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ABSTRACT °
The form of the equations gi#en by Faddeev for the problem‘of‘
f‘ . three=particle scattering is analyzed in the case in vhich the amplitudes
of the two~body subsystems are dominated by a finite number of pole terms,
It is shown that an importent simplification can be ﬁade, feducing the |
.o - '
Faddeev equations to & system of coupled integral equations in one - |
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" terms of two~body interactions,l have been pointed out!dby several euthors.

A written in the form 'f”_;Q;}'f*:"“5fi¥E}f o

L l‘;.*:*@'.le»("Hp)f%.-:r-%

< P !‘ . -1_ - . l - -',

I. INTRODUCTION - . AR

The'numeroue'achievements of the ideas of L. b; Faddeev, on the

proper mathematical formulation of the scattering of thee particles in “.f"Lf :
’ ‘_. ;". .

. }

They are mainly due to the fact that 21l the tyOnEody subsystens T
are taken into account exactly, so that the integrel equations given by !
Faddeev do not involve at all any two=-body potential but only the actual ?

exact solution of each two~body subsystem: Thua the threenbody problem appears

. to be formulated in such a way.that, as long 88 .one knows the exact two-body :

scattering amplitude off the energy shetl, one should be able to derive-

all the properties of three-particle states, -

: In the domain of strong interactions, vhere the Faddeev eqnations will

- presumably receive much attention, one is faced with a quite hopeful situation,

In fact, it 1s well knovn that in that domain one hes much greater information

about the properties of the scattering amplitade itself (on the :energy shell)
/

. than about the original potentials which give rise to ity moreover, it has f;"

often proved quite ‘satisfactory to assume that 8 two-body scattering :

aﬁplitude is dominated by a certain number of poleg'that corresPond to
. . /’ ' .

bound states and resonances.

: Furthermofe, the properties of the off-she&litwo-body amplitude

‘ have been studied in great detail by C. Lovelace. 243 He has shown, in .- B R

particular, ‘that in the neighborhood of a pole, the acattering amplitude‘

factorizes in the initial and final off-shell momenta, and thus can be ;
Ty(pop?io) 2 s(p)t (B)ie(p’) eV I
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where: p and p' are the off-shell iniﬁial ?Qd final momenta, s .is

the total energy, and £ iﬁdicatea the éartﬁél vave 1n which we find the.

“pole; g(p) and g(p' ) are called the resonance or boundqstate "form factors,

and t (a) the * propagator. In the case of a bound atate, Eq. (1) 13

. well knowny the function gtp) is related to the boundostate wave function . 'A ~;{
Wow o

| elp) = ~(p° + Eﬁ)wg(p) s Lo T (1)

and tn(s) can, for ipstance, be given the simple form

tz(s). = (s +-EB)“1 . ,'» T (l.b)
Qhere E, is the_eﬁergy'or the bound state, The "form factor" g(p) can atill |
be defined for a resonance,3 and the various forms one can give to t (s) are
discussed in great detail by LOVelace in peference 3. - f;{z .
- It ig on these gr;unds that Lovelace3 was able to show an important
"simplification of the Faddeev equation. Assuming that the 1nfluence of _‘. '\'é
" .regions far from the poles is not too great, so that one can give the . A. L :
~ amplitude aqy'arbitrgry f??m as long as it reproduces.the known one near |
- .the pole, Lovelace noticeé tﬁ#t 8 geparable two-body potentisl giﬁés |
satisfactbry'ﬁehévior of/the amplitude in the vic;hity of the pole, provided
7 -that it chosen to give tﬁe tﬁo-parﬁicle bbuhdnstate wave function correctlyo

From this atandpoint Lovelace calculates the two-body scattering amplitudeg o ;i:

and shows that one can define aome kind of "potentials" corresponding to

! . oL -

~ the scattering of a bound state or & resonance by an elementary particle, -

and then derives from the Faddeev eqnations twOebcdy Lippman-Schwinger 7A'V,~:

equations involving theae aomcalled potentials;ff



. prOpagatu: t (s), and lead to conaiderable aimplifications. We will shaw

hl The Faddeev equations thus are written, in the kernel notation;

-3- , o L
ot . . / ) . . t

In this paper, we wvant to show that the step of the separable

potential is perhaps unneceshafy, and that Eq; (1)'can be directly

%
inserted in the Faddeev eqnations without the making of? ‘any assumption on th

this on a particular example 1n Section 11, while the general case will ‘
l, :

N /

be dealt with in Section III,

Our assumptions are quite simple° e sdppose that each two~body - ?

B amplitude can be approximated by a finite number of pole terms, and: that

the contributibn of a pole to the off-shell two~body amplitude is factorizable
ned

in the initial and final momenta, for all values of enérgy. We will consider '

'
1 z%'

. i
! oo

_ that Eq. (1) 1s'the exact expresaion of T(p,p';g), valid for all energigf."ﬂ;
. .", N ‘ ) 't . !

II. A SIMPLE CASE: J=0 ' . .«

For the sake of clarity, we will firét showvour result on a very

simple example. Following the notations of reference L, where the total

‘r;angular momentum J and its projection on a body~fixed axis M are chosep.

© a8 quantum numbers, ve will suppose that the total angular momentum is

©J =» 0, so that we can suppress all indices but one in Eq. (U4) of referenée

T (w'.w) =:7 (' ,w) -J’K (w',m”)[TJ(w",m) + T (w",m)]du)". o /i e

- dw dwzdw3g W being

where w representa the whole set (wl,wa,w ) and duw

the energy of particle i 3 in the total cen?eraofamass syatemo Furthermore0 7”1‘ 

we approximate each two»body amplitude by 8 single pole term9 80 thath’G

EEEER ',~‘.‘:
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'i “-wﬁi)(z N"J - z)‘%;. ;  j

Koy = (agmm) (e, )7 e
(3)

y R * 1; ’/I 8 ' ‘ " ) ‘ .
£ (w2 o (1, 700)Yy (Y7500 | :
/ / ’ : | ~
I/ / » - ' . . . |' “y
‘ where m, is the mass of/;article i and p1 its momentum, =z . is the : 'X,
i . ' o
are .the B

i
total energy of the three-particle system, the functions Y o
9

spherical harmonics, £ is the.epln of the composite system of particles (3)

and (k), each of which is assumed to be spinless, y! i' defined in reference U,
is a function of N and’ i is a function of " K The tWOnbedy amplitude is
| / et

: writteu,according to Formule (L)g S -"“ o

/ o ' -

1 )

2
)t(z - w'i)

. o L
£y (o' 5u" ,2) g(pskz)s(P"

Vol
.

[where pjl is the relative momentum of particles J and k in their

relative: Colls system, and ia related to the mementa of these particles in

the total c.m. syshem, by
| _ ‘ &
for, as the angular momentum has been separated, the form factors depend ’ -
only on the absolute values of the’mamenta, end we have replaced s by its
value in terms of the totel energy 2z and w‘ia We can thus write ‘
ai(m',z)bi(m")‘ o ; ' (5)

T e

. fi%(w'ow"si’ =
The kernel defined by Eq. (3), then, can be written in a simple form, omitting

the variable z o which has no importance in this matter, ,
‘ - (6)

P
A .

KMt e") = 8(uy - w ")w*(m")A‘(w': P

and the syétem of integral equ&tions in three variables then seems to be.

quite simple, as the kernel 13 separable except for a part which, in i‘act9 ;
T |

i

|

|
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We are

will give rise to a product ‘of convolution 1n one variable; thia convolution,

furthermore, is very sﬁmple, as {t involves a Dirac dintribution.

now able to write ‘the Faddeev equation as

i

T (w u) ﬂy (m ,w) - f (u')fﬂi(w")S(u' - " )[T"(w ) N Tk(m .w)]&w" .
g ,
- r AT

and the solution can be written quité natunally, -
T (8)

TH(w' o) g (m',m) - A (w")B (0 0) o

Now, inserting (8) into (7), and changing the names of the variables in &

very obvious way, we obtain a new set of 1ntegra1 equations, involving
the functiona B (x,w) K . . s
. B (i,w) B (x,w) -JK'J(i,x')_BJ(x',w)dx° K
where we have introduced the functions ) ‘

Bi(x.w) f P, (@")8(x - w ")[;7 (0" yw) +‘;7 k(m .w)]dw

[as the inhomogeneous terms;7 are known, 8 (x,w) is.a.

AN

perfectly well known function] ,

‘. and - X
| d(x x') = (1«86 )fﬂi(w)AJ(m)ﬁ(x - mi)é(x' - wJ)dm .

i =
In Eq. (9) w has the 1mportance of an index, and we can write that

equation in the symbolic form
By (x5w) \ |

83(19(1)) '

(12)
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 of the dimenéionality of the K

“as well as to the original Faddeev equationo/

‘that of the original Faddeev equations what must be pointed out as

Awhile he has taken that given by 8 aeparable potential, -
/

"account by Lovelace 8 method. s

=6

It willlbo shown-in Section IiI that the resulto of the #ery simple case T
. considered here (J = 0 and only one oole term in each tﬁo~body sistem) can - .
- perfectly weil bo extended §§ the generol cage in whico the two-body
amplituﬁes are approximated by the-aom of a finite number of pole terms, !ﬁ'

whatefer be the angular momentum. The only change is, in fact, an increase

-

13 matrix considered above, as one increases

" the number of input pole terms and the angular momentum, On the otherf}

 hand, it is obvious that all the reductions coming from the separation of

[

© parity and the identity of particles are applicable to these equationé

!

The form of the equations we have. obtained i3 quite analogous to

/ 1]

extremely important from a practical point of view is that we havé now &

. problem involoving a system of coupled 1ntegral equations in one variable

/

only. This means, ia particular, that the use of e computer is now much

easier, and will lead to reliable numerical fesultso. One can easily'imagine

{
the enormous difference between solving an integral eqpation in three

variablea .and one in one variable only.

Our result is more general than that of Lovelace, who also obtoino )

4

. equations in one variable, for two reasons:

(i) We have made no assumption on the form of the pr0pogator t, (s)9 ,

I
|
!
1

(ii) Our result (see Section III& 15 valid even when there is’ more

‘then one. pole in a given partial wave, whereas thia cannot be. taken 1nto

3 ~/"

e i et
\. A [
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f I1I, GENERAL CASE -
Ve will derive our equations directly from the eqnations of reference
l . :1 l
. 4,. where _angular momentum has been separated. ‘ E )
= Let us suppress the ‘index J , and make some slight modifications A
“in the notations' ‘the eqnations then appear to be - § i o
M' (w ’w) myM. (N ,h!) -IICM'M"(N ,m")[TM"M(NW,b)) ‘.’ TM"M((“ "”)]dm" ’
. I C.(13).
where L o
b uty®) = (mgan ) (mpd) " 6wt o) (5, - 5]
Ko (' 50") = (mymon ) (mipi) 6wty « uy)[B"y = 2], ' .
“i-'_‘ LY . - ‘(l - :
o ji: F (w w2z = ' u) -a')eimu {a,")du (i)
: A g\ e e dM'M Y TUAL ° ;
Followihg‘referenée 6, we can meke a partialewave expansion, and write f
i [} 'l.l - 1] | (z) 9 " 'q - : l' [ ] . 1} I
Jk(m "2 = wi,u}:ﬂ :Jk (w50 02 = mi)(2$-+,l)Pz(cosy cosy ;
T c - p‘ o 4'sinyfgigy"cosu)- o
, e . : o . |
‘ (15) |
Choosing, as in reference 6, the z axis to be perpehdicularfto the plane of i
. . - '.: V ) -;)}‘ ,‘““ 1
‘the moménta, and integrating over u, we obtain I DU o
R -1 ’ T E y
Cr . “ KM'M"(N o“’ ") = (m m2m3)(m1p1 5(“' - (\\")(zw - z) ' o r SN ;
‘ , e ;
N f ,h -il
'
: o




8 .

vhere (reference 6) . ' _ _ ;

X ngu (yi,ow (" jL‘.o)aw.utx,‘,‘,, L oan
{The Aﬁ.;w are defined in reference T.) Now we assume that each partial=-wave gli
amplitude is dominated by a eertain number of pole terms, chara.cterized by a,n ' <
. %
index of degeneracy, 8, 80 that, rollowing; Eq. (5) we can write
. . 1 . N
gf) =y &”g(m',z)b W) o a8)
8 . |
| If we now make the assumption that only & finite Izmxm'bein of polé terms will
: . . !
actually contribute significantly to the two=body emplitude in the energy
range wve are considering, the kernel of the Faddeev equations becomes, upon
" inserting (18) into (16),
= : ' sa;sz ' 3
KM,M..(N'.W = (u] = ul) Yoy “)A "’(m .=>xww.(m W'y (9)
2=0 8=80 : | ‘ . _ : T
. where we have transformed the pair index (J,k) into the single (i), from ’
(17) and (1.9), we see that Eq. (13) now becomes - .
L
T M(w o) -;7M, (0¥ w) = Z A 9 (e ,z)Y‘ Y (Yi'o)AM'“
fe8 u
% . N
Xfﬁ’ Su")Y -(Y'{.O)Aﬁa CHE w")[TJ.;M(wf'.w) + TM'.M(w ywllda"
and, in exactly the same vay es in Eq. (8), the solution is :
. \

'M(“‘ v“’) “JM'M(“‘ 9"’) - X AMS(“"”” Z qu("iﬂo)“w B(x s)uM(mi’w) . K

‘o : -3 1 LT ) M(. u
. R . . et



/ ~OQw -
i
/

where we insist on the ﬁaét that B(l 8 )u M(wi,m) depends only on one
1, besides w, which can here be considered as a simple index,

/
without any practicel influence. We now insert (21) ingo (20) and, indentifying

/ [ .
t0 zero the coefficients of the functions A *58 (w',z)Y (yi,o). which are

variable:

independent functions of three variables, ve obtain the eqnatiens'

i(h,o)v ’
(9' s)uM(wa) B(ﬁ )HM(X'W) j j 1 8 " (Xoy)B(A c)vM(y,w)dy “(22)
where the' definition of 6(£ )uM(x,w) is quite obvious and analogcua to

R AP L
Eq. (10), and where the matrix kernel. S -’f o

1(’%,0)\) o A ' . A g‘g .

LT (x, ¥). 1is defined by o L >

SFTCR M A y ’

i(laa)v | | ‘. o B ?

T ) = (1 - a”) b f‘“"s‘w")“w-u Y, (Y],006(x = uf)

. 41(2,18) — ',':

A ’ |

(23) ;.

A3'°(mv,z) “‘Y,:",(vg.o)Af{..vé(y - upa”

Equation (22) is closely analogous to (12), except that the dimensionality of
In practicallcases, one must aay tﬁat these'eqpations-

the matrix is greater.-
are much simpler than what they seem to be here, for the number .of pole terms

in each two-body channel will not be veny large. o
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‘For the definition of the rotational matrices AﬁM‘ = dﬁM'(ﬂ/Q), ve

follow A. R. Edmonds, Angular momentum in Quantum mechanics

(Princeton University Press, Pridceton. New Jersey).:
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