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Analysis of Individual Protein Regions Provides Novel
Insights on Cancer Pharmacogenomics
Eduard Porta Pardo, Adam Godzik*

Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America

Abstract

The promise of personalized cancer medicine cannot be fulfilled until we gain better understanding of the connections
between the genomic makeup of a patient’s tumor and its response to anticancer drugs. Several datasets that include both
pharmacologic profiles of cancer cell lines as well as their genomic alterations have been recently developed and
extensively analyzed. However, most analyses of these datasets assume that mutations in a gene will have the same
consequences regardless of their location. While this assumption might be correct in some cases, such analyses may miss
subtler, yet still relevant, effects mediated by mutations in specific protein regions. Here we study such perturbations by
separating effects of mutations in different protein functional regions (PFRs), including protein domains and intrinsically
disordered regions. Using this approach, we have been able to identify 171 novel associations between mutations in specific
PFRs and changes in the activity of 24 drugs that couldn’t be recovered by traditional gene-centric analyses. Our results
demonstrate how focusing on individual protein regions can provide novel insights into the mechanisms underlying the
drug sensitivity of cancer cell lines. Moreover, while these new correlations are identified using only data from cancer cell
lines, we have been able to validate some of our predictions using data from actual cancer patients. Our findings highlight
how gene-centric experiments (such as systematic knock-out or silencing of individual genes) are missing relevant effects
mediated by perturbations of specific protein regions. All the associations described here are available from http://www.
cancer3d.org.
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Introduction

With the body of genomic and pharmacologic data on cancer

growing exponentially, the main bottleneck to translate such

information into meaningful and clinically relevant hypothesis is

data analysis [1–3]. While numerous methods have been recently

applied to the analysis of such datasets [4] most of them,

particularly those dealing with mutation data [5], use a protein-

centric perspective, as they do not take into account the specific

position of the different mutations within a protein [6,7]. Such

approaches have been proven useful in many applications;

however, they cannot fully deal with situations in which different

mutations in the same protein have different effects depending on

which region of the protein is being altered [8]. This idea can be

easily explained by the fact that most proteins are modular,

consisting of several distinct domains and/or functional regions,

which we collectively call PFRs (protein functional regions) here.

For instance, a receptor tyrosine kinase, such as EGFR, has two

PFRs - an extracellular region, which is responsible for the

interaction with the ligand or with other receptors, and an

intracellular kinase domain, which in turn is responsible for the

phosphorylation of its substrates. A phenotype, such as the

response towards a drug, can be influenced by alterations of

proteins at the whole-protein level (changes in expression, deletion

or epigenetic silencing of a gene), but also changes, such as

mutations, modifying only the extracellular or the kinase domains.

More importantly, even though it is likely that each of the three

types of alterations (whole-protein, only in the extracellular region

or only in the kinase domain) will have different consequences [9],

only those involving the whole protein have been studied.

To explore how perturbations of specific PFRs in different

proteins might influence the sensitivity of cancer cell lines towards

specific drugs we developed a novel algorithm called e-Drug. This

algorithm analyses patterns of mutations in functional regions

within each protein in the human proteome and identifies those

associated with changes in the activity of anticancer drugs. Our

definition of PFRs includes protein domains, both those present in

Pfam database and those predicted to exist using our in-house

tools, and intrinsically disordered regions. Similar approaches

focusing on Pfam protein domains have been used previously to

study the molecular mechanisms underlying the pleiotropy of

certain genes, especially those related to Mendelian disorders

[10,11], and cancer [12–14]. In the context of the analysis of drug-

related data, PFRs have been mainly used to study phenomena

such as polypharmacology or the structural details underlying

interactions between drugs and domains [15,16]. However, to the

best of our knowledge, such PFR-centric analyses have ever been

used to study cancer pharmacogenomic datasets.
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Results

Analysis schema and overall results
The e-Drug analysis protocol introduced here is illustrated in

Fig. 1 on the example of the ERBB3 protein and the c-Met

inhibitor PF2341066. Some of the many functional relationships of

this protein include physical interactions (with EGFR, NRG1 and

JAK3) or phosphorylations (by CDK5 or ERBB3 itself). Each of

these relationships can be mapped to a specific PFR within

ERBB3. For example, the N-terminal EGF receptor domains

(shown in red in Fig. 1) mediate the interactions with EGFR and

NRG1, whereas ERBB3’s kinase domain (shown in blue in Fig. 1)

interacts with JAK3 and phosphorylates other ERBB3 molecules.

When using the protein level analysis, cell lines with mutations

in ERBB3 do not show any bias in the activity of PF2341066,

leading to a wrong conclusion that mutations in this protein do not

influence the sensitivity towards this drug. However, the PFR level

analysis shows that cell lines with mutations in the first receptor

domain are resistant to treatment with the PF2341066 inhibitor,

while those with mutations in any other PFRs of this protein, such

as the kinase domain of the second receptor domain, do not show

any specific behavior.

Following this protocol, we have identified 171 statistically

significant PFR-drug associations (p,0.05 in the comprehensive,

multistage significance analysis as described in the Methods

Section and S1 Supporting Material). The full list is provided in

the S1 Table and is available on-line from a newly developed

resource at http://cancer3d.org [17].

We have found some cases where two PFRs from the same

protein are associated with different drugs. For example, the

MSH6 protein contains 3 different PFRs associated with 3

different drugs (Fig. 2). Mutations in the N-terminal IDR are

associated with increased AEW541 activity, while mutations in

the connector (PF05188) and ATPase (PF00488) domains are

associated with higher Lapatinib and RAF265 activities, respec-

tively. Given that MSH6 has been recently shown to be involved

in pathways related to the repair of DNA-double-strand breaks

[18], the association identified here between mutations in

MSH6’s ATPase domain, as well as other PFRs in PAXIP1 or

TP53, and the activity of RAF265 suggest that the DNA-damage

response pathway might have a role in modulating the activity of

this drug.

Integration of CCLE with other molecular datasets
provides further insights into the role of individual PFRs

The best examples of the advantages of studying mutation

effects on individual PFRs are those where mutations in different

regions of the same protein are associated with the same drug but

in opposite directions. This is the case of PIK3CA and the IGF1R

inhibitor AEW541. Using e-Drug we found that mutations in the

p85 binding domain (PF02192) decrease the activity of the

AEW541 while mutations in the PIK accessory domain (PF00613)

are associated with increased activity of the same drug (Fig. 3).

Mutations in different regions of PIK3CA are known to be

oncogenic through different molecular mechanisms [19], which

could also explain the opposite effects in AEW541 sensitivity

observed for these two domains.

To find features that could explain the different responses to

AEW541 depending on the PIK3CA domain mutated, we used

proteomics data from The Cancer Proteome Atlas [20]. We

focused our analysis on IRS1 expression levels as well as Akt

phosphorylation status in the cell lines with mutations in the two

PIK3CA domains, because these proteins are immediately up and

downstream from PIK3CA, respectively (Fig. 3).

Cell lines with mutations in the PIK accessory domain did not

have changes in the phosphorylation levels of Akt at neither T308

(p.0.34) nor S473 (p.0.07), but did have higher IRS1

expression (p,0.05). These results agree with recent data

showing that the E545K mutation in PIK3CA enhances its

interaction with IRS1 [21]. Since IRS1 mediates the interaction

between IGF1R and PIK3CA, this increased interaction with

IRS1 (and therefore dependence on interaction with receptor

tyrosine kinases such as IGF1R) could explain why cell lines with

mutations in PF00613 are more sensitive to IGF1R inhibition

(Fig. 3).

On the other hand, cell lines with mutations in the p85

binding domain showed higher Akt phosphorylation levels at

both T308 (p,0.01) and S473 (p,0.02), and also had lower

IRS1 protein levels (p,0.01). Since Akt is one of the main

PIK3CA effectors, a possible interpretation of these results is that

cell lines with mutations in the p85-binding domain have

intrinsically active PIK3CA phosphorylation activity, regardless

of its interaction with receptor tyrosine kinases such as IGF1R.

In this scenario, inhibiting IGF1R with AEW541 would have

little effects, as these cells are already signaling downstream

towards Akt (Fig. 3).

Finally, given recent concerns about pharmacogenomic data

using cell lines [22] we compared these results to those obtained

from data on human tumors analyzed by TCPA (n = 2229). We

confirmed all the tumors with mutations in PF02192 have higher

levels of Akt phosphorylation at both T308 and S473. The same

samples also have lower IRS1 levels than those with no mutations

in PF00613 or no mutations at all. Tumor samples with mutations

in PF00613, on the other hand, have higher IRS1 levels and no

changes in Akt phosphorylation status.

Drug-PFR correlations predict success of cancer
treatment

Since we had been able to confirm the hypothetical molecular

mechanisms underlying the PFR-drug associations between

AEW541 and PIK3CA in tumor samples, we wondered whether

we could also predict survival of actual cancer patients using the

PFRs identified in the CCLE data. To that end, we used clinical

data from patients whose tumors have been analyzed by The

Cancer Genome Atlas (TCGA) groups [23] to find patients that

had been treated with drugs included in the CCLE. Since most of

these drugs are still under clinical research, there were sufficient

data only to analyze two types of drugs: Paclitaxel (n = 778) and

the topoisomerase inhibitors Irinotecan and Topotecan (n = 188).

We used genomic data of the patients to find those who had

mutations in PFRs that are associated to increased resistance

towards these drugs in our analysis (Fig. 4). While we found no

differences in patients treated with paclitaxel (p.0.9), patients that

Author Summary

There is increasing evidence that altering different func-
tional regions within the same protein can lead to
dramatically distinct phenotypes. Here we show how, by
focusing on individual regions instead of whole proteins,
we are able to identify novel correlations that predict the
activity of anticancer drugs. We have also used proteomic
data from both cancer cell lines and actual cancer patients
to explore the molecular mechanisms underlying some of
these region-drug associations. We finally show how
associations found between protein regions and drugs
using only data from cancer cell lines can predict the
survival of cancer patients.

Domain View of Drug Sensitivity
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had mutations in PFRs associated with resistance to Topoisom-

erase inhibitors had worse outcomes (p,0.01) than those with

mutations in other regions of the same proteins or no mutations in

these proteins at all. Interestingly, the mutation status of the whole

proteins that contain the associated PFRs cannot predict the

outcome of the patients (p.0.9), suggesting that only mutations in

the specific PFRs, but not in other regions of the same proteins,

confer resistance to topoisomerase inhibitors.

Fig. 1. Analysis at the functional region level allows us to gain novel insights from pharmacogenomics data. (a, b) Mapping of the
different ERBB3 functions to specific regions of the protein. Each functional relationship can be associated to a specific domain or intrinsically
disordered region in ERBB3. For example, EGF receptor domains (red boxes in (b)) mediate physical interactions between ERBB3 and EGFR and NRG1
(red edges in (a)). (c) Methods focusing at the whole-protein level can not find any association between ERBB3 mutations and the activity of
PF2341066. (d) Mutations altering specifically the N-terminal EGF receptor are associated to lower drug activity. (e) Mutations affecting another PFR in
ERBB3, its kinase domain, and that, thus, are mainly affecting other functional regions, are not associated to any changes in drug activity. (f), Venn
diagram showing the different thresholds that we have established in order to minimize false positives. We only kept PFRs with (I) p,0.001 when
compared to cell lines with no mutation in the protein, (II) p,0.05 when compared to cell lines with mutations in other regions of the same protein
and (III) with p.0.01 at the protein level.
doi:10.1371/journal.pcbi.1004024.g001

Domain View of Drug Sensitivity
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Proteins and PFRs associated with drugs do not usually
overlap with drug targets

One of the possible mechanisms for a PFR to be associated with

differential drug activity is that the protein itself directly interacts

with the drug of interest. To explore this hypothesis, we compared

the set of proteins associated with each drug at both whole-protein

and individual PFR levels, to the set of drug targets as identified by

the STITCH database [24]. Of the 19 drugs that had at least one

known target, only AZD6244 had its associated proteins and PFRs

enriched with its targets, as mutations in two of the five genes

known to code for proteins interacting directly with the drug,

BRAF and KRAS, are also associated with differential activity for

this drug (p,0.005). Expanding our search by varying the

STITCH interaction score, including proteins that interact with

compounds that have similar structures to the drugs included in

the analysis (Tanimoto score .0.70) or to proteins interacting with

the drug targets also did not show any statistically significant

associations (S4 Fig.).

Gene set enrichment analysis of PFRs and proteins that
correlate with drug activity reveals common functions

We did a gene set enrichment analysis using GO annotations

downloaded from Uniprot to understand the shared functions and

relationships of the proteins and regions associated with changes in

drug activity, (Fig. 5). Several groups of GO terms identified in this

analysis, such as those related to signaling cascades (extracellular

and intracellular signaling), signal transduction (kinase activity or

protein phosphorylation), or protein binding, suggest that these

genes might be involved in either the same pathways as the actual

drug targets or similar pathways that might have some level of

redundancy. Other GO terms, such as apoptosis, regulation of cell

proliferation, or response to hypoxia, are functions known to play

a role in drug resistance and carcinogenic potential of cells.

Another group of GO terms identified in our analysis are those

associated with the cytoskeleton. Given that most of the drugs

analyzed in this study (17 out of 24) are kinase inhibitors, this was

an unexpected observation. However, there is some evidence of

the relationship between cytoskeleton proteins and the activity of

kinase inhibitors in the literature. For example, many receptor

tyrosine kinases, such as EGFR, HER2, IGF1R, or FGFR,

undergo internalization upon ligand binding. Moreover, interac-

tions between Erlotinib and MYO2 or MYH9 have been

described, and a MYH9 inhibitor synergizes with EGFR inhibitors

to induce apoptosis in cells carrying the drug-resistant mutation

T790M [25].

Discussion

Identifying biological features that correlate with the activity of

anticancer drugs has been the subject of a significant and growing

research focus in recent years. However, most of these efforts do

not take into account the modular nature of proteins and focus on

perturbations at the whole-protein level. Such analyses are likely to

miss cases in which the location of the mutation within the protein

influences its effects. Here we have described what is, to the best of

our knowledge, the first systematic analysis of drug activity

associations that distinguishes between different functional regions

Fig. 2. Perturbations of different regions in the same protein can have different drug effects. (a) Missense mutations in different PFRs of
MSH6 lead to increased sensitivity towards three different drugs: AEW541, RAF5 and Lapatinib. The protein level analysis on the other hand reveals a
potential association with Erlotinib (shown in blue). This highlights the complementarity between protein and PFR-centric approaches.
doi:10.1371/journal.pcbi.1004024.g002

Domain View of Drug Sensitivity
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within proteins. We have shown that by focusing on specific PFRs

we can find 171 associations between mutations in specific protein

regions and changes in the activity of anticancer drugs. These

associations could not have been identified by protein-centric

approaches, as cell lines carrying mutations in other PFRs of the

same protein (i.e. perturbing regions that mediate other functions)

are not associated with any, with different or sometimes the

opposite drug phenotypes.

Cases in which the same gene is associated with different drugs

through different PFRs, as in the case of MSH6 and the kinase

inhibitors Erlotinib, AEW541, Lapatinib, and RAF265 can

provide insights into the mechanisms of the drug pleiotropy of a

given gene, aiding in further experiments. A variation of this

category is the association between PIK3CA and the AEW541,

where mutations in different PFRs can have opposing effects in

terms of the activity of the drug.

We have also shown the practical value of the PFR-drug

associations discovered here on the independent data from the

TCGA consortium. Specifically, we have shown that patients from

the TCGA harboring mutations in regions associated with

resistance to the drugs used to treat them have lower survival rates

than patients with mutations in the very same genes but in regions

not showing any association to the activity of such drugs. This result

not only provides evidence to the significance of our approach, but it

also argues in favor of the value of drug activity data collected using

cell lines (at least in the case of the CCLE), an issue that has recently

drawn significant attention [22] and that will probably require

substantial work in the near future in order to be solved.

Fig. 3. Using complimentary datasets to validate some of the predictions by e-Drug. (a) Missense mutations in PIK3CA can have opposite
effects in terms of AEW541 activity depending on the PFR affected. Mutations in the p85-binding and PIK accessory domains are associated with
lower and higher drug activities respectively (upper panel). By integrating our analysis with proteomics data from TCPA we have been able to
propose a mechanism for that. It appears that IRS1 protein expression is lower in cells with p85-binding mutations, but higher in those with PIK
mutations (second panel). Moreover, Akt1 phosphorylation levels are higher in cell lines with p85-binding domain mutations (two lower panels). (b)
Proposed mechanisms for the two PFR-AEW541 associations. AEW541 inhibits the kinase domain of IGF1R (upper blue protein). In those cell lines
with mutations in the PIK domain of PIK3CA (shown in blue PIK3CA’s structure), there is a gain of interaction between this protein and IRS1 (I). This
will likely increase the signaling through IGF1R (II), explaining why cell lines with mutations in this domain are more sensitive to the inhibition of this
receptor. On the other hand, cell lines with mutations in the p85-binding domain (shown in red in PIK3CA’s structure) have lower IRS1 expression and
higher AKT1 phosphorylation levels. Together, this suggests that PIK3CA is active in this cell lines independently of its interaction with extracellular
receptors, signaling directly downstream towards AKT1 (III). This would explain why these cells are resistant to AEW541.
doi:10.1371/journal.pcbi.1004024.g003

Domain View of Drug Sensitivity
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Another interesting result of the analysis presented here is that

the proteins identified in our analysis as modulating sensitivity of

cancer cells to drugs, are distinct from the actual targets of these

drugs nor interact directly with them. This observation suggests

that these genes modify drug activity through indirect interactions.

For example, mutations in genes related to the cytoskeleton (a

subset enriched in the genes identified in our analysis) might alter

the potency of kinase inhibitors by changing the trafficking pattern

of receptor tyrosine kinases. This is one of the most unexpected

findings in our analysis. While more analyses and direct

experimental verifications of these correlations are needed, such

relations may suggest targets for therapies sensitizing cancer cells

to chemotherapy with specific drugs.

Overall, this work expands the number of correlations between

cancer somatic mutations and drug activity, thus increasing the

information we can extract from every dataset. Focusing on PFRs,

corresponding to protein domains or IDRs, provides better

statistical results than analysis of individual mutations and allows

to identify correlations in cases where different effects cancel out

and thus are missed on the whole gene analysis level. At the same

time, it provides more details about the mechanism of the drug

resistance than the analysis on the gene level. Increasing the

number and details of features that predict the activity of

anticancer drugs has important consequences in the field of

personalized medicine, as it increases accuracy in stratifying

patients into groups that require different treatment regiments and

can suggest drug combinations as exemplified for EGFR and

MYH9.

One interesting direction of work that we have not been able to

address refers to the interaction between multiple drug activity

modifiers. Now that we have been able to extend the catalog of

alterations that alter a cell’s sensitivity towards a drug using our

PFR-centric approach, what happens when there are multiple

such alterations in the same cell line or patient? Do they cancel

each other if they have opposite effects? Do they synergize if they

point towards the same direction? Most attempts to answer these

challenging questions are based on machine learning approaches

[5] which, given the multidimensional nature of the problem,

seems to be the most natural approach. However, simple methods

based on naively counting the presence or absence of specific

alterations, such as our own analysis of TCGA clinical data for

Irinotecan and Topotecan presented here or analyses based on

synthetic lethal interaction networks [4], seem to also have some

predicting power. Regardless of the specific approach, these are

questions that will need to be answered in order to achieve the

promise of personalized medicine.

Another generalization of our results is that data obtained

using gene knockouts, silencing RNAs, or other technologies that

completely abolish the activity of individual proteins might miss

more subtle effects caused by modifications of specific PFRs.

Finally, we would like to emphasize that, just like the analyses at

the protein level is not limited to the identification of features that

correlate with drug activity, the analysis of PFR perturbations can

be useful when looking for features associated with any

phenotype.

Materials and Methods

Cell line mutations
We have used the CCLE dataset, which includes the mutation

profiles of 1,668 genes in 906 human cancer cell lines and drug

activity data for 24 different anticancer compounds. We focused

our analysis on missense mutations, as truncating mutations can

sometimes be misleading when performing the analysis in terms of

functional regions. For example, when analyzing a protein that

contains two different domains, if a truncating mutation happens

in the first domain, it is not obvious whether the functional

consequences of the mutation are caused by the fact that the first

domain is altered or that the second domain is missing. We

mapped the missense mutations reported by CCLE from their

genomic coordinates to every protein coding isoform from

ENSEMBL using the Variant Effect Predictor tool [26]. From

the original 42,603 genomic-point mutations in 1,668 genes, we

obtained 156,817 protein missense mutations in 9,311 proteins.

Fig. 4. PFR perturbations identified using data from cell lines predict the survival of patients treated with Irinotecan. (a) Proteins with
PFR associated to Irinotecan resistance can not be used to successfully stratify cancer patients treated with this drug, as there are no differences
between patients with mutations in such proteins (gray) and those without them (black) (b) Specific PFR in these proteins do predict the outcome of
cancer patients. Patients with mutations altering the PFRs found using CCLE (red) have worse outcomes that those with mutations in other regions of
the same protein (green) or no mutations (black).
doi:10.1371/journal.pcbi.1004024.g004

Domain View of Drug Sensitivity

PLOS Computational Biology | www.ploscompbiol.org 6 January 2015 | Volume 11 | Issue 1 | e1004024



Drug activity data
The CCLE contains data on the drug activity of 24 different

compounds in 479 cell lines from 8-point dose-response curves.

These curves are adjusted to a logistical-sigmoidal function and

described by 4 different variables: the maximal effect level (Amax),

the drug concentration at half-maximal activity of the compound

(EC50), the concentration at which the drug response reached an

absolute inhibition of 50% (IC50), and the activity area, which is

the area above the dose-response curve. In our analysis we have

used only the activity area because, according to the CCLE, it

captures simultaneously both variables of drug activity: its efficacy

and its potency.

Protein functional regions
We defined protein functional regions as domains or intrinsi-

cally disordered regions. We decided to include intrinsically

disordered regions because these can also contain important

functional regions such as phosphorylation sites or regions that

regulate or mediate protein interactions [27]. To identify protein

domains, we retrieved, for each protein isoform, annotated Pfam

domains from ENSEMBL. We have also included a set of 1,300

novel potential domains identified by AIDA, an algorithm based

on iterative recognition of domains by homology recognition

algorithms with various sensitivities [28]. We used Foldindex [29]

to predict intrinsically disordered regions for each protein,

including in our analysis those regions with a predicted unfolded

score below –0.1.

Finally, we mapped the different mutations of each cell line to

these protein features, giving us a total of 30,798 altered regions in

906 cell lines. These regions are divided into 19,918 Pfam domains

and 10,880 intrinsically disordered regions. Note that the features

can overlap, as the predictions were performed independently and

there is no reason why, for example, an intrinsically unfolded

region cannot overlap with (or even be located within) a Pfam

domain. Note also that these numbers refer to PFRs in all known

protein isoforms according to ENSEMBL v72. While the results

for all these PFR-Drug pairs can be browsed at http://www.

cancer3d.org [17], in this manuscript we only discuss results

obtained for the largest isoform of each protein (S1 Fig.). A similar

protocol to assign protein functional regions was used in our

previous publication on identifying domain cancer drivers [13].

Identification of PFR perturbations correlating with drug
activity

As explained above, e-Drug looks for PFRs that, when mutated,

correlate with drug activity of the different drugs. We divided the

cell lines into those that have a coding missense mutation in the

region being studied and those that do not. We then performed a

Fig. 5. Enrichment map of the proteins associated with differential drug activity at both, whole-protein and individual region
levels. We performed a gene-set enrichment analysis by comparing Gene Ontology (GO) annotations of the 316 proteins associated with different
drugs at both levels of resolution (whole-protein and individual PFRs) against the whole human genome. All the GO terms identified here showed an
enrichment in the biomarker group, and most of them relate to pathways and functions associated with carcinogenesis, metastasis, and drug
resistance, such as regulation of cell proliferation, kinase activity, cell migration, cell adhesion, MAPK cascade, or response to hypoxia. In the figure,
GO terms are connected when they are related according to the gene ontology.
doi:10.1371/journal.pcbi.1004024.g005

Domain View of Drug Sensitivity
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Wilcoxon test comparing the drug activity of each compound in

the two groups and kept those with a p-value below 0.01. Finally,

for those gene regions associated to a certain drug, the activity of

the cell lines mutated in the region of interest was compared to the

activity of cell lines mutated in other regions of the gene. By doing

this, regions that are significantly different from the rest of the gene

were identified. In this case, since the number of cell lines in both

groups is lower and fewer tests were performed, a significance

threshold of 0.05 instead of 0.01 was established. We considered as

true positives those PFR that passed both thresholds and that are

not in proteins that show an association (p,0.01) with the same

drug at the whole-protein level (S1 Fig.). Note that the analysis is

performed independently for each PFR. In the case that a protein

contains two overlapping regions, e-Drug will handle each one of

them independently and return their corresponding results.

Statistical significance analysis
One of the problems that arise when analyzing PFRs instead of

whole proteins is that the statistical power of the sample decreases

significantly, as (I) there are less cell lines with mutations in the

individual regions and (II) the number of correlations being tested

increases, making multiple-testing corrections more stringent. To

overcome these limitations and decrease the number of false positives

among our associations we require three different thresholds for an

association to be considered positive (see Fig. 1 and S1–S3 Figs.). First,

the p value of comparing the activity of the drugs between cell lines

with mutations in the PFR against those without them has to be below

0.01. This left us with 350 potential PFR-drug pairs identified in the

CCLE data. Then, we repeated the analysis at the protein level and

removed all the pairs that were also identified there (p,0.01, n = 102,

Fig. 1f). Finally, for the remaining 248 pairs, we compared the drug

activity of the cell lines with mutations in the PFR against cell lines

with mutations in other regions of the same protein.

Protein expression data from TCPA
Expression data for 461 different proteins in 93 cancer cell lines

was downloaded from the TCPA website on 12/11/2013. Cell

line names used in TCPA were manually mapped to CCLE when

automated mapping was not possible.

In order to find proteins with altered expression or phosphor-

ylation levels in cell lines with mutations in PFRs of interest cell

lines, we grouped them according to the mutation status of such

PFRs and compared the expression levels in each group using a

Wilcoxon test. To find proteins whose expression correlated with

the activity of anticancer drugs we performed a Pearson

correlation test using R.

TCGA survival analysis
We have downloaded both, clinical and mutation data, for the

3,205 tumors described in the pan-cancer analysis of the TCGA.

We then filtered out data from patients that had not been treated

with any of the drugs included in the CCLE. Since most drugs

included in the CCLE are still in under clinical research, we only

had enough patients to analyze 2 different drugs: paclitaxel

(n = 778) and Irinotecan (n = 58). Each of these subsets of patients

have then been classified in 3 groups: those that have a mutation in

a PFR that, according to our analysis, increases resistance to the

drug used to treat them, those with mutations in other regions of

the same genes and those with no mutations in these genes.

We have limited our analysis to gene-regions associated with

lower drug activity because there are more such regions as

compared to regions associated with increased activity. As a result

very few patients in the TCGA dataset carry mutations in the

former type of regions and have been treated with the matching

drug. The survival analysis has been performed using the

‘‘Survival’’ package for R.

Protein–drug interaction data
It would be natural to expect that proteins that are associated

with drug phenotypes might be enriched in either drug targets or

their partners. To test this hypothesis, we downloaded the

STITCH database that contains information on protein–chemical

interactions. We then retrieved for each drug its known protein

interactions and compared the overlap of proteins on this list with

the proteins that showed an association with that same drug

according to our analysis with the Fisher test. We performed the

analysis using three different thresholds for the protein-drug

interaction score as reported in STITCH: 700, 800 and 900. We

also extended the analysis to (a) proteins interacting with drug

targets (according to either HPRD, BioGRID, MINT, or DiP) and

to (b) proteins that bind chemicals with a similar structure. We

defined these drug-like chemicals as those that have a Tanimoto

2D similarity score with the drug over 0.70. We calculated the

Tanimoto scores with the R package RCDK.

Supporting Information

S1 Fig. Distribution of the p values for all the pairs
considered for analysis. (a) When taking into account all the

protein isoforms expressed in each gene there are 739,152 possible

PFR-Drug pairs (blue region). In order to limit the number of regions

considered for the study we only considered PFRs located in the

largest isoform of each gene, leaving us with 202,417 possible pairs

(green region). However, only 99,758 had at least 2 mutations in

CCLE, which is the minimum number that we considered to start the

analysis (red circle). (b) Distribution of p values for all the analyzed

pairs. As expected, most pairs have a p value around 1, whereas only

405 are below the 0.01 threshold (vertical red dashed line). (c) The

distribution of mutations across the different PFR-Drug pairs follows a

power-like distribution, as most pairs have less than 20 mutations, but

a few pairs have over 150. (d) Relationship between number of

mutations in each pair and the observed p value. As expected, as the

number of mutations in each PFR-Drug pair is not correlated with the

number of mutations, however, there are no pairs with p values ,0.01

(horizontal red dashed line) and less than three mutations.

(TIF)

S2 Fig. Protein functional regions within genes that are
also statistically significant are considered false posi-
tives. (a) Cell lines with mutations in the kinase domain of PRKG2

(between red dashed lines) show similar sensitivity towards 17-AAG

than cell lines with mutations in the rest of the protein. (b) While

there cell lines with mutations in the Kinase domain of PRKG2

show statistically significant lower 17-AAG activity (p,0.004), the

signal is also preserved (p,2-e6) at the whole gene level. This

suggests that this PFR is associated to this drug because it belongs to

PRKG2, not because there is something specific to the PFR.

(TIF)

S3 Fig. Protein regions that show differences when
compared to the rest of the protein are considered true
positives. (a) The intrinsically unstructured region (IUR)

between positions 334 and 699 (red dashed lines) in AFF4 is

associated with increased sensitivity towards the MEK inhibitor

PD-0325901. (b) The difference is statistically significant not only

when compared to cell lines with no mutations in AFF4 (p,0.003),

but also when compared to cell lines with mutations in other

regions of the same protein (p,0.002).

(TIF)
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S4 Fig. Drug-PFR containing proteins do not usually
interact with the drug or the drug’s targets. We checked

the overlap between PFR-containing proteins and each drug’s

targets (top panel) or proteins interacting with them (second panel

from the top). Only PFRs associated with AZD6244 were enriched

in drug targets (p,0.005, horizontal red dashed line). Extending

the search to chemical matter with similar structure to that of each

drug (Tanimoto score .70) yielded similar results (two bottom

panels).

(TIF)

S1 Table PFR-Drug associations and links to Cancer3D.

(XLS)

S1 Supporting Material Extended analyses and support-
ing figures. This file contains extended details about the p-values

distribution, the different p-value thresholds used in our analysis,

information about the protein-drug experiment as well as S1–S4

Figs.

(DOCX)
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