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RESEARCH ARTICLE Open Access

In silico characterization of a novel putative
aerotaxis chemosensory system in the
myxobacterium, Corallococcus coralloides
Gaurav Sharma*, Rebecca Parales and Mitchell Singer*

Abstract

Background: An efficient signal transduction system allows a bacterium to sense environmental cues and then to
respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the
internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its
current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting
chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social
microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation,
biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such
complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component
regulatory system along with a large array of chemosensory systems to perceive and integrate both external and
internal cues.

Results: Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in
only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we
propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense
(either directly or indirectly) and then respond to changing concentrations of molecular oxygen.

Conclusions: This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that
contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases
encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the
cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria
or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy
taxis in only one of the myxobacteria, C. coralloides.

Keywords: Chemotaxis, Energy taxis, MCP, Oxygen sensing, Aerotaxis, Signal transduction

Background
Bacteria actively sense their rapidly changing environment
and alter their behavior in response. One important envir-
onmental challenge in soil is the ever-changing oxygen
level. Depending upon the nature and behavior of the bac-
terium, cells will either move away or towards increasing
concentrations of oxygen [1]. Bacteria can perceive and re-
spond to environmental signals using a vast array of di-
verse chemoreceptor proteins and transmit the signals to

other cytoplasmic signaling proteins present downstream
in the signaling pathway. These clusters of proteins that
receive, transmit and respond to the signal constitute a
chemosensory system (CSS), which primarily controls
chemotaxis i.e. directed motility in response to a chemical
gradient [2–6]. Chemotaxis is predominantly conserved
throughout the bacterial and archaeal kingdoms. These
multiprotein systems receive the sensory environmental
signal using methyl-accepting chemotaxis proteins (MCPs)
[7] as the receiver and initial transmitter of the chemotac-
tic signal. The MCP transmits the signal to CheW, which
in turn transfers the signal from the MCP to CheA, a histi-
dine kinase that undergoes auto-phosphorylation. CheA~P
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in turn phosphorylates CheY. CheY~P interacts with the
motility system and regulates the motility apparatus via
flagella or pili [8–10]. Reversible methylation and demeth-
ylation of MCPs via CheR and CheB, respectively, play an
important role in chemotaxis adaptation or memory, by
adjusting the MCP’s sensitivity for new signals [for reviews
see [2, 6, 7, 11, 12]].
With the boom in next generation sequencing and

genomic studies, the scientific literature is flourishing
with the identification of diverse types of chemosensory
system organizations whose functions are not only lim-
ited to chemotaxis, but also range to diverse alternative
cellular functions [6, 13] such as sporulation [14], bio-
film formation [15, 16], exopolysaccharide (EPS) produc-
tion [17–19], and flagellum biosynthesis [20], for
example. For each function, the bacteria need a different
type of intracellular or extracellular signaling mechanism
and a dedicated MCP. For example, the MCP protein
WspA in Pseudomonas aeruginosa has a 4HB domain
(ligand binding domain) between two predicted trans-
membrane helices, and is used to sense the signal for
biofilm formation and responds by activating c-di-GMP
production [15]. Similarly, Mcp3A and Mcp3B in Myxo-
coccus xanthus, which have HAMP and MCPsignal do-
mains with three predicted transmembrane helices and
no ligand binding domain, sense a yet unknown signal(s)
for sporulation, causing early aggregation amongst the
starving cells [21].
Intracellular behavior inside any bacterial cell is highly

dynamic and regulated via complex protein-protein and
protein-DNA interactions. Amongst all types of intracel-
lular and extracellular signals, the physiological state or
the internal energetic condition is one of the major de-
terminants of a suitable niche for any bacterium. Owing
to this, a motile bacterial cell will navigate from a niche
in which it displays low metabolic activity (less favor-
able) to one that supports higher metabolic activity
(more favorable) [22]. This concept has been termed en-
ergy taxis [22–25]. Several compounds, including the
substrates or products of diverse metabolic pathways,
such as sugars, amino acids, oxygen, nitrate, etc., have
been suggested to function as energy taxis signal mole-
cules. [25]. Considering the different behaviors, habitats
and metabolic requirements, diverse mechanisms of en-
ergy taxis have been reported including aerotaxis, photo-
taxis, redox taxis, and taxis towards electron acceptors
[23, 25]. Theoretically, energy taxis might be present in
all motile microbes, although it has only been reported
in a few species and demonstrated as a dominant behav-
ior in even fewer; one example is Azospirillum brasilense
[23]. The primary proteins involved in energy taxis are
MCPs and MCP-like proteins, which have diverse ligand
binding domains (LBD) that differ for diverse types of
energy taxis. Considering the latest classification based

on the distribution of LBD and transmembrane (TM)
domains, MCP proteins can be divided into seven top-
ologies (Ia, Ib, II, IIIm, IIIc, IVa, and IVb) [26, 27]. MCP
proteins with TM domains generally sense extracellular
signals, whereas those lacking TM domains (cytoplasmic
MCPs) sense intracellular signals such as those involved
in energy taxis [12, 25, 26]. Diverse LBD domains in-
volved in various energy taxis functions include PAS do-
mains for sensing oxygen, redox potential, small ligands,
and cumulatively energy levels of a cell [28–30], GAF
domains for sensing light [31], and globin domains for
direct oxygen sensing [32]. Among these, aerotaxis,
whereby the cells move towards or away from oxygen in
search of an optimal oxygen concentration for their
metabolic state, is the most studied form of energy taxis.
Aerotaxis has primarily been explored in Escherichia
coli, Pseudomonas aeruginosa and Bacillus subtilis,
which require the Aer, TlpC/TlpG and HemAT MCP
proteins, respectively, as oxygen sensors. Aer and TlpC/
TlpG MCP receptors contain a PAS domain (an acro-
nym for Drosophila period clock protein [PER], verte-
brate aryl hydrocarbon receptor nuclear translocator
[ARNT], and Drosophila single-minded protein [SIM])
motif ) [33], which have a prosthetic group binding
pocket to bind molecular oxygen and use flavin adenine
dinucleotide (FAD) as a cofactor. FAD aids in oxygen
binding and redox sensing [30, 34, 35]. The HemAT
MCP receptor has a Protoglobin (PF11563) domain, a
member of the globin superfamily (other members in-
clude: Globin (PF00042), Bac_globin (PF01152) etc.),
which acts as an oxygen sensor [36].
Myxobacteria are well known for their large genome

size (9–16 Mbps), high GC content (~ 70%), and their
complex and social behavioral phenotypes; including glid-
ing motility, sporulation, biofilm formation, predation,
secondary metabolite production, and large biomolecule
degradation [37–43]. All these unique physiological and
metabolic features, accommodated in a single cell, make
them one of the most complex groups of bacteria in the
bacterial domain [44]. They are also well known for en-
coding the largest number of one- and two-components
signal transduction systems and chemosensory systems
(CSS, up to 12) [13, 37, 45–47]. Considering the genomic
and metabolic complexity of the myxobacteria, we are
continuously mining these genomes for information re-
garding potential functions for these different CSS. Here
we have identified a potentially novel energy taxis gene
cluster in one of the myxobacteria, Corallococcus coral-
loides DSM 2259. C. coralloides encodes 12 chemosensory
systems, among which one system has a unique set of pro-
teins that is predicted to be involved in oxygen sensing.
Amongst 34 sequenced myxobacterial genomes, C. coral-
loides is the only species that encodes such a CSS cluster.
Our study suggests that C. coralloides has procured this
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complete energy taxis cluster from Gammaproteobacteria
and Actinobacteria via horizontal gene transfer.

Methods
Order Myxococcales genomes [13, 37, 48–67] were down-
loaded from NCBI followed by gene prediction and func-
tional annotation with RAST [68]. To identify functional
domains, all proteomes were scanned against the Pfam-A
v29.0 database [69] (downloaded on Oct 26, 2016) using
hmmscan (maximum E-value 1e− 5) from the HMMER
suite (http://hmmer.org/) [70] and further parsed using
hmmscan-parser.sh. For phylogenetic analysis, all protein
sequences were subjected to Basic Local Alignment
Search Tool (BLASTp) [71] against the non-redundant
protein (NR) database (downloaded on 10-21-2016) with
defined cutoff values: [maximum 1e− 5 E-value, minimum
35% query coverage and minimum 35% similarity]. The
protein sequences of top 100 homologs were extracted
and aligned using MUSCLE v3.8.31 [72]. The alignment
was used to generate a maximum likelihood phylogeny
using RAxML version 8.2.4 [73] using following parame-
ters: Jones–Taylor–Thornton (JTT) protein substitution
model, Gamma Distributed Rates among sites, Random-
ized Maximum Parsimony (MP) method for tree
optimization, and 100 times bootstrapping. The obtained
best maximum likelihood (ML) tree was visualized in
iTOL [74] and the domain and taxonomy distribution was
mapped onto the tree. Based on the location of genes/do-
mains within a respective chromosome/contig/protein,
the module organization of a cluster and the Pfam domain
organization of a protein were identified followed by the
making of maps using IBS 1.03 software [75]. We have
also downloaded the dataset of 8,075 complete bacterial
genomes from NCBI reference as on Nov 6, 2017. Subse-
quently using the above strategy, we have identified the
Pfam domain organization of all 8,075 proteomes.

Results
Distribution of ‘PAS’ and ‘MCPsignal’ domains
PAS domains are well known to sense oxygen, redox
potential and light, and they have been shown to be
involved in taxis behavior, development, circadian
rhythmicity, and regulation of metabolism [11, 30, 76,
77]. Similarly, ‘MCPsignal’ [Pfam: PF00015] domains
function as chemoreceptors for diverse signals [11,
26]. Before identifying their distribution in our model
organisms i.e. myxobacteria, we want to understand
how these domains are distributed across Eubacterial
kingdom. Therefore we scanned 8,075 complete ge-
nomes downloaded from NCBI and identified PAS do-
mains in almost 90% (7,226) of the genomes; many are
associated with regulatory domains such as HisKA,
HATPase_c, Response_reg, HTH, MCPsignal, etc. We
found that Desulfovibrio (141), Archangium (141),

Microcoleus (132), Sorangium (120), Desulfatibacillum
(118), Desulfomonile (113), Methylobacterium (108),
Oscillatoria (105), Cystobacter (104), and Magnetospir-
illum (98) have the largest number of proteins with
one or more PAS domains per genome. Similarly, we
identified the number of proteins having ‘MCPsignal’
domains per genome and found that they are present
in ~ 4,639 genomes (~ 60%) with maximum represen-
tation (> 60) in Azospirillum (89), Clostridium (86),
Aquaspirillum (73), Herbaspirillum (71), Pararhodos-
pirillum (67), Magnetospirillum (62), Methylobacter-
ium (61), Pseudomonas (60), Bradyrhizobium (60),
Aliivibrio (59), and Desulfovibrio (58). The MCPsignal
domain is most frequently associated with HAMP do-
mains (which assist in transferring the signal to the
former), and several other ligand binding Pfam do-
mains such as 4HB_MCP_1, dCache_1, TarH, PAS_3,
sCache_2, PAS_9, CZB, HBM, Protoglobin, PAS_4,
Cache_3-Cache_2, PilJ, CHASE3, etc., supporting the
previous findings [12]. The functional role of MCP
proteins is determined based on the ligand binding
and the presence or absence of transmembrane do-
mains. PAS domains have been reported to have im-
portant roles in energy taxis via responding to oxygen,
light and voltage [28, 30, 34, 76]. We found that 3,165
(~ 40%) out of 8,075 genomes encode PAS and
MCPsignal domains together within the same protein,
with maximum numbers in Desulfovibrio (17), Aqua-
spirillum (12), Methylobacterium (10), Pseudomonas
(9), Pseudodesulfovibrio (9), Marinomonas (8), Halo-
monas (8), Gemmata (8), Alteromonas (8), and Vibrio
(7). We believe that these proteins are involved in various
energy taxis related functions regulating growth of the
bacterium according to their energy state in their respect-
ive niche.
Myxobacteria are a complex group of bacteria that share

a variety of unique phenotypic features such as large gen-
ome size [37, 48, 54, 58], production of secondary metabo-
lites [43, 78–81], and their developmental phenotype [44,
62, 82–85]. Considering their genomic and physiological
features, we identified the distribution of PAS and
MCPsignal domains amongst them in search of any puta-
tive energy taxis mechanisms. We found that all myxobac-
terial organisms have from 13 to 145 proteins with single
or multiple PAS domains (Table 1). Most of the myxobac-
teria are strict aerobes and have genomes > 9 Mb in size.
The exceptions include Pajaroellobacter, Anaeromyxobac-
ter and Vulgatibacter, which have small genomes, between
2 and 6 Mbp [66, 86, 87]. Among these, Pajaroellobacter,
a strict anaerobic pathogen of cows, have no proteins with
a PAS domain. Anaeromyxobacter and Vulgatibacter both
have small myxobacterial genomes but the former is a
facultative anaerobe [86, 88] whereas the latter is a strict
aerobe [87]. We found significant variations in PAS

Sharma et al. BMC Genomics          (2018) 19:757 Page 3 of 12

http://hmmer.org/


containing proteins amongst the three-myxobacterial sub-
orders. We also found that marine myxobacteria i.e. Enhy-
gromyxa, Haliangium, and Plesiocystis have fewer PAS
containing proteins as compared to the terrestrial myxo-
bacteria. Our study also suggested that there is no correl-
ation between genome size and the number of PAS
domain containing proteins. Similarly, we examined the
distribution of MCPsignal proteins and found that mem-
bers of the suborder Cystobacterineae in the order Myxo-
coccales have ~ 20–32 MCP proteins per organism (with
the exception of Anaeromyxobacter and Vulgatibacter),
whereas the members of suborder Nannocystineae and
Sorangiineae, which have 10–16 Mb genomes, have only
2–5 MCP proteins per organism (Table 1). This is in
accordance with our study of chemosensory systems in
myxobacteria [13]. The strict anaerobic pathogen Pajar-
oellobacter does not encode any MCP proteins. Interest-
ingly, none of the MCP proteins encoded by any of the
myxobacteria has a PAS domain except for Corallococcus
coralloides. This unique myxobacterial MCP protein in C.
coralloides (Cc_4972; WP_014397685.1) is a part of orga-
nized CSS cluster with all constituent proteins whose
architecture was also shown in our previous study [13].
This study will further highlight the putative role of this
CSS in energy taxis and its putative evolution within a sin-
gle myxobacterial species, C. coralloides.

Identification of a cytoplasmic energy taxis
chemoreceptor in C. coralloides
Myxobacterial genomes are well known to encode large
numbers of chemosensory systems, which are involved
in regulating diverse physiologic functions [6, 13, 47].

We previously reported that the C. coralloides genome en-
codes 12 CSS and 21 MCP proteins [13]. Among the 12
CSS, three CSS (Che8, ACSS2 and ACSS3) do not have an
associated MCP protein and Che3 has two MCP proteins
in a single system. We found that ten amongst 21 MCP
proteins in C. coralloides are constituents of a CSS, pre-
sumably sensing and responding back using their own
chemosensory system; whereas the other eleven MCP
genes are scattered in the genome (Fig. 1). It has been sug-
gested that completely organized CSS systems can also
perceive signals received by scattered MCP proteins simi-
lar to the signals from the MCPs encoded together [47,
89]. C. coralloides has not been used as a model organism
to study chemosensory systems. Based on the research
performed with the model organism Myxococcus xanthus,
six out of the 12 C. coralloides CSS have been assigned a
functional role according to homology studies [13] and
the rest of them are uncharacterized (Fig. 1).
The presence of a PAS domain along with a MCPsignal

domain makes the C. coralloides MCP protein (Cc_4972)
unique amongst the myxobacteria. The Pfam domain ana-
lysis of Cc_4972 revealed an additional interesting charac-
teristic of this protein: the presence of a Bac_globin
domain (PF01152), which is a characteristic of heme-con-
taining globular proteins involved in oxygen binding/
transport (Figs. 1 and 2). The presence of these three do-
mains in a single protein represents a rare combination
that was identified only in seven such proteins [in Corallo-
coccus coralloides DSM 2259 (Deltaproteobacteria), Col-
wellia sp. MT41, Glaciecola nitratireducens FR1064,
Halioglobus japonicus (Gammaproteobacteria), Nitrospira
defluvii (Nitrospirae), Phenylobacterium zucineum HLK1

Table 1 Distribution of proteins with ‘PAS’, ‘MCPsignal’, ABC1 and ABM domains amongst order Myxococcales genomes
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(Alphaproteobacteria), Rubinisphaera brasiliensis DSM
5305 (Planctomycetes)] amongst the 8,075 complete ge-
nomes. It is postulated that the PAS domain of the E. coli
Aer receptor uses FAD to monitor/sense altered redox
conditions in the cytoplasm, whereas B. subtilis performs
aerotaxis by sensing oxygen directly via the HemAT

protein protoglobulin domain, which contains a bound
heme [12, 29, 32, 90]. It has also been suggested that the
Aer chemoreceptor directly binds a heme moiety as a co-
factor to bind oxygen [35]. Considering these arguments,
the combination of PAS, Bac_globin, and MCPsignal do-
mains in the C. coralloides MCP protein marks it a special

Fig. 1 Domain architecture of twenty-one chemoreceptors in C. coralloides. Pfam domains (names in the bottom-right corner) are mapped
throughout the protein sequence with scale as given above. Arrows in the right side indicate categorization of the CSS to which the
respective MCP protein belongs, along with its putative functional roles

Fig. 2 The modular organization of energy taxis cluster in C. coralloides. Pfam domains are mapped on the protein sequence with scale. Corresponding
protein ids for all proteins are Cc_4970 (WP_014397683.1), Cc_4971 (WP_014397684.1), Cc_4972 (WP_014397685.1), Cc_4973 (WP_014397686.1), Cc_4974
(WP_014397687.1), Cc_4975 (WP_014397688.1), and Cc_4976 (WP_014397689.1)
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aerotaxis sensor (according to present literature). Cc_4972
is a cytosolic protein with no transmembrane domains (as
identified using TMHMM Server v. 2.0 program) (Fig. 1)
and it should be classified in the MCP-IVa category based
on the previous report [26].

Identification of an energy taxis chemosensory system in
C. coralloides
Interestingly, Cc_4972 is present in a well-organized chemo-
sensory system gene cluster (Cc-5 CSS; WP_014397683.1-
WP_014397689.1). In our previous study [13], it was
classified as Extra CSS-4 (ECSS4), which has a different
modular architecture as compared to other myxobac-
terial CSS and separate phylogenetic positioning in the
CheA and CheB phylogenetic trees. Cc-5 has seven
constituent proteins (CheA-CheW-MCP-x-x-CheB-CheR;
WP_014397683.1-WP_014397689.1) among which five
are chemosensory proteins and two are hypothetical pro-
teins (Fig. 2). We could not identify a CheY response regu-
lator protein encoded nearby. Interestingly, Pfam domain
analysis suggested the presence of ABC1 and ABM do-
mains, respectively, in the two hypothetical proteins. Both
of these proteins are distantly related to sensing oxygen or
have functions related to aerobic respiration [91, 92].
ABC1 proteins belong to the Eukaryotes-like protein

kinase superfamily, which are widespread in myxobacteria
[93, 94]. Their role in cellular regulation and signal trans-
duction is well documented in the bacterial kingdom espe-
cially in myxobacteria [95, 96]. These ABC1 proteins
include AarF from Providencia stuarti and YigR from E.
coli, which have been proposed to function as ubiquinone
(cofactor Q) biosynthesis monooxygenases [91, 97]. The
ABC1 protein in Saccharomyces cerevisiae (ScCOQ8) was
found to be essential for redox activity, and mutations in
this gene resulted in defects in aerobic respiration due to
the absence of quinones, and further leading to the in-
stability of the cytochrome bc1 complex [98]. The ABC1
protein in Arabidopsis chloroplasts was reported to play
important roles in oxidative stress balance/tolerance [99].
These family proteins in yeast are also predicted to be
novel chaperonins and known to work as a suppressor of
cytochrome b mRNA translation defect [98]. We found
that one to eight ABC1 protein homologs are encoded per
myxobacterial genome. A single homolog is present in
Anaeromyxobacter and Vulgatibacter, whereas in other
myxobacteria multiple homologs are present with no ap-
parent synteny.
Antibiotic biosynthesis monooxygenase (ABM) do-

main containing proteins have been reported to be in-
volved in metabolism, translation/transcriptional control
and antibiotic biosynthesis [92]. This domain was first
identified in the Streptomyces coelicolor monooxygenase,
ActVA-Orf6, which oxidizes phenol groups to quinones
and therefore participates in antibiotic actinorhodin

biosynthesis [92]. It has also been suggested that ABM
proteins help in maintaining the equilibrium of quinones
required for the electron transport chain and simultan-
eously reduce the toxic free radicals production by
quinones and quinols [100]. These proteins have a
ferredoxin-like fold and can carry out oxygenation in the
absence of any prosthetic groups, metal ions or cofac-
tors, which are generally associated with activation of
molecular oxygen. Besides this, a few monooxygenases
in M. tuberculosis (Rv0793) work as reactive oxygen spe-
cies scavengers, which is beneficial in evading host de-
fenses [101]. Besides these, ABM family proteins are also
known to function as heme-degrading enzymes in
Staphylococcus aureus and signal transduction protein in
Staphylococci. We found that similar to ABC1 proteins,
ABM domains are encoded in almost all myxobacterial
genomes, ranging from one to ten homologs per gen-
ome. To our surprise, the maximum representation was
found in a soil myxobacterium, Nannocystis exedens,
from the suborder Nannocystineae that has mostly mar-
ine organisms. With the exception of Anaeromyxobacter,
Vulgatibacter, Haliangium, and Chondromyces, all have
multiple ABM proteins.

Evolution of C. coralloides aerotaxis chemosensory system
On closer analysis of the Cc-5 CSS cluster, we determined
that all seven proteins encoded in the cluster (CheA--
CheW-MCP-ABC1-ABM-CheB-CheR) are unique to C.
coralloides and show no close sequence identity in any of
the myxobacteria or even in the Deltaproteobacteria. We
found that synteny was lost in the members of family Myx-
ococcaceae and Cystobacteraceae, who are close relatives of
C. coralloides, although it was conserved in upstream and
downstream regions of this cluster. Therefore, we decided
to examine the relatedness of the Cc5 CSS cluster proteins
in other bacterial lineages using maximum likelihood phyl-
ogeny. Based on top BLASTp hits against the NR database,
we generated phylogenetic trees with 100 bootstrap values.
The CheA protein (Cc_4970) phylogeny indicated that
branches with lineages from Alphaproteobacteria and
Gammaproteobacteria share a common ancestor with the
C. coralloides CheA protein (Additional file 1: Figure S1). A
phylogenetic tree based on the CheW protein (Cc_4971)
suggested that Actinobacteria, Planctomycetes and Alpha-
proteobacteria have a common relative with the Cc-5
CheW homolog from C. coralloides (Additional file 2: Fig-
ure S2). For the MCP protein phylogeny, we used the Cc-5
MCP (Cc_4972) and its top non-redundant (NR) dataset
hits along with other C. coralloides MCPs as outgroups
(Fig. 3). MCP phylogeny clearly demarked the Cc-5 MCP
from the rest of the MCPs, which were present together
near the root. The Cc-5 MCP shared sister clades with
Gammaproteobacteria homologs and share common an-
cestors with Acidobacteria and Actinobacteria homologs.
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Similar to the Cc-5 MCP Pfam organization, their sister ter-
minal node Gammaproteobacteria members also have
Bac_globin domains, while a PAS domain was not identi-
fied in the latter. The phylogeny of the ABC1 protein from
the Cc-5 cluster suggested that the closest homologs were
in the Gammaproteobacteria, Nitrospinae, Planctomycetes,
and Actinobacteria (Additional file 3: Figure S3). BLAST
homology searches of the ABM protein (Cc_4974) revealed
that most of its closest homologs have an archaeal lineage

rather than a Eubacterial lineage. Phylogeny also revealed
Planctomycetes and Nitrospinae to be sister branches of
the C. coralloides ABM protein, whereas archaeal homo-
logs share common ancestral relatives with them (Add-
itional file 4: Figure S4). The Cc-5 CheB (Cc_4975)
protein phylogeny depicted Gammaproteobacteria as a
sister clade, suggesting the latter to be closest relatives of
C. coralloides (Additional file 5: Figure S5). CheR
(Cc_4976) phylogeny showed that homologs from C.

Fig. 3 Maximum likelihood phylogeny for C. coralloides MCP proteins. The top homologs of the MCP protein involved in energy taxis and rest of
the C. coralloides MCPs were used to generate this represented Maximum likelihood (ML) phylogenetic tree with organism names in the center
ring. The taxonomy lineage at the phylum level is represented in the innermost ring where myxobacterial homologs are in blue text,
non-Myxococcales Deltaproteobacteria in green text and other taxa are in red text. The outermost ring presents the Pfam domain
organization of each MCP according to their sequence length, and domain color codes are shown in the lower-left corner. Bootstrap
values are provided corresponding to the tree nodes as red circles with sizes ranging from one (BS value 1) to 15 (BS value 100)
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coralloides and Alphaproteobacteria share common an-
cestors with those from Actinobacteria (Additional file 6:
Figure S6).
Based on BLASTp homology searches above the cut-

off values, we identified the chromosomal location of
all homologs of the Cc-5 cluster proteins and mapped
those proteins with each other to find the putative
clusters in respective organisms (Fig. 4). Remarkably,
we identified several clusters in different lineages i.e.
Actinobacteria, Cyanobacteria, Gammaproteobacteria,
Planctomycetes etc., where most of the genes shared
similar cluster organizations to the Cc-5 cluster. How-
ever, we did not find any genes encoding homologs of
the two non-CSS proteins i.e. ABC1 and ABM pro-
teins as a part of any of the putative clusters. The
most closely related clusters in Nocardioides sp.
Root122, Sporichthya polymorpha, Calothrix sp. PCC
7507, and Nostoc sp. PCC 7107 have all five CSS ho-
mologs in a well-organized cluster. Based on our re-
sults, we suggest that these clusters were horizontally
transferred to C. coralloides, and later on the
non-CSS, i.e. ABC1 and ABM genes were procured
from other bacterial groups, and became functional
members of this cluster.

Discussion
The present study provides strong suggestive evidence for
energy taxis in this complex bacterium. The presence of
PAS, Bac_globin and MCPsignal domains together suggest
that the Cc-5 MCP protein (Cc_4972) is a novel cytoplas-
mic aerotaxis receptor. Based on these Pfam functional
domains, we predict that this CSS can sense oxygen more
efficiently than systems with only PAS-based or globin-
based MCP proteins. Further, experimental studies will be
required to confirm the function of this chemosensory
system and to examine into the roles of proteins with
ABC1 and ABM Pfam domains, which we believe play
an important role in aerotaxis in C. coralloides. Our do-
main distribution studies demonstrate that myxobacter-
ial MCPSignal proteins do not consist of any PAS
domains; this leads to two contrasting hypotheses. The
first is that most of the myxobacteria lost this MCP
protein and corresponding CSS cluster, while Corallo-
coccus still maintains it in a rudimentary or non-func-
tional form, potentially on its way to loss. Alternatively,
the other hypothesis is that the aerobic myxobacteria have
unknown intrinsic mechanisms to pursue energy taxis,
similar to the one as identified here in C. corraloides, that
is acquired from other bacterial groups. We believe that

Fig. 4 Horizontal gene transfer based procurement of complete energy taxis cluster in C. coralloides: Based on homology studies, homologs of all
Cc-5 cluster proteins were extracted for each organism and arranged according to their chromosome location. With the exception of Cc_4973
and Cc_4974, the other proteins were predicted to have evolved in C. coralloides as a group following horizontal gene transfer
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with the identification of novel energy taxis domains/
mechanisms, genome sequencing of new myxobacterial
strains, and experimental studies, the intrinsic energy taxis
mechanisms would be identified amongst these bacteria in
the future. Overall, this study highlights the identification
of a novel energy taxis MCP protein and its associated
chemosensory system, which might be an efficient way for
aerotaxis owing to the presence of PAS and Globin do-
mains together.

Conclusion
Sensing and responding back to environmental signals has
been studied thoroughly among the bacterial kingdom,
whereas sensing the internal ambiance is still limited to a
few organisms. Here, we performed a computational
characterization of a novel energy taxis cluster (Cc-5 CSS)
in one of the myxobacteria, C. coralloides. Although, myxo-
bacteria are known to be highly complex owing to their nu-
merous physiological and metabolic activities, we could
identify only one energy taxis cluster amongst 34 studied
myxobacterial genomes most of which have > 9 Mb ge-
nomes and > 7000 proteins each. We report that this cluster
has a MCP protein with both PAS and Bac_globin domains,
which is a novel combination in itself and may have an ad-
vantage in oxygen sensing as compared to those with single
PAS or single globin domains. We also identified the pres-
ence of two proteins with ABC1 and ABM domains, re-
spectively, which are predicted to assist in ubiquinone
biosynthesis and aerobic respiration via the cytochrome
bc1 complex. We also suggest that this cluster of genes
may have been acquired from Actinobacteria, Gammapro-
teobacteria or Cyanobacteria. The presence of this novel
aerotaxis cluster [especially the single MCP sensor protein
with PAS and globin domains] in one of the myxobacteria
raises two important open questions for the scientific com-
munity; first, how oxygen sensing evolved amongst the
myxobacteria as compared to their Deltaproteobacterial
lineage and second, how other myxobacteria recognize and
efficiently respond to the availability of oxygen.
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Additional file 1: Figure S1. Maximum likelihood phylogeny for CheA
protein of the energy taxis cluster in C. coralloides. The top homologs of
the CheA protein (Cc_4970) involved in energy taxis in C. coralloides are
used here to generate this represented ML phylogenetic tree with organism
names in the outermost ring. The taxonomy lineage at the phylum level is
represented in the inner ring where myxobacterial homologs are in blue
text, non-Myxococcales Deltaproteobacteria in green text and other taxa in
red text. Bootstrap values are provided corresponding to the tree
nodes as blue circles with sizes ranging from one (BS value 1) to 15
(BS value 100). (PDF 49 kb)

Additional file 2: Figure S2. Maximum likelihood phylogeny for CheW
protein, a part of the energy taxis cluster in C. coralloides. The top homologs
of the CheW protein (Cc_4971) involved in energy taxis in C. coralloides
were used to generate this represented ML phylogenetic tree with

organism names in the outermost ring. The taxonomy lineage at the
phylum level is represented in the inner ring where myxobacterial
homologs are in blue text, non-Myxococcales Deltaproteobacteria in
green text and other taxa in red text. Bootstrap values are provided
corresponding to the tree nodes as blue circles with sizes ranging from one
(BS value 1) to 15 (BS value 100). (PDF 51 kb)

Additional file 3: Figure S3. Maximum likelihood phylogeny for the
Cc_4973 protein, a constituent of the Cc-5 energy taxis cluster. The top
homologs of the Cc_4973 protein, which is encoded in the energy taxis
cluster in C. coralloides, were used to generate this represented ML
phylogenetic tree with organism names in the outermost ring. The
taxonomy lineage at the phylum level is represented in the inner
ring where myxobacterial homologs are in blue text, non-Myxococcales
Deltaproteobacteria in green text and other taxa in red text. Bootstrap
values are provided corresponding to the tree nodes as blue circles with
sizes ranging from one (BS value 1) to 15 (BS value 100). (PDF 43 kb)

Additional file 4: Figure S4. Maximum likelihood phylogeny for the
Cc_4974 protein, a constituent of the Cc-5 energy taxis cluster. The
top homologs of the Cc_4974 protein, which is encoded in the energy taxis
cluster in C. coralloides, were used to generate this represented ML phylogenetic
tree with organism names in the outermost ring. The taxonomy lineage at the
phylum level is represented in the inner ring where myxobacterial homologs
are in blue text, non-Myxococcales Deltaproteobacteria in green text and
other taxa in red text. Bootstrap values are provided corresponding to the
tree nodes as blue circles with sizes ranging from one (BS value 1) to 15 (BS
value 100). (PDF 36 kb)

Additional file 5: Figure S5. Maximum likelihood phylogeny for the
CheB protein involved in the energy taxis cluster in C. coralloides. The top
homologs of the CheB protein (Cc_4975) involved in the energy taxis in
C. coralloides were used to generate this represented ML phylogenetic
tree with organism names in the outermost ring. The taxonomy lineage
at the phylum level is represented in the inner ring where myxobacterial
homologs are in blue text, non-Myxococcales Deltaproteobacteria in
green text and other taxa in red text. Bootstrap values are provided
corresponding to the tree nodes as blue circles with sizes ranging
from one (BS value 1) to 15 (BS value 100). (PDF 52 kb)

Additional file 6: Figure S6. Maximum likelihood phylogenetic tree for
the CheR protein in the Cc-5 cluster in C. coralloides. The top homologs
of the CheR protein (Cc_4976) involved in energy taxis in C. coralloides
were used to generate this represented ML phylogenetic tree with
organism names in the outermost ring. The taxonomy lineage at phylum
level is represented in the inner ring where myxobacterial homologs are in
blue text, non-Myxococcales Deltaproteobacteria in green text and other
taxa in red text. Bootstrap values are provided corresponding to the tree
nodes as blue circles with sizes ranging from one (BS value 1) to 15 (BS
value 100). (PDF 50 kb)
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