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Abstract

Macroeconomic Research with Innovative Methods

by

Ziyu He

This dissertation uses innovative methods to study different perspectives of macroeconomics.

In particular, topics in this dissertation including macroeconomic modeling, computational

technics, and empirical analysis.

In the first chapter, I propose a numerical routine to approximate the radius of convergence

(ROC) for perturbation methods. The classical issue of solving dynamic stochastic models with

perturbation methods is that the solution only converges (to the true solution) locally over

the state space. Moreover, such a convergence range is usually undetectable under current

existing numerical methods. The proposed algorithm, in the limit, can approximate this range

both necessarily and sufficiently. It resolves the difficulty of assessing the appropriateness of

perturbation solutions. This chapter makes two types of contributions. First, method-wise, the

proposed algorithm is the first numerical routine on approximating the ROC of perturbation

solutions. In addition, as shown in this chapter, the approximated ROC converges to the

true value (no matter if it is analytically obtainable or not) as the order of the approximation

increases. Second, modeling-wise, this algorithm provides two main insights on the real business

cycle (RBC) model: (i) the perturbation method is capable of solving the standard RBC model;

the ROC is large enough to cover most commonly used calibrations; (ii) models with recursive

utility or stochastic volatility can not be solved appropriately by the perturbation method as the

standard calibration for TFP volatility exceeds the ROC of value function on this dimension.

In the second chapter, I try to shed light on the frontier research discussions around
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declining trends in business dynamism using a general equilibrium model structure with heterogeneous

individuals. The key mechanism of the framework is the strategic technological innovation

process of firms in response to an individual’s wealth holding and lifetime value of being in

different occupations. Such an endogenous TFP process accompanies by wealth inequality

reflects a firm’s relative technological position among other producers. The resulting ”winner

takes all” dynamics help the model jointly account for several observed empirical trends of

the U.S. economy. To accomplish this analysis, I adept a two-stage approach in my structural

model. In the first stage, I run a comparative analysis to numerically show that multiple

structural shocks are unnecessary to create stylized facts of declining business dynamism. As

a consequence, for the second stage, I introduce the ”winner takes all” dynamics to the model

and provide intuitions on the mechanism. I try to use both stages to emphasize the key role of

the interactions between wealth inequality and firm-specific productivity growth in explaining

the DBD facts during transitional dynamics.

In the third chapter, I investigate whether the series of President Trump’s tweets had

any effect on the stock market. In order to accomplish this, I divide this project into two

separate parts. For the first part, I collect all president Donald Trump’s tweets from his Twitter

database. I then run sentiment analysis on those tweets which contain content related to a

particular company that is in the S&P 500 index. For the other part, I create a new routine

for obtaining the abnormal daily return of stock indexes by time series forecasting. Combining

both parts together, I test the main hypothesis that a tweet from President Donald Trump will

significantly affect the stock price of the mentioned company. This chapter suggests only tweets

with positive sentiment have significant effects on stock price movement. Moreover, such an

effect only lasts for about one trading day.
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Chapter 1

Approximating the Radius of

Convergence of Dynamic Stochastic

Models

1.1 Introduction

The complexity and dimensionality of dynamic stochastic general equilibrium (DSGE)

models make them difficult and time-intensive to solve. Except for some special cases that yield

analytical solutions, DSGE models are usually solved by two subcategories of numerical methods:

global methods and local methods (see Table 1.1). The current “state of arts” of computational

economics makes balancing the tradeoff between numerical accuracy and computational cost of

a solution method very important. However, such a comparison is only relevant to the extent

that (1) a global method can be obtained with much lower cost and (2) a local method is

appropriate for the region under consideration. The classical way of addressing the first issue

includes numerical tools innovation and computational power improvement. In comparison, the

1



second issue has not even been touched yet by the literature. Filling this gap is the primary

motivation of this paper.

To make the exposition simpler, this paper treats the perturbation method and projection

method as two representative examples of local and global solution methods, respectively. Briefly

speaking, in economics, projection methods proposed by Judd (1992) and Gaspar and Judd

(1997) are globally convergent for the entire domain of the approximated function. However,

such solutions may be computationally demanding and even infeasible for nonlinear functions

of many state variables. Perturbation methods suggested by Judd and Guu (1993), a Taylor

expansion around the deterministic steady state of the original model typically requires far

less computations but are only convergent for a certain domain of the state space around

the point of approximation. This domain is known as the radius of convergence or range of

convergence (ROC) and is determined by the objective function, deep parameters, and the

point of approximation.

Table 1.1: Numerical methods for solving DSGE model

Linear solution Non-linear solution

Local method Global method

Perturbation
Projection

Dynamic Simulation Certainty

Log-linearization VF perturbation Programming Approach Equivalence

1st Order Optimal Smolyak’s Algorithm VFI GSSA
NLCEQ

Perturbation change of variables Chebyshev polynomial PFI, FPI EDS

Hybrid Algorithm (e.g., Taylor projection)

For most current quantitive economic studies, the perturbation method is still extensively

used for model solving and structural estimation purposes, despite having little knowledge of

its localness and the desirable global properties of the projection solution. There are several

2



reasons for this. First and foremost, higher-order perturbation solutions often produce analytical

approximations that reveal the essential dependence of the exact solution on model parameters in

a manner that is clearer than other numerical methods, assisting in economic interpretation and

model sensitivity analysis. For example, Collard and Juillard (2001) document that perturbation

captures the distribution of shocks (e.g., skewness and kurtosis) more precisely than Chebychev

polynomials in the asset pricing model of Burnside (1998). Second, as Aruoba et al. (2006)

pointed out, perturbation strikes an excellent balance between computational cost and numerical

accuracy relative to other numerical methods. More recently, Caldara et al. (2012) claimed that

solving complex DSGE models with recursive preferences and stochastic volatility is computationally

challenging, and perturbation is the only feasible approach with a reasonable computational

burden. Moreover, the performance and versatility of the perturbation method have been

improved a lot by later works1. Third, recent progress on the global method such as Smolyak’s

Algorithm and NLCEQ method is not satisfactory enough for competing with the perturbation

method in terms of the implementability2. Fourth, the current way of detecting the appropriateness

of the perturbation method is costly and ex-post, as it has to rely on the case study and cross

validation comparison with the global solution on numerical errors. Stylized papers on this topic

including, Swanson et al. (2006) and Swanson (2012), emphasize that in some circumstances,

a high-order perturbation solution exhibits excellent global accuracy. Petrosky-Nadeau and

Zhang (2017) shown that the perturbation method can produce severe Euler equation errors

when solving the Diamond–Mortensen–Pissarides model. Similarly, Schumacher and Nikolai

Graber (2019) argues that the perturbation-based solution method does not suffice whenever

1For improving the performance and versatility of perturbation method, see Judd (2003), Fernández-Villaverde
and Rubio-Ramı́rez (2006) for change of variables, and Van Binsbergen et al. (2012) and Caldara et al. (2012)
for value function perturbation.

2For example, the Smolyak’s Algorithm developed by Judd et al. (2014) largely mitigates the computational
cost of the projection method by reducing the total number of grids used for the approximation step. However,
it’s less efficient in terms of coding and can not be parallelized. The NLCEQ methods developed by Cai et al.
(2017) can solve models with 400 state variables with no pressure. However, this method is a deterministic
transformation of the original model and has only 2 or 3 digit accuracy for stochastic problems and cannot solve
risky portfolio optimization or stochastic problems with recursive preferences.

3



the economy is exposed to risks with long-lasting effects, etc.

To sum up, in the current literature, verifying the appropriateness of perturbation

solutions is computationally costly and case by case. There is no general and ex-ante numerical

method for addressing this issue. As a result, knowing the theoretical limitation of the perturbation

method does not contribute a lot to current economic research. For resolving such a difficulty,

this paper deviates from the above mentioned classical wisdom and step back to the fundamentals

of the perturbation method and the origin of its localness: the Taylor theorem and the radius

of convergence.

In functional analysis, the Taylor expansion of a function is only valid within a local

region around the point of expansion (inside of the ROC), regardless of the exact order of this

approximation. The derivatives of the underlying function determine the size of the region

at the point of approximation. Though the radius of convergence can be infinite in some

cases, it is usually finite, with a magnitude that diminishes with curvature (non-linearity)

and continuity of the underlying function. For economic models, as perturbation methods

are Taylor expansions around the deterministic steady state, there is no guarantee they will

provide an adequate approximation away from the fixed point (i.e., outside the ROC) of the

unknown objective function, even if they can be computed to an arbitrary high order. Further,

the inability to approximate the objective function over the entire domain is compounded, as

perturbation solutions can only be computed to finite order in nearly all practical applications.

As a consequence, the radius of convergence (to the extent that it is known) is the primary

device for assessing the localness of a perturbation solution.

There are two approaches (described below) to analytically derive the ROC of a Taylor

polynomial, both of which involve an infinite number of derivatives of the objective function.

Unfortunately, in economic applications, such methods are impractical as the objective function

(e.g., the policy function or value function) is usually unknown and, at best, its derivatives

4



can only be obtained up to a finite order. Historically, economists have resorted to ex-post

evaluations for the appropriateness of their local solutions via Euler equation errors (Judd,

1992) (or χ2 test (Den Haan and Marcet, 1994)) compared with global solutions. Nevertheless,

in contrast with the projection method, where Euler equation errors provide a necessary and

sufficient condition for their accuracy3. A small Euler equation error is only a necessary but not

sufficient criteria for ensuring the appropriateness of perturbation solutions, as commented by

Judd (1996). Until now, the ROCs for most DSGE models are unknown and even inaccessible

for economists (Fernández-Villaverde et al., 2016).

In this paper, I develop a numerical routine on approximating the radius of convergence

of an unknown objective function using only the coefficients of its finite perturbation solution.

Given these Taylor coefficients and their corresponding orders in a polynomial approximation,

the ROC can be approximated from a 2-stage optimization problem. Although, in practice,

such a solution is simply an approximation of the ROC (as we only have finite order Taylor

polynomial). It can be shown theoretically that, in limit, the optimized solution always results

in a conservative convergent approximation. This algorithm has several desirable features: (i)

theoretically, it provides a necessary and sufficient condition for characterizing the appropriateness

of a perturbation solution (in the limit); (ii) the approximated ROC value is guaranteed to

converge to the true ROC without knowing its value; (iii) there is relatively zero additional

cost to implement this method once the perturbation solution is obtained; (iv) it preserves the

dependency of the perturbation solution on the objective function, deep parameters, and the

point of approximation; and (v) it is compatible with any existing routine on solving DSGE

models with perturbation method.

I will now expand on the points above. First, the primary methodological contribution

of this paper is a numerical algorithm for approximating the ROC with a finite-order perturbation

3The projection methods are basically solving for the minimization problem of global errors.
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solution. Thus far, economists have typically assumed their perturbation solution is convergent

in a small neighborhood of the deterministic steady state but have not rigorously determined

how “small” the neighborhood should be. In most instances, researchers indirectly address this

issue through using Euler equation errors, suggesting a solution is acceptable if the deviation

between the model and the solution is small enough over a particular range. However, without

knowing the ROC of the model, a small Euler equation error is not sufficient for a numerical

solution to be highly reliable; similarly, a large Euler equation error is not sufficient to reject a

valid solution. For example, we should accept a k-th order perturbation solution with acceptably

small EEEs over some regions. However, without knowing the ROC, it is still possible for the

EEEs of a (k + 1)-th order perturbation solution to deteriorate in the same regions. Whenever

this happens, it actually suggests the k-th order perturbation solution is numerically accurate but

mathematically inappropriate, and the small EEEs is nothing but a coincidence. Alternatively,

a linear perturbation solution may usually have large EEEs for dynamics far away from the

point of approximation. However, it is not sufficient to reject this solution without knowing

the ROC, because as long as the dynamics approximated by this solution is inside ROC, it

is 100 percent capturing the first order effect of the original system. Hence it at least good

enough for research that is targeting on the linearized economy. Overall, there is no guarantee

on the appropriateness of the perturbation solution without knowing its necessary and sufficient

answer: the radius of convergence.

Second, this algorithm is a direct transformation of d’Alembert’s ratio test, hence

guaranteeing that the approximated ROC will converge to the true ROC. In fact, I prove that

the approximated ROC obtained by solving the 2-stage optimization problem is converging to

its theoretical values as the order of perturbation solution increases. Additionally, from the

applications of this paper, I also find the convergence rate is relatively faster when the order

of perturbation solution is low. This feature makes the algorithm being even more useful for

6



various economic studies.

Third, computing Euler equation errors can be costly, as it requires simulation and

numerical integration over the state space. In contrast, the proposed method only requires the

optimal affine function fitting on the perturbation coefficients set, hence demanding essentially

no additional computational cost as long as the perturbation solution is obtained.

Fourth, as Santos (2000) documents, changes in the curvature of the utility function and

depreciation rate have an important influence on the localness of perturbation solutions. In such

a case, Euler equation error is no longer able to further studying the sensitivity of perturbation

solutions under various parameterizations as it is a pure numerical measurement of accuracy

that has no interpretative meaning. However, as the ROC approximation uses the perturbation

coefficients, which preserve the essential dependence of the exact solution on model parameters,

it has natural advantages to study the mathematical property of perturbation solution.

Lastly, this algorithm is compatible with any existing perturbation-based routine on

solving DSGE models. Specifically, the algorithm requires input nothing more than the Kronecker

coefficient matrices of the perturbation polynomial, and it is independent of the exact procedure

of deriving these coefficients. This means the algorithm can be coupled with the output of any

standard perturbation package (e.g., Dynare, Dynare++, perturbationAIM, etc.).

This paper demonstrates the usefulness of the proposed ROC approximation routine

through a number of numerical applications. First, I approximate the radius of convergence for

univariate functions with known ROC. These examples allow me to evaluate the convergence

of approximated ROC when extremely high-order solutions are feasible. Moreover, I show

that the algorithm can also deliver a numerical approximation in cases where the ROC cannot

be analytically derived. Second, I apply this method to a real business cycle model and a

sequence of its variants. I start with the neoclassical growth model with log utility and full

capital depreciation, which admits closed-form solutions and known ROC. This model has low-
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dimensional state space and allows for high-order perturbation solutions as well. Subsequently,

I apply the ROC approximation method on the standard RBC model with constant relative

risk aversion (CRRA) utility and partial depreciation. I find that given most commonly used

calibrations, perturbation solutions of this model have pretty large ROCs. The associate

implication is that the perturbation solution is actually globally valid. Finally, I test this

method with an RBC variant that features Epstein-Zin-Weill preferences, as considered by Van

Binsbergen et al. (2012), Caldara et al. (2012), and Aldrich and Kung (2011). Using standard

calibrations from the asset pricing literature, I find the value function has a much smaller ROC

than the canonical RBC model in the total factor of production (TFP) volatility dimension.

Consequently, these results suggest that, regardless of Euler equation errors, the perturbation

method is inappropriate for solving RBC models with recursive utility. Also, from this practice,

by running a cross-validation check with χ2 test, I show that the Euler equation error fails to

accept a valid solution with reasonable parameterization.

The paper is organized as follows. Section 2 introduces the two-stage interpolation –

log-absolute difference algorithm on ROC approximation and a detailed practice on univariate

function with analytical ROC. Section 3 further applies the proposed algorithm into macroeconomic

models both with known ROCs (the neoclassical growth model with log utility and full depreciation)

and unknown ROCs (the standard RBC model). Section 4 extends applications to DSGE

models with more complex features and unknown ROCs, such as recursive utility and stochastic

volatility. Section 5 concludes, and additional material is provided in the Technical appendix.

1.2 Numerical approximation for ROC

This section introduces the numerical algorithm for approximating the radius of convergence

of an unknown objective function using its finite-order Taylor expansion. Mathematically, the

8



radius of convergence of an objective function centered on a point c is equal to the distance

from c to the nearest point in the complex plane, where the objective function cannot be defined

in a way that makes it holomorphic. Two approaches, the d’Alembert’s ratio test and the

Cauchy-Hadamard theorem can be used to arrive at an analytical expression for the ROC at

an arbitrary point in the domain of the objective function. Additionally, for specific points in

the domain, the ROC can be computed using the complex-plane approach (see, e.g. Judd and

Jin, 2002). However, knowing the theoretical ROC requires information about the objective

function and all its derivatives associate with the point of expansion. Since these requirements

are rarely practically feasible, a numerical algorithm that approximates the ROC with a finite-

order perturbation solution is an important methodological contribution to the literature.

1.2.1 An equivalent numerical specification of the theoretical ROC

Given Banach spaces X and Y , suppose F : X → Y is analytical (i.e., majorant series

converges) and a Ck+1 function (continuously differentiable up to order k+1) at domain C ∈ R.

The k-th order Taylor expansion of F (x) at point c ∈ C is defined as

T ck (x) =

k∑
n=0

tcn(x− c)n (1.1)

where the Taylor coefficient is defined to be

tcn =
F (n)(c)

n!
, ∀n ∈ N (1.2)

By Taylor’s theorem, the radius of convergence, Rc, is the region such that for x ∈ (c−Rc, c+Rc),

F (x) = lim
k→∞

T ck (x) =

∞∑
n=0

tcn(x− c)n (1.3)

That is, an infinite-order Taylor polynomial at point c converges to the objective function only

on the region (c−Rc, c+Rc); convergence is not guaranteed on other parts of the domain,

even with an infinite expansion. Notice that by definition, the Taylor coefficients, {tcn}
∞
n=0, only
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depending on the functional form of objective function F (x), its parameters, and the point of

expansion c.

Given an infinite Taylor expansion, d’Alembert’s ratio test defines the radius of convergence

around point c to be

Rc = lim
k→∞

∣∣∣∣ tcktck+1

∣∣∣∣ , ∣∣tck+1

∣∣ 6= 0 for k large (1.4)

In special cases, Equation (1.4) results in an analytic expression for the radius of convergence.

However, in most economic applications, such an expression does not exist nor is it feasible. To

arrive at a numerical approximation, I rewrite this equation as

1

Rc
= lim
k→∞

∣∣∣∣ tck+1

tck

∣∣∣∣ (1.5a)

⇔ − lnRc = lim
k→∞

[
ln
∣∣tck+1

∣∣− ln |tck|
]

(1.5b)

⇔ B∞ = lim
k→∞

[
ln
∣∣tck+1

∣∣− ln |tck|
(k + 1)− k

]
(1.5c)

Notice that Equation (1.5b) implies, as k → ∞, the difference between ln |tck| and

ln
∣∣tck+1

∣∣ of the Taylor expansion is converging to a constant number, − lnRc. Moreover,

Equation (1.5c) suggests that this constant B∞ = − lnRc can also be understood as the slope

of the affine function lies in-between points (k, ln |tck|) and
(
k + 1, ln

∣∣tck+1

∣∣). In such a plane,

the exponent index n can be thought as the x coordinates and the associated magnitude of

ln |tcn| stands for the y coordinates (see Section 1.2.4). Writing it down in an informative way,

the following Equation (1.6) presents the numerical specification of ROC approximation using

d’Alembert’s ratio test as

B∞ = − lnRc = lim
k→∞

[
ln
∣∣tck+1

∣∣− ln |tck|
(k + 1)− k

]
(1.6)

Alternatively, Cauchy-Hadamard theorem also allows us to compute the radius of

convergence analytically with the form,
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Rc =
1

lim sup
n→∞

n
√
|tcn|

(1.7)

However, I find it is tough to translate Equation (1.7) into a specification that has numerical

meaning. Hence the ROC approximation routine in this paper is simply build upon Equation

(1.6).

As a remark of this part, comparing adjacent terms in the series is easier to implement

numerically than the Cauchy-Hadamard expression. Therefore, the key numerical inference of

this section is that using the coefficients of the Taylor polynomial from set {(n, tcn)}∞n=0, the

radius of convergence at point c can be exactly computed by either reaching the limit of the

set
{[

ln
∣∣tcn+1

∣∣− ln |tcn|
]}∞
n=0

following Equation (1.5b), or solving the limit slope term from the

set {(n, ln |tcn|)}
∞
n=0 following Equation (1.5c). Specifically, for the slope approach, solution B∞

from Equation (1.6) is uniquely determines the radius of convergence as

B∞ = − lnRc ⇔ Rc = exp (−B∞) (1.8)

Equation (1.8) holds with exact equality whenever an infinite set of Taylor coefficients is available.

Corollary 1. Under the same assumptions, as the order of Taylor expansion k → ∞, the

solution of numerical specification Equation (1.5b) and Equation (1.5c), B∞, deliver the equivalent

result to the theoretical ROC value, Rc, that is defined by Equation (1.4).

Proof. The prove of the equivalency is directly from Equation (1.5) and the unique mapping

from B∞ to Rc is captured by Equation (1.8) .

1.2.2 A finite approximation for the numerical ROC

In practice, an infinite-order Taylor expansion is rarely available for objective function

F (x). Instead, under the same assumptions stated in the previous section, a finite Taylor
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approximation is defined as

F (x) ≈ T ck (x) =

k∑
n=0

tcn(x− c)n (1.9)

where k is a finite positive integer. Analogous to the transformation in Section 1.2.1, we can

define the finite approximation for Equation (1.6) as

− ln R̂c,k = Bk =

[
ln |tck| − ln

∣∣tck−1

∣∣
k − (k − 1)

]
= |ln tck| −

∣∣ln tck−1

∣∣ , k <∞ (1.10)

Notice that this finite approximation is well defined as long as k ≥ 1. Lemma 1

illustrates the asymptotic convergence properties of the finite approximation proposed above.

Lemma 1. Given the finite set of Taylor coefficients {(n, tcn)}kn=0 of objective function F (x), the

slope Bk solves the finite approximation of the d’Alembert’s ratio test (1.10), and its associated

ROC approximation, R̂c,k, converge to the true radius of convergence as k →∞.

Proof. The result can be immediately derived from equation (1.10) by taking the limit of k on

both sides

lim
k→∞

− ln R̂c,k = lim
k→∞

Bk = lim
k→∞

[
ln |tck| − ln

∣∣tck−1

∣∣]
by equation (1.6) (set k = k + 1), the RHS is equal to

lim
k→∞

[
ln |tck| − ln

∣∣tck−1

∣∣] = − lnRc = B∞

Therefore, the solution Bk and its corresponding ROC approximation R̂c,kR solved from the finite

approximation (1.10) is converging to the true solution B∞ and Rc as k →∞ by Corollary 1.

Notice that although Lemma 1 can ensures an asymptotic convergent approximation

in limit, there is no guarantee that the numerical performance of the finite approximation ROC

is going to stable. For example, in practice, the set {(n, tcn)}kn=0 can be quite volatile before

it converges to the slope B∞. In such a case, the log-absolute difference between two Taylor

coefficients, Bk, as computed by Equation (1.10), is going to have some degree of fluctuation as
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well. However, as explained below, this issue can be mitigated by introducing several numerical

refinements.

1.2.3 A two-stage routine on ROC approximation with finite Taylor

expansion

Based on the results in Section 1.2.2, I will now present a two-stage numerical routine

on the finite approximation of ROC that is easy to implement in practice. As a beforehand

remark, this paper confines attention to developing a computationally efficient, parsimonious

numerical method that can provide a convergent approximation for ROC rather than proposing

the most efficient ROC approximation algorithm. Other possibilities of improving the algorithm

are beyond its scope.

1.2.3.1 Domain Refinement

Let us begin by refining the set of inputs of the approximation procedure, {(n, tcn)}kn=0.

The domain refinement proposed below can ensure the solution method is well-define and efficient

(i.e., discard uninformative inputs). Given objective function F (x), point of expansion c, and

the associated k-th order Taylor polynomial specified in Equation (1.9). The active set of points

for the finite approximation of the d’Alembert’s ratio test (1.10) is defined as {(na, tc,an )}k
a

n=0 ≡

{(n, tcn) : tcn 6= 0}kn=0, where ka ≤ k indexes the order of last non-zero coefficient, {tc,an 6= 0}k
a

n=0

is the non-zero subset of unnormalized Taylor coefficients ({(n, tcn)}kn=0), na ∈ {0, . . . k} is the

order index for non-zero terms. The intuition for the active set of points refinement is as follows.

For most economic models, the set {(n, tcn)}kn=0 will comprise only non-zero values, where the

active set of points is identical to the original set, {(na, tc,an )}k
a

n=0 = {(n, tcn)}kn=0. However,

in certain cases, a subset of the Taylor coefficients may be coincidentally zero at the point of

approximation, or because the objective function exhibits oscillatory behavior that causes the
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Taylor coefficients to be periodically zero4. For these cases, the active set of points is simply

a subset of the original set, hence still preserves the convergence properties of the numerical

method as discussed in Section 1.2.2. Moreover, notice the theoretical definition of d’Alembert’s

ratio test (1.4) also requires non-zero coefficients as input. Hence, the active set refinement for

the inputs is necessary.

Utilizing the active set refinement, we have the following useful lemma.

Lemma 2. Given the active set of points {(na, tc,an )}k
a

n=0 of objective function F (x), the slope

Bk
a

solves the finite approximation of the d’Alembert’s ratio test (1.10), and its associated ROC

approximation, R̂c,k
a

, is well defined and converge to the true radius of convergence as k →∞.

Proof. I first show that Bk, defined in (1.10), is only well defined on the active set of Taylor

coefficients. Suppose tcn = 0 for some n, then ln |tcn| = ln |0|, which is not well-defined, hence

making the finite approximation of the d’Alembert’s ratio test ill-conditioned.

To show convergence, I appeal to Corollary 1 and Lemma 1, which prove the Bk, using

the full set of Taylor coefficients for k <∞, converges to B∞ = − ln (Rc). Since any subsequence

of a convergence sequence converges, and because the active set {(na, tc,an )}k
a

n=0 is a subsequence

the of the full Taylor coefficients set {(n, tcn)}kn=0, they likewise converge to B∞ = − ln (Rc) as

k →∞. Therefore B∞ = lim
k→∞

Bk
a

.

1.2.3.2 The first-stage approximation: a polynomial interpolation solution

As long as the active set of points behaves nicely (relatively linear), Equation (1.10) is

still quite useful for ROC approximation, I then denote this solution (after domain refinement)

4An example of this type of functions is cosx, whose Taylor expansion evaluated at c = 0 is

cosx ≈
k∑

n=0

(−1)n
x2n

(2n)!
= 1 −

x2

2!
+
x4

4!
−
x6

6!
+ · · ·

In this case, coefficients of all odd terms are zero, whereas the even terms are nonzero.
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by

Bk
a

ld = ln |ta,cka | − ln
∣∣∣ta,cka−1

∣∣∣ (1.11)

where ka = max {n : ta,cn 6= 0}, and ka−1 stands for the second-largest index for the active set.

Notice solution Bk
a

ld is literally the slope of the affine function that connects the last two Taylor

coefficients of the active set.

However, whenever the stability issue (as mentioned in Section 1.2.2) exists, Equation

(1.11) is no longer efficient. I am now introducing a polynomial interpolation solution to the

d’Alembert’s ratio test. Notice there are many possible numerical ways of addressing this issue,

among which the polynomial interpolation method may not be the most efficient approach but

is definitely the one that is straightforward and intuitive enough to go with.

To be specific, let us define the polynomial interpolation solution of the finite approximation

of the d’Alembert’s ratio test as

Bk
a

Inter = P (ka + 1)− ln |ta,cka | (1.12a)

P (n) =

ka∑
j=ka−3

ln
∣∣ta,cj ∣∣Pj (n) , Pj (n) =

ka∏
k = ka−3

k 6= j

(
n− k
j − k

)
(1.12b)

where ka = max {n : ta,cn 6= 0} and ka−3 stands for the fourth-largest exponent index for the

active set. Notice this interpolation solution requires four Taylor coefficients from the active set.

There are two main reasons for selecting this number. First, the computational cost of getting

four Taylor coefficients, or equivalently a third-order perturbation solution, is quite reasonable.

Second, four points can be used to construct a cubic polynomial approximation that is capable

of capturing most of the non-linearity of the active Taylor coefficients set, hence providing a

more robust approximation for ROC. Consequently, it can largely smooth out the volatility of

irregular Taylor coefficients while producing accurate approximation for the slope B∞ when
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the coefficients are well behaved. Simultaneously, it is efficient and not tends to over-fitting or

under-fitting.

In the limit, the polynomial interpolation solution has the following property.

Proposition 1. Given the active set of points {(na, tc,an )}k
a

n=0, the polynomial interpolation

solution Bk
a

Inter from Equation (1.12) solves the finite approximation of the d’Alembert’s ratio

test (1.10). The solution Bk
a

Inter converges to − lnRc as k →∞.

Proof. Since the solution of Equation (1.11) converges to the true ROC by Lemma 2, we only

need to show the polynomial interpolation solution converges to Bk
a

ld when k →∞. To see this,

let’s assume that the interpolation solution is not converging to Bk
a

ld . Without loss of generality,

let’s denote the cubic polynomial solution with the form P (n) = α0 +α1n+α2n
2 +α3n

3. Now

the value of ln |ta,cka | and the extrapolation value of ln
∣∣ta,cka+1

∣∣ can be written as

P (ka) = α0 + α1k
a + α2 (ka)

2
+ α3 (ka)

3

P (ka + 1) = α0 + α1 (ka + 1) + α2 (ka + 1)
2

+ α3 (ka + 1)
3

simplifying we have

P (ka + 1) = P (ka) + α2 (2ka + 1) + α3

[
3 (ka)

2
+ 3ka + 1

]
Taking limit on both side

lim
k→∞

P (ka + 1) = lim
k→∞

P (ka) + lim
k→∞

{
α2 (2ka + 1) + α3

[
3 (ka)

2
+ 3ka + 1

]}
⇔

lim
k→∞

ln
∣∣ta,cka+1

∣∣− lim
k→∞

ln |ta,cka | = (α2 + α3) + lim
k→∞

{
3α3 (ka)

2
+ (2α2 + 3α3) ka

}
By Lemma 2, the following identity must holds

− lnRc = lim
k→∞

[
ln
∣∣ta,cka+1

∣∣− ln |ta,cka |
]

= (α2 + α3) + lim
k→∞

{
3α3 (ka)

2
+ (2α2 + 3α3) ka

}
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Shifting ka back by one, i.e. let ka = ka − 1, we will end up with exactly the same expression

as Equation (1.11) which contradicts to the original assumption. Therefore the solution Bk
a

Inter

converges to − lnRc as k →∞.

For conservative purposes, let us define the final first-stage approximation result as

R̂c,k
a

= min
{
Rc,k

a

Inter, R
c,ka

ld

}
= exp

(
−max

(
Bk

a

Inter, B
ka

ld

))
(1.13)

where R̂c,k
a

refers to be the first-stage approximation given ka. The intuition for Equation

(1.13) is as follows: given the same point of expansion c and the order of Taylor polynomial

k (hence same ka), the solution Rc,k
a

Inter and Rc,k
a

ld are not necessarily identical. However, for

conservative purposes, one may always want to pick up the smaller approximated ROC value

rather than the larger one, i.e., underestimation is always preferred in ROC approximations.

The following proposition states the first-stage approximation converges.

Proposition 2. Given solution Bk
a

Inter and Bk
a

ld , the first-stage approximation R̂c,k
a

defined by

(1.13) converges to Rc as k →∞.

Proof. By equation (1.13), the first stage approximation can also be rewritten as

R̂c,k
a

= exp
(
−max

(
Bk

a

Inter, B
ka

ld

))
= max

(
exp

(
−Bk

a

Inter

)
, exp

(
−Bk

a

ld

))
Taking limit on both side and by Lemma 2 and Preposition 1

lim
k→∞

R̂c,k
a

= lim
k→∞

[
max

(
exp

(
−Bk

a

Inter

)
, exp

(
−Bk

a

ld

))]
= max

(
lim
k→∞

[
exp

(
−Bk

a

Inter

)]
, lim
k→∞

[
exp

(
−Bk

a

ld

)])
= max (exp (−B∞) , exp (−B∞))

= exp (−B∞)

= Rc

17



which equality completes the proof.

1.2.3.3 The second-stage approximation: a monotonic transformation

Regardless that the first-stage approximation R̂c,k
a

has been carefully selected, a

restrictive finite set of points {(n, tcn)}kn=0 (from a Taylor polynomial with small k) is still the

most challenging part of making the ROC approximation conservative. In fact, Proposition 2

only guarantees that R̂c,k will converge to the true ROC in limit, but not in how it converges.

For example, this value can monotonically decrease to the true Rc or the other way around. In

the worst case, it may even oscillate while converging to the true Rc.

One way to avoid the aforementioned cases is to impose increasing monotonicity on

the R̂c,k
a

sequence such that it increasingly converges to the true Rc from below as the degree

of Taylor expansion rises. For example, given a k-th order Taylor expansion of F (x), we

should be able to get (ka − 1) numbers of first-stage approximation from {(na, ta,cn )}k
a

n=0
5. If the

Taylor coefficients set is highly nonlinear, the first-stage approximations are going to oscillate

correspondingly, i.e., the first-stage ROC approximation may either overestimated
(
R̂c,n > Rc

)
or underestimated

(
R̂c,n < Rc

)
. Now, if we can use a trick to force all leading values to be

uniformly smaller than the later approximation, i.e., R̂c,n < R̂c,n+1 < R̂c,k
a

for n < ka, then

by Proposition 2, in limit, the ROC approximations are going to converge to the true ROC

monotonically from below.

Considering the ROC is usually unknown, the best we can do to capture this idea

is to impose increasing monotonicity on the first-stage approximations (up to a finite k) such

that all leading values are uniformly smaller than the latest approximation R̂c,k
a

. As a result,

the ROC approximation after this monotonic transformation is, at least, always a conservative

approximation for a k-th degree Taylor polynomial. Conceptually, such a property acts exactly

5Recall that a first-stage approximation only requires two Taylor coefficients (Equation (1.11)). Therefore we

can get (ka − 1) number of R̂c,kas by repeating the first-stage procedure for n from 1 to ka.
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as the sufficient condition of the conservative ROC approximation as k → ∞. Hence, the

second-stage can also be thought of as an approximation for the sufficient condition of the

Taylor theorem, and the appropriateness of the perturbation solution.

To illustrate the second-stage implementation, let us begin with obtaining
{
R̂c,n

}ka
n=0

from a k-th order Taylor expansion of F (x). To impose a monotonic transformation, first solve(
1− 1

n

)pn
R̂c,n ≤ R̂c,k

a

, ∀0 ≤ n ≤ ka (1.14)

⇒ pn =

⌈
log

(
R̂c,k

a

R̂c,n

)
/ log

(
1− 1

n

)⌉

where R̂c,k
a

is the latest approximation using full {(na, ta,cn )}k
a

n=0 set.

Notice that Equation (1.14) is essentially ad-hoc imposing a pn-th6 order penalty term

on all of the (ka − 1) leading terms of R̂c,k
a

. By imposing (1− 1/n)
pn

, each of these terms

is guaranteed to be smaller than the first-stage approximation R̂c,k
a

. Now, defining pk =

max {pn}k
a

n=0, let us then construct the second-stage monotonic transformed approximation by

ˆ̂
Rc,n =

(
1− 1

n

)pk
R̂c,n, ∀0 ≤ n ≤ ka (1.15)

where
{

ˆ̂
Rc,n

}ka
n=0

refers to the second-stage approximation sequence and
ˆ̂
Rc,k

a

is the final

approximation result from the second-stage.

By Equation (1.15), (1− 1/k)
pk ∈ (0, 1). Hence, the way it penalizes the first-stage

finite approximation
{
R̂c,n

}ka
n=0

is, after obtaining the approximated value R̂c,n, the penalty

term reduces this approximated range by
[
1− (1− 1/n)

pk
]
R̂c,n. Notice as (1− 1/k)

pk → 1, the

second-stage transformation procedure allows R̂c,k
a

converging to the true limit when k → ∞.

Moreover, each term of the second-stage sequence
{

ˆ̂
Rc,n

}ka
n=0

is guaranteed to be smaller than

their following term. This property is summarized in proposition 3 below.

Proposition 3. Given the first-stage approximation R̂c,k
a

, the second-stage approximation

ˆ̂
Rc,k

a

converges to Rc monotonically from below as k →∞.
6For simplicity reason, I set pn to be always an integer.
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Proof. By constructing Equation (1.15), we can compute the limit of
{

ˆ̂
Rc,n

}ka
n=0

as

lim
k→∞

ˆ̂
Rc,k

a

= lim
k→∞

(
1− 1

n

)pk
R̂c,k

a

= lim
k→∞

(
1− 1

n

)pk
· lim
k→∞

R̂c,k
a

= Rc

which proves the second-stage approximation converges. By convention, it always true that

(
1− 1

n

)pk
≤
(

1− 1

(n+ 1)

)pk
≤ 1⇒ ˆ̂

Rc,n ≤ ˆ̂
Rc,n+1 ≤ Rc, for k →∞

Therefore, I conclude that in limit, the second-stage approximation
{

ˆ̂
Rc,n

}ka
n=0

converges to Rc

monotonically from below.

1.2.3.4 Algorithm

Combining subsection 1.2.3.1˜1.2.3.3, Algorithm 1 summarized the two-stage interpolation

– log-absolute difference routine for ROC approximation in steps.

We also have the asymptotical conservative convergent property for Algorithm 1. Given

k-th order Taylor expansion T ck of the objective function F (x) around point c, the numerical

approximation of ROC from Algorithm 1 is conservative and converges to the theoretical ROC

as k →∞.

Proof. The prove is an immediate result of Proposition (1)-(3).

Notice Algorithm 1 is able to provide an approximation of ROC with finite Taylor

expansion. Moreover, it also provides an approximation for the sufficiency condition of the Taylor

theorem in the limit. The appropriateness of the perturbation solution becomes assessable.
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Algorithm 1 The 2S-Inter-ld algorithm for ROC approximation.

Step 1. Given objective function F (x), the point of expansion c, and the order of Taylor

expansion k, derive the analytical form of finite Taylor expansion as defined in Equation (1.9).

Step 2. Collect the order index n = 0, . . . k and its corresponding Taylor coefficient tcn, construct

the original full Taylor coefficients set {(n, tcn)}kn=0 and its nonzero active subset {(na, tc,an )}k
a

na=0.

Step 3. Get the first-stage approximation by

1. Solve Bk
a

ld of the d’Alembert’s ratio test (1.10) by log-absolute difference approximation

(1.11).

2. Solve Bk
a

Inter of the d’Alembert’s ratio test by polynomial interpolation approximation

(1.12).

3. Selecting the minimum of the approximations by Equation (1.13).

Step 4. Get the second-stage approximation by

1. For each 0 ≤ n ≤ ka, solve for pn using Equation (1.14) and picking up the maximum

value pk = max {pn}k
a

n=0.

2. Superimpose monotonic transformation on the first-stage sequence
{
R̂c,n

}ka
n=0

using

Equation (1.15) and formulate the second-stage approximation sequence
{

ˆ̂
Rc,n

}ka
n=0

.

3. The final approximation for Rc is
ˆ̂
Rc,k

a

.

1.2.4 An illustrative example

In order to finalize this section, I use a univariate function as a detailed example

to illustrate how Algorithm 1 is executed. This includes a visualization of the active Taylor

coefficient set {(na, tc,an )}k
a

n=0, the theoretical slope B∞ for the d’Alembert’s ratio test (1.10),
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the polynomial interpolation solution, and the second-stage monotonic transformation.

Using the concept of slope B∞ from the d’Alembert’s ratio test, Figure 1.1 plots the

2S-Inter-ld algorithm for approximating the radius of convergence of function y =
√
x at x = 0.7.

In this case, one can exactly compute R0.7 = 0.7, the associated B∞ = − ln 0.7, is captured by

the slope of the solid red line in this plot. The blue dots in both panels 1.1a and 1.1b represent

the Taylor coefficients of function y =
√
x at x = 0.7 up to a 25-th order Taylor expansion (a

6-th order Taylor expansion in panel 1.1a and a 25-th order Taylor expansion in panel 1.1b).

And notice for this case, {(na, tc,an )}k
a

n=0 = {(n, tcn)}kn=0, all Taylor coefficients are non-zero.

Figure 1.1: 2S-Inter-ld algorithm on y =
√
x up to 25th order at x = 0.7 (B∞ )
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The main takeaway of Figure 1.1a is that the polynomial interpolation solution performed

more robustly when Taylor coefficients are highly nonlinear. To be specific, the seven blue dots

in the left panel represent the first seven Taylor coefficients of a 6-th order Taylor expansion of

y =
√
x at x = 0.7. The dashed blue curve that connects each two Taylor coefficients can be

understood as a graphical representation for the log-absolute difference approach (1.11). The

slope of the straight dashed blue line (above the horizontal axis) is B6
ld. It is easy to see that

the slopes are quite volatile before the Taylor coefficients converging to the theoretical trend
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B∞, hence deliver oscillatory and less efficient ROC approximations. Instead, the polynomial

interpolation solution B6
Inter captured by the solid blue lines approximate the theoretical trend

B∞ in a much stable way as it smooths out the oscillations from the log-absolute difference

approach, therefore able to provide more efficient approximations. The black curve describes

one possible case of overfitting. It uses all seven coefficients to interpolate a cubic polynomial.

Figure 1.1b presents a big picture of Algorithm 1. The blue dots represent all 26

Taylor coefficients of a 25-th order Taylor expansion of y =
√
x at x = 0.7. The solid black line

captures the solution B25
Inter, where the dashed black line representing the solution B25

ld . Notice

these two approaches are almost identical whenever Taylor coefficients are very well behaved.

Selecting the minimum ROC approximation among these two, the first-stage approximation is

R̂0.7,25 = min
[
− exp

(
B25
Inter

)
,− exp

(
B25
ld

)]
(slope of the dashed blue line).

Notice from Figure 1.1b, the slopeB25
1st is smaller thanB∞, suggesting that it overestimates

the true ROC. However, following Step 4 of Algorithm 1, the maximum penalty exponent of

first-stage sequence
{
R̂0.7,n

}ka=25

n=0
is solved to be p25 = 3. Imposing this penalty, the last

term of the second-stage sequence
{

ˆ̂
R0.7,n

}ka=25

n=0
is

ˆ̂
R0.7,25 = 0.6620, this is also the final ROC

approximation result conducted by Algorithm 1. Translating to the slope, it is represented by

the solid blue line (
ˆ̂
R0.7,25 = − exp

(
B25

2nd

)
). This result is numerically conservative because

ˆ̂
R0.7,25 < R0.7. Thus, it provides a necessary and sufficient condition of the appropriateness of

the Taylor expansion.

Figure 1.2 uses the radius of convergence Rc to further illustrate Algorithm 1, in which

example I approximate y =
√
x at x = 0.7 by a 100-th degree Taylor expansion. The first

subsection of Figure 1.2 plots the approximated ROC values solved by both the polynomial

interpolation ({BnInter}
100
n=1 ) and the log-absolute difference ({Bnld}

100
n=1) method. Notice both

approaches tend to overestimate the ROC at the first stage. In the second subsection, the
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black star curve represents the first-stage sequence
{
R̂0.7,n

}ka=100

n=0
, which formulated by taking

the minimum value among R0.7,n
Inter and R0.7,n

ld for each order n. After superimposing the penalty

exponent p100 = 3, the second-stage sequence ends up with
{

ˆ̂
R0.7,n

}ka=100

n=0
, which is represented

by the blue hexagram curve. Clearly, the second-stage sequence converges to the true ROC from

below after the monotonic transformation. Finally, the approximated ROC value is
ˆ̂
R0.7,100 =

0.6898, which is closer to 0.7 than the 25-th order Taylor expansion case. Moreover, from

the third subsection, the convergence rate of Algorithm 1 is quite fast for the early stage but

gradually slows down as higher-order terms are added.

Figure 1.2: 2S-Inter-ld algorithm on y =
√
x up to 100th order at x = 0.7 (Rc)

Overall, this example visualizes some of the essential numerical features of Algorithm
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1 discussed in this section7. As shown, even with a finite Taylor polynomial, the proposed

algorithm still exhibits good practical potentials on the numerical approximation for ROC and

is ready to be unleashed to macroeconomic applications.

1.3 Numerical applications on benchmark macroeconomic

models

The main purpose of this section is to use perturbation solutions of basic RBC models

with and without analytical ROC to test whether Algorithm 1 can deliver a satisfactory performance.

To accomplish this, I start with the neoclassical growth models with closed-form ROC and

then relaxed the assumptions to a standard RBC model where the radius of convergence is

uncomputable. As these practices show, the 2S-Inter-ld algorithm is able to assess the appropriateness

of perturbation solutions of benchmark macroeconomic models.

1.3.1 Approximated ROC of the closed-form neoclassical growth models

For conservative reasons, the numerical application starts from models with analytical

solutions. I pick the simple neoclassical growth model with log utility compounded with fully

depreciated capital and the asset pricing model proposed by Burnside (1998) (see the Technical

Appendix) as two benchmark tests for Algorithm 1.

Consider the economy with representative households decide consumption ct and capital

kt+1 at every time period to maximize their lifetime utility on

max
{ct,kt+1}∞t=0

E0

∞∑
t=0

βtu(ct)

where E0 is the expectation operator at time 0, β ∈ (0, 1) is the discount factor, and the utility

7For the other two univariate function examples, see Appendix A.2.
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function u(ct) = log(ct). For simplicity, I normalized the labor to one that drops the labor

decision in this model setup. The production function takes Cobb-Douglas form

yt = eztkαt

where zt is the productivity shock and follows AR(1) process

zt = ρzt−1 + χσzεt, εt ∼ N (0, 1)

with time consistency |ρ| < 1, scale parameter σz, and perturbation parameter χ. Assuming

full depreciation δ = 1, the law of motion of capital becomes

kt+1 = eztkαt − ct

This is the well-known case of the neoclassical growth model with closed-form policy functions

given by

kt+1 = αβeztkαt

ct = (1− αβ) eztkαt

However, one can also use the perturbation solution to solve this model around the non-stochastic

steady state. It can be shown that the perturbation solution8 is identical to the Taylor expansions

of these closed-form policy functions.

To see this, recall that the state space in this model is two dimensional. Hence, there

are three interacting variables in the perturbation solution. Using policy function of capital as

8For all macroeconomic applications in this paper, I use Mathematica to obtain the perturbation solution.
The symbolic computation feature of Mathematica provides high numerical efficiency on taking high dimensional
derivatives. Moreover, this feature also allows me to get perturbation coefficients with an extremely simple
transformation.
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an example, the perturbation solution has the following form

kt+1(kt, zt, σz;χ) =kss + kk (kt − kss) + kzzt + kχχ+ kkz (kt − kss) zt + kkχ (kt − kss)χ

+
1

2

[
kkk (kt − kss)2

+ kssz
2
t + kχzχzt + kχ2χ2σ2

z

]
+

1

6
[· · · ] + · · · (1.16)

Set zt = 0 and χ = 1, the right hand side of (1.16) will be the same as the Taylor expansion of

policy function of capital for zt = 0 = zss (Same trick applies for deriving high order perturbation

solution for the capital policy function when kt = kss):

kt+1 (kt, zt = 0, σz) ≈
k∑

n=0

F (n)(kss, 0, σz)

n!
(kt − kss)n

F (kt, zt, σz) = αβeztkαt

As a numerical demonstration, Table 1.2 displays the first six coefficients of the Taylor

expansion and the perturbation solution for policy function of capital (on kt and zt dimension).

Based on such interchangeability, in this application, I use the Taylor expansion of

policy functions as a shortcut to approximate Rc. Same as the previous univariate examples,

this equivalency saves enormous computational cost on deriving the perturbation solution, and

at the same time, allows me to test the asymptotical performance of Algorithm 1, as a 100-th

order Taylor expansion of policy function in readily available. In addition, for this closed-form

neoclassical growth model, I show that (see the Technical Appendix) the ROC of the capital

policy function is (−kss, kss) on kt dimension and (−∞,+∞) on zt dimension (or equivalently

σz in this model).
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Table 1.2: Coefficients comparison between Taylor expansion and perturbation solution

(a) Coefficients for Kt+1 (kt)

Order Perturbation method Taylor expansion

0 0.18829 0.18829

1 0.33000 0.32999

2 -0.58709 -0.58709

3 1.73562 1.73561

4 -6.15257 -6.15252

5 23.98300 23.98277

(b) Coefficients for Kt+1 (zt)

Order Perturbation method Taylor expansion

0 0.18829 0.18829

1 0.18829 0.18829

2 0.09414 0.09414

3 0.03138 0.03138

4 0.00784 0.00784

5 0.00156 0.00156

Following the same logic as the square root example, Figure 1.3 plots the details of

ROC approximations for the perturbation solution of the capital policy function on the kt

dimension. Again, the first subsection suggests the first-stage ROC approximation sequences

are both overestimate R∞. The second subsection states the importance of superimposing the
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monotonic transformation at the second-stage. In this case, the approximated ROC for kt

dimension has around two-decimal accuracy using a 15-th order perturbation solution.

Figure 1.3: Closed-form neoclassical growth model (ROC approximation on kt dimension)

As a finish of the test, from Figure 1.4, the approximated ROC values for the perturbation

solution of capital policy function on the zt dimension are monotonically increasing. This

matches with the fact that the true ROC is Rc = ∞. An economic interpretation for this

infinity ROC is that the correction for risk is zero in a closed-form neoclassical growth model.

Thus, any increment in risk generates two counterbalancing mechanisms: a desire to accumulate

more capital to buffer future negative shocks and a desire to accumulate less capital to avoid

the additional production risk. Therefore, the volatility of TFP shocks plays no role in policy

function, i.e., the perturbation solution is globally appropriate on TFP dimension. However,
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there is no way of approximating infinity. A monotonically increasing ROC approximations (as

the number of coefficients growing) is the best that Algorithm 1 can do. For the same reason,

there is no need for the second-stage penalty in this case.

Figure 1.4: Closed-form neoclassical growth model (ROC approximation on zt dimension)

Overall, the numerical practices on the closed-form neoclassical growth model confirms

further that the Algorithm 1 is reliable on economic applications. Moreover, it also confirms

that, as Swanson et al. (2006) and Swanson (2012) point out, the policy functions of some DSGE

models are globally supported by the perturbation solution.

1.3.2 Approximated ROC of the standard RBC model

For the first macroeconomic application with unknown ROC, I add the CRRA utility

function that allows risk-aversion to take values other than 1. Meanwhile, the capital now

partially depreciates at every period. Hence, the model used in this part can be reduced to a

closed-form neoclassical model by only resetting values for δ, θ, and γ.

1.3.2.1 Model setup and equilibrium conditions

Consider the economy with representative households deciding consumption Ct, leisure

1− Lt and capital Kt+1 at every period to maximize their life time utility on

max
{Ct,Kt+1}∞t=0

E0

∞∑
t=0

βt

(
Cθt (1− Lt)1−θ

)1−γ

1− γ
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where E0 is the expectation operator at time 0, β ∈ (0, 1) is the discount factor, γ stands for

the risk aversion and θ is the weight between consumption and leisure.

The production function takes Cobb-Douglas form Yt = eztKα
t L

1−α
t , where zt is the

productivity shock and follows the AR(1) process zt = ρzt−1 + χσzεt, εt ∼ N (0, 1) with time

consistency |ρ| < 1, scale parameter σz, and perturbation parameter χ. The law of motion

of capital has partial depreciation δ 6= 1 and the household satisfies the budget constraint

Yt = Ct + It.

The equilibrium conditions for this model contain a Euler equation for consumption

path, the first-order condition between consumption and labor, a budget constraint, and a low

of motion of innovation. Mathematically, the system can be written as(
Cθt (1− Lt)1−θ

)1−γ

Ct
= βEt


(
Cθt+1 (1− Lt+1)

1−θ
)1−γ

Ct+1

(
1 + αeztKα−1

t+1 L
1−α
t+1 − δ

)
(1.17a)

(1− θ)

(
Cθt (1− Lt)1−θ

)1−γ

1− Lt
= θ

(
Cθt (1− Lt)1−θ

)1−γ

Ct
(1− α) eztKα

t L
1−α
t (1.17b)

Ct +Kt+1 = eztKα
t L

1−α
t + (1− δ)Kt (1.17c)

zt = ρzt−1 + εt (1.17d)

1.3.2.2 ROC sensitivity on parameterizations

For simplicity, I only focus on the ROC of capital policy function on σz direction

instead of enumerating all ROC approximations on nine dimensions (because each of three

jumping variables in the system (1.17) will have three ROCs on each state variable dimension).

Following the standard perturbation procedure proposed by Judd and Guu (2001) and

keeping the notation the same as Aruoba et al. (2006), the perturbation solutions of this model
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are

Cpt (Kt, zt, σz) =
∑
i,j,m

pCijmK̂
i
t ẑ
j
tσ

m
z ,

Kp
t+1 (Kt, zt, σz) =

∑
i,j,m

pKijmK̂
i
t ẑ
j
tσ

m
z ,

Lpt (Kt, zt, σz) =
∑
i,j,m

pLijmK̂
i
t ẑ
j
tσ

m
z

where x̂t = (xt − xss) represents the deviation from steady states and

pxijm =
∂i+j+mxt (Kt, zt, σz)

∂Ki
t∂z

j
t ∂σ

m
z

∣∣∣∣∣
Kss,zss,σz

, xt = {Ct,Kt+1, Lt}

Notice the perturbation coefficients pxijm depend on the model’s structure and calibrations, one

set of parameterization decide an uniquely set of perturbation coefficients, therefore an unique

ROC. This means, for Algorithm 1, which takes perturbation coefficients as its inputs, the

approximated ROC totally preserves such dependencies. As an immediate implication, this

advantage allows Algorithm 1 to be a general framework for a detailed study on the sensitivity

of the localness of perturbation solution like mentioned by Santos (2000).

Example in Section 1.3.1 confirms the ROC of state variables like Kt and Zt are quite

large (this is a general fact for most DSGE models). However, experience in computational

macroeconomics tells a different story for σz. The perturbation solution may easily explode

given the large volatility of TFP. This fact potentially suggests that the RBC model may have

a very tiny ROC on the dimension of the volatility of shocks. To confirm this, I decide to study

the sensitivity of ROC of σz concerning risk aversion and capital depreciation. Actually, γ and

δ should be the key factors when creating ROC variations. This result is indirectly confirmed

by Santos (2000), who suggested that the curvature of utility functions and the depreciation

are two critical determinants of the Euler equation errors. Given the advantage of Algorithm 1,

it should be able to show that the ROC is sensitive to them as well. As an extra test for the

2S-Inter-ld routine, I decided to go with this route.
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For this practice, the model is solved by a fifth-order perturbation polynomial. Besides

γ and δ, I use the calibration from Aruoba et al. (2006)9. The values are shown in Table 1.3.

Values of δ are taken from (0, 1), where the value of γ covers the most-used calibrated value

from (0, 10).

Table 1.3: Calibration for sensitivity experiment of standard RBC model

β θ α ρ σz

0.9896 0.357 0.4 0.95 0.007˜0.03

Figure 1.5 plots some main results of this sensitivity experiment. Figure 1.5a plots

the ROC approximations on (γ, δ) space (left panel) and the same plot with a zoomed vertical

axis (right panel). There are two main observations from Figure 1.5a. First, the biggest spike

is located at (γ, δ) = (1, 1). This confirms the numerical result from Section 1.3.1 that the

ROC of σz is infinity for the closed-form neoclassical growth model (The approximated value

is around 60. However, this approximation will increase as more higher-order terms are added.

Further, considering there are only six Taylor coefficients in this practice, this is already a

decent result). Second, from the right panel, there is another smaller spike in the(γ, δ) plane

at (γ, δ) = (1, 0.0196). We can also see that the approximated ROCs are uniformly large when

γ = 1 (in fact, the surface has a ridge at γ = 1). To study this ridge further, Figure 1.5b plots

some slices of Figure 1.5a around critical values. For example, the right column plot slices when

δ = 0.0196 and γ = 5. It is easy to see that for classical parameterizations (the red horizontal

line represents σz = 0.007 and the gray area stands for the range of 0.007˜0.03), the appropriate

range of σz (around 0.015) is larger than the calibration proposed in Table 1.3. Fixed γ, the

largest ROC achieved when capital depreciation equals 1, where another spike occurs when δ

9I use the same calibrations because the model setup in these two papers is exactly the same. Moreover, this
makes the comparison between the ROC of σz and their estimation result for σz much easier.
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takes the most commonly used calibrated values.

Figure 1.5: Sensitivity of ROC of Kt+1 (σz) with respect to γ and δ

(a) 3-D projection of ROC of Kt+1 (σz) on (γ, δ) space

(b) 2-D slice of ROC of Kt+1 (σz) on γ and δ space

To sum up, the sensitivity analysis of ROC of σz in the standard RBC model suggests
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the ROC is sensitive to the value of γ and δ, the ROC drastically falls from infinity to a small

number when the parameterization deviates from the closed-form model (γ = δ = 1). Yet,

Algorithm 1 confirms that it is appropriate to solve a standard RBC model by perturbation

method as the ROC is covering the most used calibration for σz.

1.4 Numerical Applications on complex model variants

This section studies perturbation solutions of models with more complex features,

unknown ROC, and higher sensitivity on the localness. To be consistent with earlier numerical

applications, I decide to stick with the RBC model and its variants. There are two advantages

associate with this roadmap. First, the RBC model has the most stable structure that allows

the practice to fully concentrate on continuing the sensitivity analysis rather than becoming

distracted by other modeling issues. Second, the RBC variants in this section are built on

previous setups, i.e., all complex features can collapse to the simpler setup by only adjusting

the parameterization. Therefore, cross-validation checks can be executed conveniently.

1.4.1 Approximated ROC of RBC model with recursive utility and

adjustment costs

I extend the standard RBC model by two extra features in this application: the Epstein-

Zin-Weil utility and the adjustment costs. There are two motivations for adding recursive

utility. First, recursive utility changes the dynamic a lot and makes the standard RBC model

more sensitive to uncertainty shocks. Second, recursive utility separates IES and risk aversion.

Therefore, the enlarged parametric space may change the calibrations, especially for γ and σz.

For comprehensiveness, I also include the adjustment costs.
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1.4.1.1 Model set up, equilibrium conditions, and solution strategy

I follow Kaltenbrunner and Lochstoer (2010) in specifying a basic RBC model with

the Epstein-Zin-Weil utility. The economy admits a representative agent whose utility function

follows Epstein and Zin (1989) and Weil (1990):

U(C̄t) =

(
(1− β)C

1−γ
θ

t + β
(
Et

[
U
(
C̄t+1

)1−γ]) 1
θ

) θ
1−γ

(1.18)

θ =
1− γ
1− 1

ψ

, C̄t = (Ct, Ct+1, . . .)

where β ∈ (0, 1) is the subjective discount factor, Et is the conditional expectations operator, Ct

denotes aggregate consumption, γ denotes the agent’s coefficient of relative risk aversion, and

ψ denotes the agent’s inter-temporal elasticity of substitution (IES).

A single firm owns the capital stock and produces a consumption good via Cobb-

Douglass technology, using labor and capital as inputs:

Yt = (ZtLt)
1−α

Kα
t

with the log technology process zt = lnZt, which evolves exogenously according to

zt = µt+ z̃t,

z̃t = ϕz̃t−1 + χσzεt,

εt ∼ N (0, 1)

For the law of motion of capital with adjustment cost, I follow same construction as Jermann

(1998), and the system is captured by

Kt+1 = φ

(
It
Kt

)
Kt + (1− δ)Kt, (1.19a)

φ (x) =
α1

1− 1/ξ
x1−1/ξ + α2 (1.19b)

where α1 = (exp (µ)− 1 + δ)
1/ξ

and α2 = 1
1−ξ (exp (µ)− 1 + δ). The parameter ξ governs the

degree of concavity and capital stock grows deterministically at rate exp (µ).
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To solve the model, notice that Lt does not appear in the utility function. Hence, the

maximized labor can be normalized to H̄ = 1, then the production function becomes

Yt = Z1−α
t Kα

t (1.20)

For the technology process, I restrict the value of ϕ to be 1, as this helps reduce the dimension

of state space. Thus, the log TFP is a random walk with drift parameter µ, and in this special

case, shocks to technology are permanent, this returns the following process for innovation

Zt = Zt−1 exp (µ+ σzεt) , εt ∼ N (0, 1) (1.21)

The following normalized variables (by the level of the contemporaneous technology

process) preserve the stationarity of the economy:

{
Ĉt, K̂t, Ẑt+1, Ît, Ŷt, V̂t

}
=
{Ct,Kt, Zt+1, It, Yt, Vt}

Zt
(1.22)

Combining equation (1.18)-(1.22) with resource constraints, the normalized system of equilibrium

conditions can then be expressed as10 (the x̌ notation for optimal values of x)

V̂
(
K̂t

)
=

(
(1− β) Ĉ

1−γ
θ

t + β

(
Et
[
Ẑ1−γ
t+1 V̂

(
K̂t+1

)1−γ
]) 1

θ

) θ
1−γ

(1.23a)

1 = Et

Mt+1φ
′

(
Ît

K̂t

) (α− 1) Ŷt+1 + Ĉt+1

K̂t+1

+
φ
(
Ît+1

K̂t+1

)
+ 1− δ

φ′
(
Ît+1

K̂t+1

)
 (1.23b)

Mt+1 = β

(
ˇ̌Ct+1

Čt

)− 1
ψ

V̌
1
ψ−γ
t+1(

Et
[
V̌ 1−γ
t+1

])1− 1
θ

(1.23c)

K̂t+1 =
K̂t

Ẑt+1

(
(1− δ) + φ

(
Ît

K̂t

))
(1.23d)

Ẑt = exp (µ+ χσzεt) , εt ∼ N (0, 1) (1.23e)

For the numerical specification of equilibrium conditions (1.23), I follow Judd et al.

(2014) to define the recursive dynamic system by deviation terms to avoid the convergence

10For details of deriving the equilibrium system, see A.5 and Aldrich and Kung (2011).
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issue (see Technical Appendix). Also, it is easy to show that this model will collapse to the

standard RBC model with a certain selection of parameters. This interchangeability feature

ensures ROC sensitivity comparison between model specifications is consistent in this paper.

For example, the ROC differences between the closed-form neoclassical growth model and the

standard RBC model are induced by varying model parameterizations from Section 1.3.1 to

Section 1.3.2. Similarly, the ROC differences between the standard RBC model and the RBC

model with recursive utility result from adding new model features from Section 1.3.2 to this

section.

1.4.1.2 ROC sensitivity on parameterizations

The appropriateness of a perturbation solution on a specific dimension depends on the

smallest radius of convergence among value function and all policy functions. In the model with

recursive utility, jumping variables (especially the value function and total welfare) are more

sensitive to uncertainties than the standard RBC model. Hence, in this application, let us shift

gear to the sensitivity analysis of ROC of value function on TFP volatility dimension.

Table 1.4: Calibration for RBC model with recursive utility and adjustment cost

β ψ δ γ α µ ξ σLz σHz

0.998 1.5 0.025 0˜80 0.36 0.004 13 0.01˜0.02 0.03˜0.04

As a motivative example, Figure 1.6 plots the ROC of capital policy function and value

function on σz dimension, using calibrations from Table 1.411.

From Figure 1.6a, one can see the ROC of σz for capital policy function and value

function are very different. The ROC of K̂t+1 (·) is five times larger than V̂t (·) on σz dimension.

11I use calibrations from Aldrich and Kung (2011) as the models are identical, except for γ
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As a graphical explanation, Figure 1.6b shows the perturbation solution (lower surface) of value

function is curved while the “true” value function (upper surface) solved by the projection

method is quite flat on σz dimension. Clearly, such a curvature difference indicates that the

ROC of value function on the TFP volatility dimension is fairly small.

Figure 1.6: ROC of σz for K̂t+1 (·) and V̂t (·)

(a) ROC comparison (b) 3-D plot of Value function
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To display the sensitivity analysis, I stick with the 3-D surface plot as in Section 1.3.2.

However, as the sensitivity of ROC is determined by three parameters in this case (because IES

and risk aversion are two separate parameters in recursive utility), I use two figures to plot the

approximated ROC surfaces when one of the three parameters is fixed, and the other two are

freely adjustable.

Figure 1.7 shows the sensitivity of ROC of σz when δ is fixed and γ and ψ can change

freely. The first panel is the smoothed surface for the ROC approximations, whereas the second

and the third panel are two slices taken from the 3-D surface. The range for ψ and γ cover the

most commonly used calibrations.
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Figure 1.7: Sensitivity of ROC of V̂t (σz) with respect to γ and ψ at δ = 0.0196

When depreciation takes a classical calibration, Figure 1.7 shows the ROC of σz behave

exactly the same as the standard RBC model once ψ is fixed. The ROC achieves its peak when

γ = 1 but sharply decreases as risk aversion deviating from it. Notice the ROC of σz is around

0.01 at ψ = 1.5 and δ = 0.0196, which implies the perturbation method is only appropriate for

solving the case when the volatility and risk aversion is low. Using the risk aversion estimation

from Van Binsbergen et al. (2012), when γ takes a value of around 66, the ROC of σz is only

approximated to be 0.002, which is much smaller than 0.007. As the third panel shows, the

perturbation solution cannot capture the true dynamics when risk aversion is close to 70. The

ROC of σz is only about 0.002 when ψ = 1.5. Hence, to conclude, the ROC of σz is extremely

sensitive to of IES variations and risk aversion when the depreciation rate is set to be about two

percent. Further, for most risk aversion values, the perturbation method is not appropriate for

solving the RBC model with the recursive utility.

Figure 1.8 shows the sensitivity of ROC of σz when ψ is fixed and γ and δ can change

freely. It has the same layout as Figure 1.7. The range for δ covers all possible values (i.e., from

0 to 1), the value of γ covers the most commonly used calibrations. When IES takes a classical

value, the second panel suggests the ROC of σz is quite volatile once δ is fixed. In the opposite,

ROC is relatively stable if γ is fixed while the depreciation moves around. The ROC of σz is at
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its peak when γ = 1 but deteriorates to 0.0025 as it approaches 80. Again, this result implies

the appropriateness of the perturbation solution is only restricted to low volatility states with

a low risk aversion.

Figure 1.8: Sensitivity of ROC of V̂t (σz) with respect to γ and δ at ψ = 1.5

1.4.2 ROC VS. Euler equation error

As an extension of this application, I also compare the proposed algorithm with the

Euler equation error on accessing the localness of the perturbation solutions. The comparison

in this part shows the Euler equation error is insufficient for testing the appropriateness of

the perturbation solution as it may rejects a valid approximation that associate with feasible

parameterization.

Figure 1.9 plots some essential comparisons between the projection and the perturbation

method. For this practice, I only focus on the first row of the figure. Fixing ψ, δ, and σz (I

choose low volatility because previous application suggests the perturbation solution is only

appropriate when σz = 0.01), I artificially select the value for γ to calculate the mean Euler

equation error for different discount factors. The dashed red line corresponds to the third-

order perturbation solution and the solid black line corresponds to the tenth-order Chebyshev

projection solution. There are two observations from this plot. First, the Euler equation error

accepts the perturbation solution for the case with low TFP volatilities and a low risk of aversion.
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Second, the perturbation solution will be rejected by the Euler equation error for the cases with

higher γ value and β closes to 1.

Figure 1.9: Mean log10 Euler equation errors, mean risk-free rate and mean log ratio of value

function to consumption policy, plotted as functions of β for ψ = 1.5, δ = 0.025, σz = 0.01 and

different values of γ.
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In fact, I double-check the reliability of these two conclusions by Den Haan-Marcet

statistics (χ2 test). As a summary, Table 1.5 displays the proportion of time that the Wald-type

statistic is above or below the 5% points of the χ2 (11) density.

First, this test confirms that the perturbation solution can solve cases with low TFP

volatilities and a low risk of aversion. Also, it rejects the perturbation solution for case γ = 10

(same as ROC and EEE). For the intermediate case with γ = 5, the χ2 test provides us with

confidence regarding the appropriateness of perturbation solution. Recall the approximated

42



ROC of the model with γ = 5 and δ = 0.025 in the middle panel of Figure 1.8 is around

0.01, which means the perturbation solution is appropriate. However, by taking a close look

at the middle panel of the first row of Figure 1.9, EEE rejects the approximation made by the

perturbation method for β = 0.998, this result directly contradicts to results from both the ROC

algorithm and the χ2 test. Therefore, this practice can be thought of as a perfect example of

demonstrating that a large Euler equation error is not sufficient to rule out valid parameterization

and its associated perturbation solution. Rather, the better way of interoperating this contradiction

is that, even thought ROC approximation confirms the appropriateness of the perturbation

solution, the EEE suggests such an solution is only accurate up to the second order.

Table 1.5: Den Haan-Marcet statistics, computed for 500 simulations of T = 3000 quarterly

observations. The numbers in the parentheses represent the proportion of times the statistic

was below and above, respectively, the 5% and 95% percentage points of the χ2 (11) density. In

all cases, β = 0.998.

σz

γ = 2 γ = 5 γ = 10

Projection (0.052, 0.054) (0.052, 0.052) (0.050, 0.052)

Perturbation (0.058, 0.052) (0.050, 0.058) (0.006, 0.338)

To sum up, all current existing numerical methods are less efficient and ex-post on

assessing the appropriateness of perturbation solution. However, with the 2S-Inter-ld algorithm,

as long as the model is solved non-linearly (i.e., the perturbation order is higher than 1),

the approximated dynamics, perturbation-based model estimations, and sensitivity analysis on

model solutions can be better executed.
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1.4.3 Adding stochastic volatility

For a comprehensive sensitivity analysis (in the asset-pricing literature) on the model

solution with recursive utility, the model in this section inherits the same structure as in Section

1.4.1, with stochastic volatility added. The equilibrium system is identical to (1.23) with an

additional equation for the stochastic process of TFP volatility. For the stochasticity of TFP

variance, I follow Caldara et al. (2012), whose process is captured by the following equation

σz,t = (1− ρ) σ̄z + ρσz,t−1 + ηεt, εt ∼ N (0, 1) (1.24)

and for the calibration, I use 0.9 for ρ and 0.06 for η. Notice that equation (1.24) does not

change the deterministic steady states of this model. However, it introduces one extra state

σz,t, for which variable the steady state value is set to be 0.01 for conservative reasons. As a

continuation of the sensitivity analysis, this practice will still concentrate on the sensitivity of

ROC of σz,t on different depreciation, IES, and risk aversion values.

Figure 1.10 plots the ROC approximations of the model with recursive utility and

stochastic volatility. For δ = 0.0196 (Figure 1.10a) and ψ = 1.5 (Figure 1.10b), all previous

concluded properties of ROC are preserved when having stochastic volatility (the shape of the

3-D surface and 2-D slides are all behaved similarly as in Section 1.4.1). However, by comparing

the transparent surface and blue curve (model with recursive utility only) with the darker

surface and red curve (model with recursive utility and stochastic volatility), the approximated

ROC of σz,t from the latter model’s structure is uniformly smaller than the former. Therefore,

the perturbation solution is totally inappropriate on solving RBC model recursive utility and

stochastic volatility over the entire parametric space (with the only exception when γ is closely

around 1). This new finding is contradicting with Caldara et al. (2012). However, as the 2S-

Inter-ld algorithm is more capable of assessing the appropriateness of perturbation solution, I

appeal to the conclusion made here.
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Figure 1.10: Comparison of ROC sensitivity between V̂t (σz) and V̂t (σz,t)

(a) 3-D projection on (γ, ψ) space with δ = 0.0196

(b) 3-D projection on (γ, δ) space with ψ = 1.5

1.5 Conclusion

In which dimension and what degree the localness issue of perturbation method is going

to influence the related economics study is unknown, and at best, we have little knowledge about

this for some special cases. By step back to the original definition of the radius of convergence,

this paper develops a numerical method that approximates the ROC of an objective function

using a finite perturbation solution. It has two stages, where the first-stage solves an optimal

function fitting problem with a polynomial interpolation solution and a log-absolute difference

solution from a finite set of non-zero perturbation coefficients. In stage two, this algorithm
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imposes increasing monotonicity onto the first stage approximation. This approximation preserves

the dependency between the ROC, model structure, and deep parameters. In the limit, the

solution is an equivalent transformation of the d’Alembert’s ratio test. By Taylor theorem, it

delivers a necessary and sufficient approximation for the localness of perturbation solutions.

The main methodology contribution of this paper is summarized into Algorithm 1.

Section 1.2.4 uses a simple square root function as a representative example to show the exact

implementation of Algorithm 1 in steps.

To test the reliability of the 2S-Inter-ld algorithm in economic applications, Section

1.3.1 conducts experiments on Algorithm 1 by two closed-form macro models. Results show that

the proposed algorithm can access the appropriateness of perturbation solutions of economic

models as it can replicate findings of previous case studies on the localness of perturbation

method for specific model setup. Hence, Algorithm 1 is the first general and ex-ante numerical

method on addressing the localness issue of the perturbation method.

In Section 1.4, I formulate a series of sensitivity analyses to address the classical

puzzle of TFP volatility calibration in macroeconomics. I use the proposed method on the

standard RBC model and its extensions to study the effect of different models’ structure and

parameterizations on ROC of TFP volatility.

The first case study confirms that the perturbation method is appropriate for solving

the standard RBC model. Regardless that the closed-form neoclassical growth model has an

infinity ROC for TFP shock, the ROC is extremely sensitive to calibration variations. Actually,

this number will decrease drastically once it deviates from the log utility and full depreciation.

Nevertheless, such a property does not prohibit the perturbation method from being a good

choice for solving the RBC model with classical parameterization, as the ROCs are large

enough to cover most of the commonly used calibrations. Consequently, the dynamics are

well approximated.
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As a continuation, I also test the sensitivity of the ROC of the RBC model with

recursive utility, in which model setup the dynamics react to uncertainty a lot more. Using the

ROC of TFP volatility for the value function as an example, I show the ROC is sensitive to

different parameterizations. Moreover, the ROC of the value function is much smaller than other

policy functions. To add, the ROCs of this model are uniformly (i.e., for all policy functions

and the value function) smaller than the standard RBC model. Twisting IES, depreciation,

and risk aversion around the classical calibrated values, I find the perturbation solution is only

appropriate for cases with a low TFP volatility and low risk aversion. As a result, one may

wants to use the perturbation method with cautions here.

For the extra extension, Section 1.4.2 is used to explain the insufficiency of the Euler

equation error on assessing the appropriateness of perturbation solution. By running a cross-

validation check between EEE, ROC, and χ2 test, a main finding of this study is that the Euler

equation error rejects the perturbation solution with feasible parameterization when both the

ROC algorithm and the χ2 test accept it. This contradiction proves the insufficiency of the EEE

method.

As the last part of the sensitivity analysis, I use the RBC model with recursive utility

and stochastic volatility. Motivated by previous results, one should expect to see the failure of

perturbation method on solving the modeling economy. It turns out that the results indicates

the perturbation method is totally inappropriate on handling the model setup of this section.

Hence, any perturbation-based method is not able to provide adequate support for any research

purposes for a model with recursive utility and stochastic volatility.
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Chapter 2

Wealth Inequality, Production

Heterogeneity and Declining Business

Dynamism

2.1 Introduction

General equilibrium (GE) models with heterogeneity have received increasing attention

and seen tremendous development in recent years. These models use the capability of homogenous

general equilibrium models that allow one to study the steady state economy and transitional

dynamics while keeping everything in a relatively manageable fashion and embedding it with

heterogeneity to study the micro foundation of macroeconomic topics. Two types of model

structure are particularly contributive in terms of better connecting macroeconomic theories

with microeconomic evidence. They are the heterogenous household (or heterogenous agent)

model and the heterogenous firm model. Most importantly, each type of model is associated with

a set of fundamental questions that macroeconomists are trying to answer. General equilibrium
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model with heterogenous households introduced by Bewley (1977) and Krusell and Smith (1998)

provide a profound way to study how movements in the distribution of income and wealth affect

the macroeconomy. GE models with firm heterogeneity introduced by Khan and Thomas (2008),

are able to uncover the mechanism on how idiosyncratic shocks and firm-specific investment

decisions can affect the aggregate dynamics.

In this paper, inspired by the work of Buera and Shin (2013), I build a heterogenous

individual GE model by introducing endogenous TFP growth and endogenous firm entry and

exit to study the interactions between heterogenous households and heterogenous firms. The

model economy features a continuum of individuals with heterogeneous entrepreneurial abilities

and assets. Each individual face two occupational choices in every period, i.e., to be a worker or

an entrepreneur. The TFP distribution (the aggregation between an individual’s entrepreneurial

ability and the aggregate TFP of the economy) of firms ranges endogenously. Every entrepreneur’s

capital input is subject to a collateral borrowing constraint based on the firm’s value. A credit

crunch in the model acts as an unexpected reduction of the maximum capital that entrepreneurs

can borrow from financial markets. Therefore, a dynamic threshold on wealth holdings always

distinguishes entrepreneurs from workers.

This paper aims to connect heterogenous households with heterogenous firms, and use

it to address challenging topics. The motivations for this paper are threefold. First and foremost,

many recent studies have highlighted the limitations of a model that only contains one source

of heterogeneity. For instance, when trying to study the source of aggregate fluctuations, Buera

and Moll (2015) found that different variants of heterogenous firm models always resulted in an

undistorted Euler equation for the aggregate of firm owners; therefore it indicates the limitation

of using representative agent models to identify sources of business cycle fluctuations. On the

other hand, as De Nardi and Fella (2017) pointed out in their survey paper on heterogenous

household models, allowing for heterogeneity in entrepreneurial production functions in a workhorse
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model such as Marco and Mariacristina (2009) is essential for a number of questions, including

the effects of taxation and government support programs on various types of entrepreneurs.

Since all of these papers are built upon a neoclassical growth model, an attempt to build GE

model with individual heterogeneity will help conquer the above mentioned limitations.

Secondly, one particular set of observations – a number of striking trends that indicate

a rising market concentration and a slowdown in business dynamism – draws a lot of attention.

To be specific, throughout this paper, I will use stylized facts summarized by Akcigit and

Ates (2020a,b) as my main background references for declining business dynamism (DBD)1.

Among the ten stylized facts listed in these works2, I focus on seven of them (Fact 1 - Fact

73 from Akcigit and Ates (2020a)) since the other three facts (Fact 8 - Fact 10) are closely

related to models on firm competition and beyond the horizon of this paper. DBD raises

many challenges to macroeconomists, because some of the facts are closely connected to models

with heterogenous firm (e.g., Fact 1, 2, 3), while some others are requiring models featuring

heterogenous agents (e.g., Fact 7). An advantage of applying my model to the DBD literature is

that with a heterogenous individual GE model, the stylized DBD facts can be studied jointly; the

interactions between different facts may provide us with better understanding of the economic

insights. Hence, it leads the focus of this paper toward the literature on DBD.

Last but not least, computational technics have improved a lot in the past few years,

which opens the possibility of solving a fully heterogenous model. Two papers are beneficial for

my model. Winberry (2018) created a brand new routine on solving and estimating heterogeneous

agent macro models with aggregate shocks. He showed the method could be easily applied in

1The reason I decide to stick with these two papers are twofold. First, there are less common agreement among
researchers on the “stylized facts” of DBD. Among of which, Akcigit’s papers are one of the most representative
and comprehensive series of works, hence I take those as the most updated references for the literature background
of this study. Second, the stylized facts list in these works contain motivations for heterogenous individual GE
model, and is naturally a good place to apply my model.

2I have list all ten stylized DBD facts in Appendix B.1 for referential purpose.
3These 7 stylized facts are, (1) increasing on market concentration , (2) increasing on average markups, (3)

increasing on the profit share of GDP, (4) decreasing labor share of output , (5) fact (1) and (4) are positively
associated, (6) increasing on productivity dispersion, (7) declining firm entry rate.
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Dynare with advantages such as it is fast, general, and accurate for models like Krusell and

Smith (1998) and Khan and Thomas (2008). Moreover, as he points out, his method can be

extended to solve a fully heterogenous model. In the study of the labor wedge in a DSGE

model with collateral borrowing constraint. Zhang (2018) finds that a credit crunch can affect

the labor wedge through a mechanism different from an exogenous TFP shock when there are

endogenous entry and exit of production. The model she used is a fully heterogenous individual

neoclassical growth model, where each individual can decide to become an entrepreneur or a

worker. Both papers not only bring confidence to the motivations of this paper but also provide

valuable technical foundations for the numerical part of this study.

My model is able to connect the individual’s wealth holding decision with the firm-

specific technological innovation process. Under negative structural changes, the interactions

between wealth inequality and productivity heterogeneity in this model can lead the dynamics to

a steady state, in which process, the declining business dynamism such as market concentration

and declining firm entry occurs (I name this mechanism as “winner takes all” dynamics, and

will explain it in detail in a later section). Among the seven stylized facts I work with, my GE

model is silent for endogenizing facts such as decreasing labor share and increasing productivity

gap. Comparing to facts that could be matched with the model’s transitional dynamics, I find

they are more fit into a role such as exogenous changes of this model. As a result, I decided to

treat both facts as exogenous variations, which cause the transitional dynamics to happen.

To better illustrate the capability of the model and its potentials to match with stylized

DBD facts, Table 2.1 highlights the connections between the model’s key features with stylized

DBD facts4. Notice that the endogenous TFP growth feature of firms (heterogenous firm) is

able to create transitional dynamics with divergent individual productivity. Over time, firms

4I dropped Fact 5 since if an exogenous labor share drop can trigger increasing market concentration, it
immediately satisfied by convention.
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with better productivity can scale up their production, ending with a higher total production

share. As a result, market concentration increased. Since firm with better productivity becomes

more competitive than others, their markup will increase during the transitional dynamics, so as

their profit. On the other hand, the heterogenous individual setup has a natural result whenever

an individual decides to switch her role – the firm entry and exit (i.e., entrepreneur to worker or

worker to entrepreneur). This property, in particular, will spilt firms with lower productivity and

wealth holding from the producer side. Furthermore, over time, lower division of the production

side will gradually leave the market; meanwhile, due to the inflated threshold on productivity

level and asset holding for running a new business, the entry rate also declines. As a result, the

market is more concentrated on firm with better productivity. With such an advantage, firms

at the upper division raise their markup. Throughout this whole process, wealth inequality will

be amplified, and productivity dispersion will also be deepened.

Table 2.1: Match DBD facts with model’s key features

Stylized Facts
Endogenous Endogenous

TFP growth Firm Entry & Exit

Fact 1. Increasing Market Concentration X X

Fact 2. Increasing markup X X

Fact 3. Increasing profit X

Fact 6. Divergent Productivity X

Fact 7. Declining Firm Entry Rate X

With everything mention above, I summarized the main hypothesis of this paper as

follows: structural changes (such as productivity dispersion or decreasing labor share) trigger

the transitional dynamics between two stationary equilibriums. A fully heterogenous individual
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model, including firms-specific technological innovation process and endogenous firm entry &

exit, allows interactions between Wealth inequality and Productivity dispersion. With negative

structural changes, such a “winner takes all” dynamics in a heterogenous individual GE model

can (ideally) replicate some of the observed stylized facts of declining business dynamism.

The main object I use to test the hypothesis is the joint distribution of firm’s productivity

and wealth. Conceptually speaking, if the heterogenous individual GE model and the “winner

takes all” dynamics work well, the joint distribution should variate accordingly. In order to

accomplish this, I decide to use a two stages architecture for this paper. In the first stage, I

simplified the full model and run a comparative static analysis to show that wealth inequality can

interact with individual productivity. By imposing different exogenous variations into the model,

I show that the stationary joint distribution is not always distorted. This practice implies that

my model with only structural changes cannot create both wealth inequality and productivity

dispersion. Instead, introducing other sources of distortionary dynamics (e.g., the “winner takes

all” dynamics) is necessary. Currently, in my stage two study, I built the full model and derived

associated equilibrium conditions. Accompany with this, I also provide intuitive explanations

for the “winner takes all” dynamics and how it can contribute to study the stylized DBD facts.

Finally, this paper is related to three sets of literature. It first related to the literature on

declining business dynamism. Here I will only cite some representative works on the stylized facts

I discussed in this paper. For the exogenous changes used by my model, Andrews et al. (2019)

discuss their finding on the connection between weaker productivity and stronger divergence

among frontier and laggard firms (Fact 6). In the paper demonstrating the steady decline in the

labor share of output in the United States since the early 1980s, Karabarbounis and Neiman

(2014) highlighted this trend also has an international nature (Fact 4). For the facts that the

“winner takes all” dynamics is try to match, Autor et al. (2017, 2019) show that the degree of

market concentration measured by the Herfindahl-Hirschman index (for largest 4 and 20 firms)
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are increased over time. This result also aligns with the general conclusion on increasing market

concentration in most U.S. industries in the post-2000 era (Fact 1). As Hall (2018) and others

described, there is a global rise in markups (driven by firms in the top decile of the markup

distribution) and a widening average markup gap between digitally-intensive and other sectors

(Fact 2). Aghion et al. (2019) explain the link between innovation and top income inequality

in the United States and show evidence of the tight association between innovative activity per

capita and profit share of output (Fact3). In Autor et al. (2017), the authors provide suggestive

evidence on new technological advances that favor more productive companies, namely, a positive

association between industry-level productivity (measured by output per worker, patents per

worker, etc.) and concentration (measured by the fraction of sales accrued by 20 largest firms)

(Fact 5). Consistent with the work from Gourio et al. (2016), I consider the falling firm entry

rate from Business Dynamics Statistics data as evidence on output losses (Fact 7).

The construction of my model is based upon the literature on wealth inequality,

endogenous TFP growth and Heterogenous RBC models. For the first key feature of this paper,

the firm-specific technological innovation process takes similar forms as modeled by Greenwood

et al. (1997) and Cooper and Johri (2002), where the individual productivity takes Cobb-Douglas

form between the firm’s specific productivity investment and its productivity level of the current

period. For the wealth inequality and individual heterogeneity, I borrow the idea from Marco

and Mariacristina (2009); De Nardi and Fella (2017), and Wolff (2017). In the model, each

individual has a certain amount of asset holding for both precautionary saving and personal

investment (on their entrepreneur ability) purposes. The main difference is, in my model, an

individual can switch her role between worker and entrepreneur. In order to connect both

features, I build up the model parallel to Khan and Thomas (2008) and Buera and Shin (2013).

One specialty of my model is, by twisting some parameters, the system can be reduced to their

specifications.
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Lastly, I use the following works from the numerical method literature for solving my

model. I use Winberry (2018) on solving the heterogenous agent model as the cornerstone. At

the same time, I also borrow the idea from Aiyagari (1994) and Krusell and Smith (1998) on

Kolmogorov forward equation; Den Haan et al. (2010) on steady-state transitions. With these

works, I am able to solve my heterogenous individual GE model, running the comparative static

analysis and study transitional dynamics.

The rest of the paper is organized as follows. Section 2 describes the full model (Stage

1 and 2 combined). Section 3 presents the comparative static study on the stationary joint

distribution of the simplified model. Section 4 illustrates the connection between the full model

and the “winner takes all” dynamics. Section 5 summarizes and discusses future extensions.

2.2 The Full Model (Stage 1 and 2 combined)

In this paper, I propose a heterogenous individual general equilibrium model with

endogenous individual-specific technology innovations (determined by individual’s wealth holding

and idiosyncratic individual productivity shock) and endogenous firm entry and exit to study the

stylized facts of declining business dynamism (DBD) documented by Akcigit and Ates (2020a,b).

In this model, the decreasing labor share and divergent productivity are treated as exogenous

variations. This paper has two stages. In the first stage, I will work with a simplified model,

and in the second stage, I will work with the full mode. For exposition purpose, I will start with

the full model in this section.

2.2.1 Heterogeneity and demographics

Borrowing the idea of home production economy from Buera and Shin (2013), I build

my model with discrete time and assume that the economy is populated by a continuum of
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individuals indexed by i ∈ [0, 1]. Each individual is endowed with one unit of time to divide

between labor nt and leisure 1 − nt. Individuals live indefinitely and can save using risk-free

assets (or wealth) at.

Individuals are heterogeneous with respect to their wealth holdings and individual-

specific productivityAI (or entrepreneurial ability). Entrepreneurial productivity evolves according

to an exogenous AR(1) process in the Stage 1 model but grows endogenously in the Stage 2

model. At each period, in the Stage 2 model, individuals choose either to operate a firm with

individual-specific technology (i.e., to become an entrepreneur ) or to work for a wage. However,

they are not allowed to make occupational decisions in the Stage 1 model5.

At the beginning of a period, each individual draws a random fixed cost ξ in units

of consumption good from a uniform distribution µ (ξ), where ξ ∈
[
0, ξ̄
]
. After the fixed cost

ξ is realized, each individual chooses whether to pay the realized fixed cost to change her

occupation or simply maintain her current role and pay nothing. By making an occupational

decision, entrepreneurs can endogenously enter and exit the production. Let OD denotes the

occupational decision of an individual from the previous period. Since the idiosyncratic random

fixed cost is only paid when an individual changes occupation, keeping track of the occupational

history for one period is sufficient for the analysis. Then, we can define occupational decision as

OD =


1,

0,

if previouly is entrepreneur

if previouly is worker

(2.1)

Throughout the dynamics, I will use Gt (AI , a,OD) to denote the time variate joint

distribution of individual productivity, wealth and occupational decision. After period 0, the

dynamics of AI , a, OD and Gt (AI , a,OD) follow the individual’s optimal decision rules. Notice

that for the Stage 1 model, the occupational decision channel can be easily shut down by replace

5Both Stage 1 and Stage 2 model can be written into a generalized (unified) model framework, they can be
derived by assigning different parametric values to the full model.
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µ (ξ) = ξ̄ =∞.

2.2.2 Preference

Each individual shares the same utility function from consumption and leisure using

the same discount factor β. The individual’s utility function at period s takes the form

E0

∞∑
t=s

βs−tu (cs, 1− ns)

where u (cs, 1− ns) =

(
cτs (1− ns)(1−τ)

)1−σ
− 1

1− σ
, ns ∈ {nws , nes} (2.2)

where nws stands for the working hours of worker and nes for entrepreneur. For simplicity, in the

Stage 2 model, I assume individuals will work ñ hours as long as their occupational choice is

entrepreneurs, i.e., ne = ñ is a constant. Whereas in the Stage 1 model, an individual can freely

adjust her consumption-leisure allocation, i.e., ns is a choice variable.

2.2.3 Individual-specific technological innovation process

In any given period, firm produces with capital and labor according to the following

production technology

f (AA, AI , k, l) = AAAI

(
kα (n+ l)

θ
)1−v

(2.3)

where AA is aggregate productivity of the economy, AI is the individual-specific productivity

(or equivalently, entrepreneurial ability), k is capital input. For the Stage 1 model, (n+ l)

represents the aggregate labor supply. And for the Stage 2 model, individuals can choose either

to work for a wage or to operate an firm with its individual-specific technology level. For the

latter case, an entrepreneur works ne = ñ unit of time for herself. Parameter 1 − υ represents

the share of output going to the input factors, α is capital share and θ is labor share. The
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aggregate productivity follows a mean zero log AR(1) process

logA
′

A = ρA logAA + εAA ,where εAA ∼
(
0, σ2

AA

)
(2.4)

For individual-specific productivity, I assume the technological innovation process takes

Cobb-Douglas form as proposed by Cooper and Johri (2002)

A
′

I = AγI i
η
AI

exp (εAI ) ,where iAI = sAIf (AA, AI , k, l) (2.5)

or equivalently the specification similar to Greenwood et al. (1997)

logA
′

I = (γ + η) logAI + η [log sAI + log f (AA, 1, k, l)] + εAI (2.6a)

εAI ∼
(
(1− γ − η) logµA, σ

2
AI

)
(2.6b)

where sAI represents the investment rate on individual-specific productivity AI for the Stage 2

model (for simplicity, I set it as a constant now). Equation (2.5) and (2.6) combined emphasize

that the current individual-specific productivity AI and the baseline productivity f (AA, 1, k, l)

are two driven forces of the evolutional process of A
′

I . To be specific, a firm with better AI

tends to have higher expected individual-specific productivity E
(
A
′

I

)
tomorrow. Similarly, a

productive firm also results in higher E
(
A
′

I

)
for future. There are two advantages associated

with this specification. (i) It ensures all individuals will have enough motivation to be an

entrepreneur if they are wealthy enough. Moreover, an entrepreneur will also have the motivation

to invest in individual-specific productivity AI as it is an increasing function of iAI ; (ii) The

path of individual-specific productivity AI among individuals are going to diverge over time as

E
(
A
′

Ii

)
≥ E

(
A
′

Ij

)
whenever AIi > AIj or fi (AA, 1, k, l) > fj (AA, 1, k, l).

For the Stage 1 model, I just set η = 0, which will give me the standard log AR(1)

process for individual-specific productivity without endogenous law of motion.

Throughout the paper, I also assume the labor market is perfectly competitive and

frictionless. All individuals in the economy share the same real wage wt and real return rate on
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asset rt. Therefore individual occupational choices, investment decisions, and labor supply do

not affect prices.

2.2.4 Financial markets

Follow the simple linear collateral constraint used by Buera and Shin (2013) and Moll

(2014) in studying the financial frictions and resource misallocation. The financial intermediaries

are perfectly competitive in this economy. Each entrepreneur can rent capital from financial

intermediaries using her deposit asset at as collateral. The return to the capital is rt and the

depreciation rate is δ. This implies the effective capital rental rate is rt + δ.

The collateral constraint limits the entrepreneur’s borrowing power with the form

kt ≤ λat, 1 ≤ λ ≤ ∞ and at ≥ 0 (2.7)

where parameter λ measures the degree of financial market incompleteness, λ =∞means capital

market is perfect. To ensure financial markets allow an individual to smooth consumption via

intra-temporal borrowing of capital for production but not inter-temporal borrowing, I impose

at ≥ 0.

2.2.5 Time scheme

The time scheme of the economy is as follows:

For the Stage 1 model, everything is parallel to standard heterogenous RBC models,

such as Khan and Thomas (2008) and Buera and Shin (2013).

For the Stage 2 model. First, aggregate productivity and individual productivity are

realized and known by all. Second, individuals draw random fixed costs and make occupational

decisions. Third, individuals deposit assets in the financial market. Entrepreneurs rent capital,

hire labor, invest in individual productivity and carry out productions. Finally, workers get
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paid, entrepreneurs take the profits, individuals trade and consume final goods.

2.2.6 The individual’s problem

The aggregate state in the economy can be denoted by S = (AA, G (AI , a,OD)). I will

start with defining the worker’s problem and the entrepreneur’s problem separately. Then I will

present a unified way of defining the individual’s problem for the model.

The worker’s problem

Taking the real wage w and interest rates r as given, a worker solves the following

problem in every period:

V w (a,AI , S) = max
{c,0≤nw≤1,a′≥0}

{
u (c, 1− nw) + βE

[
V
′
(
a
′
, A
′

I , S
′
)]}

(2.8a)

s.t. c+ a
′
≤ wnw + (1 + r) a− ξOD (2.8b)

where V w (·) is the life-time value of being a worker.

The entrepreneur’s problem

Taking the real wage w and interest rates r as given, an entrepreneur solves the following

problem in every period:

V e (a,AI , S) = max
{c,ne=ñ,a′≥0,k≥0,l≥0}

{
u (c, 1− ne) + βE

[
V
′
(
a
′
, A
′

I , S
′
)]}

(2.9a)

s.t. c+ iAI + a
′
≤ f (AA, AI , k, l)− (δ + r) k − wl + (1 + r) a− ξ (1−OD) (2.9b)

iAI = sAIf (AA, AI , k, l) (2.9c)

k ≤ λa (2.9d)

where V e (·) is the life-time value of being a worker.
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The Value function

Given that the aggregate state of the economy is S, individual’s asset holding a, and

individual-specific productivity AI . A rational behavior will makes her occupational decision

that has larger life-time value among the value of being a worker V w and the value of running

an individual-specific technology firm V e. Which is,

V O (a,AI , S) = max {V w (a,AI , S) , V e (a,AI , S)} (2.10)

where V O stand for the value function associated with individual’s optimal decision. Define

V (a,AI , S) as the beginning of period expected value of an individual prior to the realization

of its fixed cost, but after the determination of (a,AI , S). Then

V (a,AI , S) =

∫ ξ̄

0

V O (a,AI , S)µ (dξ) (2.11)

2.2.7 The unified individual’s problem

A critical observation from equation (2.8) and (2.9) is that, in the Stage 2 model, the

budget constraint is the only difference between the worker’s problem and the entrepreneur’s

problem. However, equation (2.10) and (2.11) allow me to write down the whole model compactly

into a single individual’s optimization problem. Moreover, since the Stage 2 model can be easily

reduced to Stage 1 model by manipulating some parameters, I am actually able to write down

a unified individual’s problem for both Stage 1 and 2. To be specific, follow the same logic as

Buera and Shin (2013) and Moll (2014), taking the real wage w and interest rates r as given,
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an individual solves the following problem in every period:

V (a,AI , S) = max
{c,{ne=ñ or 0≤nw≤1},a′≥0}

{
u (c, 1− n) + βE

[
V
′
(
a
′
, A
′

I , S
′
)]}

(2.12a)

s.t. c+ a
′
≤ max {π (a,AI , S)− ξ (1−OD) , wnw − ξOD}+ (1 + r) a (2.12b)

π (a,AI , S) = max
{0≤k≤λa,l≥0}

{(1− sAI ) f (AA, AI , k, l)− (δ + r) k − wl} (2.12c)

ξ ∼ µ (ξ) =


U
(
0, ξ̄
)

∞

if Stage 2

if Stage 1

(2.12d)

where I use V (·) to denote the individual’s value function, inside of which the π (a,AI , S)

represents the profit of an individual-specific technology firm if individual’s occupational choice

is entrepreneur.

2.2.8 Competitive equilibrium

I am now defining the competitive equilibrium for the Stage 2 model6. Given initial

conditionG0 (a,AI), a competitive equilibrium consists of the value function V (a,AI , S); Worker’s

allocations cw (a,AI , S), aw (a,AI , S) and nw (a,AI , S); Entrepreneur’s allocation ce (a,AI , S),

ae (a,AI , S), l (a,AI , S), k (a,AI , S) and ne = ñ; the evolution of joint distribution of individual-

specific productivity and wealth G (a,AI), and prices (w, r) such that

1. Value function V (a,AI , S) solves the individual’s problem (2.12)

(a) Allocation cw (a,AI , S), aw (a,AI , S) and nw (a,AI , S) are the associated policy functions

to the worker’s problem (2.8)

(b) Allocation ce (a,AI , S), ae (a,AI , S), l (a,AI , S), k (a,AI , S) and ne = ñ are the

associated policy functions to the entrepreneur’s problem (2.9)

6I skip to define the CE for Stage 1 model since it is literally the same as the standard heterogenous firm
RBC model.
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(c) The labor, capital, and goods markets are all clear:

• The labor market clears so that the total demand of labor from entrepreneurs is equal

to the total labor supply from workers∫∫
a,AI

∫ ξ̄

0

l (a,AI , S)µ (dξ)G (d [a×AI ]) =

∫∫
a,AI

∫ ξ̄

0

nw (a,AI , S)µ (dξ)G (d [a×AI ])

• The capital market clears so that the aggregate demand of capital equals to the total

deposited assets in the economy∫∫
a,AI

∫ ξ̄

0

k (a,AI , S)µ (dξ)G (d [a×AI ]) =

∫∫
a,AI

∫ ξ̄

0

aeG (d [a×AI ])

+

∫∫
a,AI

awµ (dξ)G (d [a×AI ])

• The good market clears so that aggregate output Y is equal to the sum of aggregate

consumption C, aggregate investment on capital Ik and aggregate investment on

individual-specific productivity level IAI , i.e., Y = C + Ik + IAI + Λ, where

Y =

∫∫
a,AI

∫ ξ̄

0

f (AA, AI , k, l)µ (dξ)G (d [a×AI ])

C =

∫∫
a,AI

∫ ξ̄

0

cw (a,AI , S)µ (dξ)G (d [a×AI ])

+

∫∫
a,AI

∫ ξ̄

0

ce (a,AI , S)µ (dξ)G (d [a×AI ])

I =Ik + IAI = K
′
− (1− δ)K + IAI = K

′
− (1− δ)K + sAIY

=

∫∫
a,AI

∫ ξ̄

0

aeµ (dξ)G (d [a×AI ]) +

∫∫
a,AI

∫ ξ̄

0

awµ (dξ)G (d [a×AI ])

− (1− δ)
∫∫

a,AI

a

∫ ξ̄

0

µ (dξ)G (d [a×AI ])

+ sAI

∫∫
a,AI

∫ ξ̄

0

f (AA, AI , k, l)µ (dξ)G (d [a×AI ])

and Λ stands for the aggregate fixed cost

Λ =

∫∫
a,AI

∫ ξ̄

0

ξµ (dξ)G (d [a×AI ])
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• The joint distribution of individual-specific productivity and wealthG (a,AI) according

to the equilibrium mapping

G
′
(a | AI) =

∫
i

EA′I

[∫
u≤a

∫
a′(A′I ,v)=u

G
(
dv | A

′

I

)
du

]
di

2.3 Comparative static analysis on the stationary distribution

(Stage 1)

In this section, I am conducting a comparative static analysis on the joint distribution

of wealth and individual productivity of the simplified model (Stage 1). The key point of this

section is, before I introduce the full “winner takes all” dynamics, to test if the key innovation of

this paper (functionally) works, i.e., whether the interactions between the endogenous TFP

growth and the wealth accumulation process amplify the productivity gap and the wealth

inequality overtime under the exogenous variations (in particular, divergent productivity distribution

and decreasing Labor Share).

Figure 2.1: Key channel on “winner takes all” dynamics

Wealth inequality
Endogenous TFP
−−−−−−−−−−−−−→

Individual productivity

←−−−−−−−−−−−−−−−−−−
Endogenous entry&exit dispersionx?

Divergent productivity

Decreasing Labor Share

As Figure 2.1 shows, on the one hand, wealth inequality can affect firms’ individual

productivity growth through equation (2.6). The wealthier the entrepreneur, the more she can

invest in accumulating individual productivity, and vise versa. Over time, the productivity gap
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gets amplified. On the other hand, the individual’s occupational decision is able to propagate

the effect of productivity dispersion to their wealth holding by entering or exiting from the

production. For any firm, the lower the productivity, the less profit it may obtain. Constrained

by the limited credibility, these firms adept relatively slower productivity growth, and therefore,

featuring less wealth accumulation, and vice versa.

The main question that this section tries to answer is whether divergent productivity or

decreasing labor share can trigger the interactions between wealth inequality and productivity

dispersion. If the answer is yes, can we still apply the conclusion to the case where the economy

hit by both structural changes simultaneously?

2.3.1 The simplified model (Stage 1 model)

To answer the questions posted above, I use a simplified model and experiment with

different sources of structural changes. I compare their stationary joint distributions to see if

they are distinct. The model I use for this stage is a heterogenous firm model with a homogenous

household; it is a simplified version of the full model introduced in the last section. There are

two reasons for me to use this approach. First, the computational burden in solving a fully

heterogenous model is huge, and I need to solve the model multiple times to compare the

stationary joint distributions. A feasible simplification definitely helps a lot here. Secondly, a

heterogenous firm model is adequate to test the hypothesis as it still allows the heterogeneity

on productivity while maintaining wealth inequality among firm owners.

The model setup in this section is similar to the standard RBC model with heterogenous

firms. The time is discrete and there is a continuum of firms indexed by i ∈ I[0, 1]. The model

features a representative household endowed with one unit of time to divide between labor and

leisure. The household owns all the firms in the economy and markets are complete.
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HHs share the same utility from consumption and leisure using the discount factor β.

E0

∞∑
t=s

βs−tu (cs, 1− ns)

where u (cs, 1− ns) =

(
cτs (1− ns)(1−τ)

)1−σ
− 1

1− σ

For production, firm i produce output yit according to the production function

f (AA, AI , k, l) = AAAI

[
kαit (nit)

θ
]
, α+ θ < 1

The aggregate productivity and individual productivity follows a mean zero log AR(1)

process respectively7

logA
′

A = ρA logAA + εAA ,where εAA ∼
(
0, σ2

AA

)
logA

′

I = ρI logAI + εAI ,where εAI ∼
(
0, σ2

AI

)
With the simplifications, the associated joint distribution for the Stage 1 model will becomes

to Gt (AI , a), which denotes the time variant joint distribution of individual productivity and

wealth among firms. After period 0, the given the dynamics of AI , a and Gt (AI , a) follow the

individual’s optimal decision rules.

2.3.2 Computations

For the experiments in this part, I only need to solve the steady state of the economy

since the stationary distribution is the main object of the comparative static analysis. I follow

Tauchen (1986) on discretization and use the approximation from Zhang (2018) on the Markov

matrix for individual productivity.

In particular, the steady state is solved by finding the market clearing real interest rate

and real wage. To be specific, the steady state is solved by (i) Guess the p-th generation of real

7Here I use an exogenous process for individual productivity growth in order to simplify the comparative
static analysis. Under this version, to get a structural change on productivity, I only need to impose different
standard deviation to the εAI .
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interest rate rp; (ii) Given rp, guess wage rate wp,s and solve the individual’s problem given rp

and wp,s. After obtaining occupational decisions, asset decision rules and value functions, find

the fixed point of household distribution. Then check whether the labor market clears. If the

labor market does not clear, update wage to a new guess wp,s+1 and repeat (ii); (iii) If the labor

market clears, check if the credit market condition has been satisfied. If not, update the real

interest rate to a new guess rp+1 and repeat (ii); (iv)The steady state is solved when all markets

clear.

Table 2.2: Parameterization for Stage 1 model

Parameter Description
Value

Baseline Comparison

β Discount factor 0.961

τ average working hour 0.33

σ Utility curvature 1.5

α Capital share 0.256

θ Labor share 0.67 0.61

δ Capital depreciation 0.085

ρA Aggregate TFP AR(1) 0.859

ρI Idiosyncratic TFP AR(1) 0.859

σAA Aggregate TFP std. 0.014

σAI Idiosyncratic TFP std. 0.015 0.02

For current stage, I mainly use parameterization as Khan and Thomas (2013), Buera

and Shin (2013), and Zhang (2018) as my source. For the simplified model, the baseline

parameterization showed in Table 2.2 is able to generate moments well match the corresponding
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moments in the U.S. data. In addition, for comparative static analysis, to mimic the exogenous

change, I will use θ = 0.61 for decreased labor share, and σAI = 0.02 for diverged productivity,

then see how stationary distribution reacts to these changes.

2.3.3 Comparative static analysis

In this subsection, I run three experiments to accomplish the comparative static analysis.

In the first experiment, I exogenously impose different values for labor share. In the second

experiment, I assign two different values to the standard deviation of the productivity distribution.

Finally, I combine both changes simultaneously. After these, I compare the stationary joint

distributions under these three scenarios.

Exogenous change on labor share

In this experiment, I solve steady states for two economies, the state with higher labor

share and the state with lower labor share. I compare the stationary distributions for both cases

to see if decreasing labor share can generate productivity divergence and wealth inequality.

Figure 2.2 below visualizes the results. The first subplot is the 3-D surfaces for the

density of the joint distribution on wealth and productivity. Throughout this comparative static

analysis, I use red color to represent the economy before changes, blue color for the economy

after changes. The second subplot displays the productivity distribution among firms. It was

calculated based on the column sum of firms located at the same productivity grid. The third

subplot is for illustrating the wealth distribution. Again, the density was calculated based on

the column sum of firms located at the same grid on capital holdings.

There are two main observations from Figure 2.2. First, the productivity at the steady

state becomes more diverse. This is a direct result of the model. In this model economy, when

the labor share decreases, the relative share of capital increases. As a consequence, the interest
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Figure 2.2: Exogenous change on Labor share

(a) 3-D plot

(b) Productivity distribution (c) Wealth distribution
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rate rises and there is a reallocation process where the higher productivity firm will end up with

higher capital holdings and hence higher production level, and vice versa. The outcome of such

a reallocation process diverges the productivity compared to the economy before the reduction

of labor share. Second, the wealth distribution becomes more centralized and less spread out.

Again, since the relative share of capital increases, capital flows toward the wealthier firm,

therefore, the distribution shift to the right and become more centralized than the economy

with higher labor share.

Exogenous change on productivity distribution

In this experiment, I solve steady state for two economies with different degrees of

productivity dispersion. Specifically, I solve one model with a larger standard deviation on

productivity distribution and another model with a smaller standard deviation. I then compare

the associate joint distributions on wealth and productivity of firms.

Figure 2.3 visualizes the results. The subplots are formulated in the same way as Figure

2.2. There are two main observations from Figure 2.3. First, the productivity at the steady state

becomes more diverse. This is a direct result of I exogenously increase the standard deviation

of the productivity distribution. Second, the wealth distribution became more spread out and

skewed to the left. The mechanism is as follows. The inflated productivity dispersion artificially

imposes emphasis on individual TFP. The enlarged productivity gap enables firms with better

TFP to be more competitive; thus, these firms will increase their profit and accumulate more

capital stock. The model’s dynamics produce a right-shifted threshold that creates a left-shifted

center of the wealth distribution. Therefore, the wealth distribution has a fat right tail.
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Figure 2.3: Exogenous change on Productivity

(a) 3-D plot

(b) Productivity distribution (c) Wealth distribution

Exogenous changes on both

In this experiment, I solve the steady state for two economies, an economy with

larger productivity differences and lower labor share, another economy with smaller productivity

differences and higher labor share.
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Figure 2.4: Exogenous change on both shocks

(a) 3-D plot

(b) Productivity distribution (c) Wealth distribution

Figure 2.4 visualizes the results. There are two main observations from it. First, the

productivity at the steady state becomes more spread out. This is, again, a direct result of the

exogenous change imposed on the standard deviation of productivity. However, the distributions

before and after the change are both symmetrical. Second, the wealth distribution is roughly

unchanged. It does not shift or skewed as what the previous two experiments behaved. This
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finding is interesting since both structural changes can distort the wealth distribution when

they are hitting the economy individually. Nevertheless, when they are jointly disturbing the

economy, the effects are canceling out each other, therefore have literally no net impact on the

stationary distribution. This result makes sense, recall that the decreasing labor share tends to

reduce the wealth inequality, whereas the productivity dispersion can amplify the capital holding

differences from the previous experiments. As a result, when both shocks hit the economy, two

counterproductive channels jointly ineffective in reshaping the stationary distributions.

The comparative static analysis in this section suggests that, in an RBC framework,

the economy’s stationary distribution is unchanged under the joint interruptions of decreasing

labor share and divergent productivity. Hence structural changes alone are not sufficient to

match multiple stylized DBD facts. Rather, introducing other sources of dynamics is critical.

2.4 The “Winner Takes All” dynamics

Figure 2.5 provides a graphical illustration for the core idea of Stage 2. To be specific,

with fact 4 (decreasing labor share) and 6 (increasing productivity dispersion) simultaneously

imposed on the heterogenous firm model, the Stage 1 model can not successfully match the

stylized DBD facts. As an improvement, I will introduce the “winner takes all dynamics” into

the model. As shown in the highlighted area, the proposed “winner takes all” dynamics is built

upon two key features: endogenous TFP growth and endogenous firm entry and exit. The former

can amplify the differences created by the interactions between wealth inequality and divergent

productivity. The latter allows individuals to choose occupations. These channels add extra

sources of variational dynamics to the model that are able to push the economy to a new steady

state under structural changes. And intuitively, such a mechanism can results in dynamics that

better match with stylized DBD facts.
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Figure 2.5: Key ideas of Stage 2

2.4.1 The mechanism

The model has not been numerically solved yet. Instead, I use this subsection to

illustrate how intuitively the “winner takes all” dynamics can contribute to the study of declining

business dynamism. Basically, triggered by structural shocks, the “winner takes all” dynamics

activated. During the transitions between the two steady states, the stylized declining business

dynamism facts can be generated throughout which process.

The whole dynamics are as shown in Figure 2.6. In this model, structural changes

are the initial cause of the mechanism. Under shocks, the economy deviates from its original

steady state Go (AoI , ao,ODo). Since then, individuals make their occupational decision at every

period. They will choose to become an entrepreneur whenever the associated lifetime value

is larger. For an entrepreneur, they should make optimal decision to balance investment on

capital holdings at and firm-specific technology accumulation AI ; what is more, their ability to

borrow is constrained by limit credibility. Since the richer firm has more flexibility on individual

technological accumulation, the growth paths for AIs will become divergent. As a result, the

joint distribution Gt
(
AtI , at,ODt

)
is more skewed than previous. Since wealth holdings and
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individual productivity are differentiated, production and the relative share among firms start

to change. Due to the shift of joint distribution, a new set of benchmarks on wealth holdings and

individual productivity yield at the end of each period. These benchmarks impose new criteria

for the optimal decision of an individual’s problem for the next period. On the other hand,

individuals who decide to become workers will receive their labor income and capital rental at

each period. At meanwhile, there will be a randomly revealed fixed cost for role switching and

individual productivity shock. Once the lifetime value of the entrepreneur is dominating, firm

entry happens. Overtimes, the above stated process will push the dynamics to a new steady

state and end up with Gn (AnI , an,ODn).

Figure 2.6: “Winner Takes All” dynamics
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2.4.2 Matching stylized facts with model’s mechanism

I will use this subsection to illustrate how the proposed mechanism can potentially

help to explain the stylized facts in declining business dynamism. In particular, I will follow the

logic presented in Figure 2.6.

Fact 1. Market Concentration

In the model, the proposed mechanism can increase market concentration through a

direct and an indirect channel. First, limited credibility reduces followers’ ability to catch the

leaders; hence, market concentration increases. Second, firm’s investment-specific technological

innovation process increases the return to being the market leader. Leading firms are much closer

to becoming a leader than a laggard who needs more innovations to become a leader. Therefore,

this innovation process gives a bigger incentive to frontier firms, which in turn expands the share

of unleveled industries, hence, the market concentration.

Fact 2. Increasing on Average Markups

The individual-specific technological progress set up allows firms that better adapt to

new technologies can gain a relatively more advantageous position than their competitors and

can capture outsized market power. Hence, these firms will raise their markups to earn more

profit, build up better technology, and have advantages in the competition.

Fact 3. Increasing on the profit share of GDP

As a direct result of market concentration, firm with better productivity will increase

their markup, accumulation on capital holding and technology. The profits in the model are

mainly coming from the frontier firms with higher markup and productivity. Hence, the majority

share of the profit in GDP has account toward these firms.
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Fact 4. The Labor Share Has Declined

Since the labor share is treated as an exogenous variation in this model, this fact is

automatically satisfied.

Fact 5. Market Concentration and Labor Share Are Negatively Associated

The model can generate increasing market concentration overtime if the labor share

declines. Hence the negative correlation is guaranteed by the aggregate dynamics.

Fact 6. Divergent Productivity

This fact can be explained by another interesting feature of my model, the linkage

between relative productivities and investment-specific technological innovation. To see this,

recall from equation (2.5), the dynamic relative productivities (between firm i and j) can be

written as
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kαi (ñ+ li)
1−α

kαj (ñ+ lj)
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at each period the optimal solution is to make collateral constraint (2.7) binding, therefore using

the assumption that each individual starts from same individual-specific technology, we have
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The above equation indicates that the evolutional process of firms’ investment-specific technological

innovation is a function of wealth path, i.e., wealth inequality can create further individual

productivity divergence by model dynamics.

Fact 7. Declining Firm Entry Rate (& Exit rate)

Since an individual’s occupational decision is forward looking, they would directly be

influenced by those forces that impact the market concentration. In particular, the implication

of increased market concentration implies that a new entrant is much more likely to compete

against a top firm, which would discourage new firm creation. This would also imply that

the fixed cost (total cost of investment-specific technological innovation) for a new entrant to

survive is very big. Therefore, the average possibility of having a larger lifetime value to be an

entrepreneur for a worker is declining over time. So as for the firm entry rate.

2.5 Conclusion and extensions

In this paper, I try to shed light on the frontier research discussions around declining

trends in business dynamism using a general equilibrium model structure with heterogenous
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individuals. The key mechanism of the framework is the strategic technological innovation

process of firms in response to individual’s wealth holding and life time value of being different

occupations. Such an endogenous TFP process accompanied by wealth inequality reflects a

firm’s relative technological position. The resulting “winner takes all” dynamics can help the

model to account for several observed empirical trends of U.S. economy jointly. To accomplish

this analysis, I adept a two stages approach to my structural model. In the first stage, I conduct a

comparative static analysis to numerically show that multiple structural shocks are not sufficient

to create DBD facts. As a consequence, for my current second stage, I introduce the “winner

takes all” dynamics to the model and provide intuitions on the mechanism. I try to use both

stages to emphasize the key role of the interactions between wealth inequality and firm-specific

productivity growth in explaining the DBD facts during transitional dynamics.

In the first stage, I simplify the model to a heterogenous firm model with a representative

household. I then study the behaviors of stationary distributions of the economy under different

sources of exogenous changes. I find that for the economy under single exogenous change such

as decreasing labor share or divergent productivity, the stationary distribution is either shifted

or skewed. Moreover, the effects from both channels are counter-directional. After this, I try to

impose both changes simultaneously and observe that the effects are roughly canceling out each

other, hence producing no change on the stationary distribution. Since the goal is to account

for multiple DBD facts jointly, I claim that, in the model, only have structural changes is not

able to accomplish such a purpose.

In my current second stage, I introduce the “winner takes all” dynamics to the model to

create an extra source of variations for the transitional dynamics. Once the structural changes

hit the economy, the composite transitional dynamics will bring the economy to a different

equilibrium. Instead of numerically solving the model and simulating the transitional dynamics,

in this chapter, I describe the intuitions behind the proposed mechanism and illustrate how
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potentially the model can match the multiple DBD facts.

There are two main extensions for the next step of this research. Firstly, The full model

(the Stage 2 model) should be numerically solved in order to quantitively assess whether the

transitional dynamics are behaving as expected. Regrading this extension, further exploration

and modifications on Winberry (2018) and Zhang (2018) will be the focus for next step. Secondly,

the specification of the endogenous TFP growth process deserves more attention. To be accurate,

the firm specific technological innovation process is the key feature of the “winner takes all”

dynamics. There are many perspectives related to this process, including globalization, regulations,

the changing nature of production, etc. A better adaptive formulation should be based on border

examinations on various sources of micro data on these channels. Extension on this direction

will be the key challenge for the Stage 2 study.

Finally, this work starts with constructing a GE framework with heterogenous individuals

that allows one to study border topics related to interactions between heterogenous households

and firms. In order to demonstrate the capability of this model, I apply it to the literature of

declining business dynamism. In this two-stage study, I highlight the potential drawbacks of

study DBD facts with only exogenous changes in the first stage. As a new attempt, I uncover

the “winner takes all” dynamics from my full model and try to deliver the point that DBD facts

may closely related to endogenous interactions between heterogenous households and firms. The

project still requires many extensional works. However, the current results provide confidence

in its promising future.
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Chapter 3

Can Social Media Affect Stock Market?

– A Case Study of Trump’s Tweets

3.1 Introduction

The US president can have a significant influence on the US economy (Brans and

Scholtens (2020)). Classical studies already provide profound understandings from both political

and economic perspectives. I am curious if there is any new channel that I can dive into and

then contribute to this broad topic.

By observing the reality, two facts drew my attention and eventually led me to the

research question. In the first place, I noticed that President Trump is the first president to

communicate with the public in a personal and informal manner using social media extensively.

This fact leads my research to use social media to evaluate the presidential influence on the US

economy. The second fact that inspired me is the increasing popularity of research that focuses

on the linkage between media and stock returns. Results from these works allow me to analyze

the effect of social media on the US stock market. Combining both observations, I eventually
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decide to use this project to answer the following research question, “Does President Trump

move the markets with his tweets?”.

I will use an event study approach to examine the question proposed above. A key

assumption of this study is the event has to be unexpected. I argue that this is the case with

President Trump’s tweets, as they relate to the President’s mood and feelings about companies,

which are difficult to predict. Another prerequisite with event studies is that the information

has to available to market participants. As tweets can be freely accessed and, assuming market

analysts monitor President Trump’s Twitter account and his comments on publicly traded

companies, investors may react to the tweets as if they were public news event releases (Chan

(2003)). Within the window of this event study, I investigate if Trump’s tweets affect stock

market returns during his presidency and whether the sentiment of the tweet is influential.

This project is based upon four main areas of study. They are (i) event study on stock

market; (ii) stock market reacts to media; (iii) efficient market hypothesis and (iv) study on

the connection between President Trump’s tweets and stock market movement. For the logic

of event study, I follow research conducted by Brown and Warner (1980, 1985). Their papers

introduced modifications to the event study methodologies, including applications of daily and

even intraday data instead of monthly data. All these technics guarantee a fairly accurate

measurement for abnormal returns and their reaction to new information. Paper such as S.P.

Kothari and Warner (2006) provides the foundation for using complex methods to estimate

abnormal returns. Their contributive works allow me to examine Trump’s tweet using daily

data, thus evaluating its short-term impact on stock prices.

The research on stock market reactions to media such as Mackinlay (1997); Campbell

et al. (2010) is extremely helpful in data filtering, conducting concrete statistical testing, and

decide estimation window for daily return data (window of study).

In terms of constructing a good measure of daily market movement and connecting
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with social-media-based event studies, Schneider and Spalt (2016), Ge and Wolfe (2017), and

other papers proposed and modified methodologies on EMH (efficient market hypothesis) for

Trump’s tweets. These works exam the impact of tweets with the most negative and positive

sentiments regarding several publicly traded firms. Follow their logic, I build up my own data

set with a lot more observations on tweets and daily return data on stock prices. By doing so,

I expect my work can further refine their conclusions.

Lastly, a number of studies analyze the short-term effect of Trump’s tweets on the stock

market movement. For example, Aziz (2020) tests EMH using Donald Trump’s company-specific

tweets. He found that EMH is violated as stock markets were not efficient at incorporating new

information into their stock prices. Brans and Scholtens (2020) analyze the effect of President

Trump’s Twitter messages that specifically mention a company name on its stock market returns.

This paper suggests that tweets from the president that reveal strong negative sentiment are

followed by the reduced market value of the mentioned company, whereas supportive tweets do

not significantly affect.

To sum up, in this project, I run an event study on President Donald Trump’s tweets.

By combining data on the stock price movement of mentioned companies, I test the hypothesis

that President Trump’s tweets can trigger the company’s stock price to move. To be specific,

this paper tries to test if the average abnormal daily return before Trump post a Twitter (with

a particular type of sentiment) is statistically significant different than the average abnormal

daily return after its posting.

3.2 The Architecture and contribution of this project

The project is built upon two main pillars. For President Trump’s tweets, I use

sentiment analysis to classify each of his tweets. For stock market price data, I implement
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time series forecasting routine to construct the abnormal daily returns.

Figure 3.1 presents a graphical illustration for the conceptual skeleton of this project.

To be specific, let’s consider the way that each pillar works as a mathematical function. From

this sense, the orange rectangle on the left-hand side uses President Trump’s original tweets

as its input and creates tags for sentiment classification as its output. In between, I processed

everything with sentiment analysis packages which I will discuss in detail in a later section.

Figure 3.1: Architecture of the project

Similarly, the rectangle on the right-hand side first extracts information such as company

name (index i), the date of the tweet (index t) and time series data on stock price from each of

President Trump’s tweets as its input. Then, it generates expected daily return (E (Ri,t|xi,t))

by incorporating with either classical methods or data mining technics. Follow the definition

from finance literature, I then construct abnormal daily return ARi,t for each firm i at time t.

Here the time series forecasting section is the main novelty of this project. For previous

research, the most popular ways of constructing abnormal daily return are through the constant-

mean return model (CMR), the market model, or the capital asset pricing model (CAPM).

However, the main drawbacks of these models are either their theoretical limitations, or the

researcher has to impose strong assumptions1 in order to use it. Considering these facts, I

1For example, the market model assumes the relationship between the market returns and stock returns is
stable and linear.
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decided to directly forecast the close price for stock indexes and construct the abnormal daily

return data afterward. The advantage of my approach is obvious. First, it doesn’t require any

assumption or theory, hence no limitations from this sense. Second, the accuracy of the predicted

value is guaranteed by the method I am using. Hence it is transparent and well-controlled at

a given accuracy level. As a result, I argue that the abnormal daily return data constructed

under this approach should provide better confidence for my study than other previous research.

Therefore, it becomes the critical contribution of this project.

Finally, combining two pillars together, I conduct several sets of hypothesis testing in

order to provide a robust conclusion to the main question that this project is trying to answer.

3.3 Data and methodologies

In this section, I will describe the data sets I am using in this project. In addition, I

will also present the methodologies I used to arrive at the pre-setup for hypothesis testing.

3.3.1 Sentiment analysis

3.3.1.1 Data on tweets

As mentioned before, I will be running an event study on president Trump’s tweets.

This specific event study examines tweets posted by President Trump that mention a publicly-

traded company. Twitter data are collected from Trump Twitter Archive, which in total

contains 55,886 tweets up to November 2020.

I then started to filter the data set and extract only tweets that can provide me with

unbiased hypothesis testing results. There are four main steps of this data filtering process.

First, in this paper, I only pay attention to President Trump’s tweets posted before COVID-
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192. The main reason for this is, COVID-19 has significantly changed our life. That said, the

patterns that the model is mining (i.e., the way that tweets can affect the stock market ) may

be different before and after COVID-19 pandemic. As a result, including data after pandemic

will potentially bias the analysis. By doing so, the data size is reduced to around 47,000 tweets.

At the next step of data filtering, I pick tweets that directly mentioned a particular

company. The reason for doing so is straightforward; as a conservative study, I have to make

sure the hypothesis testing runs on a data set that may provide a significant result. That said,

tweets that directly mentioned a specific company’s name (I name it as “direct effect”) should

definitely fit into this requirement, but not vice versa. Hence, I decides to start with only the

tweets that clearly mentioned a particular company. In this step, I also removed companies

involved in merger and acquisition activity (like stock split, gave a profit warning, or saw a

change in their top management team). The reason for removing companies involved in merger

and acquisition activity is that the literature usually finds a stock market response after this

type of news (Mackinlay (1997)). If the president tweets about this news and I would keep this

tweet in my sample, it is impossible to determine whether the market response results from the

event as such or from the president’s tweet. After this step, the data size shirks to 186.

In the third step, I remove tweets that mentioned a company but are not part of the

S&P 500 index. The S&P 500 is a stock market index based on the market capitalization of

500 large companies listed on the NYSE, NASDAQ, or CBOE. There are two main advantages

of working with it. First, a large company may have a significant stock price movement after

President Trump’s tweet. Therefore it is easier for me to detect. Such a property is a potential

guarantee for the conservativeness of a study like this project. Second, due to strict requirements,

the S&P 500 index is one of the most accurate indicators of the stock market of the United States.

2To be specific, I drop tweets posted after April. In this step, I consider April as a benchmark date when the
COVID pandemic started to spread all over the US.
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Therefore, I decided to use the S&P500 as the market index for the sentiment analysis. This

step shrinks the number of tweets to 112.

Finally, I select tweets posted after Donald Trump’s presidency, which happened on a

trading day. The reason for doing so is, for a research which focusing on evaluating Trump’s

presidential power on stock market movements, including data from before his presidency is

going to bias the result. Additionally, I need to construct the actual daily return data for the

date of tweet posting in order to run the hypothesis testing. As a result, any tweets post at a

date that is not a trading day will be considered an observation with a variable value that is not

available; therefore, it dropped out from the data set.

All these steps filtered the data set to 64 tweets in total, and I will use this data set

as the starting point of my sentiment analysis. The Appendix C.1 list all tweets from President

Donald Trump up to the second step of the above-mentioned data filtering process (which

contains 186 tweets). In the appendix, for further extensional works, I also keep observations

from companies not in the S&P 500 and tweets before his presidency.

3.3.1.2 Sentiment analysis

I divide the data set into subsamples (according to their sentiment) to perform the

sentiment analysis regarding particular sentiment of the tweets. The subgroups categorization

is mainly based on SentiStrength, which extracts sentiment strength from the informal English

text. As Thelwall et al. (2010, 2011) point out, SentiStrength is a highly accurate sentiment

analysis tool specified for short social web texts. It is produced as a part of the CyberEmotions

project which is supported by the EU FP7; This tool is able to detect social media grammar

and misspellings. SentiStrength gives all tweets a score from -5 (very strong negative attitude)

to +5 (very strong positive attitude). Each tweet that gets a positive sentiment score between

0 and 5 will be classified as a positive tweet; a negative tweet has a sentiment score between 0
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and -5, a neutral tweet has zero sentiment score.

Table 3.1: Overview of sentiment data set

Company Date Tweet Other features Nature of Tweet

Ford 1/9/2017 ’· · · ’ · · · Positive

Walmart 1/17/2017 ’· · · ’ · · · Positive

General Motors 1/17/2017 ’· · · ’ · · · Positive

Lockheed Martin 1/18/2017 ’· · · ’ · · · Neutral

...
...

...
...

...

The adjusted balanced accuracy of SentiStrength is tested for around 75% in this

particular practice. After the classification by SentiStrength, I also manually checked all tweets

and corrected all 7 tweets that were wrongly assigned. As a summary of this part, the result

ends up with 34 positive tweets, 21 negative tweets, and 7 neutral tweets. Table 3.1 shows a

glimpse of the outcomes from the sentiment analysis. For each tweet (each row of the table),

I collect information about each mentioned company and also attached the manually checked

sentiment classification for it3.

3.3.2 Time series forecasting

3.3.2.1 Data on abnormal daily return

I have shown how I build my data set for event study in the previous section, and in

order to evaluate their economic impact, let’s now shift gear to the measurement of the market.

3I also apply the same process to other tweets listed in Appendix C.1 for further use.
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In this paper, I decided to focus on the financial market to serve the research purpose better.

Compared to other markets, financial data can react to social media at a relatively faster path

while providing data that are easier to capture. Therefore, I will use an approach similar to

Brown and Warner (1985) to measure the economic impact of an event over a short time period

with stock prices.

Next, I decide the window of the event study to be three trading days for two considerations.

First, this window includes one trading day before the tweet posting, the day of the tweet and

the next trading day after the tweet. Such a window allows me to evaluate the short-term effect

before and after President Trump posts his tweet. Second, my experiment suggests that the

effect does not last long, and hence there is no need to include a longer window of study. For

further details, see Aziz (2020) and Brans and Scholtens (2020).

Lastly, I decide to use abnormal daily return as the key variable for hypothesis testing.

The abnormal return is the actual ex-post return of the security over the event study window

minus the firm’s normal return over the same time window, whereas the normal return is defined

as the expected return without conditioning on the event taking place. Therefore I think this

index is a good fit for the event study conduct in this paper. I use daily data as the data

frequency due to the fact that EMH for stock market is violated, so this task doesn’t require

high-frequency data.

By definition, the abnormal return is defined by subtracting the expected normal return

from the actual return

ARi,t = Ri,t − E (Ri,t|Xi,t) (3.1)

where ARi,t, Ri,t, and E (Ri,t|Xi,t) represent abnormal daily return, actual daily return and

expected daily return of company i at time t. In this project, I use the following equations to
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construct Ri,t, and E (Ri,t|Xi,t), respectively.

Ri,t =
PClosei,t − POpeni,t

POpeni,t

(3.2a)

E (Ri,t|Xi,t) =
P̂Closei,t − POpeni,t

POpeni,t

(3.2b)

where the P̂Closei,t stands for predicted close price of firm i at time t.

Applying equation (3.1) and (3.2) into this study, I first retrieve data on open and close

price of company i for the past 6 years head of time t4. Then I construct the corresponding

actual daily return and expected daily return by equation (3.2). With these two components, I

calculate the abnormal daily return by equation (3.1). That said, in this time series forecasting

step, for each tweet, there are 3 trading days in the window of study t = T −1, T, T + 1 where T

represents the actual date of tweet posting. For each of the trading days, I am running a time

series forecasting based on data from the previous 6 years ahead of t. These sum up to around

180 time series forecasting in total.

Figure 3.2 displays the routine of constructing data for time series forecasting of the

close price for each of the three trading days in the event study window.

Figure 3.2: Time schema for time series forecasting

Firm i

“Previous day” Day of Tweet

Data from 6 years ahead︸ ︷︷ ︸
Forecast P̂Closei,T−1 “Today” Day after Tweet

Day before Tweet

Data from 6 years ahead︸ ︷︷ ︸
Forecast P̂Closei,T “Next day”

Data from 6 years ahead︸ ︷︷ ︸
Forecast P̂Closei,T+1

4The reason for me to set the time series with 6 years horizon is quite ad hoc. First, I need enough information
to train the model. Second, I want to keep the computational cost and memory as efficient as possible. I find 6
years is a good balance between these two criteria.
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3.3.2.2 Time series forecasting

I use two methods to accomplish the task. One of them is the ARIMA model, a classic model

that is intensively used by the literature related to time series forecasting of the stock price.

The other one is RNN. To be accurate, I use the long short term memory (LSTM) model as

a representative method for data mining techniques. Many studies are comparing these two

methods in terms of their accuracy on a task like time series forecasting of the stock price.

In this project, I did the same thing on both methods with optimized hyperparameters, and I

didn’t find any significant difference in their performance (the MSE of both methods are almost

identical in this practice). In other words, the results and conclusions are robust to the selection

of methods. Therefore, for the rest of this paper, I decide to use LSTM as the benchmark

method for time series forecasting practice due to its higher flexibility.

Algorithm 2 The RNN for time series forecasting on closed price

Step 1. For each tweet event study (out of the 64 filtered set of tweets), identify the date of

trading (T ), one trading day before (T − 1) and after (T + 1).

Step 2. For each date t = {T − 1, T, T + 1}, extract closed prices for the company mentioned

in this tweet for 6 years head of t, i.e. for T , the time series data would be

PClosei,1 , · · ·PClosei,T︸ ︷︷ ︸
Trading days for previous 6 years

Step 3. Use training set to train the LSTM model and validation set to predict, where the date

of interest t should be the last prediction on the validation set.

PClosei,1 , · · ·PClosei,Train︸ ︷︷ ︸
Training set

, ̂PClosei,Train+1, · · · P̂Closei,t︸ ︷︷ ︸
V alidation set

Step 4. Use PClosei,t and P̂Closei,t to construct expected abnormal daily return by equation (3.2).
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Figure 3.3: Illustrative example of LSTM for 1 tweet event on 3 trading days

(a) T − 1

(b) T

(c) T + 1
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In the window of each tweet event study, I collect time series data from the previous

6 years on the close price of the company mentioned in the tweet for each trading day. I use

a training set (blue curve) to train the model. The entire machine learning algorithm tries to

minimize the deviation between the validation set (red curve) and the predictions (yellow curve).

I set the date that I want to predict as the last day of the study window (the last point on the

yellow curve). Therefore the last predicted value of the prediction set is the object of interest,

P̂Closei,t . As a detailed exposition, Algorithm 2 describes the whole process.

For the RNN model, I define it as a neural network with 4 layers where the first and

second layers have 50 nodes and the third layer has 25 nodes. During the training process, I use

’adam’ as the optimizer and mean squared error as the objective loss function. For the training

process of each series, I use 10 batches with 20 epochs for each. As an illustrative example,

Figure 3.3 shows time series forecasting results of 1 out of 64 tweet events; thus, it associated

with 3 time series forecasting plots (P̂Closei,T−1 , P̂Closei,T and P̂Closei,T+1).

3.4 Hypothesis testing

In this section, I conduct two sets of hypothesis testings. For the first type of hypothesis

testing, I try to test the hypothesis that tweets with different sentiments can create distinct ways

of stock movement. For the second type of hypothesis testing, I try to unravel the exact pattern

that each sentiment type can influence the stock market.

3.4.1 Hypothesis testing I

In this section, I try to use both sentiment data set for president Trump’s tweets and

time series data for each mentioned company’s abnormal daily return to test if tweets with

different sentiments can affect the stock market differently.
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For this part, I divide the tweets data set into three subgroups. They are a subgroup

of tweets with only positive sentiment, a subgroup of tweets with only negative sentiment, and

a subgroup of tweets with only neutral sentiment. Then I compute the average abnormal daily

return (AAR) for each subgroup per trading day. To be specific, the AARs are calculated by

AAR
{Positive,Negative,Neutral}
t =

1

N

N∑
i=1

AR
{Positive,Negative,Neutral}
i,t

t ∈ {T − 1, T, T + 1} (3.3)

where T corresponding to the date of tweet on company i. Therefore, AARPositiveT can be

interpreted as the average abnormal daily return for tweets with positive sentiment at the

tweet’s day.

With equation (3.3), the hypothesis “On average, Tweets with positive sentiment

can influence the stock market movement in a different way than Tweets with other types

of sentiment” can be written in a formal way as5:

Hypothesis: Overall, the Tweets from President Trump with positive sentiment and negative

sentiment will have a different impact on abnormal daily return for the mentioned company.

H0 : AARPositiveT = AARNegativeT

H1 : AARPositiveT 6= AARNegativeT

It is obvious that for a hypothesis like the one stated above, two sample unpaired t-

test6 would be appropriate to use. In particular, the t-statistics for the above test are calculated

in the following way,

tstatistics =
AARPositiveT −AARNegativeT√

s2
(

1
N1

+ 1
N2

) (3.4)

5This part conducts multiple hypothesis testings, and however, for exposition purposes, I only use the
hypothesis on positive tweets as a representative example here. Full testing results are shown in Table 3.2.

6I am using two sample t-test here because the data size is various for different subgroups of tweets.
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where the N1 and N2 are the sample size of positive and negative subgroup respectively. s2 is

the adjusted standard error which is defined as

s2 =

∑N1

i=1

(
ARPi,T −AARPT

)2
+
∑N2

i=1

(
ARNi,T −AARNT

)2
N1 +N2 − 2

(3.5)

Applying the equation (3.3)-(3.5) to the abnormal daily return data, I obtained the t-statistics

and their associated p-values.

Table 3.2 shows the p-values for hypothesis testings on the average abnormal daily

return of tweets with different sentiments within the study window. As a robustness check,

the result from the first column of the table suggests that there is no statistically significant

difference between tweets with any sentiment on the day before tweet posting. This makes sense

since no tweet has been posted yet at T −1, so one should not expect any statistically significant

difference to show up on these tests.

Table 3.2: Hypothesis testing I

Hypothesis T − 1 T T + 1

P-value

Positive vs. Negative 0.7968 0.0253 0.7095

Positive vs. Neutral 0.6771 0.0083 0.4843

Negative vs. Neutral 0.6595 0.1285 0.6636

On the other hand, for tests on the date after a tweet was posted, the result suggests

that the difference between positive and negative tweets only significant at the date of tweet (T )

but not significant at one day after it (T + 1). Thus, based on the data we have, the influence of

tweet on stock market movement only persist for about one trading day. The same conclusion

holds for the test on positive vs. neutral tweets. On the date of tweet posting, the effect of a

95



positive tweet is significantly different from tweets with neutral sentiment. But neither on the

day before nor the day after. However, I didn’t see any statistical significance between tweets

with negative and neutral sentiment. Interestingly, there is no statistically significant impact of

a tweet on a stock price move at T + 1 regardless of the type of sentiment it has.

Figure 3.4 plots the abnormal returns of hypothesis testings conducted in this part.

For 3.4a, the data dots with blue color are ARs for negative tweets, where the data dots with

red color are for positive tweets. The red horizontal line stands for the AAR of tweets with

positive sentiment; the blue line stands for the AAR of tweets with negative sentiment. The

p-value from the first cell in the second column of Table 3.2 suggests the gap between the red

line and the blue line is statistically different from zero. Similarly, For Figure 3.4b, the data

dots with blue color are ARs for neutral tweets, where the data with red color are for positive

tweets. The red horizontal line stands for the AAR of tweets with positive sentiment; the blue

line stands for the AAR of tweets with neutral sentiment. The p-value from the second cell

in the second column of Table 3.2 suggests the gap between the red line and the blue line is

statistically different from zero.

The takeaways from this section are twofold. First of all, at the date of tweet posting,

different sentiments create significant different effects on the stock market, especially the tweet

with positive sentiment. Second, such an influence only lasts for one trading day and quickly

vanishes.

3.4.2 Hypothesis testing II

In this section, I will use both sentiment data set for president Trump’s tweets and

time series data for abnormal daily return of each mentioned company to uncover the exact

pattern of tweet with a particular sentiment on affecting the stock market movements.

For this part, I also divide the tweets data set into three subgroups in the same way
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Figure 3.4: AAR difference for tweets with different sentiment

(a) Positive vs. Negative tweets

(b) Positive vs. Neutral tweets
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as I did in the last section. Then I compute the average abnormal daily return (AAR) for each

subgroup per trading day. The whole process is actually parallel to equation (3.3).

In this section, I will focus on the intra-group difference rather than the inter-group

difference. That said, one example7 of the hypothesis I am testing in this part can be stated

as “Overall, the average abnormal daily return of Tweets with positive sentiment will tend to

deviate from the original trend after the date of tweet”. More rigorously, it can be written as

the following way:

Hypothesis: Overall, the Tweets from President Trump with positive sentiment will

significantly influence abnormal daily returns for the mentioned company after it was posted.

H0 : AARPositiveT−1 = AARPositiveT

H1 : AARPositiveT−1 6= AARPositiveT

For this intra-group hypothesis testing, I will use two sample t-test with equal sample

size as my approach for this section. In particular, the t-statistics for the above test are calculated

in the following way,

tstatistics =
AARPositiveT −AARPositiveT−1√

s2
(

2
N

) (3.6)

where the N are the sample size of tweets with positive sentiment. s2 is the adjusted standard

error which is defined as

s2 =

∑N
i=1

[(
ARPi,T −AARPT

)2
+
(
ARPi,T−1 −AARPT−1

)2]
2 (N − 2)

(3.7)

Applying the equation (3.3), (3.6) and (3.7) to the abnormal daily return data, I obtained the

t-statistics and their associated p-values.

Table 3.3 shows the p-values for hypothesis testings on the average abnormal daily

return of positive, negative, and neutral tweets for the window of study. To be specific, it tests

7Again, I will use positive tweets as an example of the hypothesis testings in this part.
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if the AAR of tweets with each type of sentiment are statistically different before and after they

were posted. For each sentiment, I am testing whether the AAR is statistically significantly

different between the day before the tweet (T − 1), the day of the tweet (T ), and one day after

the tweet (T + 1). Therefore, in total, I am running 9 hypothesis testings in this practice, and

most of them are obviously not statistically significant at all.

Table 3.3: Hypothesis testing I

Hypothesis Positive Negative Neutral

P-value
T − 1 vs. T 0.0998 0.5307 0.3916

T − 1 vs. T + 1 0.2929 0.8512 0.8067

T vs. T + 1 0.5486 0.2148 0.3550

By taking a close look at the table, as a robustness check, testings on neutral tweets

suggest no statistical evidence for a significant effect of neutral tweets on stock price movements.

For testings on tweets with positive sentiment, the results suggest that the difference before and

after a tweet was posted is only significant at 90% confidence level, based the comparison between

the date of tweet (T ) and the day before it (T − 1). That said, based on the data we have,

only the tweet with positive sentiment has an influence on the stock market, and moreover,

consistent with previous results, it only persists for about one trading day. Interestingly, for

positive tweets, neither the differences between T −1 vs. T +1 nor the differences between T vs.

T + 1 are significant. This seems a little contradictory with the conclusion on positive tweets.

An explanation would be the 90% confidence level is not restricted enough to get a consistent

conclusion in this part. Thus, from this sense, one can reject the null by imposing a smaller
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significant level.

Surprisingly, negative tweets are not able to affect the stock market. This result

contradicts previous research such as Brans and Scholtens (2020).

Figure 3.5 plots the abnormal returns of hypothesis testings conducted in this part.

The data dots with blue color are ARs for positive tweet before its posting, where the data dots

with red color are for positive tweet after its posting. The red horizontal line stands for the AAR

of tweets with positive sentiment before its posting, the blue line stands for the AAR of tweets

with positive sentiment after its posting. The p-value from the first cell in the first column

of Table 3.3 suggests the gap between the red line and the blue line is statistically different

from zero at 90% confidence level. Moreover, the implication here is that, on average, president

Trump’s tweet with positive sentiment tends to increase the AAR for mentioned company.

Figure 3.5: AAR difference for tweets with different sentiment

Combining hypothesis testing results from this section, we end up with a very interesting

conclusion. That is, the positive tweets had a more significant impact than their negative
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counterpart (and of course those neutral tweets) for the period when Donald Trump became US

president. Moreover, the influence of the positive tweet was immediately effective (on the day of

posting) but quickly vanished (on the following trading day). A possible explanation as to why

positive tweets had a larger impact would be because Trump was synonymous with negative and

controversial statements in his efforts to generate publicity for his presidential power. Therefore,

even there are more positive company-specific tweets in the data set I am using, when count

overall Tump’s tweets, positive tweet still came rarely, thus leading to increased returns.

3.5 Conclusion

This paper studies the impact of President Trump’s Twitter messages on the stock

market. I investigate 60 of his tweets that include the name of a publicly listed company over

the years of his presidency. I also carry out an analysis of the sentiment of the tweets by using

textual analysis. Overall, the president’s tweets did not yield a significant response from the

stock market. However, when considering the tweets’ sentiment, I find that especially tweets

with a (strong) positive sentiment render a significant positive response from the investment

community in an economically meaningful way. This contradicts previous research such as

Juma’h and Alnsour (2018); Brans and Scholtens (2020), and instead, my result implies that

investors are happier to react to good news than bad news. I feel that my systematic sampling

approach, the substantially larger number of events, the inclusion of non-parametric testing,

and relying on textual analysis regarding the sentiment of the tweets, contributes to a better

understanding of the economic impact of communications from president Trump.

Methodological speaking, this paper features a brand new way of constructing abnormal

daily returns for the stock price. Before my work, people usually follow the traditional econometric

approach, which involves few drawbacks. In this research, the abnormal daily returns are

101



constructed based directly on its definition. Machine learning, especially RNN allows me to

accurately forecast the expected daily return (hence abnormal daily return) while maintaining

the flexibility (assumption-free) of the whole algorithm.

There are few limitations to this event study. First, the tweets are selected if the tweet

was directly mentioned a company’s name. This could lead to exclusion and inclusion from

incorrect events in the dataset. One way to improve the result in the future is to include a tweet

that “indirectly” mentioned a company and significantly influences its stock price.

Further, this study only uses tweets that mentioned companies in S&P 500. This may

also potentially bias my evaluation result. Imagine that the effect of President Trump’s tweet is

totally in the opposite direction and larger in magnitude for stock indexes other than S&P 500.

If so, the direction of my conclusion may get flipped when combining them with my current data

set. For future research, including a stock index outside of the S&P 500 is definitely critical.

Finally, many variables are also useful to evaluate the stock market changes. For

example, trading volume. Intuitively, if a positive tweet is indeed creating positive movement

on stock price, the market will become more active as well. That said, it is highly likely that

the trading volume of the mentioned company also increases. If such a piece of evidence can be

captured and proved significant, the main finding in this paper can be further confirmed.
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Appendix A

Chapter 1

A.1 Proofs of the 2S-Inter-ld algorithm in Section 1.2

This section provides all necessary proofs and illustrations of Section 1.2 of the paper.

This includes Lemma 1-2, Proposition 1-3. (They are all provided right after the statement in

the main text of the paper for this version)

A.2 Examples on other univariate functions

I pick three univariate functions and use the analytical result from the ratio test, root

test, and complex plane approach as my benchmark result to test the performance of Algorithm 1

on ROC approximation. This section exposits two examples other than the square root function

showed in Section 1.2.
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A.2.1 f (x) = sin x and the root test

I decide to use function f (x) = sinx to test the performance of our algorithm on the

case with oscillating coefficients. At c = 0, the Taylor expansion can be written as

sinx =

∞∑
n=1

(−1)
n−1 x2n−1

(2n− 1)!
(A.1)

The root test approach delivers the ROC value as,

Rc =
1

lim sup
n→∞

n
√
|tcn|

=
1

lim sup
n→∞

n

√∣∣∣ (−1)n−1

(2n−1)!

∣∣∣ =∞ (A.2)

Equation (A.2) suggests that the ROC of f (x) = sinx at c = 0 is infinite.

Figure A.1: Algorithm 1 on f (x) = sinx at c = 0

Figure A.1 plots the first-stage sequence solved by both polynomial interpolation and

the log-absolute difference method. There are two points I want to point put using this case.

First, the sequence only has 50 elements. Hence, the approximation is bi-coefficient (meaning

only odd terms are used for the 2S-Inter-ld algorithm). The reason for this is that the Taylor

coefficients of sinx oscillate between (−1)
n−1 x2n−1

(2n−1)! for n odd and zero for n even. To make

the CLS and log-absolute difference well defined after taking the log-absolute value, we need

to remove the zero terms. Further, knowing the ROC is infinite in this case, we only need

the first-stage approximation, as no penalty is needed (i.e., conservative is not necessary for an

infinite ROC case).
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The sequence of approximated ROC values monotonically increases in Figure A.1.

Conceptually, it will approach infinity as the order of the Taylor polynomial continues to increase.

Given a finite Taylor polynomial in realistic practice, such a sequence can be considered as

evidence (or indication) of an infinite ROC. This practice gives some insight into how essential

the active set (the none zero subset) of Taylor coefficients are to this algorithm. It also shows

some potential in dealing with infinite ROC cases using the 2S-Inter-ld algorithm.

A.2.2 f (x) = 1
(9802−198x+x2)

and the complex plane approach

For the last one-dimensional function practice, we decide to use f (x) = 1
(9802−198x+x2)

from Judd (1998) to show how our algorithm can overcome the limitations of analytical approaches

in computing ROC. It is easy to identify the singularity of this function is located at x =

99 ±
√
−1, hence the complex plane approach implies the Rc = 1 when c = 99. Notice this is

the only way we can get an analytical answer for the ROC (both the ratio and root test are not

helpful) in this case.

Similar to f (x) = sinx, Figure A.2 shows there are zero and periodically oscillating

coefficients in this case. Hence, the original Taylor coefficient set does not coincide with the active

set. However, by dropping zero coefficients and taking log-absolute values, the approximation

on even terms implies the linear trend does exist for the active set. One may notice the log-

absolute difference solution perfectly approximates the true ROC (the black hexagram sequence

in the first stage perfectly coincides with the horizontal red line). This is because the objective

function is well behaved in this case. Hence, the log-absolute Taylor coefficients lie perfectly on

a linear curve; therefore, the log-absolute difference approach is efficient.

However, as the ROC, in this case, is a finite number, and suppose we do not know the

true limit, a conservative approximation after the second stage (the blue hexagram sequence)

still leads us to the true value. Till this practice, we used three types of objective functions
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Figure A.2: Algorithm 1 on f (x) = 1
(9802−198x+x2) at c = 99

to test Algorithm 1’s performance using three analytical methods for computing ROC. Overall,

the toy examples in this subsection verify that Algorithm 1 is a solid numerical foundation for

attacking multi-dimensional functions or models with unknown ROC.

A.3 Proof of ROC of kt+1 (·) in closed-form Neoclassical

growth model

Given the solution from the neoclassical growth model with closed-form formula

kt+1 = αβeztkαt
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The Taylor expansion (perturbation solution) of this solution at deterministic steady state

(k, z;χ) = (kss, 0; 0) on the capital direction will be

kt+1 =

∞∑
n=0

F (n)(kss, 0; 0)

n!
(k − kss)n

=αβkαss + α2βkα−1
ss (k − kss) +

1

2
(α− 1)α2βkα−2

ss (k − kss)2

= +
1

6
(α− 2) (α− 1)α2βkα−3

ss (k − kss)3 + · · ·

+
1

n!
(α− n+ 1) · · · (α− 1)α2βkα−nss (k − kss)n + · · ·

We can use the ratio test to derive the theoretical ROC in this case, as we have the analytical

expression for tn and tn+1. This suggests

Rc = lim
n→∞

∣∣∣∣ tntn+1

∣∣∣∣
= lim
n→∞

∣∣∣∣∣ 1
n! (α− n+ 1) · · · (α− 1)α2βkα−nss

1
(n+1)! (α− n) · · · (α− 1)α2βkα−n−1

ss

∣∣∣∣∣
= lim
n→∞

∣∣∣∣ (n+ 1)

(α− n) kss

∣∣∣∣
Using L’ Hospital’s rule, we get

Rc = lim
n→∞

∣∣∣∣ (n+ 1)

(α− n)
kss

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

−1
kss

∣∣∣∣ = |kss|

This implies the ROC of the neoclassical model on capital direction is |kss|. Now let’s look at

the ROC of another state variable zt. To see this, the Taylor expansion of this solution at the

deterministic steady state (k, z;χ) = (kss, 0; 0) on the TFP shock direction will be

kt+1 =

∞∑
n=0

F (n)(kss, 0; 0)

n!
(z)n

= αβkαss + αβkαssz +
1

2
αβkαssz

2 +
1

6
αβkαssz

3 + · · ·+ 1

n!
αβkαssz

n + · · ·
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we can also use the ratio test to derive the theoretical ROC in this case as we also have the

analytical expression for tn and tn+1. This suggests

Rc = lim
n→∞

∣∣∣∣ tntn+1

∣∣∣∣
= lim
n→∞

∣∣∣∣∣ 1
n!αβk

α
ss

1
(n+1)!αβk

α
ss

∣∣∣∣∣ = lim
n→∞

|n+ 1| =∞

This implies the ROC of the neoclassical model on TFP direction is infinite.

A.4 ROC of Burnside’s asset pricing model

A.4.1 Model set up and numerical result

In this section, we consider another simple macro model with closed form solution

used by Burnside. In this model, agents decide consumption, ct, and equity holding, et, at every

period to maximize their lifetime utility on

max
{ct,et}∞t=0

E0

∞∑
t=0

βt
cθt
θ
, θ ≤ 0 and θ 6= 0

where θ is the elasticity of consumption and β ∈ (0, 1) is the discount factor. Defining pt as the

price of equity and dt as corresponding dividend in period t, which grow at rate xt so

dt+1 = ext+1dt

and the growth rate xt follows the AR(1) process with |ρ| < 1

xt+1 = (1− ρ)xss + ρxt + χεt+1, εt+1 ∼ N
(
0, σ2

)
the budget constraint can be written as

ptet+1 + ct = (pt + dt) et
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Defining the price-dividend ratio yt = pt/dt, Burnside (1998) showed the solution of this model

is given by

yt =

∞∑
i=1

βi exp [ai + bi (xi − xss)] (A.3)

where

ai = θxssi+
θ2σ2

2(1− ρ)2

[
i−

2ρ
(
1− ρi

)
1− ρ

+
ρ2
(
1− ρ2i

)
1− ρ2

]

and

bi =
θρ(1− ρi)

1− ρ

Again, because of the analytical solution, we can use the Taylor polynomial as a shortcut to

denote the perturbation solution. As we can reduce the model’s state space to one dimension,

the range of convergence of this model is the ROC of the perturbation polynomial of the policy

function (A.3)

yt (xt;χ = 0) ≈
k∑

n=0

F (n)(xss; 0)

n!
(xt − xss)n

F (xt;χ) =

∞∑
i=1

βi exp [ai + bi (xi − xss)]

We proved the ROC of the policy function in this model is defined by (−∞,∞) ⊆ R1 in this

next subsection.

Figure A.3 plots the ROC approximation process on Burnside’s asset-pricing model.

Notice that because we have a well behaved active set, the linear trend is clear and the

approximated value increases monotonically . This result also provides another explanation on

one of the main conclusions in Collard and Juillard (2001). The paper states the perturbation

method captures the distribution of shocks much more precisely than Chebychev polynomials

in the Burnside asset-pricing model. From a numerical perspective, our results confirm their

conclusion. Our results also suggest the dominance of the perturbation method is as a result of

the state variable of Burnside asset-pricing model having an infinite ROC.
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Figure A.3: Burnside asset pricing model (ROC approximation on zt dimension)

A.4.2 Proof of ROC of price-dividend ratio in policy function

Proof. Given the solution of Burnside asset-pricing model (A.3), the Taylor expansion of this

solution at the deterministic steady state x = xss on the state space of rate of growth of dividends

will be

yt =

∞∑
n=0

F (n)(xss; 0)

n!
(z)n

=

∞∑
i=1

βi exp [αi] +

∞∑
i=1

βibi exp [ai] (xi − xss) +
1

2

∞∑
i=1

βib2i exp [ai] (xi − xss)2

+
1

6

∞∑
i=1

βib3i exp [ai] (xi − xss)3
+ · · ·+ 1

n!

∞∑
i=1

βibni exp [ai] (xi − xss)n + · · ·

Using the ratio test, we have

Rc = lim
n→∞

∣∣∣∣ tntn+1

∣∣∣∣
= lim
n→∞

∣∣∣∣∣ 1
n!

∑∞
i=1 β

ibni exp [ai]
1

(n+1)!

∑∞
i=1 β

ibn+1
i exp [ai]

∣∣∣∣∣
= lim
n→∞

|n+ 1|
∣∣∣∣ ∑∞i=1 β

ibni exp [ai]∑∞
i=1 β

ibn+1
i exp [ai]

∣∣∣∣
= lim
n→∞

|n+ 1|

∣∣∣∣∣∣∣
∑∞
i=1 β

i
(
θρ(1−ρi)

1−ρ

)n
exp [ai]∑∞

i=1 β
i
(
θρ(1−ρi)

1−ρ

)n+1

exp [ai]

∣∣∣∣∣∣∣
= lim
n→∞

|n+ 1|
∣∣∣∣1− ρθρ

∣∣∣∣
∣∣∣∣∣
∑∞
i=1 β

i
(
1− ρi

)n
exp [ai]∑∞

i=1 β
i (1− ρi)n+1

exp [ai]

∣∣∣∣∣
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because of the calibration we always have |ρ| < 1, let’s discuss the possible outcome by cases.

Case 1: 0 ≤ ρ < 1

In this case we always have (1− ρi) < 1. Therefore we have

βi(1− ρi)n exp [αi] ≥ βi(1− ρi)n+1 exp [αi]

⇒
∞∑
i=1

βi
(
1− ρi

)n
exp [ai] ≥

∞∑
i=1

βi
(
1− ρi

)n+1
exp [ai]

⇔

∣∣∣∣∣
∑∞
i=1 β

i
(
1− ρi

)n
exp [ai]∑∞

i=1 β
i (1− ρi)n+1

exp [ai]

∣∣∣∣∣ ≥ 1

Using this result we can say

Rc = lim
n→∞

∣∣∣∣ tntn+1

∣∣∣∣ =∞

Case 2: −1 < ρ < 0

In this case, we have 
(1− ρi) < 1

(1− ρi) > 1

if i even

if i odd

Therefore we split the summation of even terms and odd terms by∣∣∣∣∣
∑∞

i=1 β
i
(
1− ρi

)n
exp [ai]∑∞

i=1 β
i (1− ρi)n+1 exp [ai]

∣∣∣∣∣ =∣∣∣∣∣
∑∞

j=1 β
2j−1

(
1− ρ2j−1

)n
exp [a2j−1] +

∑∞
j=1 β

2j
(
1− ρ2j

)n
exp [a2j ]∑∞

j=1 β
2j−1 (1− ρ2j−1)n+1 exp [a2j−1] +

∑∞
j=1 β

2j (1− ρ2j)n+1 exp [a2j ]

∣∣∣∣∣
Note that for summation of odd terms, the denominator is larger than the numerator, while for

summation of even terms, it is the another way around. Hence, to compare the ratio, we first

compute the gap between the denominator and numerator for the summation of odd terms as

∞∑
j=1

[
β2j−1

(
1− ρ2j−1

)n+1
exp [a2j−1]− β2j−1

(
1− ρ2j−1

)n
exp [a2j−1]

]
=

∞∑
j=1

β2j−1
(
1− ρ2j−1

)n
exp [a2j−1]

(
−ρ2j−1

)
⇔ C −A = E
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and for summation of even terms as

∞∑
j=1

[
β2j

(
1− ρ2j

)n
exp [a2j ]− β2j

(
1− ρ2j

)n+1
exp [a2j ]

]
=

∞∑
j=1

β2j
(
1− ρ2j

)n
exp [a2j ]

(
ρ2j
)

⇔ B −D = −F

Where we define

A =

∞∑
j=1

β2j−1
(
1− ρ2j−1

)n
exp [a2j−1]

B =

∞∑
j=1

β2j
(
1− ρ2j

)n
exp [a2j ]

C =

∞∑
j=1

β2j−1
(
1− ρ2j−1

)n+1
exp [a2j−1]

D =

∞∑
j=1

β2j
(
1− ρ2j

)n+1
exp [a2j ]

E =

∞∑
j=1

β2j−1
(
1− ρ2j−1

)n
exp [a2j−1]

(
−ρ2j−1

)
F =

∞∑
j=1

β2j
(
1− ρ2j

)n
exp [a2j ]

(
−ρ2j

)
Then the ratio can be simplified to∣∣∣∣∣

∑∞
i=1 β

i
(
1− ρi

)n
exp [ai]∑∞

i=1 β
i (1− ρi)n+1

exp [ai]

∣∣∣∣∣ =

∣∣∣∣A+B

C +D

∣∣∣∣ =

∣∣∣∣ A+B

A+ E +B + F

∣∣∣∣
which can be bounded by

∣∣∣∣ A+B

A+ E +B + F

∣∣∣∣ ≥ |A+B|
|A+B|+ |E + F |
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on the other hand, we can bound |E + F | by

|E + F | =

∣∣∣∣∣∣
∞∑
j=1

β2j−1
(
1− ρ2j−1

)n
exp [a2j−1]

(
−ρ2j−1

)
+

∞∑
j=1

β2j
(
1− ρ2j

)n
exp [a2j ]

(
−ρ2j

)∣∣∣∣∣∣
=

∣∣∣∣∣∣−
 ∞∑
j=1

(
β2j−1

(
1− ρ2j−1

)n
exp [a2j−1]

(
ρ2j−1

))
+

∞∑
j=1

β2j
(
1− ρ2j

)n
exp [a2j ]

(
ρ2j
)∣∣∣∣∣∣

=

∣∣∣∣∣
∞∑
i=1

(ρβ)
i (

1− ρi
)n

exp [ai]

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
i=1

βi
(
1− ρi

)n
exp [ai]

∣∣∣∣∣ = |A+B|

Therefore ∣∣∣∣ A+B

A+ E +B + F

∣∣∣∣ ≥ |A+B|
|A+B|+ |E + F |

≥ |A+B|
|A+B|+ |A+B|

=
1

2

back to equation of Rc, we get

Rc = lim
n→∞

|n+ 1|
∣∣∣∣1− ρθρ

∣∣∣∣
∣∣∣∣∣
∑∞
i=1 β

i
(
1− ρi

)n
exp [ai]∑∞

i=1 β
i (1− ρi)n+1

exp [ai]

∣∣∣∣∣
≥ 1

2

∣∣∣∣1− ρθρ

∣∣∣∣ lim
n→∞

|n+ 1| =∞

Combining these, we see the ROC of the perturbation solution of the Burnside asset pricing

model is (−∞,∞) ⊆ R1.

A.5 Numerical specification of RBC model with Epstein-

Zin-Weil utility and adjustment costs

To avoid the convergence issue of the perturbation solution of the system, (1.23)

following the notation of Judd et al. (2014) we normalized the value function, consumption,

and TFP by their deterministic steady state level. In addition, to solve the model for larger γ,

we defined households’ resolved deviation of welfare as R̂DV t. Combining these, the equilibrium
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system (1.23) can be equivalently written as

R̂DV t = Et

( Ẑt+1

Zdss
D̂V t+1

)1−γ
 (A.4a)

1 = Et

Mt+1φ
′

(
Ît

K̂t

)(
(α− 1) Ŷt+1 + Ĉt+1

K̂t+1

)
+
φ
(
Ît+1

K̂t+1

)
+ 1− δ

φ′
(
Ît+1

K̂t+1

)
 (A.4b)

K̂t+1 =
K̂t

Ẑt+1

(
(1− δ) + φ

(
Ît

K̂t

))
(A.4c)

Ẑt = exp (µ+ χσzεt) , εt ∼ N (0, 1) (A.4d)

where we define

D̂V t =
V̂t

V̂dss

Mt+1 = βẐ−γt+1

(
Ĉt+1

Ĉt

)− 1
ψ

D̂V
1
ψ−γ
t+1

exp
((

1
ψ − γ

)
µ
)
R̂DV

1− 1
θ

t

D̂V
1−γ
θ

t = (1− β)

(
Ĉt

Ĉdss

) 1−γ
θ
(
Ĉdss

V̂dss

) 1−γ
θ

+ β exp

(
1− γ
θ

µ

)
R̂DV

1
θ

t

Ŷt = K̂α
t

Ît = Ŷt − Ĉt
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The deterministic steady-states (DSS) are given by

K̂dss =

 αβ

exp
(

1
ψµ
)
− β (1− δ)

 1
1−α

,

Ŷdss = K̂α
dss,

Îdss = (exp (µ)− 1 + δ) K̂dss,

Ẑdss = exp (µ) ,

Ĉdss = Ŷdss − Îdss, V̂dss =

 (1− β) Ĉ
1− 1

ψ

dss(
1− βẐ1− 1

ψ
ss

)


θ
1−γ

,

D̂V dss = 1,

R̂DV dss =


[
1− (1− β)

(
Ĉdss
V̂dss

) 1−γ
θ

]
β exp

(
1−γ
θ µ

)

θ

.
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Appendix B

Chapter 2

B.1 Ten stylized facts on declining business dynamism

summarized in Akcigit

Fact 1. Market concentration has risen.

Fact 2. Average markups have increased.

Fact 3. The profit share of GDP has increased.

Fact 4. The labor share of output has gone down.

Fact 5. The rise in market concentration and the fall in labor share are positively associated.

Fact 6. Productivity dispersion of firms has risen. Similarly, the labor productivity gap between

frontier and laggard firms has widened.

Fact 7. Firm entry rate has declined.

Fact 8. The share of young firms in economic activity has declined.
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Fact. 9. Job reallocation has slowed down.

Fact 10. The dispersion of firm growth has decreased.
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Appendix C

Chapter 3

C.1 Sentiment analysis on tweet event study

Company Date Near

Earnings

Date

Response to

announcement

Tweet Sentiment

News Corp May 1,

2012

Yes Yes @rupertmurdoch is a superb businessman

and a world class CEO. He has built a

tremendous empire and is certainly “fit”

to run his corporation

Positive

Procter &

Gamble Co

May

11,

2012

Yes Yes Procter and Gamble is relocating its

beauty headquarters from Cincinnati to

Asia–what are we doing?

Negative

JPMorgan

Chase &

Co.

May

16,

2012

No Yes Glad to see that Jamie Dimon passed

yesterday’s shareholder vote. The JP

Morgan stock holders understand that a

good CEO is worth keeping.

Positive

Facebook May

17,

2012

No No @Facebook’s Mark Zuckerberg is clearly

a brilliant guy. My advice? Get a

pre-nup!

Positive
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Goldman

Sachs

Group

June

12,

2012

No Yes Welcome to the new reality. Goldman

Sachs just based their new Asia Pacific

chairman not in Tokyo, but Beijing.

Negative

Apple Inc July 2,

2012

No Yes WRONG: A China court ordered @apple

to pay $60M to a Chinese company that

registered iPad before@apple

Neutral

JPMorgan

Chase &

Co.

July

18,

2012

No Yes What recovery? JP Morgan has

readjusted Q2 growth down from 1.7% to

1.4% and Q3 to 1.5% with 2012 on a

whole at 1.7%

Negative

Papa

John’s Int’l

Inc.

Aug 9,

2012

No Yes @PapaJohns CEO John Schnatte hastold

shareholders that ObamaCare will force

him to raise pizza prices.

Neutral

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Apple Inc Apr 3,

2020

No Yes RT @WhiteHouse: Huge thanks to

@Apple! Together with the White House,

@CDCgov & @fema, Apple launched a

COVID19 screening tool that guides

Positive

Bank of

America

Apr 3,

2020

No Yes Great job being done by

@BankofAmerica and many community

banks throughout thecountry. Small

businesses appreciate your work!

Positive

Bank of

America

Apr 4,

2020

No Yes I will immediately ask Congress for more

money to support small businesses under

the #PPPloan if the allocated money

runs out. So far, way ahead of schedule.

@BankofAmerica & community banks are

rocking! @SBAgov @USTreasuryI will

immediately ask Congress for more

money to support small businesses under

the @ppploan if the allocated money

runs out. So far, way ahead of schedule.

@BankofAmerica & community banks are

rocking! @SBAgov @USTreasury

Positive
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Due to space limitation, the table above just provide a overview of the data set of

sentiment analysis. For fully detailed data set, please check the link SentiData.
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https://drive.google.com/file/d/1uoN6pfGRLq0mUd96tj5NND96UZNrXdG5/view?usp=sharing
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