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Abstract 
Language learning is a sophisticated process as learners need 
to detect and extract rich regularities embedded in the 
continuous speech inputs. Children, compared to adults, appear 
to learn languages more effortlessly. Nevertheless, early 
studies in implicit statistical learning revealed little 
developmental differences between children and adults. Recent 
work has found the speed of statistical learning in adults is 
associated with their neural sensitivity to probabilistic 
information in speech. It is not well understood, however, 
whether children share similar or different underlying neural 
processes for probabilistic information compared to adults. 
Specifically, are children similar to faster or slower adult 
statistical learners, or neither of them? In the current study, 
children aged between 5 and 12 completed a passive auditory 
oddball task, where they listened to syllables at different local 
and global frequency of occurrence. We used two 
neurophysiological measures, auditory mismatch responses 
(MMR) and late discriminative negativity (LDN) to compare 
children’s sensitivity to distributional probabilities in speech 
with adults. We found that children were more sensitive to 
probabilistic information in speech inputs at both the local and 
the global level than both faster and slower adult statistical 
learners. Moreover, unlike adults who integrate probabilistic 
information across global and local hierarchies, children seem 
to process different levels of probabilistic information in 
parallel. 
  

Keywords: Statistical Learning; Language Development; 
Mismatching Response; Late Discriminative Negativity; EEG 

Introduction 
The From the moment we are born, our sensory organs are 
continuously being bombarded with information that varies 
in its’ consistency across time. Importantly, this information 
is not simply a series of random events, but rather contains a 
regular and probabilistic structure that makes it possible to 
recognize and predict upcoming information. Remarkably, 
humans possess an exceptional ability to perceive and detect 
temporal regularities and variabilities in continuous speech 
both on a local scale (e.g., milliseconds) and across a longer 
time scale (e.g., minutes) as they take place. This skill, also 

known as Statistical Learning (SL), is particularly critical in 
language acquisition, as it allows us to acquire key properties 
of language such as phonemic and syntactic categories 
(Werker et al., 2007; Maye et al., 2002). As we hear a 
continuous stream of acoustic signals, we start computing 
multiple levels of frequency information that exist within 
speech ⎯ from lower level information that forms speech 
sound categories to higher level information that shapes 
lexical, semantic, and syntactic regularities. By doing so, we 
can parse the continuous stream of acoustic speech signals 
into linguistic units, such as phonemes, syllables, words, and 
sentences (Johnson & Tyler, 2010), and ultimately, 
understand what these signals mean. Therefore, the process 
of detecting distributional regularities from the environment 
helps us to learn the basic building blocks of language, which 
we can then use to construct more complex and hierarchical 
linguistic structures. 

Infants, children, and adults are sensitive to these 
distributional statistics in the environment, such as frequency 
of occurrence and co-occurrence, using them to learn various 
aspects of language, including word boundaries in continuous 
speech (Saffran, Aslin, & Newport, 1996; Saffran, 2001), 
speech categories (Maye, Weiss, & Aslin, 2008), phonotactic 
structures (Chambers, Onishi, & Fisher, 2003), and abstract 
representations of sequential patterns (Gomez & Gerken, 
1999). For example, Maye, Weiss, and Aslin (2008) found 
that 8-month-old infants' ability to recognize patterns in 
speech plays a role in how they learn to perceive their native 
language. They observed that as infants learned to categorize 
sounds that were important in their language, they became 
better at distinguishing between phonetic differences that 
were initially challenging for them. Gómez and Gerken 
(1999) also suggested that 12-month-old children could 
distinguish new grammatical from non-grammatical 
sequences after brief exposure to an artificial grammar, 
indicating that they are capable of detecting distributional 
regularities from the input statistics to acquire language 
structures. However, it remains unknown whether SL ability 
remains constant over the course of a lifetime. Individuals at 
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different developmental stages may process different types of 
probabilistic patterns in different ways, which may result in 
distinct representations of information (Forest, Schlichting, 
Duncan, & Finn, 2023). 

The developmental account aligns with a well-known 
phenomenon in the language acquisition field ⎯ the success 
of acquiring a new language declines as age increases, with 
younger children achieving native-like fluency at much 
higher rates than older children and adults (Johnson & 
Newport, 1989; Newport, 1990; Hartshorne et al., 2018). 
Since SL has been proposed to play a key role in language 
acquisition (Bates & Elman, 1996; Romberg & Saffran, 
2010), children’s advantage for language learning may be 
partially accounted for by age-related changes in SL ability. 
Unlike the clear developmental advantage of adults in visual 
SL that has been attribute to more mature domain-general 
cognitive capacity (Arciuli & Simpson, 2011; Raviv & 
Arnon, 2017; Fortenbaugh et al., 2015; see Forest et al., 2023 
for an review), surprisingly, the few existing studies 
examining the developmental differences in SL in the 
auditory speech domain suggested a lack of or a weak age-
related effect (e.g., Saffran et al., 1997; Raviv & Arnon, 
2017; Moreau et al., 2022; Ren et al., 2023). The fact that 
adults and older children, with more mature cognitive 
capacity and more prior language experiences, are not 
performing necessarily better than younger children in 
auditory linguistic SL, suggest certain underlying processing 
mechanisms are advantageous in children than adults. 
Indeed, the latest behavioral work suggest children are faster 
than adults in learning the embedded triplet structure in a 
continuous speech stream, despite similar offline recognition 
accuracy (Hu et al., 2022). However, little is known how 
children differ from adults during the processing of 
frequency-sensitive statistical information in speech. 

Recent work has highlighted that statistical learning is not 
a unified construct. Instead, empirical evidence has shown 
abilities to learn linguistic and non-linguistic statistical 
patterns vary within individuals (e.g., Siegleman et al., 2015; 
Erickson et al., 2016). Dissociations between linguistic and 
nonlinguistic statistical learning in the developmental work 
(e.g., Shufania & Arnon, 2018; Hu et al., 2023) also 
supported the possibility that human brains process linguistic 
and nonlinguistic statistical patterns differently, which may 
result in different developmental trajectories. 

Electrophysiological measures provide a valuable and tool 
for monitoring how children and adults detect and encode 
distributional probabilistic information without the cognitive 
demands of an explicit task. By measuring electrical signals 
that occur in the brain in response to repeated auditory 
stimuli, researchers can examine the integrity of early stages 
of neural processing up to the brain (Bishop, 2007). 
Numerous studies have found that the presence of a 
mismatching response (MMR) in the brain is linked to the 
ability to discriminate between frequent and rare stimuli, 
especially in response to locally rare stimuli (i.e., shorter time 
scale) in some infants and younger children, making it a 
useful tool for studying developmental differences in 

auditory speech sound discrimination. The MMR is often 
followed by a late negative component, also known as Late 
Discriminative Negativity (LDN), around 300 – 600 ms after 
the onset of deviants (Korpilahti, Krause, Holopainen, & 
Lang, 2001; Cheour, Korpilahti, Martynova, & Lang, 2001; 
Martynova, Kirjavainen, & Cheour, 2003). Although the 
functional significance of the LDN remains inconclusive, 
existing evidence suggests that it seems to be (1) language-
specific (Korpilahti et al., 2001), (2) triggered by auditory 
rule extraction processes, (3) reflects a process of transferring 
rules into long-term memory (Zachau et al., 2005).  A recent 
study validated MMR and LDN as indices of auditory 
sensitivity to probabilistic information in speech. In adults, 
MMR and LDN have been found to be sensitive to local 
(P(deviant) within 3-10 syllables) and global (P(deviant) 
within hundreds of syllables) frequency of occurrences, 
respectively, in a continuous stream of syllables (Schneider 
et al., 2022). The same group of adults also completed an 
auditory statistical learning task, where the acceleration of 
response time was used to index implicit learning of 
embedded triplet patterns (Schneider et al., 2020). Those who 
showed faster learning also displayed greater integration of 
probabilistic information across the local and global levels 
during passive listening, implicated by a shift from an LDN 
response to a P3a-like response, whereas the slower learners 
showed a relatively consistent LDN pattern. 

In the current study, we aim to examine differences 
between children and adults in their underlying neural 
processes to track distributional probabilities of speech inputs 
across local and global levels and across syllabic (linguistic) 
and acoustic (nonlinguistic) domains. By comparing children 
to two groups of adults (faster learners vs. slower learners), 
we ask the following two questions: (1) Do children process 
global and local probability differently from adults? (2) If so, 
are the developmental differences specific to phonemic 
processing or speech acoustic processing in general? 
 

Methods 

Participants 
The current study involved sixty-seven participants, divided 
into three groups. The Child Group consisted of twenty-two 
school-aged neurotypical children (Mage = 10.2, SDage = 1.99, 
5 males). The adult participants were the same sample 
reported in Schneider et al. (2022) but divided into the faster 
and the slower learner groups. The grouping in adults was 
based on adults’ behavior performance during a target 
detection task when listening to a speech stream with 
embedded triplet structure. The target stimuli were the third 
element of a given triplet. As learning continued, faster RT 
acceleration (i.e., more negative RT slope) indicated faster 
implicit learning, while slower RT acceleration (i.e., more 
positive RT slope) indicated slower implicit learning.  The 
Faster Learner Group included twenty-two adults with 
negative RT slope (MRT slope = -22.76, SDRT slope = 1.95, 6 
males) and the Slower Learner Group included twenty-three 
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adults with positive RT slope (MRT slope = 21.03, SDRT slope = 
2.02, 11 males). All participants were right-handed, native 
English speakers, with no history of neurological or 
psychiatric disorders, or brain damage. All had average or 
above-average non-verbal intelligence (age-based standard 
score > 85) as measured by the Matrices subtest (Faster 
Learner Group: M = 107.84, SD = 12.89; Slower Learner 
Group: M = 109.37, SD = 14.15; Child Group: M = 105.6, SD 
= 33.38) of the Kaufman Brief Intelligence Test (KBIT-2; 
Kaufman & Kaufman, 2004). Adult groups and children were 
matched on gender distribution, and there were no significant 
differences between groups in their non-verbal intelligence 
(ps > .05). All participants were compensated for their 
participation. Participants provided written informed consent 
before the experiment. 

Auditory Oddball Paradigm 
The auditory oddball paradigm was adopted from Schneider 
et al. (2022). In this task, two female English native speakers 
produced sounds of “bog” and “dog” 100 times for each word 
in a picture-naming task. The naturalistic /ba/ and /da/ sounds 
were then manually cut from the original recordings. 100 
tokens for each word were digitally recorded using a SHURE 
SM58 microphone and Edirol UA-25EX sound card, 
sampling at 44.1 kHz. 50 tokens with better recording quality 
were then chosen for the experiment. The duration of each 
sound file was 180 ms with ramping at the beginning and the 
end each syllable. The intensity of each sound was 
normalized to 70dB. Two auditory streams of 1500 stimuli 
(SOA = 0.7 seconds) were created consisting of standard and 
deviant conditions (see Figure 1 for visualization of 
paradigm). The standard condition included repeated 
presentations of the /ba/ syllable spoken by one female 
speaker. To understand listeners’ sensitivity to the linguistic 
domain, we manipulated the deviants as linguistic and non-
linguistic deviants. The linguistic deviant was a different 
syllable, /da/, spoken by the same speaker as in the standard 
condition. The non-linguistic deviant was the same syllable, 
/ba/, spoken by a different female speaker, suggesting the 
only difference between /ba/ sounds was related to non-
linguistic voice acoustics rather than linguistic qualities. To 
examine listeners’ sensitivity to global probability, we 
manipulated the frequency of deviant stimuli across two 
experimental 6-minute blocks. In both blocks, standard 
stimuli were presented 1200 times, resulting in a global 
probability of 0.80 (1200 standards /1500 total stimuli). In 
one block, the linguistic deviant occurred at a high frequency 
(global probability = 0.13; 200 deviants/1500 total stimuli), 
while the non-linguistic deviant occurred at a low frequency 
(global probability = 0.07; 100 deviants /1500 total stimuli).  
In the other block, the non-linguistic deviant occurred at a 
high frequency (global probability = 0.13), while the 
linguistic deviant occurred at a low frequency (global 
probability = 0.07). The block order was counterbalanced 
across participants. Moreover, to investigate listeners’ 
sensitivity to local probability, we manipulated the number of 
standard stimuli preceding deviant stimuli within each global 

probability condition. In the low local probability condition, 
two standard stimuli were presented before a linguistic or 
non-linguistic deviant (i.e., /STANDARD/ − /STANDARD/ 
− /DEVIANT/). In the high local probability condition, six 
standard stimuli were presented before a linguistic or non-
linguistic deviant (i.e., /STANDARD/ − /STANDARD/ − 
/STANDARD/−/STANDARD/−/STANDARD/−/DEVIAN
T/). High frequency and low frequency conditions were 
randomly interspersed in each auditory stream. The local 
probability conditions were randomly ordered within each 
auditory stream. 

 
Figure 1: Schematic illustration of the EEG Paradigm. The 
global probability was manipulated across the two blocks. 
In the first block there were greater repetitions (reps) of the 
linguistic deviant, as compared to the non-linguistic deviant, 

and this pattern switched in the second block. The local 
probability was manipulated within each block. In the high 
condition two standard stimuli were presented before the 

linguistic or non-linguistic deviant and in the low condition 
six standard stimuli were presented before the deviant. 
Block order was counterbalanced across participants. 

EEG Recording Procedure 
The EEG recording procedure follows that of Schneider et al. 
(2022) study. Participants were instructed to watch a silent 
animation movie while listening to the auditory streams 
through a pair of noise-attenuating Cortech ER-2 earphones. 
Each experimental block lasted for 17.5 minutes. All the 
visual and auditory stimuli were presented using 
Presentation® software (Version 18.0, Neurobehavioral 
Systems, Inc., Berkeley, CA, www.neurobs.com). EEG was 
recorded with a 24-channel mobile EEG system 
(SMARTING, mBrainTrain, Belgrade, Serbia) which 
features a sampling rate of 500 Hz, a resolution of 24 bits, and 
a bandwidth from 0 to 250 Hz (SMARTING, 
www.mbraintrain.com). The amplifier used in this study 
includes a 3D gyroscope and power supply for several hours 
use (weight 64 grams; size 82 × 51 × 14 mm). Data is 
transmitted wirelessly via Bluetooth (v2.1) to a nearby paired 
laptop. Electrode impedances were kept below 10 kΩ. 
Recordings were online referenced to electrode FCz and 
grounded to electrode AFz. All data was saved using 
Labrecorder software, which is part of the Lab Streaming 
Layer (LSL). 
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Data Preprocessing  
All continuous raw data was high-pass filtered at 0.1 Hz, low-
pass filtered at 30 Hz, and re-referenced to the mastoids. An 
Independent Components Analysis (ICA; Delorme, Makeig, 
& Sejnowski, 2001) was carried out for artifact removal. The 
components related to eye-movements or muscle activity 
were identified and removed from the data on the basis of 
their time-courses, frequency spectra and topographies. The 
data was then epoched from 100 msec before to 600 msec 
after stimulus onset and baseline corrected to the 100 msec 
before stimulus onset. Trials were removed from analysis if 
the peak-to-peak voltage between 100 ms pre-stimulus and 
600 ms post-stimulus exceeded 100 μV for any of the 24 EEG 
channels. On average, the Child Group had 5.01 components 
(SD = 3.16) and 32.01 trials (SD = 15.35) removed. In 
addition, there were 3.48 components (SD = 1.3) and 28.98 
trials (SD = 10.41) were removed in the Faster SL Adult 
Learner Group. The same pattern was observed in the Slower 
SL Adult Learner Group, where 3.69 components (SD = 1.1) 
and 27.34 trials (SD = 11.87) were removed. 

To ensure the time windows and electrodes of interest for 
the MMR and LDN components are suitable for the 
developmental samples we investigated, our choices follow a 
previous developmental study that examined the 
developmental changes of these components across children, 
adolescents, and adults (Bishop et al., 2011). As a result, we 
measured the mean amplitude of the difference wave for the 
MMR between 100 and 250 ms after the onset of the 
stimulus, and for the LDN, we focused on 300 – 550 ms after 
the onset of the stimuli. We kept all the electrodes for our 
analyses, the mean amplitudes were then averaged across 
electrodes for each deviant condition and extracted for each 
participant using the ERPLAB toolbox in MATLAB (Lopez-
Calderon & Luck, 2014). The ERP mean amplitudes were 
then submitted to a linear mixed-effect modeling using the 
lmer package (version 1.1-33) in R (RStudio Team, 2016). 
The model included fixed effects for Domain (Syllable vs. 
Voice), Local Probability (High vs. Low frequency),  Global 
Probability (High vs. Low frequency), Group, and their 
interactions, with by-subject random intercepts and random 
slopes for the interaction for Domain, Local and Global 
probability. The Group contrast was set up as dummy coding, 
with the Child Group as the baseline. Group contrast 1: 
Children vs. Faster Learner Group. Group contrast 2: 
Children vs. Slower Learner Group. Each contrast represents 
the comparison between the Child Group and the Faster or 
the Slower Learner Group 

Results 

Analysis 1. Developmental differences in MMR and 
LDN responses as indices of auditory 
discrimination 
In the MMR Time Window (100 – 250 ms) we did not 
observe any significant interactions between Group and 
Stimulus Type (Standard vs. Deviant), children and the two 

adult groups did not differ in their MMR responses (ps > .05). 
However, in the LDN Time Window (300 – 550 ms), we 
found a significant interaction between Group (Child vs. 
Slower Learner) and Stimulus Type (β = 0.72, SE = 0.29, t = 
2.47, p = .017), suggesting a larger LDN magnitude in 
children than Slower Adult Learners. There was no 
interaction between Children and Faster Learners in the 
magnitude of LDN (p > .05). Post-hoc analyses within each 
group indicated that only children (β = -0.63, SE = 0.33, t = -
2.10, p = .048) and faster SL adult learners (β = -0.36, SE = 
0.17, t = -2.15, p = .047) displayed significant LDN, but not 
slower SL adult learners (β = -0.16, SE = 0.12, t = -1.32, p = 
.20).  

 
Figure 2: Waveforms recorded in response to all standards 
(stand) and all deviants (dev) in the three groups. The grey-
shaded areas represent our analysis windows for MMR (100 

– 250 ms) and LDN (300 – 550 ms). 

Analysis 2. Developmental differences in MMR and 
LDN responses as indices of probabilistic sensitivity 
We compared children with the two adult groups in how their 
MMR and LDN responses were modulated by the Domain 
(Syllable vs. Voice), Local Probability (Low frequent vs. 
High frequent), and Global Probability (Low frequent vs. 
High frequent) of the deviant stimuli. 

 
Figure 3: The interaction for Group × Local × Domain 

Probability in the MMR time window. Error bars represent 
the standard errors of the mean. 
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Figure 4: The interaction for Group × Local × Global 

Probability in the LDN time window. Error bars represent 
the standard errors of the mean. 

MMR Time Window (100 – 250 ms) We observed a 
significant main effect of Local Probability (β = 0.73, SE = 
0.24, t = 3.05, p = .003), confirming that this early ERP 
component is sensitive to Local Probability, as suggested by 
previous studies. As shown in Figure 3, comparing higher 
versus lower local probability, children showed a strong 
MMP response, whereas adults showed an overall mild 
MMN response. We also observed a significant two-way 
interaction between Local Probability and Group (Children 
vs. Slower Learners; β = -0.90, SE = 0.35, t = -2.61, p = .01). 
The post-hoc analysis revealed that the mismatching 
positivity responses were elicited for low frequent deviants 
comparing to the high frequent deviants only in the Children 
(β = 1.09, SE = 0.31, p = .002) but not in the Slower Learners. 
Importantly, we found a significant three-way interaction 
between Local probability, Domain, and Group (Children vs. 
Faster Learners; β = 1.25, SE = 0.50, t = 2.49, p = .02), 
suggesting such developmental differences were not 
homogenous across the syllable and the voice deviants. The 
results of post-hoc pairwise comparisons for the three-way 
interaction suggested that there was a similar magnitude of 
local probability effect across linguistic and non-linguistic 
domains in Faster Learners (p = .05), but a stronger local 
probability effect in linguistic stimuli compared to non-
linguistic stimuli in children, in which mismatching positivity 
responses were elicited for Local probability in the linguistic 
deviants only (β = 1.09 , SE = 0.31, p = .002) but not in the 
non-linguistic inputs (p = 0.18). 

LDN Time Window (300 – 550 ms) We observed a main 
effect of Global probability across the three groups (β = -1.02 
, SE =  0.27, t = -3.75, p = .0004), confirming LDN is sensitive 
to global probability, as suggested by previous studies. As 
shown in Figure 4, children showed strong LDN responses to 
Global probability, whereas adults’ LDN responses vary 
across Local probability conditions. We found a significant 
two-way interaction for Global probability and Group 
contrast 1 (Children vs. Faster Learners; β = 0.78 , SE = 0.40, 
t = 1.98, p = .05). Children showed a significant LDN effect 
in response to Global probability manipulation (β = -1.03, SE 
= 0.37 , p = .01). However, faster learners showed an overall 
much reduced LDN response for the Global probability effect 
(p > .05). A similar marginal two-way interaction was found 

between Global probability and Group contrast 2 (Children 
vs. Slower Learners; β = 0.78, SE = 0.40 , p = .053). 
Importantly, we also found a significant three-way 
interaction between Global probability, Local probability, 
and Group contrast 1 (Children vs. Faster Learners; β = 1.51, 
SE = 0.69, t = 2.21, p = .03). Our post-hoc analyses suggest a 
consistent LDN responses in children, but an interaction 
between global and local probability in faster learners, such 
that the LDN global effect was significantly larger for locally 
high (β = -0.92 , SE = 0.39 , p = .02), as compared to the 
locally low frequent deviants (p = .19). There were no two-
way interactions between Group and Domain or three-way 
interactions between Group, Global, and Domain (ps > .05). 

General Discussion 
This study aimed to examine how neural sensitivity to 
probabilistic information in speech differs between children 
and adults. Specifically, we asked whether children process 
global and local probability differently than adults with 
varying statistical learning (SL) abilities. To explore this, we 
reanalyzed adult ERP data from Schneider et al. (2022), 
dividing it into faster and slower SL learner groups based on 
the performance of the word segmentation task, and then 
compared the data with children’s ERP data. Overall, the 
results suggested intriguing differences between children and 
adults in processing and predicting probabilistic information 
in speech locally and globally. First, in the early processing 
stage (100 – 250 ms), children displayed stronger positive-
going MMRs to syllable than voice deviants at the local level 
compared to both adult groups, indicating greater sensitivity 
to less frequent local speech deviants. In addition, in the later 
processing time window (300 – 550 ms), children’s 
processing of global probabilistic information appeared 
independent of their local-level processing, whereas adults, 
especially faster SL learners, computed prediction errors 
across both global and local hierarchies, attending to 
extremely infrequent deviants. This result aligns with 
previous findings that adults transition from a LDN to a P3a 
response as auditory anomalies become less frequent and 
more surprising. In sum, these results suggest developmental 
differences in how the brain tracks statistical regularities in 
speech, with children process various levels of distributional 
information simultaneously, while adults integrate of 
probabilistic information across multiple levels. 

Use In the early processing stage (100 – 250 ms), a time 
window specifically sensitive to local probabilistic 
information, we found children showed greater sensitivity to 
perturbations in local probability than both groups of adults, 
reflected as a positive-going MMR. It is particular interesting 
that this advantage in children is more evident for the syllable 
than the voice deviants, indicating that children’s auditory 
system might automatically tune into subtle probabilistic 
changes particularly for the content of speech as their 
language system continues to mature. The polarity of 
children’s MMR responses, however, are opposite to adults 
(MMN). Previous literature suggests the p-MMR represents 
an “immature MMN” (He et al., 2007, 2009a, 2009b; Lee et 
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al., 2012; Mueller et al., 2012; Schaadt, 2015) that will invert 
polarity with development, or a distinct response. Chen et al. 
(2016) suggested the p-MMR may be a precursor to the P3a, 
reflecting attentional orienting (Escera et al., 1998). Lee et al. 
(2012) proposed that positive difference waves arise from 
stimulus factors like short inter-stimulus intervals or difficult 
discriminations. Finally, some studies report two 
simultaneous discriminative components: a slow positive and 
a fast negative wave from different cortical layers (Shafer et 
al., 2010; Trainor et al., 2003). Our MMR findings are 
broadly consistent with previous literature suggesting that 
infants initially learn to segment words from speech by 
tracking transitional probabilities at the local level, i.e., 
between syllables (e.g., Thiessen & Saffran, 2003, 2007; 
Aslin, Saffran & Newport, 1998). According to these studies, 
probabilities between neighboring syllables are critical cues 
in that their use enables children to bootstrap all other speech 
cues to word boundaries, providing a potentially language-
general strategy for the acquisition of language-specific 
segmentation cues.  

In addition, our research points out that during these early 
and pre-attentive stage of auditory processing, there’s no 
significant engagement with the global probabilistic 
information, in agreement with literature showing that the 
memory trace represented by the MMR is transient, causing 
the MMR to be insensitive to global patterns (Näätänen et al., 
2007). Previous studies have documented that the MMR does 
not respond to deviants that violate global distributional 
statistics patterns, such as when a deviant sequence of 
AAAAA is presented after a standard sequence of AAAAB. 
Our findings support these earlier studies, revealing that both 
adults and children do not process global probabilistic 
information in this early processing phase, thereby implying 
a selective sensitivity to different temporal regularities in the 
continuous sound stream. 

In the later processing time window (300 – 550 ms), we 
found that adults’ LDN responses, especially faster SL 
learners, were modulated by intertwined local and global 
probabilistic information while children maintain their focus 
to global distributional information. The interaction between 
local and global effects within the adult’s LDN responses 
suggests that attention mechanisms play a pivotal role in 
processing distributional information embedded in speech 
patterns, as shown in one of our earlier studies highlighted 
that adults undergo a transition from an LDN to a P3a 
response as auditory anomalies become less frequent and 
more surprising. Children, on the other hand, children seemed 
to process global probabilistic information in a more parallel 
manner with local probabilistic information. The presence of 
a global effect aligns with previous studies indicating that 
global probabilistic information is processed at a later stage 
(Bishop, 2007; Wetzel & Schröger, 2014), which posited that 
both children and adults exhibit a LDN response when faced 
with verbal stimuli, pointing to an automatic processing 
mechanism for intricate auditory, and possibly linguistic-
related inputs. Such findings extend our understanding of 
how humans, across different age groups, manage to interpret 

and integrate complex patterns of probabilistic information 
from their auditory environment. For adults, the nuanced 
interplay between attention and the processing of 
probabilistic cues reflects a sophisticated auditory processing 
capability, likely honed over years of linguistic and cognitive 
development. For children, the distinct processing of global 
information highlights their developing cognitive abilities 
and suggests a foundational mechanism through which 
linguistic knowledge and processing skills are built and 
refined. 

Taken together, our findings suggest that children appear 
to process global and local probability in speech streams 
differently, compared to adults with varying SL skills. 
Especially, there are significant differences in the sensitivity 
to detect different temporal scales of distributional cues 
specific to linguistic cues. By using MMR, children’s 
advantage in detecting local probabilistic information 
appears to be more sensitive than adults in response to local 
probabilistic information, specifically for linguistic inputs 
(syllables) as opposed to non-linguistic inputs (voice). Our 
results further indicate that children may have a more 
generalized ability to process distributional probability 
information in speech, which may provide a potential 
advantage for acquiring linguistic categories, such as speech 
sounds, morphosyntactic markers, and verb biases during 
language development. In conclusion, our study provides 
insight into how SL ability changes with development and 
how this may inform research investigating the mechanisms 
underlying the sensory period hypotheses of language 
acquisition. For future research, we suggest extending 
research focus to younger population for a thorough 
investigation of developmental trajectories during earlier 
years in children’s life. By delving into the developmental 
trajectories of SL skills, we aim to enhance our understanding 
of the fundamental processes that underpin language 
acquisition. This not only contributes to the theoretical 
knowledge in the field but also has the potential to influence 
practical approaches in early education, speech research, and 
language teaching methodologies, paving the way for 
strategies that align with the natural developmental 
progressions in language learning. 
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