UCLA

Posters

Title

CON 0: CENS Contaminant Transport Observation and Management (Contam) Research Overview

Permalink https://escholarship.org/uc/item/89x2398c

Authors

Thomas Harmon Jason Fisher Yeonjeong Park <u>et al.</u>

Publication Date 2006

Center for Embedded Networked Sensing

CENS Contaminant Transport Observation and Management (Contam) Research Overview

Thomas Harmon³, Jason Fisher³, Yeonjeong Park¹, Nithya Ramanathan², Jennifer Jay¹, William Kaiser⁶, Steve Margulis¹, Jose Saez⁴, Alexander Rat'ko³, Juyoul Kim¹, Mohammad Rahimi⁷, John Hicks⁷, Laura Balzano², Naim Busek², John Ewart³, *Sarah Rothenberg¹, Michael Stealey⁶, Sandra Rocio Villamizar Amaya³, Chris Butler³, Che-Chua Wu¹, Mani Srivastava⁶, Deborah Estrin²

¹UCLA Civil & Environmental Engineering, ²UCLA Computer Science, ³UC Merced School of Engineering, ⁴Loyola Marymount University Civil & Environmental Engineering, ⁵UCLA Electrical Engineering. ⁷CENS Staff

Introduction: Multiscale observation of distributed contaminants in environmental systems

Integrating multiscale observations using remote and embedded networked sensing

The embedded networked sensing (ENS) problem being addressed by the contaminant transport application domain projects is the design of sensor networks supporting physical and chemical observations within and between environmental media, including land, air and water. An interdisciplinary approach is needed because it is difficult to conceive of an effective spatiotemporal sampling plan without domain-specific knowledge and network programming tools are not yet user-friendly enough to see widespread use amongst application domain experts. The contaminant transport observation projects are evolving from controlled test beds to specific real-world deployments to a proposed large, multiscale water quality observation and management network. The current emphasis is on the soil domain which is by nature a rich context for ENS development because of the natural heterogeneity of such media and the inherent cost and technical challenges of deploying sensor networks in these environmental media.

Problem Description: Finding optimal network configurations to safely manage

1. Contaminant Source Assessment Use laboratory test beds with simplistic sensing demands (temperature) in order to develop spatiotemporal design strategies

2. Soil Pylon Sensor Array Design and Validation

Create a robust, modular soil sensor array design; use sensing to automatically hone simulators; then us feedback-control to balance irrigation and fertilization with groundwater protection

3. Multiscale Soil Sensor Network Deployment Attack test cases at multiple scales to challenge the hardwaresoftware designs: field scale agricultural and single plant rhizosphere test beds

Future Directions

To maximize the impact of the contaminant observation systems being developed here, we will expand our approach to:

(1) *New modality* in soil, aquatic sediment, riparian and forest modular ENS systems

(2) Creating the cyberinfrastructure to enable *multiscale environmental observatory designs* fusing of ENS-level data streams with larger scale embedded and remote (aerial/satellite) sensing

Proposed Solution: Multiscale ENS design with process simulation and management

Soil Pylon Design and Validation

Observing moisture and nitrate propagation during irrigation with reclaimed wastewater in Palmdale, CA

Feedback Control for Optimal Irrigation

Sensor data used to feedback to models, enabling calibration, forecasting and management of contaminant transport

Tailoring the ENS design to multiple scales

Long term vision: multiscale observatories

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced