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Abstract

Referring expressions (such as the red chair facing right) of-
ten show evidence of preferences (Pechmann, 1989; Belke &
Meyer, 2002), with some attributes (e.g. colour) being more
frequent and more often included when they are not required,
leading to overspecified references. This observation underlies
many computational models of Referring Expression Genera-
tion, especially those influenced by Dale & Reiter’s (1995) In-
cremental Algorithm. However, more recent work has shown
that in interactive settings, priming can alter preferences. This
paper provides further experimental evidence for these phe-
nomena, and proposes a new computational model that in-
corporates both attribute preferences and priming effects. We
show that the model provides an excellent match to human ex-
perimental data.
Keywords: Reference, production, Natural Language Gener-
ation, Computational Modeling

Introduction
In domains such as Figure 1, where a target referent needs
to be distinguished from its distractors in context, people of-
ten produce overspecified descriptions such as the red sofa
facing right, when a description containing fewer attributes
would suffice (Pechmann, 1989; Eikmeyer & Ahlsèn, 1996;
Belke & Meyer, 2002; Engelhardt, Bailey, & Ferreira, 2006).
This finding challenges the assumption that speakers observe
the Gricean Maxim of Quantity by not including any more in-
formation than is relevant for identification (cf. Olson, 1970,
for an early adoption of this view).

One important observation in this regard is that certain at-
tributes (for example, an object’s colour), are more likely to
be redundantly included in an overspecified description than
others (such as size or orientation) (Pechmann, 1989; Belke
& Meyer, 2002). The preferred status of such attributes may
arise due to their perceptual salience, higher codability rel-
ative to other attributes (Belke & Meyer, 2002) and/or be-
cause they form an integral part of the conceptual represen-
tation of the object (Pechmann, 1989). On one interpretation
of these findings, preferred attributes are selected first when
a description is being formulated; since this is an incremen-
tal process, should later attributes be included which make
them redundant, the whole description would be overspeci-
fied (Pechmann, 1989; Levelt, 1989).

This has important implications for computational mod-
els of referring expressions generation (REG), which seek

Figure 1: A referential domain

to model the process of attribute selection for identifying
descriptions. Such models form an integral part of Nat-
ural Language Generation systems, which generate text or
speech from non-linguistic input. Current REG models per-
form attribute selection primarily on the basis of discrimi-
natory value: does a target attribute help to exclude some
distractors in the domain? Some models (e.g. Dale, 1989;
Gardent, 2002) seek to satisfy a strict interpretation of the
Gricean maxim of quantity by selecting the smallest set of at-
tributes that would uniquely identify the target referent(s). An
alternative, more influential model is Dale and Reiter’s (1995)
Incremental Algorithm, which is in part inspired by the psy-
cholinguistic literature and models attribute selection as an
incremental search that prioritises more preferred attributes.
As we show below, such models can overspecify in some sit-
uations. Furthermore, they have been shown to match speaker
behaviour better than earlier models (Gatt, van der Sluis, &
van Deemter, 2007; Gatt & Belz, 2010).

Many of the psycholinguistic studies cited above were
undertaken in non-interactive settings, whereas recent psy-
cholinguistic work on dialogue has highlighted the extent to
which speakers’s production choices are influenced by their
interlocutors’. One aspect of this process, discussed by Clark
et al. (Clark & Wilkes-Gibbs, 1986; Brennan. & Clark,
1996), is the ‘negotiation’ on the best way to refer to an ob-
ject that characterises some interactive reference tasks. More
recently, Pickering and Garrod (2004) have proposed the In-
teractive Alignment model, whereby interlocutors ‘align’ at
various levels (for example, syntactic and semantic) as a re-
sult of a basic priming mechanism. There is substantial evi-
dence that such priming occurs, particularly in interlocutors’
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syntactic choices (e.g. Cleland & Pickering, 2003; Branigan,
Pickering, McLean, & Cleland, 2007, among others). How-
ever, to our knowledge, there is less evidence for priming at a
conceptual level.

One question that is particularly relevant from the point of
view of the present paper is the extent to which alignment can
influence attribute selection in reference, and how it interacts
with preferences and overspecification. If priming occurs at
a conceptual level, does hearing a description by another in-
terlocutor modulate a speaker’s attribute preferences? Recent
work has suggested that speakers can indeed be primed to use
non-preferred attributes (Goudbeek & Krahmer, 2010). One
observation that arose from this work is that priming caused
speakers to overspecify to a greater extent than would be pre-
dicted by a preference-based model. This raises the question
of whether speakers can be directly primed to overspecify.
From a computational point of view, an affirmative answer
to this question would lend further support to the view that
models such as the Incremental Algorithm, as well as related
models that select attributes based purely on the basis of their
discriminatory value (e.g. Dale, 1989), do not capture the full
range of influences on referential choices that occur in inter-
active settings.

The present paper explores these questions further from
both the experimental and the computational angles. After
an overview of the Incremental Algorithm for REG, we de-
scribe the experiment by Goudbeek and Krahmer (2010) in
more detail, and report on a new experiment using the same
paradigm, which shows increased evidence for overspecifica-
tion when overspecified primes are used. We then describe
and evaluate a new computational model that seeks to incor-
porate both the classic findings on attribute preferences, and
the novel findings on priming of dispreferred attributes and
overspecification. We evaluate our model by comparing its
output directly to the human descriptions elicited during these
experiments.

Computational REG

Dale and Reiter’s (1995) Incremental Algorithm (IA) has
emerged as one of the most influential computational REG
models. In searching for a distinguishing combination of at-
tributes for a target referent, the IA uses a preference order
to model preferences. For example, the attributes in Figure 1
could be ordered by preference as TYPE > COLOUR > ORI-
ENTATION. To identify an intended referent r, the algorithm
traverses the preference order, checking at each stage whether
r’s value on a given attribute excludes some distractors. The
algorithm terminates when a referent has been fully distin-
guished, or when it runs out of attributes to choose from. For
the target referent in the figure, the IA would not choose type
(since all objects are sofas), but would choose colour (which
excludes the blue sofa) and then orientation (which excludes
the remaining sofa). This yields an overspecified description;
ordering orientation before colour would have resulted in a
minimal description, since orientation would have excluded

both distractors immediately. Dale and Reiter also proposed
a function to add type in case it is omitted by the search. Thus,
this description could be realised as the red sofa facing right.

Overspecification in the IA occurs when, as a result of the
preference order, an attribute (colour, in our example) is se-
lected which excludes a set of distractors that is a proper sub-
set of the distractors excluded by an attribute selected later
(orientation). This behaviour is entirely deterministic, inso-
far as a preference order is pre-specified and cannot be over-
ridden. On the other hand, the experimental work described
earlier suggests that preferences can indeed be overridden
through priming, which can also result in increased likelihood
of overspecification. From a computational perspective, then,
the question is how to incorporate preferences (for which ro-
bust evidence exists), while also introducing a sensitivity to
context that can modulate them. We view preferences as a
relatively stable phenomenon, related to an attribute’s being
inherently salient for a speaker. Modulation of such prefer-
ences as a result of priming might therefore occur as a result
of a competing process, one which prioritises attributes that
have been used earlier in an interaction, because it is cheaper
to re-use conceptual material than to search for it anew. As
we also show below, however, the priming/overspecification
effects do not occur across the board; rather, they are best
described as a (statistically significant) tendency. Thus, if a
computational model is intended to match speaker behaviour,
some degree of non-determinism will need to be introduced
in the balancing act between preference-based and priming-
based attribute selection.

Two experiments
The experiment by Goudbeek and Krahmer (2010, hereafter
referred to as Experiment 1), which investigated the role of
priming in the choice of preferred or dispreferred attributes,
used the Interactive Reference Understanding and Produc-
tion paradigm illustrated in Figure 2.

Figure 2: The Interactive Reference Understanding and Pro-
duction paradigm

Participants were first asked to identify an object in a vi-
sual domain based on a pre-recorded description (marked as
Exp 1 in the top panel of Figure 2), which contained either a
preferred or a dispreferred attribute. This description, which
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(a) Furniture (b) People

Figure 3: Alignment in Experiment 1

Table 1: Overspecification in the experiments (%)
Experiment 1 Experiment 2

Pref. Prime Dispref. Prime
Furniture 11.9 11.9 51.8

People 15.8 12.7 57.0
Overall 13.8 12.3 54.4

functioned as the prime, was never overspecified. Following
two filler trials, during which participants first described and
then identified objects in a different type of domain (e.g. peo-
ple in Figure 2), they were asked to describe a target in the
same domain as the prime. Crucially, the target could always
be described using either the preferred or the dispreferred at-
tribute; moreover, it had the same attributes as the one de-
scribed in the prime, but different values (e.g. the prime target
would have back for orientation, while the new target would
have front).

The experiment was conducted on 26 Dutch speakers, us-
ing materials from the TUNA corpus (Gatt et al., 2007), a cor-
pus of descriptions of objects in two domains (people and fur-
niture). A Dutch version of this corpus has also been created
(Koolen, Gatt, Goudbeek, & Krahmer, 2009), on the basis of
which it was possible to determine which attributes were pre-
ferred (colour in the furniture domain; wearing glasses in the
people domain) and which dispreferred (orientation in the fur-
niture domain; having a tie in the people domain) by counting
their frequencies. Participants described objects in both do-
mains, with 20 preferred and 20 dispreferred primes in each,
for a total of 80 trials.

The experiment sought to address two questions. The first
concerned alignment, that is, whether the use of a dispre-
ferred attribute in the prime (e.g. orientation, as in facing
back) would increase the likelihood of a participant using the
same attribute (though not the same value) in the critical trial
(e.g. facing front). Note that a preference-based model such
as the IA would never select a dispreferred attribute in this
case, but would always return a description containing the
preferred one.

The second question concerned overspecification. In the
experimental domains, the IA would never produce an over-
specified description, because the target referent can always
be identified using only a preferred attribute. Hence, we
asked whether people in this kind of situation overspecify to a
greater extent than an algorithm such as the IA would predict.

As shown in Figure 3, participants showed strong evi-
dence of alignment, with an increased tendency to use dis-
preferred attributes when they had been used in a prime de-
scription three turns earlier. A 2 (Domain) × 2 (Prime)
within-subjects repeated measures ANOVA showed main ef-
fects of Domain (F1,25 = 10.88; p = .01;η2 = .3) and Prime
(F1,25 = 6.43; p = 0.02;η2 = 0.2), as well as a significant in-
teraction (F1,25 = 5.74; p = .02;η2 = .19). The interaction
is due to a greater tendency to use dispreferred attributes in
the furniture, compared to the people domain. The left panel
Table 1 also shows that people often overspecified by using
both preferred and dispreferred attributes. A t-test showed
that the rate of overspecification in both domains was signif-
icantly different from the base rate of 0% predicted by the IA
(furniture: t25 = 2.65, p = .01; people: t25 = 2.59, p = .02).

These findings raise the question of whether overspec-
ification can itself be primed. The new experiment re-
ported here sought to test this directly, using the same ex-
perimental paradigm, but exposing participants to overspec-
ified primes that contained both preferred and dispreferred
attributes (marked as Exp 2 in Figure 2). The experiment was
conducted on 28 Dutch speaking students from Tilburg Uni-
versity, none of whom had participated in Experiment 1, us-
ing the same materials and procedure, with the exception that
the referring expressions used as primes were always over-
specified. The right panel of Table 1 displays the proportion
of overspecified descriptions produced by participants. The
rate of overspecification rises dramatically in comparison to
the rate observed in Experiment 1, suggesting that partici-
pants can indeed be primed to use both preferred and dis-
preferred attributes, and hence to overspecify. For the anal-
ysis, we combined these data with those from Experiment
1, using a mixed effects ANOVA with amount of overspeci-
fication as the dependent variable, domain as within-subjects
variable and experiment (single prime or overspecified prime)
as between-subjects variable. There was a significant effect
of experiment (F(1,52) = 32.50, p < 0.001,η2 = 0.36), but no
effect of domain and no interaction.

Thus, overspecified primes in Experiment 2 gave rise to
more overspecified descriptions. This also strengthens one of
the conclusions of Experiment 1, namely, that priming can
result in increased use of dispreferred attributes (since over-
specification in our experimental domains involve their use).

In summary, the experiments strongly support the view that
both default attribute preferences and overspecification can
be modulated by priming, thus challenging preference-based
models such as the Incremental Algorithm. In the next sec-
tion, we describe a new computational model that balances
between attribute preferences and alignment effects, while
also introducing a degree of non-determinism in attribute se-
lection. The latter is crucial, for despite the statistically sig-
nificant tendencies observed in these experiments, it is also
clear that they do not constitute hard strategies. This stochas-
tic behaviour is also a feature that distinguishes our model
from fully deterministic REG algorithms such as the IA.
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Figure 4: The parallel model

A computational model
We interpret the experimental findings as suggesting that
there are two interacting forces – preferences and alignment
– that influence attribute selection. Recall that in the experi-
mental domains, a target referent could be distinguished using
either a preferred or a dispreferred attribute. A preference-
based model, such as the Incremental Algorithm (IA), would
simply select the preferred attribute on the domains used in
the experiments, but never the dispreferred one. Similarly, a
priming-based procedure alone would select the most highly
activated attribute, terminating immediately on finding that
the attribute sufficed to distinguish the referent. If this were
the case, we should observe 100% use of dispreferred at-
tributes with dispreferred primes in Experiment 1, and around
50% across all trials in experiment 2. Both models would
never overspecify on the experimental trials described above.

The model we propose, depicted in Figure 4, combines
these processes in parallel, with both contributing to a work-
ing memory buffer. One way in which overspecification takes
place is when the two processes contribute concurrently, re-
sulting in two or more attributes in working memory that are
both used in a description. The model’s core is the Formula-
tor module (the terminology is inspired by the model of Lev-
elt, 1989, 1999) which is composed of the buffer and the two
parallel processes. It makes use of a knowledge base (KB),
which represents the domain (entities and their attributes and
values), and a discourse model, which keeps a record of ut-
terances spoken or heard so far.1

The preference-based procedure in the model is essentially
a re-implementation of Dale and Reiter’s (1995) Incremen-
tal Algorithm, with an attribute preference order determined
using corpus frequencies, as in the experiments. The priming-
based procedure is a spreading activation model, which works
as follows. When a description is introduced into the dis-
course, the discourse model is updated, as a result of which
the level of activation of attributes changes. Activation is
estimated using an exponential decay function proposed by
Buschmeier, Bergmann, and Kopp (2009), which combines
temporary activation ta of an attribute A, which increases
abruptly when an attribute is used and gradually decays to
0; and permanent activation pa, which increases when an at-

1A note on implementation: the model described here was im-
plemented in Java, and exploits the multi-threading capacities of the
Java Virtual Machine to schedule and run parallel processes.

tribute is used and maintains its level. These are shown in
equations (1) and (2), where δ represents the time difference
in milliseconds between the current and the previous usage of
an attribute, and f (A) is the frequency of A in the discourse.
α and β are parameters determining the slopes of the func-
tions; they are set to 2 in our simulations. The two functions
are linearly combined to give an attribute’s level of activation
act(A), as shown in equation (3), where v is a weight reflect-
ing the relative importance of pa(A) and ta(A). This is set to
0.5 (i.e. equal weighting) in our experiments.

ta(A) = exp
(
−δ(A)−1

α

)
(1)

pa(A) = 1− exp
(
− f (A)−1

β

)
(2)

act(A) = v · ta+(1− v) · pa (3)

A change in the discourse model causes all attribute acti-
vations to be updated. The upshot is that an attribute which
has been used recently will increase abruptly in activation.
Note that ta(A) decreases with increasing δ(A), while pa(A)
increases with increasing f (A). In line with our experimental
findings, it is attributes that are activated, irrespective of their
values. Thus, using an attribute like orientation in the red
desk facing back will result in spreading activation to other
values of orientation (e.g. facing front). The priming-based
procedure then selects an attribute A for a new target refer-
ent if (a) act(A) exceeds a threshold (empirically set to 0.4
in our simulations); (b) A has the highest activation of all the
attributes of the referent.

As noted above, our experimental data suggests that a de-
gree of non-determinism is at play in the interaction of the
two processes. We model this using a delay parameter. The
formulator schedules the two processes to run in parallel and
calls each process at fixed intervals. Every call to a process
results in its contributing an attribute to working memory, if
(a) the buffer is not full to capacity; and (b) there are some
attributes left to choose from. The interval at which each
procedure is called is determined by the delay parameter: in
our experiments, both procedures are assigned an equal delay
(50ms), but this parameter functions as a ceiling. The actual
delay is determined randomly at runtime as a value between
1 and the ceiling.

As the processes run in parallel, the formulator periodi-
cally checks the working memory buffer for new content, tak-
ing the attributes there and including them in the description,
and emptying the buffer to free up working memory.2 If the
description is found to be distinguishing, the processes are
terminated. For the purposes of our simulations, the work-
ing memory capacity was set to 2 (since this is the maximum

2The checks made by the formulator are also randomly deter-
mined, based on the longest delay parameter of the two processes.
In the simulations reported here, since both processes have an equal
maximum delay of 50ms, this is randomly set at a value between 1
and 50.
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number of attributes that can be selected for an object in our
experimental domains).

This setup means that, on any given trial, one of the two
processes may receive an advantage (because its delay is ran-
domly determined to be lower than that of the other). As
a result, it may contribute content to the working memory
buffer before the other process, and potentially result in a non-
overspecified description. On the other hand, there is also the
possibility that both processes contribute before the buffer is
checked and working memory is freed up once more. This is
the principal way in which overspecification occurs. Another
possibility is that a single process which happens to have a
very brief delay contributes more than one attribute to work-
ing memory in succession, before the other process has time
to contribute.

Table 2: Overspecification in the model simulations (%)
Experiment 1 Experiment 2

Pref. Prime Dispref. Prime
Furniture 13.8 20.0 49.1

People 13.8 16.5 45.7
Overall 13.8 18.3 44.4

Simulations
We evaluated the model against the experimental data from
both experiments, focusing on the rate of overspecification.
This is a particularly suitable metric for evaluation because it
allows us to distinguish the model from the predictions of one
based exclusively on preferences, or one based exclusively on
priming; as observed above, both of these would predict a 0%
rate in our experiments. However, it is important to empha-
sise that the model is intended as a more general character-
isation of factors influencing attribute selection, with over-
specification arising as a result of their interaction. Indeed, it
is because of the different balance between preferences and
priming in the two experiments that we expect different rates
of overspecification in the two sets of trials. In Experiment 1,
we expect our model to overspecify less. Since primes con-
tain only a single attribute, only this one will exceed the ac-
tivation threshold for the priming-based process. Of course,
overspecification can still occur if the preference-based pro-
cess selects another attribute concurrently. In the case of
Experiment 2, both preferred and dispreferred attributes are
primed equally, so that both have a chance of being selected
by the priming-based procedure.

We performed a simulations for each of the two experi-
ments, exposing the model to the same set of domains used
with participants. In each case, the model referred to the same
target referent, and the domain was set up to ensure that both
preferred and dispreferred attributes could be used (i.e. were
distinguishing). The model was primed by introducing a de-
scription into the discourse that contained either a preferred
or a dispreferred attribute (for simulations of Experiment 1)
or both (for simulations of Experiment 2). Since the model
was run over the same trials as each participant, we can di-

rectly compare its rate of overspecification to that of humans,
averaging over participants.

Table 2 displays proportions of overspecified descriptions
produced by the model on the trials for each simulation.
Note that overspecification occurs far less frequently for tri-
als in Experiment 1 than Experiment 2. In Experiment 1,
it also occurs more with dispreferred than preferred primes.
This is primarily due to the priming-based process select-
ing the activated dispreferred attribute, while concurrently,
the preference-based process selects a preferred attribute. By
contrast, both attributes are primed in Experiment 2, mak-
ing them equally likely to be selected at some point by the
priming-based procedure. If a dispreferred attribute is se-
lected concurrently with the selection of a preferred attribute
by the preference-based process, the resulting description is
overspecified.

For the simulations of both experiments, the model
was statistically indistinguishable from humans, ir-
respective of domain (Experiment 1 simulation:
(t f urniture[25] = 1.07, tpeople[25] = .16. Experiment 2
simulation: t f urniture[27] = .37, tpeople[27] = 1.7; all p’s > .1).

For both experiments, these results diverge considerably
from what a model based exclusively on preferences, such as
the IA, or one based exclusively on priming, would predict.

Discussion and conclusions
This paper presented experimental evidence for the existence
of multiple influences on attribute selection in reference, in-
corporating the findings in a model which matches human
output very closely. The model takes an existing algorithm,
the IA, as a starting point and views alignment as an inter-
acting and competing force, modeled as a parallel, ‘fast and
frugal’ strategy which is cheaper than the IA’s preference-
based search. The model thus distinguishes between dynamic
effects arising in the course of an interaction, and more stable
effects such as attribute preferences, which are likely to be
related to properties of the human perceptual and conceptual
apparatus (Pechmann, 1989).

An alternative model is conceivable, involving a single, dy-
namic search process whereby exposure to an attribute in an
utterance directly alters the IA’s preference order, by promot-
ing the attribute to a higher position and making it more likely
to be used later. However, this model would not only fail to
make the distinction between relatively stable and relatively
temporary factors, it would also fail to account for the dif-
ferent rates of overspecification observed in the experiments.
Since only one attribute was required to distinguish a referent
in the trials, this procedure would simply halt after selecting
the first attribute and never overspecify. While the IA mod-
els overspecification exclusively as a result of redundant, but
more preferred, attributes being selected before less preferred
ones, our model acknowledges a second possible cause, as an
effect of the ‘interference’ from a priming-based mechanism.

There are two questions raised by our work which are being
addressed by current research. First, the model incorporates a
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sizeable number of parameters. The delay parameter, which
determines how parallel processes are scheduled at runtime,
needs to be determined empirically, necessitating a detailed
investigation of the time course of attribute selection based on
preference and/or priming. Additionally, the use of a limited-
capacity working memory buffer would predict that occupy-
ing the buffer would directly affect attribute selection. We
are currently considering using dual-task paradigms, where
participants carry out a memory task while performing a ref-
erence task. This may alter the rate of overspecification, in
part because the dual task may cause participants to fall back
on a ‘cheap’ strategy, relying exclusively on priming.

A second question concerns the status of the priming phe-
nomenon itself. We have argued that our experiments show
evidence of attribute-based (that is, conceptual or semantic)
priming, in part because in Experiment 1, participants not
only tended to re-use attributes they were primed with, but
also overspecified by including information that was not in
the prime. This suggests that participants were not merely re-
using a syntactic template from the prime description. Nev-
ertheless, the possibility remains that the priming mechanism
is partially surface/syntactic, or strategic (in the sense that
speakers were adopting a strategy for referring to furniture or
people based on what they had heard). We are currently at-
tempting to address these issues directly, by replicating these
experiments using a bilingual priming paradigm, whereby the
linguistic realisation of primes in one language is completely
different from that of the descriptions uttered in a different
language.

In summary, while the model proposed here matches hu-
man output, it also opens up a variety of new avenues for
future research into referential strategies.
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