)

1− µB (j)

Y (j, s)

pB (j, jB,mB, s)
. (2.50)

2.7.5 Spillovers

We allow for firm productivity and for residential amenities to respond endogeneously to

the level of local activity. Specifically, we use similar functional forms as Ahlfeldt et al.
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(2015) and assume that spillovers respond to the density of workers in the location and in

the surroundings:

A (j, s) = ZA (j)

ÑY (j, s)

H (j)
+
∑
k 6=j

e−ρ
spillover
A τmin(j,k,s) ÑY (k, s)

H (k)

γspillover
A

(2.51)

B (i, s) = ZB (i)

ÑY (i, s)

H (i)
+
∑
k 6=i

e−ρ
spillover
B τmin(j,k,s) ÑY (k, s)

H (k)

γspillover
B

(2.52)

where ÑY (j, s) =
∑

i λ
C (i, j, s)NR (i) is the number of workers employed in j and H (j)

is the total floor space of location j, so that ÑY (j,s)
H(k) is the worker density in j and

τmin (j, k, s) ≡ minm {τ (j, k, s,m)} is the fastest travel time across all modes over a given

route. In Ahlfeldt et al. (2015), the congestion at residence (denominated B here) depends

on how many people live around an area, while the agglomeration at destination (denomi-

nated A here) depends on how many people work around an area. Since we assume a fixed

number of residents, in our case both spillovers are a function of the endogeneous number

of workers in the surrounding areas.

2.7.6 Equilibrium

Equilibrium in the labor market of tract i implies:

∑
i

λC (i, jC , s) e (i)NR (i)︸ ︷︷ ︸
N(i,s)

= NY (i, s) + µS (i)
NR (i) I (i, s)

w (i, s)
+ TS

∑
j

∑
mL

RL (j, i,mL, s)︸ ︷︷ ︸
NS(i,s)

.

(2.53)

where λC (i, jC , s) fraction of commuters from i to jC through any means:

λC (i, jC , s) ≡
∑
mC

λC (i, jC ,mC , s) . (2.54)
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The left-hand side of (2.53) is the supply of efficiency units, N (i, s), to location i. The

right hand side is the sum of demand for efficiency units in the tradeable (NY (i, s)) and

non-tradeable (NS (i, s)) sector, with the latter encompassing the demand for local services

from location i’s residents and from leisure-travelers into i.

Next, using the solution for consumer demand for floor space from (2.28) and for firm’s

demand for floor space and labor from (2.42), the equilibrium in the housing markets is:

NR (i)
µH (i) I (i)

r (i, s)
+NY (i, s)

w (i, s)

r (i, s)

µHY (j)

1− µHY (j)− µB (j)
= H (i) , (2.55)

where the first term in the left-hand side is the demand for floor-space from residents of i,

the second term is demand from firms located in i, and H (i) is the supply of floor space

in i. Finally, since tradeable firms operate subject to constant returns, the zero-profit

conditions resulting from (2.42) dictates:

w (j)1−µB(j)−µHY (j) r (j)µHY (j) = κΩ (j) Ω (j)1−µB(j) (2.56)

for some constant κΩ (j) that is a function of µB (j) and µHY (j).

An equilibrium consists of distributions of land prices r (j, s), wages w (j, s), and sup-

plies of labor into tradeables NY (i, s), such that: i) the land market clearing condition

2.55 holds for all tracts; ii) the labor market clearing condition 2.53 holds for all tracts i;

and iii) the zero-profit condition 2.56 holds for all tracts j.29

29These equations include as unknowns the endogenous productivity term Ω (j), the agglomera-
tion and amenity spillover functions A (j, s) and B (i, s), and the average income I (i). Using 2.44,
2.51, 2.52, and 2.49, all these terms can be expressed as functions of the endogenous variables{
r (j, s) , w (j, s) , NY (i, s) , λC (i, jC , s)

}
which define the equilibrium.

151



2.7.7 Counterfactuals

We now express the equilibrium value of every endogenous outcome in a scenario where

s = B relative to its value in an equilibrium where s = NB. The system of equations we

derive here is what we implement when running counterfactuals. We let

X̂ (·) ≡ X (·, B)

X (·, NB)

be the ratio of variable X between its equilibrium value when s = B (so that the HSR is

built) and when s = NB (not built).

The HSR shock results in new lowest times and monetary travel costs for public-transit

travel. So, the shock to the system is given by travel time changes

d̂k (i, jk, public transit) = τ̂ (i, jk, public transit)ρk

for each travel purpose k = C,L,B (commuting, leisure, or business travel), and to mone-

tary travel cost changes per trip

p̂R (i, jk, public transit) .

On origin-destination pairs where the HSR is chosen, the travel time is faster (τ̂ < 1)

and the price may increase or decrease depending on the cost of the HSR on that route

compared to the pre-HSR; on pairs where it is not chosen, then τ̂ = p̂ = 1. The HSR shock

also entails an increase in the tax to finance the HSR from t (NB) = 0 to t (B) = t so that

disposable income changes by 1− t.

The equilibrium response to {τ̂ (i, j,m) , p̂R (i, j,m) , 1− t} consists in changes in land

rents r̂ (i), wages ŵ (i), and labor supplies N̂Y (i) such that:

i) The land market clears, i.e. (2.55) holds in the counterfactual equilibrium, which

152



implies:

r̂ (i) =
HC (i,NB)

H (i,NB)
Î (i) +

(
1− HC (i,NB)

H (i,NB)

)
ŵ (i) N̂Y (i) , (2.57)

where HC ≡ NR (i) µH(i)I(i)
r(i,s) is the aggregate housing demand in i and Î (i) is the change

in average income of residents of i defined in (2.49),

Î (i) =
∑
jC

∑
mC

λC (i, jC ,mC , NB)

I (i,NB)
λ̂C (i, jC ,mC) Î (i, jC ,mC) , (2.58)

where the change in disposable income next of taxes and commuting costs for commuters

from i to jC through mC is

Î (i, jC ,mC) =

(
1 +

pC (i, jC ,mC , NB)

I (i, jC ,mC , NB)

)
ŷ (i, jC)− pC (i, jC ,mC , NB)

I (i, jC ,mC , NB)
p̂C (i, jC ,mC) ,

(2.59)

the change in pre-tax income is

ŷ (i, jC) =

(
1− e (i)w (jC , s)

y (i, jC , NB)

)
Î (i) +

e (i)w (jC , s)

y (i, jC , NB)
ŵ (j) , (2.60)

and, from (2.45), λ̂C (i, jC ,mC) is given by:

λ̂C (i, jC ,mC) =

(
Î(i,j,mC)

d̂C(i,j,mC)

)θC
∑

j′ λ
C (i, j′,mC , NB)

(
Î(i,j′,mC)

d̂C(i,j′,mC)

)θC (2.61)

ii) the labor market clears, i.e. (2.53) holds in the counterfactual equilibrium, which

implies

∑
i

(
λC (i, jC , NB) e (i)NR (i)∑
i′ λ

C (i′, jC , NB) e (i′)NR (i′)

)
λ̂C (i, j)︸ ︷︷ ︸

N̂(i,s)

=
NY (j, s)

N (j, s)
N̂Y (j, s)+

(
1− NY (j, s)

N (j, s)

)
N̂S (j, s) ,

(2.62)
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where, in the supply side in the left-hand side of (2.62), λ̂C (i, j) is given by

λ̂C (i, j) =
∑
mC

λC (i, j,mC , NB)∑
λC
(
i, j,m′C , NB

) λ̂C (i, jC ,mC)

and where, in the labor demand side in the right-hand side of (2.62), the demand for labor

into services is

N̂S (i) =
N locals
S

NS

Î (i)

ŵ (i)
+

(
1−

N locals
S

NS

)∑
j

∑
mL

(
RL (j, i,mL, NB)∑

j′
∑

m′ RL (j′, i,m′, NB)

)
R̂L (j, i,mL, s)

where
N locals
S
NS

is the share of service labor in the initial equilibrium that satisfies non-traded

demand from residents, and where the change in the number of leisure trips is

R̂L (i, jL,mL, s) = Î (i, s)
λ̂L (i, jL,mL, s)

p̂L (i, jL,mL, s)
,

where the change in price per leisure trip is

p̂L (i, j,m) =
cLpS (j,NB)

pL (i, j,m,NB)
ŵS (j) +

(
1− cLpS (j,NB)

pL (i, j,m,NB)

)
p̂R (i, j,m)

and where the change in share of residents from i traveling to j viam for leisure, λ̂L (i, jL,mL, s)

is

λ̂L (i, jL,mL, s) =

(
p̂L (i, jL,mL) d̂L(i,jL,mL)

B̂(jL)

)−µL(i)θL

∑
j′
∑

m′∈Mij(s)
λL (i, j′,m′, NB)

(
p̂L (i, j′,m′) d̂L(i,j′,m′)

B̂(j′)

)−µL(i)θL

iii) the zero-profit condition (2.56) holds in a counterfactual scenario, i.e.

ŵ (j)1−µB(j)−µHY (j) r̂ (j)µHY (j) = Ω̂ (j)1−µB(j) , (2.63)
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where, from 2.44,

Ω̂ (j) = Â (j)
1

1−µB

∑
jB

∑
mB

λB (i, jB,mB, NB)

(
Â (jB)

d̂B (j, jB,mB) p̂B (j, jB,mB)

)θBµB(j)
 1

(1−µB(j))θB

,

(2.64)

and from (2.51),

Â (j) =

∑
k

ÑY (k,NB)
H(k)∑

k′ e
−ρAτmin(j,k′,NB) ÑY (k′,NB)

H(k′)

e−ρAτ
min(j,k,B) ˆ̃NY (k)

γA

where the change in the number of workers employed in jC is:

ˆ̃NY (jC) =
∑
i′

(
λC (i′, jC , NB)NR (i′)∑
i′ λ

C (i′, jC , NB)NR (i′)

)
λ̂C
(
i′, jC

)
.

155



2.8 Results Appendix

Table 2.6: Commuting Equation Estimates: Exponential Function

2008 2019

(1) (2) (3) (4) (5) (6) (7) (8)
PPML PPML FS IV PPML PPML FS IV

pre-HSR travel time, minutes -0.102∗∗∗ -0.105∗∗∗ -0.106∗∗∗ -0.109∗∗∗

(0.000276) (0.000301) (0.000258) (0.000261)
log(workplace earnings, LEHD, 2008) 2.634∗∗∗ 4.876∗∗∗

(0.00895) (0.165)
log(earnings, ACS, 2006-2010) 0.347∗∗∗

(0.00870)
log(workplace earnings, LEHD, 2019) 3.069∗∗∗ 5.107∗∗∗

(0.00989) (0.164)
log(earnings, ACS, 2012-2016) 0.317∗∗∗

(0.00624)

ρC .039 .021 .034 .021
θA 2.63 4.88 3.07 5.11
N 40747886 40747886 7866 7866 40747886 40741069 7865 7865
R2 0.227 0.129 0.291 0.193
F-stat 1600 2600
Destination FE No Yes No Yes

Source: LEHD, 2008 and 2019; ACS, 2006-2010; ACS, 2012-2016.

Note: This table shows PPML estimates of the commuting equation 2.18 in the alternative case

where dC (i, j,m, s) = DC (i,m) exp (τ (i, j,m, s))
ρC

.

156



Table 2.7: OLS Estimates of Voting Equation under Full Model

(1) (2) (3) (4) (5)

log(Ŵ ), 2019 -5.580 3.024 3.631 3.518 6.435∗∗

(5.357) (2.533) (2.135) (2.001) (2.409)

log-odds Reg Dems Share 0.665∗∗∗ 0.462∗∗∗ 0.455∗∗∗ 0.413∗∗∗

(0.0724) (0.108) (0.125) (0.0815)

Environment: log odds Yes on Prop. 10 0.460∗∗∗ 0.430∗∗∗ 0.359∗∗∗

(0.0878) (0.0542) (0.0519)

Transportation: log odds Yes on Prop. 1b 0.0517 -0.00204
(0.156) (0.139)

pop. density 0.0470∗∗∗

(0.0103)

Avg. MA Pop. Dens. 0.0482
(0.127)

Constant 0.204∗ 0.274∗∗∗ -0.0175 0.0139 -0.192
(0.0957) (0.0471) (0.101) (0.0556) (0.292)

R2 0.00750 0.589 0.658 0.659 0.714
N 7866 7866 7866 7866 7866

Note: This table shows OLS estimates of equation 2.7. Proposition 10 was on the ballot in the
same election as the HSR proposition and, if passed, would have allowed the state to issue $5
billion in bonds for alternative fuel projects (Ballotopedia). Proposition 1b, on the ballot in 2006,
allocated funds towards transportation projects including highways.
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Table 2.8: IV Estimates of Voting Equation under Full Model

2008 IV Random Stations IV

(1) (2) (3) (4) (5)
OLS FS IV FS IV

log(Ŵ ), 2019 6.435∗∗ 6.153∗∗ 7.630∗∗

(2.409) (2.362) (2.410)

log(Ŵ ), 2008 0.531∗∗∗

(0.00437)

log(Ŵ ), Random Route IV, 2008 0.581∗∗∗

(0.105)

log(Ŵ ), Random Route+Station IV, 2008

log-odds Reg Dems Share 0.413∗∗∗ -0.00000456 0.413∗∗∗ -0.000909 0.413∗∗∗

(0.0815) (0.0000299) (0.0814) (0.000626) (0.0817)

Environment: log odds Yes on Prop. 10 0.359∗∗∗ -0.0000259 0.359∗∗∗ 0.00167 0.358∗∗∗

(0.0519) (0.0000519) (0.0520) (0.00114) (0.0510)

Transportation: log odds Yes on Prop. 1b -0.00204 0.0000234 -0.00183 0.00115 -0.00293
(0.139) (0.0000389) (0.139) (0.000777) (0.137)

pop. density 0.0470∗∗∗ 0.0000139∗ 0.0470∗∗∗ 0.0000592 0.0469∗∗∗

(0.0103) (0.00000670) (0.0103) (0.0000896) (0.0102)

Avg. MA Pop. Dens. 0.0482 -0.000250∗∗ 0.0452 -0.00524∗ 0.0608
(0.127) (0.0000967) (0.126) (0.00224) (0.119)

Constant -0.192 0.00264∗∗∗ -0.184 0.0129∗∗ -0.226
(0.292) (0.000223) (0.292) (0.00489) (0.273)

First stage F-stat 14579.2 30.30
R2 0.714 0.997 0.714 0.544 0.713
N 7866 7866 7866 7866 7866

Note: This table shows IV estimates of equation 2.7. The 2008 IV uses welfare measured using
2008 fundamentals as an instrument for expected welfare, and the random route IV uses an
instrument constructed using fake HSRs, as described in detail in Appendix section 2.9.3.
Proposition 10 was on the ballot in the same election as the HSR proposition and, if passed,
would have allowed the state to issue $5 billion in bonds for alternative fuel projects
(Ballotopedia). Proposition 1b, on the ballot in 2006, allocated funds towards transportation
projects including highways.
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2.9 Data Appendix

2.9.1 Wages

We measure wages at the origin and destination tract levels using data from the LEHD.

The LEHD lists, for each tract pair in each year, the number of workers commuting from

that origin to that destination and earning below $1,250 per month, between $1,250 and

$3,333 per month, or above $3,333 per month. To construct average wages for each of

these three groups, we turn to the American Community Survey. Using the 1-year samples

for the corresponding year (either 2008 or 2019), we restrict the data to California and

estimate average wages among individuals with monthly earnings in each of the three

LEHD categories.30 We then construct average wages for each origin-destination pair as

follows:

wageod =
N<$1250
od · wage<$1,250 +N$1,250−$3,333

od · wage$1,250−$3,333 +N>$3,333
od · wage>$3,333

N<$1250
od +N$1,250−$3,333

od +N>$3,333
od

(2.65)

where Nx
od is the number of workers who live in o and work in d and have monthly

earnings in category x and wagex is the average monthly wage of California workers,

conditional on monthly wages being in category x. We then convert monthly earnings to

annual earnings.

30We do not observe this data at the tract-level for the 1-year ACS samples, so we cannot do this
at the tract-level.
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2.9.2 Transport Network

Road travel speeds. To measure driving times between all routes, we obtain the shape

of the primary and secondary road network in California from the U.S. Census. Then,

we randomly select 1,000 routes and obtain the driving travel time along each route from

Google Maps using the mode set to road. We do not obtain travel times for all 60+ million

routes from Google Maps due to the extraordinary monetary cost associated with doing

so, plus the fact that our calibration can closely match observed times. In addition, we

do not rely on travel times as reported in the American Community Survey because we

do not observe these travel times along routes for which there are no commuters in the

data. However, our estimated travel times are fairly well-correlated (0.49) with these ACS

reported times. Given the road network, we calibrate road speeds along four different types

of roads (primary roads in urban areas, primary roads in non-urban areas, secondary roads

in urban areas, and secondary roads in non-urban areas), in addition to a constant term, to

match Google driving travel times. An urban road is a road segment that lies in a county

with a population of at least 1,000,000. More specifically, we find the parameter vector:

α∗ = (αprimary,urban, αprimary,non−urbanαsecondary,urban, αsecondary,non−urban, αconstant)

that solves the following:

α∗ = arg min
α

1,000∑
i

(Esti(α)−GoogleT imei)2

where Esti(α) is the shortest path along route i given the 2008 road network and travel

speeds along each type of road given by the vector of parameters α. GoogleT imei is the

Google Maps reported driving time along route i. We can closely match Google travel

times, with a correlation between observed and estimated travel times of around 0.99.
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Figure 2.6: Calibrated and Observed Road Travel Times

Figure 2.6 shows this correlation; each point lies very close to the 45 degree line.

We then use these parameters and the road network to compute driving times for all

of the routes in our sample. To incorporate the air network, we identify commercial air

routes between major airports in California as of 2008 from the Bureau of Transportation

Statistics. From Google Maps, we obtain flight times between airports and the coordinates

of airports. We assume that, when transferring from the road network to the air network,

individuals spend 45 minutes. This cost of transferring reflects that people don’t simply

jump from the highway onto a plane. Then we find the quickest path given the road net-

work and the air network along each route to assign pre-HSR travel speeds along each route.

Public transit network. To estimate travel times and costs via the rail network, we

first obtain a shapefile of the location of every rail station in California as of 2013 (the

earliest year available) from the California Department of Transportation, accessed via

Stanford University. Second, we manually collect time tables on intercity rail service from

Capitol Corridor, San Joaquin, Pacific Surfliner, and Amtrak. We do the same for intracity

rail service, including BART, Caltrain, ACE, Coaster, Metrolink, and SMART. These

timetables are available in PDF form on each rail agency’s webpage, and we convert these
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PDFs to spreadsheets.31 From these time tables, we obtain average travel time between

each consecutive station. Travel times between stations may vary at different times of the

day and depending on whether the train is an express or local; in general, we take an

average across all listed times. We then use this information to construct a graph that

describes the rail public transit network in California, where edges between stations have

weights based on travel times.

To measure the cost of traveling via public transit, we use data from the Capitol

Corridor, a passenger train operated by Amtrak in Northern California. From the above

procedure, we already observe the travel time between each pair of stations in the Capitol

Corridor network. We then obtain fare prices for each pair of stations which we use to

estimate equation .32 Figure 2.7 shows the close relationship between travel fares and travel

times for rail travel.

There is far more limited systematic data on the bus network, as it varies widely across

cities and counties. Thus, we incorporate the bus network by allowing buses to traverse

the entire road network. We calibrate travel speeds for bus using Google Maps using the

methodology above and Google travel times where mode is set to bus. As expected, bus

travel is much slower than car travel. We obtain data on county-specific costs of bus

transport from the American Public Transportation Association, supplemented with data

from different counties webpages.

To calibrate transfer costs, we randomly select a set of origin and destinations in the

public transit network, which may use any combination of rail and bus. We use Google

Maps to obtain travel times along these routes when the mode is set to public transit.

31For example, the Pacific Surfliner timetable is available here: https://

www.pacificsurfliner.com/globalassets/plan-your-trip/schedules/803091280_

pacific-surfliner-timetable_oct-25-2021.pdf/.

32This can be found here: https://www.capitolcorridor.org/wp-content/uploads/2016/

05/CCJPA_fares_06162016.pdf
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Figure 2.7: Capitol Corridor Fares and Travel Times
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Source: Capitol Corridor timetables and fares.

These routes may involve transfers between different rail networks, or between the rail

network and the bus network. We then calibrate a single parameter, αT , which measures

the time spent making these transfers. We calibrate it in order to match the observed

travel times reported from Google and find a value of α̂T = 8.5.

2.9.3 Construction of the Instrument

The instrument described in Section 2.5 is constructed as follows. We digitized the map

shown in Figure 2.2, such that our starting point is a shapefile. For each of the three

routes, differentiated by their color in the original map, we divide the line into a series of

points by placing a point at uniform increments of 1km along the entire line. To construct

the instrument, we first select each of the three routes with probability 1/3. Then, having

selected a route, we randomly select 24 points along the line, with equal probability of

choosing each point. Each selected point will serve as a station in this alternative high

speed rail network. We use 24 as this was the number of stations in the actual, planned

HSR network, as well as the number outlined by the California legislature. After choosing

any given point, we then exclude points within 5km from that point as possible stations.
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Figure 2.8: Example Fake HSRs for Instrument

(a) Fake Network Along I-5 (b) Fake Network Along Coast

Note: This figure shows two “fake” HSRs constructed for the instrument, with the route chosen
with equal probability from proposed routes as in Figure 2.2 and 24 points, serving as stations,
chosen with equal probability along the route.

Figure 2.8a shows an example of a HSR constructed along the I-5 route, and Figure 2.8b

shows an example along the Coast.

We repeat this procedure 100 times, and obtain 100 fake HSR networks as a result. In

order to estimate the welfare gains under each fake HSR, we need to assign travel speeds to

convert rail distances to rail travel times. We do this by assuming that the average speeds

along the I-5 route and the Central Valley route are 264 km per hour, and slightly slower

at 240 km per hour for the Coastal Route. These times reflect system averages reported

in CHSR documents. Then, for each fake network, we construct the implied welfare gains.

Ultimately, our instrument is the average welfare gain implied over these 100 fake HSR

networks.
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CHAPTER 3

Trade Networks in Latin America: Spatial

Inefficiencies and Optimal Expansions

(with Elena Ianchovichina)

.

3.1 Introduction

Differences in labor income across regions and municipalities are expected to diminish

with development as barriers to factors and goods mobility decline and technology spreads

within countries. Yet, spatial inequality has remained high throughout Latin America

(Acemoglu and Dell (2010)). One potential reason for this may be insufficient and spatially

misallocated road networks, which are an important determinant of trade costs (Limao

and Venables (2001); Atkin and Donaldson (2015)). The findings of transport studies lend

support to this hypothesis. Road density in Latin America is comparable to that in Sub-

Saharan Africa and lower than elsewhere in the world (Ndulu (2007)). While geography

and other physical characteristics of Latin American countries may explain the low road

density, road occupancy rates are very high and large areas remain inaccessible (Fay et al.

(2017)). Railway networks are also underdeveloped, implying that railway services are

neither an effective substitute for, nor complement to, road transport.
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We explore the extent to which trade connectivity issues affect the efficient spatial dis-

tribution of economic activity within and across countries in Latin America either because

the existing road infrastructure is spatially misallocated or because it is insufficient.1 Using

data from multiple sources and the general equilibrium spatial framework of Fajgelbaum

and Schaal (2020), we construct optimal transport networks and optimal expansions to

existing networks in most Latin American countries, as well as within MERCOSUR and

the Andean Community. Comparisons between the existing and optimal networks or be-

tween existing networks and their optimal expansions allow us to identify inefficiencies in

the existing networks and their associated welfare effects.

We find that in several LAC countries, including Argentina, Brazil, and Peru, transport

networks are relatively inefficient. Misallocation of roads in these countries is associated

with annual welfare losses of between 1.5% and 2.4%. Therefore, the model results suggest

that inefficiencies in existing road networks generate significant trade frictions in the largest

and most populous countries on the continent. At the other end of the spectrum are a few

countries with relatively efficient transport networks, including Guatemala, Costa Rica,

and El Salvador. These countries will not gain much if the social planner had the power

to lift existing networks and place them optimally. As is the case for Europe presented in

Fajgelbaum and Schaal (2020), the loss associated with road misallocation in Latin America

is around 1% in simple average terms and 1.6% when countries are weighted according

to population, indicating that losses are larger in the region’s more populous countries.

In most countries, new road expansions can deliver welfare increases comparable to the

gains from replacing existing networks with optimal ones. These gains are largest in the

countries with the largest inefficiencies in existing networks, including Argentina, Brazil,

and Bolivia. The model-implied optimal investments correlate relatively well with World

1Since it is infeasible to build the optimal road network, its comparison with the existing network
provides a sense of the losses due to the misallocation of existing roads.
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Bank road investments because both the model and the World Bank prioritize projects in

high population areas.

Trade frictions also arise due to inefficiencies in optimal transnational road networks

within MERCOSUR and the Andean Community. Spatial misallocation of transnational

road networks is associated with average annual welfare losses of 1.8% in MERCOSUR and

1.5% in the Andean Community. These losses can be remedied with road investments that

improve and expand the existing road network. In the case of MERCOSUR, expansion

yields an annual welfare increase of 1.9%, while in the case of the Andean Community, the

gain is 1.5%. The model suggests improvements in connectivity between the largest cities

within MERCOSUR and between the largest cities in each member country. Given the

location of these cities, these are improvements mostly along the coastal highways. Most

of the investments occur in Brazil (71%) and in Argentina (22%), with the remainder split

equally between Uruguay and Paraguay, but the highest welfare gain accrues to the least

developed country in the trade bloc – Paraguay (3.3%). Within the Andean community,

half of the infrastructure growth occurs in Colombia, a quarter each in Peru and Ecuador,

and only 2% in Bolivia. These investments are again pro-poor benefiting the most the

poorest member of the bloc – Bolivia – where welfare increases by slightly more than 5%.

Optimal investments improve connectivity between La Paz in Bolivia, along the coast of

Peru to Lima and through Quito to Medellin.

The findings in this paper are important because they are informative as to the optimal

spatial distribution of road infrastructure projects in Latin America. Policy makers and

other stakeholders can use these findings to better target their road investments, with the

objective of lowering trade costs and getting a bigger growth boost per dollar spent.

Our paper is related to the literature on the aggregate effects of misallocation (Restuc-

cia and Rogerson (2008); Hsieh and Klenow (2009)), particularly the body of work on

spatial resource misallocation due to frictions or government policies (Desmet and Rossi-
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Hansberg (2013); Fajgelbaum et al. (2018); and Hsieh and Moretti (2019)). It contributes

directly to the large and growing literature on evaluating the economic returns to improving

infrastructure systems. Some studies in this literature use historical data to measure the

welfare effects of transport infrastructure, including the colonial railways in India (Donald-

son (2018)), the railway network in 19th century U.S. (Donaldson and Hornbeck (2016a))

and in late 19th century Argentina (Fajgelbaum and Redding (2022)), China’s national

trunk highway system (Faber (2014)) and the U.S. highways (Allen, Arkolakis and Taka-

hashi (2019)). Other studies explore the impact of transport infrastructure on different

aspects of development. Baum-Snow (2007) assesses the effect of highways on suburban-

ization in the US, while Sotelo (2016) evaluates the impact of highway investments on

agricultural productivity in Peru. More recently, Bird, Lebrand and Venables (2019) study

the effects of the Road Belt Initiative on economic development in Central Asia.

Another part of this literature looks at the role of trade costs in different geographic

settings. Eaton and Kortum (2002) and Anderson and Van Wincoop (2004) pioneered

an approach that fits standard quantitative trade models to data on the geographic dis-

tribution of economic activity across countries; they use this framework to evaluate the

economic and welfare effects of exogenous shocks to trade costs. Caliendo et al. (2017)

and Ramondo, Rodŕıguez-Clare and Saboŕıo-Rodŕıguez (2016) explore the role of trade

frictions within countries in the presence of factor mobility. Many papers study how actual

changes in transport costs shape domestic economic activity, including the impact of road

expansion on productivity across US industries (e.g. Fernald (1999)) and the impact of

US highways on regional economic outcomes (e.g. Chandra and Thompson (2000) and

Duranton, Morrow and Turner (2014)).

This paper is most closely linked to applications of the framework of Fajgelbaum and

Schaal (2020) to Europe (Fajgelbaum and Schaal (2020)) and Africa (Graff (2019)). Ours

is the first study to assess the spatial inefficiencies of existing transport networks and
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the effects of optimal expansions to existing transport networks for all Latin American

countries, except those in the Caribbean2, using the model of Fajgelbaum and Schaal

(2020). Building on their methodology, we develop a new discretization procedure to

deal with the large spatial scale of Brazil. This procedure also allows us to study road

connections between different groups of Latin American countries.

Misallocation in the transport network is measured by the wedge between the optimal

level of investment along each link in the network that the social planner would choose

relative to the investment observed in the data. The social planner jointly solves the

optimal transport problem and the optimal allocation problem to determine the optimal

investment in the transport network, the optimal allocation of production and consumption

across locations, and the gross trade flows between locations, given fundamentals including

endowments and transport costs. In contrast to the standard models in the literature,

transport costs in this model are endogenous as they depend on how much is invested in

each link of the road network. The level of investment in each road link and consumption

and production in each location are also endogenous and chosen by the social planner to

maximize welfare. New road investments reduce transport costs and influence through

general equilibrium forces the prices at which goods are produced and sold in each location

and the quantities traded between locations. Other things equal, trade flows of a good

between a pair of locations is higher when the road infrastructure linking the two locations

is better. Trade flows decline with congestion along the link and increase with the price

differentials between the two locations.

Like other models with an optimal transport problem (Alder and Kondo (2020), Allen,

Arkolakis and Takahashi (2019)), the model of Fajgelbaum and Gaubert (2018) requires

choosing least-cost routes across pairs of locations. However, it offers some distinct advan-

2The Caribbean countries are excluded due to their small size and lack of land access to South
and Central America.
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tages compared to other methodologies. First, given the large size of the road networks in

many countries in South America, the main benefit is the substantial savings in computa-

tion time due to a reduction of the search space in the special convex case with congestion.

Such savings are possible because in this case optimal infrastructure investments can be

represented as functions of optimal prices, avoiding a direct search in the network space.

Second, congestion enables the social planner to focus on the optimization over the

transport network itself and conduct a search for the global optimum. In this case, con-

sumption and production in each location are not fixed but respond to the general equi-

librium forces in the model and are therefore endogenous. By contrast, in the case of no

congestion, which is the typical case in other studies and a special case in Fajgelbaum and

Gaubert (2018), the optimal transport problem can be solved independently from the gen-

eral equilibrium outcome by mapping sources with fixed supply to destinations with fixed

demand. Only in this special non-convex case without congestion does the global solution

in Fajgelbaum and Gaubert (2018) match closely with the least cost route optimization

solutions in the literature. A third advantage is the flexibility of the framework, which can

easily be matched to data on actual transport networks around the world. The model’s

fundamentals can be calibrated such that the solution to the planner’s problem matches

spatially disaggregated data on population and economic activity given an observed trans-

port network. Counterfactuals can be considered assuming a specific technology to build

infrastructure, a specific technology to produce goods, and specific consumer preferences.

The paper is structured as follows. Section 3.2 discusses the main features of the model,

the data used to calibrate the model, and the representation of existing road networks in the

model. Section 3.3 presents the baseline results of optimal road networks and expansions

and respectively the associated spatial inefficiencies and gains from optimal expansions.

Section 3.4 explores the robustness of the results. Section 3.5 presents optimal expansions

of trans-national road networks within several groups of countries. We offer concluding

170



remarks in Section 3.6.

3.2 Methodology

This section briefly describes the model of Fajgelbaum and Schaal (2020), the data, and

the discretized road network representation used to implement the model.

3.2.1 Model

The social planner solves a triple-nested optimization problem:

max
Ijk

max
Qnjk

max
cj ,hj ,Dnj ,L

n
j ,V

n
j ,X

n
j

∑
j

Lj · U(cj , hj) (3.1)

subject to several constraints including the availability of traded and non-traded goods,

the balanced-flows constraint requiring that in each location demand for a good should not

exceed its supply net of exports to other locations, the network building constraint, the

local factor market clearing conditions, and conditions requiring that consumption, trade

flows and factor use are always non-negative. The objective of the social planner is to

maximize the sum of population-weighted welfare across locations within each country.3

The innermost utility maximization problem in equation 3.1 is a standard allocation

problem of choosing per-capita consumption of a non-traded good hj and a composite

traded good cj in location j, bundling together the outputs Dn
j of a discrete set of N

tradable sectors. Total labor across each sector n in each location j is Lj =
∑

n L
n
j . There

is a fixed supply V n
j = (V 1n

j , ..., VMn
j ) of M primary factors that are immobile across

3We focus on this objective function because this paper studies optimal national and transna-
tional transport networks. This framework could also be used to consider transport networks that
minimize inequality in a country, or weigh the utility of some locations more heavily than others,
but these cases are beyond the scope of this paper.
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locations but mobile across sectors within each location. Finally, Xn
j = (X1n

j , . . . , XNn
j )

are intermediate inputs, and thus represent the quantity of each sector’s output allocated

to producing sector n’s good in location j.

The second nested problem in 3.1 is the optimal flow problem. It determines the gross

flow of goods, Qnjk, traded along the road link between locations j and k, regardless of

where the goods were produced. Goods transit through the network until they reach the

destination where they are consumed or used as an intermediate input. Transporting each

unit of good n from j to k requires τnjk units of good n where the per unit cost is a function

of the total quantity of good n shipped along link jk, Qnjk, and the level of infrastructure

on this link, Ijk:

τnjk = τjk(Q
n
jk, Ijk) (3.2)

where the per-unit cost of shipping is increasing in the quantity of good n shipped, implying

decreasing returns or the presence of congestion:

∂τjk(Q, I)

∂Q
≥ 0

Congestion reflects the fact that increased shipping activity increases marginal transport

costs due to road damage, road accidents, longer travel times, and other potential reasons.

In contrast, increased road investments in link jk, which either improve the road surface,

widen the road and/or increase the number of road lanes, reduce marginal transport costs:

∂τjk(Q, I)

∂I
≤ 0

The transport technology captures variation in geographic characteristics such as rugged-

ness. If elevation is higher in node j than k and it is cheaper to transport goods from

j to k, then τjk < τkj . The optimal flow problem combines (i) an optimal transport

problem of how to map production sources to destinations and (ii) a least-cost route prob-
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lem with congestion. These two problems must be solved jointly because determining the

least-cost routes requires information about the flows and the supply and demand of each

good, which are endogenously determined in the solution to the allocation problem. The

transport technology in 3.2 can be represented as a constant-elasticity transport function:

τjk(Q, I) = δτjkQ
β/Iγ (3.3)

Parameter β assumes non-negative values. If β > 0, the marginal cost of shipping is

increasing in the shipped quantity. If β = 0 the marginal cost of shipping is invariant to

the quantity shipped as in the standard iceberg case. Parameter γ represents the elasticity

of the per-unit transport cost to infrastructure investment. Finally, the scalar δτjk captures

the geographic frictions that affect per-unit transport costs, given the quantity shipped

and infrastructure I. Finally, the outer-most nested problem in 3.1 is the optimal network

problem. Its solution determines the optimal infrastructure investment Ijk in each link jk

in the road network. The building of infrastructure requires a resource (i.e. asphalt and/or

other materials) whose supply K is fixed in the aggregate within a country. Resource K

cannot be used for any other purpose. This assumption implies that the opportunity cost of

building infrastructure in any location is only foregoing infrastructure elsewhere. Building

infrastructure Ijk in link jk requires an investment of δIjkIjk units of K. Then the network

building constraint is given as:

∑
j

∑
j∈N(j)

δIjk · Ijk ≤ K (3.4)

where N(j) is the set of neighboring locations to location j and j ∈ N(j). From

location j, which can be interpreted as a county, goods can be shipped to locations other

than N(j), but in this case they must transit through a sequence of connected locations.

Thus, total spending on the existing road network is measured as K: the total cost of
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investment across all links in the network. Investment takes place in a link jk when there

is some minimum infrastructure Ijk in this road link. This investment may be limited by

an upper bound, Ijk , imposed by geographic constraints on the capacity to build on the

link.

Given 3.3, the optimal level of infrastructure in a link is:

Ijk = min
(
max(I∗jk, Ijk), Ijk

)
where I∗jk is the optimal infrastructure in link jk in the unconstrained optimal network

problem (i.e., Ijk = 0, Ijk =∞).

I∗jk =

(
γ

PK

δτjk

δIjk

(∑
n

Pnj (Qnjk(P
n
j , P

n
k ))1+β

))(1/(1+γ))

The network problem is tractable because in this setup optimal infrastructure in a link

is only a function of prices in each location. Given the relatively small set of prices, the

model is solved link by link, instead of searching in the very large space of all networks.

Optimal infrastructure increases with gross flows shipped along link jk and their prices

at origin. It decreases with the price of building material, PK , as it increases the cost

of building infrastructure; it increases with δτjk reflecting that infrastructure investments

offset geographic frictions; and decreases with the marginal cost of building infrastructure

δIjk. Note that infrastructure affects only trade of goods, not the movement of people.

Fajgelbaum and Schaal (2020) show how, using a no arbitrage condition governing

prices across space from the first order conditions of the social planner’s problem, gross

flows of each commodity shipped along link jk can be expressed as follows:

Qnjk =

(
1

1 + β

Iγjk
δτjk

max

(
Pnk
Pnj
− 1, 0

))1/β
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All else equal, as noted by Fajgelbaum and Schaal (2020), trade flows of a commodity

between a pair of locations will be higher when infrastructure quality is higher. Similarly,

trade flows will be higher when there is more to gain from trade; that is, when the price

of the commodity in the destination is much higher than the price in the origin. This

result significantly simplifies the data required to implement the model since intranational

trade data, from which we could observe Qnjk, can be hard to obtain in many settings.4

Given this result, computing trade flows between locations for each commodity requires

a measure of geographic trade frictions δτjk the price of the commodity in the destination

k relative to the origin j,
Pnk )
Pnj

, a measure of the infrastructure linking j and k, Ijk, and

parameter values for β and γ.

3.2.2 Data

To implement the model, we must first construct a grid describing the spatial distribution

of economic activity and population within each country and a discretized road network

describing existing road network connections between each pair of locations in each country.

Following Fajgelbaum and Schaal (2020), we divide each country into 1-arc degree cells (in

most cases), 0.5 arc-degree cells or 0.25 arc-degree cells (in some cases), depending on

the surface area of the country.5 Table 3.1 shows, for each country, the size of cells that

comprise that country’s grid. Brazil, however, is too large even for a grid of 1 arc-degree

cells as in this case the grid is made up of more than 800 cells. When the number of

grid cells exceeds approximately 275 cells, the calibration exercise becomes prohibitively

computationally intense. Thus, in the case of Brazil, we construct grid cells based on the

4This is of particular concern in our setting where reliable data on within country trade is
severely lacking.

5The countries in our setting are quite a bit larger in size relative to those in Europe, which is
why we use 1 arc-degree cells in most cases as compared with 0.5 arc-degree cells used in Fajgelbaum
and Schaal (2020).
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boundaries of mesoregions, which are subdivisions of Brazilian states used by the Brazilian

Institute of Geography and Statistics.
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Table 3.1: Road Network Summary Statistics

Actual Network Discretized Network

Country Network Length (km) Avg. Lanes per km Cell Size # Cells Network Length (km) Avg. Infrastructure
Argentina 855,713 1.67 1 294 118,406 0.73

Bolivia 121,098 1.98 1 101 51,248 0.56
Brazil 727,041 2 - 137 109,479 1.27
Chile 118,456 1.92 1 69 18,226 0.88

Colombia 410,003 1.8 1 108 55,227 0.52
Costa Rica 20,254 1.96 0.5 22 4,996 1.41

Ecuador 87,531 1.91 0.5 87 23,216 0.66
El Salvador 30,313 1.93 0.25 32 6,489 1.2
Guatemala 42,981 1.92 0.5 44 10,018 0.83

Mexico 796,553 2.09 1 201 102,400 1.36
Nicaragua 26,952 1.95 0.5 47 12,276 0.99
Panama 11,196 1.96 0.5 33 4,255 1.07

Paraguay 49,434 2.01 1 42 12,911 0.78
Peru 226,267 2.03 1 85 35,269 0.97

Uruguay 81,089 1.97 0.5 75 10,082 1.19
Venezuela, RB 123,567 1.67 1 84 42,280 0.63

Note: The average infrastructure index is the distance-weighted, road-type weighted average number of lanes connecting two
different grid cells.
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To measure population and value added within each grid cell, we follow Fajgelbaum

and Schaal (2020) and obtain population data from NASA-SEDAC’s Gridded Population

of the World (GPW) v.4 and value-added data from Yale’s G-Econ 4.0; both datasets refer

to 2005.6 The GPW population data are reported for 30 arc-second cells (approximately

1 km) and the G-Econ value-added data are reported for 1 arc-degree cells (appr. 100km).

In Panel (a) of Figure 3.1 we show the distribution of population across grid cells in

Argentina. Here, brighter colored cells represent areas with relatively large populations

while areas with darker colored cells represent areas with smaller populations. In the case

of Brazil, since our grid cells are consistent with those used by statistical agencies, we use

mesoregion level data on population and income as provided by the Brazilian government.

In Panel (a) of Figure 3.2 we show the distribution of the population across grid cells in

Brazil.

Some countries in our sample have unique geographies that pose challenges to road

building; we handle these situations on a case-by-case basis. In Peru, Iquitos is surrounded

by a natural reserve area and is inaccessible for road building, while other areas of the

country are covered by forest. Southern Chile is similarly covered by natural reserve

areas and has extremely difficult-to-build geography. Finally, a large lake prevents road

building in southeastern Nicaragua. In each of these cases we adjust the baseline grid to

accommodate these unique conditions.

In Peru, we measure unbuildable areas using the University of Maryland’s Global tree

cover dataset, and consider grid cells to be unbuildable if at least 80% of the grid cell is

covered by tree canopy. Using this methodology, we exclude the Northeastern part of the

6In a robustness check, we instead use population data from WorldPop. We use data correspond-
ing to 2005 as this is the latest year for which G-Econ data are available, and it is important to use
population and value-added data from the same year. Another option would be to use Nighttime
lights (NTL) data to measure economic activity in each grid cell. However, since rural commodity
producing areas are common in our setting, relying on NTL data to measure economic activity may
underestimate true output in these areas.
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country from the grid since roads cannot be built through the reserve areas. In the case

of Chile, we focus on the Northern part of the country and exclude the southern portion

of the country based on the distribution of reserve areas as measured by the Chilean

government. In Nicaragua, we obtain data on the locations of inland bodies of water

from the International Steering Committee for Global Mapping, accessed via New York

University. We use this information to restrict the grid to cells that are not majority

water.

3.2.3 Discretization process

The data described above are used to construct the locations of nodes as well as the links

in the model’s graph for each country. The GPW data is used to locate the population

centroid of each cell; these nodes are typically very close to a node on the road network.

We then define the links between nodes in contiguous cells. Since cells are square-shaped,

this includes up to 4 nodes connecting horizontal and vertical neighbors and up to 4 nodes

along the diagonals.

Panel (b) of Figure 3.1 shows the nodes and edges that comprise the largest possible

graph in Argentina. The color of each node corresponds with its relative population, with

brighter nodes indicating more populous areas. In the case of Brazil, where our grid cells

are neither square in shape nor of uniform size, we define the edges of the underlying graph

as follows: two centroids are connected via an edge if they share a border, and are within

800 km from each other. The additional distance criteria are required to avoid linking

mesoregions that are technically neighboring but may be very far apart in space and thus

not truly directly connected since the distribution of cell sizes (mesoregion areas) varies

widely. This graphical representation of connections between locations within each country

serves as each country’s baseline grid, from which we build the discretized road network.

Panel (b) of Figure 3.2 shows the nodes and edges for the graph in Brazil.
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Figure 3.1: Discretization of Argentina’s Road Network

Note: In Panel (a), brightly colored cells indicate areas with higher levels of population while
darker cells indicate areas with lower levels of population. In Panel (b), brightly colored nodes are
more populous. In Panel (c), green lines indicate primary roads while red segments indicate
non-primary roads along the actual road network; same in Panel (d), along the discretized road
network.
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Figure 3.2: Discretization of Brazil’s Road Network

Note: In Panel (a), brightly colored cells indicate areas with higher levels of population while
darker cells indicate areas with lower levels of population. In Panel (b), brightly colored nodes are
more populous. In Panel (c), green lines indicate primary roads while red segments indicate
non-primary roads along the actual road network; same in Panel (d), along the discretized road
network.
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We then convert each country’s actual road network into a discretized road network.

The actual and discretized road networks of Argentina and Brazil are shown on Panels (c)

and (d) of Figures 3.1 and 3.2, respectively. Our objective is to measure the quality of road

network connections between each grid cell within each country. To this end, we obtain

data on road networks for each country in our sample from the Global Roads Inventory

Project (GRIP), accessed via the World Bank. For each road segment in each country,

GRIP provides data on the type of road (motorway, trunk, primary, secondary, tertiary,

local), the type of surface (paved, unpaved, asphalt, ground), and the number of lanes

along that road segment. However, the data on road quality in GRIP is not as complete as

the data available for European or other developed countries. For example, the number of

lanes for each road segment listed by GRIP is highly incomplete; in most cases, information

on this attribute is missing.

We thus supplement the GRIP road network data with road network data from Open-

StreetMap (OSM). For each country in our sample, we calculate the average number of

lanes by road type in the OSM data and use these values as our measure of the number

of lanes for the corresponding country and road type in the GRIP data. For example, we

compute the average number of lanes on primary roads in Colombia and assume that all

primary roads in Colombia have this number of lanes. One downside to this approach is

that there is little variation in the number of lanes as we fail to capture roads with very

many or very few lanes. Still, we use GRIP as our primary data source because it has

much more complete information on the type of road and road surface than the OSM data.

In a robustness check, detailed in Section 4.1, we instead use road speeds to measure road

quality, as in Graff (2019) and obtain similar results.

In our baseline results, we use the measure of infrastructure quality in Fajgelbaum

and Schaal (2020). We use road network attributes from each country’s road network to

construct a measure of infrastructure quality along each road segment in each country’s
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discretized road network. To do this, we first compute the shortest path along the observed

road network between each set of nodes in the network. The optimal path on the road

network between j and k is P (j, k). We then measure the average number of lanes and

average road type along a link from j to k, respectively, as:

lanesjk =
∑

s∈P (j,k)

ωjk(s) · lanes(s)

natjk =
∑

s∈P (j,k)

ωjk(s) · nat(s)

where s ∈ P (j, k) is each road network segment in the optimal route between j and k and

ωjk(s) = length(s)∑
s∈P (j,k) length(s′) is the length traveled along segment s relative to the length of

the journey along the road network from j to k. Then, we measure average infrastructure

quality along each link as Iobsjk = lanesjk × K1−natjk . Following Fajgelbaum and Schaal

(2020), we set K = 1/5, which is in line with the ratio of construction and maintenance

costs along trunk roads relative to highways as reported by Doll et al. (2008). Note that

for routes traveled completely along national routes, the average infrastructure index will

be equal to the average number of lanes along the route. We impose that infrastructure

quality is symmetric, so that Iobsjk = Iobskj . In some cases, the optimal road network route

deviates considerably from the cells containing j or k. We classify these cases as P (j, k) = ∅,

indicating that there is no direct link between these locations. In panel (c) of Figure 3.1,

we show Argentina’s actual road network. Here, primary roads are colored in green and

secondary roads are colored in red. In panel (d), we show the discretized road network

where we have converted the nodes and edges as shown in Panel (b) into a discretized

version of the actual road network. Figure 3.2 shows the same set of figures for Brazil,

where we take a different approach and focus on connections between mesoregions, to

accommodate Brazil’s large size.

Table 3.1 displays the characteristics of the actual and discretized networks for the
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countries in our sample. In every case, the discretized network is much smaller in distance

than the actual road network since the length of the discretized network reflects the shortest

path between each set of nodes in the discretized network, while the actual road network

comprises thousands of segments connecting thousands of nodes throughout the country.

In other words, the discretized network summarizes the actual road network’s connections

between the population centers of each grid cell. Average infrastructure, while correlated

with the average number of lanes per kilometer, is often lower in magnitude than the average

number of lanes in each country. This is because we adjust the average infrastructure index

to account for travel along primary versus non-primary roads. For example, as shown

in Panels (c) and (d) of Figure 3.1, much of southern Argentina can only be traversed

along non-primary roads; thus, average infrastructure quality across discretized edges in

Argentina is considerably lower than the average number of lanes, since travel between a

considerable number of nodes involves travel along non-primary roads.

3.2.4 Assumptions and Calibration

Our baseline results assume fixed labor, such that people cannot reallocate across space

as infrastructure changes, and the convex case of the parameterization on congestion as

described in Section 2.1. We set β, the parameter governing congestion, to 0.13 and γ,

the parameter governing returns to infrastructure, to 0.10, as calibrated by Fajgelbaum

and Schaal (2020) to match existing empirical estimates. We maintain the assumptions

on preferences, production, and the values of parameters as outlined in Fajgelbaum and

Schaal (2020). We assume that individuals have Cobb-Douglas preferences over traded

and non-traded goods with the parameter α governing the share of non-traded goods in

consumption. Traded goods enter the utility function through a CES aggregator across

goods produced in each location with elasticity of substitution σ. We set α = 0.4 and σ,

the demand elasticity, to 5.
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Production is a linear function of productivity and labor, where n is location n in

country j:

Y n
j = znj L

n
j

Following Fajgelbaum and Schaal (2020), we assume that each location within a country

produces a single tradable good. In each country, we allow for 10 differentiated goods plus a

homogenous good. Each differentiated good is produced by a unique producer; we assume

that the 10 differentiated producers are located in the 10 most populous grid cells in each

country. The homogenous good is produced in the remaining cells. Finally, we assume

that geographic trade frictions, which enter the transport technology in equation (5), are

δτjk = δτ0distjk. In lieu of data on interregional trade in Latin America or any existing

estimates of this parameter from the region from which to draw, we use the value of δτ0

calibrated by Fajgelbaum and Schaal (2020) to match the level of intra-regional trade in

Spain.

Given the observed discretized road network in each country, data on population and

value added in the underlying grid of each country, and the parameterization described

above, we calibrate each grid cell’s productivity to match observed value added. In Figure

3.3, which pools all countries in our sample together, we show that with this calibration

the model can closely match the distribution of income in the data.

Finally, implementing counterfactuals also requires assumptions on the cost of building

along each link in the discretized road network. For this, we maintain the functional form

and parameterization of the building cost function used in Fajgelbaum and Schaal (2020):

ln

(
δI,GEOjk

distjk

)
= ln

(
δI0
)
− 0.11× 1(distjk > 50km) + 0.12× ln(ruggednessjk)
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where ruggedness along an edge between j and k is measured as:

ruggednessjk =
1

2
(ruggednessk + ruggednessj)

and ruggedness for each grid cell is constructed as the standard deviation of the change in

elevation across neighboring grid cells. We use elevation data from the ETOPO1 Global

Relief Model, which is provided at a finer granularity than our grid cells, to compute:

ruggednessn =

 ∑
i∈J(n)

∑
k∈N(i)

(elevi − elevk)2

 1
2

where J(n) is the set of ETOPO1 grid cells contained in country’s discretized grid cell n

and N(i) is the set of eight neighboring cells to each cell i in ETOPO1. Ruggedness will

be higher in places with large changes in elevation. Given this cost function, the model

recognizes that it is more costly to build in places with large changes in elevation (i.e.

mountainous areas), and less costly per kilometer to build along longer links.

Note that with this methodology, we measure the cost of building roads along a link

up to scale in each country. To implement counterfactual analyses, we will set K = 1

in the network building constraint of equation 3.4, so we re-scale each δIjk to satisfy this

constraint. As a result, the cost of building in each link is measured as a share of the initial

network size. We do not assign a dollar value cost to building along each link, and thus we

cannot perform a cost-benefit analysis of any simulated infrastructure expansions.

3.3 Baseline Results

In our main results, we consider two counterfactual scenarios: a reallocation of the existing

road network and a 50% expansion of the existing road network. The reallocation counter-
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Figure 3.3: Calibrated Model Fit
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factual studies what each country’s road network would look like if a social planner took

all the resources used to build the country’s existing road network, as measured by K in

the network building constraint of equation (6), and changed the spatial distribution of the

investments made with these resources in order to create the optimal network. Considering

this counterfactual allows us to understand the extent to which the existing road network

differs from the optimal one, holding constant the resources used to build the network. The

expansion counterfactual, on the other hand, asks where the social planner would invest in

infrastructure if the resources used to build the existing road network, as measured by K

in the network building constraint, were to grow by 50%.

Figures 3.4 and 3.5 shows the location of infrastructure investments in each scenario for

Argentina, Bolivia, Brazil, Colombia, Mexico, Paraguay, and Peru. Figures showing results

for the remaining countries in our sample are included in the Appendix. In these figures,

brighter green, thicker segments represent links with larger levels of infrastructure growth.

Infrastructure growth could mean any investments that improve road network connections

between nodes; for example, improving road quality, adding new lanes, or creating new

roads. In the reallocation scenarios, results for which are shown in the right-hand side

panel in each row, we also have red links which represent areas where infrastructure would

be reduced if roads were to be reallocated towards the optimal network. Note that in

the reallocation case, reduction in infrastructure along a link (i.e., a link colored in red)

does not indicate that that link should not have been built; instead, given a fixed level of

resources, the level of infrastructure along the link is higher than the social planner would

allocate to that link. Similarly, green lines reflect links to which a social planner would

allocate more resources.

In Argentina, under both scenarios, new infrastructure investments are made to enhance

roads radiating from Buenos Aires toward urban centers in Entre Rios and Santa Fe. Some

large investments are also made in poorer areas in the North and in provinces east of the
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province of Buenos Aires. The optimal network in Argentina indicates overinvestment in

roads in the sparsely populated South, areas in the far East and North. In Colombia, new

investments center on Bogota, connecting cities in the North, Northwest, and Southwest.

The optimal network points to overinvestment in roads east of Bogotá and in the North of

the country. In Mexico, the expansion of the network covers the eastern part of Mexico,

starting at the border city of Cuidad Juarez, extending to Monterrey and the densely

populated core at the center of which is Mexico City. The model suggests overinvestment

in trunk road infrastructure in the Western parts of the country and the Yukatan Peninsula.

The model suggests optimal expansions along the coast of Peru.

Turning to Bolivia, most investments are in the interior of the country, connected La

Paz and El Alto to Santa Cruz. In Paraguay, the optimal investments improve connec-

tions between La Asunción and the surrounding cities. In Brazil, the optimal network

improves connections along the coast, including between São Paolo, Rio De Janeiro, and

the surrounding coastal cities, as well as links connecting northern and southern cities,

via Brasilia. In Chile, shown in the Appendix, new investments are concentrated in the

central and more populous parts of the country, while the optimal network suggests major

overinvestment in the North of Chile (Figure 3.17). Results for the other Latin American

countries are also available in the Appendix Figures 3.18 through 3.20. In the following two

sections, we study the factors that influence the distribution of infrastructure investments

as well as the welfare gains obtained by each country under each scenario.

3.3.1 Drivers of Infrastructure Growth

What drives infrastructure expansion in some places within a country as compared to

others? To understand the location of the optimal expansion and reallocation, we pool all

the countries together and then estimate the following regression where gIic is infrastructure

growth:
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Figure 3.4: Counterfactual Results
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Figure 3.5: Counterfactual Results (cont’d)

191



Table 3.2: Drivers of Infrastructure Growth

Expansion Reallocation
1 2 3 4 5 6

Infrastructure
-0.151*** -0.219*** -0.226*** -0.207*** -0.396*** -0.410***
-0.00921 -0.0108 -0.00989 -0.0243 -0.0257 -0.0233

Population
0.170*** 0.174*** 0.471*** 0.481***
-0.0159 -0.0102 -0.0378 -0.021

Tradeable Income per capita
0.109* 0.221*
-0.0387 -0.092

Differentiated producer
0.109** 0.205***
-0.0309 -0.0498

Country FE X X X X X X
N 1461 1461 1461 1461 1461 1461
R2 0.484 0.659 0.673 0.27 0.582 0.595

gIic = α+ β1 · log(Lic) + β2 · log(Iic) + β3 log(yic) + β4 ·+γc + εic (3.5)

where where an observation is a cell i in each country c, γc is a country fixed effect,

yic is tradable income per capita, Lic is population, and standard errors are clustered at

the country level. In Table 3.2 below we show results from estimating equation 3.5 across

all LAC countries. Columns (1) through (3) correspond to the case of the 50% expansion

in road investment while columns (4) through (6) correspond to the reallocation case. In

columns (3) and (6) we also include an indicator for whether a grid cell is a differentiated

producer.

The results in columns (1) and (4) show that higher levels of initial infrastructure are

associated with smaller increases in infrastructure in both counterfactual scenarios. Initial

infrastructure alone can explain almost 50% of the variation in infrastructure growth across

grid cells under the expansion scenario and almost 30% under the reallocation scenario.

Adding in population as a covariate in columns (2) and (5), we find that grid cells with

larger populations experience larger gains in infrastructure; population explains an addi-

tional 17% of the variation in infrastructure growth under the expansion scenario and an

additional 31% under the reallocation scenario. Finally, in columns (3) and (6), we add
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income per capita and an indicator for whether a grid cell is a differentiated producer.

Grid cells with higher per capita incomes, which are more productive, and cells with differ-

entiated producers, also see higher levels of infrastructure growth. Although differentiated

producers are allocated based on the most populous grid cells, these areas become rela-

tively more connected even after controlling for population. In both scenarios, these four

covariates explain roughly 60%-70% of the variation in infrastructure growth, with most

of the variation being explained by the initial level of infrastructure and the population in

the cell.

3.3.2 Welfare Gains

We measure per-capita consumption in each grid cell in the calibrated model, as well as

the per-capita consumption in each grid cell resulting from each counterfactual. Given

our parametrization of the utility function and measures of population in each grid cell,

we can construct aggregate welfare in each country in the initial equilibrium, and again

under each counterfactual. Figure 3.6a below shows average welfare gains, measured as a

percentage of annual consumption, that each country could expect to obtain under a 50%

expansion of the existing road network. For example, assuming that consumption is 70%

of GDP, a 2.2% welfare gain in Argentina would mean an annual increase in the country’s

income of about $6.86 billion. We find that Argentina, Brazil, Peru, Bolivia, and Mexico

have the most to gain from an expansion of the existing road network, while Panama,

Uruguay, Costa Rica, Guatemala, and El Salvador have relatively less to gain. On average,

under the expansion counterfactual, countries in Latin America would gain about 1.6%

of consumption, weighing each country by its total population, or around 1% giving each

country an equal weight.

Figure 3.6b below shows welfare gains that countries could expect to obtain from a

reallocation of the existing road network. The gains are comparable to those obtained by

193



a 50% expansion of the road network. On average, Latin American countries would gain

about 1.6% of consumption weighing each country by its total population, or around 1%

unweighted. The road networks of Argentina, Brazil, Peru, and Mexico are relatively more

misallocated, with gains from a reallocation ranging from 1.3%-2.4%, while El Salvador,

Guatemala, Costa Rica, Uruguay, and Panama are relative less misallocated, with gains

below 0.5%. These results are comparable in magnitude to the average gain from network

reallocation of 1.7% obtained for Europe by Fajgelbaum and Schaal (2020), as well as to

the average gain from network reallocation of 1.1% obtained for Africa by Graff (2019).

While the welfare gains vary across countries, we find that as in the European case larger

countries in terms of population tend to gain more. In addition, as in Fajgelbaum and

Schaal (2020), the welfare gains from optimal networks are substantially larger under non-

convex parametrization without congestion and in this case the solution closely matches the

least-cost-route optimization solutions in the literature. For example, in the non-convex

parametrization case, the welfare gain of Colombia rises from 1.2% to 2.3% and under the

expansion case, from 1.2% to 2.9%. This suggests that our estimates of welfare change are

relatively conservative.

3.3.2.1 Gains within Countries

In Figure 3.7, we plot the percentage change in consumption against the log of the initial

income per capita for each grid cell in all the countries in our sample, showing separately

the data points corresponding to Argentina, Mexico, and Brazil. The results in this figure

suggest that the areas that gain the most from the expansion are those that had relatively

lower levels of per capita income before the expansion. In all countries, we find a significant

negative relationship between the initial level of per capita income in a location and the

percentage change in consumption experienced in that location after the implementation of

the optimal 50% expansion. As noted by Fajgelbaum and Schaal (2020), this is consistent
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Figure 3.6: Welfare gains

(a) 50% Expansion

(b) Reallocation

Note: . This figure shows, in panel (a), the welfare gain across countries from the 50% expansion
counterfactual, and in panel (b), the welfare gain across countries from the reallocation
counterfactual.
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Figure 3.7: Correlation of Gains and Initial Income Across Countries

Note: This figure shows the relationship between initial income per capita in each cell within each
country, and the percentage change in consumption implied by the model under the 50%
expansion case.

with the social planner’s desire to equalize the marginal utility of consumption across

locations. In this sense, the expansions we study here can reduce inequalities across space

by increasing consumption in the locations with initially low levels.

3.3.3 Infrastructure Growth and World Bank Investments

How do the optimal infrastructure investments proposed by the model correlate with in-

vestments currently being made in these countries? To study this, we use a list of World

Bank Transportation projects in each LAC country between 2005 and 2020 obtained from

the World Bank Projects API. Each project is associated with at least one set of latitude

and longitude coordinates, and some projects are also associated with a lending amount.

The spatial distribution of these projects is shown in Figure 3.8 below. Many of these in-

vestments are located close to cities; for example, several investments are clustered around

Asunción in Paraguay, Buenos Aires in Argentina, Lima, Peru, and along the Coast of

Brazil. In Appendix Figure 3.21, we plot the within-country correlation between popula-
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tion and World Bank investments, where both population and World Bank investments

are measured for each grid cells within each country. They are well-correlated in all cases,

except in the case of Costa Rica.

For each grid cell in each country, we compute the correlation between the model-

implied level of infrastructure growth in the 50% expansion counterfactual first with the

total amount of dollars spent on infrastructure projects in that grid cell since 2005 and

then with the total number of projects in that grid cell. Figure 3.9 shows these correlations

across countries. While this is an imperfect comparison since we do not observe exactly

the links that World Bank investment projects are targeting with these projects, some

interesting patterns appear. In most countries, the correlation is quite high; for example,

in Paraguay, Guatemala, and Colombia. The reason for this is that within most countries

there is a high correlation between population and the level of World Bank investment. This

relationship is shown in Appendix Figure 3.22: countries with a high level of correlation

between population and World Bank investments also have a high level of correlation

between model-implied infrastructure growth and World Bank investments. Since the

model prioritizes investments in high population areas, we find that World Bank and

model-implied investments are generally well-correlated. But this is not, for example, the

case in Costa Rica, where most World Bank projects are along the coast while the model

highlights investment in the interior, near San Jose.

3.4 Robustness

In this section, we consider the robustness of our results to alternative data sources, mea-

sures of infrastructure quality, grid cell sizes, and size of the expansion.
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Figure 3.8: Distribution of World Bank Transportation Projects

Source: World Bank Projects API. Includes transportation sector projects in each country
between 2005 and 2020. Note: Each red dot shows the location of a project; dots are sized by the
relative funding of the project. For projects associated with more than one location, funding is
assumed to be uniformly distributed across locations.
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Figure 3.9: Correlations Between Road Network Investments & World Bank Projects

Note: The blue bars show the country-level correlation between the number of World Bank
infrastructure projects within each grid cell and the amount of model predicted infrastructure
investment under the 50% expansion counterfactual. The red bars show the country-level
correlation between amount of spending on World Bank infrastructure projects within each grid
cell and the amount of model predicted infrastructure investment, under the 50% expansion
counterfactual. Only countries with more than one observed World Bank Project are included.
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3.4.1 Alternative Data Sources

We undertake three robustness checks related to our data sources. First, instead of using

SEDAC’s GPW dataset to measure the population in each grid cell, we use data from

WorldPop. Second, following Graff (2019), we measure infrastructure quality along a link

using the average speed that a car could travel between nodes in the network, as computed

via OpenStreetMaps. Finally, we combine both data sources by including WorldPop popu-

lation data and OSM travel speeds simultaneously. Figure 3.10 shows correlations between

changes in infrastructure in each grid cell in each country under the baseline case and under

each of the three robustness checks. On the x-axis, we show the change in infrastructure in

each grid cell across countries and counterfactuals, relative to the mean. On the y-axis, we

show the change in infrastructure in that grid cell in each of these three robustness checks.

The correlations are very high, above 90 in all three cases, suggesting our results are not

sensitive to these different sources of data. In Appendix Table 3.3, we show the welfare

gains for each of these robustness checks across both scenarios in each country. In general,

the numbers are very similar across specifications.

3.4.2 Rural Road Quality

One concern with our approach to measuring infrastructure quality is that the data we

use may overstate the quality of roads in rural areas. We therefore explore the robustness

of our results to this measure by reducing travel speeds in very isolated areas, where road

quality may be lower than measured. We focus here on Brazil and Bolivia, which both

include large, remote, difficult-to-access areas where this problem may be especially acute.

We identify which grid cells are “rural” in each country based on whether population

density is below 20 people per square kilometer. In Brazil, we find that about 16% of the

population lives in areas that we identify as ultra-low density; in Bolivia, that figure is
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Figure 3.10: Robustness Check Road Network Investment Correlations

Note: This figure shows infrastructure changes across locations for each robustness check. The
“Baseline” is our baseline specification, using GRIP road network quality data and SEDAC-GPW
population data. The “WorldPop” points use WorldPop data on populations of grid cells in lieu of
SEDAC-GPW data, and the “OpenStreetMap” uses travel speeds as computed with
OpenStreetMap to measure infrastructure quality in lieu of GRIP measures of road segment
quality. Finally, “WorldPop + OpenStreetMap” uses WorldPop data on the populations of grid
cells and OSM data on travel speeds to measure infrastructure quality.
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29%. Given this set of rural grid cells within each country, we use the OSM version of

our results as described in Section 4.1 and reduce speeds by 20% along edges with a rural

destination and a rural origin, and by 10% if the origin or destination grid cell is rural.

We re-estimate the expansion counterfactual and find that this change has almost no

effect in the case of either country. In Brazil, welfare falls by about 0.06 percentage points

relative to our baseline results, and the correlation in the location of investments with this

rural version and our baseline version is nearly one. Since this change to the quality of rural

roads affects only a small share of the population, it is not too surprising our aggregate

welfare results do not change much. In the case of Bolivia, where this adjustment to road

speeds affects a larger share of the population, we find a similarly very small change in

welfare relative to the baseline case of about 0.01 percentage points and a correlation in

investments’ location of 99%. Because the model prioritizes high-population locations,

changing the initial level of road quality in remote areas does not affect the results very

much. Thus, we are reassured that our results are robust to changes in our measurement

of rural road quality.

3.4.3 10% Expansion

In our main analysis, we considered a 50% expansion counterfactual. However, many coun-

tries may face competing priorities and limited fiscal space such that a major infrastructure

push may not be possible at this time. Thus, in this section we focus on Brazil and consider

a 10% expansion. The welfare gain from a 10% expansion is 1% of annual consumption.

This result highlights the non-linearity of gains from improving infrastructure: though

we reduce the size of the expansion by 80%, the welfare gains obtained under this much

smaller expansion are 44% of the gains obtained under the larger, 50% expansion. In terms

of infrastructure placement, the reduction in investment in the 10% case as compared with

the 50% case is very uniform across links. The grid-cell level change in investment has a
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correlation coefficient of 98%; the main difference in the two counterfactuals is the total

level of investment allocated to each link which is reduced under the smaller expansion.

3.4.4 Labor Mobility

In this section, we relax the assumption of immobile labor and allow for perfect labor

mobility across space within countries. In this version, we calibrate the model to match

not only income per capita in each location, as in the case of immobile labor, but also

to match the distribution of the population. Then, we study the effects of the expansion

and reallocation counterfactuals. Figure 3.11 shows the correlation between welfare gains

in each country under the assumption of fixed labor and under the assumption of perfect

labor mobility, for both the reallocation and expansion counterfactuals. In the latter case,

workers can reallocate across space given the change in infrastructure and income in each

location implied by each counterfactual. In turn, the distribution of investment outcomes

factors in that workers are mobile. The correlation between the welfare gains under these

two different assumptions is very high, around 99%.

3.5 Transnational Trade Networks

In this section, we evaluate optimal expansions and reallocation in two transnational road

networks. First, we consider road connectivity within the group of countries that are

signatories to the MERCOSUR free trade agreement (FTA) – Argentina, Brazil, Paraguay,

and Uruguay. Second, we explore the road networks connecting countries in the Andean

Community, a free trade area including Bolivia, Ecuador, Peru, and Colombia. With

this analysis we would like to assess the extent to which road infrastructure plays a role

in inflating trade costs and thus limiting the gains from these two regional free trade
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Figure 3.11: Welfare Gains Under Labor Mobility Assumptions

Note: This figure shows the correlation in welfare gains across countries in the case where labor is
mobile versus in the case where it is immobile.

agreements.7

3.5.1 Discretization

To study optimal expansions and reallocations among groups of countries, we deviate from

the original methodology in Fajgelbaum and Schaal (2020) and follow a discretization

procedure like the one used in the case of Brazil. Although in theory we could implement

exactly the same process on groups of countries as we did in earlier sections, in practice the

countries in our sample are too large when grouped together for this to be computationally

feasible.8 Thus, for our transnational analyses, we do not rely on square, uniformly-sized

7We do not include any border frictions or tariffs that would affect trade of goods across countries
in this analysis.

8Fajgelbaum and Schaal (2020) adopt this approach for the union of 24 European countries, but
the countries in our setting are far too large for this approach to be feasible.
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grid cells but instead use the Level 1 administrative borders (province or state-level) to

construct “grid cells” in each country. One challenge with this approach is that it can result

in a wide range of cell sizes. For example, Paraguay’s Level 1 regions are much smaller

both in surface area and population compared with those in Argentina and Brazil. Thus,

in the cases of Paraguay and Uruguay, we combine small provinces together. For example,

in our MERCOSUR analysis, Paraguay consists of three regions and Uruguay consists of

four regions.

As in our single-country analysis, we use SEDAC’s GPW to identify the most populous

place in each cell; these points become the nodes corresponding to the state or province in

which they lie. Thus, the total number of nodes in the connected network will be the total

number of states across the group of countries. Edges between nodes are determined based

on which grid cells are neighbors, meaning that they share a border. This set of nodes

and edges forms the basis for our discretized graph. We compute the total population

in each state using SEDAC’s GPW and total value added in each state using G-ECON.9

Since we are no longer working with rectangular cells and we observe population at a

very fine granularity, we estimate value added in each grid cell as the population-weighted

value added. Figure 3.12 shows the grid that we work with, as well as the relative levels

of population in each cell. Purple lines indicate country borders. To measure distances

between links and infrastructure quality across links, we use OpenStreetMap to compute

travel distances and travel speeds between each node in the network.10 As in our OSM

robustness check, we define infrastructure quality along a link as the average travel speed

along that link. We also use OSM to identify whether links exist in the real road network:

9Another option is to use official statistics for population and/or income as we did in the case
of Brazil. However, in this cross-country case, we prefer to use a uniform source because we would
like to avoid combining slightly different data on countries within each connected group.

10This is the same methodology used in one of our robustness checks. The road networks of each
country are extremely complex, and this approach eases the computational burden associated with
combining them together.
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if there is no road network path between two points, we exclude the edge connecting those

two points from our discretized road network.

Figure 3.12, panel (c) shows the discretized road network for the MERCOSUR group

of countries; in this case, all links are colored in green because there is no differentiation

between primary versus secondary roads. Thicker, brighter links are those with higher

quality infrastructure as measured by high travel speeds, while thinner, dimmer lines are

those with lower infrastructure quality. Figure 3.13 shows the same set of figures for

the Andean Community countries. Maintaining the same assumptions on preferences and

technology described in Section 3.2, we then calibrate the fundamentals of the model as in

our single-country analysis.

Following Fajgelbaum and Schaal’s application to transnational road networks within

Europe, we assume that each country produces a country-specific differentiated product,

in addition to a homogeneous good and use the same parameters as in the benchmark case.

We assume that the largest locations in terms of observed population within each country

produce the differentiated product of that country, while the remaining locations produce

the homogeneous product. In the case of MERCOSUR, we set the number of differentiated

producers to 7 in Brazil (the largest and most populous country in this setting), 5 in

Argentina, and one each in Paraguay and Uruguay. In the case of the Andean Community,

we set the number of differentiated producers to 3 in each country except Bolivia, where

we assume only one location produces a differentiated product.11

11Choices governing the number of differentiated producers in each country are motivated by the
number of cells in each country’s grid; for example, Bolivia has only 9 cells compared with Colombia
where there are 33 cells.
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Figure 3.12: MERCOSUR Discretization

Note: Brighter cells in panel (a) show cells with larger population. Thicker brighter links show higher quality 
infrastructure in panel (c). Magenta lines show country borders.

207



Figure 3.13: Andean Community Discretization

Note: Brighter cells in panel (a) show cells with larger population. Magenta lines show country borders.
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3.5.2 Results

We study the same 50% expansion and reallocation counterfactuals examined on a country-

by-country basis in Section 3.3. First, we consider these counterfactuals in the case of the

MERCOSUR countries. Panels (a) and (b) of Figure 3.14 show the results for the optimal

50% expansion and the optimal reallocation for this group of countries, respectively. In

the expansion case, the model tells us that it is best to improve the roads connecting the

largest cities of each member country (which in our model are also the locations producing

the differentiated good). Given the location of these cities, these are improvements mostly

along the coastal highways.

Most of the investments, as measured by the percentage of total infrastructure growth,

are in Brazil (71%) and Argentina (22%), while the remainder is split between Uruguay

and Paraguay. The optimal reallocation produces similar results, with resources allocated

away from the less populous areas of Brazil and Argentina to finance the expansion. We

find that the expansion yields an annual welfare increase of 1.91%, while the reallocation

would yield a welfare gain of 1.75%. The results indicate that deficiencies in the road

network connecting major cities in MERCOSUR member countries increase trade costs

and limit the gains from regional trade.

Second, we consider these counterfactual scenarios for countries in the Andean Com-

munity. The results are shown in Figure 3.15. We find that the optimal expansion yields

a welfare gain of 1.47% while the optimal reallocation yields a welfare gain of 1.54%. Both

the optimal expansion and reallocation improve connections between La Paz in Bolivia,

along the coast of Peru to Lima, and through Quito to Medellin. In the case of the reallo-

cation scenario, resources for this investment are drawn from the interior of each country.

In the optimal expansion, 50% of the infrastructure growth is in Colombia, 25% is in Peru,

23% in Ecuador, and the remainder in Bolivia.
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Figure 3.14: MERCOSUR Counterfactual Networks

Figure 3.15: Andean Community Counterfactual Networks
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Welfare gains under both counterfactual scenarios vary across countries. In Figure

3.16, we show the welfare gains obtained by each country within each grouping under both

counterfactual scenarios. Figure 3.16a shows country-level welfare gains for MERCOSUR

and Figure 3.16b shows the same for the countries in the Andean Community. Among the

MERCOSUR countries, we find that Paraguay (+3.3%) and Brazil (+2.3%) experience

the largest gains; Argentina experiences the smallest gains and a small decline in welfare

in the reallocation scenario (-0.29%). Among the Andean Community, gains are largest in

Bolivia (+5.67%) and smallest in Peru (+0.67%).

3.6 Conclusion

We explore the extent to which road connectivity issues affect the efficient spatial distri-

bution of economic activity within and across countries in Latin America either because

the existing road infrastructure is spatially misallocated or because it is insufficient. Us-

ing the general equilibrium spatial framework of Fajgelbaum and Schaal (2020) and data

from multiple sources, we construct optimal transport networks and optimal expansions to

existing networks in most Latin American countries, as well as within MERCOSUR and

the Andean Community. We assess the average annual welfare losses due to inefficient

domestic road networks in Latin America at 1.6%, if weighted by population, and just

below 1% in simple average terms. Spatial inefficiencies are highest in Argentina, Brazil,

and Peru, where the welfare losses due to such inefficiencies average 2.4%, 2.0% and 1.5%,

respectively, and lowest in El Salvador, Guatemala, and Costa Rica where the losses are

0.3%. These results are robust to changes in data sources and model assumptions and

suggest that domestic trade costs associated with inefficient road networks are sizable in

the most populous economies in Latin America.

We identify optimal expansions to existing networks that can correct these inefficiencies
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Figure 3.16: Transnational Welfare Gains
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Note: This figure shows welfare gains across countries for both MERCOSUR and the Andean
community.
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and we show that these investments tend to reduce spatial inequality. The average regional

welfare gains of these investments are on par with those assessed by Fajgelbaum and Schaal

(2020) for Europe. Model-implied optimal investments in improving and expanding existing

networks correlate relatively well with World Bank road investments because both the

model and the World Bank prioritize projects in high population areas. Within countries,

we show that the optimal road infrastructure investments tend to boost consumption in

areas with lower levels of per capita income before the expansion. This is consistent with

the model’s objective to equalize the marginal utility of consumption across locations.

Identifying the optimal transnational road networks for the countries that are signa-

tories to MERCOSUR and the Andean Community allows us to determine the extent to

which trade costs deter regional trade. We find that spatial misallocation of transnational

road networks is associated with average annual welfare losses of 1.8% in MERCOSUR and

1.5% in the Andean Community. These losses can be remedied with road investments that

improve and expand the existing road networks. In the case of MERCOSUR, expansion

yields an annual welfare increase of 1.9%, while in the case of the Andean Community,

the gain is 1.5%. In both cases, the transnational expansions benefit the most the poorest

country in the trade bloc. The model improves connectivity between the largest cities

within MERCOSUR and between the largest cities in each member country. Given the

location of these cities, these are improvements mostly along the coastal highways. Most

of the investments occur in Brazil (71%) and in Argentina (22%), with the remainder split

equally between Uruguay and Paraguay. Within the Andean community, half of the infras-

tructure growth occurs in Colombia, a quarter each in Peru and Ecuador, and only 2% in

Bolivia. Optimal investments improve connectivity between La Paz in Bolivia, along the

coast of Peru to Lima, and through Quito to Medelĺın.

It is important to keep in mind the following caveat. The 50% expansion of the road

network depicts a scenario equivalent to a major road infrastructure push. However, the
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paper does not factor in the financing costs of increasing the size of the infrastructure

budget. If resources are raised by increasing taxes or pulling resources from other public

investments, the welfare gains of road infrastructure investments would be smaller. Re-

gardless, the findings of the paper are useful and timely because they are indicative of the

optimal spatial distribution of road infrastructure projects. By optimally locating their

road projects, governments can lower trade costs and achieve a bigger growth boost per

dollar spent.
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3.7 Appendix

Table 3.3: Robustness Check Welfare Gains

Expansion Reallocation

Country Base WorldPop OSM WorldPop + OSM Base WorldPop OSM WorldPop + OSM
Bolivia 1.3 1.8 1.5 1.5 1.2 1.8 1.5 1.5
Chile 0.9 0.8 0.7 0.7 0.9 0.9 0.7 0.7
Costa Rica 0.4 0.4 0.3 0.3 0.3 0.4 0.3 0.3
Ecuador 0.6 0.7 0.5 0.6 0.6 0.7 0.5 0.6
El Salvador 0.3 0.2 0.1 0.1 0.3 0.2 0.1 0.1
Guatemala 0.3 0.3 0.2 0.2 0.3 0.3 0.2 0.2
Nicaragua 0.5 0.6 0.4 0.5 0.5 0.7 0.4 0.5
Panama 0.4 0.6 0.6 0.6 0.4 0.6 0.6 0.6
Paraguay 1.0 1.0 0.6 0.6 1.1 1.1 0.7 0.7
Uruguay 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.3
Venezuela 1.2 1.2 1.0 1.1 1.2 1.2 1.0 1.1
Bolivia 1.3 1.8 1.5 1.5 1.2 1.8 1.5 1.5
Chile 0.9 0.8 0.7 0.7 0.9 0.9 0.7 0.7
Costa Rica 0.4 0.4 0.3 0.3 0.3 0.4 0.3 0.3

Note: This table shows welfare gains across countries under robustness checks. The “Base”
column lists our baseline welfare estimate, using GRIP road network quality data and
SEDAC-GPW population data. The “WorldPop” column uses WorldPop data on populations of
grid cells in lieu of SEDAC-GPW data, and the “OSM” uses travel speeds as computed with
OpenStreetMap to measure infrastructure quality in lieu of GRIP measures of road segment
quality. Finally, “WorldPop + OSM” uses WorldPop data on the populations of grid cells and
OSM data on travel speeds to measure infrastructure quality.
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Figure 3.17: Expansions and Reallocations
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Figure 3.18: Expansions and Reallocations
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Figure 3.19: Expansions and Reallocations
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Figure 3.20: Expansions and Reallocations
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Figure 3.21: Correlations Between Population and World Bank Investments

Note: These are correlations across grid cells within a country between population and the level of
World Bank infrastructure projects, as measured by the number of projects (purple bars) or the
total amount of spending (green bars). Only countries with more than one observed World Bank
Project are included.
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Figure 3.22: Population, Model-Implied Infrastructure, and World Bank Investments

Note: This figure plots, for each country, the correlation between World Bank projects and
population on the x-axis and the correlation between World Bank projects and the model-implied
infrastructure growth under the expansion counterfactual on the y-axis.
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