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Chapter 3
Fungal Pre-mRNA 30-End Processing

Aurelia Vavasseur and Yongsheng Shi

Abstract 30 end processing of messenger RNAs (mRNAs) is not only an essential
step in eukaryotic gene expression, but it also impacts many other aspects of
mRNA maturation and decay. A large portion of eukaryotic genes produce mul-
tiple mRNAs with different 30 ends through alternative cleavage/polyadenylation
(APA). mRNA 30 processing and especially APA has been increasingly recognized
as an important mechanism for gene regulation. Much of what we currently know
about eukaryotic mRNA 30 processing came from studies using the genetically
tractable yeast systems. Here we review the fungal mRNA 30 processing system
by describing both the evolutionarily conserved mechanisms as well as the fungus-
specific features.
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Pre-mRNA 30-End Processing: An Overview

The vast majority of eukaryotic mRNAs have a polyadenosine (poly(A)) tail at
their 30 ends (Chan et al. 2011; Zhao et al. 1999; Colgan and Manley 1997;
Proudfoot 2011). The poly(A) sequences are not encoded in the genome, but are
added posttranscriptionally through two chemical reactions, an endonucleolytic
cleavage and the addition of a string of adenosines by the poly(A) polymerase
(PAP). The poly(A) tails are critical for mRNA export, stability, and translation
(Zhao et al. 1999; Colgan and Manley 1997; Chan et al. 2011; Proudfoot 2011).
The 30 end formation process itself is required for transcription termination and it
significantly impacts other mRNA processing steps, including splicing (Kim et al.
2004; West et al. 2004; Connelly and Manley 1988; see Chap. 2 for more details).
Mutations that disrupt the mRNA 30 processing of critical genes and mutations in
mRNA 30 processing factors cause a number of diseases, including thalassemias,
thrombophilia, and oculopharyngeal muscular dystrophy (Danckwardt et al. 2008;
Chan et al. 2011).

Pre-mRNA 30 end formation involves the assembly of several multisubunit
complexes on specific cis-element that defines the polyadenylation site (PAS)
(Chan et al. 2011; Shi et al. 2009; Skolnik-David et al. 1987; Humphrey et al.
1987). The majority of the 30 processing factors are conserved throughout
eukaryotic evolution (Darmon and Lutz 2012; Mandel et al. 2008). Interestingly,
however, there are also a number of lineage-specific essential 30 processing factors
(Zhao et al. 1999). The loss and/or gain of these factors during evolution might be
correlated with changes in the cis-element of PAS as described below.

APA is the phenomenon in which a gene can produce multiple mRNA isoforms
with distinct 30 ends through using alternative PAS (Shi 2012; Di Giammartino et al.
2011; Tian and Manley 2013; Elkon et al. 2013). It is estimated that over half of the
eukaryotic genes produce alternatively polyadenylated transcripts (Shi 2012).
Unlike alternative splicing, which has expanded dramatically during eukaryotic
evolution, the prevalence of APA in yeast is comparable to that in metazoans
(Ozsolak et al. 2010; Derti et al. 2012). APA isoforms may encode different proteins
and/or have different 30 untranslated regions (UTRs). In yeast, many APA events
involve PAS found within the coding sequences (CDS) as well (Sparks and
Dieckmann 1998; Yoon and Brem 2010; Mayer and Dieckmann 1989, 1991).
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Such APA isoforms are predicted to produce either truncated proteins or no protein
product. Thus, APA significantly expands the proteome diversity and mRNA reg-
ulatory potential. The global APA profile is highly dynamic and regulated during
development and in response to environmental cues (Shepard et al. 2011; Sandberg
et al. 2008; Flavell et al. 2008; Graber et al. 2013). Aberrant APA regulation has also
been implicated in a number of diseases, including cancer (Mayr and Bartel 2009;
Jenal et al. 2012; Shi 2012; Di Giammartino et al. 2011).

The 30 ends of mRNAs can be further processed in the cytoplasm (Richter
1999). For example, poly(A) tails can be extended or trimmed (Richter 1999).
Other nucleotides, such as uracil, can be added (Rissland et al. 2007). These
modifications play important roles in regulating the stabilities of target mRNAs
(Scott and Norbury 2013). But for this article, we will focus on the 30 end pro-
cessing in the nucleus.

Fungal Poly(A) Site Sequence Features

Single gene studies and global analyses of Saccharomyces cerevisiae PAS have
identified five key sequence elements (Fig. 3.1): (1) the A/U-rich Efficiency Ele-
ment (EE) located at variable positions upstream of the cleavage site (CS) with the
nucleotide consensus sequence UAYRUA (with Y: pyrimidine, and R: purine); (2)
the A-rich Positioning Element (PE) located 10–30 nucleotides (nt) upstream of
the CS. AAWAAA (W: A or U) is one of the most frequently found motifs in PE;

A-rich

AUAYRUA AAWAAA 

0

CS

A-rich U-richA / U-rich U-rich

EE

(a)

(b)

PE UUE DUE

-1-50 +1+2-24 -13-11 +7+5 +21

AAUUUUUUAAUAAA

A/U-rich U/G-rich DSE

SDE EE

0

CS

-5-50 +1+2 +25-24 -14-29

UGUA

Saccharomyces cerevisiae l PAS 

Schizosaccharomycespombe PAS

Fig. 3.1 Key cis-element for yeast poly(A) sites. The names, positions, consensus sequences of
the known cis-element in S. cerevisiae (a) and S. pombe (b) PAS. EE Efficiency element, PE
Positioning element, UUE Upstream U-rich element, DUE Downstream U-rich element, SDE
Site determining element, DSE Downstream sequence element. See details in the text
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(3) the Upstream U-rich Element (UUE); (4) the CS; and (5) the Downstream
U-rich Element (DUE) (Zhao et al. 1999). Recently, a short A-rich region from +2
to +5 nt (relative to the CS) has been suggested to influence the strength of the
PAS (Fig. 3.1) (Moqtaderi et al. 2013). Functionally, the PE is most closely related
to the AAUAAA hexamer in mammalian PAS (Zhao et al. 1999).

The Schizosaccharomyces pombe PAS have also been studied in some detail
(Fig. 3.1) (Hansen et al. 1998; Birse et al. 1997; Humphrey et al. 1994). S. pombe
PAS have an A-rich upstream sequence (called Site Determining Element (SDE)),
equivalent of the aforementioned PE in S. cerevisiae PAS, and a UG-rich down-
stream element called Efficiency Element (EE) (Hansen et al. 1998; Birse et al.
1997; Humphrey et al. 1994). Genome-wide analyses suggest that AAUAAA is
present in about 20 % of SDEs and UGUA is found in 24 % of EE in S. pombe
PAS (Mata 2013; Schlackow et al. 2013; Ozsolak et al. 2010). Based on the high
frequency of AAUAAA in SDEs, it has been suggested that S. pombe PAS are
more similar to mammalian PAS (Humphrey et al. 1994; Chakraborty et al. 2002;
Schlackow et al. 2013; Mata 2013). The distance between SDE and EE influences
the efficiency of 30 end formation, and the EE was proposed to enhance the binding
of specific factors to SDE (Humphrey et al. 1994). An additional element located
further downstream of the PAS, called the downstream element (DSE), also plays
an important role in the transcription termination, most likely by inducing RNA
pol II pausing (Birse et al. 1997; Hansen et al. 1998).

The specificity and activity of mRNA 30 processing machineries in different yeast
species seem quite similar. For example, S. cerevisiae PAS can be correctly pro-
cessed in S. pombe and vice versa (Humphrey et al. 1991). A global comparison of
mRNA polyadenylation in three yeast species, S. cerevisiae, Kluyveromyces lactis,
and Debaryomyces hansenii, revealed several similarities (Moqtaderi et al. 2013).
First, PAS in all these species share highly similar nucleotide composition and
motifs (Fig. 3.1). Second, the position of the CS is highly heterogeneous. There are
on average over 60 distinct CS located with a *200 nt ‘‘end zone’’ for each PAS. In
contrast, CS in mammalian PAS tend to cluster within 40 nt (Lee et al. 2007). Thus,
the high heterogeneity of CS may be a widespread feature of fungal mRNA 30

processing. Third, secondary structures may play an important role in determining
PAS strength. RNA folding analyses predicted that the predominant PAS in these
yeast species adopt a common configuration characterized by a double-stranded
stem with the CS adjacent to a single-stranded domain. The weaker PAS seem less
associated with such structures (Moqtaderi et al. 2013). On the other hand, species-
specific differences in mRNA 30 processing machinery also exist. For example,
when large chromosomal fragments from Debaryomyces hansenii were introduced
into S. cerevisiae, the polyadenylation within this region, especially the distribution
of the CS within the end zone, adopted a pattern similar to that of the host strain. This
observation suggests that the mRNA 30 processing factors contribute to the species-
specific polyadenylation profiles (Moqtaderi et al. 2013).
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Fungal mRNA 30 Processing Factors

There are over 20 known mRNA 30 processing factors in S. cerevisiae (Fig. 3.2)
(Zhao et al. 1999; Proudfoot 2004). At least 13 of them have been conserved up to
mammals (Table 3.1). Interestingly, although S. cerevisiae and S. pombe do not
express homologues of the mammalian Cleavage Factor I complex (CFIm), a
putative homologue of the CFIm subunit CFIm25 can be found in filamentous
fungus Aspergillus oryzae, and in the plant pathogens Ustilago maydis and
Magnaporthe oryzae (Munsterkotter and Steinberg 2007; Franceschetti et al.
2011). There are no clear orthologs of CFIm68 in M. oryzae based on primary
amino acid sequence. However, the M. oryzae protein Rbp35 interacts with the
CFIm25 homologue in vivo (Franceschetti et al. 2011), and its RRM domain
shares structural similarity with the metazoan CFIm68 RRM (Yang et al. 2010).

5   mRNA

Pap1

Glc7

3′ 

EE PE

DNA

Cft1 Ysh1

Pta1

DUE UUE

CFII

PFI

CFIAHrp1CFIB

Clp1 Pcf11

Rna14 Rna15

Cft2

Yth1Fip1

Cyc1

Mpe1

Ssu72

Pti1

Ref2 Swd2

CPF

CS 
RNAP II

AAAAA…AAAA

Nab2 
5′  mRNA

Pab1 

Pfs2

APT

′

Fig. 3.2 The mRNA 30 processing machinery in Saccharomyces cerevisiae. DNA templates are
shown as black lines and RNA as a blue line. The mRNA 30 processing factors conserved
between yeast and mammals are marked as dark green circles. Subunits of complexes and
subcomplexes are enclosed in gray circles
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These structural and functional similarities raise the possibility that RBP35 is the
functional ortholog of CFIm68 in filamentous fungi. Below we discuss the
structure and functions of the major fungal 30 processing factors in detail.

mRNA 30 Processing Factors in S. cerevisiae

Most mRNA 30 processing factors in S. cerevisiae are essential for viability and
they form three major complexes: Cleavage Factor IA (CFIA), Cleavage Factor
IB (CFIB), and Cleavage and Polyadenylation Factor (CPF) (Zhao et al. 1999).
CPF consists of three subcomplexes: Cleavage Factor II (CFII), Polyadenylation
Factor I (PFI), and Associated with Pta1 (APT). Additionally, the C-terminal
domain (CTD) of RNA polymerase II (RNA pol II) binds to many mRNA 30

processing factors and facilitates the recruitment of these factors to nascent RNAs
in a co-transcriptional manner (see also Chap. 1).

CFIA

The CFIA complex contains four subunits, Rna14, Rna15, Pcf11, and Clp1.
RNA14 and RNA15 are the homologs of the mammalian CstF77 and CstF64,
respectively. S. cerevisiae does not appear to encode a homolog of the third
mammalian CstF subunit, CstF50 (Zhao et al. 1999). Depletion of Rna14 or Rna15
leads to global shortening of poly(A) tails and a defect in PAS recognition
(Minvielle-Sebastia et al. 1994; Mandart and Parker 1995). Similar to its mam-
malian homolog CstF77, Rna14 seems to serve as a scaffold through interactions
with Rna15, CFIB (see below), and RNA POL II CTD (Noble et al. 2004). Also
similar to its mammalian homolog CstF64, Rna15 contributes to PAS recognition
by directly binding to RNA via its RRM domain (Gross and Moore 2001).
However, Rna15 binds to the A-rich PE upstream of the CS while CstF64 binds
specifically to the U/GU-rich regions downstream of CS (MacDonald et al. 1994;
Takagaki and Manley 1997; Yao et al. 2012). Recognition of the PE by Rna15 also
requires CFIB (Hrp1/Nab4) (Leeper et al. 2010).

PCF11 and CLP1 are also conserved from yeast to human (Darmon and Lutz
2012). Pcf11 interacts with the RNA pol II CTD through its N-terminal CTD
Interacting Domain (CID) (Meinhart and Cramer 2004; Barilla et al. 2001;
Licatalosi et al. 2002). RNA pol II CTD is a unique protein domain that consists of
26 (yeast) to 52 (human) highly conserved heptapeptide repeats of the consensus
sequence: YSPTSPS (Buratowski 2003; Hirose and Manley 2000; Bentley 2005).
The CTD is highly phosphorylated and its phosphorylation is tightly regulated
during the transcription cycle. For example, Ser5 is phosphorylated early in tran-
scription and helps to recruit the capping enzymes. On the other hand, Ser2 phos-
phorylation is low at the promoter regions, but accumulates during transcription
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elongation and peaks near the 30 ends of genes and is important for recruiting mRNA
30 processing factors (Buratowski 2003; Hirose and Manley 2000; Bentley 2005).
For example, Pcf11 CID specifically interacts with CTD phosphorylated at Ser2
(Licatalosi et al. 2002; Meinhart and Cramer 2004). In addition to its role in mRNA
30 processing, Pcf11 functions in transcription termination by bridging the RNA pol
II CTD to the nascent transcripts and dismantling the transcription elongation
complex (Zhang et al. 2007; Zhang and Gilmour 2006).

Clp1 interacts with Pcf11 and the CFII subunits Ysh1/Brr5, thereby linking
CFIA to CPF (Minvielle-Sebastia et al. 1997; Kessler et al. 1996). Clp1 contains a
Walker A motif, a known ATP/GTP-binding domain, but no ATPase activity has
been detected (Noble et al. 2007). The human Clp1 protein has been shown to
possess RNA-specific 50-OH polynucleotide kinase activity (Weitzer and Martinez
2007). However, yeast Clp1 seems to lack this activity and mutations in the kinase
domain do not affect viability (Ramirez et al. 2008), indicating that the RNA
kinase activity is not required for mRNA 30 processing in yeast.

CFIB

CFIB is composed of one unique subunit, Hrp1/Nab4 (16, 62, 160). Although
Hrp1/Nab4 has no sequence homology with any mammal protein, it may share
similar structures with the mammal splicing factor hnRNP A1 (Kessler et al.
1997). HRP1/NAB4 is essential for cell viability and is required for cleavage and
polyadenylation. Hrp1/Nab4 directly binds to the U-rich EE via its two RRM
domains (Chen and Hyman 1998; Perez-Canadillas 2006). Its depletion in vivo
leads to a global decrease in poly(A) tail length (16, 62). It interacts with Rna14
and Rna15, and shuttles between the nucleus and the cytoplasm (Kessler et al.
1997). Moreover, Hrp1/Nab4 was shown to regulate APA and stress response
(further discussed in the APA section) (Kim Guisbert et al. 2007).

CPF

CPF contains homologues of all the major subunits of mammal Cleavage and
Polyadenylation Specificity Factor (CPSF) and they comprise three subcomplexes:
CFII, PFI, and APT (Zhao et al. 1999).

The CFII subcomplex. CFII contains four proteins: Cft1/Yhh1 (Cleavage Factor
Two 1), Cft2/Ydh1 (Cleavage Factor Two 2), Ysh1/Brr5 (Yeast 73 kDa Homolog 1),
and Pta1 (Pre-Trna Accumulation 1). They are homologous to the mammalian
CPSF160, CPSF100, CPSF73, and symplekin, respectively (Zhao et al. 1999;
Darmon and Lutz 2012). The CFII subunits are functionally similar to their mam-
malian counterparts as well. Cft1/Yhh1 binds to the mRNAs in the vicinity of the CS
via a Beta-propeller repeat domain (Fig. 3.2) (Stumpf and Domdey 1996; Dichtl
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et al. 2002b). Moreover, Cft1/Yhh1 interacts with RNA pol II CTD and is essential
for mRNA transcription termination (Dichtl et al. 2002b). Similar to CPSF 100 and
CPSF73, Cft2/Ydh1 and Ysh1/Brr5 both contain a putative metallo-beta-lactamase
domain and a beta-CASP domain. However, Cft2/Ydh1 is not able to bind metal ions
(Mandel et al. 2006). Cft2/Ydh1 binds the mRNA at a region encompassing the CS
(Zhao et al. 1997). Cft2/Ydh1 interacts with other CFII subunits, Pfs2 (PFI subunit),
Ssu72 (APT subunit), and the RNA pol II CTD (Kyburz 2003). Similar to CPSF73,
Ysh1/Brr5 is believed to be the endonuclease for mRNA 30 processing in budding
yeast. Consistent with this conclusion, mutations in Ysh1/Brr5 that disrupt zinc
binding are lethal (Mandel et al. 2006; Ryan et al. 2004). Pta1 shares homology with
Symplekin, a scaffolding factor in the mammalian CPSF complex (Takagaki and
Manley 2000). Pta1 is believed to bridge the APT complex with CFII complex
through multiple interactions (Nedea et al. 2008).

The CPF: PFI complex. The PFI subcomplex contains Yth1 (Yeast 30 kDa
Homolog 1), Pfs2 (Polyadenylation Factor Subunit 2), Fip1 (Factor Interacting
with Poly(A) polymerase 1), Mpe1 (Mutant PCF11 Extragenic suppressor 1), and
Pap1 (Zhao et al. 1999).

Yth1 is related to the mammal RNA-binding zinc finger protein CPSF30 (64 %
similarity and is essential for in vitro cleavage and polyadenylation (Barabino et al.
1997). Yth1 contains five CCCH zinc finger domains, and the second one has been
shown to be critical for mRNA 30 processing. Yth1 binds to the U-rich element
surrounding the CS: the UUE and DUE sequences (Barabino et al. 1997). Yth1
interacts with Fip1 and Ysh1/Brr5, subunit of CFII subcomplex (Barabino et al.
1997; Tacahashi et al. 2003; Helmling et al. 2001).

Fip1 is an intrinsically disordered/unstructured protein that shares 52 % simi-
larity with mammal RNA-binding protein Fip1 (Meinke et al. 2008; Darmon and
Lutz 2012). Although Fip1 is not required for cleavage, elimination of the
C-terminal half leads to a general shortening of poly(A) tail in vivo (Preker et al.
1995). Fip1 interaction with Pap1 was suggested to regulate Pap1 poly(A) poly-
merase activity (Preker et al. 1995; Helmling et al. 2001). Moreover, as mutations
specifically disrupting Fip1–Pap1 interactions are lethal, it is likely that Fip1
mediates the recruitment of Pap1 to the PAS (Helmling et al. 2001). Fip1 also
interacts with Rna14 and Pfs2 (Ohnacker et al. 2000).

Pfs2 is a WD-40 repeat protein and the homolog of the mammal WD40 repeat
protein Wdr33 (58 % similarity) (Darmon and Lutz 2012). Pfs2 is required for
cleavage and polyadenylation. Pfs2 links PFI with CFIA, CFII, and APT sub-
complexes through its interaction with Fip1, Rna14, Ysh1/Brr5, and Swd2
(Ohnacker et al. 2000).

Pap1 is required for polyadenylation but not for cleavage in vitro (Lingner et al.
1991). Structural and enzymatic properties of Pap1 are highly conserved in fungi,
as exemplified by studies of Candida albicans and S. pombe poly(A) polymerase
(Bougie and Bisaillon 2007). Pap1 is posttranslationally modified by phosphory-
lation and ubiquitylation during the cell cycle. Phosphorylation of Pap1 occurs
during S and G2 phases, and this modification inhibits Pap1 activity (Mizrahi and
Moore 2000). Several proteins, including Fip1, Cft1, and Pta1, interact with Pap1
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and could potentially modulate its activity (Nedea et al. 2003; Ezeokonkwo et al.
2012). Pap1 also interacts with the RNA-binding protein Nab6, which was sug-
gested to bind poly(A) mRNA to increase their stability, and to target more spe-
cifically mRNAs encoding for proteins of the cell wall (Ezeokonkwo et al. 2012).
Pap1 also influences PAS choice (Mandart and Parker 1995).

The CPF: APT subcomplex. CPF contains additional factors that form a third
subcomplex called the APT complex (Associated with Pta1) (Nedea et al. 2003).
Some of these factors have homologs in metazoan, including Glc7 (GLyCogen 7,
homolog of the mammalian phosphatase PP1), Ssu72, and Swd2 (Darmon and
Lutz 2012). The other APT component appear to be specific to yeast, including
Ref2 (RNA End Formation 2), Pti1 (PTa1p Interacting protein), and Syc1 (Similar
to Ysh1 C-terminal 1) (Darmon and Lutz 2012).

Ssu72 is required for cleavage but not for polyadenylation (He et al. 2003).
Ssu72 is a protein phosphatase that specifically dephosphorylates RNA pol II CTD
at Ser5 (Krishnamurthy et al. 2004; Hausmann et al. 2005). It has been suggested
that Ssu72 functions to regenerate hypophosphorylated RNA pol II for new rounds
of transcription. However, Ssu72 phosphatase activity seems not required for
mRNA 30 processing itself (Krishnamurthy et al. 2004; Hausmann et al. 2005).
Besides Pta1, Ssu72 interacts with Cft2/Ydh1 and with RNA pol II subunit, Rpb2
(Krishnamurthy et al. 2004; Hausmann et al. 2005; Dichtl et al. 2002a). Even though
the Kluyveromyces lactis Ssu72 protein shares 76 % identity with its S. cerevisiae
counterpart, it cannot functionally complement S. cerevisiae Ssu72, indicating
functional divergence during fungal evolution (Rodriguez-Torres et al. 2013).

Glc7 is the homolog of the mammalian protein phosphatase PP1 (Darmon and
Lutz 2012). Glc7 is specifically required for cleavage, but not for polyadenylation
(He and Moore 2005). Pta1 was identified as the Glc7 substrate in the mRNA 30

processing machinery. It has been proposed that Pta1 goes through a phosphory-
lation-dephosphorylation cycle during mRNA 30 processing and Glc7-mediated
dephosphorylation is essential for the transition between cleavage and polyade-
nylation (He and Moore 2005). Glc7 is regulated by another APF subunit, Ref2
(RNA end formation 2) (Nedea et al. 2008). Ref2 directly binds to RNA and is
required for the efficient processing at weak poly(A) sites (Russnak et al. 1995).
Additionally, Ref2 mediates Glc7 association with the CPF complex. In the
absence of Ref2, Glc7 dissociates from CPF, which results in defects in tran-
scription termination at snoRNA genes (Nedea et al. 2008).

Swd2 is a WD-40 repeat protein essential for cell viability. It was first identified
as part of Set1 (SET (Su(var)3-9; Enhancer of zeste; Trithorax) domain containing 1)
/COMPAS (Complex Proteins Associated with Set1), which is essential for histone
H3 methylation at lysine 4 (H3K4me) (Roguev et al. 2001; Miller et al. 2001). This
epigenetic mark is important for gene expression and also for rDNA and telomeric
heterochromatin silencing (Eissenberg and Shilatifard 2010). The presence of this
epigenetic mark necessitates Swd2 (Cheng et al. 2004). Swd2 was also identified as
part of the APT complex and functionally interacts with Ref2 (Nedea et al. 2003).
Even though Swd2 is not essential for in vitro cleavage and polyadenylation, it is
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required for RNA pol II transcription termination (Cheng et al. 2004). However,
these two functions of Swd2 do not seem to be tightly coupled (Cheng et al. 2004).

Mpe1 has a putative zinc knuckle domain that may mediate RNA interactions
and plays critical roles in mRNA 30 processing by promoting the specific inter-
actions between CPF and the pre-mRNAs (Vo et al. 2001). Mpe1 shares limited
homology with the mammalian protein Rbbp6, which interacts with Rb and p53
and has been implicated in cancer (Shi et al. 2009; Pugh et al. 2006; Sakai et al.
1995). The functions of Mpe1 in mRNA 30 processing remain poorly understood.

Syc1 shares homology with the C-terminal domain of Ysh1/Brr5 (Zhelkovsky
et al. 2006). As mentioned above, YSH1/BRR5 is essential for cell viability and
mRNA 30 processing. SYC1 is not essential, but its deletion rescues the growth
and mRNA 30 processing defects in ysh1/brr5 mutant, indicating that Syc1 is a
negative regulator of mRNA 30 processing (Zhelkovsky et al. 2006).

Pti1 shares homology with Rna15 and the mammalian CstF64 and interacts
with Pta1, but Pti1functions in mRNA 30 processing have not been characterized in
detail (Qu et al. 2007).

Poly(A) Binding Proteins

Poly(A) Binding Proteins (Pabps) play important roles in poly(A) tail length
control (Mangus et al. 2003). S. cerevisiae encodes two main Pabps, Pab1 and
Nab2, and they are homologous to the mammalian proteins PABPC1 and ZC3H14
(Soucek et al. 2012). Both proteins are essential for cell viability and depletion of
either proteins leads to a global lengthening of poly(A) tails in vivo (Sachs and
Davis 1989; Anderson et al. 1993). Nab2 is believed to be the major Pabp in the
nucleus. It is co-transcriptional recruited to the nascent transcripts (Soucek et al.
2012). Nab2 physically interacts with Hrp1 and genetically interacts with Pap1,
Rna15, and Syc1 (Soucek et al. 2012; Yu et al. 2008; Kerr et al. 2013). Nab2
interacts with RNAs through its zinc finger domains (Anderson et al. 1993; Marfatia
et al. 2003). However, it remains poorly understood how Nab2 contributes to
poly(A) tail length control. Additionally, Nab2 interacts with the Mlp1 (Myosin
Like Protein 1), a factor involved in the nuclear retention of unspliced mRNAs and
the nuclear exosome subunit Rrp6 (Green et al. 2003). These observations suggest
that Nab2 contributes to mRNA quality control by targeting misprocessed RNAs to
the exosome for degradation (Schmid et al. 2012; Soucek et al. 2012). Following
mRNA export, Nab2 is believed to be replaced by Pab1 during the mRNP
remodeling (Soucek et al. 2012). Pab1 contains four RRM domains and is asso-
ciated with CFIA through the interaction with Rna15 (Amrani et al. 1997). In
addition to its role in nuclear mRNA 30 processing, Pab1 also mediates poly(A)
shortening to promote translation in vivo (Sachs and Davis 1989). Pab1 recruits the
Pab1-dependent Poly(A) Nuclease (PAN) to trim the poly(A) tails (Mangus et al.
2004). Because overexpression of Pab1 cannot rescue the hyperadenylation defect
in nab2-deficient cells, these proteins have nonoverlapping functions (Hector et al.
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2002). For example, Pab1 is able to bind mRNA with poly(A) tails as short as 10 nt,
whereas Nab2 associates mainly with mature poly(A) tails (60–80 nt) (Hector et al.
2002).

S. pombe 30 Processing Factors

Despite the fact that S. pombe and S. cerevisiae are evolutionary rather distant,
their mRNA 30 processing machineries are more similar to each other than to the
mammalian system. For example, the S. pombe poly(A) polymerase Pla1 shows a
higher sequence similarity with S. cerevisiae Pap1 (55 % identity) than with its
mammalian homologues (88). Consistently, S. cerevisiae Pap1 can be functionally
substituted both in vivo and in vitro by Pla1, whereas Pla1 cannot replace mam-
malian Pap1 in vitro (Ohnacker et al. 1996). These results suggest that Pla1 is able
to interact with S. cerevisiae mRNA 30 processing factors efficiently enough to
correctly process pre-mRNAs. Due to these similarities, the S. pombe ura4 tran-
script can be cleaved and polyadenylated in vitro in S. cerevisiae cell extracts, and
conversely, the S. cerevisiae cyc1 mRNA is correctly processed in vivo when
expressed in S. pombe (Humphrey et al. 1991).

On the other hand, some of 30 processing factors in S. pombe seem functionally
closer to their mammalian homologs than to their budding yeast counterparts. For
example, S. pombe Ctf1 (also called spCstF-64) is homolog to S. cerevisiae Rna15
and mammalian CstF64 (Aranda and Proudfoot 2001). Unlike Rna15, which
recognizes the PE upstream of CS (39), Ctf1 binds to the EE downstream to the CS
(Dichtl and Keller 2001). This is similar to its mammalian homolog CstF64, which
has been shown to bind specifically to U/GU-rich sequences downstream of the CS
(MacDonald et al. 1994; Takagaki and Manley 1997; Yao et al. 2012)(Table 3.1).

Interestingly, mRNA 30 processing defects have been shown to manifest in
some unexpected phenotypes in S. pombe. For example, mutations in PFS2 gene
cause chromosome segregation defects, which are believed to be downstream
effect of mRNA 30 processing and transcription termination malfunctions (Wang
et al. 2005). Supporting this conclusion, transcription termination defects are
observed in cells deficient for Pfs2 and the chromosome segregation defects are
suppressed by overexpression of another mRNA 30 processing factor Cft1(Wang
et al. 2005). In keeping with the link between transcription termination and cell
cycle , Dhp1, a 50–30 exonuclease homologous to Rat1 in S. cerevisiae, is also
required for chromosome segregation (Shobuike et al. 2001; Sugano et al. 1994).

Although most mRNA 30 processing factors in S. pombe have not been studied
in detail, the Pabps have been characterized. S. pombe encodes for two RRM-
containing Pabps, Pabp and Pab2 (Perreault et al. 2007; Thakurta et al. 2002).
These proteins are nonessential for cell viability, suggesting functional redun-
dancy. Pabp is the homolog of S. cerevisiae Pab1, and has been shown to be
involved in mRNA export (Thakurta et al. 2002). Pab2 shares 47 % identity and
66 % similarity with human PABPN1, and possess a coiled-coil region, an RRM,
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and a C-terminal arginine-rich domain. Pab2 binds to RNA poly(A) tails in vitro,
and regulates mRNA poly(A) length in vivo (Perreault et al. 2007). Indeed, the
maximum length of the poly(A) tail exceeds 226 nt in pab2-deficient cells as
compared to 120 nt in wild type cells. Pab2 has been shown to self-associate in an
RNA-independent manner. Similar to PABPN1, Pab2 is methylated at the R res-
idues of the R-rich domain by Rmt1, a type I protein arginine N-methyltransferase
(Perreault et al. 2007). R methylation is important for Pab2 oligomerization, but
not for its nuclear localization or its function in regulation of poly(A) tail length.
Mutations in the human PABPN1 gene are linked to oculopharyngeal muscular
dystrophy (OMPD), a disease characterized by fibrous inclusions in the nuclei of
skeletal muscle fibers (Jenal et al. 2012; de Klerk et al. 2012). Interestingly, Pab2
overexpression leads to growth defects mediated by the R-rich domain, exacer-
bated when rmt1 is deleted, suggesting that elevated levels of unmethylated Pab2
is toxic for the cells (Perreault et al. 2007). Altogether these data suggest that Pab2
is functionally similar to its human homolog. Chromatin immunoprecipitation data
indicate that although Pab2 binds to the poly(A) tail of mRNA, it might be
recruited at earlier steps of transcription through its interaction with the large RNA
pol II subunit Rpb1 (Perreault et al. 2007).

Regulators of mRNA 30 Processing

Several factors have been identified as regulators of mRNA 30 processing. One of
the negative regulators is the RNA-binding protein Npl3 (Nuclear Protein
Localization 3) (Bucheli and Buratowski 2005). Npl3 contains two RRMs and a
domain that is rich in Serine/Arginine (SR) dipeptide repeats, a domain structure
that is similar to the SR family splicing regulators in higher eukaryotes (Graveley
2000). Npl3 is required for the correct splicing of several mRNAs by mediating the
recruitment of splicing factors via direct interaction (Kress et al. 2008). In addition
to its functions in splicing, Npl3 stimulates transcription elongation through
interactions with RNA pol II and impedes efficient transcription termination by
competing with Rna15 for binding to the A-rich PE of the PAS (Dermody et al.
2008; Deka et al. 2008). Phosphorylation of Npl3 by Casein Kinase 2 (CK2)
decreases its interaction with the RNA pol II and its ability to bind RNA, thereby
promoting transcription termination (Dermody et al. 2008). Moreover, Npl3
phosphorylation stimulates a negative autoregulation by promoting the distal PAS
usage of NPL3 transcript, which leads to a decrease in Npl3 protein level (Lund
et al. 2008).

The mRNA export adaptor Yra1 has also been shown to regulate mRNA 30

processing. Yra1 negatively regulates 30 end formation by competing with Clp1 for
interaction with Pcf11, and depletion of Yra1 leads to changes in the global APA
profile (Johnson et al. 2009, 2011).
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Factors Required for S. cerevisiae Histones mRNA 30

Processing

The expression of replication-dependent histone genes is highly regulated during
the cell cycle to allow accumulation of histone mRNAs specifically during the S
phase (Marzluff et al. 2008). In metazoans, the 30 ends of replication-dependent
histone mRNAs are formed by an endonucleolytic cleavage step without poly-
adenylation (Marzluff et al. 2008). This process involves the recognition of a
highly conserved stem-loop by the SLBP protein and the downstream sequences
by the U7 snRNP at the 30 ends of the mRNAs. But mRNA 30 processing factors,
such as CPSF and CstF, are also required. The metazoan histone mRNA 30 pro-
cessing activities are regulated in a cell cycle-specific manner (Marzluff et al.
2008).

In contrast to metazoans, the 30 ends of histone mRNAs in fungi, plants, and
protozoa generated through the regular cleavage/polyadenylation mechanism and
the 30 processing of these mRNA requires the canonical mRNA 30 processing
factors, including Rna14, Pcf11, Rna15, and Pap1 (Fahrner et al. 1980; Canavan
and Bond 2007). However, recent studies have implicated Sen1, a putative heli-
case required for the 30 processing of many nonpolyadenylated RNAs, in yeast
histone mRNA 30 processing (Beggs et al. 2012). Additionally, in S. cerevisiae, the
poly(A) tails of histone mRNAs, which are 20–50 nt, are shorter than the average
length (70–90 nt), and their poly(A) tails shorten during the S phase (Beggs et al.
2012). S phase-specific inhibition of Pap1 activity by phosphorylation might be a
potential mechanism for histone mRNA poly(A) tail length control. Further studies
are needed to understand how histone mRNAs levels are regulated by the cell
cycle and how such mechanisms evolved during evolution.

Release of mRNA 30 Processing Factors After
Polyadenylation

Although the assembly of the mRNA 30 processing machinery has been studied
extensively, how these factors are released following polyadenylation remains
poorly understood. An important insight came from the observation that mutations
in factors involved in mRNA export or the assembly of export-competent mRNPs
(such as Mex67), lead to a defect in the release of mRNA 30 processing factors
from mRNAs (Qu et al. 2009). This suggest that a remodeling of mRNPs takes
place during which mRNA export factors may replace 30 processing factors on
polyadenylated mRNAs (Qu et al. 2009). This functional coupling may help to
ensure that only fully processed mRNAs are targeted for export, but the mecha-
nistic details of this mRNP remodeling step remain unclear.
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Alternative Polyadenylation and its Regulation in Fungi

Recent global studies have revealed that APA is surprisingly widespread in yeast.
For example, it is estimated that 40–70 % of the S. cerevisiae and S. pombe genes
produce alternatively polyadenylated mRNAs whose CS are separated by 50 nt or
more (Ozsolak et al. 2010; Mata 2013; Schlackow et al. 2013; Moqtaderi et al.
2013; Yoon and Brem 2010). However, as mentioned earlier, there seems to be a
high level of heterogeneity in the position of the CS in yeast (Moqtaderi et al. 2013).
Rather than one or a few distinct CS, cleavage/polyadenylation occurs in a *200 nt
‘‘end zone.’’ Thus, it may be difficult to distinguish between CS heterogeneity from
the same PAS and APA. However, recent studies clearly demonstrated that APA is
widespread in fungi (Ozsolak et al. 2010; Mata 2013; Schlackow et al. 2013;
Moqtaderi et al. 2013; Yoon and Brem 2010). In S. cerevisiae, more than 600 genes
use PAS within the CDS, producing truncated transcripts. Interestingly, a motif,
GAAGAAGA, is enriched in the 50 nucleotides upstream of the intragenic CS.
These truncated transcripts originate mainly from genes involved in stress response
and meiosis (Yoon and Brem 2010). Indeed, APA has been implicated in cellular
responses to many types of stress and in the regulation of meiotic gene expression,
which are discussed in details below.

APA Regulation and Metabolism

One of the first examples of APA regulation in budding yeast was described for the
gene CBP1 (Cytochrome b processing 1) (Mayer and Dieckmann 1989). Cbp1 is
required for the expression of the mitochondrial gene encoding Cytochrome B, a
component of the electron transport chain in respiration. In fermenting cells, two
CBP1 APA isoforms are produced (Mayer and Dieckmann 1989). The short iso-
form uses a PAS within the CDS and the resulting truncated mRNA does not code
for any protein product. The longer isoform encodes the functional Cbp1 protein.
Following induction of respiration by switching to a nonfermentable carbon
source, there is a shift in CBP1 APA pattern from the long to the short isoform
while the total mRNA level remains unchanged (Sparks and Dieckmann 1998;
Mayer and Dieckmann 1989). Three additional mRNAs were later shown to
undergo the same type of respiration-dependent APA change: AEP2/ATP13, which
is also necessary for respiration, and RNA14 and SIR1. Like CBP1, AEP2 encodes
a factor required for the expression of a mitochondrial respiration gene (ATP9).
Rna14 is a mRNA 30 processing factor (see ‘‘CFIA’’), and SIR1 encodes a mating
type locus silencing factor. Suppression of the short CBP1 transcript leads to the
constitutive production of elevated levels of the long CBP1 transcript indepen-
dently of respiration induction, which in turn results in the accumulation of the
mitochondrial CYTOCHROME B mRNAs (Sparks and Dieckmann 1998). These
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observations indicate that the APA may be a mechanism for respiration-dependent
regulation of gene expression (Fig. 3.3). However, the mechanism and biological
significance of APA regulation by metabolism remain to be determined.

APA Regulation and DNA Damage Response

APA changes have been observed in response to DNA damage (Fig. 3.4). For
example, polyadenylation of RPB2 (RNA Polymerase B 2) and CBP1 mRNAs
switches from the proximal to the distal PAS upon UV irradiation (Yu and Volkert
2013). A global study detected similar APA changes for over 2,000 genes under
similar conditions (Graber et al. 2013). Two possible mechanisms have been
proposed, which are not mutually exclusive. First, the transcription elongation rate
has been suggested to play an important role (Yu and Volkert 2013). A pharma-
cologically induced decrease in transcription elongation rate abolishes the APA
changes in RPB2 mRNAs following DNA damage (Yu and Volkert 2013), indi-
cating that fast transcription elongation rate promotes skipping of the proximal
PAS. Second, UV-induced DNA damage has been shown to cause a reduction in
the protein levels of CPF subunits and in turn lower mRNA 30 processing activity.
The decrease in the 30 processing activity results in the preferential recognition of
the distal PAS as they are intrinsically stronger and have higher affinity for the
mRNA 30 processing machinery (Graber et al. 2013) (Fig. 3.4). Interestingly, a
transient inhibition of the mRNA 30 processing machinery has been observed in
mammalian cells (Kleiman and Manley 2001). This is mediated by sequestration
of CstF50 by the BRCA1-BARD1 complex following DNA damage (Kleiman and

Fermentation 

Distal PAS
5′

Proximal PAS
Stop codon

Full length
transcript 

Respiration 

Distal PASProximal PAS
Stop codon

Truncated
transcript 5′

Fig. 3.3 Metabolism-mediated APA regulation. In fermenting Saccharomyces cerevisiae cells,
polyadenylation occurs mainly at the distal poly(A) site downstream of the coding sequences,
leading to production of the full-length mRNAs. In respiring cells, polyadenylation shifts to the
proximal poly(A) sites in the coding sequences, leading to the production of truncated transcripts
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Manley 2001). It will be of great interest to determine how CPF levels are regu-
lated and what the functional importance of these APA changes is for cellular
survival after DNA damage.

Nab4/Hrp1-Mediated APA Regulation and Copper Stress

The general 30 processing factor Nab4/Hrp1 has been identified as an important
APA regulator (Kim Guisbert et al. 2007). The SUA7 gene (Suppressor of
Upstream AUG 7) produces two APA isoforms. The long isoform is more abun-
dant in exponentially growing cells while the short isoform accumulates during
stationary phase (Hoopes et al. 2000). Nab4/Hrp1 was found to be critical for
regulating the cell cycle-dependent ratio of the isoforms (Kim Guisbert et al.
2007). Nab4/Hrp1 binds to a UA-rich motif and promote the usage of adjacent

Unexposed WT cells

Proximal PAS (Weak) Distal PAS (Strong) 

UV

UV-exposed cells

Proximal PAS (Weak) Distal PAS (Strong) 

CPF

Fig. 3.4 APA regulation in DNA damage response. In unstressed cells, high levels of CPF
allows for the recognition of weak poly(A) sites in the coding sequences, leading to the
production of truncated transcripts. Following UV-induced DNA damage, CPF levels decrease
and the remaining CPF preferentially binds to the strong distal poly(A) sites downstream of the
coding sequences, leading to production of full-length mRNAs
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PAS. Additionally, the protein level of Nab4/Hrp1 is also important: high levels of
Nab4/Hrp1 promote the usage of the proximal PAS in SUA7 mRNA (Kim Guisbert
et al. 2007). However, it has not been determined whether and how Nab4/Hrp1
protein level is regulated in cell cycle. Interestingly, nab4/hrp1 mutant stains are
extremely resistant to high concentration of copper. This is due to the APA change
in the CTR2 gene, which encodes a copper transporter. In nab4/hrp1 mutant strain,
the level of the CTR2 mRNA isoforms with the longest 30 UTR increases (Kim
Guisbert et al. 2007). These observations suggest that APA regulation plays an
important role in cellular stress induced by copper and perhaps other metals.

APA Regulation of Meiotic Gene Expression

A subset of meiotic genes in S. pombe was also shown to undergo APA upon
meiosis induction, and it was suggested to be important for the regulation of their
expression (McPheeters et al. 2009; Cremona et al. 2011; Potter et al. 2012). The
mechanisms involved are discussed in a following paragraph.

The first example of meiosis-dependent APA regulation was demonstrated for the
meiotic gene CRS1 (McPheeters et al. 2009). CRS1 mRNAs are polyadenylated at
two PAS. In vegetative cells, CRS1 mRNAs are actively degraded by the Mmi1
pathway as described later (‘‘mRNA 30 Processing in the Regulation of S. pombe
Meiotic Genes’’). Upon meiosis, Mmi1-mediated repression is alleviated and CRS1
mRNA undergoes splicing-coupled polyadenylation at both proximal and distal
PAS. Even though the ratio between the short and the long isoforms slightly changes
during the time course of meiosis, the distal PAS is always more predominantly used
over the proximal PAS (McPheeters et al. 2009; Chen et al. 2011). Later studies
identified additional meiotic transcripts using meiosis specific 30 processing-
dependent regulation (Cremona et al. 2011; Potter et al. 2012). These transcripts
were found to utilize more than one PAS upon meiosis induction, but again in this
case the proximal PAS usage relatively to the distal PAS was not studied in detail.
Although the biological consequences of meiotic-dependent APA are still not clear,
APA might be an additional way to regulate the proper timing of activation of these
genes during sexual differentiation progression.

Other Examples of Alternative Polyadenylation in Fungi

Kluyveromyces lactis (K. lactis) CYC1 mRNA (KLCYC1) was shown to use two
distinct PAS, whereas S. cerevisiae CYC1 mRNA has only one PAS (Freire-Picos
et al. 1995). CYC1 encodes the iso-1-cytochrome c factor, and KLCYC1 is essential
for respiratory growth in K. lactis. Specifically the longer APA isoform has been
suggested to be responsible for an increase biomass production during respiration,
and an inhibition of ethanol production during fermentation of K. lactis (Seoane et al.
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2005). Comparison of the sequences surrounding the two CS revealed a common
feature. There is an AACAA motif a few nucleotides upstream of the CS, and an AU-
rich region just upstream of the AACAA motif only for the proximal PAS. The ratio
between the two isoforms changes according to cellular growth conditions: the distal
PAS usage increases with the optical density of the culture (OD) when the proximal
PAS usage remains constant. KLCYC1 mRNA was correctly processed at the two
PAS when transformed into S. cerevisiae, but the growth-dependent APA change
was not observed, indicating the lack of a specific regulatory factor in S. cerevisiae
(Freire-Picos et al. 2001). The mechanism for KLCYC1 APA regulation remains
unclear, but Pta1 and Pcf11 seem to be involved (Seoane et al. 2009).

Gene Regulation at the 30 End

In addition to APA, mRNA 30 processing can participate in gene regulation in
other ways. The efficiency of mRNA 30 processing plays an important role in
controlling the mRNA abundance. mRNA 30 processing factors can modulate other
cellular processes to influence gene expression. In this section, we discuss a couple
of such examples.

mRNA 30 Processing in the Regulation of S. pombe Meiotic
Genes

In S. pombe, the mRNAs for meiotic genes are not detectable in vegetative cells
(Harigaya et al. 2006). However, several lines of evidence suggest that meiotic
genes are transcribed, but are actively degraded. First, depletion of the exosome
subunit Rrp6 results in the accumulation of hyperpolyadenylated meiotic mRNAs,
and hyperpolyadenylation of these mRNAs in the Rrp6-depleted cells depends on
Mmi1 (Meiotic mRNA interception 1), the poly(A) polymerase Pla1 (Harigaya
et al. 2006; Yamanaka et al. 2010), and Red1, a CCCH zinc-finger-containing
protein interacting with Mmi1 (Sugiyama and Sugioka-Sugiyama 2011). Second,
depletion of the mRNA 30 processing factors Rna15, Pla1 Pab2, Pfs2, and Dhp1, as
well as several transcription termination factors all induce the accumulation of
meiotic mRNAs (McPheeters et al. 2009; Yamanaka et al. 2010; St-Andre et al.
2010; Chen et al. 2011). Lastly, polyadenylation of meiotic mRNAs was shown to
be required for their elimination in vegetative cells (McPheeters et al. 2009;
Yamanaka et al. 2010).

Mmi1 plays a central role in this regulation (Fig. 3.5) (Harigaya et al. 2006). In
mitotic cells, Mmi1 interacts with meiotic mRNAs with a specific cis-element
containing the degenerate hexanucleotide motif UNAAAC (Zhang et al. 2010;
Hiriart et al. 2012; Yamashita et al. 2012). Mmi1 recruits mRNA 30 processing
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factors including Rna15 and Pla1 to hyperpolyadenylate its mRNA targets, which
in turn are degraded by the exosome (Yamanaka et al. 2010). Additionally, Mmi-
mediated meiotic mRNA degradation promotes the formation of heterochromatin
at meiotic genes, which also contributes to meiotic gene silencing (Zofall et al.
2012). During meiosis, Mmi1 is sequestered by the master meiotic regulator Mei2
and the meiotic mRNAs are derepressed (Harigaya et al. 2006). Although mRNA
30 processing factors are clearly involved in this regulatory pathway, their specific
functions in this process remain unclear.

mRNA 30 Processing Regulates the Expression
of Neighboring Genes

Given the compressed nature of the yeast genomes, transcription read-through due
to inefficient mRNA 30 processing is likely to interfere with the expression of
neighboring genes. When adjacent genes are arranged in tandem, transcription read-
through from upstream genes may inhibit the transcription of downstream genes
(Shearwin et al. 2005). On the other hand, when the neighboring genes are con-
vergent, 30 processing defects may lead to the collision of the transcription
machinery (Prescott and Proudfoot 2002). Additionally, a recent study revealed an
additional mechanism in S. pombe that regulate convergent gene expression in a cell
cycle-dependent manner (Gullerova and Proudfoot 2008, 2012). During G1-S
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Fig. 3.5 mRNA 30 processing factors are involved in the suppression of meiotic mRNAs. In
vegetative cells, Mmi1 binds to UNAAC motifs in its target meiotic mRNAs and recruits mRNA
30 processing factors, leading to polyadenylation of its target mRNAs and their degradation by the
exosome. Mmi1-mediated meiotic mRNA degradation also promotes the formation of
heterochromatin at meiotic gene loci
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phases, inefficient transcription termination leads to transcription read-through. The
resulting double-stranded RNAs formed between the transcripts of convergent
genes lead to the activation of the RNAi pathway. A transient RNAi-dependent
heterochromatin structure is formed in the intergenic region between the convergent
genes, characterized by the histone modification H3K9me3 and Swi6 binding, both
hallmarks of heterochromatin (for more details see Chap. 13). Through a direct
interaction, Swi6 induces the recruitment of cohesins at the chromatin of these
convergent genes in the G2 phase. Cohesins are proteins involved in the regulation
of sister chromatid separation during cell division. The presence of cohesins
between convergent genes blocks transcription read-through and promotes tran-
scription termination at the proper PAS, thereby restoring the mRNA levels of the
convergent genes. After mitosis, cohesins are released and the heterochromatin
structure at these loci is relieved (Gullerova and Proudfoot 2008, 2012). In S.
cerevisiae, cohesins were also shown to concentrate at intergenic regions of con-
vergent genes (Lengronne et al. 2004), but as H3K9me3 and RNAi are not con-
served in budding yeast, this process might involve a different mechanism. This cell
cycle-dependent gene regulation involving transcription termination regulation has
been shown to be particularly important for the regulation of RNAi genes as 80 % of
RNAi genes are convergent. This process of autoregulation may be important for the
regulation of heterochromatin formation during different phases of the cell cycle
(Gullerova and Proudfoot 2012; Zofall et al. 2012).

Conclusion /Future Directions

Studies in fungi have made tremendous contribution to our understanding of
eukaryotic mRNA 30 processing. Given the genetic tractability and the advent of
high throughput analysis approaches, fungi will prove highly useful in addressing
the remaining important questions in the field. First, although the list of essential
mRNA 30 processing factors is nearly complete, the functions of each factor in 30

processing remains poorly characterized. The combination of genetic and bio-
chemical analyses will be key to address this question. Second, as mentioned
earlier, the mRNA 30 processing machinery has evolved quite significantly in
eukaryotes. Both PAS sequences and mRNA 30 processing factors have diverged
in different lineages and species. Given the increasingly number of species with
their genomes sequenced, fungi provide a unique system to study the evolution of
the mRNA 30 processing system. Third, APA has increasingly been recognized as
an important mechanism for gene regulation. Since APA is widespread in yeast
and some of the regulatory mechanisms seem highly conserved between yeast and
mammals, fungi again will be very useful in deciphering the ‘‘polyadenylation
code,’’ the rules by which PAS selection is regulated.
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