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Abstract

Power Conditioning and Stimulation for Wireless Neural Interface ICs

by

William James Biederman III

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jan M. Rabaey, Chair

Brain machine interfaces have the potential to revolutionize our understanding of the brain,
restore motor function, and improve the quality of life to patients with neurological con-
ditions. In recent human trials, control of robotic prostheses has been demonstrated using
micro-electrode arrays, which provide high spatio-temporal resolution and an electrical feed-
back path to the brain. However, after implantation, scar tissue degrades the recording
signal-to-noise ratio and limits the useful lifetime of the array. This work presents two
systems which utilize wireless techniques to mitigate this effect and create high-density,
long-term interfaces with the human brain.

A wirelessly powered 0.125mm2 65nm CMOS IC integrates four 1.5µW amplifiers (6.5µVrms
input-referred noise with 10kHz bandwidth) with power conditioning and communication cir-
cuitry. Multiple nodes free-float in the brain and communicate via backscatter to a wireless
interrogator using a frequency-domain multiple access communication scheme. The full sys-
tem, verified with wirelessly powered in vivo recordings, consumes 10.5µW and operates at
1mm range in air with 50mW transmit power.

A 65nm CMOS 4.78mm2 neuromodulation SoC integrates closed loop BMI functionality
on a single IC which can be arrayed on a wireless sub-cranial platform. The IC consumes
348µA from an unregulated 1.2V supply while operating 64 acquisition channels with epoch
compression (at an average firing rate of 50Hz) and engaging two stimulators (with a pulse
width of 250µs/phase, differential current of 150µA, and a pulse frequency of 100Hz). Com-
pared to the state of the art neural SoCs, this represents the lowest area and power for the
highest integration complexity achieved to date.
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Chapter 1

Introduction to Brain Machine
Interfaces

The burden of neurological disorders has a substantial global impact on society. In 2015,
for every 100,000 individuals, 1186.3 years of healthy life will be lost due to neurological
disorders [1], Figure 1.1. In total, neurological disorders make up 14.23% of all healthy years
of life lost due to disability, resulting in approximately 85 million years of life lost world wide
at the time of this writing (2014). In addition to the emotional and physical pain inflicted on
patients and families, this massive loss of life has incalculable economic consequences, both
direct (cost of patient care) and indirect (loss of human productivity). Over the past few
decades there has been a dramatic increase in the use of electronics and medical implants
to combat disorders for humans. Some of the most common applications include artificial
pacemakers and cochlear implants. Until recently, many neurological disorders have not seen
the benefits of technological advances in medicine, however, research has now shown that
the quality of life of patients can be improved through a direct interface with the brain.

Brain Machine Interfaces (BMIs) create a direct interface between the human brain and a
machine. This enables stimulation of brain regions to mitigate the effect of some neurological
conditions (ex. Parkinsons) or allows an alternate method of interacting with the physical
world. For example, a patient with spinal cord damage could use a BMI to perform voluntary
motor actions using an artificial actuator in virtually the same way that we see, walk or grab
an object with our own natural limbs.

The vision of restoring motor functionality to handicapped patients using BMIs has ex-
isted for many decades. In 1972 the first cochlear implants became commercially available,
which paved the way for BMIs as a treatment for patients suffering from severe motor im-
pairment such as amyotrophic lateral sclerosis (ALS), spinal cord injury, stroke, and cerebral
palsy. BMI research began in 1970 at UCLA; however, it wasnt until 1999 when the first
experimental demonstration showed neurons could be used to directly control a robotic arm
[2]. The use of BMI to improve the quality of life for these individuals is promising, however,
due to the a high level of invasiveness and risk BMI primarily remains a research field.

The modern vision of a closed loop BMI and the different components required for im-
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Figure 1.1: A World Health Organization table of years lost to disability (YLD), summarizing
the number of healthy years of life lost from various neurological disorders [1].

plementation is shown in Figure 1.2. This figure depicts a large scale array of electrodes
implanted in the brain used for both sensing and feedback. Neural signals are sensed and
amplified for signal processing, where the information of interest is extracted. This informa-
tion is analyzed in real-time, resulting in the implementation of an action (such as movement
in a direction), which is relayed through a wireless interface to a multi-channel mechanical
actuator. The actuators could control a limb with several degrees of freedom to perform
the desired action. Sensors on the limb (e.g. pressure sensors) are used to provide feedback
(e.g. tactile sensation) via electrical stimulation to the brain, resulting in a fully closed loop
system.

The remainder of the chapter will cover the concepts and technological challenges in
realizing a closed loop BMI for humans. Section 1.1 gives a brief overview of the different
types of signals which can be measured in the brain. Section 1.2 presents the various types of
recording methods and their advantages or disadvantages. Section 1.3 discusses the interface
between the implanted electrode and the surrounding brain tissue, and how to model the
impedance and noise. Finally, Section 1.4 examines the cell and tissue reaction to an implant
and the gives an overview of prior work on mitigating this biological response.

1.1 Signals of the Brain

The neuron is the central element of the nervous system and transmits information through
electrical and chemical signals. Like many other cells, neurons maintain a voltage gradient
across their membranes by separating ions (e.g. sodium, potassium, chloride and calcium)
using ion pumps. Unlike other cells, the membrane of a neuron is electrically active, al-
lowing control of the ion gradients using voltage-gated ion channels, which are activated by
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Slide 1 

Figure 1.2: Conceptual diagram of a closed loop BMI system. Image adapted from [3].

changes in membrane potential, and chemically-gated ion channels, which are activated by
interactions with chemicals in the extracellular fluid.

Neural function is enabled by the communication of neurons through the synaptic process.
Typically a neuron’s membrane potential rests around -65mV to -70mV, however, synaptic
inputs may cause the potential to rise or fall. Once the potential surpasses a threshold, an
action potential (AP) is triggered, resulting in rapid depolarization followed by repolariza-
tion. Figure 1.3 depicts the typical voltage waveform across a neuron membrane during an
action potential, which typically last on the order of 1 ms.

It is possible to measure the action potential voltage in vivo by using implanted micro-
electrodes. These electrodes can detect the membrane currents of neurons in the vicinity of
the electrode area through conductive brain tissue. Brain tissue can be modeled as linear,
resistive and homogeneous, therefore, the numerous signal sources in the corresponding area
are assumed to combine linearly [4]. Consequently, using different size electrodes or placing
the electrodes in different physiological locations, results in different measured signals. Some
of the typical measured signals are summarized in Table 1.1. Low frequency signals are
typically the superposition of neural activity over a large area of the brain, resulting in the
average signal for a large population of neurons. Depending on the region of the brain, these
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Figure 1.3: A typical action potential voltage waveform measured across a neuron’s cell
membrane.

Table 1.1: Typical neural recording methods and their resulting measurable signal bands.

Typical Recording Method Signal Band Frequency Range (Hz)

EEG

Delta 4
Theta 4-7

Mu 8-12
Alpha 8-15
Beta 16-31

Gamma 31-100

ECoG Local Field Potential <300

Micro-electrode array Single & Multi-Unit 300-10,000

signals have been grouped based on the frequency of the signal, such as the Delta, Theta,
Alpha, Mu, Beta and Gamma bands. Averaging neural activity over a smaller region gives
rise to signals typically less than 300Hz, and has been named the Local Field Potential (LFP).
Finally, the limit of recording resolution is measuring the activity of single neurons adjacent
to a recording electrode (Single & Multi-Unit), which can have frequency components up to
10kHz.
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1.2 Neural Recording Techniques

There are various commonly used neural recording techniques, which can be categorized
as invasive or non-invasive. The two most common non-invasive recording techniques are
Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI). EEG,
shown in Figure 1.4, measures the changing electric field over time due to the fluctuating
ion concentrations during neural activity (action potentials) using electrodes on the outside
of the skull, approximately 2cm above the cortex. Consequently, the electrical field (E-
field) generated by a single action potential is too weak to be detected through the very
lossy channel (brain tissue, skull, skin etc.). Therefore, EEG is only capable of detecting
the superposition of the E-fields from the synchronous activity of many neurons across an
approximate 3 cm spatial extent, Figure 1.5.

fMRI is a type of MRI that measures changing blood flow related to neural activity
in the brain. This imaging technique allows data to be gathered from all regions of the
brain (unlike EEG, which is limited to the cortical surface), and has high spatial resolution
(down to 1mm). However, fMRI has extremely poor temporal resolution, the Blood-oxygen-
level dependence (BOLD) response takes over a second to become detectable. In addition,
fMRI requires large machines which make it impractical for any mobile application. While
fMRI and EEG are useful for specific applications in neural engineering, currently they do
not offer both the spatial and temporal resolution necessary to control robotic prosthesis.
Furthermore, neither fMRI or EEG is capable of closed loop BMI control systems using
stimulation. In order to achieve the sensing resolution required to seamlessly operate a BMI
and the ability to provide feedback, invasive techniques are required.

Invasive BMI techniques enable recordings over smaller cortical areas or the direct record-
ing of action potentials (APs) from single neurons (single units) and small groups (multi-unit)
of neurons. Invasive BMIs can detect firing patterns of neurons during the execution of spe-
cific and intricate motor functions. These patterns can vary greatly over time and from
neuron to neuron, however, averaging across many trials yields fairly consistent patterns.
There are several methods of invasive neural recording: intracranial EEG (iEEG), Electro-
corticography (ECoG) and microelectrode arrays. Larger recording devices such as ECoG
(Figure 1.4) or iEEG, have electrode spacing on the order of 1mm to 1cm and are placed
on the surface of the brain. These devices sit directly above the cortex and average neural
activity over an approximate 0.5cm range (Figre 1.5) and, therefore, are limited to detecting
only Local Field Potentials (LFPs).

There are two types of microelectrode arrays: microwire and silicon micro machined
arrays, shown in Figure 1.4. Micro wire arrays are the most frequently used in BMI research;
they have only one recording location (at the tip of each wire) and are capable of recording
deep in the cortex (up to 5mm). Silicon based probes are physically larger than the smallest
microwire arrays but can allow multiple recording sites along the shank. The most common
silicon probes are the Utah and the Michigan probes, both of which are manufactured on
a silicon substrate using micro electromechanical mechanical systems (MEMS) processing
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A)	
 B)	


C)	


D)	

Figure 1.4: Examples of various neural recording techniques. A) Shows a patient wearing an
EEG array during a clinical study, B) Shows a micro machined 256 channel ECoG array [5],
C) A 16 and 128 channel micro wire array [6], and D) (left) A silicon ”Michigan” probe
array [7] (right) A silicon ”Utah” probe array [8].
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Figure 1.5: A comparison of the spatial resolution for different recording modalities. EEG,
located on the skull, averages neural activity from approximately 3cm of cortical area. ECoG,
located directly on the cortex, averages neural activity from approximately 0.5cm of cortical
area. While LFP and single unit APs are recorded from smaller cortical areas within the
brain. [9]

techniques. The Utah array is most similar to the microwire arrays, and only has one
recording site at its tip. The Michigan probe has several electrodes positioned along the
shank, allowing for recordings at multiple cortical depths.

To date, the only neural recording technique which has successfully demonstrated the
control of a robotic prosthetic limb is the direct recording of APs using micro-electrode
arrays. Non-invasive methods of sensing brain activity (ex. fMRI or EEG) lack the spatial
or temporal resolution. Some research suggests (e.g. [10]) future neuroprosthetic devices
could be controlled by ECoG or hybrid sensing solutions, electrodes implanted into the brain
are required for stimulation in a closed loop BMI system. Although microelectrode arrays
are very effective at providing high spatial and temporal resolution of neural activity, the
recording SNR gradually decreases over months to years, eventually rendering the recording
site useless. Obtaining a stable, long-term recording of large neurons from a large population
of neurons across the brain is one of the key challenges faced by BMI researchers [11].
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Figure 1.6: A lumped element impedance model of the electrode tissue interface. Cdl models
the double layer capacitance, Rf represents Faradaic currents, CPE represents a constant
phase delay and vn represents a lumped noise model.

1.3 Electrode-Tissue Interface Model

Providing fine control of robotic prosthesis requires a large number of recording sites, and
designing a system which doesn’t physically constrain or burden a patient requires a high level
of integration. These design constraints, coupled with CMOS scaling and other performance
improvements have lead to an interest by the IC design community in the field of neuroscience
and BMI. In the past decade there has been a large amount of work on integrated neural
recording ICs, for example [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. These
ICs are intended to interface directly with recording electrodes, therefore, modeling the
eletrode-tissue interface and noise sources properly is critical to achieving the desired in vivo
performance.

The impedance of the electrode tissue interface can be modeled using lump elements as
shown in Figure 1.6. The capacitance, Cdl, models the double layer capacitance formed by
the interface boundary of the conductive electrode and the brain tissue. The resistance,
Rf , models the resistance due to Faradaic current generated through redox reactions at the
electrode. Lastly, the constant phase element (CPE) models the signal phase shift resulting
from ion diffusion limitations, electrode surface morphologies, and other non-idealities [4].
The voltage source, vn, represents a lumped element noise source due to both electrical and
biological sources other than the signal of interest.

There are two natural sources of cortical recording noise: thermal and biological. Thermal
noise is generated by the recording electrode and tissue interface. Biological noise between
500Hz to 5kHz arises from asynchronous neural activity in close proximity to the recording
site and is outside of the LFP band. Prior work has modeled thermal and biological noise
during cortical recording using silicon microelectrodes and found that for a 450Hz-10kHz
recording bandwidth, the recording noise floor is approximately 13.5µV (based on Section
4.2 and Table I from [26]). The total recording and amplifier input referred noise is equal
to the sum of their variances, shown in Eqn. 1.1. With an amplifier input referred noise
of 6.5µV, the total estimated recording input referred noise, σTotal, is approximately 15µV.
Many neural amplifiers target noise floors as low as 1-3µV (ex. [16, 17, 27]), significantly
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Table 1.2: Typical Neural Recording Noise Components

Signal Component Typical Amplitude

Thermal & Biological Noise 13.5µV [26]
Amplifier Noise 1.5 - 10µV

Total Noise 13.58 - 16.8µV

below this recording noise floor, which results in wasted power. Table 1.2 summarizes typical
Thermal and Biological noise, amplifier noise and the total overall recording noise.

σTotal =
√
σ2
Amp + σ2

Therm + σ2
Bio (1.1)

An amplifier design can modulate the power spent in the low noise amplifier (LNA) and
subsequent amplifiers to set the input referred noise. As the power of the analog front end
increases the power overhead of the analog to digital converter (ADC) and digital logic will
constitute a lower fraction of the total system power, and the noise efficiency of the entire
system will improve. However, this methodology should be used with caution as eventually
increasing the amplifier power results in diminishing returns in the overall recorded noise,
despite improvements in the amplifier noise performance.

There are several factors which effect the length of time that a chronic neural recording
site can remain active. The initial recording sensitivity and selectivity is determined by the
proximity of the electrode to the neuron of interest and the electrode size, which sets the
baseline signal to noise ratio (SNR) of the recording. The recording stability determines the
rate at which the SNR of the targeted neuron changes over time. The stability can be affected
by degeneration, damage, or morphological changes to the neuron. In addition, a reactive
biological response from implantation causes changes in the surrounding tissue properties
and results in modifications of the lumped elements in the ETI model [4]. Understanding,
and mitigating this biological response to implanted electrodes is one of the critical challenges
to achieving a long term recording interface with the human brain.

1.4 Biological Response of a Neural Implant

The implantation of micro-electrode arrays to record APs causes scar tissue formation,
severely degrading the recording signal-to-noise ratio (SNR) over time. The scar tissue
effectively isolates the electrodes from the signal source they are trying to detect (the neu-
rons), rendering them useless. Even after the acute inflammatory response declines, there
is a chronic increase in the observed number of glial cells around the foreign object, which
causes the formation of a glial sheath, as shown in Figure 1.7. Studies have shown that
the glial scarring process is similar to the fibrotic encapsulation reaction that occurs with a
foreign body in soft tissue areas of the body [28]. There are several different types of cell
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Figure 1.7: Timeline for the formation of glial scar tissue around an implanted neural probe
over a 12 week period, [28].

involved in the biological response to foreign objects implanted in the brain, but microglia
and astrocytes are the two which are central to the brains response to injury [29].

Microglia primarily act as cytotoxic cells that kill pathogenic organisms, and remain
inactive until activated by injury mediated mechanisms. Upon activation, they begin to pro-
liferate, become more compact, phagocytose foreign material, and upregulate the production
of lytic enzymes to aid in foreign body degradation [29]. Additionally, since microglia are
cytotoxic cells, they can produce neurotoxic factors, which can lead to neuronal death sur-
rounding an activation site.

Astrocytes make up the majority of glial cells in the central nervous system and have
many cellular extensions which envelope synapses made by neurons. They provide growth
cues to neurons during central nervous system development, mechanically support the ma-
ture neuronal circuits, help control the chemical environment of the neurons, buffer the
neurotransmitters and ions released during neuronal signaling, and can even modulate the
firing activity of neurons [29]. During an injury, astrocytes enlarge in an activation process,
transform into a reactive phenotype, and migrate toward the foreign body. Upon activation,
astrocytes propagate a foreign body alert in the form of Ca2+ waves.

Reactive astrocytes are the major component of scaring in the central nervous system,
and their ability to migrate and communicate to each other via Ca2+ waves ensures that
the foreign body is encapsulated long term. Once an implanted electrode is encapsulated,
the effective recording impedance to neighboring neurons increases significantly, making the
signal undetectable. This process takes several weeks or months depending on the implanted
subject. An example timeline of this effect is shown in Figure 1.7.

Improving the reliability of AP sensing using microelectrode arrays has been seen as a
challenging long-term goal achievable only by preventing or permanently reducing the bio-
logical response to an implant. Prior work (e.g. [30], [31]) investigated the effect of size,
shape, texture and insertion method on glial scar formation. Figure 1.8 shows a reduction
in the acute reaction of an implant due to a smaller cross sectional area of an electrode site



CHAPTER 1. INTRODUCTION TO BRAIN MACHINE INTERFACES 11

compared to the insertion shank. However, glial staining revealed that although there were
minor temporal differences (on the order of 13 weeks) in the time course of the scarring, at
6 and 12 weeks post-implantation the tissue response to all of these electrodes was essen-
tially identical. Other work investigated bioactive coatings/films containing anti-inflamatory
compounds, adhesion promotors or growth proteins with limited success ([32], [33], [34]).

To date, prior work demonstrated improvement in the acute reaction, but has been
unsuccessful in preventing chronic scaring. Recording sites can remain active for up to several
years [35, 36, 37], and it is hypothesized that they eventually fail after ”micro-motion” causes
continued aggravation. Micro-motion is the independent movement of the brain with respect
to the electrode array, which causes agitation to the surrounding tissue. Studies indicate that
reducing or eliminating the effects of micro-motion may be the key to improving implant
longevity [38]. In order to mitigate micro-motion the wired interface cables through the skull
that connect the implant to recording racks must be eliminated. This requires replacing the
large bulky electronics with a recording solution directly integrated on an implanted array
and utilizing a wireless link to transfer power and data through the skull. Furthermore, this
integrated solution must be small and compliant, such that it can move freely with the brain.

The remainder of this thesis will focus on the use of low power integrated-circuit (IC)
techniques to design System-on-Chips (SoCs) to enable high density, long-term recording
interfaces with the human brain by addressing the challenges of recording scale and micro
motion. Chapter 2 presents the design of the smallest wireless neural sensor reported to
date, which free-floats in the brain to improve recording longevity. Chapter 3 presents the
highest complexity per-area neuromodulation SoC, combining neural recording, compression
and stimulation to perform closed loop BMI integrated in a single IC. Finally, Chapter 4
will summarize the contributions of this thesis and discuss future work.
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Figure 1.8: A reduction in the cross section area of an implant can mitigate an acute biological
reaction. Image is is adapted from [31].
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Chapter 2

Design of A Fully-Integrated,
Miniaturized (0.125mm2) 10.5µW
Wireless Neural Sensor

To date, the direct recording of APs is the only type of BMI proven to provide enough
temporal and spatial resolution to control complex robotic prostheses. However, the im-
plantation of micro-electrode arrays to record APs causes scar tissue formation, severely
degrading the recording SNR over time. Studies indicate that reducing the amount of tissue
displaced by an implant and eliminating the long-term damage caused by ‘micro-motion’ ef-
fects may mitigate a biological response [38]. Micro-motion is the independent movement of
an implant with respect to the brain, resulting in tissue abrasion. This effect can be reduced
by eliminating the interface cables and utilizing a wireless link to transfer power and data.
Furthermore, the implant should be sufficiently small and light to entirely free-float in brain
tissue, eliminating friction with the dura or skull.

Prior work (e.g. [14, 18, 13]) has developed wirelessly powered neural interfaces that
utilize large external antennas and bulky off-chip capacitors. To enable an electrode-sized
implant to float in brain tissue, an SoC solution with an order of magnitude reduction in
active circuit area is required. This reduction in area also reduces the available power,
necessitating a similar reduction in power consumption of the circuits. This work achieves a
10x reduction in area and 58x reduction in power, per channel, compared to prior state-of-
the-art wirelessly powered neural recording systems. This enables a fully-integrated wireless
SoC without the use of any off-chip components.

The proposed system (Fig. 2.1) utilizes a subcranial interrogator to power and commu-
nicate with an array of implanted, free-floating AP sensors through the brain’s dura. The
dura is the outermost membrane surrounding the brain and performs an important biolog-
ical role; therefore, it is desirable to re-close it after implantation. The sensor nodes are
implanted lengthwise, allowing the 4 electrodes to extend deep enough to reach relevant
neurons. Four data acquisition channels amplify and digitize the sensed neural potentials
into an 800kbps data stream via four 10b, 20kHz ADCs. A single receive (RX) coil on the
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Figure 2.1: A conceptual diagram of the implementation of a BMI utilizing the developed
wireless neural sensor. The sensor free-floats under the dura, while receiving power from and
communicating to an interrogator beneath the skull.

sensor couples perpendicularly to a superdural transmit (TX) coil and achieves both power
and data transmission simultaneously. To further minimize the node’s area/volume and
maximize the antenna size, the RX coil is placed on top of the active circuitry.
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Figure 2.2: System diagram, subdivided into three primary circuit blocks: Power manage-
ment, communication circuitry, and data acquisition.

2.1 System Design

The constrained node size in Fig. 2.1 places aggressive circuit power and area constraints,
which are met through system architecture decisions as well as with the choice of key circuit
block topologies. A block diagram of the system architecture is shown in Fig. 2.2. The system
components are sub-divided into three categories: Communication Circuitry, Power Man-
agement, and Data Acquisition. The core communication circuits include a demodulator,
which enables recovery of the low-duty-cycle beacons, and the frequency locked loop (FLL),
which generates the Miller subcarrier clock. The power management circuits, consist of a
rectifier, supply generation and bias circuitry. A switched-capacitor (SC) bandgap reference
was utilized to minimize power and area consumption [39] and self calibration techniques
were employed for automatic current and resistor trim. The data acquisition block consists
of a multistage neural amplifier, and a 10b counter-based ADC. The system has a total of
four amplifiers and input electrodes, which share a common reference electrode.

The system architecture, is ultimately limited by the channel loss for power transfer and
the communication protocol data rate. The high data rate and need for a precise clock
necessitate an interrogator-provided time base. To enable robust multi-node communication
while providing a low-overhead reference clock to the nodes, the communication protocol
is optimized for this application using miller-encoded backscatter (Section 2.1.1). The core
communication circuits include a demodulator, which enables recovery of the low-duty-cycle
beacons, and the frequency locked loop (FLL), which generates the Miller subcarrier clock.
The lack of a battery or external antenna requires highly optimized wireless power delivery
through careful selection of the node size and wireless transmission frequency, which is
discussed in Section 2.1.2.
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2.1.1 Communication Protocol

The proposed system enables a single interrogator to wirelessly power multiple implanted
nodes. However, each node generates 800kbps (4ch x 10b x 20kHz) of neural data which
it must continuously stream to the interrogator. Time interleaving the communication of
N nodes reduces the energy per bit by a factor of N, requires N times the data rate per
node, and incurs N timing overheads between the time-interleaved communication intervals.
Instead, simultaneous transmission by all nodes in unique frequency bands is proposed. For
this 5-node system, each node’s backscatter is Miller-encoded at a programmable subcarrier
frequency between 2MHz and 10MHz. Fig. 2.3 (top) shows conceptual time domain wave-
forms of 5 wireless packets with this system’s possible subcarrier frequencies (2, 4, 6, 8, 10
MHz). Fig. 2.3 (middle) shows the frequency spectrum of 5 nodes transmitting simultane-
ously. Finally, Fig. 2.3 (bottom) shows a simulated time domain waveform received from 5
nodes (Raw), the band-pass filtered waveform (Filtered) isolating the Miller 4 node and the
resulting data as modulation (M4) and raw bits (Data).

The Miller subcarrier frequency of each node must be precise enough such that the
interrogator can filter the responses from each frequency channel. The nodes generate a
precise local clock with the help of the interrogator, which sends a short downlink beacon
pulse every 50µs. The nodes recover this 20kHz clock, which initiates the ADC conversions
of neural potentials as well as communication of the 40-bit data packets containing the ADC
output. The 2-10MHz Miller subcarrier clock is generated by a frequency-locked loop (FLL),
which locks to a multiple of the 20kHz beacons.

To initiate downlink communication, the interrogator sends two consecutive beacons,
followed by PPM data. The encoding format is similar to EPC Gen2 RFID [40]. After
receiving the response from a unique ID query, the interrogator initializes each node with its
unique subcarrier frequency. Downlink communication is only used for initialization of the
nodes. Since the downlink configuration packets are infrequent, the node discards the ADC
sample when being programmed.

2.1.2 SAR & Frequency Selection

The maximum power available to a node is limited by the the transmission medium, trans-
mission distance, the frequency of operation and the specific absorption rate. For this appli-
cation, the transmission medium is known and the minimum transmission distance is set by
the thickness of the dura above the primary motor cortex (M1). In humans, the the 99.7th
percentile (µ + 3σ) for thickness of the dura measures 0.61mm [41]. This means that only
the node size and transmission frequency are free variables. In biological media, operating
at a frequency between 1-3GHz minimizes channel loss for edge-to-edge coupling [42] and
reduces the RX coil size by several orders of magnitude compared to [14, 18, 13]. Thus, the
transmission frequency for this system was selected to be 1.5GHz, trading a reduction in
node size and channel loss for an increase in the specific absorption rate.
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Figure 2.3: Theory of a Miller encoded communication scheme for multi-node interrogation.
Top: Miller encoded waveforms (2,4,6,8,10 MHz) for a data set. Middle: The resulting
frequency spectrum from 5 nodes communicating simultaneously. Bottom: The recovered
raw waveform before and after bandpass filtering, and the recovered original transmitted M4
signal and equivalent data.
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All wireless systems must ensure that they adhere to the FDA criteria, which restrict
tissue heating to 1◦C. Following the IEEE recommendations on Specific Absorption Rate
(SAR), which determines how much power a volume of tissue absorbs, can give a rough
guideline for meeting the FDA criteria. SAR is defined as the Joule heating per volume
mass evoked by an E&M field, Equation 2.1.

SAR = (σE2)/2ρ (2.1)

Where ρ is the density of biological tissue (kg/m3), σ denotes the electric conductivity
(S/m) of the tissue and E denotes the electric field strength (V/m). The only method
of ensuring compliance to the FDA tissue heating regulation is through simulation and
measurement. Furthermore, tissue heating can also result from power dissipation of the
implanted electronic devices themselves. Prior work (e.g. [43]) has shown that a power
density of 500 µW/mm2 results in a 1◦C increase in surrounding tissue tissue. Therefore,
care should be taken to include the effects from both SAR and electronic power dissipation
in the calculation of temperature change.

Given a target transmission frequency, a known medium and minimum distance, the
channel loss for different size RX antennas can be calculated. The minimum node size
achievable is then determined by the antenna design and resulting coupling factor. The
antenna optimization is a critical element in overall power transfer efficiency and is discussed
in detail in Section 2.2.

2.2 Power Management

The power management circuits convert the inductively-coupled RF power source into a
stable DC supply voltage and bias currents for the system. Section 2.2.1 describes the co-
optimization of the antenna coil and the rectifier, which convert the incident RF power into
an unregulated DC supply. The voltage reference and regulator, described in Section 2.2.2,
provide a stable 500mV supply for the digital core and data acquisition channels. Bias gener-
ation is discussed in Section 2.2.4, including a basic bias source for the other power manage-
ment blocks as well as a precision bias generator for the data acquisition channels. Finally,
the power-on reset circuit is used to sequence start-up and is described in Section 2.2.5.

2.2.1 Antenna Optimization

A carefully optimized wireless power link minimizes the required amount of transmit power,
reducing tissue heating and power consumption of the interrogator. Due to the relative
small transmission distance (approximately 1mm), the frequency of operation in this sys-
tem, 1.5GHz (λ = 154mm in water), allows modeling the power link as near-field inductive
coupling. Eqn. 2.2 approximates the power transfer efficiency, η, where Q′ represents the
loaded quality factor, Q, of the the transmit (T ) and receive (R) inductors [44].
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η = k2Q′TQ
′
R (2.2)

Since the amount of magnetic flux captured by the node is constrained by its physical
size, the coupling, k, is fixed for a given coil separation. The receive coil quality factor, QR is
determined by the geometry of the metal turns, as well as constants such as the loss tangent
of the silicon substrate. As the number of turns increases, the quality factor decreases due
to the required reduction in metal width for a given area constraint, as well as increased
substrate losses.

In contrast to the coil Q, the rectifier efficiency improves with the number of turns (to
first order) due to the increasing open circuit voltage of the coil. The open circuit voltage
is given by Eqn. 2.3, where Ptx is the amount of transmitted power and Rp is the effective
source impedance of the coil at resonance. Rp can be expressed in terms of the inductance
and quality factor as shown in Eqn. 2.4. Improvements in rectifier efficiency must be weighed
against losses in power transfer efficiency (η). Optimizations in MATLAB showed that 6
turns maximized the total power transfer efficiency of the link.

Voc =
√
ηPtxRp (2.3)

Rp = ωLQ (2.4)

The rectifier is designed to source 10.5µW (15µA at 700mV) and 120pF of output capac-
itance reduces supply ripple during communication. A two-stage self-synchronous rectifier
topology, shown in Fig. 2.4, was found to maximize RF to DC conversion efficiency in this
operating region. The coil was designed in an extra-thick aluminum redistribution layer
(RDL) with a patterned ground shield (PGS). It occupies almost 500µm x 250µm of area
in the top metal layers above other circuits and achieves a quality factor and inductance of
approximately 8 and 18nH, respectively. The resulting Rp is 1.36kΩ, yielding a simulated
rectifier efficiency of 24%.

2.2.2 Voltage Regulation

Uplink and downlink backscatter communication induce unregulated supply ripple at the
programmable subcarrier frequency ranging from 31.25mV at 2MHz to 6.25mV at 10MHz
(assuming a 15µA load on the 120pF decoupling capacitor). A discrete time linear regulator,
shown in Fig. 2.5, is used to provide a low noise supply for the neural data acquisition
circuitry, as well as minimize the dynamic and leakage power of the digital communication
logic. A comparator with capacitive offset cancellation (OSpos, OSneg) is used instead of a
linear amplifier in order to provide a high gain-bandwidth with minimal power consumption.
A charge pump based loop filter sets the bandwidth as well as output ripple while consuming
minimal power and area. Native Vth NMOS power devices are used for both the analog
(Avdd) and replica digital (Dvdd) supplies. The regulator consumes less than 300nA at the
maximum supply voltage and occupies 55µm x 54µm. Input and output capacitors, including
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Figure 2.5: Discrete-time LDO regulator schematic utilizing a comparator with capacitive
offset cancelation and a charge pump loop filter.

the 120pF decoupling capacitor for Vunreg, consume 450µm x 63µm. The measured PSRR
across frequency is shown in Fig. 2.6. With a worst case PSRR of 27dB, communication-
induced supply ripple is reduced to less than 1.5mV.

The regulator requires a robust precision voltage reference with low area and power con-
sumption. By utilizing a SC bandgap architecture proposed in [39], the reference eliminates
the use of resistors, op-amps, process-sensitive MOS Vth or leakage-based techniques. This
bandgap topology provides drastic area and power savings over the previous state-of-the-art,
and the design will be discussed in detail in Section 2.2.3.



CHAPTER 2. DESIGN OF A FULLY-INTEGRATED, MINIATURIZED (0.125MM2)
10.5µW WIRELESS NEURAL SENSOR 21

104 105 106 10725

30

35

40

45

Frequency

PS
R

R
 (d

B)

Figure 2.6: The measured discrete-time LDO regulator supply rejection across frequency.

2.2.3 Voltage Reference Generation

Ensuring system operation across a wide range of process corners, supply voltages, and tem-
peratures (PVT) often necessitates the use of an on-chip bandgap reference. However, as
process nodes scale to single nm gate lengths, the reduction of oxide thickness will cause the
maximum supply voltage to scale far below the minimum operating voltage of conventional
bandgap references. Furthermore, many ultra-low power wireless applications such as RFID
tags and wireless sensor nodes have aggressive power and area requirements, necessitating
improvements on these specifications in current state-of-the-art bandgap designs. This mo-
tivates exploration of circuit topologies that can continue to generate a bandgap-referenced
voltage while operating from a sub-1V supply with minimum power and area consumption.

The traditional CMOS-compatible bandgap topology is shown in Fig. 2.7. The nominal
output voltage of 1.2V requires a supply voltage that is incompatible with modern CMOS
technologies. The voltage domain summation of proportional and complementary to
absolute temperature (PTAT and CTAT) signals based on VBE and ∆VBE limits the supply to
VBG + VDSAT. Prior works have reduced the required supply voltage by adding the PTAT and
CTAT terms in the current domain [45, 46]. The drawback of this approach is an area/power
tradeoff; mega-ohm resistors are needed to reduce bias currents to microamp levels. For
example, the lowest power bandgap to date requires 4.6µW and consumes 0.1mm2 [47].

The high turn on voltage for silicon diodes has motivated exploration of other voltage
references. Prior works have explored the use of MOS VTH, which can be less than half the
value of VBE. MOS VTH-based references have reported power levels as low as 36nW [48],
and a 2T MOS leakage-based reference reported 2.2pW [49]. In addition, MOS references
typically consume much less area, in part due to the lack of diodes. The lowest area MOS
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Figure 2.7: A typical bandgap architecture, requiring VDD,min ≈ 1.4V.

VTH-based references have achieved areas less than 0.024mm2 [50], while bipolar references
have been reported with areas as low as 0.0445mm2 [51]. However, because MOS VTH and
leakage-based reference voltages are a strong function of process parameters (unlike the VBE

of a BJT), bandgap references remain attractive for their robustness.
In this section, I present a method for generating a reference based on the bandgap of Si

which improves on the state-of-the-art by approximately 10x in area and power, and is able
to operate down to -35◦C with a supply of 0.75V. The design utilizes a switched-capacitor
(SC) technique inspired by [52] without the use of resistors, op-amps, or process-sensitive
MOS VTH or leakage-based techniques.

2.2.3.1 Architecture

A bandgap reference creates an output voltage independent of temperature by summing two
voltages with opposite temperature coefficients. These CTAT and PTAT voltages are typi-
cally generated from VBE and ∆VBE, which have temperature coefficients (TC) of approx-
imately -2mV/◦C and 0.085mV/◦C respectively. In the classical bandgap reference circuit
shown in Fig. 2.7, the op-amp generates a voltage equal to ∆VBE across R1. The resulting
output voltage is given by (2.5), and its respective TC is given by (2.6). Thus, for this
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Figure 2.8: Schematics for generation of VBE lg/sm and non-overlapping clocks.

circuit to achieve a zero TC, x · ln(n) must equal 23.5 by properly choosing the diode (n)
and resistor (x) size ratios.

VOUT = VBE + x · ln(n) · VT (2.5)

TCVOUT
= −2mV/◦C + x · ln(n) · 0.085mV/◦C (2.6)

While this traditional approach has been successful, the minimum supply voltage is lim-
ited by VOUT (i.e. VBG) plus the VDSAT of the current source, typically resulting in a
minimum VDD of 1.4V or more. To break this tradeoff, a fractional bandgap reference can
be generated by introducing a division term into the output equations shown in (2.7) and
(2.8).

VOUT =
1

D
· VBE(on) +M · ln(n) · VT (2.7)

TCVOUT
= −2mV/◦C · 1

D
+M · ln(n) · 0.085mV/◦C (2.8)

Previous works have implemented this scaling with resistive subdivision [45, 46]. How-
ever, resistors impose an area/power tradeoff, which is undesirable for low power applications.
Instead, a SC network can be used to achieve the same effect in the voltage domain by di-
viding VBE and multiplying ∆VBE (and consequently their TCs) to achieve a net TC of
zero. Table 2.1 shows combinations of division/multiplication factors that produce a TC of
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Table 2.1: Table of possible reference voltages and their required multiply and divide factors

VBE Divide Ratio ∆VBE Multiply Ratio Theoretical VREF

6 1 196mV
4 1.5 293mV
3 2 391mV
2 3 587mV

1.5 4 782mV

1 6 1174mV ≈ BGSi

approximately zero with a diode multiplier of 48 and their resulting reference voltage. Re-
alistic ratios are shown that could be implemented practically using a SC network. For our
application we chose division and multiplication factors of 3 and 2, respectively, which results
in a theoretical output voltage of 391mV with a diode bias current of 25nA in this process.
Schematics of VBE generation and the implemented SC design are shown in Fig. 2.8 and 2.9,
respectively.

When designing the SC network, MOM capacitors should be utilized instead of MOS
capacitors for linearity and reduced leakage. Ideally, the output voltage is independent of
capacitor size, leading to minimally sized capacitors to save power and area. However, a
lower bound on the capacitor size is necessary to prevent error in the output voltage induced
by switch leakage. With minimum sized switches in this process, 45fF was found to be
sufficient.

In contrast to other voltage reference designs, this architecture requires the use of a
clock. In many systems, a clock is readily available or can be generated by a simple ring
oscillator. Such a clock may be used for this design despite the wide variability present
in an open loop ring oscillator because the frequency has minimal impact on the output
voltage. The measured sensitivity in our design from 500kHz to 2MHz is 0.25mV/MHz.
Two non-overlapping clocks are required to prevent short circuit current flow in the SC
network. Generation of these clocks can be achieved with a low power circuit similar to a
SR latch with added delay elements in the feedback, shown in Fig. 2.8. Since the gates can
be minimum-sized, this circuit consumes only 4nA at 1MHz in simulation for our process.

Finally, the last component necessary to operate this bandgap architecture is bias current
generation. Minimizing the bias current enables both low power operation and a low operat-
ing voltage because the lower limit of the supply is equal to VBE plus VDSAT. However, losses
due to parasitic capacitances and leakage through the switches in the SC network necessitate
a minimum bias current on the order of 25nA based on simulation.

Many systems utilize a ∆VGS/R reference in order to bias analog circuits such as am-
plifiers. This temperature dependent current can be used to bias the diodes with minimal
impact on the temperature coefficient of the bandgap output voltage. Using a ∆VGS/R bias
may also be desirable to enable independent trimming of the bias current and thus output
voltage. This trimming can be used to correct for process variation of VBE. Alternatively, if
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Figure 2.9: Schematic of the SC network with a divide/multiply ratio of 3/2.

a bias current generation circuit is not available, this design can be self-biased in the same
way as the traditional design shown in Fig. 2.7 by adding a resistor and op-amp.

In both this design as well as conventional bandgap references, the output voltage is
sensitive to the absolute value of the bias current. Simulations of a textbook ∆VGS/R
current source exhibit a σ of ±27% due to mismatch and variation of up to ±26% across
process corners. This would induce a net error of up to 2% in the bandgap output voltage.

2.2.3.2 Error Analysis

Typical sources of variability in a traditional bandgap architecture have been analyzed in
the literature. Three out of four of the largest output error sources are due to op-amps and
resistors [53]. While these error sources are eliminated in this design, parasitic capacitance
from the MOS switches, routing, and bottom/top plate of the MOM cap in the SC network
induce a large source of error. Parasitic capacitors, with reference to ground, are pre-charged
to either VBE lg or VBE sm in the first phase. Charge sharing then occurs during the second
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Table 2.2: Table of output sensitivity to mismatch, process, and voltage

Circuit Mismatch Process Supply
Block (σ%) (±%) (mV/V)

Current Sources 3.4 0.15 5.25
Diodes Not Modeled 0.94 -

S.C. Network 0.35 1.89 9.2

phase. In this design, all of the node voltages during the second phase of the SC network
are less than the values stored on the parasitic capacitors. Therefore, charge sharing from
the parasitic capacitors always increases the node voltages and, consequently, the output
voltage.

Careful layout and design help to minimize the effect of this parasitic charge sharing on
the output voltage. For example, error is reduced by referencing the division capacitors to
ground rather than to ∆VBE in the second phase. This allows a larger amount of intermediate
node parasitic capacitance to be discharged. Furthermore, the use of minimum device sizes
for switches and the elimination of lower metal layers on MOM caps reduce parasitics.

An estimation of the parasitic effects can be obtained from simulations of the extracted
layout. Compared to an ideal output from the SC circuit of 391mV, the simulated output is
411mV, closely matching a MATLAB model. The measured lot average of 423mV (shown
in Fig. 2.12) is within 2.7% of the simulated value. Measured samples are from one lot; the
shift in the mean falls within expected process variation.

The majority of mismatch-induced error in the output voltage is due to random dopant
fluctuations causing VTH variation in the diode current sources. Mismatch between the
diode current sources affects ∆VBE, while variation in the reference current affects VBE.
With M = 2 and D = 3, the output is 6x more sensitive to current source mismatch than
to variability in bias current generation. This results in sensitivity coefficients, in percent,
of VOUT to σ∆ID and σID of 0.43 and 0.072, respectively.

Pelgrom’s model provides an equation describing variability in a current mirror: σ2
∆ID

=

AVth
2/WL+(gm/ID)2·Aβ2/WL. Since minimizing VDSAT is necessary to minimize the supply

voltage, this equation reveals that the only design variable available to reduce variability is
the device area. However, in future designs, the tradeoff between device size and variability
can be broken by chopping the diode current source loads, similar to the dynamic element
matching technique.

Output variability is analyzed in simulation from each of the three principle components
of the system: the diodes, the diode current sources, and the SC network. Table 2.2 sum-
marizes the effects of mismatch, process, and supply variability on the output voltage. The
total effect of process variability on the output voltage is approximately 3%, significantly
less than MOS VTH references, which can exceed 10% [48].
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Figure 2.10: Die photo of the implemented design (0.0055mm2 excluding pads).

2.2.3.3 Performance

The proposed reference was fabricated in a 65nm CMOS process, and the die photo is shown
in Fig 2.10. The measured output voltage from -35◦C to 80◦C is shown in Fig. 2.11, with a
peak sensitivity of 160ppm/◦C. In this plot there are two unique features: at low temperature,
there is a rapid increase in temperature coefficient when the diode voltage becomes large
enough to force current source out of the saturation region. At high temperatures these is
another rapid change in temperature coefficient due to a design error where a power-on-reset
switch was implemented using an LVT device. At high temperatures this switch begins to
leak to the output from the supply, causing an increasing in the output voltage. Fig. 2.12
shows a histogram of measured output voltage variation from 15 die. The equivalent sigma
of 2.2% falls within the Monte Carlo results shown in Table 2.2.

The reference functions as low as -35◦C at 750mV supply voltage, or -10◦C at 700mV
supply voltage. The current consumption varies with clock frequency; at 1MHz the measured
current is 138nA. Table 2.5 summarizes the measured performance and compares this design
to existing MOS and bandgap-based references. This design reduces the area and current
consumption compared to prior bandgap-based references by 8.1x and 15.9x respectively.
Additionally, this reference functions at 100mV lower supply voltage than existing designs.
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Figure 2.11: Measured output voltage versus temperature. The peak variation from from
-35◦C to 80◦C equates to a sensitivity of 160ppm/◦C.

Table 2.3: Comparison of published (measured) Bandgap Reference performance

Author Ref. Type Ref. Voltage Min. Supply Total Current Max. TC Area Meas. σ Process
(mV) (V) (µA) (ppm/◦C) (mm2) (%) (nm)

Gambini [54] MOS 260 0.5 22 136 NR NR 90
De Vita [48] MOS 670 0.9 0.04 10 0.045 3.1 a 350

Huang [50] MOS 221 0.85 3.3 323 b 0.0238 NR 600
Wang [55] c MOS 400 0.56 4.8 80 0.045 2.5 a 180

Ker [56] Diode 238 0.85 28 58.1 NR NR 1200
Boni [57] Diode 493 1 10 22.6 b NR 0.86 350

Ng [51] Diode 235 0.95 28 34 0.0445 NR 500
Banba [47] Diode 515 2.1 2.2 58.25 0.1 0.97 400

This Work Diode 423 0.75 0.138 160 0.0055 2.2 a 65

a Single lot measurement b Numerical value extracted from plot c Architecture originally proposed by [58]

2.2.3.4 Conclusions

The growing interest in ultra-low power devices and the continuation of Moore’s Law have
generated a demand for a low voltage, power, and area bandgap reference. This architecture
uses a SC network for division, multiplication and summation to create an ideally zero TC
reference. Utilizing a SC network to create and sum voltages with opposite TCs has enabled
the lowest current, voltage and area bandgap-based reference reported to date. The design
occupies an area of 100µm x 55µm and consumes 138nA from a 750mV supply. The area
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Figure 2.12: Histogram of measured absolute output voltage variation from 15 samples, with
a σ of 2.2%. The lot average is 423mV.

and power consumption are comparable to MOS VTH-based references, while utilizing an
architecture that retains the lower process sensitivity of VBE compared to VTH.

2.2.4 Bias Current Generation

Bias current generation is divided into two parts to prevent circular dependencies. The first
part provides bias current to the regulator, DCO, and demodulator, which require current
source that is independent of the clock or regulator. A standard ∆VGS/R current reference,
powered from the unregulated supply, biases these circuits.

The second part, provides bias current to the data acquisition blocks such as the amplifiers
and ADCs, can remain off until the system has powered on. However, supply rejection is
critical to prevent modulation of the amplifier gain and ADC conversion gain. A precision
current reference, shown in Fig. 2.13, forces 300mV across a resistor. The accuracy of poly
resistors is dependent on the poly width, thus creating an area/variability tradeoff. Since
the interrogator provides a reliable frequency reference, a SC resistor was used to break this
tradeoff. The equivalent resistance of an SC resistor is 1/(fC), and thus a small capacitance
can be utilized to generate a nA current reference instead of a large resistor. This allows
substantial area savings and reduces variability in our process. The SC resistor utilizes non-
overlapping clocks to minimize error and the 300mV op-amp reference voltage is generated
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Figure 2.13: Switched-capacitor bias current generation schematic, utilizing two-phase non-
overlapping clocks.

using a pseudo-resistor voltage divider from the regulated supply.

2.2.5 Power-On Reset

Both the regulator and the bandgap reference require a clock to function and the oscillator
requires a regulated supply to provide a stable clock frequency. Thus, a power-on reset
(POR) signal is needed to transfer the oscillator from an unregulated to a regulated supply,
and ensure that all circuits power on successfully.

In steady state, the loop gain of the system is less than unity and, therefore, the system
is stable. However, before the oscillator starts, the regulator output is stuck at an unknown,
unregulated voltage. Hence, the primary goal of the POR circuit is to assert the reset signal
until the clock has been established.

The POR circuit, shown in Fig. 2.14, utilizes a complementary pair of SC resistors that
overpower the MOS pseudo resistors when clocked. A standard level shifter is used to
convert the internal analog voltages to a digital output. When the node initially powers on,
the capacitors pull the internal nodes into the reset state. This pulls up the regulator and
bandgap outputs and enables the oscillator to start. The oscillator clocks the SC resistors and
turns off the POR. Due to the large-valued pseudo resistors and the absence of amplifiers or
other analog circuits, the POR consumes only 10nW in steady state (simulated) and occupies
225µm2.
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Figure 2.14: Power-on reset schematic. Switched-capacitor resistors pull up against pseudo-
resistors, disabling the reset signal after several clock cycles.

2.3 System Results

Although most circuit blocks were verified independently, much of the challenge in this
system design is to maintain consistent performance when all components are integrated
together and operating over a wireless link. Therefore, to verify functional and robust
system operation, several full system tests were also performed. This section discusses the
testing to verify the wireless operation range (Section 2.3.1), multi-node communication
(Section 2.3.2), simultaneous channel recordings (Section 2.3.3), and operation of the system
in vivo (Section 2.3.4).

2.3.1 Wireless Operational Range

To measure the wireless transmission distance, a node was attached to a micro-manipulator
oriented for perpendicular (edge-to-edge) coupling with the TX coil. A photograph of the
testing setup is shown in Fig. 2.15. Using the micro-manipulator, the node was moved along
the Z-axis of the TX coil while the TX power was swept to find the minimum operating
value at a given distance. Ansys HFSS simulations show that the estimated path loss for our
system in air matches the measured minimum transmitter power (accounting for rectification
and modulation losses) and the comparison is shown in Fig. 2.15 with fitted trend lines. A
transmission distance of 1mm in air is achievable with approximately 50mW of transmit
power. The path loss in the brain was simulated to be approximately 6dB larger than in air,
yielding an equivalent transmission distance of 0.6mm in vivo.
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Figure 2.15: Left: Setup for wireless operational range testing. The IC is attached to a
micro-manipulator using double-sided tape. Right: Simulated path loss compared to the
measured minimum TX power required for operation in air.

2.3.2 Single and Multi-Node Communication Tests

To verify communication functionality, commands with a known response (e.g. changing
the subcarrier frequency) were issued and the correct responses were validated. The on-chip
digital communication output is connected to the modulation switch for wireless backscatter
and also to a direct buffered output for wired verification. Wireless communication tests were
performed using a spectrum analyzer in conjunction with COTS components. A measured
wireless data packet with a 4MHz subcarrier is shown in Fig. 2.16, with 2% duty cycle
interrogator beacons visible at 0µs and 50µs. This packet was measured using a spectrum
analyzer and shows power (in dBm) reflected from the node during backscatter.

The use of a FDMA communication scheme allows interrogation of multiple wireless
nodes simultaneously from a single antenna. Two sensor nodes were wirelessly programmed
to have different subcarrier frequencies using the same antenna. A spectrum analyzer was
used to observe the frequency spectrum, and the measured output is shown in Fig. 2.17.
The corresponding simultaneous 4MHz and 8MHz backscatter can be filtered into indepen-
dent data streams for decoding, as demonstrated by Fig. 2.3. The multi-node time domain
backscatter from Fig. 2.17 is shown in Fig. 2.18 after filtering to isolate the Miller 4 node.
The ideal (simulated) waveform is also shown for comparison and shows excellent consistency
with measurements. Small differences in the waveforms are due to the fact that the exact
interference from other nodes is a function of the random, uncorrelated data that each node
is transmitting.
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Figure 2.16: A wireless packet encoded with Miller modulation. Backscatter communication
of 40 bits of signal acquisition data is initiated by a pulse from the transmitter (seen on
either side of the packet).

Simulations of the bit error rate (BER) were performed in MATLAB for various numbers
of nodes and the results are shown in Fig. 2.19. Initially, in all simulations, the sensitivity
improves with increasing SNR. However, above 10dB SNR, the BER becomes limited by
interference (as opposed to thermal noise) in environments with 4 or more nodes. With any
number of nodes, a 10dB SNR provides an acceptable BER for this application.

2.3.3 Wirelessly-Powered Full System Test

Verification of the complete system functionality with simultaneous recordings from all four
input channels was performed on bench-top. The system was die-attached to a PCB above a
TX coil and inputs were bonded out to facilitate easier testing. A 1.6kHz, 150µV sine wave
was applied to all four inputs while the system was powered wirelessly through the PCB
inductive link. Fig. 2.20 shows the decoded output of all four channels recorded during a
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Figure 2.17: Frequency spectrum of two wirelessly powered nodes, communicating simulta-
neously with the same interrogator at different sub-carrier frequencies.

testing trial. The outputs show ADC and amplifier performance consistent with the results
of stand-alone measurements of 6.5µVrms. The digitally-encoded modulation waveform was
connected to the modulation switch and buffered directly off chip to an FPGA, which was
used to gather long data streams.

2.3.4 Wirelessly-Powered In Vivo Recording

The system was tested in vivo to verify performance with a realistic signal source. To
reduce testing overhead and measurement uncertainty, the system was wirelessly powered
outside the animal and a single channel was connected to a pre-implanted microwire array,
which could also be connected to a standard rack-mount recording system for validation of
recordings. Fig. 2.21 shows a diagram of the testing setup used to obtain in vivo recordings.
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Figure 2.18: The measured time domain waveform after filtering of M4 during a multi-node
interrogation test. Results are compared to an ideal filtered waveform, and the equivalent
Miller waveform with decoded data is shown.
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Figure 2.20: A wirelessly-powered system recording and transmitting a 1.6kHz, 150µV sine
wave input from all channels simultaneously.

One adult male Long-Evans rat was chronically implanted with microwire arrays bilater-
ally in the primary motor cortex (M1). Arrays consisted of teflon-coated tungsten microwires
(35 µm diameter, 250 µm electrode spacing, 250 µm row spacing; Innovative Neurophysi-
ology, Inc., Durham, NC, USA). The array in the right hemisphere contained 32 recording
channels (8x4 configuration), while the array in the left hemisphere contained 16 recording
channels (8x2 configuration). All animal procedures were approved by the UC Berkeley
Animal Care and Use Committee.

Extracellular recordings were performed for several consecutive days, more than one
month after the surgery. Clearly identified waveforms with a high signal-to-noise ratio were
chosen for further investigation as single unit responses. Putative single units were validated
based on waveform shape, reproducibility, amplitude, and duration. We also verified that the
characteristics of the inter-spike interval distributions were close to Poisson and exhibited a
clear absolute refractory period.

Fig. 2.22 shows the recorded waveform from one trial capturing multiple APs. The
amplifier gain was set to its maximum, and the LFP feedback cancelation high-pass corner
was set to be approximately 500Hz. Recorded noise levels varied between recording sites
from 15µV to 20µV. These noise measurements agree with expectations of the biological
noise level as described in [23].

2.4 Conclusion

The wireless neural recording sensor was fabricated in a 65nm LP CMOS process with all
electronics and wireless interface integrated into an area of 0.125mm2. The top-level lay-
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Figure 2.21: The setup for in vivo recording trials utilized a rat which was implanted with
a microwire array. Our system was die-attached to a PCB to facilitate wireless powering
and signal interfacing. In order to gather long data streams, a FPGA was used to buffer the
on-chip Miller-encoded neural data.
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Figure 2.22: One example trial of wirelessly powered in vivo neural data from a live rat.
The LFP feedback cancelation high-pass corner was set and measured to be approximately
500Hz.

out is shown in Fig. 2.23a, and the die photo is shown in Fig. 2.23b, with the 4 inputs,
power/communication coil and PGS visible. The node was wirelessly powered and interro-
gated using a custom PCB antenna and COTS components on bench-top and in an in vivo
setting. Table 2.4 summarizes the performance of the system. The complete sensor has no
off-chip components and consumes 15µA from an unregulated voltage source of 700mV, for
a total power consumption of 10.5µW (2.6µW/channel) in under 500µm x 250µm.

This SoC reduces the average power per channel by 18x compared to [15] and 58x com-
pared to [13]. Although [13] used a larger (500nm) process, passives used to build the analog
filters consume substantial area even in modern processes. Compared to [13], this work
reduces the average area per channel by 10x, and decreases the amplifier and ADC area to
110µm x 100µm, compared to 400µm x 400µm (for an amplifier, comparator and DAC).
Table 2.5 compares this system to prior neural recording systems with wireless telemetry.

In this system my key contributions centered around the techniques and system design
elements for power delivery and management. The modeling and optimization of the power
transfer link, including the antenna design enabled the smallest fully-integrated wireless
neural sensor reported to date. In addition, I presented a novel low power and area technique
for generating on-chip reference voltages and currents. The system architecture was designed
to leverage the power train performance and relax design constraints on the neural amplifier
design, enabling further power reductions.

There were two lessons from this work which helped direct my subsequent research.
First, in order achieve aggressive area minimization, fundamental tradeoffs were made be-
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Table 2.4: Summary of System Performance

Power / Signaling Frequency 1.5GHz
Uplink Comm. Frequencies (MHz) 2, 4, 6, 8, 10

Downlink / Uplink Data Rate 1Mbit (Half-Duplex)
Unregulated / Regulated Supply Voltage 700mV / 500mV
Rectifier Vin,min (15µA @ 700mV load) 1.07V

Regulator PSRR / Dropout 27dB / 50mV
Neural Signal Amplifier Gain 46dB (1-10kHz)

Input Referred Noise 6.5µV
Single Amp Bias Current 3µA (1.5µW)

ADC Sampling Rate 20kHz
Number of Channels 4
Total Chip Area 0.125mm2

Total Chip Power 10.5µW
(2.625µW/Ch)

Table 2.5: Comparison of neural recording systems with wireless telemertry.

Author Off-Chip Wireless In Vivo Ch. Avg. Pwr Total Area Amp. Noise Process
(Ant, Cap) Power? Results (#) (mW/Ch) (mm2/Ch) (µVrms) (nm)

Chae [15] Y, N N No 128 0.047 63.36 4.9 (Wired) 350
Lee [14] Y, Y Y No 32 0.183 16.2 4.95 (Wireless) 500

Sodagar [18] Y, Y Y Yes 64 0.22 217 a 8.0 (Wireless) 500
Harrison [13] Y, Y Y b Yes 88 c 0.153 27.3 5.1 (Wired b) 500
This Work N, N Y Yes 4 0.0026 0.125 6.5 (Wireless) 65

a Incl. off-chip b In vivo tests and noise measurements used wired power c Not incl. REF channels

tween transistor sizes and mismatch in many circuits. Although the performance degra-
dation of individual circuit blocks was acceptable, the cascading interaction between many
blocks resulted in low overall system yield. Second, the goal of creating an ultra-small im-
plantable sensor node was successful, however, the technological methods to perform in vivo
implantation of arrays of sensor did not exist. This limitation prevented implantation and
measurement of a sensor array during the time frame of the project. These lessons and the
desire to integrate stimulation with neural recording to create a fully-integrated closed-loop
implantable BMI system motivated the work in Chapter 3.
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(b) Die photo.

Figure 2.23: Die photo of the full system, showing the input bonding pads, the RX coil and
PGS. The active circuit area is underneath the PGS, and is depicted by an image of the chip
layout.



41

Chapter 3

Design of a 4.78mm2

Neuromodulation SoC Combining 64
Acquisition Channels with Digital
Compression and Simultaneous Dual
Stimulation

To fully restore limb mobility, a neural interface must achieve long term AP recordings
from a large population of neurons (thousands) in multiple brain regions [11]; however,
the standard rack mount electronics and large cables typically used for experimentation
prohibit this scaling. Furthermore, a wired interface through the skull introduces a persistent
infection risk for patients, and space constraints prohibit significant energy storage beneath
the skull. Consequently, next generation neural interfaces must be powered and communicate
wirelessly, with the ability to scale to thousands of channels. In order to realize this level
of scaling with implantation techniques available today, a new system must be designed
compared to Chapter 2. Furthermore, to create a truly closed-loop BMI system, stimulation
must be integrated into the implanted electronics.

This chapter presents the design of an SoC solution capable of closed loop BMI, which
achieves significant improvements in area, power and signal compression over current state of
the art (e.g. [20, 22, 59]) and can be arrayed across the brain to achieve thousands of recording
sites. Section 3.1 describes the system architecture and gives an overview of the neural
amplification circuitry and digital compression. Section 3.2 describes the implementation of
the power management circuitry, Section 3.3 details the stimulator architecture, design and
measurements, and Section 3.4 presents the in vivo testing results of the fully integrated
system. Finally, Section 3.5 compares these results to prior work.
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Figure 3.1: The system architecture, subdivided into the primary circuit functions: Ampli-
fication, Stimuation, Digital Compression and Power Train.

3.1 System

The IC architecture, Fig. 3.1, combines 64 channels of real-time neural recording with on-chip
compression and dual stimulation on 8 selectable channels without any off-chip components,
paving the way for closed-loop neuromodulation. The fully-integrated SoC achieves the
highest complexity and lowest power and area per recording and stimulation site reported
to date. When arrayed across the brain, 16 ICs provide 1024 recording and 128 stimulation
sites. This would require 6.67mW and 320kbps (20kbps/IC for firing rates x 16 ICs), which
can be delivered through the skull as shown by [60, 61].

The recording channels (Fig. 3.2) are designed to consume minimal power and area, with-
out sacrificing noise performance. The channel gain is set through closed loop feedback to
provide accurate, calibration-free operation. The gain, bandwidth and bias current (noise
performance) are individually adjustable on a per-channel basis, enabling power savings
on high SNR electrodes. A time-multiplexed switched-capacitor ADC driver utilizes sepa-
rate sampling capacitors for each of its 8 input channels, thereby minimizing settling speed
requirements of the VGAs. Finally, the inputs are AC-coupled (using 10pF capacitors),
providing compatibility with large stimulation common-mode voltages.

Fig. 3.3 shows the block diagram of the implemented digital back-end, including all signal
interfaces and I/Os. A spike detection algorithm based on the nonlinear energy operator
(NEO [62]) extracts spike events, enabling data reduction by only sending a 2.1ms time
window of data around an event (epochs), and/or spike counts in a 2.4-50ms programmable
window. Sending epochs, spike rates, and uncompressed data (streams) can be enabled on
a per channel basis via scan instructions. Finally, all packets are put into a clock domain
crossing FIFO, which allows the system clock to operate at a different frequency than the
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Figure 3.2: Amplifier block diagram showing the LNA, VGA and ADC buffer.
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Figure 3.3: Compression block diagram and the power consumption, data rates, and com-
pression ratio for different output modes.

output data rate, resulting in further power savings and system optimization. With an
average firing rate of 50Hz per channel the total digital power is 77.63µW for firing rates
and 113.6µW for epochs. Section 3.4 presents In vivo data that illustrates the different data
representations and operation of the compression algorithm.
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Figure 3.4: A simplified block diagram depicting the components of the power management
sub-system: a supply clamp, band gap reference and two regulators.

3.2 Power Management

The architecture of the power train is shown in Figure 3.4 and consists of a voltage limiting
supply clamp, a band gap reference and two voltage regulators. While area and power
minimization are still critical for the power train, the bulk of the system power and area
consumption is dominated by the arrayed amplifier. In this system, there are 64 recording
channels, and 8 stimulation channels compared to only 4 recording channels for the system
in Chapter 2. The 64 amplifiers result in over 1350µm x 1250µm of area and the digital
logic occupies 1700µm x 500µm. To simplify startup and system complexities resulting from
the use of a discrete time power train, continuous time topologies for the band gap reference
(3.2.1) and regulators (3.2.2) were chosen rather than the topologies presented in 2.2.3 and
2.2.2. Although this results in an absolute area and power increase of these blocks, in this
system it is irrelevant (ultimate the power train only occupies approximately 0.5% of the
total system area and less than 3.4% of total power) compared to other system components
and results in a worthwhile tradeoff.

The SoC is designed to operate from wireless power for a fully implanted system or
directly from a battery for a head mounted system. Due to their small size and high energy
density, Zinc air batteries would be the preferred power source to meet the size, wight
and operating life specifications for a neural head stage. A typical output voltage for a
zinc air battery can be between 1.4V and 1.15V when loaded, therefore, the power train
is designed to provide a stable supply with as small as a 1.1V unregulated voltage. When
wirelessly powered from a rectifier, the unregulated voltage can vary wildly depending on
the input power to the rectifier. A passive diode clamp provides over voltage protection and
is designed to have minimal leakage in FF, hot corners during normal operating conditions
while providing sufficient clamping above 2.5V (the thick-oxide breakdown).
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Figure 3.5: Schematic of the resistive sub-divisionn band gap reference and startup circuit.

3.2.1 Bandgap Reference

Although temperature independence is not critical for an implanted system (since the tem-
perature of the brain is well regulated to 37◦C) the SoC is designed to be compatable with
a wireless head stage. Furthermore, the bandgap voltage reference is largely process inde-
pendent as opposed to other voltage reference techniques and this topology provides drastic
power savings over other designs. The bandgap reference implements a resistive subdivision
technique proposed by [47] to achieve an output voltage at a fraction of the band gap of Si.
Conceptually, a fractional bandgap reference can be generated by introducing a division term
D into the traditional bandgap output equations as shown in Equations 2.7 and 2.8. The
architecture, shown in Fig. 3.5, uses an opamp to force V+ and V− to be equal. Resistors RM

and RD produce currents I∆VBE
and IVBE

respectively which are summed at the V+ node.
The resulting current, IREF , is temperature independent and can be mirrored and converted
to a fractional band gap voltage via RO, resulting in Equation 3.1. In addition, IREF is used
as a bias current for other blocks. A startup circuit employs a DC leakage path and AC
coupling capacitors to pull the op-amp output low at startup.

VOUT = RO · (
VBE
RD

+
∆VBE
RM

) (3.1)

The total active area is 75µm x 100µm and the circuit has a measured current consump-
tion of approximately 750nA. The measured line regulation and temperature independence
are shown in Figures 3.6 and 3.7 respectively. This design is able to achieve a stable output
voltage with an unregulated supply of less than 1V and achieve a temperature coefficient of
approximately 180pp/◦C.
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Figure 3.7: The measured temperature sensitivity of the band gap reference and digital
supply voltage. The temperature coefficient is approximately 180ppm/C.
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Figure 3.8: The schematic of the regulator with a 3b tunable output voltage and output
compensation.

3.2.2 Regulators

To reduce the effect of digital supply noise on the sensitive analog neural amplifiers, two
separate regulators are implemented on-chip. The regulator design, shown in Figure 3.8,
is output compensated to allow operation of additional off-chip peripherals such as a data
aggregation/wireless comm IC. An additional feedback capacitor, CFB, creates a zero to
compensate for the pole created from Cgs of the input device and the feedback resistors.
The output compensation cap for each regulator is distributed beneath the I/O bond pads
allowing utilization of otherwise wasted area. The total available area under the bond pads
allows for up to 3.3nF of capacitance from a stack of thick oxide MOS, plus 3 layers of MOM
cap.

The output voltage of each regulator has 3 bits of programmability, with the default
voltage set to maximum at startup. A binary-to-one-hot converter selects from a resistor
string to provide an output voltage between approximately 600mV and 1.2V. The regulator
bias current is tunable from 500nA to 5uA to maintain stability over various load conditions
while minimizing power overhead. The measured line and load regulation is shown in Figure
3.9 and the measured PSRR of the power train is shown in Figure 3.10. The total active area
of the regulators is 50um x 150um, not including the capacitors under bond pads. The total
power train current consumption was measured to be 14µA while supporting the maximum
system load current (64 amplifier channels enabled and while streaming raw data from the
digital).
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Figure 3.11: A traditional charge balanced, bi-phasic current stimulation architecture and
conceptual stimulation waveforms.

3.3 Neural Stimulation

In a BMI system, neural stimulation is used to provide feedback to the patient. Charge
is deposited onto an electrode until the resulting electric field becomes strong enough to
trigger a response from neighboring neurons. Afterward, the charge must be removed from
the electrode to prevent build up; failure to remove all deposited charge can result in perma-
nent tissue damage. Traditionally, stimulation is performed using two independent current
sources, as shown in Figure 3.11. There are three problems faced by this topology: first, lay-
out induced mismatch between the two current sources necessitates calibration prior to use.
Second, this topology consumes excess power because the supplies are statically set to the
compliance voltage of the stimulator, which is the maximum electrode voltage reached during
stimulation. This results in the stimulation current, Ielect, constantly being consumed from
the compliance voltage, independent of the intermediary or final values of Velect. In addition,
when discharging the electrode, the current is commonly discharge into ground, resulting
in wasted power during this half of the stimulation cycle. Third, stimulation patterns are
typically spatio-temporal, requiring large IC area consumption to support one stimulator
per electrode. In this section, I will introduce a new stimulation architecture that addresses
these issues.

3.3.1 Stimulator Operation

The proposed topology utilizes a differential electrodes to create localized electric fields, min-
imizing recording artifacts and amplifier recovery on adjacent electrodes after stimulation, as
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Figure 3.12: The proposed differential stimulation topology which utilizes a single current
source for each electrode. The current source switches between a dynamically adjustable
high and low supplies to minimize waster power and maximize recovered power respectively.
The electrodes are placed adjacently on an electrode shank, localizing the electric field and
reducing stimulation artifacts on recording channels.

shown in Figure 3.12. Each stimulator utilizes a single current source for both positive and
negative stimulation phases, which reduces the effect of current mismatch between phases
and eliminates the need for calibration. The system instantiates two differential, bi-phasic
current stimulators which can be independently multiplexed onto four electrode pairs for
a total of 8 unique stimulation sites (Figure 3.13). Time multiplexing a single stimulator
onto multiple electrodes minimizes the IC area overhead while maintaining a high number
of stimulation sites.

The current source is implemented using a thick oxide PMOS 6b binary weighted current
DAC with a 7µA LSB, allowing a maximum differential stimulation current of 900µA. PMOS
switches are used to mux the current source terminals, and their control signal voltage levels
are set to VDD, HIGH and VDD, LOW by using AC coupled level shifters. At the end of each
stimulation cycle, the electrodes are shorted together to remove any small amount of residual
charge. A 1.25MHz clock and 9b counter are used to configure pulse length, inter-phasic
delay, and the stimulation period.

To minimize power consumption, the stimulator implements an adiabatic, charge-recycling
architecture without utilizing off-chip components, enabling a fully integrated system as op-
posed to prior state-of-the-art [63]. During the charing phase of an electrode, the VDD, HIGH

supply is dynamically increased to minimize wasted power while keeping the current source
in the saturation region. During the discharge phase of an electrode, current is discharged
into a bi-directional DC-DC converter. In addition, the VDD, LOW supply is dynamically
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lowed to recycle the maximum charge.
To facilitate the dynamic supply switching, a supply voltage detection circuit (Fig-

ure 3.13) uses a thin oxide comparator and a switched capacitor network to sample the
electrode voltage and a reference voltage generated from the current selected supply voltage.
A state machine uses the output of the voltage detectors to select one of 7 supply voltages
from the DC-DC to minimize the power consumed (and maximize the power recovered)
throughout the stimulation cycle.

Finally, the stimulator architecture was designed to support both electrical and optical
(i.e. optogenetics) stimulation. By utilizing a differential output pair, the stimulator can
drive current to illuminate an LED and control neurons that have been genetically sensitized
to light. LED on/off time, repetition rate and drive current can be set and controlled with
the same precision as bi-phasic current stimulation mode. Functionality was demonstrated
with bench top measurements using off-the-shelf LEDs as shown in the photograph in Figure
3.14.

The layout of the stimulator is shown in 3.15 and occupies approximately 150um x 450um
of area. A common centroid layout was used for the 6b current DAC to minimize mismatch
induced non-linearity. Each device in the DAC has a W/L of 4um/2um and the DAC
consumes 45um x 137um of total area. Due to the capacitors required for the AC coupled
level shifters and the relatively large number of control signals required for the muxes in the
stimulator, the AC level shifters and current DAC consume the majority of the layout area.

3.3.2 DC-DC Design

The stimulator output common mode is set at mid-rail from a single fully-integrated switched-
capacitor DC-DC converter. The DC-DC is implemented using a Dickson ladder topology
(Figure 3.16) with a tunable input voltage of up to approximately 1.3V. A maximum conver-
sion ratio of 1:7 was implemented and was limited by the NWELL/PSUB breakdown voltage
of the process. Level shifted control signals for the switches allow bi-directional charge flow
and current recycling. The switches are implemented using floating well PMOS devices, and
the control signals are bootstrapped off of subsequent stages using AC coupled level shifters
(Figure 3.16). Additional output switches are added to each stage to store the voltage on
100pF on-chip capacitors. The switching frequency of the DC-DC can be set between 160kHz
to 20MHz to maximize overall efficiency depending on the chosen stimulation current.

3.3.3 Performance

The INL and DNL of the current DAC was measured to be 0.082 and 0.039 LSB respectively
with a unit device size of 4µm/2µm and is shown in Figure 3.18. The difference between
sourcing and sinking the maximum DAC output current (448µA) was measured to be less
than 2µA; this results in less than 200pC (20mV on a 10nF electrode) of residual charge
remaining on the electrodes after a typical 100µs stimulation cycle. After the cycle, the
two electrodes are shorted together, dissipating the small residual charge and returning the
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Figure 3.13: The stimulator block diagram, illustrating the 6b current source, supply sensor
and supply mux operation.
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Figure 3.14: A photograph of an LED being illuminated by the output of the stimulator
from the wired head stage.

Figure 3.15: The layout of the differential stimulator consumes approximately 150um x
450um of area.
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Figure 3.16: Schematic of the actively switched, 1:7 switched capacitor DC-DC and schematic
of the AC coupled level shifters.

electrodes to the common mode voltage. A maximum output voltage of 8.7V was measured
from the DC-DC with an input voltage of 1.3V. Figure 3.17 shows the measured efficiency
of the DC-DC across different output load currents with varying input frequencies, with a
maximum efficiency of 68%.

A typical stimulation pattern of 300µA differential current with 150µs per phase was
performed on bench-top with a 1kOhm/10nF RC electrode model; the electrode and supply
voltages are shown in Figure 3.19. As the positive electrode voltage increases during the
positive stimulation phase, VHIGH and VLOW for the positive electrode track the voltage,
minimizing the current drawn from Vunreg through the DC-DC. Similarly, the supplies track
the electrode voltage during the negative phase, maximizing the current recycled through
the DC-DC from the positive electrode, which can be used concurrently to drive the negative
electrode back to the common mode voltage. The resulting measured input referred current
supplied by the DC-DC over one cycle of operation is also shown in Figure 3.20. In addition,
Figure 3.21 shows a series of stimulation current pulses and voltages measured from an
electrode pair with a 4ms period.
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Figure 3.18: The measured DNL and INL of the 6b binary weighted current DAC.
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3.4 In Vivo System Measurements

A diagram of the testing system designed to seamlessly obtain in vivo data is displayed in
Figure 3.22, which includes a compact 0.65” x 0.8” headstage, a base station, and a Graphical
User Interface (GUI). A photograph of the measurement setup is shown in 3.23. The SoC
was incorporated onto the headstage, which was created to sit atop a small animal’s head
and connect to an implant in the brain. Information is transferred between the headstage
and the base station via a 2.6mm diameter µHDMI cable using Low Voltage Differential
Signaling (LVDS) for high speed communication. The base station serves as an intermediary
between the headstage and the computer’s GUI. From the GUI, the user can select which
channel(s) to record, as well as send stimulation commands and adjust compression levels
on a per channel basis.

In vivo stimulation was performed in the rat’s visual cortex with a 210µA differential
current for 125µs per phase. Stimulation artifacts are shown across multiple channels in
Figure 3.24, and the relative amplitude correlates with proximity to the stimulation site. It
is important to note that the recorded artifact was a differential measurement referenced
to the labeled ”Ref” electrode. In this orientation, the electrodes closest to the stimulation
sites (CH1, CH2, and CH11) should exhibit the highest amplitude artifact while the furthest
channels (CH3, CH4, and CH12) exhibit minimal artifact due to the localized nature of
the differential stimulation. Figure 3.24 also shows that the time it takes for neighboring
recording channels to recover from perturbation during stimulation is less than 1ms after
stimulation ends.

Extracellular recordings were performed using a 16-channel microwire array implanted
in the visual cortex of an adult Long-Evans rat. Arrays consisted of teflon-coated tung-
sten microwires (35µm diameter, 250µm electrode spacing, 250µm row spacing; Innovative
Neurophysiology, Inc., Durham, NC, USA). All animal procedures were approved by the
UC Berkeley Animal Care and Use Committee. Extracellular recordings were performed for
several consecutive days, more than one month after the surgery. Clearly identified wave-
forms with a high signal-to-noise ratio were chosen for further investigation as single unit
responses. Putative single units were validated based on waveform shape, reproducibility,
amplitude, and duration. The characteristics of the inter-spike interval distributions were
close to Poisson and exhibited a clear absolute refractory period.

A typical subset of recorded in vivo data is shown in Figure 3.25, which displays time-
aligned epochs recorded from one channel. In order to verify in vivo compression accuracy,
all three forms of the SoC’s outputs were recorded and aligned in time, as displayed in
Figure 3.26. Each epoch data packet includes a time stamp, which allows for spike detection
confirmation when superimposed onto the raw data stream. In addition, accurate firing rate
calculations were verified by ensuring that the firing rate counter incremented with each
spike event. The SoC computes firing rates over a specified window of time, which in this
case was 26.2ms.
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Figure 3.22: The in vivo neuromodulation test system is composed of a microwire implanted
array, a compact headstage containing the SoC, a base station, and a Graphical User Interface
(GUI).
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Figure 3.23: A photograph of the in vivo measurement setup as depicted in 3.22

3.5 Conclusion

For this system, I architected and designed the power management subsystem and a novel
fully integrated stimulation architecture. The power management circuitry occupies less
than 0.5% of the total IC area and consumes only 3.4% of the total IC power. It is fully
tunable to adapt to a variety of system power conditions while maintaining a worst case
30dB PSRR. This work implements 2 stimulators, multiplexed onto 8 stimulation sites and
reduces the total stimulator area per site by 2.25x compared to [20]. The stimulator utilizes
an adiabatic architecture reducing power consumption by 3x less current on average com-
pared to a traditional non-adiabatic topology operating from the same DC-DC. The DC-DC
is implemented using a Dickson ladder topology with a tunable input voltage of up to ap-
proximately 1.3V and a conversion ratio of 1:7. The entire architecture was integrated on a
single SoC without any off chip components.

The principal challenges I encountered in this design involved the use of high voltages
(greater than the gate oxide breakdown of the MOS devices) and properly modeling the
DC-DC. The largest thick oxide breakdown voltage in this process was 3.3V and since the
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Figure 3.26: There are three possible digital outputs from the neuromodulation IC with
varying levels of compression as shown for a typical in vivo recording. Raw streaming data
(top) has no compression, this consumes 13.653 Mbps for 64 channels. Epoch data (middle)
only sends a 2 ms window of data around a detected spike event, consuming 1.6384 Mbps
(@50Hz firing rate) for 64 channels. Firing rates (bottom) only sends the count of detected
spike events in a 26.2ms window and consumes 20kbps for 64 channels.
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application requires generating voltages much higher than this on-chip, the majority of de-
vices in the stimulator and DC-DC utilize floating wells. This creates complications for
otherwise trivial circuit blocks, such as creating a current DAC, which then requires AC
coupled level shifters with dynamically changing high and low voltage levels to be used for
the control bits. These level shifters do not have a DC path to ground and therefore, require
an input initialization pulse at startup for the output to take a known state. Achieving
high DC-DC efficiency with a large conversion ration and high output voltage was also a
challenging task. Care in modeling the NWELL and other parasitics as well as switch boot-
strapping was necessary to ensure proper operation and startup. Despite the overall success,
the DC-DC efficiency was approximately 9% less efficient than final simulations estimate.

The IC was fabricated in TSMC 65nm LP CMOS and occupies 4.78mm2 of area including
pads. A die photo is shown in Figure 3.27. The key metrics of the design are summarized in
Figure 3.28 and compared with the state of the art. This work reduces the average amplifier
power per channel by 14x and area per channel by 12x compared to [20] while achieving
comparable NEF and PEF. Finally, the compression block consumes 2.7x less power and
6.4x less area per channel compared to [20] while implementing more features. The high
integration level in addition to the low power and area consumption of this system provides
the next step in enabling high-density, fully-implanted, wirelessly-powered neural interfaces
in the human body.
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Figure 3.27: A die photo of the full system, with annotations for the primary circuit blocks
and dimensions.

System	  Specs.	   This	  Work	   [2]	   [3]	   [4]	  

Technology	  /	  VDD	   65nm	  /	  1.0V,	  0.8V	  (Ana,	  Dig)	  	   0.35um	  /	  1.5V	   180nm	  /	  1.8V	   0.35um	  /	  5.0V	  

Off	  Chip	  Req?	   None	   1uF	  Capacitor	   DC-‐DC	   16-‐Ch.	  Recording	  IC	  

#	  Amp	  /	  STm	  Ch.	   64	  /	  8	   8	  /	  8	   4	  /	  8	   16	  (Off-‐Chip)	  /	  8	  

Amp	  &	  ADC	  Power	  /	  
Area	  per	  Ch.	  

	  

1.81μW	  /	  0.0258mm2	   25.8	  μW	  /	  
0.3122mm2	  

	  

61.25μW	  /	  0.354mm2	  	  
	  

N/A	  

	  

Gain	  /	  LP	  /	  HP	  
	  

45-‐65dB	  /	  10-‐1k	  /	  3k-‐8k	   51-‐65.6dB	  /	  
1-‐525Hz	  /	  	  5-‐12kHz	  

	  

54dB	  /	  700hz	  /	  6khz	  	   N/A	  

	  

Noise	  /	  NEF/	  PEF	  
	  

7.5μVrms	  /	  3.6	  /	  12.9	   3.12μVrms	  /	  2.9	  
(5.1kHz)	  /	  12.6	  

	  

Not	  Reported	  
	  

N/A	  

STm	  Imax	  /	  Area	  	  	  	  
per	  Ch.	  

	  

>500μA	  /	  0.0675	  mm2	  
	  

94.5μA	  /	  0.038mm2	   4.2mA,	  116μA	  /	  
0.05mm2	  

	  

6.25mA	  /	  0.7mm2	  

Compression	  or	  	  
DSP	  Type	  

Raw	  Data,	  Epoch,	  Firing	  Rate	  	  	  
(any	  combinaTon,	  per-‐ch.)	  

8	  Spike	  Detector	  
Outputs	  or	  1	  Ch.	  Raw	  

Log-‐DSP	  for	  LFP	  Energy,	  
Output	  Mode:	  4Ch	  Raw	  

Spike	  DetecTons,	  
ClassificaTon,	  PCA	  

Digital	  Power	  /	  Area	  
per	  Ch.	  

1.21μW	  (FR)	  &	  1.775μW	  
(Epoch)	  /	  0.0105mm2	  

3.28μW	  /	  0.0676mm2	   34.5μW	  /	  0.8mm2	   256.875μW	  /	  
0.191mm2	  	  

*Area	  es(mated	  from	  die	  photo	  
*	  

*	  

*	  

Figure 3.28: System summary and comparison table.
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Chapter 4

Conclusion

This thesis presented two wireless, fully-integrated ICs designed to address the challenges
that are preventing the realization of BMIs as a mainstream treatment for neurological
disabilities. The free floating sensor node presented in Chapter 2 utilizes a subcranial in-
terrogator to power and communicate with an array of implanted, free-floating AP sensors
through the brain’s dura. The wireless sensor was fabricated in a 65nm LP CMOS process
with all electronics and the wireless interface integrated into an area of 0.125mm2, without
any additional off-chip components. This wireless neural sensor, the smallest reported to
date, is small and light enough to free-float in brain tissue, reducing the effect of micro mo-
tion. The sensor consumes 15µA from an unregulated voltage source of 700mV, for a total
power consumption of 10.5µW (2.6µW/channel) and 450µm x 250µm of area. This work
reduces the average power per channel by 18x compared to [15] and 58x compared to [13].
Compared to [13], this work reduces the average area per channel by 10x, and decreases the
amplifier and ADC area to 110µm x 100µm, compared to 400µm x 400µm (for an amplifier,
comparator and DAC).

The transmission frequency for this system was selected to be 1.5GHz, trading a reduction
in node size and channel loss for an increase in SAR. An integrated on-chip antenna was
designed to optimize the wireless power link and minimize the required amount of transmit
power, reducing tissue heating and power consumption of the interrogator. A transmission
distance of 1mm in air was achieved with approximately 50mW of transmit power. The
path loss in the brain was simulated to be approximately 6dB larger than in air, yielding an
estimated transmission distance of 0.6mm in vivo. The power management circuits convert
the inductively-coupled RF power source into a stable DC supply voltage and bias currents
for the system. These circuits utilize novel discrete time techniques to achieve state-of-the-
art area and power consumptions. A novel band gap reference was presented utilizing a SC
network to create and sum voltages with opposite TCs, which enabled the lowest current,
voltage and area bandgap-based reference reported to date. The design occupies an area of
100µm x 55µm and consumes 138nA from a 750mV supply. The area and power consumption
are comparable to MOS VTH-based references, while utilizing an architecture that retains
lower process sensitivity.
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The neuromodulation SoC presented in Chapter 3 is designed to enable closed loop
BMI, and achieves significant improvements in area, power and signal compression over
state-of-the-art systems with similar functionality (e.g. [20, 22, 59]). The IC was fabricated
in TSMC 65nm LP CMOS and occupies 4.78mm2 including pads, reducing the average
amplifier power per channel by 14x and area per channel by 12x compared to [20] while
achieving comparable amplifier NEF and PEF. This work implements 8 stimulation sites
and reduces the total stimulator area per site by 2.25x compared to [20], while implementing
a power saving, adiabatic architecture. The compression block consumes 2.7x less power
and 6.4x less area per channel compared to [20] while implementing more features. When
arrayed across the brain, 16 ICs provide 1024 recording and 128 stimulation sites, which
would consume 6.67mW and require a data rate of 320kbps. The high integration level, in
addition to the low power and area consumption of this system, provides the next step in
enabling fully-implanted, wirelessly-powered, high-density neural interfaces.

Two differential, bi-phasic current stimulators are independently time multiplexed onto
four electrode pairs for a total of 8 unique stimulation sites, minimizing the IC area overhead
while maintaining a high number of stimulation sites. Each stimulator utilizes a single
current source for both positive and negative stimulation phases which reduces the effect of
the current mismatch between phases and eliminates the need for calibration. To minimize
power consumption, the stimulator implements an adiabatic, charge-recycling architecture
without utilizing off-chip components, enabling a fully integrated system as opposed to prior
state-of-the-art [63]. A FSM dynamically selects one of 7 supply voltages from a switched-
capacitor DC-DC converter to minimize the power consumed (and maximize the power
recovered) throughout the stimulation cycle. The DC-DC is implemented using a Dickson
ladder topology with a tunable input voltage of up to approximately 1.3V and a conversion
ratio of 1:7. A maximum output voltage of 8.7V was measured from the DC-DC with an
input voltage of 1.3V and measured peak efficiency of 68%. A typical stimulation pattern
of 300µA differential current with 150µs per phase was performed on bench-top with a
1kOhm/10nF RC electrode model and consumes approximately 3x less current on average
compared to a traditional non-adiabatic topology operating from the same DC-DC.

The free floating recording node and the neuromodulation IC each take different ap-
proaches to achieving the goal of a high density long-term interface with the human brain.
The free floating recording node, presented in Chapter 2, focused on creating the smallest
possible free floating active neural recording sensor to directly address the longevity chal-
lenge faced by BMI. By integrating all components, including the antenna, into a 450µm
x 250µm die size, the maximum transmission distance is reduced and relies on a secondary
system with a larger antenna on the surface of the brain to relay information through the
skull. Furthermore, to keep the active circuit area to a minimum, the node only implements
AP recording and defers other complexities, such as data compression, to the relay. On
the other hand, the neuromodulation IC, presented in Chapter 3, focuses on integrating all
aspects necessary for closed loop BMI onto a single integrated IC. Although the IC area
is much larger, it was designed to be arrayed on a platform sitting on the surface of the
brain to achieve very high recording and stimulation densities. Therefore, the design relies
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on creating flexible and compliant probes to address longevity issues.

4.1 Future Work

4.1.1 Integration of a Floating Recording Node IC with
Electrodes for In Vivo Studies

An SoC was presented which achieved more than an order of magnitude reduction in active
circuit area compared to previous work, creating a miniaturized implant that can float in
brain tissue. By eliminating the interface cables and creating a node small enough to free-
float in brain tissue, the hypothesis is that micro-motion will be mitigated and the recording
lifetime will increase. In order to study the effect on recording longevity, the IC needs to
be integrated with recording electrodes. The IC was designed to attach to commercially
available probes, such as a NeuroNexus probe (Figure 4.1). For small scale studies, the
IC can be die attached, wire bonded and encapsulated with these NeuroNexus probes and
studied side by side with a wired version of the probes as an experimental control.

Creating a high density recording array will require deploying thousands of these fully
integrated nodes within the brain. Fabricating extremely large quantities of these nodes by
laser dicing, or bonding to individual substrates, is burdensome. A scalable alternative is
to directly etch the neural probe, including active circuitry, directly from a foundry wafer.
The concept of a CMOS active neural probe has been demonstrated in [19] and the process
flow that was used is shown in Figure 4.2. In their post-processing, they start with a five
metal layer Al back-end-of-line (BEOL) TSMC wafer, without final passivation, resulting
in exposed Al. First, a low stress layer of SiO2 is deposited using alternating PECVD and
CMP steps to achieve a target thickness. Second, vias are created through the SiO2 to the
Al pads to form the electrodes by RIE. Ti/TiN is deposited using PVD and patterned by
RIE to form circular electrode sites. Fourth, SiO2 is removed over bond pad locations by the
same method as in previous steps. Fifth, RIE is used to create a trench to the final depth
around the outline of the probe. Finally, the sixth and seventh step involves back grinding
to release the dies and transfer to UV expansion tape.

4.1.2 Design of a Wireless Stimulation Headstage

Wireless head stages are a critical tool in the research of BMIs and general neuroscience
studies that require free-moving animals. To date, prior work (e.g. [24], [25], [64]) is large,
heavy (for a typical mouse or rat), has a battery life of hours and does not implement any
stimulation channels. Furthermore, no wireless head stage developed to date is capable
of optogentic stimulation, a technique which is growing in popularity and importance. A
performance summary of recent work is shown in Table 4.1.

A prototype head stage was developed by Jaclyn Leverett and Daniel Yeager, Figure 4.3.
The head stage was designed using the neuromodulation IC, presented in Chapter 3, plus
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Neural	  
Node	  

Figure 4.1: An implantable neural recording probe offered by NeuroNexus, the head of
the probe is approximate 450µm wide. A die photo of the neural node is oriented in the
approximate location for die attach and a potential bonding diagram is shown in red, allowing
for 1 recording per shank. A large area reference electrode through the is created by stitch
bonding multiple recording sites.
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Figure 4.2: Example post processing steps for directly etching an active neural probe from
a CMOS wafer, [19].
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Table 4.1: A comparison of prior work on neural recording and stimulation wireless head
stages.

Author Recording/Stim Power Consumption Battery Life Size Weight
(Channels) (mW) (hours) (cm3) (g)

Szuts [24] 64 / 0 345 6 150 a 67
Miranda [25] 32 / 0 142 33 73.64 60 a

Hampson [64] 16 / 0 1400 a 5 16 a 60.3
a Information not provided, estimate made from publication content.

off the shelf components, including a nordic radio and microcontroller. The board measures
approximately 19mm x 25mm and utilizes two 32 channel Omnetics connectors for 64 total
channels of amplification and one 16 channel Omnetics connector for 8 channels of differential
stimulation. The battery used is a 110mAh, LiPo battery measuring 5.7x12x28mm (1.91
cm3) and weighing 2.65g. The battery is attached directly on top of other components on
the board, resulting in a total thickness of less than 10mm and a weight of less than 5g.
The power consumption is dominated by the nordic radio which consumes 7.5mA from the
battery when transmitting at -12dBm, resulting in a battery life of more than 10 hours. The
neuromodulation IC has enabled integration of 64 recording channels, and 8 electrical or
optical stimulation channels into a form factor which is less than 10x the volume and weight
compared to previous work which had less functionality and similar battery life.

4.1.3 Transcranial Link for a Free Floating BMI Platform

The architecture of the neuromodulation SoC was designed such that the IC can be arrayed
on a customizable, scalable platform as shown in Figure 4.4. In this system, electrode shanks
are connected to a flexible platform on the surface of the brain via a thin, flexible, tether in
order to imitate a free floating probe and mitigate the effects of micro motion. The platform
can have any number of neuromodulation ICs as required for the targeted application, which
all communicate with power and data aggregation circuitry. An antenna is integrated into
the platform and enables communication through the skull to a battery powered interrogator.
The small and light weight interrogator acts as a relay for the data transmitted through the
skull to a wireless base station.

Realization of the system illustrated in Figure 4.4 is limited by the available power at
the platform. The maximum power transfer for a given platform size is determined by the
transmission distance and the frequency of operation. In this case, the platform size is
determined by the number of recording or stimulation channels desired; when arrayed on a
platform, 16 ICs provide 1024 recording sites and 128 stimulation sites. The platform would
occupy approximately 2.5 cm x 2.5 cm including peripheral circuitry, as shown in Figure 4.5.
To estimate the channel loss characteristics, a skull thickness of 10mm and a scalp thickness
of 2mm was used with Matlab modeling software developed in Chapter 2. The RX coil size
was varied (up to the size required for 1k recording channels) and the minimal channel loss
was reported in conjunction with the optimal frequency. RX coil sizes of 5mm, 10mm and
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Figure 4.3: A wireless headstage designed by Jaclyn Leverett and Daniel Yeager, measuring
19mm x 25mm with 64 channels of neural recording and 8 channels of stimulation.

25mm were simulated in HFSS and found to match closely to calculation as shown in Figure
4.6. Based on simulations, the optimal transmission frequency for a 2.5cm x 2.5cm platform
containing 16 neuromodulation ICs is approximately 13.56MHz and results in about 1dB of
channel loss. This frequency is convenient because it corresponds to HF RFID, which will
reduce the effort required to prototype and develop a reader.

4.2 Final Thoughts

Brain machine interfaces have the potential to revolutionize our understanding of the brain
and restore motor function to amputees and patients suffering from paralysis. The use of
micro-electrodes is the only method of both sensing neural signals and providing neural
stimulation for the control of complex robotic prostheses in a closed loop BMI system.
However, the success of BMI has been limited due to poor recording stability and ultimate
chronic failure of recording sites caused by the reactive tissue response after implantation.
In this thesis, I have presented novel techniques for power delivery, power management and
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Figure 4.4: Conceptual diagram of a scalable platform with compliant tethers communicating
to a wireless head stage through a trans-cranial link.

stimulation for wireless neural sensors and systems. These techniques have enabled extreme
size and power reduction over present state-of-the-art BMI systems and ICs. The resulting
systems represent significant progress towards realizing a fully implantable sub-cranial closed
loop BMI system, creating new opportunities for high density, long term interfaces with the
human brain.
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Figure 4.5: A floor plan diagram showing the size and layout of a 1024 channel implantable
platform, with a total size of 2.5cm x 2.5cm.

X = HFSS sim in brain 
n = MATLAB sim in air 

Brain 
Skull 

Skin 2mm 
10mm 

50mm 

Figure 4.6: The channel loss and optimal frequency as a function of the RX coil diameter.
For a 1024 channel platform, the maximum coil diameter is 25mm, resulting in an optimal
frequency of approximately 13.56MHz and an estimated channel loss of 1-2dB.
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